General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NASA CR-135425

(NASA-CR-135425) CALCULATION OF THE FLOW ¥78-26097
FIFLD IN SUPERSONIC EIXED-COMPRESSION INLEIS

AT ANGLE OF ATTACK USING THE

THREE~DINENSIONAL METHOD OF CHARACTERISTICS onclas
WITH DISCRETE SHOCK WAVE FITTING (Purdue G302 23300

CALCULATION OF THE FLOW FIELD IN SUPERSONIC MIXED-
COMPRESSION INLETS AT ANGLE OF ATTACK USING THE
THREE-DIMENS IONAL METHOD OF CHARACTERISTICS
| WITH DISCRETE SHOCK WAVE FITTING
Joseph Vadyak and Joe D. Hoffman

Purdue University
West Lafayette, Indiana 47907

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Lewis Research Center
Cleveland, Ohio 44135

June 1578
Grant NGR-15-005-162 and NGR-15-005-191




1. cho-n Na. 2. Gavernment Accession No, 3. Rmpiem's Catatog No.
NASA CR- 135425 -

4. Title and Subtie CALCULATION GF THE FLOW FIELD IN SUPER- |, 5. Report Date
SONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK |  June 1978

USING THE THREE-DIMENSIONAL METHOD OF CHARACTER- s
ISTICS WITH DISCRETE SHOCK WAVE FITTING 8- Perlorming Crgenization Coda

7. Author(s! 8. Performing ngiﬁie.aﬁon ﬁepon No.
Joseph Vadyak and Joe D. Hoffman TSPC 78-1

2| 10. Work Unit No.

9. Performing Organiiation Name and Address

Purdue University _ 11. Contract or Grant No.
West Lafayette, Indiana 47907, NGR-15-005-162 and

13. Type of Report and Pericd Covered

12, Spomsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

14 Sponsoring Agency Code

15. Supplementary Notes
Final report. Project Manager, Alian R. Bishop, Wind Tunnel & Flight Division, NASA Lewis

Research Center, Cleveland, Ohio 44135,

16. Abstract
The calculation of the flow field in supersonic mixed-compression aircraft inlets at angle of at-
tack is accomplished using the method of characteristics for steady three-dimensional flow in
conjunction with a discrete shock wave fitting procedure. The influence of molecular transport
can be included in the computation by treating the viscous and therma! diffusion terms in the
governing partial differential equations as correction terms in the method of characteristics
scheme. The culmination of the present research is the development of a production type com-
puter program which is capable of calculating the flow field in a variety of axisymmetric mixed-
compression akrceraft inlets, The resulis produced by the presenat analysis agree well with those
produced by the two-dimensional method characteristics when axisymmetric flow fields are com-
puted, For three-dimensional flow fields, the results of the present analysis agree well with ex-
perimental data except in regions of high viscous interaction and boundary layer removal. The
preaent analysis does not compute the boundary layer or accouat for boundary layer bleed,
Submitted as a thesis by Joseph Vadyak to Purdue University, Wesl Lafayette, Indiana, in partial
fulfillment of the requirement for the degree of Doctor of Philasophy, March 1978,

17. Key Words {Suguested by Authoris!} 18, Distribution Statement

Inlets; Supersonic; Three-dimensional flow; Uncilassified - unlimited
Apgle of attack; Method of characteristics; STAR Category 02
Shock waves
19, Security Classif. {of thiy report) 20. Secutity Classit. {of this page) 21. No. of Pages 22 Price’
Unclassified Unclassified 252

* For sale by the National Techmical Jnionmatien Setvece . Spompheld Vupira 22161




SECTION

I.

I1.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION............ cecnsvanrareans Cerecaeas tereesansansarirnn

1.
2.
3.

GENERAL..... eseeesetbennatesnrettnTretuarnatttancatstitratanes
METHODS OF SOLUTION. ......coiiiiiiirmiiiinritanevennreccnnnnnnn
GENERAL FEATURES OF THE THREE~ DIMENSIBNAL METHOD

OF CHARACTERISTICS. . ittt ittt ettt nsanaanann

GAS DYNAMIC MODEL......courriiniiiiiir i rtreerarannnenannnannsnns

]
2.
3.
4
5

INTRODUCTION. . vttt ittt ieereiarssacnranesesannannan
GOVERNING DIFFERENTIAL EQUATIONS OF MOTION........cevvinnanns
THERMODYNAMIC MODEL......cocvvinrriinnieicnencannnnnnsssnannsn
MOLECULAR TRANSPORT PROPERTIES....... ceenanracrennae veseoannan
SUMMARY . ittt ittt it ittt ittt an e

CHARACTERISTIC EQUATIONS. ..o vviiirrianensasennncensoannsanenanas

B P -

Ko WO SN N

INTRODUCTION. ottt it iie i itetsrenasrranasnnnsnansen
CHARACTERISTIC SURFACES.......viviiiiitnrnianiinnnssanasananns
COMPATIBILITY RELATIONS .....................................

SOLID BOUNDARY POINT UNIT PROCESS. ... ... oooonnooiiimm
BOW SHOCK WAVE POINT UNIT PROCESS...... .. oot

INTERNAL SHOCK MODIFIED-INTERIOR POINT AND -SOLID
BODY POINT UNIT PROCESSES........ OO .

OVERALL NUMERICAL ALGORITHM..........cevvuvunnen Ceeetanertesnnevana

INTRODUCTION..... Sretabecasansmcsssesansuancanarnorrraraansnes
INITIAL-VALUE PLANE........coooiniiiiiiiiiiiiiiiiiiiinnnna..

INTEGRATION STEP SIZE REGULATION. ... noooomronsoneni 20
CALCULATION OF THE TRANSPORT FORCING FUNCTIONS................
NUMERICAL STABILITY. . ... .nossesmsnsssnsstmmmm

iii




SECTION Page
VI, COMPUTATIONAL RESULTS. - - - oo, 53
T INTRODUCTION: e e oo e e e e e e e e 53
2. EXTERNAL FLOW ABOUT THE FOREBODY ..oooososomoooi, 53
3. CONTINUGUS INTERNAL FLOW. ... 0 onoooso 56
4. INTERNAL FLOW WITH DISCRETE FITTING OF THE INTERNAL
SHOCK WAVE SYSTEM. -+ o oonee oo 58
VIL.  CONCLUSIONS. . vttt e e 89
APPENDICES
; A, GOVERNING EQUATIONS. - - o v v veseennseee e seen e e e e eaea e 91
| Lo INTRODUCTION: -« o e e eee e e e e 91
2. DIFFERENTIAL EQUATIONS OF MOTION. ... oommmmmoosossoin, 91
3. THERMODYNAMIC MODEL. + .- oosoesoe i e 97
B TRANSPORT PROPERTIES. . ... ..o 98
i B.  DERIVATION OF THE EQUATIONS FOR THE CHARACTERISTIC
: SURFACES AND THE COMPATIBILITY RELATIONS.....-nooeeeesnnnnnns. 101
i T INTROBUCTION. o v e e e e e e e i 101
i 2. EQUATIONS OF MOTION. - oo oo oo 102
i 3. CHARACTERISTIC SURFACES. ..o ooomoo o, 103
| G, SOLUTION FOR THE 7. rrovovnonomssnsnss s ssiesneas 110
5 COMPATIBILITY RELATIONS. ..o oo, 113
6. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC
EQUATIONS -« + v v e e e e e e e e e e e e e et 18
G INTERPOLATION. « o oo oo oo e e 127
o INTROBUCTION oo e e e, 127
2. UNIVARIATE INTERPOLATION. .. ..o, 127
3. BIVARIATE INTERPOLATION. ..o, 129
4. TRIVARIATE INTERPOLATION. ..o oo 133
D.  SURFACE REPRESENiATIONS, AND STREAMLINE- AND
B1CHARACTERISTIC-SURFACE INTERSECTIONS. . .- ''onereeeennnnnnns 140
T INTRODUCTION. - o e e e e e e e e e e e e, 140
2. SOLID BOUNDARY SURFACES. .. . ooooomo e 140
3. SHOCK WAVE SURFACE. . oo oo, 141
4. STREAMLINE- AND BICHARACTERISTIC-SURFACE INTERSECTIONS....... 144

iv

R R SR SRt s e e e s e =



APPENDICES
E.

—

WSO $ M) =

UNIT PROCESSES. .+ vevnvnenrennenerenennns ‘...};.

ENTRODUCT I ON ................................
SUMMARY OF THE CHARACTERISTIC EQUATIONS """

INTERIOR POINT UNIT PROCESS.................
SOLID BOUNDARY POINT UNIT PROCESS...........
BOW SHOCK WAVE POINT UNIT PROCESS...........
SOLID BODY~SHOCK WAVE POINT UNIT PROCESS....
SHOCK-MODIFIED INTERIOR POINT UNIT PROCESSES

OVERALL NUMERICAL ALGORITHM

---------------------

--------------------------------

EXTERNAL FLOW ABOUT THE FOREBODY............

oooooooooooooooooo

GENERAL COMMENTS CONCERNING THE UNIT PROCESSES.........ccv....

------------------

------------------

------------------

SHOCK-MODIFIED SOLID BOUNDARY POINT UNIT PROCESSES............
INTERNAL FLOW FIELD-SHOCK WAVE POINT UNIT PROCESSES...........

------------------

------------------

------------------

------------------

NN b N -
L)
< O
| -
[aed
5 —
-
=]
=
~
2
m
<
@
ey
1=m
o
-
m
nE
(=]
=
=
b ]
=
L=
-
r-
[=]
=
w
3
m
-
=~
-

lNTERNAL FLOW IN WHICH SHOCK WAVES ARE NOT DISCRETELY

------------------

~J
—
-=
—
23;
)
| g
(=]
=
—
=
=
x
pumt
[
x
v
=
j= )
[
~
=
b3
-
Tt
wy
=
r
rm
2
[ 2 ]
w
(=]
=
m
-
m
~
-

1. INTRODHCTION.....ciiviiiiiiiiiiineananrannas
2. EXPRESSIONS FOR THE TRANSPORT TERMS.........

------------------

------------------

------------------

------------------

3. COMPUTATION OF THE TRANSPORT FORCING FUNCTIONS................

NOMENCLATURE. . o ivveieiivieienreaiennennnssnans

LIST OF REFERENCES: .. uveueueencvesnrasarossssanasssacsassosassons

Page
148

148
148
151
152
162
164
177
182
191
194

201
201
204
207
209
213
217
218
234
234
234
236
240

244




CALCULATION OF THE FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS
AT ANGLE OF ATTACK USING THE THREE-DIMENSIONAL METHOD OF
CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING*

Joseph Vadyak and Joe D. Hoffman
School of Mechanical Engineering
Purdue Yniversity, West Lafayette, Indiana 47907

SUMMARY

An analysis has been developed for calculating the flow field in supersonic
mixed-compression aircraft inlets at angle of attack using the three-dimension-
al method of characteristics with discrete shock wave fitting. This report
describes the details of the analysis and presents some computational results.

The gas dynamic model 1is based on the assumptions of steady continuum flow,
negligible body forces, a simple system in thermodynamic equilibrium, no mass
diffusion, negligible radiative heat transfer, no internal heat generation
other than viscous dissipation, and viscous and thermal diffusion effects of
secondary importance. The viscous and thermal diffusion terms are treated as
forcing functions, or correction terms, in the method of characteristics
scheme. Pressure and density are specified as the primary thermodynamic pro-
perties, and the temperature, speed of sound, viscesity, and thermal conduc-
tivity are expressed in terms of pressure and density.

The sv~tem of governing equations is hyperbelic when the flow is supersonic.
The equations for the characteristic surfaces and the compatibility equations
applicable along these surfaces are derived. The characteristic surfaces are
the stream surfaces, which are surfaces composed of streamlines, and the wave
surfaces, which are surfaces tangent to a Mach coenoid. The compatibility
equations are expressed as directional derivatives along streamlines and bi-
characteristics, which are the lines of tangency between a wave surface and a
Mach conoid. The numerical integration procedure devised by D.S5. Butler was
employed to develop a numerical integration algorithm that is second-order
accurate, explicit, and does not violate the domain of dependence of the dif-
ferential eguations.

The bow shock wave surrounding the forebody portion of the centerbody and
the internal shock wave system inside of the inlet are determined by discrete

*Submitted to Purdue University, West Lafayette, Indiana, by the First
author in partial fulfilimeni of the requirements for the deqree of Doctor
of Philosophy, March 1978.
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shock wave fitting. The continuous flow field between shock waves is deter-
mined by the method of characteristics numerical integration procedure, and the
flow properties across the shock waves are determined by the application ¢f the
Hugoniot jump conditions.

Unit processes were developed for interior field points, selia boundary
points, field-shock wave points, and solid boundary-shock wave points. An
inverse marching scheme is empioyed in which the solution is ebtained on planes
perpendicular to the axis of the centerbody and the cowl. The distance between
successive solution planes is determined by the Courant-Friedrichs-Lewy stabil-
ity criterion. Although the numerical integration procedure developed herein
is capable of analyzing three-dimensional flows in three-dimensional geometries,
only axisymmetric geometries at angle of attack were considered in the present
investigation,

Selected computational results are presented for three categories of flow
fields: external flow about the forebody, continuous internal flow, and in-
ternal flow in which the discrete internal shock wave system is computed. Both
axisymmetric flow results and three-dimensional flow results are presented. For
the internal flow field in which the shock waves have been fitted, some com-
parisons with experimental data are presented. Results of the present analysis
are compared with those obtained by the two-dimensionail methed of characteristics
for axisymmetric flows, and by a three-dimensionai fixed grid finite difference
shock capturing method.

The camputational results support the following conclusions. The external
flow field about a forebody can be accurately calculated if a bow shock wave
of reasonable strength exists. For axisymmetric flows, the solution agrees
well with results obtained by the two-dimensional method of characteristics.
Except in regions of strong viscous interaction and boundary layer removal,
the results of the present analysis agree well with experimental data. Good
agreement is obtained between the present analysis and a finite difference
shock capturing method. The present analysis, however, which discretely fits
shock waves, provides better resolution of the shock waves.




SECTION I
INTRODUCTION

1. GENERAL

The purpose of this investigation was to devziop a method for
calculating the flow field in a supersonic mixed-compression aircraft
inlet at nonzero angle of attack. A typical supersonic mixed-compres-
sien aircraft inlet is illustrated in Figure 1. Compression takes
place both in the external flow about the forebody and in the internal
flow inside the annulus. The free-stream velocity is supersonic,
hence, a bow shock wave is generated at the forebody tip as shown.
The internal shock wave emanates from the cowl lip. That shock wave
makes a number of reflections with the centerbody and cowl before
terminating in the divergence downstream of the geometric throat of

the annulus. The flow is subsonic downstream of that location.

A major objective in the design of any aircraft inlet is to achieve

maximum flow compression with a minimum reduction in stagnation pres-
sure. Moreover, since an adverse pressure gradient exists, suitable
control of the boundary layer is a major design consideration. This

is especially true for an inlet such as thatillustrated in Figure 1,
since a number of oblique shock wave-boundary layer interactions occur.
In a mixed-compression inlet, it is not unusual to remove 10 percent
or more of the cowl lip mass flow rate by boundary layer bleed to

control separation of the boundary layer.
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The inlet illustrated in Figure 1 is axisymmetric. At zero
incidence, the flow field is axisymmetric and can be computed using a
two-dimensional method. However, at nonzero angle of attack, cross
flow develops, and computation of the flow fieid reguires using a three-

dimensional algorithm.

2. METHODS OF SOLUTION

The equations of motion for steady three-dimensional supersonic
flow may be classified as a system of hyperbolic quasi-linear partial
differential equations of first order. Exact solutions can be found
in only a few cases. Consequently, most solutions are obtained by
employing numerical techniques. The two most widely used numerical
methods are:

1. method of finite differences

2. method of characteristics

The method of finite differences replaces the derivatives in the
system of original differential equations with simple differences.
The system of difference equations is then solved to obtain the solu-
tion. Finite difference methods may be further classified into those
methods which do and those methods which do net contain artificial
viscosity terms. The artificial viscosity terms are used to induce
numerical damping and thereby reduce oscillation of the solution in
regions of high flow compression. The method of characteristics first
transforms the system of governing equations inte characteristic form,
after which the derivatives in the resulting equations are replaced by
finite differences. The system of difference equations is then solved

to obtain the solution. The advantages and disadvantages of each of




these methods have been discussed by Strom (1), Sauerwein (2),
Richtmyer and Morton (3), and Forsythe and Wasow (4). Summarizing
their findings, the finite difference methods are conceptually simpler,
less difficult to program, require less computer storage, and can
obtain the solution on an evenly spaced grid. The characteristics
methods are, generally speaking, more accurate due to their more
rigorous treatment of the physics of the preblem,.

In the present investigation, the flow field is computed using
the method of characteristics for steady three-dimensional flow. The
bow shock wave and the internal shock wave system are computed using a
three-dimensiona] discrete shock wave fitting procedure. Moreover,
the influence of molecular transport may be included in the computation
by treating the viscous and thermal diffusion terms in the governing
equations of motion as forcing functions, or correction terms, in the
method of characteristics scheme. The primary purpose in including the
effects of molecular transport in the computation is for the possible
future matching of the present analysis with a higher-order boundary
layer analysis. No attempt was made in the present investigation to

compute the boundary layer, or to account for boundary layer removal.

3. GENERAL FEATURES OF THE THREE-DIMENSIONAL METHOD OF CHARACTERISTICS
Extensive literature surveys of the method of characteristics

for three-dimensional flow have been given by Zucrow and ¥~ffman (5),
Fowell (6), Thompson (7), Chushkin (8), Strom (1), Sauerwein (2), and
Ransom, Hoffman, and Thompson (9). A brief summary of their conclu-

sions is given here.
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In general, characteristics schemes for steady three-dimensional
flow may be classified as either reference plane metheds er bichar-
acteristic methods. In reference plane methods, the system of
governing partial differential equations in three-independent variables
is reduced to a system of partial differential equatiens in two inde-
pendent variables by suitably approximating the derivatives with re-
spect to the third independent variable. These approximations to the
derivatives are then treated as forcing terms, and the resulting
system of equations is solved using a two-dimensienal characteristics
scheme. Reference plane methods have been proposed by Ferrari (10},
Sauer (11,12), Ferri (13), Moretti, et al. (14,15), Katskova and
Chushkin (16), Helt (17,18), and Rakich (19). Reference plane methods
iave been called the method of bycharacteris.ics by Meretti, et al.
(14,15), the method of near characteristics by Sauer (11), the method
of secondary characteristics by Sauer (12), and the method of semi-
characteristics by Chushkin (8). In bicharacteristic methods, the
characteristic equations are solved along the actual generators (bi-
characteristics) of the Mach coneid and aleng the str-amlines. Bichar-
acteristic schemes have been propesed by Thornhill (20), Fowell (6},
Sauerwein (2,21), Coburn and Dalph (22), Holt ‘23), Strem (1), Butler
(24), and Cline and Hoffman (25).

Reference plane methods are conceptually the simpler of the two
schemes. However, reference plane methods have guestionable accuracy
in highly three-dimensional flows s.nce the domain of dependence of
the differential equations is not rigorously considered. Alternatively,
while the bicharacteristic methods more rigorously treat the demain

of dependence, they are also more complicated. The bicharacteristic
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mathods are potentially the more accurate and, therefore, a bichar-
acteristic method was selected for use in the present investigation.
The particular bicharacteristic method selected was that devised by
D.S. Butler (24). Butler's scheme has been applied by Elliott (26),
Richardson (27), and Delaney (28) to compute unsteady two-dimensional
flows. Ransom, Hoffman, and Thompson (9) applied Butler's method to
compute the continuous steady three-dimensional supersonic isentropic
flow field in nozzles, and Cline and Hoffman (25) applied Butler's
method to compute the continuous steady three-dimensional supersonic
flow field in nozzles accounting for nenequilibrium chemical reactions.
A detailed description of the computer program developed for this
calculation is given in NASA TM-78947, "A Computer Program for the
Calculation of the Flow Field in Supersonic Mixed-Compression inlets
at Angle of Attack Using the Three-Dimensional Method of Characteristics
with Discrete Shock Wave Fitting" by Joseph Vadyak, Joe D. Hoffman, and
Allan R. Bishop.
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SECTION I
GAS DYNAMIC MODEL

1. INTRODUCTION

The gas dynamic model is based on the following major assump-

tions:

1.

£ W N

7.

continuum flow

steady flow

negiigible body forces

the working gas can be represented as a simple system in
thermodynamic equilibrium

no mass diffusion

negligible radiative heat transfer and no internal heat
generation other than viscous dissipation

viscous and thermal diffusion effects of secondary impertance

The governing equations for the assumec flow model consist of the con-

tinuity equation, the component momentum equations, the energy equa-

tion, the thermal and caloric equations of state, and appropriate

representations for the molecular transport properties. These egua-

tions are briefly presented in this section. A detailed development

of these eguations is given in Appendix A.




2. GOVERNING DIFFERENTIAL EQUATIONS OF MOTION

*
The continuity equation [see Reference (29)}] is given by
au.

Do
bt *"ax =0 (1)

where X; (i=1,2,3) denotes the three rectangular cartesian ceordinates
X, ¥, and z, repsectively, U (i=1,2,3) denotes the corresponding
velocity components u, v, and w, respectively, p denotes the density,
and t denotes the time. Tie operator D{ }/Dt in equation (1) is the
material derivative given by
DC) . a0), 200 (2)
J ax.
J

For steady three-dimensional fiow, equation (1) may be written in ex-

panded form as
+ 3 by
pu, pvy + oW, + up, + pr + wo, 0 (3)

where the subscripts x, y, and z denote partial differentiation with
respect to the corresponding direction.
The momentum equation is given by the Navier-Stokes equation {292),

which written in component iorm is

o E‘j— = B - ap + 9 U{Bui + ?_tii
bt i 8xi axj laxj Bxi
Ju. au,
g_a._ B | S R N § i=1.2.:

*
Repeated indices imply summation over the range of 1 to 3 unless ether-

wise noted.
10
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where Bi (i=1,2,3) denot2s the x, y, and z components of the body force,
respectively, P denotes the pressure, u denotes the dynamic viscosity,
and n denotes the second coefficient of viscosity.

One of the major assumptions of the present investigation is
that the influence of molecular transport is considered to be of
secondary importance as compared to the inertial effects in determining
the solution. As a consequence, the viscous and thermal diffusion
terms appearing in the governing partial differential equations are
treated as forcing functions or correction terms in the method of
characteristics scheme to be presented. In what follows, the melecular
transport terms are placed on the right-hand sides of the respective
governing equations, and the convective terms are placed on the
left-hand sides of those equations. The convective terms then are
considered as constituting the principal parts of these equations.
Hence, by assuming steady flow, negligible body forces, n = 0 [Stokes's
hypothesis (30)], inertial dominance, and variable transport properties,
equation {4) may be written in expanded form for each of the three

coordinate directions as

puu, + pvu, *pwu, +P =F (5)
puv, + pVVy tpwy, + Py = Fy (6)
puw, * P, t oW, + Pz = Fz (7}

where
= =y 3y - 2 . |
Fye ™ ux[é Uy 3(vy ¥ wzi] * py(uy * Vx) * uz(uz * wx)
4
Pulg Uy Uyt

1
[ Yy Uy ¥ §(vxy * Wmzi] (8) 1

T inim e P VY




- =y &y -2
F -uI;v 3(ux+wzil+ux(vx*ruy)+uz(vz+wy)

4 ]
T VI + “3“(ny + wyz):l (9)

Fe = “:zIEBl " " %("x + Vy):l tu i +ug) + ey +v)

r
+ ul_% Wog Wy P Wyt %(uzx + vz.y:l (10)

The appropriate form of the energy equation is now derived. In the
following, the pressure P and density p are considered as being the
primary thermodynamic variables. All secondary thermodynamic vari-
ables are then expressed in terms of the pressure and density.

It is assumed in the present investigation that the working gas

:_ may be represented as a simple system in thermodynamic equilibrium. For
a simple system, specification of ary two independent thermodynamic
properties defines the thermodynamic state of the system (31). Hence,

the following functional relationship may be written
P = P{p,s) (11)

where s is the entropy per unit mass. Employing the concept of the
total derivative, and introducing the material derivative operator

given by equation (2), the following equation is obtained.

bP _ (3P) Do, (3P Ds
[ L +[Bs]p D5 (12)

The sonic speed a is defined by

2 _ (3¢ ‘
a~ = 30]5 (13)

12
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Introducing equation (13} into equation (12) yields

P _ 2Dp . (3P} Ds

ot~ % Bt [a's]p bt (14)
The material derivative of entrepy appearing in equation (14) may

be expressed in terms of a thermal conduction function and a viscous

dissipation function. The entropy may be expressed in terms of the

jnternal energy by use of the thermodynamic relation (31)

T ds = de + P d(1/p) (15)

where T is the temperature, and e is the internal energy per unit mass.

The internal energy may be expressed in terms of a thermal conduction
function and a viscous dissipation function by use of the energy

equation (29)

De _ 3 { 3T | , P Do !
P Bt [x i} + 5 Bt + ¢ {16)

where x is the thermal conductivity, and ¢ is the viscous dissipation

function, which for n = 0 is given by

(][N

Ju, Bu. 3u
Vo, ] L2k
» = 7 ¥ [axj ¥ axi] 39X, 6 (17)

kij_l

where Gi. js the Kronecker delta. Combining equations (14) to (17) and

J
writing the resulting expression in expanded form fer steady three-

dimensional! flow with variable transport properties yields

2 -
up_+ va +wP_ - a(up +vp + WQZ) = F (18)

e

where

13
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Fe N g{“(Txx ¥ Tyy * Tzz) * KxTx ¥ |<yTy ' Ksz

2 2 2 2
+ u[Z(ux + vy tw + uyvx tuw o+ vzwy) + v,
2, 2.2 2 2 2 2.
tw ot uy + &y tu tv, - 3("x + vy + wz) ]} (19)
and
= 1_[aP
STt [as] (20)

P

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential
equations may be obtained, the temperature T, the sonic speed a, and \.
the parameter £ defined by equation {20} must be expressed in terms
of the primary thermodynamic variables P and p. The general functional

forms of the relations for T, a, and £ are given by

T =T(P,p) (21)
a = a(P,p) (22)

The derivatives of the temperature appearing in equation (19) are ex-
nressed in terms of the derivatives of the pressure and the density
by analytically differentiating equation (21).

For the special case of a thermally and calorically perfect gas,

equations (21) to (23) take the following simple forms

-
]

P/pR (24)

= (YP/o)llz (25)

-]
I
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£E=vy -1 (26)
where R is the gas constant, and y is the specific heat ratio.
4. MOLECULAR TRANSPORT PROPERTIES

The dynamic viscosity u and the thermal conductivity x must be
expressed in terms of the primary thermodynamic variables P and p. In
general, both the viscosity and the thermal conductivity are assumed

to be functions of temperature only. Hence,

u(T) (27)

=
i

-

k(T) ‘ (28)

=
"

The derivatives of the transport properties appearing in equations (8),
{9), (10), and {19) are obtained in terms of the derivatives of the
pressure and the density by anmalytically Jdifferentiating equations (27}
and (28) with respect to the temperature, with the resulting tempera-
ture derivatives being obtained by analytically differentiating equa-
tion (21).

A widely accepted representation for equation (27) is the
Sutherland formula (30)

1.5 (T_+5
=y |I- I
|G {To] [T ¥ s] (29)

where o is the viscosity at the reference temperature To’ and $ is a

constant. Equation (28) may be represented by the quadratic pelynomial

2

K=a+ azT + a3T (30)
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where the coefficients a, (i=1,2,3) are obtained by curve fitting thermal
conductivity data.

The contribution of turbulent transport may be considered in the
computation by adding the appropriate eddy viscosity and eddy thermal
conductivity functions to the molecular trahsport properties given by

equations (27) and (28), respectively.

5. SUMMARY

In summary, the differential equations of motion for steady three-
dimensional flow are given by equations (3), (5), (6), (7), and (18).
For a thermally and calorically perfect gas, the thermodynamic model
is represented by equations (24) te {26). The molecular transport

properties are represented by equations (29) and (30).
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SECTION III
CHARACTERISTIC EQUATIONS

1. INTRODUCTION

Written in the form showr, with the left-hand sides constituting
the principal parts, equations (3), (5), (6), (7), and (18) may be
classified as a system of quasi-linear nonhomogenous partial differ-
ential equations of first order. The system is hyperbolic if the
flow is supersonic. Systems of hyperbolic partial differential equa-
tions in three independent variables have the property that there
exist surfaces in three-dimensional space on which linear combinations
of the original partial differential equations can be formed that con-
tain derivatives only in the surfaces themselves. These special sur-
faces are known as characteristic surfaces, and the linear combinations
of the original partial differential equations are interior differen-
tial operators known as compatibility relations. In this sertion, the
equations for the characteristic surfaces and the compatibility rela-
tions valid along these surfaces are listed and briefly discussed. A

detailed development of these equatiens is given in Appendix B.

2. CHARACTERISTIC SURFACES
For steady three-dimensional supersonic flow, two families of
characteristic surfaces exist, as illustrated in Figure 2. One family

of characteristic surfaces consists of the stream surfaces given by

17
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uﬂx + vhy + wNZ =0 (31)

where N = (Nx,Ny,Nz) denotes the normal to a stream surface. The
envelope of all stream surfaces at a point forms a single pencil of

planes whose axis is a streamline. A streamline may be represented by
dx/dt = u dy/dt = v dz/dt = w (32)

where t is the time of travel of a fluid particle along the streamline.
The second family of characteristic surfaces consists of the wave

surfaces given by
uN, + vNy +wN, = alN| (33)

where N = (Nx‘Ny’Nz) denotes the normal to a wave surface. The envelope
of all wave surfaces at a point forms a conoid known as the Mach conoid.
The Mach conoid may be represented locally by a right circular cone
known as the Mach cone. In differential form, the quadric surface of

the Mach conoid is given by
[u? - (9% - az)](d-x)2 s V2 - (¢ - az)](dy)2
+ [w? - (q2 - az)](dZ)2 + 2uv(dx}(dy)

+ 2uw{dx)(dz) + 2wwidy)(dz) = 0 (34)

where g is the velocity magnitude (q2 = u2 + v2

+ wz). The line of
contact between a particular wave surface and the Mach conoid is known

as a bicharacteristic. A bicharacteristic is a generator of the Mach

conoid.

19
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3. COMPATIBILITY RELATIONS

The compatibility relations which are applicable on the stream

surfaces are given by

2 -

ub + va + sz -a (UBX + ve, + wpz) = Fy (35)
pufuu, + vu.y + wuz) + pv(uvx + va + wvz)

+ pw(uwx + va + wwz) + qu + va + wPZ

=, +VE (36)
pr(uux + vuy + wuz) + pSy(uvx + vyy + wvz)

+ psz(uwx + vuy + wwz) + SXPx + SyPy + SZPz

= sxfx + syFy + Sze (37)

In equation (37), S = (sx,sy,sz) denotes a vector which lies in the
stream surface and that is independent of the velocity vector. Equa-
tions (35) and (36) may be written in a form which contains differen-

tiation in the streamline direction as follows.

%’% ~a2%-%=Fe (38)
du dv dw , 4P _ ¢ - :
PuUGE*rOY gp oW gr tgpc U, ¢ va + W, (39)

In equations (38) and (39), the operator d{ )/dt represents the direc-

tional derivative along a streamline.
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The compatibility relation which is applicable on the wave sur-

faces is given by
panx(uux tow 4 wuz) + pany(uvx + w, + wvz)
+panz(uwx + oy 4 wwz) + (an, - u)P, + (any - v)Ry
+ (anz - w)Pz - paz(ux + vy + wz) = A (40)
where
A= a(anx + "yFy + nzFZ) - Fy (41)

In equations (40) and (41), n = (nx.ny,nz) denotes the unit normal

vector to the wave surface. E£quation (40) may be written in a form

which contains differentiation in the bicharacteristic direction as

follows,

du dv dw _dP _
panx E?‘f oany dt + pan, dt = df

A - paz[(ni - l)ux
+ (n2 - T + (n2 - Tw_+nn{u +v)
y y ‘z z xy'y X
+ "x"z(uz + "x) + nyﬂz(vZ + "y)] (42)

In equation (42), the operator d{ )/dt denotes the directional derivative
along a bicharacteristic. The terms in brackets in equation (42) repre-
sent differentiation in the wave surface but in a direction normal to
the bicharacteristic direction. Hereafter, these terms will be refer-
red to as the cross derivatives.

) At any point in the flow field there exists an infinite number of

stream surfaces and wave surfaces. The number of independent

21
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conpatibility relations cannot exceed the number of independent equa-
tions of motion. As a consequence, it is necessary to determine which
of the possible combinations of the compatibility relations form an
independent set. Rusanov {32), using a proof in the space of char-
acteristic normals, has shown for steady three-dimensional isentropic
flow that two of the stream surface compability relations applied
along a stream surface and the single wave surface compatibiiity
relation applied along three different wave surfaces form an indepen-
dent set of five characteristic relations. Rusanov's results may be
extended to the present case since the principal parts of equations
(3), (5), (6), (7), and (18) are the same as those for isentropic
flow. Hence, the set of compatibility relations used in the present
investigation consists of equations (38) and (39) applied along a
streamiine and equaticn (42) applied along three different bicharacter-

istics.

4. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

D. S. Butler {24) developed a parameteric form for representing
a bicharacteristic and the wave surface compatibiiity relation
applicable along it. A detailed development of Butler's methed is
presented in Appendix B. A brief summary is given here.

Butler introduced the following parameteric form to represent a

bicharacteristic.
dx; = (ui + co.CosB + csisine)dt (i=1,2,3) (43)

In equation (43), t is the time of travel of a fluid particle aleng

the streamline that is the axis of the Mach cone, & is a parametric
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angle denoting a particular element of the Mach cone and has the range

0 <0 < 2n, and c is given by
. ; :
¢ = q2a2/(q2 - a?) (44)

where q is the velocity magnitude, and a is the sonic speed. The
vectors o, and Bi in equation (43) are parametric unit vectors with
@y, Bi’ and ui/q {i=1,2,3) forming an orthonormal set.

The corresponding parametric form of the wave surface compatibility

relation, equation (40), is given by

P du.
at pc(a cosé + B, 5ing) —— dt = &
2, . . Bu; _
- pc (a151n6 - gicose)(ajs1ne - Bjcose) 5;3 (45)

In equation (45), the operator d( )/dt represents differentiation in

the bicharacteristic direction, and ¢ is given by

= (F/a0)IF, - alnF + nFy + n,F,)) (46)

where n = (n ,ny,nz) denotes the unit normal to the wave surface,

which may be written in parametric form as
(a/c)(cu /q - @;cos6 - B, sing)  (i=1,2,3) (47)

In addition to the above relations, Butler alse developed a non-

. characteristic relation which is applied along a streamiine. This

noncharacteristic relation is given by

23
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= 0 - pci{uga; + B.8.) =1 (18)
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where the operator d{ )/dt denotes differentiation along a streamline,

and ¢ is given by

o= (czlaz)Fe - (czlqz)(qu + v.Fy + sz) (49)
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SECTION 1V
UNIT PROCESSES

1. INTRODUCTION

A varijety of unit processes are employed in the computation of
the flow field. The unit processes may be classified into four major
types: interior point, solid boundary point, field-shock wave point,
and selid body-shock wave peint. The basic unit processes are briefly
discussed in this section. A detailed presentation of each unit
process is given in Appendix E.

In the overall numerical algorithm,an inverse marching scheme is
employed. The solution is obtained on space-like planes of constant x,
where the x-axis is the longitudinal axis of the centerbody and the
cowl. For the internal flow, the solution is alse obtained on the
space curves which are defined by the intersections of the internal
shock wave with the solid boundaries. Except in the vicinity of a
shock wave-solid boundary intersection, the distance Ax between suc-
cessive solution planes {s determined by the application of the
Courant-Friedrichs-Lewy (CFL) stability criterien (9). In the vicinity
of a shock wave-solid boundary intersection, the axial step is con-
trolled by special constraints, which are discussed in Section V. The
distance Ax is determined prior to the application of the unit pro-

cesses.
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2. INTERIOR POGINT UNIT PROCESS

The computational network used in determining the solution for a
typical interior point is illustrated in Figure 3. Points (1) to (4)
represent the intersection points of four rearward-running bicharacter-
istiecs with the initial-value plane, point (5} is the streamline
intersection point with the initial-value plane, and point (6) is the
solution point on the solution plane. The axial (x) distance between
the initial-value plane and the solution plane is determined prior to
the application of the unit process by applying the CFL stability
criterion. As in all the unit precesses, the interior point unit pro-
cess is divided into a predictor step and a corrector step. The cor-
rector may be iterated to convergence if desired.

The interior point unit process is initiated by determining the
location of the solution point, point (6). The coordinates of point
(6) are determined by extending the streamline from point (5) to the

solution plane using the following finite difference form of equation

(32).

x;(6) - x;(5) = % [u (5) + u, (6)I[t(6) - (5)1 (i=1,2,3)  (50)

For the predictor, ui(s) is equated to ui(5). For the corrector,

the previously determined value of ui(ﬁ) is employed. The axial step
[x(6) - x{5)] is computed before the unit process is appiied. Hence,
the time parameter [t(6) - t(5)] may be ocbtained, after which the
coordinates y(6) and z(6) are computed. Interpolated flow property
values at point (5) are used in the integration, even though point (5)

is a known field point. As shown by Ransom, Hoffman, and Thompson (9),
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this interpolation is required to produce a stable numerical scheme.
The interpolated flow property values are obtained from the following

quadratic bivariate interpolation pelynomial

- 2 2
fly,z) = a) +ay tasztayztay +agz (51)

where f(y,z) denotes a general function of the coordinates y and z, and
the coefficients a; (i=1 to 6) are obtained from a least squares fit

of nine data points in the initial-value plane [point (5) and its

eight immediate neighbors] as described in Appendix C.

With the location of the selution point determined, four bichar-
acteristics are extended from the selution point back to the initial-
value plane to intersect this plane at points (1) to (4), as illustrated
in Figure 3. The coordinates of each of these intersection points are

determined using the following finite difference form of equation (43).
x;(6) - x.{k) = % {u (k) + us(6) + [elk) + c{6)][a,cos6 (k)
+ g,sine(k)1IL(6) - (k)] (i=1,2,3) (52)

The index k in equation {52) denotes the bicharacteristic-initial-
value plane intersection points illustrated in Figure 3, and has a
range of 1 to 4, corresponding to the 8(k) values of @, w/2, w, and
3u/2, respectively. Since the axial step [x(6) - x(k)1 is known,
equation (52) is used to calculate [t(6) - t(k)], y(k}, and z(k). The
flow property values at points (1) to (4) are obtained by interpolation
using equation (51). On the initial application of eguation (52), the
flow property values at point (k) are equated to those at point (5).




= TN

For the external flow field integration, the parametric unit vectors
o, and Bi appearing in equation (52) are selected te straddle the pro-
jection of the pressure gradient on the initial-value plane. For the
internal flow field integration, these vectors are selected to straddle
the meridional plane through point (6).

Once the positions of and the flow properties at points (1} to
(5) have been determined, the system of nonlinear compatibility equa-
tions, written in finite difference form, is solved to obtain the five
dependent flow properties u(6), v(6), w(6), P{6) and p(6). Two of the
five required compatibility equations are given by equations (38) and
(39). These equations are written in finite difference form by re-
placing the derivatives with simple differences, and by replacing the
coefficients of the derivatives with the arithmetic average of the
coefficients at the solution point and at the appropriate point in the
initial-value plane. To obtain the remaining three required compati-
bility equations, appropriate linear combinations of the wave surface
compatibility relation, equation (45), applied along each of the four
bicharacteristics, and the noncharacteristic relation, equation (48),
applied along the streamline are formed. Writing equation (45) for @

values of 0, 7/2, w, and 3n/2 yields

du, 2u
dP i 2 i
oty ¥ P e, T %1 T P BBy (53)
1 1 J
du, u,
dP _ i, 2 i -
dt, * P, T %2 T Sy 3%, (54)
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du. Ju.,

a R R N 1

dt, " Py @, T T T ey 3% (56)

In equations {53) to (56}, the operator d( )/dtk denotes differentiation
along the kth bicharacteristic, and ¢k denotes equation (46) evaluated
for the specified value of 6(k). One independent linear combination

of the compatibility equations is obtained by subtracting the finite
difference form of equation (55) from the finite difference form of
equation {53). Another independent linear combination is obtained by
subtracting the finite difference form of equation (56) from the finite
form of equation (54). The final independent 1inear combination is
obtained by subtracting the finite difference form of the nonchar-
acteristic relation, equation (48), from the sum of the finite differ-
ence forms of equations (53) and (54). The resulting compatibility
equations do not contain cross derivatives at the solution point [i.e.,
all terms containing aui/axj(s) are eliminated]. These five finite
difference equations are solved using Gaussian elimination. For the
predictor, the flow property values at the solution point appearing

in the coefficients of the derivatives in the set of difference equa-
tions are equated to those at peint {5). For the corrector, the flow
property values at point (6) obtained on the previous iteration are

used. The resulting scheme has second-order accuracy (9).
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3. SOLID BOUNDARY PQINT UNIT PROCESS

The computational network used for determining the solution at a
typical point on a solid boundary is shewn in Figure 4. The point
notation used in this figure is identical to that employed in Figure 3.
Here, however, both points {5) and (6) lie on the solid boundary, and
point (4) is not used since it lies outside of the flow regime.

The unit process used to obtain the solution at a selid boundary
point is almost identical to the interior point unit process. Here,
however, point (4) corresponding to the bicharacteristic with ¢ = 3n/2
is not located, and the corresponding compatibility relation valid
along this bicharacteristic is not employed. That equation is replaced

by the flow tangency condition

where "bi(G) (i=1,2,3) is the unit normal to the solid boundary at

point (6).

4. BOW SHOCK WAVE POINT UNIT PROCESS

The computational network used in determining the solution for a
rypical bow shock wave point is illustrated in Figure 5. A segment
of the shock wave surface extending from the initial-value plane to
the solution plane is shown in this figure. The intersection of the
shock wave with the initial-value plane defines space curve (A), and
the intersection of the shock wave with the solution plane defines
space curve (B). The axial distance between the initial-value plane
and the solution plane has been previously determined by the applica-

tion of the CFL stability criterion. The bow shock wave solution peint

31

e i e B . S —



43

FIGURE 4.
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is denoted by point {2). The flow properties at peint (2) on the up-
stream side of the shock wave are known from the free-stream condi-
tions. Hence, in the following discussion, the flow properties u(2},
v(2), w(2), P(2), and p(2) refer to the flow properties at point (2)
on the downstream side of the shock wave., Point {1) is the intersec-
tion point of a rearward-running bicharacteristic with the initial-
value plane. This bicharacteristic is extended backward from the
solution point, point (2). Point (3) is a predetermined interior solu-
tion point which is adjacent to the shock wave and is used to define
the meridional plane in which the bow shock wave solution point lies.
Point (4) is the intersection point of space curve (A) with the
meridional plane which passes through peints (2) and (3).

In this unit process, a local cartesian coordinate system is
employed for the description of the local shock wave surface. This
local coordinate system has cocrdinates x', y', and z', where x' is
coincident with the x-axis, y' is the radial direction in the meridional
plane containing ncints (2) and (3), and z' is normal to the (x',y')-
plane. The unit vectors in the x', y', and z' directions are denoted
by 3', 3', and ﬁ-, respective1y; The orientation of the local shock
wave surface at a point (P) is specified by a set of three unit vec-
tors referenced to the (x',y',z')-coordinate system, as illustrated
in Figure 6. This set of unit vectors consists of the unit vector RS
which is normal to the shock wave surface at point (P), and two unit
vectors ) and E which are tangent to this surface at point (P). The
tangential unit vector E lies in the meridional plane [{x',y')-plane],

subtends an angle ¢ with the x'-axis, and is defined by the intersection
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of the shock wave with the meridienal plane at point (P). The tan-
gen.ial unit vector 2 lies in the transverse plane [(y',z')-plane],
subtends an angle a with the z'-axis, and is defined by the intersec-
tion of the shock wave with the transverse plane at point {P}. The
tangential unit vectors 2 and E are given by

A -~

t = cos ¢ i' + sin ¢ 3 (58)

1!

sina j' + cos a i' (59)

o>
N

The shock wave normal unit vector ng is given by

~

ng = txt/fe et (60)

Te achieve second-erder accuracy ir the shock wave point unit
process, global iteration must be performed. In glebal iteration,
the corrector amploys flow properties net only at the selution point
itself, but also at neighboring points in the solution plane. As a
consequence, before the corrector can be applied in global iteration,
the entire solution plane {or at least an appropriate section of it)
must be determined by a priwr calculation. The interior point and
solid boundary point unit processes do not reguirz global iteration
to achieve second-order accuracy. Consequently, those selution points
are dete-mined first. Then, the predictor is applied for each shock
wave solution point, thereby giving a tentative solution for all of
the shock wave points, At this stage, global correction is performed
for the shock wave selution points using the previously determined
field points in the solution plane. In the following discussion, the

term "predictor" refers to the first application of the shock wave
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| point unit process used to obtain an initial estimate of the solution g

x without using field point data in the solution plane. The term “global g
corrector” refers to the application of the shock wave point unit ;
process which uses field paint data in the solutien plane. The shock i
wave peint unit process is now outlined.

The shock wave point unit process is jnitiated by lecating the

solutien peint, point (2) in Figure 5. Denote the angle subtended by
a meridional plane and the {x,y)-plane by 8. The solution point g
meridional plane is arbitrarily selected to contain the interior selu-
tidh point, peint (3), whose location is determined prier to the

application of the shock wave point unit process. Hence, 8(2) = 8(3).
Denote the radial pesition of a peint by r. Then the radial position

of point (2) is obtained from
r(2) = r(8) + [x(2) - x(@)] tan {3 [o(2) + o)1} (61)

where [x{2) - x(4)] is the axial distance between the initial-value
plane and the solution plane. On the initial application of equatien
(61), the shock wave angle ¢(2) is equated to ¢{4), whereas, on ensuing
applications, the value of ¢(2) obtained on the previous iteration is
used. At point (4), the radial position r(4) and the shock wave angle
¢(4) are determined by interpolation using the quadratic univariate

formulae

2

r(9) = 3 + a0 + a8 (62)

$(8) = by + by8 + by {(63)
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where the coefficients a; and bi {i=1,2,3) are determined by fitting
these expressions to three lecal shock wave solution points on space
curve (A).

After the solution point has been located, the shock wave normal
unit vector ;s at the solution point is found by forming the normal-
ized cross product of the tangential unit vectors E and E [see egquation
(60)]. The tangential unit vectors % and E are obtained by use of
the current values of ¢(2) and «{2) in equations (58) and (59),
respectively. Ffor a predictor application, a(2) is approximated by
equating it to the a value at point (4). For a global corrector
application, the value of a{2) that is employed is that evaluated at

point (2). In either case, the value of a(2) may be determined by
a(2) = tan"[-}%’a;]l (64)
8(2)

where, for the predictor, the analytical form of r(6) used in equation
(64) is given by equation (62) applied along space curve (A), and for
the global corrector, r(6) is obtained by applying equation (62) along
space curve (B).

At this stage, the local Hugoniot relations are applied at point
(2) to obtain the downstream flow properties u(2), v(2), w(2), P(2),
and p{2). Next, a rearward-running bicharacteristic is extended from
the solution point, point (2), back to the initial-value plane, inter-
secting this plane at point (1), as illustrated in Figure 5. The
coordinates of point (1) are obtained using the following finite
difference form of equation (43) evaluated for the parametric angle of

0 = /2.

I
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x4(2) - x,(1) = %{ui(l) + u,(2)
+ [c(1) + c(2)18;} [t(2) - t(1)] (i=1,2,3) (65)

For the first application of eguation (65), the flow properties at
point (1) are equated te those at point (2), whereas, for ensuing
applications, the flow properties previously obtained at point (1) are
employed. The flow properties at point (1) are obtained by interpola-
tion using the quadratic bivariate polynomial eiven by equation (51).
Since the axial step [x(2) - x{1)] is determined by the CFL stability
criterion, equation (65) is used to compute [t{2) - t(1)}], y(1), and
z{1). The orientation of the parametric vector B in equation (65) is
selected so that this vector lies in the meridional plane that con-
tains the solution point. The unit vector @, is obtained using the
orthonormal relationship between a., 8, and u./q (i=1,2,3).

At this stage, the wave surface compatibility equation correspond-
ing to the parametric angle @ = n/2 is applied between points {1) and
(2). The appropriate equation is obtained by writing equation (54) in
finite difference form and solving for the pressure at point (2). De-
note this pressure by P*(Z). The resulting equation contlains cross
derivatives (terms containing 3"1/3xj) at both points (1) and (2).

For the predictor, the cross derivatives at point (2) are equated to
those at point (1), whereas, for the global corrector, the cross
derivatives at point (2) are evaluated at that point by fitting inter-
polaticn polynomials in the solution plane.

The pressure P{2) is calculated from the local Hugoniot equations.

The pressure P*(Z) is calculated from the wave surface compatibility
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relation. The difference between P(2) and P*(Z) is driven to within
a specififed tolerance of zero using the secant method with iteration
being performed on the shock wave angle ¢${2). Two initial estimaves
of ¢(2) are required to start the iterative process.

The shock wave point unit process is first applied as a predictor
for each shock wave solution point. In this application, the value of
a used in equation (59) is obtained by curve fitting points along space
curve {A), and the cross derivatives at the solution point are equated
to those at the bicharacteristic base point in the initial-value plane.
After a tentative solution has been obtained at each shock wave point,
a number of ensuing global corrections are performed. Here, the value
of « used in equation (59) is based on data along space curve (B), and
the cross derivative terms at the solution point are evaluated at that
point. The resulting cverall algorithm has second-order accuracy when
the global correction is performed. The glcbal iteration is terminated
when successive values of a have converged at each of the shock wave

solution points.

5. SOLID BODY-SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used to determine
the flow properties downstream of the shock wave at a point where the
shock wave intersects a solid boundary. This unit process is used to
determine the solution for the points on the cowl on the downstream
side of the cowl lip shock wave, and for the points on the centerbody
or cowl on the downstream side of an internal reflected shock wave.
The method of computation is essentially the same for either applica-

tion. For the internal shock wave reflection, the flow properties

-
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downstream of the incident shock wave, which constitute the upstream
flow properties for the reflected shock wave, are conputed by the
modified field-shock wave peint unit process discussed in Appendix E.

A depiction of the computational network used in the solid body-
shock wave point unit process is presented in Figure 7. A typical
solid body-shock wave solution point is denoted by point (P), with the
outward unit normal vector to the solid beundary at this point denoted
by ;b‘ The tocus of solid body-shock wave solution points represents
the intersection of the shock wave with the solid boundary and defines
space curve (A} in Figure 7. The intersection of the shock wave with
the meridional plane passing through point (P) defines space curve (B).
The unit vectors tangent to space curves {A) and (B) at point (P) are
denoted by E and E, respectively. The unit vector normal to the shock
wave at point {P) is denoted by Es'

As for the bow shock wave point unit process, the unit vectors E,
E, and ;s are referenced to the local coordinate system (x',y',z'),
where x', y', and z' have the same definitions as noted before. More-
over, the tangential unit vector E again lies in the meridional plane and

is defined by equation (58). In this scheme, however, the tangential

unit vector % does not lie in the (y',z')-plane in most cases, but
rather can have a nonzero x'-component. This tangential unit vector

along space curve (A) may be represented by
- I ()
where ds is the differential arc length given by

(ds)? = (x')2 + (dy')? + (dz")? (67)
Y
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The derivatives in equation (66) are obtained by analytically differ-

entiating the expressions

" - 2
x'{6} = ay + a8 + ag0 (68)
Ve = 2
y'(s) = by + bze + b3e (69)
2'(8) = ¢, + c.8 + ¢ 0° (70) f
1 2 3 ?

where coefficients ass bi’ and C; (i=1,2,3) are obtained by curve
fitting the respective expressions to three points on space curve (A).
For the cowl 1ip shock wave points, space curve (A) is defined by the
cowl 1ip itself, since the shock wave is assumed to be attached to the
cowl 1ip. Alternatively, for computing the downstream flow properties
at a reflected internal shock wave, space curve (A) is defined by
the intersection of the incident shock wave with the solid boundary.
The shock wave normal unit vector is found from equation (60). |
The solid body-sheck wave peint unit process is initiated by
determining the body normal unit vector ﬁb and the tangential usit
vector E. An assumptien is then made for the shock wave angle ¢ in
eguation (58), and, by use of equation (60), the shock wave normal unit
vector is determined. The Tocal Hugoniot equations are then applied to
obtain the downstream flow properties at point (P). The velocity
normal to the wail is then obtained by forming the dot preduct of the
body nermal vector and the downstream velocity vecter. The normal
velocity is reduced to within a specified tolzrance of zero by varying

the shock angle ¢ using the secant iteration method.
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6. INTERNAL FLOW SHOCK WAVE POINT UNIT PROCESSES

The unit process employed to compute the selution at a shock wave
point in the internal flow field is similar to the bow shock wave point
unit process. In the internal flow shock wave peint unit process,
however, the flow properties upstream of the shock wave at the solution
point must be determined by the application of a modified interior
point unit praocess. Moreover, modifications to the internal flow
shock wave point unit process must be made when an internal fleow shock
wave solution point lies on or close to a solid boundary. The various
versions of the internal flow shock wave peint unit process are pre-

sented in Appendix E.

7. INTERNAL SHOCK MODIFIED-INTERIOR POINT AND -SOLID BODY PQINT UNIT
PROCESSES

In some situations during the computation of the internal flow
field, the interior point and solid boundary point unit processes
must be applied in a modified form. One such instance in which
a modified form of the interior peint unit process must be applied is
shown in Figure 8. Here, the Mach cone, with apex at the interior
solution peint, intersects not only the initiai-value plane but also
the internal shock wave and a solid boundary. The unit precess used in
this case requires determining the bicharacteristic intersection peints
with the shock wave and the solid boundary in addition to the inter-
section points with the initial-value plane. Moreover, flow property
vaiues must be determined at all of these points. The bicharacteristic-
shock wave and bicharacteristic-bedy intersection coordinates are cal-

culated using the procedures discussed in Appendix D. The flow

)
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property values at these points are obtained by interpolation, either

using a quadratic bivariate polynomial [equation (51)] for points on

-the initial-value plane, or using a quadratic trivariate polynomial

for points on the shock wave surface or solid boundary surface. The

various interpolation schemes are discussed in Appendix C. A1l of the

-unit processes, including the schemes incorporating the necessary

modifications to handle the internal shock wave, are presented in
-~

Appendix E.




SECTION V
OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

The overall numerical algorithm consists of the repetitive appli-
cation of the various unit processes to generate the global solution
for given boundary conditions and a specified set of initial data.

The contours of the centerbody and the cowl, in addition to any
planes of flow symmetry, constitute the boundaries of the computational
flow regime. For the external flow field integration, the bow shock
wave also represents a computational bound.

The initial data are specified on a plane of constant x. The x-
coordinate axis is the longitudinal axis of the centerbody and the cowl
(see Figure 1). Moreover, the mean flow direction is assumed to be in
the x-coordinate direction,

An inverse marching scheme is employed in the numerical algorithm.
The solution is obtained on space-like planes of constant x. The solu-
tion points on each plane represent the intersection points of continu-
ocus streamlines which are pfopagated from the data points specified on
the initial-value plane. In addition to the streamiine solution points,
salution points are also obtained at the intersection of the external
and internal shock waves with the solution plane, and for the internal
flow field, on the space curves where the internal shock wave intersects

the solid boundaries. These space curves are defined by the locus of
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shock wave solution points.

Except in the vicinity of a shock wave reflection with a solid
boundary, the axial (x) distance between the current initial-value
plane and the current solution plane is detéymined by the application
of the Courant-Friedrichs-Lewy (CFL) stability criterion (9). In the

vicinity of a shock wave reflection with a soli

boundary, the axial
distance between successive solution planes is chosen so that the
entire shock wave-solid boundary intersection falls between two
adjacent solution planes.

The external flow about the forebody is computed first. The ex-
ternal flow field integration requires the periodic addition of
streamlines in order to retain a well dispersed computational mesh.
Furthermore, periodic deletion of selected streamiines is also re-
quired so that the number of computational points iies within bounds.

The internal flow field can be computed with or without the
discrete fittirg of the internal shock wave system. The option in which
shock waves are not discretely fitted may be used in cases in which
the internal shock waves are quite weak in strength, and thereby an
acceptable solution can be obtained by smearing the internal discon-
tinuities.

In this section, brief discussions are presented on generation of
the initial data, boundary conditions, regulation of the marching step
size, computation of the transport forcing functions, and numerical
stabitity. A detailed discussion of the overall numerical algorithm

is presented in Apperdix F.



2. INITIAL-VALUE PLANE

The initial data are specified on a plane of constant x {see
Figure 1). The flow must be supersonic at every peint on this plane.
For uniqueness and existence of a genuine solution, the values of the
five dependent variables (u, v, w, P, and p) prescribed on this sur-
face must have at least continuous first partial derivatives.

If the forebody flow field is te be computed, the initial-value
plane must be specified at an axial (x) station that is upstream of
the forebody flow computational regime (see Figure 1). The last selu-
tion plane of the forebody flow field computation is adjusted to lie at
the axial station of the cowl lip, and constitutes the initial-value
plane for the internal flow field computation. The cowl lip is assumed
to be contained in & plane of constant x. Furthermore, the bow shock
wave must fall outside of the cowl 1lip, or, in the limit, intersect
the cowl lip exactly. The internal flow cannot be calculated if the
bow shock wave is ingested inte the annulus. The points on the solu-
tion plane at the cowl! 1lip axial station are redistributed to obtain a
ring of solution points coincident with the cowl lip.

If the forebody is conicai ahead of the axial station where the
initial-value plane is specified, an approximate flow property fiela
on this plane may be internally generated in the computer program. The
internaily generated initial data are obtained by an appreximate tech-
nique which employs the Taylor-Maccel! solution for the flow about a
circular cone at zero incidence. A superposition method is then used
to obtain an approximation for the flow about a circular cone at
nonzero angle of attack by neglecting the cross flow effects. Alterna-

tively, a more exact solution for the initial data for flow about a
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circular cone at incidence may be obtained by employing the results of
Jones (33).

If the forebody is not conical ahead of the axial station of the
initial-value plane, another source of initial data must be used. If

available, experimental data may be employed.

3. SOLID BGUNDARY 3URFACES

The computer program develepad in the present investigation assumes
that both the centerbedy and the cowl are axisymmetric. For the pur-
poses of geometry description, the axial (x) domain is divided into a
number of intervals. In any interval, the bady radius r may be speci-
fied by either tabular input, or by supplying the coefficients in the

cubic polynomial

3

r{x) = a; + bi(x - xi) + ci(x - xi)2 + di(x - xi) {71)

where the subscript i denotes the ith interval, r(x) is the body radius
at axial pesition x (x; < x < x,.;), and the coefficients a., b., c,,
and di are obtained by curve fitting the body contour. Since equation

(71) is a cubic, slope and curvature can be matched at the junction

point between twe adjacent intervals {i.e., spline fits can be employed).

4. INTEGRATION STEP SIZE REGULATION

Except in the vicinity of a reflection of the internal shock wave
with a solid boundary, the axial marching step between successive
solution planes is determined by the application of the Courant-
Friedrichs-Lewy (CFL) stability criterion {9). The CFL stability cri-
terion mandates that the domain of dependence of the differential equa-

tions be contained within the convex hull of the finite difference

T e e e A R B, R s B B O B R B R P AL - AP i 551 <1 L T e



R O

: I
netwerk. That is, the Mach cene must be inside the outer periphery of
the nine initial-value plane field points used in formulating the bi-
variate interpoelation polynomial, egquation (51). The allowable axial

step is given by
ax = [/ (ea) 0V - (c/a) e/ - VPR L (72)

where Ax is the marching step, and Rmin is the distance between the
streamline intersection point with the initial-value plane and the
nearest point on the convex hull of the finite difference network. Equa-
tion (72) is applied at every streamline point on the initial-value
plane, with the actual integration step being chesen as the Ax

value at the most restrictive point. Equation (72) is applied only to
strealine points. The shock wave points are excluded. Moreover, in

the internal flow field integration, the shock wave peints are ignored

in defining the coenvex hull of the finite difference network when
appiying the stability criterion to a streamline point.

In the vicinity of a reflection of the internal shock wave with a
solid boundary, the axial step is contrelled by the constraint that the
shock wave-solid body intersection is contained entirely between twe
adjacent solution planes. The fit point stencils used in formulating
the varjous interpolation polynemials are appropriately expanded, in

this case, so that the CFL stability criterion is satisfied.

5. CALCULATION OF THE TRANSPORT FORCING FUNCTIONS

The numerical procedure developed in the present investigation has
the capability to include the influence of molecular transport on the
selution by treating the viscous and thermal diffusion terms in the

governing partial differential equations as forcing functions, or
51



cortection terms, in the method of characteristics scheme. The computer pro-
gram has the capability te include the influence of viscoeus and thermal diffusien
in the computation of the external flew about the forebedy, and in the computa-
tion of the internal flow field in which shock waves are not disc-etely fitted.
The program option in which shock waves are discretely fitted in the internal
flow field dees not have the capability te include the influence of molecular
transport in the computation, but rather assumes the flow to be inviscid and
adiabatic. The detailed calculation procedures used for ebtaining the transport

foercing terms are presented in Appendix G.

6.  NUMERICAL STABILITY
A stability analysis of the nonlinear finite difference algorithm includ-
ing molecular transport was not attempted. Instead, a stability analysis for
isentropic flow was conducted. Stability of the generalized analysis was then
verifiad by actual numerical calculations. _
Ransom, Hoffman, and Thompson (9) used the present numerical method to
compute the continuous steady three-dimensional supersonic isentropic flow in
a nozzle. The CFL stability criterion was used for locating successive solution
planes. A von Neumann linear stability analysis indicated that interpelated
fiow properties, instead of the actual known values, should be used at the
streamline~initial-value plane intersection point {point (5) in Figure 3]. The
present analysis uses interpolated flow properties at all peints in the initial-

value plane.
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SECTION VI
COMPUTATIONAL RESULTS

1. INTRODUCTION

Selected computational results are presented and discussed in this
section. The results presented are divided into three major categories:
external flow about the forebody, continuous internal flow, and in-
ternal flow in which the internal shock wave system has been computed.
In seme instances, both axisymmetric flow and three-dimensional flow
results are shown. For the internal flow field in which shock waves
have been fitted, some comparisons with experimental data are made.
Moreover, some results of the present analysis are compared with those

of existing cemputational methods.

2. EXTERNAL FLOW ABOUT THE FOREBODY

For the purpose of testing the external flow integration procedure,
the flow field about a right circular cene at incidence was computed.
This is a conical flow field and the selution is constant along rays em-
anating from the vertex of the cene (i.e., there is no characteristic
length, se the solution has no dependency on x}. At zero angle of
attack, the solution depends only on the angle subtended by a given ray
and the x-axis. At nonzere incidence, an azimuthal variation alse
exists. To obtain the required initial data, the results of Jones (33)

were employed. The computed results should maintain the conical nature

of the flow field.
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Figure 9 presents numerical results obtained for a 10.0° half-
angle cone at 2.5° angle of attack o with a free-stream Mach number
M_ of 3.0. The computation employed 21 circumferential stations in the
computed sector (half-plane), and the number of radial stations on the
initial-value plane was 11. The computed static pressure P normalized
by the free-stream static pressure P_ is plotted versus the axial
position x normalized by the cow! lip radius Rc‘ The pressure distri-
butions on the rays formed by the forebody and the bow shock wave on
both the leeward and windward planes o symmetry are shown. Since the
flow is conical, the selution should remain constant aleng each of
these four rays at the respective pressure values at the appropriate
points on the initial-value plane. The initial-value plane pressures
are denoted by the straight line segments. The method of characteris-
tics selution is shown at a discrete number of axial statiens, each
station corresponding te the axial location of a given solution plane.
The methed of characteristics solution maintains the conical nature of
the flow field.

It should be noted that the increase in pressure across the leeward
side of the bow shock wave is minimal. As the angle of incidence is
further increased, the strength of the bow shock wave on the leeward
side is reduced until the peint is reached where the angle of attack
is equal to the cone half-angle. At this point, no shock wave exists
on the leeward meridional plane. Further increase in the angle of
incidence causes a flow expansion to occur on the leeward side. Since

the present analysis assumes that a shock wave exists about the



SCLUTION RAY JONES  3-D MOC.

M,=3.0, a=2.5° FOREBODY LEEWARD MERIDIAN o)
FOREBODY WINDWARD MERIDIAN — — 0
CONE HALF-ANGLE =]Q° SHOCK LEEWARD MERIDIAN —_—— TA
SHOCK WINDWARD MERIDIAN @ ~——--- 0
ﬁ_(P/%,)
1.8}

0000000 0000 00 00000000

7|

X

1.2
OO OA A OO Oty OADBLAAD e~ —— = —

b a1y
10 12 L3 14 15 16 L7 18 19 20 21 22 23
(X/Rg¢)

« FIGURE 9. PRESSURE DISTRIBUTIONS FOR EXTERNAL FLOW

° .



ittt

entire forebody, the case where a flow expansion eccurs op the leeward
side cannot be computed.

Tie external flow about a circulair cone at incidence was also
computed including the effects of molecular diffusion. Ne significant
changes in the computed results were noted. Approximately 60 percent
more computer execution time was required for the computatien which

included the molecular diffusion terms.

3. CONTINUOUS INTERNAL FLOW

For the purpese of testing the continusus internal flow integra-
tion procedure in which stheck waves are not discretely fitted, the
axisymmetric flow field in the simplified geometry inlet illustrated in
Figure 10 was computed. The geometry of this inlet was selected so
that the slope of the cowl contour at the cow! 1ip was equal to the
slope of the streamline at the cowl lip. Hence, ne flow turning occurs
at the cowl lip and the internal shock wave system is not generated.

Figure 10 illustrates the inlet geometry and the pressure dis-

tributions on the centerbody and the cowl. A menotenic increase in

pressuve on the surfa. e of the cowl occurs. The pressure on the center-
body retains its conical flow value until the Mach wave emanating from
the cowl lip reaches the centerbody. After that point, a monotonic
increase in the centerbody pressure occurs. This computation was per-
formed with 21 radial stations and 1 circumferential station. The maxi-
mum deviation in mass flow rate on any solutien plane from the mass

iow rate across the cowl 1lip selution plane was 0.25 percent.
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The flow field in the simplified geometry inlet illustrated in
Figure 10 was also computed inﬁ]uding the effects of molecular diffu-
sion on the solution. No significant changes in the computed results
were noted. The increase in computer execution time was approximately

60 percent.

4. INTERNAL FLOW WITH DISCRETE FITTING OF THE INTERNAL SHOCK WAVE
SYSTEM

Internal flow calculations were performed for the Boeing Mach 3.5
supersonic mixed-compression inlat documented in Reference (34). The
centerbody and cowl coordinates of this inlet are listed in Table 1.
The boundary contours are illustrated in Figure 11 for the design case
of zero centerbedy translation. This inlet has a forebody which is
conical (the forebody is not shown in Figure 11). Consequently, all
of the numerical solutions were started at the cowl 1ip axial station.
The initial data were obtained by employing the results of Jones (33).

Extensive boundary layer removal is employed in this inlet to
control boundary layer separation in regions of strong adverse pressure
gradients such as those caused by oblique shock wave-boundary layer
interactions. Figure 11 indicates regiens where the boundary layer is
removed. Since the present analysis does not compute the boundary la:-r
nor takes account of boundary layer removal, good agreement between
computed and experimental results cainot be expected in regiens of high
viscous interaction. For this inlet, 13.3 percent of the cowl Tip mass
flow rate was removed through boundary layzr bleed at the design peint

condition te contrel boundary layer separation (34).
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TABLE 1

MACH 3.5 INLET COORDINATES

CENTERBODY CENTERBODY COWL CONL
x/Rc r/RC x/RC r-/Rc x/Rc r/Rc x/Rc r/Rc
0.0 0.0 4.8 0.7504 2.86 1.0 4.55 0.8695
4.0 0.70532 4.9 0.7391 3.1 1.004188 4.6 0.864
4.1 0.7228 5.1 0.7120 3.2  1.0054 4,65 0.86
4.2 0.7387 5.3 0.6829 3.4 1.0051 4.7 0.8572
4.3 0.7512 5.5 0.6525 3.6 0.999%6 4.8 0.8533
4.4 0.759 5.6 0.6362 3.8 0.9882 4.9 0.8511
4.5 0.7625 5.7 0.6:8 4.0 0.9681 5.0 0.8502
4.55 0.763 5.8 0.5973 4.1 0.954 5.1 0.85
4.6 0.7625 5.9 0.5744 4.2 0.9364 5.6 0.85
4,65 0.7611 6.0 0.5467 4.25 0.9261 5.8 0.8574
4.7 6.7585 4.3 0.9154 5.9 0.8646
4.4 0.8949 6.0 0.8735
4.5 0.8768

x : Axial Position
r : Radial Pesitioen
R : Radius of Cowl Lip

The first results employing the internal flow computational alge-
rithm in which shock waves are discretely fitted are for the design con-
ditions of M_ = 3.5, zero centerbody translation, and zero incidence
(o = 0°). At the design point, the bow shock wave intersects the cowl
Tip exactly at zero incidence. Since the flow field is axisymmetric
at zero incidence, it canbe computed using a two-dimensional wethod.
Comparisons of the results obtained from the present analysis with
those obtained from a two-dimensional method of characteristics scheme
(35) for the zere incidence design point conditions are shown in
Figures 12 and 13. In these figures, the static pressure P normalized
by the free-stream stagnation pressure PT@ is plotted versus the axial
position x normalized by the cowl lip radius Rc. Pressure distributions

are shown for both the centerbody and the cowl. The results obtained
59
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by the two-dimensional method of characteristics algorithm aie indi-
cated by solid lines, and the results ebtained by the present analysis
are indicated by the dashed lines. Fifty radial stations were used in
the two-dimensional method of characteristics solution. Figure 12
illustrates the case where a total of 11 radial stations (9 streamline
points and an upstream and dewnstream shock wave peint) were employed
in the three-dimensional methed of characteristics solution. Goed over-
all agreement is observed. A slight smearing of the pressure distri-
bution downstream of the second intersection of the shock wave with the
centerbody and a slight shifting of the shock wave-solid body intar-
sections are present in the three-dimensional algerithm's results.

The smearing of the pressure distribution is primarily a cersequence

of the coarse mesh size used in the three-dimensional scheme's sclution.
Figure 13 illustrates the solution obtained by the three-dimensional
analysis when a total of 21 radial stations were used in the computa-
tion. In this case, the agreement between the three-dimensienal
analysis and the two-dimensional analysis is excellent. The pressure
distribution behind the second sheck wave-centerbody intersection is
predicted very well. The axial locations of the shock wave-solid
boundary intersections alsoc agree very well. For this cemputation,

the maximum deviatien in the computed mass flow rate at any solution
plane from that at the cowl 1ip selutien plane was approximately 0,77

percent.

Comparisens of the results of the present analysis with experi-
mental data (36) for the Boeing Mach 3.5 inlet for @ = 0° are shown in

Figure 14. Generally speaking, good agreement is observed. The three-

dimensional methed of characteristics scheme predicts shock wave-solid
65
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boundary intersections slightly dewnstream of the locations where the
experimental data indicate the intersections te occur. Since the
presence of a boundary layer would move the predicted intersection
points forward, this result seems plausible. Note that the best agree-
ment is obtained away frem the regiens where the boundary layer is
removed {see Figure 11).

At a given free-stream Mach number, the centerbody assembly must
be translated forward of its design point pesition as the angle of
incidence is increased to maintain supersonic flow through the geo-
metric throat of the annulus. The forward translation ef the center-
body causes the cress-sectional area of the geometric throat to in-

crease. Moreover, as the free-stream Mach number is reduced from the

design point value, even further forward translatien of the centerbody
is required. An experimentally obtained centerbody translation
scheduie (37) is presented in Figure 15, where the nondimensional
centerbody translation is denoted by Ax/Rc. The effects of an increase
in the angle of incidence and a reduction of the free-stream Mach num-
ber are clearly iillustrated in this figure.

Results are presented below for two off-design conditions:
(1) M,
(2) M

of these off-design cenditions, the internal flow field is computed

It
1

2.5 with a centerbedy translation of Ax/Rc 0.855, and

3.3 with 2 centerbedy translation of Ax/RC 0.356. For each
for incidence angles of a = 0°, 3.0°, and 5.0°, For both off-design
conditions, the results of the present analysis are compared with
experimental data for an incidence angle of a = 3.0°,

Results for the first off-design case of M, = 2.5 and Ax/R_ =

0.855 are presented in Figures 16 to 19. Figure 16 illustrates the
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FIGURE 15. EXPERIMENTAL TRANSLATION SCHEDULE
FOR MACH3.5 INLET
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computed centerbody and cewl pressure distributiens for an incidence
angle of o = 0°. Although the centerbody has been translated forward,
the coordinate system origin is maintained at the ferebedy tip. Con-
sequently, the internal flow computational regime begins at ;f./RC =
3.715. tcenerally speaking, the strength of the internal shock wave
system for this case is somewhat reduced as compared to the design
point case (see Figure 13). Figure 17 jllustrates the computed
pressure distributions and seme experimental data for an incidence
angle of a = 3.0°. Pressure distributions for the centeroody and the
cow] on both the leeward and the windward meridians are shewn. Com-
pared to the a = 0° case, the strength of the internal sheck wave
system is increased on the leeward side but reduced on the windward
side. Experimental data are presented for the centerbody pressure on
the leeward meridian and for the cowl pressure on both the leeward and
windward meridians. Generally speaking, goed averall agreement
between theory and experiment is obtained except in regions of high
viscous interaction and boundary layer bleed. For all of the three-
dimensional computations, 21 circumferential stations and 11 radial
stations (9 streamline points and an upstream and downstream shock
wave point) were employed in the computed sector (half-plane). The
maximum deviatign of the mass flow rate at any solution plane frem the
mass flow rate at the cowl 1ip solution plane for the o« = 3.0° case
was 0.44 percent. The computed pressure distributions en the center-
body and the cowl for beth the leeward and windward meridians for the
incidence angle of o = 5.0° are shown in Figure 18. The leeward
meridian shock wave strength has been increased over the o = 3.0° case,

whereas the shock wave strength on the windward meridian has been
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reduced. The maximum deviation in mass flow rate for the a = 5.0° case
was 0.89 percent. Finally, to illustrate the effect of increasing
aﬁg]e of attack on the centerbody pressure distribution, the center-
body results of Figures 16, 17, and 18 are superimposed in Figure 19.
Results for the second off-design case of M, = 3.3 and Ax/R_ =
0.356 are presented in Figures 20 to 22. The computed pressure dis-

tributions for the centerbody and the cowl feor an incidence angle of

e

@ = 0° are presented in Figure 20. With the prescribed centerbody
translation, the internal! flow computational regime beings at x/RC =
3.216. Figure 21 illustrates the computed centerbody and cowl static
pressure distributions en both the leeward and windward meridians for
an incidence angle of « = 3.0°. The strengthening of the leeward side
shock wave and the weakening of the windward side shock wave are again
noted. Expzrimental data for the leeward meridian of the centerbody
and for both the leeward and windward meridians of the cowl are alse
shown in Figure 21. Fairly good overal! agreement between theory and
experiment is ebtained until regions of higk viscous interaction and
beundary layer removal are reached. Again, 21 circumferential sta-
tions and 11 radial stations were used in tne computation. The maximum
deviation of the mass flow rate at any solution plane compared to that
on the cowl 1ip solution plane for the @ = 3.0° case was (.67 percent.
Figure 22 illustrates the computed static pressure distributions for the
centerbody and the cewl for an incidence angle of a = 5.0°. The ma~i-
mum deviation in mass flow rate for this case was 0.84 percent.

Finally, comparisons are made between the results of the present
analysis and results obtained from the finite difference shock-
capturiﬁg algorithm developed by Presley (37). At present, the

' ' 79
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computer program developed by Presley is the only other analysis capable
of predicting the internal flow field in supersonic mixed-compression
inlets at angle of attack. That algorithm employs the second-order
accurate finite difference operator devised by MacCormack (38). In

that scheme, shock waves are automatically captured in the computa-
tional mesh ithout requiring any special logic which discretely fits
discontinuities. The presence of shock waves in the solution is evi-
denced by steep gradients in the computed flow property fields.

Figure 23 compares the centerbedy and cow! pressure distributions
obtained by the method of characteristics scheme to those calculated
by the shock—capturigg technique for the case of M_= 3.3, a = 3.0°,
and Ax/Rc = 0.356. For the most part, good agreement between the two
analyses is obtained. In the method of characteristics solution,
however, the shock wave solid boundary intersections are more sharply
defined. This result is to be expected, since in the shock-capturing
technique shock waves are not discretely fitted but rather are smeared
over a number of mesh peints. The shock-capturing algorithm employed
11 circumferential stations and 21 radial stations for the solution

presented in Figure 23.
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SECTION VII
CONCLUSIONS

The flow field in a supersonic mixed-compression aircarft inlet

at nonzero angle of attack has been computed using the method of char-

acteristics for steady three-dimensional flow in conjunction with a

discrete shock wave fitting ;: scedure. The culmination of the present

research effort is a production type computer program which has the

capability to predict the flow field in a variety of axisymmetric

mixed-compression aircraft intets. A number of conclusions concerning

the present analysis can be made:

1.

The external flow field about the forebody can be accurately
calculated if a bow shock wave of reasonably strong strength
exists.

For axisymmetric flows, the solution obtained by the present
analysis agrees well with the solution obtained by the
two-dimensional method of characteristics.

Except in the regions of strong viscous interaction and

boundary layer removal, the results of the present analysis

- agree well with experimental data.

Good agreement is obtained between the present analysis and
a finite difference shock-capturing technique for three-
dimensional flow solutions. The present analysis, however,
which discretely fits shock waves, provides a better resolu-

tion of the shock wave structure.
39
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5. Without the matching of the present analysis to a higher-
order boundary layer analysis, including the influence of
molecular transport in the computation has littie or no
effect on the solution.

Although the inlets analyzed were axisymmetric inlets, the com-
puter program can be readily modified to analyze geometries which have
noncircular cross-sections. Moreover, the inclusion of finite rate
chemiral reactions in the thermodynamic model is reasonably straight-
forward., The analysis can be modified to compute the external flow
about a stepped cone and to compute the internal flow when the bow
shock wave has been ingested into the annulus. Perhaps the most worth-
while endeavor, though, would be to mate the present analysis with a
three-dimensional compressible turbulent boundary layer analysis. The
boundary layer analysis should have well deveioped three-dimensional
turbulence models, an accurate means of computing an eblique shock
wave-boundary layer interaction in three-dimensions, and the capability

to account for boundary layer removal.
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APPENDIX A
GOVERNING EQUATIONS

- 1. INTRODUCTION
The major assumptions constituting the gas dvnamic model are:
1. continuum flow

steady flow

negligible body forces

S o N

therm:dynamic equilibrium (i.e., mechanical, thermal, and
chemical equilibrium)
5. no mass diffusion
6. negligible radiative heat transfer and no internal heat
generation other than viscous dissipation
7. viscous and thermal diffusion effects of secondary impor-
tance in determining the solution
The governing equations for the assumed flow model consist of the con-
tinuity equation, the component momerntum equations, the energy equation,
the thermal and caloric equations of state, and the appropriate
representations for the molecular transport properties. These rela-

tions are presented in this appendix

2. DIFFERENTIAL EQUATIONS OF MOTION

*
The general continuity equation (29) is

*
Repeated indices imply summation over the range of 1 te 3 unless other-
wise noted. .

9]
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where t denotes time, p is the density, X; (i=1,2,3) denotes the three

rectangular coordinates x, y, and z, respectively, and u, (i=1,2,3)

denotes the correspending velocity components u, v, and w, respectively.

The operator D{ )/Bt in equation (A.1) is the material derivative
given by
BL ) . 3( ) al )
”é% 5t T Y5 ax, (A.2)
J
For steady three-dimensional flow, equation (A.1) may be written in

expanded form as

+ + + + + = 3
pu, t pvy * oW, +up, + Vo + o, 0 (A.3)

where the subscripis x, y, and z denote partial differention with re-
spect to the corresponding direction.
“he appropriate momentum equation is the Navier-Stokes equation

( 29), which written in component form is

Pu, Y J 1 I
_d.g 3 . 3 i R
P bt Bi axi * axj [% [éx. * X

3 i i J
3 I,
P T P | (i=1,2,3) (A.4)
axi axj

where B, denotes the ith component of the bady force, P is the pressure,
u denotes the dynamic viscesity, and n is the second coefficient of

viscosity.
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A major assumption of the present analysis is that the effects
of viscous and thermal diffusion are of secondary importance in de-
termining the solution as compared to ‘ne inertial effects. Consistent
with this assumption of inertial dominance, the viscous and thermal
diffusion terms in the governing differential equations will be treated
as forcing or correction terms in the method of characteristic scheme
to be presented. In the following, the viscous and thermal transport
terms will be placed on the right-hand sides of the respective govein-
ing equations. The convective terms will be placed on the left-hand
sides, and will be considered as constituting the principal parts of
these equations. Thus, writing equation (A.4) with the assumptions of
steady flow, negligible body forces, n = 0 [Stokes's hypothesis (30}],

and inertial dominance gives

My ap .
I Tl o (i=1,2,3) (A.5)
J i
where
~ {3u. Bu, 3u.
S T I it Pt | I B B B | o -
A [u la"j ' 3*1-” 3 9% {ua"j} .23 (A6)

Treating the viscosity as a variable, equations (A.$) and (A.6)
can be written in expanded form for each of the three coordinate

directions as

puu, + pvuy + pwu, + Px = Fx (A.7)
puv, + pvvy +oow, + Py = Fy (A.8)
puw_ + pva + oww, + Pz = Fz (A.9)

93
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where

- 4 _2
Fx - “x[g uy E{Yy * "zi] + ”y(uy * Vx) * uz(uz * "x)
3 1 .
+ uB uxx + u‘W + u,, + §(vxy + "xz’] (A.10)

-
L}

: 2
y uyB v 3.(ux + wz)] + “x("x + uy) + “z("z + wy)

1 .
+ U% vyy + VXX + VZZ + -3-(ny + "_YZ)] (A-.”)

=y 12y -2
Fr = ”zB Y, 3(ux * vy)] ¥ “x(wx * uz) * “y("y * Vz)
3 ]
+ uB v, + LI "yy + '-5("zx + vzy?__l (A.12)

Finally, it remains to obtain an appropriate form of the energy
equation. It is assumed in the present analysis that the working gas
can be represented as a simple system in thermodynamic equilibrium.

Under this assumption the thermodynamic relation (31)

Tds = dh - %‘1 (A.13)

is valid, where T dencvtes the absolute temperature, s is the entropy
per unit mass, and h is the enthalpy per unit mass. For a simple
system, specification of any two independent thermodynamic properties

defines the thermodynamic state of the system (31). Thus,
P = P(p,s) (A.14)

Employing the concept of the total derivative, and introducing the ma-
terial derivative operator given by equation (A.2), the following

relation may be obtained from equation (A.14).




OP_ [0F) Do, [2P) Ds
bt {] Dt Bs]p Dt (A.15)

The sonic speed a is defined by

2 _ [aP .
a- = ap]s (A.16)

Thus, equation (A.15) may be written as

OP 2 Dp _ )

ot - DE F (A7)
where

- _ 1aP] Ds

Fo = [a‘ s]p bt (A.18)

The material derivative of entropy in equation (A.18} may be
expressed in terms of a thermal conduction function and a viscous dissi-
patigi function. Consider the energy equation in the following form

(29).

pTzﬁr[“E}+th ¢ (A.19)

In equation (A.19), e denotes the internal energy per unit mass, k is
the thermal conductivity, and ¢ represents the viscous dissipation func-
tion which for n = 0 is given by
oY %Y 2 M :
$cav ['—J"+Bxi ié‘;éij] (R.20)
where 6ij is the Kronecker delta. Using the definition of enthalpy

(h = e + P/p) in equation (A.13) yields

95
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Tds = de - E-Edp) (A.21)
p

From equaticn {A.21) the material derivative of internal eneryy may be

written as

De . 0s, P Dp
ot~ T ot 7Dt (R.22)
Introducing equation (A.22) into equation (A.19) yields
Ds _ 3 | 3l _
oT bt axi Ixaxi} + ¢ (A.23)

Substituting equation (A.23) into equation (A.18) gives
ST N - 6 ,
Fo EE"i {Kaxi} + @} (A.28)

S
g =1 [as}p (A.25)

where

By treating the thermal conductivity as a variable, and assuming

steady three-dimensional flow, equations (A.17) and (A.24) may be

written as
qu + va + sz - az(upx + pr + wpz) = Fe (A.26)
where
Fe = E;{’((Txx * Tyy * Tzz) Tt KyT_y * Ksz
+ u[%(ui + vi + wi + "yvx + u, Wy + vz"y] + vi + wi
+ uﬁ + wﬁ + ug + vi - %{ux + vy + "z)?]} {(A.27)
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As in the component momentum equations, the viscous and thermal
diffusion terms in the energy equation have been placed on the right-
hand side and will be treated as forcing functions in the method of
characteristics scheme to be presented. The left-hand side is composed
of the convective terms which are considered to constitute the princi-

pal part of this equation.

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential
equations can be obtained, the temperature T, sonic sp ad a, thermo-
dynamic parameter £, viscosity p, and thermal conductivity x must be
expressed in terms of the dependent variables P and p. The representa-
tions for T, a, and £ are discussed in this section. The relations
for u and « are presented in the next section.

The general functional forms of the temperature T, sonic speed a,

and thermodynamic parameter £ may be expressed as

T = T(P,p) (A.28)
a = a(P,0) (A.29)
£ =£(P,p) (R.30)

For multicomponent systems, with either frozen or equilibrium chemical
composition, the functional relationships for T, a, and £ are obtained
from thermochemical calculations. In the case of a thermally and

calorically perfect gas, the functional relationships for T, a, and &

are simple analytical expressions given by

97
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P/oR o (A.31)

= (wre)/? (.32)

™~

~

E=vy-1 h (A.33)
where v is the specific heat ratio, and R is the gas co;:::;zf\\\x\

In the computer program developed in the present investigation;

-
t

the temperature, sonic speed, and thermodynamic parameter £ are calcu-
lated in a separate subroutine. The assumed thermodynamic model is
that of a thermally and calorically perfect gas, thus, equations (A.31)
to (A.33) are employed. Substitution of a replacement subroutine for

the existing one allows other thermodynamic models to be specified.

4. TRANSPORT PROPERTIES
Representations are required for the viscosity, the thermal
conductivity, and their spatial gradients. Both viscosity and thermal

conductivity are functions of temperature and pressure. Hence,

= {T,P) {A.34)

b -
|

=
|

= k(T,P) (A.35)

Using equations (A.34) and (A.35), the spatial derivatives of viscosity

and thermal conductivity may be written as

o . [au] ELEN [au] ap_ (A.36)
2 . [ax) aT_, fax) 2P
ax [GT)P ax; " (BP]T X, {A-37)




Hence, spatial derivatives of pressure and temperature are also re-
quired. Spatial derivatives of pressure and density are employed in
the basic integration scheme (even for the inviscid flow case). Thus,
those derivatives are already available. Spatial derivatives of
temperature can be expressed in terms of spatial derivatives of pressure
and density by differentiating the thermal equation of state, equa-
tion (A.28).

The pressure dependency indicated in equations (A.34) and (A.35)
is usually quite weak, and often both the viscosity and the thermal

conductivity are assumed to be functions of temperature only. Thus,

u(T) (A.38)

=
n

k(T) (A.39)

Y
1]

The Sutherltand formula (30) is a good representation for equation
(A.38).
T 1.5 T0 + S
RN [—f;] TS (A.40)
In equation (A.40), My is the viscosity at the reference temperature
To’ and S is a constant. Equation (A.39) can be represented by the

quadratic expression

2

K= a + aZT + a3T (A.41)

where the coefficients a; (i=1,2,3) are obtained by curve fitting
thermal conductivity data.
In the computer program, the viscosity, the thermal conductivity,

and their spatial derivatives are computed in a separate subroutine.
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The assumed functional forms of viscosity and thermal conductivity are
given by equations (A.40) and (A.41), respectively. The coefficients

3, (1=1,2,3) in equation (A.41) are internally generated in the computer
pragram by curve fitting user supplied data. Different formulations

for the transport properties can be implemented into the computer pro-

gram by supplying an appropriate replacement subroutine.




APPENDIX B
DERIVATION OF THE EQUATIONS FOR THE CHARACTERISTIC
SURFACES AND THE COMPATIBILITY RELATIONS

1. INTRODUCTION

Systems of hyperbolic partial differential equations in n inde-
pendent variables have the property that there exist surfaces in
n-space on which linear combinations of the original differential
equations can pe formed that contain derivatives only in the surfaces
themselves. Differentiation in these surfaces is performed in (n-1)-
space. The resulting differential operators are interier operators
which are known as compatibility relations. The surfaces are called
characteristic surfaces. A compatibility relation is valid only when
it is applied on its corresponding characteristic surface. Furthermore,
data cannot be arbitrarily specified on a characteristic surface, but
instead must satisfy the compatibility relation.

The method of characteristics is based on replacing the original
system of partial differential equations with an eqiuivalent number of

ceinpatibility relations applied on the appropriate characteristic sur-

faces. In flows with two independent variables, the method of char-
acteristics has the advantage of reducing the solution of a system of
partial differential equations to the solution of a system of ordinary
differential equations. In three-dimensional flow, however, the
resulting compatibility relations are still partial differential equa-

tions in two independent directions. 101
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In this appendix, the equations for the characteristic surfaces
and the corresponding compatibility relations are derived for steady
three-dimensional flow. For a complete discussion of hyperbolic partial
differential equations in three independent variables, reter te Courant
and Hilbert (39). An excellent presentation of the method of character-

istics for three-dimensional flow is given in Zucrow and Hoffman (5 ).

2. EQUATIONS OF MOTION

The partial differential equations of motion for steady three-
dimensional flow consist of the three component momentum equations,
the continuity equation, and the energy equation. Those eguations are

developed in Appendix A, and are repeated below for reference.

puu, + pvu, + pwu_ + Px = Fx (B.1)
puv, + pvv, *owy, + P‘y = Fy (B.2)
pUW, + DWW, *+ oww, + P, = F, (8.3)
pu, + pvy + PW,, +up, * pr +wp, = 0 (B.4)
qu + va t WP, - aZ(UQx + Vo, + WQZ) = Fe (B.5)

In equations {B.1) to {B.5), u, v, and w denote the x, y, and z compon-
ents of velocity, respectively, p is the density, P is the pressure,
a is the sonic speed, and the subscripts x, y, and z denote partial
differentiation in the corresponding direction. The nonhomogeneous
terms Fx’ F ., F

y' 'z
ponent momentum equations and the energy equation, respectively. Writ-

, and Fe are the forcing terms in the x, y, and z com-

ten in this form, with the left-hand sides constituting the prinicpal
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parts, equations (B.1) to (B.5) may be classified as a system of quasi-
linear nonhomogeneous partial differential equations of first order.
The system is hyperbolic (i.e., has real characteristic surfaces) if the

flow is supersonic,

3. CHARACTERISTIC SURFACES

The general compatibility relation, which is a lihear combination
of the governing partial differential equations, is formed by multiply-
ing equations (B.1) to (B.5) by the arbitrary variables w; (i=1 to 5),

respectively, and summing. This yields
m](puux + pvuy + pwu + Px) + mz(puvx + pVVy + pwv, + Py)
+ w3(puwx + pva + P, + Pz) + wq(pux + pvy + W,
i *up, + ve, + sz) + m5[qu + va + Wb,

- az(uox + voy + wpz)] = w]Fx + wsz + w3Fz + wsFe (B.6)

Equation (B.6) may be written as
p(um] + w4)ux + me]uy + pwmluz + QUmzvx + p(Vm2 + m4)v
+ oWnV W+ meawy + p(ww3 + m4)wz

+ (w] + ums)Px + (mz + sz)Py + (m3 + wms)Pz

-+

2 2 d
u(m4 - a ws)px + v(m4 - a ws)py + w(m4 -a ws)pz

(B.7)

wpfy * mZFy tugf, tagfy
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By noting the coefficients of the partial derivatives in equation

(B.7), the following vectors may be defined.

Wy = Doluwoy * wy)s pvuys oWyl (B.8)
W, = [owsys plvay + wy)s owo,] (B.9)
Wy = [ouw,, PVwgs p(Wog + w,)] {B.10)
Wy = [op + wag), (wy + vig)y (g + wag)] (B.17)
W = Luloy - a%ug),s viny - alug), wlay - a%,)] (8.12)

The directional derivative of a function f in some direction

%= (Ex,zy,zz) is given by

df . . af af af -
dz ~ *x ox * 2_y 3y * 2, 3z (B.13)

By considering equations (B.8) to (B.13), equation (B.7) may be written

as

+ dw dpP dp

et At ot o tuF 4w+ uF
y My Ty A T T T x T2y T egT T usTe

(B.14)

where du/dw1 is the directional derivative of u in the WH direction,

etc.

On a characteristic surface, equation (B.14) reduces to an interior

operator, that is, differentiation takes place in the surface itself.
For this to occur, the vectors W} (i=1 to 5) must all lie in the
elemental plane which is tangent to the characteristic surface at the

point in consideration. This means that the vectors ﬁ} (i=1 to 5) are

BIARERRRE N AT
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linearly dependent. Let the normal te the characteristic surface be

denoted by N = (Nx’Ny'Nz)' Hence, on the characteristic surface

NeW =0  (i=1 to 5) (8.15)

Equation (B.15} yields five linear homogeneous equations which may be

written in matrix form as follows

o 0 0 N 0 [u
0 pl 0 pNy 0 Wy
G 0 pU pNZ 0 wy =0 (B.16)
Nx Ny Nz 0 U Wy
o 00 vy
where
U=uN + vNy +wN (B.17)

Since the system given by equation (B.16) is homoegeneous, a nontrivial
solution exits only if the coefficient matrix is singular, which means
its determinant must be zero. Evaluating the determinant and equating

it to zero yields

o)l - az(Ni N N§ s Ni)] = 0 (8.18)

Equation (B.18) is the characteristic eguation for the original system
of equations, equations (B.1) to (B.5). The form of equation (B.18)

is that of a repeated linear factor and a guadratic factor,
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Equating the two factors in equation (B.18) to zero yields the
equations of two real nonintersecting cones formed by the envelope of the
characteristic normals at a point. Setting the linear factor in equation

(B.18) to zero gives (the case of p = 0 is immediately dismissed)
uNx + vNy + wNz =0 (B.19)

Equation (B.19) represents a degenerate cone formed by the envelope of
characteristic normals at a point, each normal being orthogonal to the
tocal velocity vector. Hence, equation (B.19) represents a plane

normal to a streamline. The characteristic surface is the reciprocal
cone to this degenerate cone of normals, and, hence, is also degenerate,
consisting of line segments tangent to the streamlines. Characteristic
surfaces with normal components satisfying equation (B.19) are called
stream survaces. The envelope of all stream surfaces at a point is a
single pencil of planes whose axis is a streamline. A streamline may

be represented by the following equations
dx/dt = u dy/dt = v dz/dt = w (8.20)

where t is the time of travel of a fluid particle along the streamline.

Equating the quadratic factor in equation (£.18) to zero gives

. 2 2,2 w2, 2y .
(JNx ! vﬂy + wNz) -a (Nx + Ny + Nz) 0 (B.21)

Equation (B.21) represents the quadric surface of a right circular cone
formed by the envelope of characteristic normals at a point. In gas
dynamics this cone is usuaily referred to as the cone of normals, and
is a real cone if g > a, where q is the velocity magnitude. Equation

(B.21) may be written as

S

T

e Lrapee .



un, + vn, twn, = a (B.22)

where ; = (nx,ny.nz) is the unit normal to the characteristic surface.
Equation (B.22) was obtained by arbitrarily selecting the positive root,
and the results which follow are consistent with that selection. Char-
acteristic surfaces whose normal components satisfy equation {(B.21),
or equation (B.22), are called wave surfaces.

Equation (B.21) is the equation for the cone of normals, which is

*
a quadric surface. In general, a quadric surface may be expressed as
Aijdxidxj =0 (B.23)

where X; (i=1,2,3) denotes the three cartesian coordinates x, y, and
z, respectively, and A is a nine element coefficient matrix of order

two. A normal vector is a directed line segment, so
Ni =g dxi (i=1,2,3} (B.24)

where Ni is the ith ccmpenent of the normal vector, and o is a constant
proportional to the length of the normal. By considering equations

(B.23) and (B.24), equation (B.21) may be written as

2 -
(uiuj - a 6ij)dxidxj = 0 (B.25)

where u; {(i=1,2,3) denotes the three velocity components u, v, and w,

respectively, and 6ij is the Kronecker delta.

*
Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.
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The characterjstic cone, which is the envelope of all wave
surfaces at a point; is the reciprocal cone to the cone of normals
given by equation (B.21), or equation (B.25). The geometrical rela-
tionship between these surfaces is shown in Figure B.1. If the general
form of the equation of the cone of normals is given by equation

{B.23), then the reciprocal cone is given by ( 9)

-1, )
Aijdxidxj 0 (B.26)

-1

where A * is the inverse of the nine element symmetric matrix A in

equation {B.23). Using equation (B.25) to determine A from wn\fh A -1
may be determined, equation (B.26) for the characteristic cone m&x\be

N

written as ‘\\\
2 =
[u us - (q -a )6ij]dxidxj 0 (8.27)

Equation (B.27) represents a real cone if q > a. Writing equation

(B.27) in expanded form yields

2

[W? - (a? - a®)1? + [v2 - (a? - aD)Iay? + W’ - (a° - az)].clzx2

+ 2uv{dx){dy) + 2uw(dx)(dz) + 2vw{dy)(dz) = 0 {B.28)

The characteristic cone given by equation (B.28) is known as the Mach
cone and represents the envelope of all wave surfaces at a point. The
line of tangency between a partricular wave surface and the Mach cone
is known as a bicharacteristic. Integratioen of equation (B.28) gives
the curved cone known as the Mach coneid.

In summary, for steady three-dimensional flow there are two

families of characteristic surfaces: stream surfaces and wave surfaces
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(see Figure B.2), The normal to a stream surface must satisfy equation
(B.19), and, hence, the stream surface contains the local velocity

vector. The envelope of all stream surfaces at a point is the streamline
through the point. The normal to a wave surface must satisfy equation
(B.21). The envelope of all wave surfaces at a point is the Mach cone.
The line of contact between a particular wave surface and the Mach cone
is called a bicharacteristic. At any point there are an infinite

number of stream surfaces and wave surfaces.

4, SOLUTION FOR THE W,

On a characteristic surface, equation (B.14) reduces to an interior
operator, that is, it becomes a compatibility relation. To obtain the
exact form of the compatibility relation, the w, (i=1 to 5) must be
determined.

For a stream surface, equation {B.19), repeated below, is valid.
un, + vNy + wNz = =0 (B.19}

Substitution of equation (B.19) into the homogeneous system given by
equation (B.16) yields

0 0 0 N 0 oy
0 0 0 oN, of |u,
0 0 0 o, o |ug| =0 (8.29)
Nx Ny Nz 0 0 w,
S S ]

o
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The coefficient matrix in equation (B.29) is rank two (rank is the
number of nonzero rows in the row echelon form of a matrix). The
number of independent nontrivial solutions for the wy is equal to the
order of the coefficient matrix minus iis rank, and hence, in this
case, is three. From equation (B.29), wy = 0 for all solutions, wg

is arbitrary, while Wys Wos Wy satisfy the following equation.

m]Nx + wENy + m3Nz =0 (B.30)

A set of three possible solutions is

Wy =Wy T wg T w, = 0, wg = ] (B.31)
wy = U, Wy ¥ Vs  Wwg T W, wy T wg =90 (8.32)
m-i = ng u)2 = Sy' m3 = Sz, U.)4 = m5 = 0 (8.33)

The vector § = (Sx’sy’sz) in equation (B.33) lies in the stream surface
and is independent of the velocity vector.
On a wave surface, equation (B.21) is valid. That equation may be

written as
U = a|N] (B.34)

where |N| is the magnitude of the normal to the wave surface. Substi-

tuting equation (B.34) into equation (B.16) yields



pa|N| © 0 oN 0 wy

X
0 palN] O pN 0 Wy
0 0 oalN] oN, 0 | ugf = @ (B.35)
Ne NN G a[N| | ju,

0 0 0 alf] -ad|N| g

The coefficient matrix in equation (B.35) is rank four, and, hence, one
independent nontrivial solution exists for the W - The solutions for

Wys Wy Was and wg may be expressed in terms of Wy Arbitrarily

selecting wg -1 yields

n

W, nx/a, wy = ny/a, wy = nzla, Wy = -1,

wg = -1/a° (B.36)

where n = ("x'"y’"z) is the unit normal to the wave surface.

5. COMPATIBILITY RELATIONS

The compatibility relations are obtained by substituting the
solutions for the w; into equation (B.6). The compatibility relations
valid along the stream surfaces are obtained by substituting equations

(B.31) to (B.33) into equation (B.6). The results are

2 _ :
qu + va + sz - a {upx + pr + sz) = Fe {B.37)
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ufuu. + vu_ + wu_) + v + + + ow + v
ou( X uy uz) pv(uvx vvy wvz) pw(uwx v,

+ wwz) tuP + va twp, = uF + va + sz (B.38)

g + : S
psx(uux vuy, ¥ wuz) + pSy(uvx + vvy+ wvz) + pSz(uwx + i,

+ : S T : =5 F S F S F :
wwz) *S Pt syPy +SpP =SF + syFy +SF, (B.39)
Note that equation {B.37) is the same as equation {B.5), which shows
that the energy equation is characteristic to begin with.
Equations (B.37) and (B.38) may be written in a form that repre-
sents differentiation in the streamiine direction only. From equation

(B.13), noting that for a streamline zx =u, L. = v, and 22 = W,

y
the directional derivative along a streamline is given by

g_(,_)_.—_-ua_-(_).+vg§—)—+wg—£—)— (3.40)

dt X

where t is the time of travel of a fluid particle along the streamline.

Using equation (B.40), equations (B.37) and (B.38) may be rewritten as

dP _ Zgﬂ_ ]

at T at " e (B.41)
du dv dw Q_P__ ) _ .

DUEE+ QV"&E + pw—-—dt + ot - qu + V.Fy + wFZ (B.42)

The compatibility equation that is valid along wave surfaces is
obtained by substituting equation (B.36) into equation (B.6). The

result is
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panx(uux + vuy + wuz) + pany(uvx + wy + wvz)
+ - - v)
panz(uwx + va + wwz) + (anx u)Px + (any v)ﬂy
2 _ .
+ (anz - w)Pz - pa (ux + vy + wz) = A (B.43)

where

A= alnF, + "yFy +nF)-F, (B.44)

Equation (B.43) may be written in a form that contains differen-
tiation in the bicharacteristic direction. A bicharacteristic is a
ray or generator of the Mach cone. The Mach cone is the reciprocal cone
to the cone of normals (see Figure B.1}. As a consequence, a bichar-
acteristic is orthogonal to the surface of the cone of normals. The
equation for the cone of normals is given by equation (B.21). Substi-
tution of equation (B.24) into equation (B.21) yields the equation for
the surface of the cone of normals in standard form [f(x,y,z) = constant].
Differentiation of this expression to obtain the gradient yields the
direction of the bicharacteristic. This gives .= (u - anx),
Ry = (v - any), and L, = (w - anz) in equation (B.13), so that differ-
entiation in the bicharacteristic direction is given by

%é—l-= (u-an.) Q&—l + (v - any) Qﬁ—l-+ (w - an_) al) (B.45)

z' 3z

In equation (B.45), t is the time of travel of a fluid particle along
the streamline that is the axis of the Mach cone. The relationship be-

tween the vectors £, V, and n is shown in Figure B.3.
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The term

2. 2 2 2
+
+{pa [nxux + nyvy taw + (uy + vx)nxny + (uz + wx)"x"z

+ (vZ + Wy )"y"z]}

may be added to and subtracted from equation {(B.43), and then by employ-
ing equation (B.45) the following form of the wave surface compati-

bility relation may be obtained.

dy dv dw _ dP _ 2,2
pan, &Eﬂ* pan, 3t toean, GG A - ea [(nx ])ux

2 2
+ (ny - I)vy + (nz - l)wZ + "x"y(uy + vx) + "x"z(uz + wx)
+ "ynz(vz + wy)] (B.46)

The terms in brackets in equation (B.46) are known as cross derivatives
and represent differentiation in the wave surface in a direction normal
to the bicharacteristic direction.

Equations (B.29) and (B.35) determine the number of independent
differential compatibility relations valid along a particular stream
surface and a particular wave surface, respectively. At any point
there exist an infinite number of stream surfaces and wave surfaces.
However, the number of independent compatibility relations cannoet exceed
the number of independent equations of motion. Hence, it is necessary
to determine which of the possible combinations of compatibility rela-
tions are independent. Ru.anov {32), using a proof in the space of
characteristic normals, has shown that for steady three-dimensional

isentropic flow two of the stream surface compatibility relations and

17
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the single wave surface compatibility relation applied along three
different wave surfaces form an independent set of characteristic
equations. Rusanov's results may be extended to the present problem
since the principal parts of equations (B.1) to (B.5) are the same as
those for isentropic flow. Thus, for the present probliem, an inde-
pendent set of compatibility equations consists of equations (B.41)
and (B.42) applied along a streamline, and equation (B.43) [or equa-

tion (B.46)] applied along three different wave surfaces.

6. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

The numerical algorithm that is employed in the present investiga-

tion is based on a second-order scheme devised by D.S. Butler (24).

This scheme has been used by Ransom, Hoffman, and Thompson ( 9) to

compute isentrepic steady three-dimensional nozzle flows, and by Cline

and Hoffman (25) to compute chemically-reacting steady three-dimensional

nozzle fiows.

In this section, Butler's parameterization of the characteristic

equations is presented. The discussion below is limited to the partic-
ular application of Butler's method to the present problem. An excel-

lent review of Butler's general method is given in Ransom, Hoffman, and

Thompson ( 9).

For Butler's scheme to be applicable, the characteristic determin-

ant must be composed of a quadratic factor and a repeated linear factor.

The determinant of the coefficient matrix in eguation (B.16) is the

characteristic determinant for the present problem, and by examination

of equation (B.18) it is seen that it is composed of the required

factors. The quadratic factor cerresponds to the wave surfaces. The

L A

g —— ALy ST bty = 0%

prverey




s e VR VR T R TR, TR IR YR IR R U e 000 R R SR e ik

envelope of all wave surfaces at a point is the Mach cone. The line of
tangency between a particular wave surface and the Mach cone is a bi-
characteristic. The linear factor corresponds te the stream surfaces.
The axis of the envelope of all stream surfaces at a point is a
streamiine. Butler's method assumes that for the linear facter,
differentiation can be expressed soley along the axis of the envelope
of the corresponding characteristic surfaces. Examination of equatiens
{B.41) and (B.42) demonstrates that this condition is applicable.

As discussed in the first section of this appendix, if the system
of governing partial differential equations has differentiation ec-
curring in n-space, then differentiation in the characteristic surfaces
occurs in {n-1)-space (i.e., differentiation is performed in a mani-
fold of one lower dimension). As a result, for three-dimensional fiow
(n=3), the general form of a compatibility relation valid aleng a

characteristic surface may be written as
Ev(auv/ax]) + FU(BUU/BxZ) =D {B.47)

where the repeated index v implies summation over the range of 1 te 5,
x; (i=1,2) denotes two independent directions in the characteristic
surface, v, (v=1 to 5) denotes the dependent variables, and Ev’
Fu {v=1 te 5), and D are general functions of x% and u- For stream
surfaces, differentiation may be expressed solely in the streamline
direction [see equations (B.41) and (B.42)]. Conseguently, in the
following, the discussion will be Timited to the wave surfaces.

For steady three-dimensional flow, Butler introduced the feollowing

parametric representation for a bicharacteristic.

118
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dxi = (ui + caicose + cBisinB)dt (i=1,2,3) (B,48)

In equation (B.48), X; (i=1,2,3) denotes the three cartesian coordinates
X, ¥, and z, respectively, u; (i=1,2,3) denotes the corresponding
velocity components u, v, and w, respectively, 6 is a parametric angle
denoting a particular element of the Mach cone and has the range
0<6<2m tis the time of travel of a fluid particie along the

streamline that is the axis of the Mach cone, and ¢ is defined by

¢? = azqzl(q2 - a%) (B.49)

where q is the velocity magnitude and a is the sonic speed. The vec-
tors o and Bi are parametric unit vectors with oy Bi’ and
ui/q (i=1,2,3) forming an orthonormal set. A geametriéa] representatioen
of this parameterization is given in Figure B.4,

The direction specified by equation {B.48) lies in the wave surface
and is 1in the bicharacteristic direction. A direction in the wave

surface and orthogonal to the bicharacteristic direction may be written

in parametric form as
m, = cBicose - Caisinﬂ (i=1,2,3) {B.50)

Verification of the orthogonality of the directions given by equations
(B.48) and (B.50) may be accomplished by ferming the dot product

(midxi) and using the orthonormality relations




adt cdt

Vi dt

FIGURE B.4. BICHARACTERISTIC PARAMETERIZATION
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(B.51)
- - 2 _
ajor = BBy = ugu/e =

By considering equation (B.47) and selecting xi and xé as the
directions given by equations (B.48) and (B.50), respectively, the

following form of the wave surface compatibility relation is obtained.

U
_ : v oL
Av(ui + cacosd + c8i51n9) %,
du,
+ .COS8 - ca.sind} =— -
B C“(c81cose ca151ne) B, (B.52)

In equation (8.52), Av, B, and Cv are functions of 6, u,» and Xy

Employing equation (B.13), and noting from equation (B.48) that along a

bicharacteristic
L; = U, + ca.cosb + csisina (i=1,2,3) (B.53)
equation (B.52) may be written as
A, g {ca.cose 5ino) Eﬁiﬁ (B.54)
¥ ade Jlc8 cose - cagsin 3, .

where the operator d(. )/d2 represents the directional derivative along

the bicharacteristic. The general forms of the coefficients Av’ B,
and CU are given by Butler as

AV = A]v + AZvcose + A3vsine (B.55)
B = By + Bycose + Bysing {B.56)
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Cv=C]v+C

cos9 + C, sind (B.57)

v v

where the Aku’ Bk’ and ckv (k=1,2,3 and v=1 to 5) are independent of 6.

In addition to the parametric wave surface compatibility relation,
given by equation (B.54), Butler also developed a noncharacteristic
relation which is applied along a streamline. This noncharacteristic
relation is used in the numerical scheme in conjunction with the wave
surface compatibility relation applied along four different bichar-
acteristics, and permits the formulation of three independent linear
combinations of these five equations which do not contain cross deriva-
tives at the solution point. The cross derivative terms [see equation
(B.46)] represent differentiation in the wave surface but in a direc-
tion orthogonal to the bicharacteristic direction [i.e., differentia-
tion in the direction given by equation (B8.50)]. Butler presents the
noncharacteristic relation in the form

du au

Avai = By * (G 08y - €y 00, %, (B.58)

where the operator d{ )/dA represents the directional derivative along
the streamline. The coefficients A, , By, C, . and Cy (v=1 to 5) in
equation (B.58) are obtained by inspecting the form of equation (B.54)
and then using equations (B.55), (B.56), and {B.57).

For the present problem, the actual form of the parametric wave
surface compatibility relation, equation (B8.54), may be obtained by
substituting the appropriate parametric form of the wave surface unit
normal into the compatibility relation, equation (B.43). The normal
to the wave surface is also the normal to the Mach cone at a point

common to both surfaces. The quadric surface of the Mach cone is
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represented by equation (B.27), repeated below.
[usu, - (q2 - az)d Jdx.dx. = 0 (B.27)
LI i3 )

Substituting the parametric form for dxj, given by equation (B.48),

into equation (B.27) yields

2 2 . . ,
[uiuj -{q" - a )Gij](uj + cajcose + cBJ.smB)d-xi =0 (B.59)

The ith component of the normal N, to this surface is

2 2
-a )Sij](uj + Co,COSH

. - (q .

N, = [uiuJ

+ chsine) (i=1,2,3) (B.60)

Employing the orthonormality conditions given by equation (B.51), equa-

tion (B.60) may be written as

N = az[ui - (a%/c)(a;cose + B.sing)]  (i=1,2,3)  (B.61)

Dividing equation (B.61) by the magnitude of the normal []ﬁ} =
(NiNi)]l%] and using equation (B.51), the parametric form of the wave

surface unit normal is obtained.
ny = (a/c)(cuy/a” - ajcos6 - B;sing)  (i=1,2,3)  (B.62)
Substituting equation (B.62) and the orthonermality relation

2 = :

into the wave surface compatibility relation, equation (B.43), gives

the following parametric form of that equation



9 + pcla;cose + B Sinﬂ)ggi = ¢ - pc? (o;sine
at * el 51 A b

u,

- J 7 - d - .' )
Bicose)(ajSIne Bj°°se)523' (B.64)
where
8 = - (c2/a) (B.65)

The operator d( )/dt in equation (B.64) denotes differentiation in the
bicharacteristic direction.

It should be noted that the directional! derivatives in eguations
(B.46) and (B.64) are not identical. - The directional derivative in
equation (B.46) is based on equation (B.45). Substitution of the
parametric unit normal, given by equation (B.62), into equation (B.45)
yields

d( ) . ;.2,.2 1)
at (a/c )(ui + co,cos6 + cBisme)Bxi (B.66)

The directional derivative in equation (B.64) is given by

a() .

. a( )
Tt (ui + caicose + cBis1n8)ax. (B.67)

i
Hence, the two expressions differ by the factsr (a2/c2).

Finaily, it remains to determine the actual form of the nonchar-
acteristic relation, equation {B.58). Denote u, (v=1 to 5) and

X5 (i=1,2,3) in equations (B.54) and (B.58) by

X} =X X, =Y, X3=1Z (B.68)
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By inspection of equation (B.64), and use of equations (B.68), (B.55),

(B.56), and (B.57), the noncharacteristic relation is seen to be

u,
e _ 2 i ‘
a'{ =0 et (m.iaj + BiBj )axj (B-Gg)
where
o = (c4ad)F, - (cPrQP)(uF, + VE, + WF) (8.70)

The operator d{ }/dt in equation (B.69) denotes the directional deriva-
tive along a streamline.

In summary, Butler has developed a bicharacteristic parameteriza-
tion given by equation (B.48). The corresponding parametric form of
the wave surface compatibility relation is given by equation (B.64).
Butler also developed a noncharacteristic relation, given by equation
(B.69), which is applied along a streamline. These relations, along
with the stream surface compatibility relations, equations (B.41)
and (B.42), constitute the system of compatibility relations. The use
of this system of equations in the various unit processes is presented

in Appendix E.




APPENDIX €
INTERPOLATION

1. INTRODUCTION

| In the course of computing the flow field, a number of situations

arise which require interpolation. To this end, univariate, bivariate,
and trivariate interpolation polynomials are employed in the numerical

algorithm., These interpolation schemes are presented in this appendix.

2. UNIVARIATE INTERPOLATION

Univariate interpolation is required in geometry description,
calculation of the transport forcing terms, and in determination of the
properties along a space curve formed by the locus of shock wave solu-
tion points., Applications to geometry descriptien and transport term
computation are discussed in Appendices D and G, respectively. The
application to the determination of properties along a shock wave is
discussed here.

When a shock wave intersects either a solid boundary or a solution
plane (a plane of censtant x), a space curve is defined as illustrated
in Figure C.1. Interpolated values of position, shock wave angle, and
flow properties are required along this curve. For this purpose, the

quadratic polynomial

_ 2
f(8) = a; * a28 + a36 (c.1)
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is employed, where f(9) denotes a general function expressed in terms

of the polar angle 8 given by
o = tan”) (2/y) (c.2)

where y and z are the coordinates of a peint on the space curve. The
coefficients a, (i=1,2,3) in equation (C.1) are determined by fitting
this expression to three data points on the space curve, and, as a
consequence, a system of three simultaneous linear equations must be
solved for the coefficients 3, of each function representation. The '
solution to this system of equations is obtained using a Gaussian
elimination method with complete pivoting (40).

Figure C.1 illustrates typical data poeint stencils used for de-
termining coefficients in equation (C.1). The fit point array con-
sists of a base point, which is the point closest to the position of

the interpolated point, and the immediate neighbors of the base point.

3. BIVARIATE INTERPOLATION

Bivariate interpolation is required for property determination in
a given solution plane (a plane of constant x). Two types of bivariate
interpolation pelynomials are employed in the numerical algerithm.
They are a linear bivariate polynomial whose three coefficients are
determined by fitting this expression to three data points, and a
quadratic bivariate pelynomial whose six coefficients are determined
by a least squares fitting of nine data points.

The linear bivariate polynomial is used in the single appli-
cation when a streamline-shock wave intersection point is sufficiently

close to the current selution plane so that an interior point unit
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process on the downstream side of the shock wave is not performed.
In that case the projection of the streamline onto the solution plane
and subsequent property interpolation in this plane is performed. The

bivariate interpolation polynomial used in this case is
Fly,z) = ay +ay + ay2 (C.3)

where f(y,z) denotes a general function of the coordinates y and z.
The coeffficients a {1=1,2,3) in equation (C.3) are determined by
fitting this expression to three data points. This yields a system
of three simultaneous linear equations for the coefficients a; of each
function representation. This system of equations is solved using a
Gaussian elimination method with complete piveting [as was done for
equation (C.1)].

A typical data point stencil used for determining the coefficients
in equation (C.3) is illustrated in Figure €.2. Two shock wave solu-
tion points and a field peint constitute the fit point array.

In all other situations which require bivariate interpolation, the
quadratic polynomial
2

~ 2
fly,z) = ap tayy tagztayztay tagz (C.4)

is employed, where f(y,z) is a general function of the coordinates y
and z. The coefficients a; {i=1 to 6) in equation {C.4) are determined
by a least squares fit of nine points. Using the standard theory of
least squares (40), the system of normal equations which determines

the coefficients in equation (C.4) is
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2 2. _ ¢
9a1 + E Yiaz +) 2,24 + 7 Y5238, ) yia5 + Z ziaﬁ =) fi (C.5)

2 2 3
Dyiay + 1958 + 1 vz + T yizia, *+ 1 ¥4
+7 yizfa6 =7 yifi (C.8)

2 2 2
L R L AR A ALY

+] zja, =1 2.8, (c.7)

2 2 2 2 3
Lys2gay + DY323% * T Y4232 * 1 %5243 + 1 Y5%%

+ 5 y}.z?a6 =¥ yizifi (C.8)

2 3 2 3 4
Dy +Iyia + 13733+ 1 Y323 1 1 3%
2.2
+1 Y%= 1 y§fi (€.9)

2 2 3 3 2.2
L2yt Dyiziap * 1 5333 ¥ L yy%5g * ) Y423

4. . 2 |
+7 za, = ) zifi (C.10)

In equations (C.5) to {C.10), the } sign implies summation over the
range of 1 to 9, while the subscript i denotes the ith data point
(i=1 to 9). This system of simultanecus linear equations has a sym-
metric coefficient matrix and is solved using a Gaussian elimination
method with pivoting in the main diagonal.

Figure C.3 iTlustrates typical data point stencils used in de-

termining the coefficients in equatioen (C.4). Basically, there are two
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types of stencils: interior point and boundary point. Since the
shock wave mathematically represents a discontinuity, the boundary
point stencil must be employed when the interpolation base point (the
data point closest to the interpolated point) is on the shock wave.
The fit poeint array consists of the base point and its eight immediate
neighbors. Special logic in the computer program is used to insure

that no stencil bridges the shock wave.

4, TRIVARIATE INTERPOLATION

Trivariate interpolation is required for property determination
on the surface of a solid boundary (a stream surface) and for property
determination on the upstream and downstream sides of the shock wave.
Two types of trivariate interpolation polynomials are employed in the
numerical algorithm. They are a linear trivariate polynomial whose
four coefficients are determined by fitting this expression to four
data points, and a quadratic trivariate polynomial whose eight coef-
ficients are determined by a least squares fitting of fourteen data
points.

The linear trivariate polynomial is used in the single applica-
tion for property determination on the upstream side of the shock wave

surface. This polynomial has the form
f(x,y,2) = ap tayX taytaz (C.11)

where f{x,y,z) is a general function of the coordinates x, y, and z.
The coefficients a; (i=1,2,3,4) in equation (C.11) are determined by
fitting this expression to four data points. Hence, a system of four

simultaneous linear equations must be solved for the coefficient a,
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of each function representation. This system of equations is solved
using a Gaussian elimination method with complete pivoting [as was
done for equations (C.1) and (C.3)].

A typical data point stencil used for determining the coefficients
in equation (C.11) is illustrated in Figure C.4. Three data points
are located on one space curve and one data point is located on the
other space curve.

In all other situations which require trivariate interpelation,

the quadratic polynemial

- 2 2 ‘
f(x,y,2) = @) + 3,y + a5z + a,yz + agy” + a2 &

+agxy + agxz (€.12)

is employed, where f(x,y,z) is a general function dependent on the
coordinates x, y, and 2. The coefficients a; (i=1 to 8) in equation
(C.12) are determined by a least squares fit of fourteen dat; points.
From the theory of least squares, the system of normal equations

which determines the coefficients in equation (C.12) is

2 2
Tay + L yga, v L zag+ ] yza, + ] yiag ¢ ) 253

t1xye, L xz;a5 = | f, (C.13)
2 2 3 2
Lygay + 1 Y52 + Dyizag + 1 ¥32;3 + L yiag + 1 Yi%5%
2. .
+ 3 X;¥j87 * ) Xi¥;2:8g = ) yifi (C.14)
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2 2
Doy + D yizap + [ 2oy + Dyiziay + 1 vizgag + [ 233
+ ) X, Y5287 + ) xlzfa8 =1 z,f, (C.15)

2 2 2.2
Dyizay + D iz, + D ygdiag + 1 yiziey + 1 yvizges

3

2
+ X y1 i 6 * Z X y

2
z:a, + ¥ Xi¥:258g = ) yizifi {C.16)}

2 3 2,2,
Lyjap+Lvjap + Ly Z ag + ] iz, + ] y1as + 1 ¥§%5%

3 2 - 2 .
yiay + 1 xyizaag = ysT (€.17)

+1 X i'i

2 3 2 2a

X zla] * E Y Z a * E zla3 * X y1z1a4 * z y1 15 * z Z; a6

+ 1 XYy zza + ] %,z a =7 z (C.18)

2 3
L xgyiay + 1oy, a +1oxgyizia3 + Loxpyizia, + L oxyseg

2

+ 1 oxy,2580 t ] X y 3yt z ag =} x;y;f.  (€.19)

'l 'I

: 2 2 2
D xjzia, + ] x.ysz.a, + D x,25a, + ] Xy Zia, + I x¥5z,05
3 2 2.2 _
+] xs2jap + ] Xy.z.a, + ] x;z5ag = L %z, f, (C.20)

In equations (C.13) to (C.20), the ] sign implies summation over the
range of 1 to 14, while the subscript i denotes the ith data point

(i=1 to 14). This system of simultaneous linear equations has a sym-
metric coefficient matrix and is solved using a Gaussian elimination

method with pivoting in the main diagonal [as was done for equation

(c.4)].
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Figure C.5 illustrates typical data point stencils used in de-
termining the coefficients in equation (C.12). The fit point array
consists of seven data points along each of the appropriate space
curves on either the shock wave or the solid boundary.

It should be noted that a ten term quadratic trivariate poly-
nomial, with coefficients determined by a least sugares fit of fourteen
data points, was tried in place of equation (C.12}. Use of this
polynomial in flows with axial symmetry, however, did not produce
results which were as symmetrical {especially for transverse velocity
components)} as those produced by equation (C.12). This result could
possibly be due to the effects of ill-conditioning as is discussed in
Hamming (40). Furthermore, scaling of the dependent variables 4id

not appear to produce any improvement.
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APPENDIX D
SURFACE REPRESENTATIONS, AND STREAMLINE- AND
BICHARACTERISTIC~SURFACE INTERSECTIONS

T. INTRODUCTION

The procedures employed for representing the selid boundary and
shock wave surfaces are presented in this appendix. The technique used
for determining the intersection point of either a streamline with the
shock wave, or a bicharacteristic with either the shock wave or the

solid boundary, is also discussed.

2. SOLID BOUNDARY SURFACES

The centerbody and cowl surfaces are specified in the computer
program by a separate geometry module that has the capability to de-
scribe a variety of axisymmetric contours. More arbitrary geometries,
such as those having el]igtical or superelliptical cross sections, may
be considered by supp]yiné an appropriate replacement module. In
general, to specify a surface completely, its functional form
[f(x,y,z)} = constant] and its gradient at any point [V f(x,y,z)] must
be available.

The existing geometry module, which describes axisymmetric con-
tours, divides the axial (x) domain into a number of intervals. In any
interval, the body radius may be specified by either tabular input,

or by supplying the coefficients in a cubic polynomial written as a



function of x. For the tabular input case, linear interpolation is
performed to obtain the radius r(x) between the points (xi,ri) and
(x1+].ri+]) where (xi-i X < xi+]). Alternatively, employing the

cubic polynomial
r(x) = a, +b.(x - x.,) +c.(x - x.)2 + d.(x - x.)3
i i i i i i i
(x; < x < x:00) (D.1)

requires that the coefficients a5, bi’ Ci» and di be supplied for the
ith interval (these coefficients must be externally generated). Since
equation (D.1) is a cubic, slope and curvature can be matched at the
Jjunction point between twe adjacent intervals (i.e., spline fits can

be employed}.

3. SHOCK WAVE SURFACE

Some of the unit processes, which are described in Appendix E,
require an analytical representation for the shock wave surface.
During the course of the program development, a number of different
representations were devised, including the fitting of both planar
surfaces and quadric surfaces to locally approximate the shock wave
surface. The quadric surface formulation displayed a tendency to
produce a (local) surface with undulations. The planar surface
representation did not exhibit this effect, and, for fine mesh spacings,
produced results essentially the same as the representation that was
ultimately selected for use in the numerical algorithm, However,
the accuracy of the planar surface representation suffered at coarse
mesh spacings. The shock wave surface formulation that was selected

for use in the algorithm is presented below.
14}
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The shock wave surface is represented as a family of straight
lines between two space curves, as iltustrated in Figure D.1, The
space curves represent either the intersection of the shock wave with
a solution plane (which is a plane of constant x), or the intersec-
tion of the shock wave with a solid boundary (i.e., an interplanar
ring of shock wave solution points). Each space curve is represented

by the two quadratic expressions

2

r, (8) = a; +b.6 +c.6 (i=1,2) (D.2)

- 2 .
xi(B) = di ted+ fie (i=1,2) {D.3)

where r is the radius of a point on space curve i (i=1,2), X, is the
corresponding axial position of a point on space curve i, and 8 is the

polar angle given by
8 = tan'](z[y) (D.4)

where y and z are the coor linates of a point on the space curve. In equa-
tions (D.2) and (D.3), the coefficients a; to f‘,i {(i=1,2) are determined
by fitting these expressions te three known points on each space

curve as described in Appendix C. When the space curve lies in a
solution plane, x of course has no 6 dependency.

Once equations (0.2} and (D.3) are determined for the two space
curves, the shock wave surface is represented as an infinite family of
straight lines between the two space curves, where each straight line
falls in a meridional plane (i.e., a plane of constant 8). Conse-
quently, for a given value of 6 and x, the shock wave surface is

represented by the linear interpolation formula
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(x - x5(8)) (x - x,(8))
r0a8) = TR ) Tt w200 (0:5)

In equation (D.5), r(x,8) is the shock wave radius at axial pesition x
and polar angle 8, r](e) and x](e) are given by equations {D.2) and
(D.3), respectively, for one of the space curves, and rz(e) and xz(e)
are given by equations (D.2) and (D.3), respectively, for the other
space curve (see Figure D.1). A strong point of this representation
is that a smooth (local) surface is produced because linear interpola-
tion is performed for the shock wave radius in a meridional plane,
while transverse curvature information is introduced through equations

(D.2) and (D.3). /
I

4. STREAMLINE- AND BICHARACTERISTIC-SURFACE INTERSECTIONS

A number of unit processes req@ire determining the intersection
point of either a streamline with thg shock wave, or a bicharacteristic
with either the shock wave or a solid boundary. The technique used
is the same for all cases and is presented below.

A streamline or bicharacteristic may be represented by the equa-
tion

dx, = Pidt (i=1,2,3) (D.6)

i

where X3 (i=1,2,3) denotes the three cartesian coordinates x, y, and z,
respectively, and t is a parameter proportional to the length of the
streamline or bicharacteristic. For a streamiine, the parameter Pi in

equation (D.6) is given by




I, = u, (i=1,2,3) (D.7)

where u, (i=1,2,3) denotes the velocity components u, v, and w,

respectively. For a bicharacteristic, I‘i is given by

Ly = u; + cucosd + cBisin¢ (i=1,2,3) {D.8)

where sy Bi’ ¢, and ¢ are the parameters employed in Butler's
parameterization of the Mach cone ( 24), which is discussed in Appendix B.

Using equation (D.6), the fellowing eguation may be written.
dx/F] = dy/I‘2 = d'z/I‘3 (P.9)

Solving equation (D.9) simultaneously, the linear expressions

«
!

= Ly - (Tp/Tx 1+ (Py/Ty)x (0.10)

]
]

= [zk - (F3/F])xk] + (F3/F1)x ' (p.11)

may be obtained, where Xy s yk, and zZ, are the coordinates of a known

point on the streamline or bicharacteristic, while x, y, and 2 repre-

sent the coordinates of the point of intersection of the streamline
or bicharacteristic with a surface {see Figure D.2).

An iterative procedure is employed to determine the coordinates
X, ¥, and z. First, the values of T, (i=1,2,3) are evaluated at the
known point. Then, a trial value is assumed for the axial coordinate
X. From equations (D.10) and (D.11), the corresponding coordinates y

2)1/2 and the

*
and z may be obtained. Then, the radius r = (y2 + 2z
polar angle 6 = tan'](z/y) of the assumed intersection point may be

computed. Frem the assumed valuz for x and the calculated value for 6,
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the body radius r** {determined from the tabular wall data or equation
(D.1)] or the shack wave radius r** [given by equation (D.5)] may be
obtained. The difference between r* and r** is reduced to within a
specified tolerance by employing a numerical relaxatien technique
(secant method) which iterates on x. Once convergence has been ob-

tained, the values of I‘1 at the intersection peint are computed using

the trivariate interpolation method discussed in Appendix C. Appropri-

ate averages of the values of Fi at the known point and the intersec-
tion point are then formed, and the entire process is repeated until
overall convergence is obtained.

It should be noted that it is possible to use 8, instead of x,

as the variable upon which the iterative scheme is based. The resulting

formulation, hewever, is singular when the streamline or bicharacter-

istic lies in a meridienal plane.
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APPENDIX E
UNIT PROCESSES

1. INTRODUCTION

Computation of the flow field requires that a variety of unit
processes be employed. These subalgorithms may be classified into four
major types: interior peint, solid boundary point, field-shock wave
point, and body-shock wave point. Computation of the external flow
field about the forebody portion of the centerbody requires using the
basic versiens of the first three aforementioned algorithms. Computa-
tion of the internal flow field, with its attendant reflected shock
wave system, requires using the basic interior point and solid boundary
point algorithms plus medified versions of these routines, as well as
the other unit processes. All of the unit processes are presented in

this appendix.

2. SUMMARY OF THE CHARACTERISTIC EQUATIONS

The equations for the characteristic surfaces and the compatibility
equations valid along these surfaces are developed in Appendix B. A
summary of the pertinent results is given below.

For steady three-dimensional supersonic flow, compatibility equa-
tions may be written which are valid when applied along either stream-
lines or bicharacteristics. A streamline is représented by the equa-

tion



dxi = u, dt (i=1,2,3) (E.1)

where X4 (i=1,2,3) denotes the three cartesian coordinates x, y, and

z, respectively, u, (i=1,2,3) denotes the corresponding velocity com-
ponents u, v, and w, respectively, and t is the time of travel of a
fluid particle along the streamline. Tie compatibility equations valid

*
along a streamiine are given by

%‘% - al g% - F, (E.2)
du,
%%* Pu; gE = YsF (E.3)

where P denotes the pressure, p is the density, a is the sonic speed,
Fi (i=1,2,3) denotes the transport forcing terus in the x, y, and z
component momentum equations, respectively, and Fe is the transport
forcing term in the energy equation. The operator d( }/dt in equa-
tions (E.2) and (E.3) represents differentiation in the streamline
direction. The forcing terms Fi and F, are defined by eguations (A.6)
and (A.27), respectively.

A bicharacteristic, which is a ray or generator of the Mach cene,

is represented by

dx; = (ui + caycosd + cBisinG)dt (i=1,2,3) (E.4)

where & is a parametric angle denoting a particular element of the Mach

cone and has the range 0 < 6 < 2n, t is the time of travel of a fluid

*
Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.
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particie along the streamiine that is the axis of the Mach cone, and ¢
is defined by

¢ - q?‘a\zl(q2 - a%) (E.5)

where q is the velocity magnitude. The vectors @ and Bi in equation

(E.4) are parametric unit vectors with a,, B, and u,/q (i=1,2,3)

forming an orthonormal set. The compatibility equation valid along a

bicharacteristic is given by

= @, N du; 2, o

| at T ecle;cose + 8, s1n9) =9 - pC (ais1ne

é 3u,

: - B. cese)(a sin - 8. cose)ax‘ (E.5)
| J

In equation (E.68), the aperator d{ )/dt represents differentiation in

the bicharacteristic direction, and the parameter ¢ is given by

% = (cala?‘)(Fe - anF,) (E.7)

where n, is the ith component of the wave surface unit normal and is

given by

= (a/c)(cu_i/q2 - @,c0s8 - sisine) (i=1,2,3) (E.8)

In addition to the above relations, the following noncharacteristic

relation is applied along a streamline

[«

g -9 ec (a o + By B ) (E.9)

where the operator d{ )/dt represents differentiation in the streamline

direction, and the:parameter ¢ is given by
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o = (c¥/a®)Fy - (Z1Q%)(usF;) (E.10)

Equations (E.1) to (E.T0) form the basis of the numerical inte-

gration method.

3. GENERAL COMMENTS CONCERNING THE UNIT PROCESSES

An inverse marching scheme is employed in the numerical algorithm.
The solution is obtained on space-like planes of constant x, with the
x-axis being the longitudinal axis of the centerbedy and cowl. For the
internal flow field, the solution is also obtained on the space curves
which represent the intersection of the internal sheck wave with the
solid boundaries. These space curves are defined by the locus of shock
wave solution points.

Except in the vicinity of a shock wave-selid boundary intersec-
tion, the distance between successive solution planes is determined
by the application of the Courant-Friedrichs-Lewy (CFL) stability
criterion, which is presented in Appendix F. The axial step in the
vicinity of a shock wave-solid boundary intersection is contrelled by
special constraints which are aiso discussed in Appendix F.

Each of the unit processes is presented below. In general, a unit
process is divided into a predictor step and a number of enusing cor-
rector steps. In most cases, a unit process employs an outer iterative
loop for determination of the flow properties at the selution point,
and an inner iterative loop (or loops) for location of bicharacteristic-
initial-value plane intersection points, etc. The terms "inner" and

"outer" are used in this context in the following discussions.
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4. INTERIOR POINT UNIT PROCESS

Figure E.1 is a depiction of the computational network used in the
determination of the solution for a typical interior point. Points (1)
to {5) are located on the initial-value plane which is a plane of
constant x on which the solution is known. Points (1) to (4) represent
the intersection points of four rearward-running bicharacteristics with
the initial-value plane, and point (5) is the intersection point of the
streamline with this plane. Point (6) is the interior solution point,
which is located at the intersection of the forward projection of the
streamline with the solution plane. The axial (x) distance between
the initial-value plane and the selution plane is determined by either
the application of the CFL stability criterion, or, in the vicinity
of a shock wave-solid boundary intersection, by the special constraints
discussed in Appendix F.

Interpolated values of the three velecity components u, v, and w,
the pressure P, and the density p are required at the bicharacteristic-
initial-value plane intersection points, points (1) to (4) in Figure
E.1. For this purpose, the following bivariate interpolation poly-

nomial is employed

2

_ 2
fly,z) = a; tay taztayztagy +agz (E.11)

where f(y,z) denotes a general function of the coordinates y and z.

The coefficients a; (i=1 to 6) in equation (E.11) are determined by a
least squares fit of nine data points in the initial-value plane

[point (5) and its eight immediate field point neighbors]. The detailed

implementation of equation (E.11) is discussed in Appendix C.
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In addition to using interpolated values for the flow properties
at points (1) to {(4) in Figure E.1, interpolated values are also employ-
ed at point (5), the streamline base peint, even though this is a field
solution point. As shown by Ranson, et al. ( 9), this interpolation
is required to produce a stable numerical scheme.

The interior point unit process is initiated by locating the
solution point, point {6). This is accomplished by extending the
streamline for..rd from point (5) to intersect the solution plane.

The coordinates of point (6) are obtained using the following finite

difference form of equation (E.1).
x;(6) - x,(5) = %[“1(5) + u, (6)1[t(6) - t(5)] (i=1,2,3) (E.12)

In applying equation (E.12) for the predictor {first outer iteration),
ui(ﬁ) is equated to ui(s), whereas, for the corrector {ensuing outer
iteration), the previously ebtained value of ui(s) is used.

Equation (E.12) is first applied for i=1 (i.e., the x coordinate
direction). The axial step [x(6) - x(5)] is determined prior to the
application of the unit process. Hence, the time parameter [t(6) -
t(5)] may be ebtained. Then, equation {E.12) is applied for i=2 and
i=3 to determine y(6) and z(6).

At this point, four bicharacteristics are extended backward from
the solution peint to intersect the initial-value plane. This is
accomplished by applying the fellowing finite difference form of
equation (E.4).

o R RTRIICTE ¢ KB A —— | e | i e




xi(ﬁ) - x.i (k) = %{[ui(k) + U,i (6)] + [C(k) + C(G)][aicosﬂ'(k)
+ Bisine(k)]}[t(ﬁ} - t{k)] (i=1,2,3) (E.13)

In equation (E.13), k denotes the bicharacteristic intersection points
in Figure E.1 and has the values 1, 2, 3, and 4 corresponding to the
o{k) values of 0, w/2, w, and 3n/2, respectively. The bicharacteristic
intersection points are determined in an inner iterative loop. That is,
for every outer iteration that is performed to determine the flow
properties at point (6), a number of inner iterations are performed to
locate points (1) to {4). On the first inner iteration of the predictor
(the first outer iteration), ui(k) and c(k) are equated to ui(s) and
c{5), respectively, for each of the four bicharacteristics. On ensuing
inner and outer iterations, the flow properties previously obtained at
each of the bicharacteristic intersection points are used. The flow
praperties at these points are determined by employing the bivariate
interpolation polynomial given by equation (E.11). Mareover, as was
done for equation (E.12), for the predictor (the first outer iteration),
the flow properties at point (6) in equation (E.13) are set equal to
those at point (5), whereas, for the corrector (ensuing outer itera-
tions), previously computed values of the flow properties are used at
the solution point.

Equation (E.13) is first applied for i=1 (i.e., the x-coordinate
direction). The axial step [x{6) - x(k)] is determined prior to the
application of the unit process. Thus, the time parameter [t(6) -

t(k)] may be obtained for each of the four bicharacteristics. Then,
equation (E.13) is applied for i=2 and i=3 to determine y(k) and z{k)

for each bicharacteristic.
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The parametric unit vectors s and Bi appearing in equation
(E.13) are arbitrarily fixed at the solution point, point (6). Butler
(24), in his original work, held @ and 8, censtant aleng a bichar-
acteristic but varied 8 in order to insure that the bicharacteristic
remained tangent to the Mach cone. Ransom, et al. (9 ) held 6 constant
along a bicharacteristic but varied @ and Ei to satisfy this tangency
condition. As noted by Cline, et al. {25), Butler (41) later realized
that it is not necessary to satisfy the tangency condition in order
to achieve second-order accuracy in the resulting overall numerical
algorithm. As a consequence, in the present analysis, both 8 and the
unit vectors @, and Bi are held constant along the bicharacteristics.
For the external flow field integration, a, and Bi are selected to

straddle the projection of the pressure gradient in the initial-value

plane. For the internal flow field integration, a;

i and Bi are chosen

to straddle the meridional plane.

Once the positions of and the flow properties at points (1) to (4)
have been determined for a given outer iteratieon, the transport forcing
» and Fe are computed at each of these points

2
and at the streamline base point, point (5), as described in Appendix G.

functions Fx' Fy, F

Approximations for the transport forcing functions at point (6) are also
made at this stace as described in Appendix G. The system of non-
linear compatibility equations is then solved for the flow properties
at point (6) as outlined below.

The compatibility equations valid aleng a streamline are given
by equations (E.2) and (E.3). MWriting these relations in finite

difference form yields




[P(6) - P(5)1/Lt(6) - £(5)] - 2{a’(5) + a%(6)1[(6)

- p(S)I/LE(6) - £(5)] = 3HF (5) + F_(6)] (E.14)

[P(6) - P(S)I/[t(6) - £(5)] + Jp(5)uy(5) + o(6)u;(6)] [u, (6)
- u;(5)J/LE(6) - t(5)] = Ju (EIF,(5) + u (B)F;(6)] (E.15)

The noncharacteristic equation, given by equation (E.9), is also

applied along a streamline. Writing that equation in finite differ-

.ence form gives
[P(6) - P(5)1/[t(6) - t(5)] = 3{o(5) + o(6)]
- %9(5)62(5)(611.&3 + BiBj)a“i/a"j(s)
- 20(6)c2(6) (agor; + 8,85)0u;/3%,(6) (E-16)

In equation (E.16), o is given by equation (E.10), and aui/axj(k) de-
notes the appropriate partial derivative evaluated at point (k} in
Figure E.1. Partial derivatives taken with respect to y and z are
found by analytically differentiating equation {E.11). Partial deriva-
tives taken with respect te x are then found by using the governing
partial differential equations.

The compatibility equation valid along a bicharacteristic is given
by equation (E.6). For & values of 0, n/2, =, and 3n/2, equation (E.6)

becomes

du

dp i 2 au,

1 .
a;t—]"“ QE)C_U.,i H—El‘ = 4’1 - pC BiBJ —3;(-‘—]- (2-17)
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dp du, 2 au

P o i.a . e | ,

dtz + peB; ?EE- 9, - pC 0405 5xj (E.18)
du au,

P _ i_. . .2 i _

A L T (E.19)
du, u,

P i P - i .

dt, pchy dt, %q - pC sy 3y (E.20)

In equations (E.17) te (E.20), the operator d( )/dtk denotes differenti-
ation aleng the bicharacteristic corresponding to 6(k), and Qk is de-
termined from equation (E.7). Writing equations (E.17) to (E.20) in

finite difference form yields
[P(6) - P(1)I/LE(6) - t(1)] + 2Ho(1)c()
+ o(6)c(6)Jo,u, (6) - u, (1I/[t(6) - £(1)]
= gle,(1) + 0, (6)1 - Jo(1)c?(1)8,8;0u;/9x,(1)

[P(6) - P(2)1/ [t(6) - £(2)] + plo(2)c(2)
+ p(6)c(6)18,Lu;(6) ~ u, (2)V/[t(6) - (2)]
= 510,(2) + 9,(6)] - gp(2)c%(2)aya;0u;/3%4(2)

- %p(ﬁ)cz(ﬁ)aimjaui/axj(ﬁ) (E.22)
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[P(6) - P(I)/LE(6) - £(3)] - 3o(3)c(3)
* p(6)c(6)Ja;Lu,(6) - u,(3)]/[t(6) - t(3)]
= 703(3) + 85(6)1 - Jo(3)c7(3)8,8,5u; /x,(3)

- 30(6)c% (6)8,8,3u; /2, (6)

[P(6) - P(&)I/[(6) - t(a)] - JLa(4)c(4)
+ p(6)c(6)18,[u,(6) - u,(8)1/[t(6) - t(4)]
= 32,(8) + 2,(6)1 - 30(4)c? (4)aau /3%, (4)

. %p(ﬁ)cz(ﬁ)aiajaui/axj(ﬁ)

S APTNEIR VR AL . R i G e e et ey e e

{E.23)

(E.24)

It was noted in Appendix B that only three wave surface compatibil-

ity relations are independent. To obtain three independent relations,

1inear combinations of equations (E.21) to (E.24) and the nonchar-

acteristic relation, equation (E.16), are formed in such a manner as

to algebraically eliminate the cross derivative terms at the solution

point [i.e., terms zoiitaining 3u1/8xj(6)]. Subtracting equation (E.23)

from equation (E.21) yields
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[P(6) - P(NW/LE(6) - t(1)] - [P(6) - P(3)/[t(6) - t(3)]
+ 5lo(1)e(1) + o(6)c(6) o, u, (6) - v, (NI/Lt(6) - £(1)]
+ 51p(3)c(3) + p(6)c(6)Joylu;(6) - uy ()VTL(E) - £(3)]
= 508,000 + 0,(6)] - Ho(3) + 05(6)]

- %9(1)c2(1)8isjaui/axj(1) + %p(s)c2(3)eisjaui/axj(3) (E.25)

Subtracting equation (E.24) from equation (E.22) yields
[P(6) - P(2)1/[t(6) - t(2)] - [P(6) - P(4)1/(t(6) - t(4)]
+ 3lo(2)c(2) + p(6)c(6)18,[u(6) - u (2)V/[t(6) - t(2)]
+ %{9(4).:(4) + 9(6)C(6)]'Bi[u1. (6) - u;(4)1/[t(6) - t(a)]
= 30,(2) + 0,(6)] - Ho,(4) + ¢,(6)]
- (@) 20 0u,/9%,(2) + Jo(@)cB(@)aas0u;/3x,(4)  (E.26)

Adding equations (E.21) and (E.22) and subtracting equation (E.16) from

the sum yields
[P(6) - P(NI/[t(6) - £(1)] + [P(6) - P(2)V/[L(6) - £(2)]
- [P(6) - P(8))/Lt(6) - (5)]
+ 3e(1)e(1) + p(6)c(6)JaLu, (6) - u (NI/[t(6) ~ £(1)]

+ Ho(2)c(2) + 0(6)c(6)18,[u,(6) - u, (2)/[t(6) - t(2)]




1}

38, (1) + 2,(6)1 + 32, (2) + 0,(6)] - 2a(5) + o(5)]

+

%p(5)¢2(5)(a1.aj +8,8,)9u;/0%,(5) (E.27)

Equations (E.14)}, (E.15), (E.25), (E.26), and (E.27) are the five
finite difference equations which are used to solve for the flow

properties u(6), v(6}, w(6), P(6), and p(6). Since these equations are

nonlinear, an iterative scheme is required to ebtain the solution. On
the first outer iteration (the predictor), all of the flow properties
at point (6) appearing in the coefficients of the derivatives in the
above set of equations are set equal to the respective properties at
point (5}). This produces a system of simultaneous linear equations
which is solved using a Gaussian elimination method with complete
pivoting (40}. On ensuing corrector applications (outer iterations),
previously computed values for the flow properties at peint (6) are
empleyed in the scheme. This method is similar to the Euler predictor-
corrector algorithm used ic obtain the solution for initial-value

probiems for ordinary differential equations, and can be shown to have

S S

second-order accuracy either by direct numerical calculation ( 9) or

by substituting an exact selution inte the difference equations and
expanding the resulting terms in a Taylor series and thereby determining
the truncation error. The iterative scheme is terminated when all five
flow properties at peint (6) have converged to within specified teler-

ances.
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5. SOLID BOUNDARY POINT UNIT PROCESS

Figure E.2 is a depiction of the computational network used in
determining the solution for a typical point on a solid boundary. The
point notation used in Figure E.2 is the same as that used in Figure
E.1 (interior point scheme). In this unit process, however, point (4},
corresponaing to the bicharacteristic with ¢ = 3n/2, falls outside of
the flow field and cannet be employed. Furthermore, the streamline
paints (5) and (6) 1ie on the stream surface formed by the solid boun-
dary. The formulations used for representing the solid boundaries
are presented in Appendix D.

The boundary condition used in this unit process is simply that
the flow be tangent to the surface of the boundary at the solution
point, point (6) in Figure E.2. Let Ny {i=1,2,3) denote the x, y,
and z components, respectively, of the outward unit normal to the solid
boundary surface. Then, the flow tangency boundary condition may be

written as

The solid boundary point unit process is virtuaily identical to
the interior point unit process, extept that the wave surface compati-
biTiiy zguation valid along the bicharacteristic corresponding to 6 =
3w2 is not employed. That equation is replaced by equation (E.2B).
Thus, the system of compatibility equations used for determining the
sclution at a solid boundary point consists of equations (E.14), (E.15),
(E.25), {E.27), and (E.28). This system of equations is selved using
the same iterative scheme that was employed in the interior point

solution.
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The location of the selution peint, point (6) in Figure E.2, ob-
tained by applying the finite difference form of the streamline equa-
tion, equation (E.12), is adjusted along the projection of the body
normal in the solution plane so that the solution point lies on the
solid boundary. The orientation of the parametric unit vectors oy and

By

by employing the orthonermal relations between o Bi’ and ui/q. This

is selected such that By = = Ny (i=1,2,3), and o (i=1,2,3) is found

selection for the reference vector set produces a computational network
in which the bicharacteristics corresponding to 6 = 0, n/2, and 7
intersect the initial-value plane for convex boundaries. For cencave
boundaries, those bicharacteristics intersect an extrapolation of the
initial-value plane (the required extrapolation is assumed to have an
error third-order in step size). The bicharacteristics corresponding
to 6 = 0 and v lie in the elemental plane which is tangent to the solid

boundary at point (6).

6. BOW SHOCK WAVE POINT UNIT PROCESS

A depiction of the computational network used in determining the
solution for a typical bow shock wave point is given in Figure E.3. A
segment of the shock wave surface extending from the initial-value plane
to the solution plane is shown in this figure. The space curve (A} is
defined by the intersection of the shock wave with the initial-value
plane, whereas, space curve (B) is defined by the intersection of the
shock wave with the selution plane. The axial distance between the
initial-value plane and the solution plane is determined by the appli-
cation of the CFL stability criterien.

The bow shock wave solution point is denoted by point (2) in

Figure E.3. The flow propertics upstream of the shock wave are known

-y
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a priori. Hence, in the following discussion, the flow properties u(2),
v(2), w(2), P(2), and p(2) refer to the properties at point (2) down-
stream of the shock wave. Point (1) is the intersection point of a
rearward-running bicharacteristic with the initial -value plane. This
bicharacteristic is extended backward from the solution peint. Point
(3) is an interior point in the solution plane which is used to define
the meridional plane in which the shock wave solution peint lies. Point
(4) is the intersection point of space curve (A) with the meridional
plane which passes through peints (2) and (3).

In this unit process, a lecal cartesian coordinate system is
employed for the description of the orientation of the local shock wave
surface. This local coordinate system has coordinates x', y', and 2',
where x' is coincident with the x-axis, y' is in the radial direction
corresponding te the meridional plane which subtends an angle 6 with the
(x,y)-planesand z' is normal te the(x',y')-plane (see Figure E.3). The
unit vectors in the x, y, and z directions are denoted by ;, 3, and E,
respectively, whereas, the unit vectors in the x', v', and 2' directions
are denoted by ?', 3', and E', respectively. A vector guantity A may be

represented in these coordinate systems by
A= Ax1 + AyJ + Azk {(E.29)
A= Ax;i' + Ay,j' + Az.k' (E.30)

The relationships between the respective components in equations (E.29)

and (£.30) are given by

A, = A (E.31)




AR e e et L e e A

A, = Aycese + Azsine (E.32)

Yy

A, = Acoso - Aysine (E.33)
A, = A (E.34)
Ay = Ay.cese - Az.sine (E.35)
Az = Az.cose + Ay.sine (E.36)

The orientation of the local shock wave surface is specified by
a set of unit vectors referenced to the (x',y',z')-system. This set of
unit vectors, illustrated in Figure E.4, consists of a unit vector ;s
which is nermal to the shock wave surface and two unit vectors 2 and %
which are tangent to this surface. The tangential unit vector § lies
in the meridional plane [(x',y')-plane], subtends an angle ¢ with the
x'-axis, and is defined by the intersection of the shock wave with the
meridional plane at point (P). The tangential unit vector E lies in
the transverse plane {{y’.z')-plane], subtends an angle o with the
z'-axis, and is defined by the intersection of the shock wave with the
transverse plane at point (P). The tangential vectors t and E are

therefore given by

t cosd i +sing 3' (E.37)

sina 3' + cosa Q' (E.38)

kl

3
The shock wave normal unit vector, dencted by ngs is given by

n = L% /]2 x t (E.39)
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The interior point and solid boundary point unit processes achieve
second-order accuracy by using local iteration. In lecal iteration,
a corrector application employs previously determined flow property
values at the solution point, but does not require using flow property
values at other peints in the solution plane. The shock wave point
unit process, however, requires that global iteration be performed in
order to achieve second-order accuracy. In global iteration, a cor-
rector application employs previously determined flow property values
not only at the solution point, but alse at neighboring points in the
solution plane. As a consequence, before a corrector application in
glebal iteration can be performed, the entire solution plane {or at
least an appropriate section of it) must be determined by a prior
calculation. In practice, since the interior point and solid boundary
point schemes require local iteration enly, the interior peint and
solid boundary points are computed first. Then, a prediction for each
shock wave solution point is made, thereby giving a tentative solutien
for all of the shock wave points. Then, a global iteration is con-
ducted for the shock wave solution points using the previously de-
termined field points in the soiution plane. In the follewing discus-
sion, the term "predictor" will refer to the first appiication of the
shock wave point unit process used to obtain an initial estimate of the
solution without using field point data in the solution plane. The
term "global corrector" will refer to the application of the shock wave
point unit process which uses field point data in the solution plane.

The shock wave point unit process is now outlined.
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The shock wave point unit process is initiated by locating the
solution point, point (2) in Figure E.3. The meridional plane in which
the solution point lies is arbitrarily selected to contain point (3).
Point (3) is the interior solution point adjacent to the shock wave sur-
face whose Tocation is determined prier to the application of the shock
wave point unit process. The angle subtended by a meridiornal plane

and the (x,y)-plane is denoted by 8. Then
8(2) = 8(3) = tan” '[2(3)/y(3)] (E.40)

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from
r(2) = r(8) + [x(2) - (9] tan {}e(2) * 6]} (E.a1)

where [x(2) - x{4)] is the axial! distance between the initial-value
plane and the solution plane and is determined by the CFL stability
criterion. On the first application of equatien (E.41), the shock wave
angle ¢{2) is equated to ¢(4), whereas, on ensuing applications, the
previously determined value of ¢(2) is used. At point (4), the radial
position r{4) and shock wave angle ¢{4) are determined by interpolation

using the quadratic univariate formulae

2

r{e) = ay + 2,0 + as0 (E.42)

o (E.43)

o(e) = b, + by8 + by

In equations (E.42) and (E.43), the coefficients a, (i=1,2,3) and b,
(i=1,2,3) are determined by fitting these expressions to three local

shock wave solution points on space curve (A) as described in Appendix C.




For the case of axisymmetric flow, or on a plane of flow symmetry in
three-dimensional flow, point (4) ceincides with a previously determined
shock wave solution point so the interpolation would not be required.

In general, however, point (4) does not ceincide with a known point

so the interpolation is necessary.

After the solutien point has been located, the shock wave noermail
unit vector ﬁs at the solution point is found by forming the normalized
cross product of the tangential unit vectors E and % [see equation
(E.39)]. The tangential vector E is obtained by usi:j the current
value of ¢(2) in equation (E.37). The tangential vector % is obtained
by using the current value of «(2) in equation (E.38). For either
space curve (A) or space curve (B), the value of a(2) may be obtained

from

! d‘”] (E.44)

3\ - ~1 (1 dr

6(2}

For a predictor application, the analytical form of r(8) used in equa-
tion (E.44) is given by equation (E.42) applied along space curve (A),
whereas, for a global corrector applicatien, r(6) is obtained from
equation (E.42) applied along space curve (B}.

After the shock wave normal unit vector has been determined, the
local Hugoniot equations may be applied across the shock wave, thereby
yielding a solution for the flow properties u{2), v(2), w(2}, P(2}, and
p{2). In general, the local Hugoniot equations take the form (5)

~ ~

Punu = PaVnd (E.45)
ol ul
Put ouVou T Pa ¥ eging (E.46)
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-~

Viu = Veq (E.47)
V= Vo (E.48)
h + /2 = h, + go/2 (E.49)
u u d d '

h = h(P,p) (£.50)

In equations (E.45) to (E.50), h is the enthalpy per unit mass, q is the

2 2

velocity magnitude (q2 =4 + v o+ wz),in is the velocity component in

—~

the -ng direction, V_ is the velocity component in the t direction, vz

t
is the velocity compenent in the E direction, and the subscripts u and
d denote the properties on the upstream and downstream sides of the
shock wave, repsectively. Equations (E.45) to {E.50) are solved simul-
taneously for the downstream flow properties. To obtain the velocity

e

components vnu’ vV, , and Vzu’ the upstream velocity vector is first

tu
transformed from the (x,y,z)-system te the (x',y',z')-system using
equations (E.31) to (E.33), after which the appropriate dot products
are formed with -RS, E, and E. Similarly, the downstream velocity
components Gnd, th, and ggd are transformed back to the (x,y,z)-system
after the local Hugoniot equations have been applied.

In the computer program, the local Hugeniot equations are contained
in a separate subroutine. The assumed thermodynamic medel is that of
a thermally and calerically perfect gas. Other thermodynamic models
may be used by suitably modifying the existing subroutine or replacing
it. For the assumed model of a thermally and calerically perfect gas,

the pressure ratio across the shock wave is given by
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Pa_ 2y 2 _v-1 _
P,y FT Ty (€.51)

where Mnu is the incident normal Mach number giVen by

-

Mnu = Vnu/au (E.52)

and vy is the specific heat ratioe. Using the result of eguatien (E.51),

the density ratio across the shock wave is given by

(v + Dy = 1) + (2 /P) -
TF 67 ¥ /T = IP,/P,) (E.53)

Qd
pu

{ With the downstream pressure and density determined, the downstream
nermal velocity cemponent Vnd may be obtained from equation {E.46), and

the tangential downstream velocity components th and ng may be com-

puted from equations (E.A7) and (E.48). Transformation of the down-
stream velocity components back inte the (x,y,z)-system yields the
required flow properties at the selution point,

At this stage, a rearward-running bicharacteristic is extended from
the solution peint, point (2}, back to the initia?-valué plane, inter-
secting this plane at point (1), as illustrated in Figure E.3. This

is accomplished by employing the following finite difference form of

equation (£.4) evaluated for the parametric angle ¢ = w/2,
_ ]
x(2) = % (1) = 7 {Lu; (1) + 0 (2)]
+Le() + @5t - ¢ (141.2,3) (E.50)

As in the interior point and solid boundary point schemes, an inner

iteration is performed te locate point (1). On the first application
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of equation (E.54), the flew properties at point (1) are equated to
those at peint (2), whereas, on ensuing applications, previously ob-
tained values of the flow properties at point (1) are used. The flow
property values at point (1) are found by employing the bivariate inter-

polation polynomial given by egquation (E.11). The ceefficients in

equation {E.11) are obtained by a least squares fit of nine data

points in the initial-value plane using & boundary-type stencil as
described in Appendi £

Equation (E.54) is first applied for i=1 (i.e., the x-coordinate
direction}. Since the axial step [x(2) - x{1)] is known from the
application of the CFL stability criterion, the time parameter
{t(2) - t(1)] may be determined. Then, equation (E.54) is applied for

i=2 and i=3 to determine y(1) and z(1). For axisymmetirc flow, or for

a plane of flow symmetry in three-dimensional flow, point {i) lies in

the meridional pliane which ccntains points (2) and (3). In general,

hewever, for other flow situations, peint (1) lies outside of this

plane.
The orientation of the parametric unit vector B, in equation (F.54)

is arbitrarily selected such that

B4/B, = tan(8(2)] (E.55)

This relation, in conjunction with the orthonormality conditions

Biui(zj =0 (E.56)

B.B. =1

i (E.57)

allows the values of B, (i=1,2,3) to be determined. Since equation
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(E.57) is a gquadratic equation, a multiplicity of roots exist for the
B; (i=1,2,3). The roots are chosen such that point (1) Ties under-
neath the shock wave in the initial-vilue plane. Once the values of

B; (i=1,2,3) are determined, the values of o (i=1,2,3) are found

through use of the orthogonality relation between Gy s Bi’ and ui/q
(i.e., @ = 8 x V/q). !
After the position of and the flow properties at point (1) have

z
computed at peint (1) as described in Appendix G, Approximations for

been determined, the transpert forcing functions Fx’ Fy, F_, and Fe are

the transport fercing functions are also made at point (2) at this !

time as described in Appendix G. |
At this stage, the wave surface cempatibility equation correspond-

ing to the parametric angle ¢ = w/2 is applied between peints (1) and i

(2). From equation (E.6), the appropriate equation is

du, U,
dP i o2 i .
at P PeBy g T 2 T POy 7y (E.58)

where ¢T/2 is obtained from equation (E.7) for the parametric angle 6 =
/2. Writing equation (E.58) im finite difference form, solving for
the pressure at peoint (2), and denoting this pressure by P*(2), the

following equation is obtained.

T AR AR RS DG S X st a3 g s 3 A cwa s

Pe(2) = P(1) + 5o (1) + oo (2)1[t(2) - £(1)]

- Ho(f (Majaau /0%, (1)

+ p(2)c% (2 gou;/0x; (2)J[1(2) - (1))
- o) + p(2)e(2)Ie;u;(2) - uy(1)] (.59)

1 1
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Note that the cross-derivative terms [auilaxj(k)] in equation
(E.59) appear at both peint (1) in the initial-value plane and at
point (2) in the solution plane. In general, these terms can be
evaluated by employing equation (E.11) fit to nine data points in the
appropriate pilane, differentiating this expression analytically to ob-
tain partial derivatives with respect to y and z, and then using the
governing partial differential equations to obtain the required partial
derivatives with respect to x. On the predictor application of the
shock wave point unit process, the flow property field in the sclution
pling is not known, so the cross-derivatives at point {2) are set equal
to those at point {1). On a global corrector application of the
shock wave peint unit process, the cross deriatives at point (2) are
evaluated in the manner just described.

The pressure P(2) is calculated from the local Hugoniot equations.
The pressure P*(2)} is calculated irom equation {(E.59). The difference
between P(2) and P*{2) is driven to within a specified tolerance of
zero by employing a one-dimensional secant iteration scheme which
iterates on the shock wave angle ¢(2). Two initial estimates of ¢{2)

are rerquired to initiate the subiteration.

The shock wave point unit process is first applied as a predictor
for each shock wave solution poeint. In this application, the value of
a used in equation {E.38) is obtained by curve fitting points along
space curve (A), and the cross-derivative terms at the shock wave solu-

tion point are equated to those terms at the bicharacteristic base

————. . TV 1 A
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point in the initial-value pliare, point (1). After a tentative solution
is obtained for all of the shock wave points, a number of global cor-
rector applications are performed. Here, the value of o used in equa-
tion (E.38) is based on data along space curve {B), and the cross-
derivative terms at the shock wave sclution peint are evaluated at that

point. The resulting overalil scheme has second-erder accuracy when

the global correction is performed. The global iteration is terminated
when successive values of .. have converged at each of the shock wave
solution peints.

In the course of the program develcpment, an alternative algorithm
to the one just presented was devised in an attempt to compute the bow
shock wave solution points. In this alternative scheme, a myltiplicity
of bicharacteristics were used, and, like the interior point cor solid
boundary point unif processes, linear combinations of the wave surface
compatibility equations were formed a5 to aigebraically eliminate the
cross-derivative terms at the spolution peint. A two-dimensional
Newton-Raphson method was devised for determining the angles & and «

; explicitly, and second-order accuracy was achieved without resorting to
global correction. This schéme was successful in computing axisymmetric
flows. but an apparent instability arouse wher attempting to compute

three-dimensional flow fields.

7. SOLID BODY-SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used” to determine
the flow properties downstream of the shock wave at a point where the
shock wave intersects a solid boundary. This unit process is used to

determine the solutien for the peints on the cowl! on the downstream side
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of the cowl lip shock wave, and for the peints on the centerbody or cowl
on the downstream side of an internal reflected shock wave. The method
of computation is essentially the same for either application and is
discussed below. The selution points on the downstream side of the
incident shock wave at an internal sheck wave reflection are computed
using the field-shock wave point unit process which is presented later.

A depiction of the computational network used in the solid body-
shaock wave point unit process is presented in Figure E.5. A typical
solid body-shock wave solution point is denoted by point (P) in this
figure. At point (P), the outward unit normal vector to the solid
boundary is denoted by Bb. The locus of selid body-shock wave solution
points represents the intersection of the shock wave with the solid
boundary, and defines space curve (A) in Figure E.5. The intersection
of the shock wave with the neridional plane passing through point (P)
is denoted by space curve (B). The tangential unit vectors to space
curves (A) and (B) at point (P) are dencted by £ and E, respectively.
The unit normal vector to the shock wave at point (P} is denoted by

-

n,.

As was done for the bow shock wave point unit process, the rait
vectors i, i, and ;s are referenced to a local cartesian coordinate
system {x',y',2'), where again x' is coincident with the x-axis, y' is
in the radial dirsction aleng the meridian which subtends the angle '
with the {x,y)-plane, and z' is normal to the (x',y'}-plane. The rela-
tions between the components of a vector in the (x,y,z;-system and in
the (x',y'.z')-syster are given by equations (E.31) to (E.36). As in

ihe bow shock wave point unit process, the tangential unit vector t lies
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in the meridional plane [(x',y')-plane] and subtends the angle ¢ with

the x'-axis. Hence,
t= coS¢ i+ sing 3' (E.60)

Unlike the bow shock wave point unit process, however, the tangential
unit vector £ does not, in general, lie in the transverse plane
[(y',z')-plane], but rather it may have a nonzero x'-component. This

tangential vector along space curve (A) may be represented by

g = X 5, dy' 5, dz g, (£.61)
where ds is the differential arc length given by

(ds)? = (dx*)% + (dy*)? + (dz')? (E.62)

The derivatives in equation (E.61) are obtained by analytically

differentiating the expressions

2

x'(e) = a; + a0 ¢+ a3e {E.63)
. . 2

y'(g) = b1 + bz-@ + bae (E.64)
' _ 2

z'(8) = Cp + C0 + cqf {E.65)

In equations (E.63) to (E.65), the coefficionts a;s bi’ and ¢
(i=1,2,3) are obtained by fitting the respective expressions to three
points on space curve (A) as described in Appendix C. For the cowl lip
shock wave poi..cs, space curve {A) is defined by the cowl lip itself
since the shock wave is assumed to be attached to the cowl lip. In

this case, the x'-component in equation (E.61) is identically zero,



and, as a consequence, E lies in the transverse plane. Furthermore, if
the cowl is axisymmetric, the y'-component is also identically zero.
Alternatively, for computing the downstream properties at a reflected
internal shock wave, space curve (A) is defined by the intersection
of the incident shock wave with the solid boundary. Except for an axi-
symmetric flow field, or for a point on a plane of flow symmetry in
three-dimensional flow, the x'-component in equation (E.61) is nonzero.
With the tangential unit vectors detgrmined, the shock wave normal unit
vector ;s is obtained from equatton'(E.BQ).

The solid body-shock wave point unit process is initiated by

determining the body normal unit vector ; and the tangential unit

b
vector E at point (P), expressing both of these vectors in the
(x',y',z"')-system. Then, an initial estimate is made for the value of

¢ in equation (E.60), and, by use of equation (E.39), the shock wave
normal unit vector is obtained. In exactly the same manner as was done
in the bow shock wave point unit process, the downstream flow properties
at point (P} are computed by use of equa .ons (E.45) to (E.53). At

this stage, the velocity normal to the body an at point (P) is computed

from the equation

v + y! y (E.66)

nb ~ Yd"bx' t Vd"by' t ¥d"bz

where u&, v&, and w, are the downstream velocity components at point

(P), and n ,» and n__, are the components of the body normal unit

bx*’ "by bz
vector, both vectors being expressed in terms of the (x',y',z')
coordinates. The body normal velocity an is reduced to within a
specified tolerance of zero by varying the angle ¢ using a cne-

dimensional secant iteration procedure. Two initial estimates of ¢ are
181
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required for starting the iterative procedure. Once convergence has
been obtained, the downstream velocity components are transformed back
into the (x,y,z)-coordinates using equations (E.34) to (E.36).

In the course of the program development, an alternative algorithm
to the one just presented was devised to compute the solid body-shock
wave points. That algorithm determined the shock normal vector (and
thereby the downstream properties) by employing the shock wave rela-
tions which link the flow turning angle and the shock wave angle, both
these angles being measured from the approach streamiine direction in
a plane defined by the approach velocity vector and the shock wave
normal vector. Since the shock wave normal vector is required to de-
fine this plane, an iterative procedure for determining that vector is
required in this method. This method was tested and produced results
identical to the method described earlier. However, due to the greater
complexity of the alternate method, it was not selected for use in the

final algorithm.

8. SHOCK-MODIFIED INTERIOR POINT UNIT PROCESSES

In some situations during the computation of the internal flow,
the interior point unit process must be applied in a modified form.
One such application is illustrated in Figure £.6. In this situation,
the Mach cone, with anex at the solution peint, intersects not only the
initial-value plane but also a solid boundary and an internal shock
wave. The point notation used in Figure E.6 is the same as that used
in the computational network of the basic interior point scheme, which

is illustrated in Figure E.1. The solution point, denoted by point (6)

mpepanrey e mm——
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in Figure E.6, 1ies on the current solutien plane. Point (5) represents
the streamline base point on the initial-value plane. As in the basic
interior point unit process, points (1) to (4) represent the bichar-
acteristic base points. Point (1), in this case, lies on the surface
of the internal shock wave, and point (3) lies on the solid boundary.
Points (2) and (4) lie on the initial-value plane.

The axial distance between the initial-value plane and the solu-
tion plane is determined by either the CFL stability criterion or by
the special constraints which apply when an internal shock wave inter-
sects a solid boundary. Those procedures are discussed in Appendix F.
In either case, the axial step is determined prior to the application
of the unit processes.

In the overall algorithm for the computation of the internal flow,
the order of integration is selected so that the shock wave soelution
points and the body solution points are determined before any attempt
is made to obtain the solutien at any of the interior field points
which lie in the flow field sector that is downstream of the shock wave.
As a consequence, the flow property fields on the downstream side of
the shock wave and on the stream surface formed by the solid boundary
are determined before the selution at an interior point, such as
point (6) in Figure E.6, is attempted.

The procedure used to obtain the solution at point (6) in Figure
E.6 is almost identical te the basic interior point unit process, which
is presented in Section 4 of this appendix. The major difference be-
tween the two algorithms is that, in the present case, the bicharacter-

istic intersection points on the shock wave {point (1}] and on the
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solid boundary [point (3)] must be determined in addition to those bi-
characteristic intersection points [peints (2) and (4)] on the initial-
value plane. Along with the location of these points, flow property
values and first partial derivatives of the flow properties at these
points must alse be obtained.

As in the basic interior peint unit process, flow property values
at points (2) and (4) on the initial-value plane are obtained using
the bivariate interpolation polynomial given by equation (E.11). The
coafficients in this equation are determined by a least squares fit of
nine data points in the initial-value plane as discussed in Appendix C.
Flow property values at peint {1) on the sheck wave surface or at
point (3) on the selid boundary surface are obtained using the tri-

variate interpolation poelynomial

- 2 2
f{x,y,z)} = ay tagy tagztayz tagy ¢+ a2

+agxy + agxz (E.67)

The coefficients a, (i=1 to 8) in equation (E.67) are determined by a
least squares fit of fourteen data points on either the downstream side
of the shock wave for interpelation on that surface, or on the solid
boundary for interpelation on that surface. The detailed implementa-
tion of equation (E.67) is presented in Appendix C.

An outline of the unit process used to determine the solution at
point (6) in Figure E.6 is now presented. The computation is initiated
by determining the location of the solution point, peint {6), using
equation (E.12) in a manner identical to the procedure employed in the

basic interier point unit process. After the position of the selution
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point has been obtained for a given outer iteration, the four bi-
characteristics, corresponding to the values of the parametric angle

8 =0, n/2, n, and 3n/2 in equation (E.13), are extended rearward from
the solution point to the initial-value plane. From the bicharacteris-
tic-initial-value plane intersectien peint coerdinates, denoted by
y*(k) and z*(k) (k=1 to 4), the radius r*(k} = [y*(k)% + z*(k)?1"/2 and
the polar angle 8*(k) = tan-1[z*(k)/y*(k)] of each intersection point
are computed. The radius r*(k) is then compared to the shock wave
radius rs and the body radius Ty in the meridional plane defined by the
polar angle 8*{k). The sheck wave radius is determined from the uni-

variate interpolation polynomial
r (8) = a + a8+ al (E.68)
S 1 2 3 :

where the coefficients a, (i=1,2,3) are determined by fitting this ex-
pression to three shock wave solution points in the initial-value plane
as described in Appendix C. The solid bedy radius o is obtained by
employing the formulations presented in Appendix D. For the orientation
shown in Figure E.6, if r_ < r*(k) < r,» the bicharacteri:*ic inter-
sects the initial-value plane and the analysis proceeds as in the basic
interior point unit process. If r*{k) < Fos the bicharacteristic
intersects the internal shock wave. In this case, the bicharacteristic
base point lecation on the surface of the shock wave is found by
employing the bicharacteristic-surface intersection scheme presented in
Appendix D. For a shock wave intersection, that scheme requires that
equation (E.68) also be fitted to three shock wave solution points in

the current solution plane. If r*(k) > "y the bicharacteristic
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intersects the solid boundary. The bicharacteristic base point loca-
tion on the solid boundary is alse obtained by using the iterative
scheme presented in Appendix 0. As in the basic interior point unit
process, an inner iteiration is performed for locating poeints (1) to (4).
Interpolated values of the flow properties at the respective points

are obtained by using either equation (E.11) or equation (E.67),
whichever is applicable.

After the bicharacteristic base points, points (1) te (4), have
been located, the first partial derivatives of the flow properties
with respect to y and z at these points are obtained by analytically
differentiating the appropriate interpelation polynomial. In a like
manner, these derivatives are also obtained at the streamline base
point, peint (5). Then, using the governing partial differential
equations, the x-partial derivatives of the flow properties are found

at points (1) to {5). For any bicharacteristic which intersects the

shock wave or the solid boundary, the time parameter [t(6) - t(k)] is
found using equation (E.13) applied for i=1 {i.e., the x-coordinate
direction) while employing the appropriate intersection coordinates.
At this stage, the system of compatibility eguations may be solved
for the flew properties at peint (6) in a manner identical to that
empleyed in the basic interior point scheme.

The situaticn illustrated in Figure E.6 is quite general. In some
instances, there are no bicharacteristic intersections with the solid
boundary. Alternatively, there may be no intersections of the bi-
characteristics with the internal shock wave. There may be two bichar-

acteristics intersecting with the shock wave, etc.
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; Another situation in which the interior point unit process must
 '§ be applied in a modified form is illustrated in Figure E.7. In this
figure, the Mach cone, with apex at the solution point, intersects

; both the initial-value plane and the internal shock wave. The point

| notation used in Figure E.7 is the same as that used in Figure E.6.
However, in this case, the streamline base poeint, point (5), does not
1ie on the initiai-value plane, but rather lies en the surface of

é S the internal shock wave.

E_? The location of the streamline base point is obtained by extending
| the streamline from the initial-value plane to the surface of the shock
wave. The point of intersection of the streamline with the shock wave
is determined by employing the iterative scheme which is presented in

| Appendix D for finding a streamline-surface intersection point. That

‘ procedure requires that equation (E.68) be applied to three known

shock wave solution points in the initial-value plane and three shock
wave solution points in the current soclution plane. Furthermore,
interpolated values of the velocity components are required on the up-

stream side of the shock wave at the point where the streamline inter-

sects the shock wave. For this purpese, the following linear tri-

variate interpolation polynomial is employed.
flX,y,z) = ay + a,x + agy + 2,2 (E.69)

The coefficients a; (i=1 to 4) in equation (E.69) are determined
by fitting this expression to four data points on the upstream side
of the shock wave, as discussed in Appendix C.

After the streamline-shock wave intersection point has been de-

termined, the following fraction is formed
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€ = [xs - x(S)]/(xS - xI) (E.70)

where X1 and Xg are tue axial positiens of the initial-value plane

and the solution plane, respectively. If ¢ is greater than a specified
minimum value, an interior point unit process is performed on the
downstream side of the shock wave. This unit process is almost iden~
tical te that used for determining the selution at point (6) in

Figure £.6. In this case, however, the streamline formula given by
equation (E.12) is applied between the streamline-shock wave inter-
section point and the solution plane. Inte:polated flow property
values at point {5) are Zotermined by applying equation (E.67) to four-
teen data poeints on the downstream side of the shock wave.

If, on the other hand, ¢ is less than the specified minimum value,
an interior point unit process on the downstream side of the shock wave
is not performed. Instead, the streamline from peint (5) is projected
onto the selution plane, and the flow properties at the solution peint
are determined by interpolation in the selution plane. The streamline
integration from point (5) to point (6) employs equation (£.12). The
flow property values at point (5) are obtained from equation (E.67)
applied to fourteen data points on the doewnstream side of the shock
wave, Flow property values at the streamline-sclution plane inter-

section point are determined from the linear bivariate polynomial
fly,2z) = a) + a5y + agz (E.71)

The coefficients a, (i=1,2,3) in equation (E.71) are determined by
fitting this expression to three data peints in the current solution

plane, as described in Appendix C. The order of integration for
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determining the internal flow field is specified so that the downstream
shock wave points and outer interior points in the dewnstream flow
field sector are determined first. Tke locatien of the solution peint,
jn this case, is determined by an iterative leop which is terminated
when the y and z coordinates of the projected solution point have

converged.

9. SHOCK-MODIFIED SOLID BOUNDARY POINT UNIT PROCESSES

In some situations, the solid boundary poeint unit procsss must
be applied in a modified form. One such application is illustrated in
Figure E.8. In this situation, a portion of the Mach cone, with apex
at the solid body selution point, intersects both the initial-value
plane and the internal shock wave. The peint notation used in Figure
E.8 is identical to that used in Figure E.2, which depicts the computa-
tional network for the standard bedy point unit process. The unit
process employed in the present case is almost identical to the standard
body point unit process. In the present case, however, the bichar-
acteristic-shock wave intersection is handled in a manner identical to
that employed in the shock-modified interior peint unit process pre-
sented in the previous section.

In some situatiens, the entire Mach cone intersects the shock wave,
as illustrated in Figure E.9. This situation occurs at a bedy point
on the solution piane that is immediately downstream of a solid body-
<hock wave reflection, or at a body point on the solution plane that is
immediately behind the shock wave emanating from the cowl Tip. In the
former case, the shock wave-solid body intersection is a space curve

in three-dimensions, whereas, in the latter case, the shock wave-solid

191




—t
w
™

INITIAL-VALUE PLANE

INTERNAL
SHOCK WAVE

SOLID BOUNDARY

SOLUTION PGCIiNT (6)

FIGURE £.8. SHOCK-MODIFIED SOLID BOUNDARY POINT

COMPUTATIONAL NETWORK (TYPICAL APPLICATION)



R

€61

—1 INITIAL-VALUE PLANE
|
|
|
|
2) | REFLECTED INTERNAL
] SHOCK WAVE
L = - \
- - |
= — - — e —
f— _(_:_ W)
—
" SOLID BOUNDARY
- "5')‘ ~ N\
NG A\
M N
.,
\\
INCIDENT ~
INTERNAL SOLUTION POINT {6)
SHOCK WAVE

FIGURE E.9. SHOCK-MODIFIED SOLID BOUNDARY POINT

COMPUTATIONAL NETWORK (POST SHOCK
REFLECTION APPLICATION)

o e e b,

o B f e Gl B TGy




194

. . )
e ‘ s AR S AT Ak Tarhiy s Wi A, SNt | ey 1 e P N cat - ——

body intersection is a curve in a plane of constant x. The appropriate
intersection algorithm is used as presented in Appendix D, and for the
most part, procedures identical to those employed in the shock-

modified interior point unit process are employed in this case.

10. INTERNAL FLOW FIELD-SHOCK WAVE POINT UNIT PROCESSES

Figure E.10 illustrates the overall computational network used in
determining the solution for a typical shock wave point in the internal
flow field. To determine the solution at the shock wave point, an
interior point unit process must be performed to obtain the upstream
flow properties at the location of the shock wave selution point.
Figure E.10 illustrates beth the computational network for the interior
point unit process {denoted by primed numbers), and the computational
network for the standard shock wave point unit process (denoted by
unprimed numbers). The point notations employed in these computatianal
networks are identical to those used in the corresponding standard
unit processes.

The computational procedure employed for determining the solution
for an internal flow field-shock wave point is almost identical to the
bow shock wave point unit process. The major difference between the
two procedures is that for an internal flow shock wave point, the up-
stream flow properties at the sclution point are obtained from an
interior point computatioen, rather than using free-stream data as in
the bow shock wave point unit process. The required interior point
unit process is essentially the same as the basic interior point unit
process presented in Section 4 of this appendix. In the present case,

however, the streamline is not extended froma field point in the
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initial-value plane to the selution plane, but rather it is extended
from the shock wave solution point back to the initial-value plane.
The position of the shock wave solution point is determined by the
shock wave point unit process. To initiate the interior point computa-
tion in the present case, fiow property values are used from an
adjacent field point in the flow field sector that is upstream of the
shock wave in the solution plane. This modified interior point unit
process requires searching the flow field sector upstream of the shock
wave in the initial-value plane for the field point that is closest
to the streamline-initial-value plane intersection point. This point
is then used as the base point for the stencil of initial-value plane
field points that are used in formulating the bivariate interpolation
polynomial given by equation (E.11) (see Appendix C).

For the first selution plane inside the inlet, the downstream
bicharacteristic base point, paint (1) in Figure E.11, does nat lie
on the initial-value plane, but rather is located on the stream sur-
face formed by the cowl boundary. Te compute the pressure at point (2)
from the wave surface compatibility relation, equation (E.59), the
flow property values must be available at point (1), which requires
that the flow property field must be known on the cowl surface. The
body points on the cowl surface at the first internal flow solution
plane, however, must be obtained from the unit process described in
Section 9 of this appendix. That unit process requires that the
flow property field on the downstream side of the shock wave be known.
Hence, a simultaneous solid bady point-shock wave point algorithm must

be employed. This procedure was not developed in the present
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investigation. Rather, the shock wave points on the first internal
flow solution plane are computed using a value of ¢ in equation (E.37)
equal to the value of ¢ at the shock wave point in the initial-value
plane which lies in the same meridional plane as the solution point.
This provides a solution at each shock wave peint on the first solu-
tion plane without employing the compatibility relation along the
bicharacteristic. The body points on the cowl are then comptited in the
manner outlined in Section 9. On ensuing solution planes, except for
the one immediately after a solid body-shock wave intersection, the
bicharacteristic base point is located and the angle ¢ is iterated

te convergence.

When the internal shock wave intersects a solid boundary, as 1illus-
trated in Figure £.12, a modification is required to the shock wave
point unit process. In this case, instead of performing an interior
point unit process to obtain the upstream flow properties at the solution
point, a modified solid boundary point unit process must be employed.
Moreover, the shock wave solution point, in this case, does not lie
on the solution plane, but rather its position must be obtained by
computing the intersection of the incident shock wave with the solid
boundary.

Finally, it should be noted that in order to achieve strict
second-order accuracy in the internal flow shock wave point solution,
global correction must be performed [this involves evaluating the
cross derivatives at the solution point and using updated values of a
in equation (£.38)]. Time constraints in the present investigation

did not permit the development of the global correction capability for
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the internal flow shock wave points. Hence, only local iteration can

be performed for those points. g
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APPENDIX F
OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

The overall numerical algorithm consists of the repetitive
application of the various unit processes to generate the global solu-
tion for given boundary conditions and a specified set of initial
data.

The boundary conditiens are represented by the farmulatiens pre-
sented in Appendix D. The initial data are specified on a space-like
plane of constant x. The x-coordinate axis is the lengitudinal axis of
the centerbody and the cowl. Moreover, the mean flow direction is
assumed to be in the x-coordinate direction.

An inverse marching scheme is employed in the overall numerical
algorithm, The selution is obtained on space-like planes of constant
x. The solution points on each plane represent the intersection
peints of continuous streamlines which are propagated from the data
points specified on the initial ~iue plane. In addition to the
streamline solution peints, are the solution points representing the
intersection of either the external or the internal shock wave with
the solution plane. For the internal flow, the solution is alse ob-
tained on the space curves which represent the intersection of the

internal sheck wave with the solid boundaries. These space curves

are defined by the locus of shock wave solution points.
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Except in the vicin®ty of a shock wave reflection with a solid
boundary, the axial (x) distance between successive solution planes
is determined by the application of the Courant-Friedrichs-Lewy
(CFL) stability criterion. In the vicinity of a shock wave intersec-
tion with a solid boundary, the axial step is contrelled by special
constraints which insure that the entire shock wave-solid boundary
intersection falls between twc adjacent solution planes.

After each solution plane is computed, the mass flow rate across
that plane is calculated using trapezoidal rule integration. Constancy
of the overall mass flow rate in the internal flow field computation
gives an indication of the overall accuracy of the numerical integra-
tion. The stagnation pressure and stagnation temperature are
calculated at each sclution point. For the adiabatic flow of a
calorically perfect gas, the stagnation temperature should remain
constant.

In the numerical anaiysis, the flow field is divided into two
regimes: the internal flow regime and the external flow regime, as
illustrated in Figure F.1. The flow field integration in each of these
two regimes is controlled by separate logic modules in the computer
program, Tne forebody flow field intzgration is performed first.
Then, the internal flow field is computed. The computer program
developed in the present investigation has the capability to perform
the internal flow field integration with or without the discrete
fitting of the internai shock wave system., The option in which sheck
waves are not discretely fitted might be employed if the internal
shock waves are of relatively weak strength, and thereby an acceptable

solution could be obtained by smearing the internal discontinuities.
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From a computation point of view, the internal flow field in
which shock waves are not discretely fitted is the easiest solution
to compute. For flow fields in which shock waves are discretely
fitted, the external flow about the forebody is less difficult to ob-
tain than the internal flow, since in the external flow the shock wave
represents a bound to the computational regime. Discrete fitting
of the shock wave throughout the computational regime, as is done in
the internal flow field integration, greatly complicates the numerical
algorithm.

In this appendix, the overall control logic used in each of the
three flow field integration options is discussed. Regulation of the
axial marching step size, generation of the initial-value surface
data, and considerations of flow symmetry are also discussed. All of
the unit processes referred to in this appendix are discussed in

Appendix E.

2. COURANT-FRIEDRICHS-LEWY (CFL) STABILITY CRITERION

Except in the vicinity of an internal shock wave-solid boundary
intersection, the axial marching step between successive solution
planes is determined by the application of the Courant-Friedrichs-Lewy
(CFL) stability criterion (9). The CFL stability criterion will be
satisfied at each solution point if the convex hull of the finite
difference network contains the differential zone of dependence of
the solution point. The convex hull of the finite difference network,
illustrated in Figure F.2, is defined by the outer periphery of
initfal-value plane field points used in determining the fit point

stencil for the quadratic bivariate interpolation polynomial. The
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differential zone of dependence, also illustrated in Figure F.2, is
the region defined by the intersection of the Mach :one (whose apex
is at the solution point) with the initial-value plane.

The maximum allowable marching step for each streamline is the
x-step for which the Mach cone just touches the convex hull. That

step size is given by

ax = W/ (e@)IT - (c/a)(a?u? - V2R (F.1)

where Ax is the maximum allowable axial step, u is the x-component

of the velocity, g is the velocity magnitude, and ¢ is given by

2

2
¢ = azq /(a? - a?)

(F.2)

where a is the local sonic speed. In equation {F.1), Rmin is the
distance from the streamline base point in the initial-value plane
to the nearest field point on the convex hull of the finite differ-
ence network (see Figure F.2).

Equation (F.1) is applied at every streamline solution point,
the actual marching step being selected as the Ax value at the most
restrictive peint. It should be noted that this expression is appiied
only to streamline points, the shock wave points being excluded.
Furthermore, in the internal flow field integration, the shock wave
points are ignored in defining the convex hull of the finite differ-

ence network when application of the stability criterion is made to

a streamline point.

N eits 4




3. INITIAL-VALUE PLANE

The initial data are specified on a plane of constant x. The
flow must be supersonic at every point on this plane. For uniqueness
and existence of a genuine solution, the values of the five dependent
variables (u, v, w, P, and p) prescribed on this surface must have
at least continuous first derivatives.

If the forebody flow field is to be determined, the initial-value
plane must be specified at an axial (x) station that is upstraam of

the forebody computational flow regime (see Figure F.1). The

solution is then found along the streamlines that pass through

the data points specified on the initial-value plane, although some
streamline addition and deletion are performed on the ensuing solu-
tion planes as described in Section 5 of this appendix.

1f only the internal flow field is to be determined, the initial-
value plane must be specified at the axial station which corresponds
to the x-position of the cow! lip {see Figure F.1). The cow! lip is
assumed to be contained in a plane of constant x. For the integration
of the internal flow field, a point redistribution is performed on

the initial-value plane. This point redistribution is required in

order to have streamlines which lie in the stream surface formed by
the cowl boundary. The solution is then found along the streamlines
that pass through the redistributed points on the plane at the cowl
1ip axial station.

The initial-value plane may be specified by the user, or if the
forebody is comical up to the axial station where the initial-value

plane is located, the flow property field on the initial-value plane
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can be generated internally in the computer program. The internally
generated initial-vslue plane is obtained by an approximate technique
which employs the Taylor-Maccoll solution for the flow about & circu-
lar cone at zero incidence. A superposition procedure is used to ob-
tain an approximation to the flow about a circular cone at nonzero
angle of attack by neglecting the cross flow effects. This superposi-
tion procedure effectively amounts to computing the flow turning
angie in the meridional plane of the given solution point, and then
abtaining the flow preperties at that peint by applying the Taylor-
Maccoll selution for a cone half-angle equal to the flow turning
angle. The shock wave angle is then measured from the original
streamline direction in the appropriate meridional plane. It must be
emphasized that this is only an approximate technique, giving the well
accepted Taylor-Maccoll solutien at zero incidence, but becoming
increasingly less accurate as the angle of attack is increased.

The solution obtained by Jones (33) for the flow about a circu-
lar cone at nonzero incidence has been well substantiated. Using a
conversion algorithm, the results of the computer program developed by
Jones can be made compatible with the input data required by the
computer program developed in the present investigation, Many of the
computed results presented in Section VI were obtained using the
results of Jones' program as initial data. For situations in which
the forebody is conical up to the axial station where the initial-
value plane is located, the Jones program is the recommended source

for the jnitial data.

-



If the forebody is not conical ahead of the axial station of the
initial-value plane, another source of initial data must be used.

If available, experimental data may be employed.

4. SOLUTION PLANE POINT NETWORK AND FLOW SYMMETRY

The computational point network is based on a series of circum-
ferential and radial stations. The point networks for the various
flow symmetry options are illustrated in Figure F.3. In this figure,
the index i corresponds te the ith circumferential station and the
index j corresponds to the jth radial station. In all cases, the
streamlines on the surface of the centerbody are denoted by j = 1.
For the forebody flow field, the bow shock wave solution points are
denoted by j = n. For the internal flow field, the streamlines on
the surface of the cowl are denoted by j = n. The computed sector,
in general, is bounded by the circumferential stations corresponding
toi=1andi=m This point arrangement produces a rectangular
logic array in the computer program.

The points at any circumferential station in axisymmetric flow,
or on a plane of flow symmetry in three-dimensional flow, lie on a
straight Tine. Mereover, for axisymmetric flow, the radial stations
correspond to circular rings. In general, however, the solution
points at a given circumferential station do not Tie on a ray, nor
do the radial stations correspond to circular rings.

For the internal flow option in which shock waves are discretely
fitted, the shock wave selution points are also represented in this
point arrangement. Special logic is used in the computer program

such that the shock wave solution points float in the storage arrays
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as the shock wave travels between the centerbody and cowl on successive
solution planes. On a given solution plane, the shock wave solution
points at adjacent circumferential stations do not, in general, have

to lie at the same radial station.

The computer program takes advantage of flow symmetry when it
exists in the flow field. In these instances, the entire solution
plane does not have to be computed, but rather only an appropriate
section of it. The remaining sections of the solution plane may be
obtained by reflection of the points in the computed sector. This
procedure yields a significant reduction in computer execution time.

The four flow symmetry options that have been incorporated into
the analysis are depicted in Figure F.3. Figure F.3(a) illustrates
the most general case when no flow symmetry is present. Figure F.3(b)
illustrates the case when one plane of flow symmetry is present. In
this case the computed sector is the haif-plane bounded by the
y-axis and containing the +z-axis. The integration region in this
case is bounded by the i = 1 circumferential station on the
+y-axis and by the i = m circumferential station on the -y-axis.

This case of flow symmetry is the one most likely to arise in the
class of problems being considered in this investigation. Figure
F.3{c) illustrates the case when two planes of flow symmetry are pre-
sent, This option would be used to compute the flow field about asym-
metric bodies at zero angle of attack. In this instance, the computed
sector is the quadrant bounded by the +y-axis and the +z-axis. The
circumferential station corresponding to i = 1 lies on the +y-axis

and the circumferential station corresponding to i = m 1ies on the



+z-axis. Finally, Figure F.3(d) iTlustrates the axisymmetric flow
option where the computed sector is limited to the single circumfer-
ential station (ray) lying on the +y-axis. This option would be used
to compute the flow field about axisymmetric bodies at zero angle of
attack.

The numerical algorithm does not apply special unit processes
when a solution point Ties on a plane of symmetry. Rather, a point
reflection about the plane of symmetry is performed in the initial-
value plane, and the appropriate unit process is then applied in
standard form. This procedure yields satisfactory results and elimi-

nates the need for devising special unit processes.

5. EXTERNAL FLOW ABOUT THE FOREBODY

With the forebody geometry specified and the flow property field
on the initial-value plane determined, the external flow about the
forebody can be calculated. In the computation of this flow field,
the distance between successive solution planes is determined by the
application of the CFL stability criterion. The last solution plane
in the forebody flow field computation is made to coincide with the
x-position of the cowl 1lip.

After the axial step between the current initial-value plane and
the current solution plane has been determined, the solid boundary
point unit process (see Appendix E) and the interior point unit
process {see Appendix E) are applied. These unit processes achieve
second-order accuracy without the need for global iteration. Hence,
these unit processes are applied at the appropriate points until con-

vergence is obtained without using information from neighboring peints
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in the solution plane.

Once the solution at each solid boundary point and interior point
has been determined, the bow shock wave point unil process (see
Appendix E} is applied at each shock wave solution point in the com-
puted sector. Global correction is then applied for these points,
if desired. The position of each shock wave solution point is made
to lie in the meridional plane defined by the outer-most interior
field point which is on the same circumferential station as the shock
wave point. As a consequence, in axisymmetric flow, the streamline
and shock wave solution points on a given circumferential station lie
in the same meridional plane on all succeeding solution planes. In
three-dimensional flow, however, except on a plane of flow symmetry,
the solution points corresponding to a given circumferential station
do not 1ie in the same meridional plane on successive solution planes.

In the forebody flow field integration, periodic streamline
addition and deletion are performed. The streamline addition is
required to retain a well-dispersed computational mesh, since at suc-
cessive solution planes more and more mass is captured. Moreover,
convergence of the streamlines towards the forebody occurs as the
flow progresses downstream. Periodic point deletion is required since
the continued addition of streamlines would produce an excessively
large number of computational m.sh points, thereby unduly increasing
computer execution time and machine storage requirements. The stream-
line addition and deletion procedures are outlined in the following.

A depiction of a typical forebody flow streamline pattern is given in

Fiqure F.4.
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For the purposes of point addition, after the peints on the solu-
tion plane have been computed, the mass flow rate acress that plane
is calculated. If this mass flow rate is significantly larger than
the mass flow rate across the last solution plane where peint redis-
tribution was performed, a new ring of solution points is added
between the ring of shock wave solution points (j = n) and the ring
of outermost interior field solution points (j = n - 1}. The co-
ordinates of each of these jnserted solution points is obtained by
forming the arithmetic average of the coerdinates of the shock wave
solution point and the outermost interior field point corresponding
to the circumferential station of the new peint. The flow properties
at each of the inserted solution points are obtained by interpolation

using the guadratic bivariate polynomial

2

- 2 :
fly,z) = a; + a,y + 2,2 tagyz +agy + ag2 (F.3)

where f(y,z) denotes a general functien of the coordinates y and z.
The coefficients a, {i=1 to 6) in equatien (F.3) are obtained by a
least squares fit of nine data points in the solution plane, as de-
scribed in Appendix C.

Point deletion occurs when the number of radial stations has
reached a specified limit. In point deletion, the bedy streamline
points are retained in storage, while selected interior streamline
points are deleted from storage. #Pefinement of this technique is pro-
vided by having two limits toe the number of allowable radial stations.
The first limit is employed when the mass flow rate at the given

solution plane is less than a specified fraction of the estimated



’%‘f@%\“ﬁ?%’mmw N R TR Y N R g Tt g o i LA aendeme

flow rate at the cowl lip. The second and larger limit is employed
when that fraction has been exceeded.
Finally, it should be noted that the influence of molecular

diffusion can be included in the forebody flow field computation.

6. INTERNAL FLOW IN WHICH SHOCK WAVES ARE NOT DISCRETELY FITTED

The program option in which the internal flew field is computed
without the discrete fitting of the internal shock wave system might
be employed in the cases where the internal shock waves are weak in

strength, and thereby an acceptable solution could be obtained by

smearing all internal discontinuities. This option requires that

only two unit processes be employed: the interier peint unit process
and the solid boundary peint urnit process. The influence of molecular
transport can be included in the computation of this flow field.

The initial-value plane of the internal flow computation is
constituted by the last solution plane of the forebody flow field
integration. Alternatively, the initial-value plane may be specified
at the cowl 1ip axial station without employing the forebody flow

field integration option. This technigue is recommended if the fore-

VL M X L SR T I L R L L A RA R A PR S 2550 A

bedy is conical up to the cowl lip axial statien.

The computer program developed in the present investigation assumes E

that the bew shock wave falls outside of the cowl lip, or, in the

limit, intersects the cowl 1ip exactly. The pregram does not have the

w0 TR T S

capability to compute the internal flow field when the bow shock wave

has been ingested into the annulus.

With the initial-value plane specified, a point redistribution

e R ESo R

on this plane is performed to obtain a uniform peint distribution and
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to obtain streamlines which 1ie in the stream surface formed by the

cowl boundary. The redistributed points are arranged symmetrically

in the computed sector. These points lie on rays which have equal
angular increments from one another, with the points on each ray
being spaced at equal radial increments. The radial station j = 1
correspond§ to the centerbedy streamline points, and j = n corresponds
to the cowl streamline points. The properties at these points are
obtained by interpolation.

With the peint redistribution performed, the internal flow field
integration proceeds in a manner similar to the external flow field
integration, except that only two unit processes are used: the
interior point unit process and the solid boundary point unit process.
No point additien or deletion is performed. The internal flow field
integration is terminated either when a specified axial station is

reached or when the flow becomes subsenic.

7. INTERNAL FLOW IN WHICH SHUCK WAVES ARE BISCRETELY FITTED

A peoint redistributien is first performed on the initial-value
plane at the axial station of the cowl lip as described in the previous
section. After the upstream flow properties have been determined at
each of the cowl lip solution points in the computed sector, the

downstream flow properties are obtained at each of these points by

application of the solid bodv-shock wave point unit process.

In the integration of the internal flow field in which shock waves
are discretely fitted, the axial step is obtained by the application
of the CFL stability criterion, except in the vicinity of a shock

wave reflection, where special constraints are employed. After the
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axial station of the solution plane has been determined, the internal
shock wave is projected from the current initial-value plane to the
current solution plane in the meridional plane passing through the
x-axis and the previous shock wave point on the initial-value plane
as illustrated in Figure F.5. The location of the shock wave solu-

tion point is obtained by applying the following equation.
dr_/dx = tang, (F.4)

In equation (F.4), drs is the increment in radius between the pro-
jected shock wave peint and the previous shock wave point on the
initial-value plane, dx is the corresponding increment in axial dis-
tance, and BI is the angle subtended by the shock wave and the x-axis
at the initial-value plane shock wave point and in the meridional
plane defined by the initial-value plane shock wave point. Equation
(F.4) is applied for each shock wave point in the computed sector,
thereby yielding the locus of projected shock wave peints in the
solution plane. Interpolated values of the shock wave radius in the

solution plane are obtained by employing the following equation.

- 2 :
rs(e) =apt 2,0 + a,0 (F.5)

In equation (F.5), rs(e) is the shock wave radius at the polar angle

e = tan'](z/y). and the coefficients a, (i=1,2,3) are obtained by
fitting this expression to three projected shock wave points, as de-
scribed in Appendix C. Equation (F.5) is applied at every circumfer-
ential station in the computed sector. Hence, the shock wave location

in the solution plane is represented by a series of overlapping one-

dimensional curve fits.
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After the tentative position of the shock wave in the solution
plane has been determined, the streamiines that are in the fiow field
sector that is upstream of the shock wave in the initial-value plane
are projected from the initial-value plane te the solution plane, as
illustrated by streamlines 1 to 6 in Figure F.5(a) and by streamlines
9 to 13 in Figure F.5(b). This is accomplished by applying the equa-

tion of a streamline

dx; = uidt (i=1.2,3) (F.6)

where X3 {i=1,2,3) denotes the three cartesian coordinates x, y, and
z, respectively, u, (i=1,2,3) denotes the corresponding velocity com-
ponents u, v, and w, respectively, and t is the time of travel of a
fluid particle aleng the streamline. Equation (F.6) is first applied
in the x direction. Since the axial step dx is known from the appli-
cation of the CFL stability criterion, the time parameter dt may be
determined. Then, application of equation (F.6) for the y and z
divections allows the y and z ceordinates of the prejected streamline
point to be computed. The radius r = (y2 + 22)1/2 and polar angle

8 = tan"(z/y) of each of the projected streamline points are then
computed.

The radius of the projected streamline point is then compared to
the radius of the shock wave, given by equation (F.5), in the meri-
dional plane defined by the projected streamline point. If the pro-
jected streamline point is in the upstream flow field sector on the

solution plane (i.e., the streamline does not intersect *he shock

wave), then a standard interior point or solid boundary point unit
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process is applied to obtain the solution at this point. If the
streaml ine appears te intersect the shock wave, as illustrated by
streamlines 5 and 6 in Figure F.5{(a)} and streamlines 9 and 10 in
Figure F.5{b), then the application of the unit process to determine
the solution is deferred.

At this stage, the upstream and downstream shock wave solution
points are determined at each circumferential station in the solution
plane computed sector using the internal shock wave point unit process.
This procedure defines the property field on both the upstream and
downstream sides of the internal shock wave.

Next, the body streamline solution points are computed at every
circumferential station in the downstream flow field sector on the
soiution plane. In some instances, computing the solution at these
points may entail using flow property information from the downstream
side of the internal shock wave if the Mach cone, with apex at the
solution point, intersects the shock wave surface. Determining the
solution at each of these points thereby defines the flow property
field on the boundary stream surface in the downstream flow field
sector.

At “.is stage, the solution on each of the streamlines which have
not yet been computed is determined. The sireamlines that are in the
downstream flow field sector on the initial-value plane will remain
in the downstream flow field sector on the selution plane (see Figure
F.5). The solution at these points is determined by the application
of the standard intevior point unit process, unless a portion of the

Mach cone, with apex at the solution peint, intersects the internal
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shock wave or the solid boundary, in which case the modified interior
point unit process is applied. For streamlines which penetrate the
internal shock wave [streamlines 5 and 6 in Figure F.5(a) and stream-
lines 9 and 10 in Figure F.5(b)], the appropriate modified interior
point unit process is applied. For the streamlines whose selution
was deferred due to a possible shock wave penetration, but which
ultimately did not intersect the shock wave, the standard interior
point scheme is applied. The solution peints are ordered in the
storage arrays in the erder of increasing radius on a given circum-
ferential station. S0 a post computation interchanage of the stream-
line solution points with the shock wave solution points is perfermed
for the streamlines which initially appeared to intersect the shock
wave but ultimately did not.

The process just outlined is applied repetitively until the
internal shock wave intersects a solid boundary. Special logic is
used in the computer program for the computation of a shoeck wave
reflection. The overall scheme used in this case is now presented.

The initial step in the computation of the shock wave-solid
boundary reflection is to obtain an estimate of the axial lecatien,
at a discrete number of points, where the incident shock wave inter-
sects the solid boundary. Except for the case of axisymmetric flow,
the intersection of the incident shock wave with the solid boundary
defines a three-dimensional space curve, as illustrated in Figure F.6.
In axisymmetric flow, this curve lies in a plane of constant x.
Points along the space curve are determined by obtaining the inter-

section of the shock wave and the solid boundary, where both of these
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surfaces are represented as straight line segments in the meridional
planes passing through the shock wave points in the initial-value
plane. For a given meridional plane, the shock wave is represented
by equation (F.4), where drs is the increment in radius between the
shock wave-body intersection point and the shock wave peint in the
initial-value plane, dx is the corresponding increment in axial
distance, and BI is the angle subtended by the shock wave and the x-
axis in the meridional plane defined by the appropriate shock wave
solution point in the initial-value plane. The local body surface is

approximated in the meridional plane by the equation
drb/dx =m (F.7)

where drb is the change in the radius of the body between the shock
wave-body intersection point and the bedy peint in the initial-value
plane, dx is the corresponding increment in axial distance, and m is
the local slope of the body in the given meridional plane., Equations
(F.4) and (F.7) are solved simultaneously to obtain the intersection
point in the given meridional plane. The intersection point for

every meridional plane defined by the shock wave points on the initial-
value plane is so determined. The locus of these intersection points
determines the space curve illustrated in Figure F.6.

At this stage, the points on the space curve which are nearest
to and farthest away from the initial-value plane are determined. If
the axial distance between the nearest point and the initial-value
plane is greater than a specified fraction of the marching step

allowed by the CFL stability criterion, then another sclution plane

—dx N




is computed, the location of this plane being just slightly upstream
of the shock wave-body intersection. The entire procedure outlined
above is then repeated. Alternatively, if the distance between the
nearest shock wave-body intersection point and the initial-value plane
is less than this fraction of the allowable marching step, then the
axial position of the next solution plane is selected such that the
space curve representing the incident shock wave-body intersection

is entirely contained between the initial-value plane and the solution
plane. At high angles of attack, this procedure may require that the
axial step between the initial-value plane and the solution plane

be greater than that allewed by the CFL stability criterion. This

implies that the Courant number, which is the ratio of the axial step

taken to the axial step allowed by the CFL stability criterion, is
greater than unity. To maintain an effective Courant number less
than unity, the fit point stencils used in the univariate, bivariate,
and trivariate interpolation polynomials are adjusted in accord with
the Courant number of the actual step taken. That is, if the Courant
number is approximately two, then every other point is used in the

interpolation fit point stencils instead of the immediate neighbors

(which correspond to a unity Courant number), etc. This ensures that

the convex hull of the finite difference network enguifs the differ-
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ential domain of dependence, thereby satisfying the CFL stability
criterion.

After the axial position of the solution plane has been determined
and the Courant number computed, the internal shock wave point unit

process is applied at every circumferential station in the computed

227




RN PR S

228

sector at the intersection of the incident shock wave with the solid
boundary. This procedure defines the property field on both the up-
stream and downstream sides of the incident shock wave.

At this stage, the initial-value plane upstream sector body
streamlines are extended from the initial-value plane to the space
curve defined by the intersection of the incident shock wave with the
solid boundary, as illustrated in Figure F.6. The solution for both
the upstream and downstream shock wave properties has been cbtained
on the space curve by the application of the internal shock wave
point unit process. Hence, both the upstream and downstream properties
at the points where the body streamlines intersect the space curve
may be found by interpelation. For this purpose the follewing quad-

ratic univariate polynomial is employed

f(e) = a +a0+a‘e?

2 3 (F.8)

where f(6) denotes a general function of the polar angle 8. The
coefficients a, (i=1,2,3) in equation (F.8) are obtained by fitting
this expression to three data points on the space curve as described in
Appendix C. To determine the intersection point of the body streamiine
with the space curve, an iterative technique is used. Moreover, after
each iteration, the projected streamline point is adjusted along the
direction of the body normal projection in the (y,z)-plane such that
the stream}ine point lies on the boundary surface. Equation (F.8)

is applied for both the upstream and downstream shock wave properties.
Hence, the incident shock wave downstream properties are known at the

body streamline points.
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At this stage, the solid body-shock wave point unit process is
applied at each of the body streamline points in the computed sector
that are on the space curve. This defines the reflected shock wave
downstream properties at the body streamline points on the space
curve, |

Using a procedure similar to that used previously, the shock wave
is then projected from the space curve to the current solution plane.
This projection is performed in the meridienal planes centaining the
body streamline points on the space curve. This procedure yields the

tentative shock wave shape in the solution plane-

At this stage, the body streamline points in the solution plane
that are in the downstream flow field sector in the initial-value
plane are computed ty use of the solid boundary point unit process
{see Figure F.7). This unit process is applied at every such point
in the computed sector. As a consequence, the flow property field on
the stream surface formed by the solid boundary is defined.

Next, the remaining streamlines that are in the initial-value
plane downstream flow field sector are projected from the initial-value
plane onto the solution plane. A test is then made to determine
whether or not each of these streamlines intersects the reflected
shock wave (see Figure F.7). Those streamlines which do not intersect
the reflected shock wave will lie in the upstream flow field sector
on the solution plane {points 7 to 13 in Figure F.7). The solution
at these points is determined using the standard interior point
scheme, or if the Mach cone, with apex at the selution point, inter-

sects the incident shock wave or solid boundary, the appropriate
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modified interjor point unit process is applied. Those streamlines
which appear to intersect the reflected shock wave have their compu-
tation deferred.

At this stage, the upstream and downstream shock wave points are

. determined at every circumferential statien in the solution plane com-
puted secter. This procedure defines the property field on both the
upstream and downstream sides of the refilected internal shock wave.

Next, the solution is obtained at each body streamline point in
the downstream flow field sector on the solution plane (see Figure
F.7). The modified soiid boundary point unit process is applied in
this situation, which requires using flow property information on the
downstream side of the reflected shock wave. After the application
of the body point unit process at each poeint in the computed sector,
the property field on the solid boundary is defined.

At this stage, the streamlines that are in the downstream flow
fieid cector in the initial-value plane and that intersect the re-
flected shock wave are computed. These pnints require using the
modified interior point unit process and use flow property information
on both the upstream and downstfeam sides of the reflected internal
shock wave (see Figure F.7).

Finally, the streamlines that are in the upstream flow field
sector in the initial-value plane are extended to the surface of the
incident shock wave and their respective intersectiuvn points with this
surface are determined (see Figures F.7 and F.8). These streamlines
are then extended from the downstream side of the incident sheck wave

to the current solution plane. If the projected streamline does not

231




!

’WMWMWW TR LN Tl WY SRPETM AT - e I e A e s SHEGARE . Ul R ST

777777777 7

7777777777
O STREAMLINE POINTS
0 SHOCK WAVE POINTS
FIGURE F.8. POSSIBLE STREAMLINE PATTERNS
AT A REFLECTION
232




T SR S ST 00 ) O S S N RN S i T o e e e

intersect the reflected shock wave, a modified interior point unit
process is applied using fiow property information on the downstream
side of the incident shock wave. If the projected streamiine inter-
sects the reflected shock wave, the intersection point is found with

. this surface. A medified interior peint unit process is then applied
on the downstream side of the reflected shock wave.

After all of the points have been determined on the solution
plane that is immediately downstrear of the shock wave-solid body
reflection, contrel is returned to the driving algorithm until another
shock wave-solid body reflection is encountered.

Figures F.6 toe F.8 illustrate the intersection of the shock wave
with the centerbedy. Similar results hold when the shock wave inter-
sects the cowl.

The internal flow field integration is terminated when either a

specified axial station is reached or when the flow becomes subsenic.
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APPENDIX G
CALCULATION OF THE TRANSPORT TERMS

1. INTRODUCTION

The numerical procedure develeped in this investigation has the
capability to include the influence of molecular transport on the
solution by treating the viscous and thermal diffusion terms in the
governing equations as forcing functions, or correction terms, in the
method of characteristics scheme. At present, the computer program
has the capability to inciude the influence of viscous and thermal
diffusion in the computation of the external flow field about the
forebody, and in the computation of the internal flow field in which
shock waves are not discretely traced. The program option which per-
forms discrete fitting of the internal shock wave system does not have
the capability to include the influence of molecular transport in the

computation, but rather assumes the flow to be inviscid and adiabatic.

2. EXPRESSIONS FOR THE TRANSPORT TERMS
The expressions for the transport forcing functions are derived in

Appendix A, and are summarized below.

-, 14, .2
Fx “x[; Ue = 3 (vy * wzi} + uy(uy + Vx) * uz(uz * wx)

q 1 s
+ ul; u + uyy + u, + 3 (ny + wxzﬂ (6.1)
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Fy y 3 (ux ¥ wzi] * ”x(vx ¥ “y) * uz(vz * ?y)
]
* yy * Vex ¥ Y2z +'§ (uyx * "yzi] (6.2)
F, = -—2-(u+V)_]+u(w+U)+\(w+V)
z z 3 'x » XX F4 uy Y 4

_1
1 ,
,* Wy + "‘yy t3 (“zx + "zyﬂ (G.3)

Fe = £ { K(Txx + Tyy + Tzz) + KxTx + KyTy + :csz
+ u[%(ui + v§ + wg + uyvx tuw vzwy) + vi + wi
+ ui + w§ + "5 + vi —-% (ux + v, + wz)?]} (6.4)
where
£ = %? (%g.p (6.5)

In equations (G.1) to (G.5), u, v, and w denote the velocity components
in the x, y, and z coordinate directions, respectively, P is the pres-
sure, p denotes the density, T is the absolute temperature, s denotes
the entropy per unit mass, p represents the dynamic viscosity, and x is
the thermal conductivity. The subscripts x, y, and z on the right-hand
sides of equations (G.1)} to (G.4) denote partial differentiation in the

corresponding coordinate direction, whereas Fx’ F ., and Fz on the Teft-

y
hand sides denote the transport forcing functions in the x, y, and
z component momentum equations, respectively. Fe is the transport

forcing functien in the energy equation.
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3. COMPUTATION OF THE TRANSPORT FORCING FUNCTIONS

During the course of the program development, a number of methods
were devicsed in an effort to obtain a good approximation te the trans-
port for.ing functions. One such method was based on employing a
quadratic trivariate interpolation polynomial whose coefficients were
determined by a least squares fitting of a number of known field points
on the initial-value plane and the previous solutien planes. This
polynomial was employed to determine the five dependent properties u,
v, w, P, and p. The spatial derivatives of the velocity components ap-
pearing in equations (G.1) to (G.4) were then obtained by analytically
differentiating the respective interpolation polynomials. Spatia}l
gradients of pressure and density were obtained in a similar manner.
Then, by differentiation of the thermal equation state, temperature
derivatives were expressed in terms of the pressure and density deriva-
tives. The moleculzr transport properties and their spatial gradients
were obtained using the procedures presented in Appendix A.

This method of calcuiating the transport forcing terms was con-
sidered to have good accuracy. The computer execution time required by
this method, however, was felt to be unacceptable. This prohibitive
execution time was primarily due to the least squares curve fitting of
the trivariate interpolation polynomials. Consequently, a more
efficient method with acceptable accuracy was sought for approximating
the transport terms. The method which was selected is presented beiow.

For the interior point and solid boundary point unit
processes, the transport terms must be computed at all points in the

computational network (see Figures E.1 and E.2). For the bow shock

R R
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wave point unit process, the transport terms must be computed at the
solution point and at the intersection point of the bicharacteristic
with the initial-value plane (see Figure E.3). For each of these

unit processes, partial derivatives of the dependent properties with
respect to y and z in the initial-value plane are obtained by analyti-

cally differentiating the quadratic bivariate interpolation polynomial

2

- 2
fly,z) = a; + a5y +agz+ A,¥Z + 2y + agz (G.6)

The coefficients a, (i=1 to 6) in equation (G.6) are determined by a
least squares fit of nine data points in the initial-value plane as
discussed in Appendix C. Equation (G.6) is applied for the five
dependent flow properties u, v, w, P, and p. Spatial derivatives of
pressure and density are required [even though they do not appear
explicitly in equations (G.1) to (G.4)] because spatial derivatives
of temperature are expressed in terms of pressure and density deriva-
tives through differentiation of the thermal equation of state as
discussed in Appendix A.

In the solution plane, partial derivatives of the dependent
properties with respect to y and z are equated to the corresponding
derivatives in the initial-value plane. For the interior peint and
boundary peint schemes, the derivatives at the solution point are set
equal to those at the streamline base peinit. For the bow shock wave
point scheme, the solution point derivatives are equated to those at
the bicharacteristic base point. The evaluation of these derivatives
in the solution plane would require that a global iteration algorithm

be employed. In this algorithm, the property fieid on the solution
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plane would first be determined by a predictor application of the
appropriate unit process at each point in the computed sector. Then,
by fitting equation (G.6) to solution plane field points the appropriate
partial derivatives could be obtained. In a similar manner, ensuing
corrector applications would be performed until overall convergence was
achieved. The attendant increase in algerithm complexity and computer
execution time using this glebal iteration procedure, however, was felt
to be unwarranted since the transport terms are assumed to be of
secondary importance in determining the selution.

Partial derivatives with respect te x in equations (G.1) to
(G.4) are obtained from the follewing quadratic univariate interpolation

polynomial.

2

3% (6.7)

fix) = a; *ax+a

2

The coefficients a, (i=1,2,3) in equation (G.7) are determined by fitting
this expression to three data peints. The first data point is located
on the solution plane that is immediately upstream of the current
initial-value piane, the second data point is on the initial-value
plane, and the third data point is the solution peint itself. For the
interior point and boundary peint unit processes, the fit points are
located on the streamiine which passes through the solution peint. For
the bow shock wave point unit process, the fit points are the shock
wave solution points correspending to the circumferential index of the
solution point. Special Togic in the computer program takes account

of point deletion and addition in the forebody filow field computation
and thereby insures that the appropriate fit points are selected. Of

course, for a predictor application of either the interior point or



boundary peint unit processes, property values at the solution point

are equated to those at the streamline base point in the initial-value
plane.

Equation (G.7) is applied for the five dependent flow properties
u, v, w, P, and p. Analytical differentiation of equation (G.7) yields
approximations to the x-partial derivatives. Differentiation of the
thermal equation of state allows the spatial derivatives of temperature
in the x-coordinate direction to be expressed in terms of the correspond-
ing pressure and density derivatives. This formulation yields an x-
partial derivative which is constant in a given x-plane.

Since equation (G.7) uses data on a previous solution plane,
derivatives cannot be evaluted using this representation until at least
one previous solution plane is available. Furthermore, the derivatives
obtained using this formulation are only approximations to the x-partial
derivatives since the y and z coordinates of each of the three fit
points are not, in gereral, identical. Considering that the effects of
molecular diffusion ar2 assumed to be small, this approximation is
acceptable.

The molecular transpert properties and their spatial gradients

are obtained using the procedures presented in Appendix A.
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ENGLISH SYMBOLS

a

3;.b;,¢4.4;

8

c

e

f

FX'Fy'FZ’FE
1,3,k

il,:]:l,’k\l

L= (flxu:ﬂ'ynffzr)
n-= (nxsny’nz)

n.

i

~

"bi

Ay = (Mg yonpy onp, )

APPENDIX H
NOMENCLATURE

sonic speed

general curve fit coefficients

boedy force vector in index notation

velocity of divergence of Mach conoid surface
internal energy per unit mass

general interpolation polynomial function
forcing functions in the x, y, and z component
momentum equations and energy equation,
respectively

unit vectors in the x, y, and z directions,
respectively

unit vectors in the x', y', and 2' directions,
respectively

unit vector aleng the space curve defined by
the intersection of the shock wave with either
the initial-value plane or a solid boundary
Mach number

unit vector normal to a wave surface

above unit vector in index notation

unit vector normal to a solid boundary

above unit vector in index notation



sx'* sy

N = (Nx,Ny.Nz)

= x x

min

5 = (Sx.sy,sz)

[ AP e

u,v,w

<|

Xs¥»Z

""sz‘) unit vector normal to the shock wave surface

{expressed in the (x',y',z')-system]

vector normal to either a wave surface or a
stream surface

pressure

velocity magnitude

radial position of a point

gas constant

cowl lip radius

distance from streamline base point to nearest
point on convex hull

either entropy per unit mass, or arc length
temperature base in Sutherland's formula
vector in the wave surface and normal to the
bicharacteristic direction

time or time-like parameter

unit vector along the space curve defined by
the intersection of the shock wave with a
meridional plane

absolute temperature

velocity components in the x, y, and 2
directions, respectively

velocity in index notation

velocity vector

cartesian coordinates of base coordinate system

base system coordinates in index notatien
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x',y',z' cartesian coordinates of local coordinate

system

GREEK SYMBOLS -

a either the angle of attack, or the angle sub-
tended by the unit vector & and the 2'-axis
a8y unit vectors used in the parameterization of

the characteristic equations

Y specific heat ratio

Gij Kronecker delta

n second coefficient of viscosity

8 either the angle used in the parameterization

of the characteristic equations, or the angle

subtended by a meridian and the (x,y)-plane

K thermal conductivity

by term in the wave surface compatibility relation

" dynamic viscosity

3 thermodynamic parameter

p density

o term in the noencharacteristic relation

$ angle subtended by the unit vector E and the
x'=-axis

d either the viscous dissipation function, or a

term in the wave surface compatibility relatien
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SUBSCRIPTS

1,3,k

X:¥s2

OPERATORS
p( )/bt
)

()

rectangular cartesian coordinate indices ranging

from 1 to 3

denotes either partial differentiation with
respect to x, y, and 2z, or the x, y, and z
components of a vector

free-stream conditions

material derivative
vector

unit vector
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