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CALCULATION OF THE FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS

AT ANGLE OF ATTACK USING THE THREE-DIMENSIONAL METHOD OF

CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING*

Joseph Vadyak and Joe D. Hoffman
School of Mechanical Engineering

Purdue University, Test Lafayette, Indiana 47907

SUMMARY

An analysis has been developed for calculating the flow field in supersonic
r

	

	 mixed-compression aircraft inlets at angle of attack using the three-dimension-
al method of characteristics with discrete shock wave fitting. This report
describes the details of the analysis and presents some computational results.

The gas dynamic model is based on the assumptions of steady continuum flow,
negligible body forces, a simple system in thermodynamic equilibrium, no mass
diffusion, negligible I -adiative heat transfer, no internal heat generation
other than viscous dissipation, and viscous and thermal diffusion effects of
secondary importance. The viscous and thermal diffusion terms are treated as
forcing functions, or correction terms, in the method of characteristics
scheme. Pressure and density are specified as the primary thermodynamic pro-
perties, and the temperature, speed of sound, viscosity, and thermal conduc-
tivity are expressed in terms of pressure and density.

The s w-^tem of governing equations is hyperbolic when the flow is supersonic.
The equations for the characteristic surfaces and the compatibility equations
applicable along these surfaces are derived. The characteristic surfaces are
the stream surfaces, which are surfaces composed of streamlines, and the wave
surfaces, which are surfaces tangent to a Mach conoid. The compatibility
equations are expressed as directional derivatives along streamlines and bi-
characteristics, which are the lines of tangency between a wave surface and a
Mach cono;d. The numerical integration procedure devised by D.S. Butler was
employed to develop a numerical integration algorithm that is second-order
accurate, explicit, and does not violate the domain of dependence of the dif-
ferential equations.

The bow shock wave surrounding the forebody portion of the centerbody and
the internal shock wave system inside of the inlet are determined by discrete

*Submitted to Purdue University, West Lafayette, Indiana, by the first
author in partial fulfillment: of the requirements for the degree of Doctor
of Philosophy, March 1978.
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shock wave fitting. The continuous flow field between shock waves is deter-
mined by the method of characteristics numerical integration procedure, and the
flow properties across the shock waves are determined by the application of the
Hugoniot jump conditions.

Unit processes were developed for interior field points, solid boundary
points, field-shock wave points, and solid boundary-shock wave points. An
inverse marching scheme is employed in which the solution is obtained on planes
perpendicular to the axis of the centerbody and the cowl. The distance between
successive solution planes is determined by the Courant-Friedrichs-Lewy stabil-
ity criterion. Although the numerical integration procedure developed herein
is capable of analyzing three-dimensional flows in three-dimensional geometries,
only axisymmetric geometries at angle of attack were considered in the present
investigation.

Selected computational results are presented for three categories of flow
fields: external flow about the forebody, continuous internal flow, and in-
ternal flow in which the discrete internal shock wave system is computed. Both
axisymmetric flow results and three-dimensional flow results are presented. For
the internal flow field in which the shock waves have been fitted, some com-
parisons with experimental data are presented. Results of the present analysis
are compared with those obtained by the two-dimensional method of characteristics
for axisymmetric flows, and by a three-dimensional fixed gri-d finite difference
shock capturing method.

The computational results support the following conclusions. The external
flow field about a forebody can be accurately calculated if a bow shock wave
of reasonable strength exists. for axisymmetric flows, the solution agrees
well with results obtained by the two-dimensional method of characteristics.
Except in regions of strong viscous interaction and boundary layer removal,
the results of the present analysis agree well with experimental data. Good
agreement is obtained between the present analysis and a finite difference
shock capturing method. The present analysis, however, which discretely fits
shock waves, provides better resolution of the shock waves.
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SECTION I

INTRODUCTION

1. GENERAL

The purpose of this investigation was to develop a method for

calculating the flow field in a supersonic mixed-compression aircraft

inlet at nonzero angle of attack. A typical supersonic mixed-compres-

sion aircraft inlet is illustrated in Figure 1. Compression takes

place both in the external flow about the forebody and in the internal

flow inside the annulus. The free-stream velocity is supersonic,

hence, a bow shock wave is generated at the forebody tip as shown.

The internal shock wave emanates from the cowl lip. That shock wave

makes a number of reflections with the centerbody and cowl before

terminating in the divergence downstream of the geometric throat of

the annulus. The flow is subsonic downstream of that location.

A major objective in the design of any aircraft inlet is to achieve

maximum flow compression with a minimum reduction in stagnation pres-

sure. Moreover, since an adverse pressure gradient exists, suita!ale

control of the boundary layer is a major design consideration. This

is especially true for an inlet such as that illustrated in Figure 1,

since a number of oblique shock wave-boundary layer interactions occur.

In a mixed-compression inlet, it is not unusual to remove 10 percent

or more of the cowl lip mass flow rate by boundary layer bleed to

control separation of the boundary layer.

3
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The inlet illustrated in Figure 1 is axisymmetric. At zero

E ^
^	 4

i
t

E	 ^.

'	 incidence, the flow field is axisymmetric and can be computed using a
a

!	 two-dimensional method. however, at nonzero angle of attack, cross
i^.

flow develops, and computation of the flow field requires using a three-

dimensional algorithm.

C a^

2. METHODS OF SUEUTION
E

t	 The equations of motion for steady three-dimensional supersonic

flow may be classified as a Jystem of hypetibolic quasi-linear partial

differential equations of first order. Exact solutions can be found

in only a few cases. Consequently, most solutions are obtained by

employing numerical techniques. The two most widely used numerical

methods are:

1. method of finite differences

2. method of characteristics

The method of finite differences replaces the derivatives in the

system of original differential equations with simple differences.

The system of difference equations is then solved to obtain the solu-

tion. Finite difference methods may be further classified into those

methods which do and those methods which do not contain artificial

viscosity terms. The artificial viscosity terms are used to induce

numerical damping and thereby reduce oscillation of the solution in

regions of high flow compression. The method of characteristics first

transforms the system of governing equations into characteristic form,

after which the derivatives in the resulting equations are replaced by

finite differences. The system of difference equations is then solved

to obtain the solution. The advantages and disadvantages of each of

5
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these methods have been discussed by Strom (1), Sauerwein (2),

` }	 Richtmyer and Morten (3), and Forsythe and Wasaw (4). Summarizing

'z	 their findings, the finite difference methods are conceptually simpler,
}

less difficult to program, require less computer storage, and can

obtain the solution on an evenly spaced grid. The characteristics
7.

a,
methods are, generally speaking, more accurate due to their more

rigorous treatment of the physics of the problem.

°-	 In the present investigation, the flow field is computed using

the method of characteristics for stead, three-dimensional flow. The

`'.

	

	 bow shock wave and the internal shock wave system are computed using a

three-dimensional discrete shock wave fitting procedure. Moreover,

the influence of molecular transport may be included in the computation

by treating the viscous and thermal diffusion terms in the governing

equations of motion as forcing functions, or correction terms, in the
f

k ¥	 method of characteristics scheme. The primary purpose in including the

effects of molecular transport in the computation is for the possible

	

{f	 future matching of the present analysis with a higher-order boundary

layer analysis.	 No attempt was made in the present investigation to

	

'	 compute the boundary layer, or to account for boundary layer removal.

3. GENERAL FEATURES OF THE THREE-DIMENSIONAL METHOD OF CHARACTERISTICS

Extensive literature surveys of the method of characteristics

for three-dimensional flow have been given by Zucrow and H^ffman (5),

Fowell (6), Thompson (7), Chushkin (8), Strom (1), Sauerwein (2), and

Ransom, Hoffman, and Thompson (9). A brief summary of their conclu-

sions is given here.
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In general, characteristics schemes for steady three-dimensional

flow may be classified as either reference plane methods or bichar-

acteristic methods. In reference plane methods, the system of

governing partial differential equations in three-independent variables

_	 is reduced to a system of partial differential equations in two inde-

pendent variables by suitably approximating the derivatives with re-

spect to the third independent variable. These approximations to the

derivatives are then treated as forcing terns, and the resulting

system of equations is solved using a two-dimensional characteristics

scheme. Reference plane methods have been proposed by Ferrari (10),

'i

	 Sauer (11,12), Ferri (13), Moretti, et al. (14,15), Katskova and

I
	

Chushkin (16), Holt (17,18), and Rakich (19). Reference plane methods

have been called the method of bycharacteris,ics by Moretti, et al.

(14,15), the method of near characteristics by Sauer (11), the method

of secondary characteristics by Sauer (12), and the method of semi-

characteristics by Chushkin (8). In bicharacteristic methods, the

characteristic equations are solved along the actual generators (bi-

characteristics) of the Mach conoid and along the str-anilines. Bichar-

acteristic schemes have been proposed by Thornhill (20), Fowell (6),

Sauerwein (2,21), Coburn and Dolph (22), Holt !23), Strom (1), Butler

(24), and Cline and Hoffman (25).

Reference plane methods are conceptually the simpler of the two

schemes. However, reference plane methods have questionable accuracy

in highly three-dimensional flows s-,nce the domain of dependence of

the differential equations is not rigorously considered. Alternatively,

while the bicharacteristic methods more rigorously treat the domain

of dependence, they are also more complicated. The bicharacteristic

7
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methods are potentially the more accurate and, therefore, a bichar-

acteristi c method was selected for use in the present investigation.

The particular bicharacreristic method selected was that devised by

r ^^

D.S. Butler (24). Butler's scheme has been applied by Elliott (26),

EZ	 Richardson (27), and Delaney (28) to compute unsteady two-dimensional

4	 flows. Ransom, Hoffman, and Thompson (9) applied Butler's method to

compute the continuous steady three-dimensional supersonic isentropic
t

flow field in nozzles, and Cline and Hoffman (25) applied Butler's

method to compute the continuous steady three-dimensional supersonic

flow field in nozzles accounting for noneguilibrium chemical reactions.

i' A detailed description of the computer program developed for this

l	
calculation is given in NASA TM-78947, "A Computer Program for the

r Calculation of the Flow Field in Supersonic Mixed-Compression inlets

at Angle of Attack Using the Three-Dimensional Method of Characteristics

with Discrete Shock Wave Fitting" by Joseph Vadyak, Joe D. Hoffman, and

Allan R. Bishop.
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SECTION Ti

GAS DYNAMIC MODEL

1. INTRODUCTION

The gas dynamic model is based on the following major assump-

ti ,ons :

1. conti nuum flow

2. steady flow

3, negligible body forces

4. the working gas can be represented as a simple system in

thermodynamic equiliibri.um

5. no mass diffusion

6, negligible radiative heat transfer and no internal heat

generation other than viscous dissipation

7. viscous and thermal diffusion effects of secondary importance

The governing equations for the assumed flow model consist of the con-

tinuity equation, the component momentum equations, the energy equa-

tion, the thermal and caloric equations of state, and appropriate

representations for the molecular transport properties. These equa-

tions are briefly presented in this section. A detailed development

of these equations is given in Appendix A.

9
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2. GOVERNING DIFFERENTIAL EQUATIONS OF MOTI0N

The continuity equation [see Reference (29)] is given by

au

ae +PaX' = 0	 (1}
1

where x i 0=1,2,3) denotes the three rectangular Cartesian coordinates

x, y, and z, repsectively, u  (i=1,2,3) denotes the corresponding

velocity components u, v, and w, respectively, p denotes the density,

and t denotes the time. Tire operator D( )/Dt in equation (1) is the

material derivative given by

D g_j" P
Dt	 at + uj axj	

(2)

For steady three-dimensional flow, equation (1) may be written in ex-

panded form as

Pux	 y	 z	 x	 y+ P V + pw + up + vp + wp z = 0	 (3)

where the subscripts x, y, and z denote partial differentiation with

respect to the corresponding direction.

The momentum equation is given by the Navier-Stokes equation (29),

which written in component form is

Dui	 ap	 a 	 alP 0t - . i - ax + axj 
4au.

axe + axe
t

_ 2a	
au.	 a	 au.

3 ax.	 aP a
ix^ + ax. n x -	

(i=1,2,3)	 (4)

	

i	 3

Repeated indices imply summation over the range of 1 to 3 unless other-

wise noted.

lO
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where B. (i = 1,2,3) denotes the x, y, and z components of the body force,

respectively, P denotes the pressure, u denotes the dynamic viscosity,

k	 and n denotes the second coefficient of viscosity.^i.
One of the major assumptions of the present investigation is

that the influence of molecular transport is considered to be of

secondary importance as compared to the inertial effects in determining
I

^i	 I

the solution. As a consequence, the viscous and thermal diffusion

terms appearing in the governing partial differential equations are

j	 treated as forcing functions or correction terms in the method of

characteristics scheme to be presented. In what follows, the molecular

transport terms are placed on the right-hand sides of the respective

i

k	
governing equations, and the convective terms are placed on the

j	 left-hand sides of those equations. The convective terms then are

considered as constituting the principal parts of these equations.

Hence, by assuming steady flow, negligible body forces, n = 0 ',Stokes's

hypothesis (30)], inertial dominance, and variable transport properties,

equation (4) may be written in expanded form for each of the three

coordinate directions as 	 f

puux + pvuy + pwuz + Px = F 	 (5)

puvx + pvvy + pwv z + P  = F 	 (6)

Puwx + pvwy + pwwz 	 z+ P	 z
F	 (7)

where

x = Px ^ u
x - 3

(vy 

+ w,])+ uy (uy + vx ) + l, z (uz + wx)

+ u 3 uxx + uyy + uzz * 3(vxy + W
Xz )	 (8)

11
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(11)

F 
	 uy 3 v  - 3(ux + wz ) + ux(vx + uy ) + Vz(vz + wy)

++
 vYY + vxx + vzz + 3(uyx + y

z )	 (g)

Fz =ux 1	 _ 2(ux + vy ) + 4x (wx + wz ) + ^,y ( y + vz)

r+ u Li wzx + wxx + w + 3 (uzx + v )	 (10)yy

i

The appropriate form of the energy equation is now derived. In the

following, the pressure P and density p are considered as being the

Y.	 primary thermodynamic variables. All secondary thermodynamic vari-

ables are then expressed in terms of the pressure and density.

-;^	 It is assumed in the present investigation that the working gas
F

may be represented as a simple system in thermodynamic equilibrium. For

a simple system, specification of any two independent thermodynamic

properties defines the thermodynamic state of the system (31). Hence,

the following functional relationship may be written

F	 where s is the entropy per unit mass. Employing the concept of the

total derivative, and introducing the material derivative operator

given by equation (2), the following equation is obtained.

t

i
r	 i

i

r^
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The sonic speed a is defined by

a2 = (jPj
tap s
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Introducing equation (13) into equation (12) yields

DP _ a2 PE _ 

Ifs)
P Ds	

(14)
Dt	 Dt 	 Dt

P

The material derivative of entropy appearing in equation (14) may

be expressed in terms of a thermal conduction function and a viscous

dissipation function. The entropy may be expressed in terms of the

internal energy by use of the thermodynamic relation (31)

T ds = de + P d0/p)	 (15)

where T is the temperature, and a is the internal energy per unit mass.

The internal energy may be expressed in terms of a thermal conduction

function and a viscous dissipation function by use of the energy

equation (2.9)

Le	
+ — A2 +

p Dt ax i	
." ax	 P Ot	

06)

^

where K is the thermal conductivity, and 0 is the viscous dissipation

function, which for n = 4 is given by
2

	

1 au	 au	
2 au k

	

i	 j_0 
= 2 µ axj + a 

_
xi - 

_
3 

3x  
aij	

(17)

where aij is the Kronecker delta. Combining equations (14) to (17) and

writing the resulting expression in expanded form for steady three-

dimensional flow with variable transport properties yields

I 1

I

where

up
 
 + vpy + wP Z - a2 (up x + VP  + wPZ ) = Fe

r



4

E
{
M

Fe = Ej K(Txx + Tyy + 
Tzz

) + KxTx + Ky y + xzTz

+ p[2(u2 + vy+ wZ + uyvx + uZwx + vzwy ) + vX

+ wX + uy + y + uz + vz- 	 3(ux	+ vy + wz ) 2 ]	 (19)

and

= p-7Iksi
p
	(20)

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential

equations may be obtained, the temperature T, the sonic speed a, and

the parameter C defined by equation (20) must be expressed in terms

of the primary thermodynamic variables P and P. The general functional

forms of the relations for T, a, and ^ are given by

T = T(P,p)	 (21)

a = a(P,P)	 (22)

C = W,P)	 (23)

The derivatives of the temperature appearing in equation (19) are ex-

pressed in terms of the derivatives of the pressure and the density

by analytically differentiating equation (21).

For the special case of a thermally and calorically perfect gas,

equations (21) to (23) take the following simple forms

T = P/PR	 (24)

a = (yP/P) 1/2	(25)

14
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(26)

where R is the gas constant, and y is the specific heat ratio.

4. MOLECULAR TRANSPORT PROPERTIES

The dynamic viscosity p and the thermal conductivity K must be

expressed in terms of the primary thermodynamic variables P and p. In

general, both the viscosity and the thermal conductivity are assumed

to be functions of temperature only. Hence,

P = V(T)	 (27)

K = K( T)	 (28)

The derivatives of the transport properties appearing in equations (8),

(9), (10), and (19) are obtained in terms of the derivatives of the

pressure and the density by analytically differentiating equations (27)

and (28) with respect to the temperature, with the resulting tempera-

ture derivatives being obtained by analytically differentiating equa-

tion (21).

A widely accepted representation for equation (21) is the

Sutherland formula (30)

FO]

1.5 To + S

o 	 T + S(2^)

where u0 is the viscosity at the reference temperature T o , and S is a

constant. Equation (28) may be represented by the quadratic polynomial

K = a l + a 
2 
T + a 

3 
T 
2
	 (30)
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where the coefficients a  (i =1,2,3) are obtained by curve fitting thermal

conductivity data.

The contribution of turbulent transport may be considered fn the
r

computation by adding the appropriate eddy viscosity and eddy thermal 	 2'

conductivity functions to the molecular transport properties riven by

equations (27) and (28), respectively. 	 x

5. SUMMARY

In summary, the differential equations of motion for steady three-
.

dimensional flow are given by equations (3), (5), (f), (7), and (18). 	 3

For a thermally and calorically perfect gas, the thermodynamic model

is represented by equations ( 24) to ( 26). The molecular transport

properties are represented by equations ( 29) and ( 30).	 `9
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SECTION III

CHARACTERISTIC EQUATIONS

1. INTRODUCTION

Written in the form shown, with the left-hand sides constituting

the principal parts, equations (3), (5), (6), (7), and (18) may be

classified as a system of quasi-linear nonhomogenous partial differ-

ential equations of first order. The system is hyperbolic if the

flow is supersonic. Systems of hyperbolic partial differential equa-

tions in three independent variables have the property that there

exist surfaces in three -dimensional space on which linear combinations

of the original partial differential equations can be formed that con-

tain derivatives only in the surfaces themselves. These special sur-

faces acre known as characteristic surfaces, and the linear combinations

of the original partial differential equations are interior differen-

tial operators known as compatibility relations. In this section, the

equations for the characteristic surfaces and the compatibility rela-

tions valid along these surfaces are listed and briefly discussed. A

detailed development of these equations is given in Appendix B.

2. CHARACTERISTIC SURFACES

For steady three-dimensional supersonic flow, two families of
r

characteristic surfaces exist, as illustrated in Figure 2. One family 	 , t,
4

of characteristic surfaces consists of the stream surfaces given by

i

17
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UN  
+ vy + wNZ = 0
	

(31)

where N = (Nx Ay Az ) denotes the normal to a stream surface. The

envelope of all stream surfaces at a point forms a single pencil of

planes whose axis is a streamline. A streamline may be represented by

dx/dt = u	 dy/dt = v	 dz/dt = w	 (32)

where t is the time of travel of a fluid particle along the streamline.

The second family of characteristic surfaces consists of the wave

surfaces given by

uNx+Ay+Az =a-ENI
	

(33)

where N' = (Nx ,Ny ,Nz ) denotes the normal to a wave surface. The envelope

of all wave surfaces at a point forms a conoid known as the Mach conoid,

The Mach conoid may be represented locally by a right circular cone

known as the Mach cone. In differential form, the quadric surface of

the Mach conoid is given by

Cu  - (q2 - a2 )3(dx) 2 + [v2 - (q2 - a2)J( dy)2

+ [w2 - (q2 - a2 )I(dz) 2 + 2uv(dx)(dy)

+ 2uw(dx)(dz) + 2vw(dy)(dz) = 0
	

(34)

where q is the velocity magnitude (q2 = u2 + v2 + w2 ). The line of

contact between a particular wave surface and the Mach conoid is known

as a bicharacteristic. A bicharacteristic is a generator of the Mach

conoid.

It
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3. COMPATIBILITY RELATIONS

The compatibility relations which are applicable on the stream

surfaces are given by

up
 
 + vPy + wPz - a2 (up x + 

VP  
+ wpz ) = Fe	(35)

pu (uux + vu  + wuz ) + Pv(uvx + vv  + WV 
Z )

..	
+ pw(uwx + vwy + wwz ) + uPx + vPy + wPz

i=
E	 = uFx + vFy + wFz	(36)

'.

pSx(uux + vu  + wu z ) + pSy (uvx + vv  + wvz)

+ pSz (uwx + y + wwz ) + S 
x 

P 
x + S y P y 

+ S 
z 

P 
z

= S 
x 

F x + S 
y 

F y + 5 ZFz	(37)

In equation (37), S = (S x ,Sy ,S z ) denotes a vector which lies in the

stream surface and that is independent of the velocity vector. Equa-

tions (35) and (36) may be written in a form which contains differen-

tiation in the streamline direction as follows.

dP	 2 dp. _
71- 

a 
dt Fe

dP
Pu Ft+ pv dt + pw if + Ft- uF

x + vFy + wF z	(39)

In equations (38) and (39), the operator d( )/dt represents the direc-

tional derivative along a streamline.

(38)
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The compatibility relation which is applicable on the wave sur-

faces is given by

pan x (uux + vu  + wuz ) + pany (uvx + vvy + wvz)

'	 + pan z(uwx + vwy + wwz ) + (an x - u)Px + (any - v)Py

+ (an, - w)Pz - pa2 ( ux + v  + w7 ) = a	 (40)

where

a = a(nxFx + nyFy + n z FZ ) - Fe	(41)

In equations (40) and (41), n = (nx ,ny ,nZ ) denotes the unit normal

vector to the wave surface. Equation (40) may be written in a form

which contains differentiation in the bicharacteristic direction as

follows.

du	 dv	 dw	 _	 2	 _
pan 

du
EtI 

pant' d,t + pant d,t - 
dP
dt - a - pa ^(n 

2
x 1}ux

+ (n2 - 1)vy + (n2-	 1)wZ + nx y yn(u + vx)

+ 
nxnz W  + wx ) + nynz(vz + wy)]	 (42)

In equation (42), the operator d( )/dt denotes the directional derivative

along a bicharacteristic. The terms in brackets i n equation (42) repre-

sent differentiation in the wave surface but in a direction normal to

the bicharacteristic direction. Hereafter, these terms will be refer-

red to as the cross derivatives.

At any point in the flow field there exists an infinite number of

stream surfaces and wave surfaces. The number of independent

.y

S

s

w
„ra

Ir

T

I a
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compatibility relations cannot exceed the number of independent equa-

tions of motion. As a consequence, it is necessary to determine which

of the possible combinations of the compatibility relations form an

independent set. Rusanov (32), using a proof in the space of char-

acteristic normals, has shown for steady three-dimensional isentropic

flow that two of the stream surface compability relations applied

along a stream surface and the single wave surface compatibility

relation applied along three different wave surfaces form an indepen-

dent set of five characteristic relations. Rusanov's results may be

extended to the present case since the principal parts of equations

(3), (5), (6). (7), and (18) are the same as those for isentropic

flow. Hence, the set of compatibility relations used in the present

investigation consists of equations (38) and (39) applied along a

streamline and equation (42) applied along three different bicharacter-

istics.

,r

4. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

D. S. Butler (24) developed a parameteric form for representing

a bicharacteristic and the wave surface compatibility relation

applicable along it. A detailed development of Butler's method is

presented in Appendix B. A brief summary is given here.

Butler introduced the following parameteric form to represent a

bi,characteristir.

dxi = (u i + cai cose + 0i sin6)dt	 (i=1,2,3)	 (43)

In equation (43), t is the time of travel of a fluid particle along

the streamline that is the axis of the Mach cone, A is a parametric

i

22
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angle denoting a particular element of the Mach cone and has the range

0< e< 27r, and c is given by

c2 = 
g2a2/(q2	 a2 )	 (44)

where q is the velocity magnitude, and a is the sonic speed. The

vectors ac i and 
a  

in equation (43) are parametric unit vectors with

ai' Si, and u
i /q (i=1,2,3) forming an orthonormal set.

The corresponding parametric form of the wave surface compatibility

relation, equation (40), is given by

dPdui
d,t + pc(ai cosa + 0 sine) dt = ^'

2	 aui

	

- pc (a sin@ - S i coso)(a sine - s^cose) 
U	

(45)
ax

J

In equation (45), the operator d( )/dt represents differentiation in

the bi characteri sti c direction, and (P is given by

^ = (c2/a2 )CFe - a(nxFx + n 
y 

F y + nZF d]	 (46)

where n = (nx ,ny ,nz ) denotes the unit normal to the wave surface,

which may be written in parametric fonn as

n  = (a/c) (cu i /q 2 - a i cosa - s
i
sine)	 (i=1,2,3)	 (47)

In addition to the above relations, Butler also developed a non-

characteristic relation which is applied along a streamline. This

noncharacteristic relation is given by

r

{
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au
dt ° u - PC2 (di (b + giai) a--

i

. i

where the operator d( )Jdt denotes differentiation along a streamline,

and a is given by

a (C2/a2 )Fe - (c2A2 ) (uFx + vFy + wFZ )	 (49)

r

^ r

(4s)

''	 f

i

`

.A , 	 ^
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SECTION IV

UNIT PROCESSES

k 
^f

3

1. INTRODUCTION

A variety of unit processes are employed in the computation of

the flow field. The unit processes may be classified into four major

types: interior point, solid boundary point, field-shock wave point,

and solid body-shock wave point. The basic unit processes are briefly

discussed in this section. A detailed presentation of each unit

process is given in Appendix E.

In the overall numerical algorithm,an inverse marching scheme is

Ir

employed. The solution is ob'tai'ned on space-like planes of constant x,

where the x-axis is the longitudinal axis of the centerbody and the

cowl. For the internal flow, the solution is also obtained on the

space curves which are defined by the intersections of the internal

shock wave with the solid boundaries. Except in the vicinity of a

shock wave-solid boundary intersection, the distance Ax between suc-

cessive solution planes is determined by the application of the

Courant- Fri edrichs-Lewy (CFL) stability criterion (9). In the vicinity

of a shock wave-solid boundary intersection, the axial step is con-

trolled by special constraints, which are discussed in Section V. The

distance ox is determined prior to the application of the unit pro-

cesses.

i
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2. INTERIOR POINT UNIT PROCESS

The computational network ..used in determining the solution for a

typical interior point is illustrated in Figure 3. Points ( 1) to (4)

represent the intersection points of four rearward-running bicharacter-

'^	 istics with the initial -value plane, point (5) is the streamline

intersection point with the initial -value plane, and point (6) is the
t	 ^

solution point on the solution plane. The axial (x) distance between

the initial -value plane and the solution plane is determined prior to

the application of the unit process by applying the CFL stability
k

criteri -on. As i,n all the unit processes, the interior point unit pro- 	 #

cess is divided into a predictor step and a corrector step. The cor-

rector may be iterated to convergence if desired. 	 j

{	 The interior point unit process is initiated by determining the

y location of the solution point, point (6). The coordinates of point

J	 (6) are determined by extending the streamline from point (5) to the

sollution plane using the following finite difference form of equation

(32).

xi(6) - xi(5) = 2 [u i(5) + ui(6)1[t(6) - t(5)] 	(i=1,2,3)	 (50)

For the predictor, u 1 (6) is equated to u i (5). For the corrector,

the previously determined value of u i (6) is employed. The axial step

NO - x(5)] is computed before the unit process is applied. Hence,

the time parameter [t(6) - t(5)] may be obtained, after which the
i	

I^
coordinates y(6) and z(6) are computed. Interpolated flow property

values at point. (5) are used in the integration, even though point (5) 	 y
4

is a known field point. As shown by Ransom, Hoffman, and Thompson (9),

26
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i.	 this interpolation is required to produce a stable numerical scheme.

	

'	 The interpolated flow property values are obtained from the following

quadratic bivariate interpolation polynomial

f (y , z ) = a l + a2y + a 3z + a4yz + a5y2 + a6 z
2
	

(51)

	

'	 where f(y,z) denotes a general function of the coordinates y and z, and

the coefficients a i (i=1 to 6) are obtained from a least squares fi t

of nine data points in the initial-value plane [point (5) and its

eight immediate neighbors] as described in Appendix G.

With the location of the solution point determined, four bichar-

acteristics are extended from the solution point back to the initial-

	

;	 value plane to intersect this plane at points (1) to (4), as illustrated

in Figure 3. The coordinates of each of these intersection points are

i
determined using the following finite difference form of equation (43).

x
i 
(6) - x

i 
(k)	 2 {u i (k) + u i (6) + [c( k ) + c(6)][aicose(k)

+ ^isine(k)])[t(6) - t(k)]	 (i=1,2,3)	 (52)

The index k in equation (52) denotes the bicharacteristic-initial-

value plane intersection points illustrated in Figure 3, and has a

range of 1 to 4, corresponding to the e(k) values of 0, 7T/2, Tr, and

U/2, respectively. Since the axial step [x(6) - x(k)] is known,

equation (52) is used to calculate [t(6) - t(k)], y(k), and z(k). The

flow property values at points (1) to (4) are obtained by interpolation

using equation (51). On the initial application of equation (52), the

flow property values at point (k) are equated to those at point (5).

i

y ;

's
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For the external flow field integration, the parametric unit vectors

a i and 0. appearing in equation (52) are selected to straddle the pro-
,

jection of the pressure gradient on the initial-value plane. For the

internal flow field integration, these vectors are selected to straddle

the meridional plane through point (6).

Once the positions of and the flow properties at points (1) to

(5) have been determined, the system of nonlinear compatibility equa-

tions, written in finite difference form, is solved to obtain the five

dependent flow properties u(6), v(6), w(6), P(6) and p(6). Two of the

five required compatibility equations are given by equations (38) and

(39). These equations are written in finite difference form by re-

placing the derivatives with simple differences, and by replacing the

coefficients of the derivatives with the arithmetic average of the

coefficients at the solution point and at the appropriate point in the

Initial-value plane. To obtain the remaining three required compati-

bility equations, appropriate linear combinations of the wave surface

compatibility relation, equation (45), applied along each of the four

bicharacteristics, and the noncharacteristic relation, equation (48),

applied along the streamline are formed. Writing equation (45) for 6

values of 0, 7r/2, -r, and 3w/2 yields

	Li 	
3u

	

dt1 + Pcai d i - 0 1 - 
PC2S i oj axj	(53)

	

dt + Pc6i - - ^ 2 - pc2aicxj 3x?
	 (54)

2	 2	 ^

L,
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dF	
dui	 au

dt3 - pc^'i dt3 T `^3	
pc 6 i 6j axe

J
(55!

1
'	 a

r:

s

{	 dP	 dui	 2	
au

i
dt4 - ^' c5 i dt4 ` 4 - 

pc 
i j axj

In equations (53) to ( 56), the operator d( )/dt k denotes differentiation

along the kth bicharacteristic, and 
D  

denotes equation (46) evaluated

for the specified value of e(k). One independent linear combination

of the compatibility equations is obtained by subtracting the finite

difference form of equation ( 55) from the finite difference form of

equation ( 53). Another independent linear combination is obtained by

subtracting the finite difference form of equation (56) from the finite

form of equation (54). The final independent linear combination is

obtained by subtracting the finite difference form of the noncha:r-

acteristic relation, equation (48), from the sum of the finite differ-

ence forms of equations ( 53) and ( 54). The resulting compatibility

equati ons do not contain cross derivatives at the solution point (i.e.,

all terms containing au i /ax j (6) are eliminated]. These five finite

difference equations are solved using Gaussian elimination. For the

predictor, the flow property values at the solution point appearing

in the coefficients of the derivatives in the set of difference equa-

tions are equated to those at point (5). For the corrector, the flow

property values at point (6) obtained on the previous iteration are

used. The resulting scheme has second-order accuracy (9).

(56)

i

i

F
i,
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3. BOW SHOCK WAVE POINT UNIT PROCESS

The computational network used in determining the solution for a

,typical bow shock wave point is illustrated in Figure 5. A segment

of the shock wave surface extending from the initial-value plane to

the solution plane is shown in this figure. The intersection of the

shock wave with the initial-value plane defines space curve (A), and

the intersection of the shock wave with the solution plane defines

space curve (B). The axial distance between the initial-value plane

and the solution plane has been previously determined by the applica-

tion of the CFL stability criterion. The bow shock wave solution point

,	 c

i
3. SOLID BOUNDARY POINT UNIT PROCESS

r	
The computational network used for determining the solution at a

E

typical point on a solid boundary is shown in Figure 4. The point

notation used in this figure is identical to that employed in Figure 3.

Here, however, both points (5) and (6) lie on the solid boundary, an6

point (4) is not used since it lies outside of the flow regime.

The unit process used to obtain the solution at a solid boundary

point is almost identical to the interior point unit process. Here,

{	 however, point (4) corresponding to the bicharacteristic with e = 37r/2

is not located, and the corresponding compatibility relation valid

along this bicharacteristic is not employed. That equation is replaced

by the flow tangency condition

u i (6)n bi (6) = 0	 (57)

where n bi (6) (i=1,2,3) is the unit normal to the solid boundary at

point (6).
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is denoted by point (2). The flow properties at point (2) on the up-
4

stream side of the shock wave are known from the free -stream condi-

tions. Hence, in the following discussion, the flow properties u(2),

v(2), w(2), P(2), and p(2) refer to the flow properties at point (2)

I on the downstream side of the shock wave. Point (1) is the intersec-

tion point of a rearward-running bicharacteristic with the initial-

'`	 value plane. This bicharacteristic is extended backward from the

`	 solution point, point (2). Point (3) is a predetermined interior solu-

tion point which is adjacent to the shock wave and is used to define

z	 the meridional plane in which the bow shock wave solution point lies.

Point (4) is the intersection point of space curve (A) with the

meridional plane which passes through points (2) and (3).

' In this unit process, a local Cartesian coordinate system is

employed for the description of the local shock wave surface. This

local coordinate system has cocrdinates x', y', and z', where x' is

coincident with the x-axis, y' is the radial direction in the meridional

plane containing points (2) and (3), and z' is normal to the (x',y')-

plane. The unit vec urs in the x', y', and z' directions are denoted

by i', j', and k', respectively. The orientation of the local shock

wave surface at a point (P) is specified by a set of three unit vec-

tors referenced to the (x',y' X )-coordinate system, as illustrated

in Figure 6. This set of unit vectors consists of the unit vector ns

which is normal to the shock wave surface at point (P), and two unit

vectors t and t which are tangent to this surface at point (P). The

tangential unit vector t lies in the meridional plane [(x',y')-plane],

subtends an angle ^ with the x'-axis, and is defined by the intersection

w

J

^l

j
A

a
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of the shock wave with the meridional plane at point (P). The tan-

genLial unit vector i lies in the transverse plane [(y',z')-plane],

subtends an angle a with the z'-axis, and is defined by the intersec-

tion of the shock wave with the transverse plane at point (P). The

tangential unit vectors t and Q arE given by

t = cos ^ i' + sin	 j'	 (58)

Z = sin a j' + cos a k'	 (54)

The shock wave normal unit vector n  is given by

+.	 n	 n	 n

ns = t x t/I,t x tj	 (60)

To achieve second-order accuracy in the shock wave point unit

process, global iteration must be performed. In global iteration,

the corrector employs flow properties not only at the solution point

itself, but also at neighboring points in the solution plane. As a

consequence, before the corrector can be applied in global iteration,

the entire solution plane (or at least an appropriate section of it)

must be determined by a priur calculation. The interior point and

solid boundary point unit processes do not require global iteration

to achieve second-order accuracy. Consequently, those solution points

are dete rmined first. Then, the predictor is applied for each shock

wave solution point, thereby giving a tentative solution for all of

the shock wave points. At this stage, global correction is performed

for the shock wave solution points using the previously determined

field points in the solution plane. In the following discussion, the

term "predictor" refers to the first application of the shock wave

t
t

r

r

f

4

4
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point unit process used to obtain an initial estimate of the solution

without using field point data in the solution plane. The term " global

corrector" refers to the application of the shock wave point unit

process which uses field point data in the solution plane. The shock

z wave point unit process is now outlined.

The shock wave point unit process is initiated by locating the

solution point, point (2) in Figure 5. Denote the angle subtended by

a meridional plane and the (x,y)-plane by 6. The solution point

meridional plane is arbitrarily selected to contain the interior solu-

tion point, point (3), whose location is determined prior to the

application of the shock wave point unit process. Hence, e(2) = 9(3).

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from

r(2) = r(4) + [x(2) - x(4)] tan 
jj 

[^(2) + 0(4)1	 (61)

where [x(2) - x(4)] is the axial distance between the initial-value

plane and the solution plane. On the initial application of equation

(61), the shock wave angle ^(2) is equated to ^(4), whereas, on ensuing

applications, the value of 0(2) obtained on the previous iteration is

used. At point (4), the radial position r(4) and the shock wave angle

W) are determined by interpolation using the quadratic univariate

formulae

t

k	 1

I

p

)

	

r( e ) = al + a28 + 
a30 2	 (62)

	

^(e) = b  + b20 + b362
	

(63)
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where the coefficients a i and bi (i=1,2,3) are determined by fitting

these expressions to three local shock wave solution points on space

curve (A).

i	 After the solution point has been iocated, the shock wave normal

unit vector ns at the solution point is found by forming the normal-

ized cross product of the tangential unit vectors k and t [see equationi

^	 n	 n

I	 (60)]. The tangential unit vectors t and R are obtained by use of

	

f	 '	 f

the current values of 0{2} and a(2) in equations (58) and (59),

i respectively. For a predictor application, a(2) is approximated by

equating it to the a value at point (4). For a global corrector

4

	i;	 application, the value of n(2) that is employed is that evaluated at

	

, 	 t point (2). In either case, the value of a(2) may be determined by

i

where, for the predictor, the analytical form of r(e) used in equation

(64) is given by equation (fit) applied along space curve (A), and for

the global corrector, r(0) is obtained by applying equation (fit) along
i

i

space curve (B).

At this stage, the local Nugoniiot relations are applied at point
+f

(2) to obtain the downstream flow properties u(2), v(2), w(2). P(2),

and p(2). Next, a rearward-running bicharacteristic is extended from
i

i	 the solution point, point (2), back to the initial-value plane, inter-

secting this plane at point (1), as illustrated in Figure 5. The
i

{
coordinates of point (1) are obtained using the following finitei
difference form of equation (43) evaluated for the parametric angle of

e = 7r/2.

38
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x
i (2)- x i ( l ) = Z fu i 0) + ui (2)

+ [c (l) + c( 2 )7R i I [t(2) - t( 1)1	 (i=1,2,3)	 (65)

For the first application of equation (65), the flow properties at

point ( 1) are equated to those at point (2), whereas, for ensuingr

applications, the flow properties previously obtained at point (1) are

employed. The flow properties at point ( l) are obtained by interpola-

tion using the quadratic bivariate polynomial riven by equation (51).

Since the axial step [x ( 2) - x(1)] is determined by the CFL stability

criterion, equation (65) is used to compute [t(2) - t(l)], y(1), and

z(1). The orientation of the parametric vector h i in equation (65) is

selected so that this vector lies in the meridional plane that con-

tains the solution point. The unit vector a  is obtained using the

orthonormal relationship between a i , B i , and u i /q (i=1,2,3).

At this stage, the wave surface compatibility equation correspond-

ing to the parametric angle 9 = n/2 is applied between points (1) and

(2). The appropriate equation is obtained by writing equation (54) in

finite difference form and solving for the pressure at point (2). De-

note this pressure by P (2). The resulting equation contains cross

derivatives (terms containing 3u i /ax e ) at both points (1) and (2).

For the predictor, the cross derivatives at point (2) are equated to

those at point ( 1), whereas, for the global corrector, the cross

derivatives at point ( 2) are evaluated at that point by fitting inter-

polaticn polynomials in the solution plane.

The pressure P(2) is calculated from the local Hugoni ,ot equations.

The pressure P (2) is calculated from the wave surface compatibility

39
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relation. The difference between P(2) and P (2) is driven to within

a specififed tolerance of zero using the secant method with iteration

being performed on the shock wave angle ^(2). Two initial estimates

of 0{2) are required to start the iterative process.

The shock wave point unit process is first applied as a predictor

for each shock wave solution point, In this application, the value of

a< used in equation (59) is obtained by curve fitting points along space

curve (A), and the cross derivatives at the solution point are equated

to those at the bicharacteristic base point in the initial-value plane.

After a tentative solution has been obtained at each shock wave point,

a number of ensuing global corrections are performed. Here, the value

of a< used in equation (59) is based on data along space curve (8), and

the cross derivative terms at the solution point are evaluated at that

point. The resulting overall algorithm has second -order accuracy when

the global correction is performed. The global iteration is terminated

when successive values of a have converged at each of the shock wave

solution points.

5. SOLID BODY - SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave point unit process is used to determine

the flow properties downstream of the shock wave at a point where the

shock wave intersects a solid boundary. This unit process is used to

determine the solution for the	 int'2	th	 3 n th d wn +ream

	

._ ^ .	 po	 ^ on	 a cow o	 e o s	 -

side of the cowl lip shock wave, and for the points on the centerbody

	

ff	 or cowl on the downstream side of an internal reflected shock wave.

	

:E	 The method of computation is essentially the same for either applica-

tion. For the internal shock wave reflection, the flow properties

40	 ? .
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downstream of the incident shock wave, which constitute the upstream

flow properties for the reflected shock wave, are cortiputed by the

modified field-shock wave point unit process discussed in Appendix E.

A depiction of the computational network used in the solid body-

shock wave point unit process is presented in Figure 7. A typical

solid body-shock wave solution point is denoted by point (P), with the

outward unit normal vector to the solid boundary at this point denoted

by nb . The locus of solid body-shock wave solution points represents

the intersection of the shock wave with the solid boundary and defines

space curve (A) in Figure 7. The intersection of the shock wave with

the meridi-onal plane passing through point (P) defines space curve (B).

The unit vectors tangent to space curves (A) and (B) at point (P) are

denoted by X and t, respectively. The unit vector normal to the shock

wave at point (P) is denoted by rs.

As for the bow shock wave point unit process, the unit vectors Z,

t, and n  are referenced to the local coordinate system (x',y',z'),

where x', y', and z' have the same definitions as noted before. More-

over, the tangential unit vector t again lies in the meridional plane and

is defined by equation (58). In this scheme, however, the tangential

unit vector Q does not lie in the (y',z')-plane in most cases, but

rather can have a nonzero x'-component. This tangential unit vector

along space curve (A) may be represented by

dz

- ds ' ^^ + d J^ + us—' k
	 (66)

where ds is the differential arc length given by

(ds ) 2 = (dx ') 2 + (dy ')2 
+ (dz')2	

(67)
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The derivatives in equation (66) are obtained by analytically differ-

' {	 entiating the expressions

k '(a) = al + a2  + a302
	

(68)

YIN) _ b l + bzs + b3 0
2
	(69)

z,(0) 
= cl + c 28 + c362
	

(70)

i
f.	 where coefficients a i , b i , and c i (i =1,2,3) are obtained by curve

fitting the respective expressions to three points on space curve (A).

s	 For the cowl lip shock wave points, space curve (A) is defined by the

cowl lip itself, since the shock wave is assumed to be attached to the

cowl lip. Alternatively, for computing the downstream flow properties

at a reflected internal shock wave, space curve (A) is defined by

the intersection of the incident shock wave with the solid boundary.

The shock wave normal unit vector is found from equation (60).

The solid body-shock wave point unit process is initiated by

determining the body normal unit vector n  and the tangential unit

vector 2. An assumption is then made for the shock wave angle ^ in

equation (58), and, by use of equation (60), the shock wave normal unit

vector is determined. The local ilugoniot equations are then applied to

obtain the downstream flow properties at point (P). The velocity

normal to the wall is then obtained by forming the dot product of the

body normal vector and the downstream velocity vector. The normal

velocity is reduced to within a specified to!^­ rance of zero by varying

the shock angle ^ using the secant iteration method.

3	 1

i
.x

i	 y
s

(
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b. INTERNAL FLOW SHOCK WAVE POINT UNIT PROCESSES

The unit process employed to compute the solution at a shock wave

point in the internal flow field is similar to the bow shock wave point

unit process. In the internal flow shock wave point unit process,

,
however, the flow properties upstream of the shock wave at the solution

point must be determined by the application of a modified interior

I,	 3

^.	
s point unit process. Moreover, modifications to the internal flow

i	 shock wave point unit process must be made when an internal flow shock

wave solution point lies on or close to a solid boundary. The various

'.,	 versions of the internal flow shock wave point unit process are pre-

sented in Appendix E.

7. INTERNAL. SHOCK MODIFIED- INTERIOR POINT AND -SOLID BODY POINT UNIT

PROCESSES

In some situations during the computation of 'the internal flow

field, the interior point and solid boundary point unit processes

must be applied in a modified form. One such instance in which

a modified form of the interior point unit process must be applied is

shown in Figure 8. Here, the Mach cone, with apex at the interior

solution point, intersects not only the initial-value plane but also

the internal shock wave and a solid boundary. The unit process used in

this case requires determining the bicha ,racteristic intersection points

with the shock wave and the solid boundary in addition to the inter-

section points with the initial-value plane. Moreover, flow property

values must be determined at all of these points. The bicharacteristic-

shock wave and bicharacteristic-body intersection coordinates are cal-

culated using the procedures discussed in Appendix D. The flow

i

i

j
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i^ property values at these points are obtained by interpolation, either
at	 x

1	 using a quadratic bivariate polynomial [equation (5]}] for points an 	 ;•^

the initial-value plane, or using a quadratic trivariate polynomial

for points on the shock wave surface or solid boundary surface. The

various interpolation schemes are discussed in Appendix C. All of the

;. -unit processes, including the schemes incorporating the necessary

modifications to handle the internal shock wave, are presented in

 Appendix E.
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SECTION V

OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

The overall numerical algorithm consists of the repetitive appli-

cation of the various unit processes to generate the global solution

for given boundary conditions and a specified set of initial data.

The contours of the centerbody and the cowl, in addition to any

planes of flow symmetry, constitute the boundaries of the computational

flow regime. For the external flow field integration, the bow shock

wave also represents a computational bound.

The initial data are specified on a plane of constant x. The x-

coordinate axis is the longitudinal axis of the centerbody and the cowl

(see Figure 1). Moreover, the mean flow direction is assumed to be in

the x-coordinate direction.

An inverse marching scheme is employed in the numerical algorithm.

The solution is obtained on space-like planes of constant x. The solu-

tion points on each plane represent the intersection points of continu-

ous streamlines which are propagated from the data points specified on

the initial-value plane. In addition to the streamline solution points,

solution points are also obtained at the intersection of the external

and internal shock waves with the solution plane, and for the internal

flow field, on the space curves where the internal shock wave intersects

the solid boundaries. These space curves are defined by the locus of

47
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shock wave solution points.

Except in the vicinity of a shock wa e reflection with a solidI

boundary, the axial (x) distance between 	 current initial-value

t e

plane and the current solution plane is det	 mined by the applicationminedin

of the Courant-Friedrichs-Lewy (CFL) stabilit.	 criterion (9).	 In the

vicinity of a shock wave reflection with a soli 	 boundary, the axial

so	 0

distance between successive solution planes is cho en so that the

entire shock wave-solid boundary intersection falls between two

adjacent solution planes.

The external flow about the forebody is computed first. 	 The ex-

ternal flow field integration requires the periodic addition of

streamlines in order to retain a well dispersed computational mesh.

Furthermore, periodic deletion of selected streamlines is also re-

`: quired so that the number of computational points lies within bounds.

The internal flow field can be computed with or without the

discrete fitting of the internal shock wave system.	 The option in which

shock waves are not discretely fitted may be used in cases in which

the internal shock waves are quite weak in strength, and thereby an

acceptable solution can be obtained by smearing the internal discon-

tinui ties .

In this section, brief discussions are presented on generation of

the initial data, boundary conditions, regulation of the marching step

size, computation of the transport forcing functions, and numerical

stability.	 A detailed discussion of the overall numerical algorithm

is presented in Apperdix F.
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2. INITIAL-VALUE PLANE

The initial data are specified on a plane of constant x (see

Figure 1). The flow must be supersonic at everg	 p	 y point on this plane.

For uniqueness and existence of a genuine solution, the values of the

five dependent variables (u, v, w, P, and p) prescribed on this sur-

face must have at least continuous first partial derivatives.

If the forebody flow field is to be computed, the initial-value

plane must be specified at an axial (x) station that is upstream of

the forebody flow computational regime (see Figure 1). The last solu-

tion plane of the forebody flow field computation is adjusted to lie at

the axial station of the cowl lip, and constitutes the initial-value

plane for the internal flow field computation.	 The cowl lip is assumed

to be contained in a plane of constant x. Furthermore, the bow shock

wave must fall outside of the cowl lip, car, in the limit, intersect

the cowl lip exactly. The internal flow cannot be calculated if the

bow shock Have is ingested into the annulus.	 The points on the solu-

tion plane at the cowl lip axial station are redistributed to obtain a

ring of solution points coincident with the cowl lip.

If the forebody is conical ahead of the axial station where the

initial-value plane is specified, an approximate flow property fiela

on this plane may be internally generated in the computer program. The

internally generated initial data are obtained by an approximate tech-

nique which employs the Taylor-Maccoil solution for the flow about a

circular cone at zero incidence. A superposition method is then used

to obtain an approximation for the flow about a circular cone at

nonzero angle of attack by neglecting the cross flow effects. Alterna-

tively, a more exact solution for the initial data for flow about a
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circular cone at incidence may be obtained by employing the results of

Jones (33).

If the forebody is not conical ahead of the axial station of the

initial-value plane, another source of initial data must be used. If

available, experimental data may be employed,

3. SOLID BOUNDARY SURFACES

The computer program developed in the present investigation assumes

that both the centerbody and the fowl are axisymnetric. For the pur-

poses of geometry description, the axial (x) domain is divided into a

number of intervals. In any interval, the body radius r may be speci-

fied by either tabular input, or by supplying the coefficients in the

cubic polynomial

^r

I

y

F

r(x) = a i + bi (x - x i ) + c i (x - x i ) 2 + d i (x - xi ) 3	(71)

where the subscript i denotes the ith interval, r(x) is the body radius

at axial position x (x i < x < x i+l ), and the coefficients a i , b i , ci,

and d i are obtained by curve fitting the body contour. Since equation

(71) is a cubic, slope and curvature can be matched at the junction

point between two adjacent intervals (i.e., spline fits can be employed).

2
4. INTEGRATION STEP SIZE REGULATION

Except in the vicinity of a reflection of the internal shock wave

with a solid boundary, the axial marching step between successive

solution planes is determined by the application of the Courant-

Friedrichs-Lewy (CFL) stability criterion (9). The CFL stability cri-

terion mandates that the domain of dependence of the differential equa-

tions be contained within the convex hull of the finite difference

1

S
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network. That is, the Mach cone must be inside the outer periphery of

'he nine initial-value plane field points used in formulating the bi-

variate interpolation polynomial, equation (51). The allowable axial

	

step is given by	
r'

Ax = 
Eu 2

/(cq)][] - ( c/q ) (q2
/u2 

- 1)1 12IRmin
	

(72)

where Ax is the marching step, and R min is the distance between the

streamline intersection point with the initial-value plane and the

nearest point on the convex hull of the finite difference network. Equa-

tion (72) is applied at every streamline point on the initial-value

plane, with the actual integration step being chosen as the Ax

value at the most restrictive point. Equation (72) is applied only to

streamline points. The shock wave points are excluded. Moreover, in

the internal flow field integration, the shock wave points are ignored

in defining the convex hull of the finite difference network when

applying the stability criterion to a streamline point.

In the vicinity of a reflection of the internal shock wave with a

solid boundary, the axial step is controlled by the constraint that the

shock wave-solid body intersection is contained entirely between two

adjacent solution planes. The fit point stencils used in formulating

the various interpolation polynomials are appropriately expanded, in

this case, so that the CFL stability criterion is satisfied.

5. CALCULATION OF THE TRANSPORT FORCING FUNCTIONS

The numerical procedure developed in the present investigation has 	 ^e

the capability to include the influence of molecular transport on the

solution by treatin g the viscous and thermal diffusion terms in the

governing partial differential equations as forcing functions, or

51	 I
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correction terms, in the method of characteristics scheme. The computer pro-
; ^,t r

,a	 gram has the capability to include the influence of viscous and thermal diffusion

	

i	 in the computation of the external flow about the forebody, and in the computa-
}	 _I

ti,on of the internal flow field in which shock waves are not disc Ately fitted,

The program option in which shock waves are discretely fitted in the internal

flow field does not have the capability to include the influence of molecular

'	 transport in the computation, but rather assumes the flow to be i ,nviscid and

adiabatic. The detailed calculation procedures used for obtaining the transport
Y

forcing terms are presented in Appendix G.

S	 f	 .
6.	 NUMERICAL STABILITY

A stability ana lysis of the nonlinear finite difference algorithm includ-I 'x	 y	 hmy	 9 ^ ' .

}	 ing molecular transport was not attempted. Instead, a stability analysis for

isentropic flow was conducted. Stability of the generalized analysis was then

verified by actual numerical calculations.

Ransom, Hoffman, and Thompson ( 9) used the present numerical method to

compute the continuous steady three-Omensi ,onal supersonic isentropic flow in

a nozzle. The CFL stability criterion was used for locating successive solution

planes. A von Neumann linear stability analysis indicated that interpolated

flow properties, instead of the actual known values, s hould be used at the

streamline - initial - value plane intersection point [point (5) in Figure 3]. The

present analysis uses iinterpolated Flow properties at all points in the initial-

value plane.

52

i

e

r.

r

:l

r

A



r.

I	 r

i
'i'€+.35'-53w1. Art^.<`!-':^7^si. .'^^'3r= ?.^.^'d :n.M.t -:.	 1-'_^ ^i-^ _ ^^..^ .w , _-;^^.r	 _. >^	 mY. %^	 ' • ,^^ ^ ^.: e^:3^

SECTION VI

COMPUTATIONAL RESULTS

1. INTRODUCTION

Selected computational results are presented and discussed in this

section. The results presented are divided into three major categories:

external flow about the forebody, continuous internal flow, and in-

ternal flow in which the internal shock wave system has been computed.

In some instances, both axisymnetric flow and three-dimensional flow

results are shown. For the internal flow field in which shock waves

have been fitted, some comparisons with experimental data are made.

Moreover, some results of the present analysis are compared with those

of existing computational methods.

2. EXTERNAL FLOW ABOUT THE FOREBODY

For the purpose of testing the external flow integration procedure,

the flow field about a right circular cone at incidence was computed.

This is a conical flow field and the solution is constant along rays em-

anating from the vertex of the cone (i.e., there is no characteristic

length, so the solution has no dependency on x). At zero angle of

attack, the solution depends only on the angle subtended by a given ray

and the x-axis. At nonzero incidence, an azimuthal variation also

exists. To obtain the required initial data, the results of Jones k33)

were employed. The computed results should maintain the conical nature

of the flow field.
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Figure 9 presents numerical results obtained for a 10.0° half-

angle cone at 2.5° angle of attack oc with a free-stream Mach number

MW of 3.0. The computation employed 21 circumferential stations in the

computed sector (half-plane), and the number of radial stations on the

i-nitial-value plane was 11. The computed static pressure P normalized

by the free-stream static pressure P., is plotted versus the axial

position x normalized by the cowl lip radius R c . The pressure distri-

butions on the rays formed by the forebody and the bow shock wave on

both the leeward and windward planes e-l" symmetry are shown. Since the

flow is conical, the solution should remain constant along each of

these four rays at the respective pressure values at the appropriate

points on the initial-value plane. The initial-value plane pressures

are denoted by the straight line segments. The method of characteris-

tics solution is shown at a discrete number of axial stations, each

station corresponding to the axial location of a given solution plane.

The method of characteristics solution maintains the conical nature of

the flow field.

It should be noted that the increase in pressure across the leeward

side of the bow shock wave is minimal. As the angle of incidence is

further increased, the strength of the bow shock wave on the leeward

side is reduced until the point is reached where the angle of attack

is equal to the cone half-angle. At this point, no shock wave exists

on the leeward meridiional plane. Further increase in the angle of

incidence causes a flow expansion to occur on the leeward side. Since

the present analysis assumes that a shock wave exists about the
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entire forebody, the case where a flow expansion occurs on the leeward

side cannot be computed.
1	 )

T)e external flow about a circular cone at incidence wars also

computed including the effects of molecular diffusion. No significant

changes in the computed results were noted. Approximately 60 percent

i1
more computer execution time was required for the computation which

r
included the molecular diffusion terms.

3 3. CONTINUOUS INTERNAL FLOW

For the purpose of testing the continuous internal flow integra-

tion procedure in which s,,oc:k waves are not discretely fitted, the

#	 ;	 axisymmet.ric flow field in the simplified geometry inlet illustrated in

Figure 10 was computed. The geometry of this inlet was selected so
? ''	 f
	,j	

that the slope of the cowl contour at the cowl lip was equal to the

f
slope of the streamline at the cowl lip. Hence, no flow turning occurs

	

1	 i
at the cowl lip and the internal shock wave system is not generated.

Figure 10 illustrates the inlet geometry and the pressure dis-

tributions on the centerbody and the cowl. A monotonic increase in

pressure on the surfa^e of the cowl occurs. The pressure on the center-

body retains its conical flow value until the Mach wave emanating from

the cowl lip reaches the centerbody. After that point, a monotonic

increase in the centerbody pressure occurs. This computation was per-

formed with 21 radial stations and 1 circumferential station. The maxi-

mum deviation in mass flow rate on any solution plane from the mass

flow rate across the cowl lip solution plane was 0.25 percent.

56



.... .... .

d^

2.2 
(P/ POD 

CENTERBODY AND COWL PRESSURE
IUSTRIBUT IONS

	2.01	 CENTERBODY
--COWL

	

1.8	 .-1 .001

1.6,

1.4 .2 Rc

10*

2.51 Rc----•i
-4.4 Rc^ r

1. 0
2.6	 2.8	 5.0	 3.2	 3.4	 3.6 3.8	 40	 4.2	 4.4

(X /Rc)

FIGURE 10. AXISYMMETRIC CONTINUOU'S INTERNAL FLOW
PRESSURE DISTRIBUTIONS FOR MaD=3.0 AND a= 0°

fa



M

i	 r
i

'	 ^^.,-usmami<-e.^.uw	 .....^^:,.--....—^.^_:».^.,w^.b....^.-,^.,^....,,.ear•^.,..^r.ua.rwr......,.a.r.^.^...^..^...i-..-...., 	..

The flow field in the simplified geometry inlet illustrated in

Figure 1 10 was also computed including the effects of molecular diffu-

sion on the solution. No significant changes in the computed results

were noted. The increase in computer executi lon time was approximately

fiO percent.

4. INTERNAL FLOW WITH DISCRETE FITTING OF THE INTERNAL SHOCK WAVE

SYSTEM

Internal flow calculations were performed for the Boeing Mach 3.5

supersonic mixed-compression inlet documented in Reference (34). The

centerbody and cowl coordinates of this inlet are listed in Table 1.

The boundary contours are illustrated in Figure 11 for the design case

of zero centerbody translation. This inlet has a forebody which is

conical (the forebody is not shown in Figure 11). Consequently, all

of the numerical solutions were started at the cowl lip axial station.

The initial data were obtained by employing the results of Jones (33).

Extensive boundary layer removal is employed in this inlet to

control boundary layer separation in regions of strong adverse pressure

gradients such as those caused by oblique shock wave-boundary layer

interactions. Figure 11 indicates regions where the boundary layer is

removed. Since the present analysis does not compute the boundary 1a;,^r

nor takes account of boundary layer removal, good agreement between

computed and experimental results cat:no't be expected in regions of high

viscous interaction. For this inlet, 13.3 percent of the cowl lip mass

flow rate was removed through boundary layer bleed at the design point

condition to control boundary layer separation (34).
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TABLE 1

MACH 3.5 INLET COORDINATES

CENTERBODY CENTERBODY	 COWL COWL

x/Rc 	r/Rc x/Rc	 r/Rc	 x/Rc 	r/Rc x/Rc	
r/Rc

0.0	 0.0 4.8	 0.7504	 2.86	 1.0 4.55	 0,8695
4.0	 0.70532 4.9	 0.7391	 3.1	 1.004188 4.6	 0.864
4.1	 0.7228 5.1	 0.7120	 3.2	 1.0054 4.65	 0.86
4.2	 0,7387 5.3	 0.6829	 3.4	 1.0051 4.7	 0.8572

? 4.3	 0.7512 5.5	 0.6525	 3.6	 0.99996 4.8	 0.8533
;.' 4.4	 0.759 5.6	 0.6362	 3.8	 0.9882 4.9	 0.8511

4.5	 0.7625 5.7	 0.6 8	 4.0	 0.9681 5.0	 0.8502
4.55	 0.763 5.8	 0.5973	 4.1	 0.954 5.1	 0.85

j 4.6	 0.7625 5.9	 0.5744	 4.2	 0.9364 5.6	 0.85

4.65	 0.7611 6.0	 0.5467	 4.25	 0.9261 5.8	 0.8574
4.7	 0.7585 4.3	 0.9154 5.9	 0.8646.

4.4	 0.8949 6.0	 0.8735
4.5	 0.8768

x	 .	 Axial Position
r :	 Radial	 Position

R c :	 Radius of Cowl Lip

fj4

1	 ^ The first results employing the internal flow computational algo-

rithm in which shock waves are discretely fitted are for the design con-

' dition's of M = 3.5, zero centerbody translation, and zero incidence

(a = 0').	 At the design point, the bow shock wave intersects the cowl

lip exactly at zero incidence.	 Since the flow field is axisymmetric

. at zero incidence, 	 it can be computed using a two-dimensional method.

Comparisons of the results obtained from the present analysis with

those obtained from a two-dimensional method of characteristics scheme

' (35) for the zero incidence design point conditions are shown in

Figures 12 and 13.	 In these figures, the static pressure P normalized

by the free-stream stagnation pressure P TA is plotted versus the axial

si, position x normalized by the cowl lip radius R c .	 Pressure distributions

are shown for both the centerbody and the cowl. 	 The results obtained
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by the two-dimensional method of characteristic s algorithm are indi-

cated by solid lines, and the results obtained by the present analysis

are indicated by the dashed lines. Fifty radial stations were used in

the two-dimensional method of characteristics solution. Figure 12

illustrates the case where a total of 11 radial stations (9 streamline

points and an upstream and downstream shock wave point) were employed

in the three-dimensional method of characteristics solution. Good over-	 [^

all agreement is observed. A slight smearing of the pressure distri-

bution downstream of the second intersection of the shock wave with the

centerbody and a slight shifting of the shock wave-solid body inter-

sections are present in the three-dimensional algorithm's results.

The smearing of the pressure distribution is primarily a cersequence

of the coarse mesh size used in the three-dimensional scheme's solution.

Figure 13 illustrates the solution obtained by the three-dimensional

analysis when a total of 21 radial stations were used in the computa-

tion. In this case, the agreement between the three-dimensional

analysis and the two-dimensional analysis is excellent. The pressure

distribution behind the second shock wave-centerbody intersection is

predicted very well. The axial locations of the shock wave-solid

boundary intersections also agree very well. For this computation,

the maximum deviation in the computed mass flow rate at any solution

plane from that at the cowl lip solution plane was approximately 0.77

percent.

Comparisons of the results of the present analysis with experi-

mental data (36) for the Boeing Mach 3.5 inlet for a = 0° are shown in

Figure 14. Generaily speaking, good agreement is observed. The three-

dimensional method of characteristics scheme predicts shock wave-solid
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boundary intersections slightly downstream of the locations where the

experimental data indicate the intersections to occur. Since the

presence of a boundary layer would move the predicted intersection

points forward, this result seems plausible. Note that the best agree-

ment is obtained away from the regions where the boundary layer is

removed (see Figure 11).

At a given free-stream Mach number, the centerbody assembly must

be translated forward of its design point position as the angle of

incidence is increased to maintain supersonic flow through the geo-

metric throat of the annulus. The forward translation of the center-

body causes the cross-sectional area of the geometric throat to in-

crease. Moreover, as the free-stream Mach number is reduced from the

design point value, even further forward translation of the centerbody

is required. An experimentally obtained centerbody translation

schedule (37) is presented in Figure 15, where the nondimensional

centerbody translation is denoted by Ax/R
C
. The effects of an increase

in the angle of incidence and a reduction of the free-stream Mach num-

ber are clearly illustrated in this figure.

Results are presented below for two off-design conditions:

(1) M. = 2.5 with a centerbody translation of ox/R c = 0.855, and

(2) M = 3.3 with a centerbody translation of Ax/R c = 0.356. For each

jof these off-design conditions, the internal flow field is computed

for incidence angles of a = 0°, 3.0°, and 5,0°. For both off-design

conditions, the results of the present analysis are compared with
f

experimental data for an incidence angle of a = 3.0°.
ff

k	 Results for the first off-design case of M = 2.5 and Ax/RC =

i
0.855 are presented in Figures 16 to 19. Figure 16 illustrates the
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computed centerbody and cowl pressure distributions for an incidence

angle of a = 0°. Although the centerbody has been translated forward,

the coordinate system origin is maintained at the forebody tip. Con-

sequently, the internal flow computational regime begins at ,;IPc =

3.715. Generally speaking, the strength of the internal shock wave

system for this case is somewhat reduced as compared to the design

point case (see Figure 13). Figure 17 illustrates the computed

pressure distributions and some experimental data for an incidence

angle of a = 3.0'. Pressure distributions for the centerbody and the

cowl on both the leeward and the windward meridians are shown. Com -

pared to the a= 0° case, the strength of the internal shock wave

system is increased on the leeward side but reduced on the windward

side. Experimental data are presented for the centerbody pressure on

the leeward meridian and for the cowl pressure on both the leeward and

windward meridians. Generally speaking, good overall agreement

between theory and experiment is obtained except in regions of high

viscous interaction and boundary layer bleed, For all of the three-

dimensional computations, 21 circumferential stations and 11 radial

stations (9 streamline points and an upstream and downstream shock

wave paint) were employed in the computed sector (half-plane). The

maximum deviation of the mass flow rate at any solution plane from the

mass flow rate at the cowl lip solution plane for the cc = 3.0 0 case

was 0.44 percent. The computed pressure distributions on the center-

body and the cowl for both the leeward and windward meridians for the

incidence angle of a = 5.0° are shown in Figure 18. The leeward

meridian shock wave strength has been increased over the a = 3.0° case,

whereas the shock wave strength on the windward meridian has been
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reduced. The maximum deviation in mass flow rate for the a = 5.0° case

was 0.89 percent. Finally, to illustrate the effect of increasing

angle of attack on the centerbody pressure distribution, the center-

.	 body results of Figures 16, 17, and 18 are superimposed in Figure 19.

Results for the second off-design case of M. = 3.3 and Ax/RC

0.356 are presented in Figures 20 to 22. The computed pressure dis-

tributions for the centerbody and the cowl for an incidence angle of
Y

a = 0° are presented in Figure 2.0. With the prescribed centerbody

translation, the internal flow computational regime beings at x/Rc =

3.216. Figure 21 illustrates the computed centerbody and cowl static

pressure distributions on both the leeward and windward meridians for

an incidence angle of u = 3.0°. The strengthening of the leeward side

shock wave and the weakening of the windward side shock wave are again

noted. Expe;r;,gental data for the leeward meridian of the centerbody

and for both the leeward and windward meridians of the cowl are also

shown in Figure 21. Fairly good overall agreement between theory and

experiment is obtained until regions of high viscous interaction and

boundary layer removal are reached. Again, 21 circumferential sta-

tions and 11 radial stations were used in the computation. The maximum 	
4

deviation of the mass flow rate at any solution plane compared to that

on the cowl lip solution plane for the a = 3.0 0 case was 0.67 percent.

Figure 22 illustrates the computed static pressure distributions for the

centerbody and the cowl for an incidence angle of a = 5.0°. The ma-i-

•	 mum deviation in mass flow rate for this case was 0.84 percent.

Finally, comparisons are made between the res :.jlts of the present

. ^' I

4

analysis and results obtained from the finite difference sock-
4

capturing algorithm developed by Presley (37). At present, the
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1
computer program developed by Presley is the only other analysis capable

of predicting the internal flow field in supersonic mixed-compression

inlets at angle of attack. That algorithm employs the second-order

accurate finite difference operator devised by MacCormack (38). In

that scheme, shock waves are automatically captured in the computa-

tional mesh i1thout requiring any special logic which discretely fits

discontinuities. The presence of shock waves in the solution is evi-

denced by steep gradients in the computed flow property fields.

Figure 23 compares the centerbody and cowl pressure distributions

obtained by the method of characteristics scheme to those calculated

by the shock-capturing technique for the case of M. = 3.3, a = 3.0'

and Ax/Rc = 0.356. For the most part, good agreement between the two

analyses is obtained, in the method of characteristics solution,

however, the shock wave solid boundary intersections are more sharply

defined. This result is to be expected, since in the shock-capturing

technique shock waves are not discretely fitted but rather are smeared

over a number of mesh points. The shock-capturing algorithm employed

11 circumferential stations and 21 radial stations for the solution

presented in Figure 23.
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SECTION VII

CONCLUSIONS

I

r

The flow field in a supersonic mixed-compression aircarft inlet

at nonzero angle of attack has been computed using the method of char-

acteristics for steady three-dimensional flow in conjunction with a

discrete shock wave fitting ^-_icedure. The culmination of the present

research effort is a production type computer program which has the

capability to predict the flow field in a variety of axisymnetric

mixed-compression aircraft inlets. A number of conclusions concerning

the present analysis can be made:

1. The external flow field about the forebody can be accurately

calculated if a bow shock wave of reasonably strong strength

exists.

2. For axisymmetric flows, the solution obtained by the present

analysis agrees well with the solution obtained by the

two-dimensional method of characteristics.

3. Except in the regions of strong viscous interaction and

boundary layer removal, the results of the present analysis

agree well with experimental data.

4. Good agreement is obtained between the present analysis and

a finite difference shock-capturing technique for three-

dimensional flow solutions. The present analysis, however,

which discretely fits shock waves, provides a better resolu-

tion of the shock wave structure.

.w
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'	 S. Without the matching of the present analysis to a higher-

order boundary layer analysis, including the influence of

molecular transport in the computation has little or no	 r

effect on the solution.

Although the inlets analyzed were axisymmetric inlets, the com-

puter program can be readily modified to analyze geometries which have

noncircular cross-sections. Moreover, the inclusion of finite rate

chemical reactions in the thermodynamic model is reasonably straight-

forward. The analysis can be modified to compute the external flow

about a stepped cone and to compute the internal flow when the bow

shock wave has been ingested into the annulus. Perhaps the most worth-

while endeavor, though, would be to mate the present analysis with a

three-dimensional compressible turbulent boundary layer analysis. The

boundary layer analysis should have well developed three-dimensional

turbulence models, an accurate means of computing an oblique shock

wave-boundary layer interaction in three-dimensions, and the capability

to account for boundary layer removal.

If
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APPENDIX A

GOV°ERNING EQUATIONS

1. INTRODUCTION

The major assumptions constituting the gas d ynamic model are:

1. continuum flow

2. steady flow

3. negligible body forces

4. therm-dynamic equilibrium (i.e., mechanical, thermal, and

c4emical equilibrium)

5. no mass diffusion

6. negligible radiative heat transfer and no internal heat

generation other than viscous dissipation

7. viscous and thermal diffusion effects of secondary impor-

tance in determining the solution

The governing equations for the assumed flow model consist of the con-

tinuity equation, the component momentum equations, the energy equation,

the thermal and caloric equations of state, and the appropriate

representations for the molecular transport properties. These rela-

tions are presented in this appendix

2. DIFFERENTIAL EQUATIONS OF MOTION

The general continuity equation ( 29} is

Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.

i

Y,

°a

i
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Dt + A ax  _ 0 (A.l)
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where t denotes time, p

rectangular coordinates

denotes the correspondi

The operator D( )/Dt in

given by

is the density, x i 0=1,2,3) denotes the three

X, y, and z, respectively, and u  (i=1,2,3)

ig velocity components u, v, and w, respectively.

equation (A.1) is the material derivative

D( I
= a ( )

t	 at	 j axi

For steady three-d imensional flow, equation (A.1) may be written in

expanded form as

puX +pvy +pwz +up X +vpy +wp z =0	 (A.3)

where the subscripts x, y, and z denote partial differention with re-

spect to the corresponding direction.

-`he appropriate momentum equation is the Navier-Stokes equation

( 29), which written in component form is
1

Dui	 _ DP	 a	 aui aU i
	_ 2 a	 a"1

P Dt - $ i 	 ax i + axa u axi + ax i	3 axi
J

au.

+ ax	
TI	 (i=1,2,3)	 (A.4)

i

where B  denotes the ith component of the body foi,-e, P is the pressure,
t

p denotes the dynamic viscosity, and n is the second coefficient of
F

	

	 .

viscosity.
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A major assumption of the present analysis is that the effects

of viscous and thermal diffusion are of secondary importance in de-

termining the solution as compared to the inertial effects. Consistent

with this assumption of inertial dominance, the viscous and thermal

diffusion terms in the governing differential equations will be treated

as forcing or correction terms in the method of characteristic scheme

to be presented. In the following, the viscous and thermal transport

i
terms will be placed on the right-hand sides of the respective govern-

ing equations. The convective terms will be placed on the left-hand

sides, and will be considered as constituting the principal parts of

these equations. Thus, writing equation (A.4) with the assumptions of

steady flow, negligible body forces, n = 0 [Stokes ' s hypothesis (30)],

and inertial dominance gives

puj a e + ax - F
i 	(i=1,2,3)	 (A. 5)

x
J	 i

where

. _	 --^	 -	 -
a	 - au i 	au

F	
a	

(i=1
2	

au

axj u [axi + axi 	3 3xi w axj	
,2,3}	 (A. 6)

Treating the viscosity as a variable, equations (A.5) and (A.6)

can be written in expanded form for each of the three coordinate

directions as

puux + pvuy + pwu z + Px = F 	 (A.7)

puvx + pvvy + pwvz + Py = 
F 
	 (A.8)

auwx + pvwy + pwwz + P  = 
F 
	 (A.9)

1	 ,
,h

. 'f
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r

where

Fx = ux^3 ux -	 vy + wzd + py (uy + v x ) + u z (uz + wX)

+ u L' uxx + uyy + uzz + 3 vxy + wxz ]	
(A. 10)

Fy = Py
B." 

vy
 - 3(ux 

+ 
W ] 

+ ux (vx + uy ) + 
P (vz 

+ wy)

+	 vyy + vxx + vzz + 3 
yx + wyz )	 (A.11)

f z = 
uz ^3 w  - 

3(u x + V  + ux (wx + u z ) + Uy ( y + vz)

+ 11 R wzz + wxx + wyy + 3(uzx 
+ vzy J	 (A.12)

Finally, it remains to obtain an appropriate form of the energy

equation. It is assumed in the present analysis that the working gas

can be represented as a simple system in thermodynamic equilibrium.

Under this assumption the thermodynamic relation (31)

Tds = dh - PP
	

(A.13)

is valid, where T denotes the absolute temperature, s is the entropy

per unit mass, and h is the enthalpy per unit mass. for a simple

system, specification of any two independent thermodynamic properties

defines the thermodynamic state of the system (31). Thus,

t r

r^

1

C

yn
y

P = P(p,s )
	

(A.14)

Employing the concept of the total derivative, and introducing the ma-

terial derivative operator given by equation (A.2), the following

relation may be obtained from equation (A.14).
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DP = aP	 aP	 Ds*	 (A.15)[apj	 (asjDt	 Dt	 Dts	

P

The sonic speed	 a	 is defined by

r	 1
a 2 = (aP^
	 (A. 16)

^

` 5 r

Thus, equation (A.15) may be written as

DP - a2 D = Pe	 (A.17) t
Ft

F

where

r
r	 , P

{.' The material derivative of entropy in equation (A.18) may be

expressed in terms of a thermal conduction function and a viscous dissi- r

patiUwi function.	 Consider the energy equation in the following form N

(29).

P Be _	 a
	

aT	 + P DP +	 (A.19)
[$c

Dt	 ax i	axi	 P Dt

In equation (A.19), a denotes the internal energy per unfit mass, K is

the thermal conductivity, and 0 represents the viscous dissipation func-
a

tion which for n = 0 is given by

2
- 1	 au i 	+ a	 _ 2 auk	

(A.20)u	 a;j2	 axa	axi	3 axk

where 6is the Kronecker delta. 	 lasing the definition of enthalpy
i3 3

(h = e + P/ p) in equation (A.13) yields j	

.r

i. 4

f	 <

95

ft

	 b

1	 =



De_ T Ds + p De
Dt	 Dt	 _2 Qt

(A.22)

,r,

(A.23)

(A. i4)

f

Tds - de - 
p 
f 
dp	 (A.21)

p

From equation (A.21) the material derivative of internal energy may be

written as

f	 Introducing equation (A.22) into equation (A.19) yields

} PT Ds =	 K 
gT +

Dt axi	xi

.,

	

	 Substituting equation (A.23) into equation (A.18) gives
i

Fe -

[TX—i flxili
}.	 where

TT [TS)
t	 p

By treating the thermal conductivity as a variable, and assuming

steady three-dimensional flow, equations (A.17) and (A.24) may be

written as

upx + vpy + wpz - a2 (upx + vpy + wpz ) = Fe 	(A.26)

i	 where
A

1

Fe = +(Txx + T
yy + TZz ) + KXTx + K y + K T2

F	
+u2(u2+v2+w2+uv +uw +Yy +v2+w2

x	 y	 z	 y 	 zx	 x	 x

+ uy + wy + uZ + vz - 3(ux + vy + wz }	 (A.27)
i f
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As in the component momentum equations, the viscous and thermal

diffusion terms in the energy equation have been placed on the right-

hand side and will be treated as forcing functions in the method of

characteristics scheme to be presented. The left -hand side is composed

of the convective terms which are considered to constitute the priinci-

pal part of this equation.

3. THERMODYNAMIC MODEL

Before a solution to the system of governing partial differential

equations can be obtained, the temperature T, sonic sp zd a, thermo-

dynamic parameter &I viscosity u, and thermal conductivity K must be
	

i

expressed in terms of the dependent variables P and p. The representa-

tions for T, a, and ^ are discussed i n this section. The relations

for a and K are presented in the next section.

The general functional forms of the temperature T, sonic speed a,

and thermodynamic parameter E may be expressed as

T = T(P,p)	 (A.28)

a = a(P,p )	 (A.29)

E _ W,p)	 (A.30)

For multicomponent systems, with either frozen or equilibrium chemical
t

composition, the functional relationships for T, a, and C are obtained

from thermochemical calculations. In the case of a thermally and

calorically perfect gas, the functional relationships for T, a, and E

are simple analytical expressions given by
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T = P/ AR
	

(A.31)

a = (YP/ P)
1/2	 (A.32)

= Y - 1	 (A.33)

where Y is the specific heat ratio, and R is the gas constant. y

In the computer program developed in the present investigation,

the temperature, sonic speed, and thermodynamic parameter & are calcu-

lated in a separate subroutine. The assumed thermodynamic model is

that of a thermally and calorically perfect gas, thus, equations (A.31)

to (A.33) are employed. Substitution of a replacement subroutine for

the existing one allows other thermodynamic models to be specified.

4. TRANSPORT PROPERTIES

Representations are required for the viscosity, the thermal

conductivity, and their spatial gradients. Both viscosity and thermal

conductivity are functions of temperature and pressure. Hence,

u = 1 0,P)	 (A. 34)

K = K(T,P)	 (A.35)

Using equations (A.34) and (A.35), the spatial derivatives of viscosity

and thermal conductivity may be written as

a	 3T	 DP	 (A. 36 )3[5T)= 	 P ax i 
+ fa

 T 'xi

DK l _ ^dK  I DT I

 + ITPIT3K 

V	
(A. 37)

aX	 3T P ^X axi

E
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I

Hence, spatial derivatives of pressure and temperature are also re-

quired. Spatial derivatives of pressure and density are employed in

the basic integration scheme (even for the inviscid flow case). Thus,

those derivatives are already available. Spatial derivatives of

temperature can be expressed in terms of spatial derivatives of pressure

and density by differentiating the thermal equation of state, equa-

tion (A.28).

The pressure dependency indicated in equations (A.34) and (A.35)

is usually quite weak, and often both the viscosity and the thermal

conductivity are assumed to be functions of temperature only. Thus,

u = u(T)	 (A.38)

K = K(T)	 (A.39)

The Sutherland formula (30) is a good representation for equation

(A.38).

FTOI
1.5 To + S

o	 T + S	 (A.40)

In equation (A.40), too is the viscosity at the reference temperature

To , and S is a constant. Equation (A.39) can be represented by the

quadratic expression

K = a l + a 
2 
T + a 

3 
T 2	 (A.41)

where the coefficients a  (i = 1,2,3) are obtained by curve fitting

thermal conductivity data.

In the computer program, the viscosity, the thermal conductivity,

and their spatial derivatives are computed in a separate subroutine.
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The assumed functional forms of viscosity and thermal conductivity are

given by equations (A.40) and (A.41), respectively. The coefficients

a  (i=1,2,3) in equation (A.41) are internally generated in the computer

program by curve fitting user supplied data. Different formulations

for the transport properties can be implemented into the computer pro-

gram by supplying an appropriate replacement subroutine.
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J	
^.

APPENDIX B

DERIVATION OF THE EQUATIONS FOR THE CHARACTERISTIC

SURFACES AND THE COMPATIBILITY RELATIONS
4

1. INTRODUCTION

Systems of hyperbolic partial differential equations in n inde-

pendent variables have the property that there exist surfaces in

n-space on which linear combinations of the original differential

equations can be formed that contain derivatives only in the surfaces

themselves. Differentiation in these surfaces is performed in (n-l)_.

space. The resulting differential operators are interior operators

which are known as compatibility relations. The surfaces are called

characteristic surfaces. A compatibility relation is valid only when

it is applied on its corresponding characteristic surface. Furthermore,

data cannot be arbitrarily specified on a characteristic surface, but

instead must satisfy the compatibility relation.

The method of characteristics is based on replacing the original

system of partial differential equations with an equivalent number of

compatibility relations applied on the appropriate characteristic sur-

faces. In flows with two independent variables, the method of char-

acteristics has the advantage of reducing the solution of a system of

partial differential equations to the solution of a system of ordinary

differential equations. In three-dimensional flow, however, the

resulting compatibility relations are still partial differential equa-

tions in two iFiuependent directions.

I

a

a
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In this appendix, the equations for the characteristic surfaces

and the corresponding compatibility relations are derived for steady

three-dimensional flow. For a complete discussion of hyperbolic partial

differential equations in three independent variables, reter to Courant

'
and Hilbert ( 39). An excellent presentation of the method of character-

istics for three-dimensional flow is given in Zucrow and Hoffman (5 ).

2. EQUATIONS OF MOTION

The partial differential equations of motion for steady three-

dimensional flow consist of the three component momentum equations,

the continuity equation, and the energy equation. Those equations are

developed in Appendix A, and are repeated below for reference.

puux + pvuy + pwuz + Px = Fx	 (B.1)

puvx + pvvy + pw vZ + Py = F
Y
	(B.2)

puvx + pvwy + pww z + P  = F 	 (B.3)

pu x + 
PV  

+ pwz + UP  + VP  + WP  = U	 (B.4)

up
 
 + vpy + WP  - a2 (up x + 

VP  
+ wp Z ) = Fe	 (B.5)

In equations ( B.1) to (B . 5), u, v, and w denote the x, y, and z compon-

ents of velocity, respectively, p is the density, P is the pressure,

a is the sonic speed, and the subscripts x, y, and z denote partial

differentiation in the corresponding direction. The ►tonhomogeneous

terms Fx , Fy , F Z , and Fe are the forcing terms in the x, y, and z com-

ponent momentum equations and the energy equation, respectively. Writ-

ten in this form, with the left -hand sides constituting the prinicpal

c

F^

1

1

i



parts, equations (B.1) to (B.5) may be classified as a system of quasi-

linear nonhomogeneous partial differential equations of first order.

The system is hyperbolic (i.e., has real characteristic surfaces) if the

flow is supersonic.

3. CHARACTERISTIC SURFACES

The general compatibility relation, which is a linear combination

of the governing partial differential equations, is formed by multiply-

ing equations (8.1) to (B.5) by the arbitrary variables w  (i=1 to 5),

respectively, and summing. This yields

w l ( puux + pvuy + pwu z + P x ) + w2 (puvx + pvvy + pwv z + Py}

+ w3 (puwx + pvwy + pww z + P z ) + w4 (pu x + 
PV  + pwz

+ up  + 
VP  

+ wp z ) + w5
 
[up x + vpy + wPz

- a2 (up
x + VP  

+ wp z )] = w 1 Fx + w2Fy + w 3F z + w5Fe (B.6)

Equation (B.6) may be written as

p (uW l + W4 ) ux + p vw l uy + PWWIuz + pu`'`2vx + p (vw2
 + w4)vy

+ pww2 vz + puw 3wx + pvw3wy + p(ww3 + w4)wz

+ (w l + uw5 )P X + (w2 + vw5 )Py + (w3 + ww5)Pz

+ u(w4 - a2w5 ) px + v(W4 - a2w5 )Py + w(w4 - a2w5)pz

= w 1 F x + w2 Fy + w3F z + w5 Fe	(8.7)
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By noting the coefficients of the partial derivatives in equation

(B.7), the following vectors may be defined.

W  = 1P(uWl + w4 ), P vw l , PWw l ]	 (B. 8)

W2 = CPW22 P(Vw2 + w4), PWw2 ]	 (8.9)

W3 = IPW3 9 
Pvw 3 . P(ww 3 + w4 )]	 (B.10)

W4 = [(wl + uw5 ) ' 
(w2 

+ vw5 ), (w3 + ww5)]	 (6.11}

W5 = Eu(w4 - a2 W5 ) ' 
V
(w4 - 

a2w5 )P W(w4 - a2 W5)] (8.12)

The directional derivative of a function f in some direction

A, = (t 
X 11ty ,tz ) is given by

Of _	 of+^ of+^ 3f
d^	 x ax	 y ay	 z az	 (B.13)

By considering equations ( B.8) to (8.13), equation (B.7) may be written

as

du + dV + dw + AP + dp _ . w F + w F + w F + w F	 {6.14)dWl dW2 dW3 dW4 dW5	1 x	 2 y	 3 z	 5 e

where du/dWI is the directional derivative of u in the Wl direction,

etc.

On a characteristic surface, equation (B.14) reduces to an interior

operator, that is, differentiation takes place in the surface itself.

For this to occur, the vectors W i 0 =1 to 5) must all lie in the

elemental plane which is tangent to the characteristic surface at the

point in consideration. This means that the vectors W  ( i = 'i to 5) are

l

i

i
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linearly dependent. Let the normal to the characteristic surface be

denoted by N = (N
x
 ,N y ,N z ).
	 Hence, on the characteristic surface

N	 W  = 0	 (i=1 to 5)	 (B.15)

Equation ( B.15) yields five linear homogeneous equations which may be

written in matrix form as follows

pU	 0	 00^N x 	 Wl

0	 pU	 0	 pNy	 0	 w2

0	 0	 pU	 Az	0	 W3	 = 0	 (B.16)

N 
	

N 
	

N 
	 0	 U	 W4

0	 0	 0	 U	 -a2U	 W5,

where

U = uN x + A + A z	 (3.17)

Since the system given by equation (B.15) is homogeneous, a nontrivial

solution exits only if the coefficic.it matr i x is singular, which means

item APtprminant must be zero. Evaluating the determinant and equating

!ro yields

(PU)3 EU2 - a2 ( N2 + Ny + NZ) ] = 0	 (B.18)

i (B.18) is the characteristic equation for the original system

:ions, equations (B.1) to (B.5). The form of equation (B.18)

of a repeated linear factor and a quadratic factor.
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Equating the two factors in equation (B.18) to zero yields the

equations of two real nonintersecting cones formed by the envelope of the

characteristic normals at a point. Setting the linear factor i!, equation

(B.18) to zero gives (the case of p = 0 is immediately dismissed)

UN  +vNy + AZ = 0	 (B. 19)

Equation (B.19) represents a degenerate cone formed by the envelope of

characteristic normals at a point, each normal being orthogonal to the

local velocity vector. Hence, equation (B.19) represents a plane

normal to a streamline. The characteristic surface is the reciprocal

cone to this degenerate cone of normals, and, hence, is also degenerate,

consisting of line segments tangent to the streamlines. Characteristic

surfaces with normal components satisfying equation (B.19) are called

stream surfaces. The envelope of all stream surfaces at a point is a

single pencil of planes whose axis is a streamline. A streamline may

be represented by the following equations

dx/dt = u	 dy/dt = v	 dz/dt = w
	

(B.20)

where t is the time of travel of a fluid particle along the streamline.

Equating the quadratic factor in equation (9.18) to zero gives

NNX * A
y 

+ WN ) 2 - a2 (N2 + Ny + N2) = 0	 (B.21)

Equation (B.21) represents the quadric surface of a right circular cone

formed by the envelope of characteristic normals at a point. In gas

i

dynamics this cone is usually referred to as the cone of normals, and

is a real cone if q > a, where q is the velocity magnitude. Equation

(B.21) may be written as

.
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Aunx + vny + wnz = a	 (B.22)

where n = (nx ,ny ,nz ) is the unit normal to the characteristic surface.

Equation (B.22) was obtained by arbitrarily selecting the positive root,

and the results which follow are consistent with that selection. Char-

acteristic surfaces whose normal components satisfy equation (B.21),

or equation (B.22), are called wave surfaces.

Equation (B.21) is the equation for the cone of normals, which is
f

a quadric surface. In general, a quadric surface may be expressed as

A
ii
dx^dx^ = 0
	

(B.23)

where x i (i=1,2,3) denotes the three Cartesian coordinates x, y, and

z, respectively, and A is a nine element coefficient matrix of order

two. A normal vector is a directed line segment, so

N  = e dx i	(i=1,2,3)
	

(B.24)

where Ni is the

proportional to

(B.23) and (B.2

(uiui

ith component of the normal vector, and n is a constant

the length of the normal. By considering equations

4), equation (6.21) may be written as

- a 26
ii

)dx i dx^ = 0	 (B.25)
R

where u  (i=1,2,3) denotes the three velocity components u, v, and w,

respectively, and 
6ij 

is the Kronecker delta.

Repeated indices imply summation over the range of 1 to 3 unless other-

	

wise noted.
	 i

5	 k
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The charactft^stic cone, which is the envelope of all wave

surfaces at a point, is the reciprocal cone to the cone of normals

given by equation (B.21), or equation (B.25). The geometrical rela-

tionship between these surfaces is shown in Figure B.I. If the general

form of the equation of the cone of normals is given by equation

(B.23), then the reciprocal cone is given by ( 9)

A.Idxi dx^ = 0	 (B.26)

where A 1 is the inverse of the nine element symmetric matrix A in

equation (B.23). Using equation (B.25) to determine A from b ch A 1

may be determined, equation (B.26) for the characteristic cone m4y,,be

written as

[uiui - (
q2 - a2 )6 ij ]dx i dxj = 0	 (B.27)

Equation (B.27) represents a real cone if q > a. Writing equation

(B.27) in expanded form yields

[u2 _ (
q2 - a 2 ))dx 2 + [v2 - (q 2 - a 2 )Jdy2 + [w2 - (q2 - a2)1dz2

+ 2uv(dx)(dy) + 2uwd(dx)(dz) + 2vw(dy)(dz) = 0 	 (B.28)

The characteristic cone given by equation (B.28) is known as the Mach

cone and represents the envelope of all wave surfaces at a point. The

line of tangency between a partricular wave surface and the Mach cone

is known as a bicharacteristic. Integration of equation (B.28) gives

the curved cone known as the Mach conoid.

In summary, for steady three-dimensional flow there are two

families of characteristic surfaces: stream surfaces and wave surfaces
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(see Figure B.2). The normal to a stream surface must satisfy equation

(8,19), and, hence, the stream surface contains the local velocity

vector. The envelope of all stream surfaces at a point is the streamline

through the point. The normal to a wave surface must satisfy equation

0.21). The envelope of all wave surfaces at a point is the Mach cone.

The line of contact between a particular wave surface and the Mach cone

is called a bicharacteristic. At any point there are an infinite

number of stream surfaces and wave surfaces.

4, SOLUTION FOR THE wi

On a Characteristic surface, equation (B.14) reduces to an interior

operator, that is, it becomes a compatibility relation. To obtain the

exact form of the compatibility relation, the wi (i=1 to 5) must be

determined.

For a stream surface, equation ( B.19), repeated below, is valid.

uN x +vNy +wNz = U = 0
	

(8.19)

Substitution of equation (B.19) into the homogeneous system given by

equation (B.16) yields

0	 0	 0	 pN 
x	

0	 W1

0	 0	 0	 pNy	 0	
W2

0	 0	 0	 pNz	 0	 w3 = 0	 (B.29)

N x	
N 
	

N 
	 0	 0	 w4

0	 0	 0	 0	 G w5

i

I
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The coefficient matrix in equation (8.29) is rank two (rank is the

number of nonzero rows in the row echelon form of a matrix). The

number of independent nontrivial solutions for the w  is equal to the

order of the coefficient matrix minus its rank, and hence, in this

case, is three. From equation (B.29), w 4 = 0 for all solutions, w5

is arbitrary, while w 1 , w2 , w3 satisfy the following equation.

w1 Nx + w 2Ny
 + w3 N

Z = 0	 (B.30)

A set of three possible solutions is

w1 = w2 = w3 = w4 = 0,	 w5 = 1	 (6.31)

w1 = u, w2 = v, w3 = w,	 w4 = w5 = 0	 (B.32)

W1 = Sx , w2 = Sy , w3 = SZ , w4 = w5 = 0	 (B.33)

The vector S = (Sx ,Sy ,SZ ) in equation (B.33) lies in the stream surface

and is independent of the velocity vector.

On a wave surface, equation (B.21) is valid. That equation may be

written as

U = ajNl
	

(B. 34)

where ICI is the magnitude of the normal to the wave surface. Substi-

tuting equation ( B.34) into equation ( B.1-6) yields

r	 ^;
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pa INI	 0	 0	 pNx	
0 w1

1

0	 pa INI	 0	 pNy	 0 w
7

0	 0	 pal NI	 pNZ	0 w3	 = 0	 (B.35)

Nx	 Ny	 NZ	 0	 a IN I

a:r

I

0	 0	 0	 a l Nl	 - a 	I N!) w5

r

L

r.
The coefficient matrix in equation (B.35) is rank four, and, hence, one

' independent nontrivial solution exists for the w.. The solutions for

w 1 , w2 > w3 , and w5 may be expressed in terms of w4 . Arbitrarily

selecting w	 _ -1 yields
E

W1 - nx/a,	 w2 - ny/a,	 w3 - n^/a,	 w4

w5 = -1/a2 	(B.36)

where n = ( n x ,ny ,nz ) is the unit normal to the wave surface.

5. COMPATIBILITY RELATIONS

The compatibility relations are obtained by substituting the

solutions for the w  into equation (B.6). The compatibility relations

valid along the stream surfaces are obtained by substituting equations

(B.31) to (B.33) into equation (B.6). The results are

up
 
 + vpy + wpz - a2 (up x +• vpy + wpz ) = €e	 (B.31)

S^
,y
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=u^+va-()+wa2LI
dt	 ax	 ay	 az

(B.40)
f.

pu(uux + vu  + wuZ ) 
+ pv(uvx + 

vvY + wvz ) + pw(uwx + v y

+ wwz ) + up  + vPy + wPz = uFx + vFy + wFz	(9.38)

pSx(uux + vu  t wuZ ) + pSY (uvx + vv
Y+ wvz) 

+ pSz(uwx + VWY

+ wwz ) + S 
x 
P x + S 

Y 
P Y + S 

z 
P z = S 

x 
F x + S 

y 
F y + S 

z 
F 
z
	 (9.39)

Note that equation (B.37) is the same as equation (B.5), which shows

that the energy equation is characteristic to begin with.

Equations (B.37) and (B.38) may be written in a form that repre- 	 f

sents differentiation in the streamline direction only. From equation

(8.13), noting that for a streamline Z . = u, ky = v, and X  = w,

the directional derivative along a streamline is given by

where t is the time of travel of a fluid particle along the streamli-ne.

Using equation (B.40), equations (B.37) and (B.38) may be rewritten as

dt -a2 d Fe	 (B.41)

d + p t + p	 + dt = uF
x + vFY + wFZ	(B.42)

The compatibility equation that is valid along wave surfaces is

obtained by substituting equation (B.36) into equation (B.6). The

result is

^• x

4
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pan x ( uux + vu + wuz ) + pany (uvx + vv  + wvZ)

{

	

4 A i

	 + pan z (uwx + VW + wwz ) + (anx - u)Px + (any - v) Y

^	 1

	

{

	 + (an z - w)P z - pa2 (ux + V  + wz ) = a
	

(B.43)	
I

where
	

r

A = a(n xFx + nyFy + nz Fz ) - Fe	 (B.44)

Equation (B.43) may be written in a form that contains differen-

tiation fn the bicharacteristic direction. 	 A bicharacteristic is a

ray or generator of the Bach cone.	 The Mach cone is the reciprocal cone

to the cone of normals (see Figure B.1).	 As a consequence,	 a bichar-

acteristic is orthogonal to the surface of the cone of normals. 	 The

equation for the cone of normals is given by equation (B.21).	 Substi-

r

tution of equation (B.24) into equation (8.21) yields the equation for

the surface of the cone of normals in standard form Ef(x,y,z) = constant].

Differentiation of this expression to obtain the gradient yields the

direction of the bicharacteristic. 	 This gives A	 = (u - an ), _
.Ix	 x

k = (v - any ), and Z 	 = (w - anz ) in equation (B.13), so that differ-

entiati-on in the bicharacteristic direction is given by

a	 I	 to - anx }	 LI + (v - any } aye + (w - anz ) as	 (B.45)

:v

In equation (B.45), t is the time of travel of a fluid particle along

the streamline that is the axis of the Mach cone. 	 The relationship be- t

tween the vectors Q, V, and n is shown in Figure 8.3.
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l

The term

*(pa2[n2ux	
y+ n2v + 

n2wz + (uy + vx )nxny + (uz + wx)nxnz

+ (vz + y )nynz ]1

may be added to and subtracted from equation ( B.43), and then by employ-

ing equation (B.45) the following form of the wave surface compati-

bility relation may be obtained.

du	 dv	 dw dP _ _ 2 2
pan 

du

 Ft 
pan 

dt + Panz dt - Ft	 ^(nx - l)ux

+ (n2 - l)v + 
(n2 - 

1)w + 
nn ( u 

+ v) + nn(u + wy	 z	
x y y	

x	 x z z	 x)

+ nynz ( vz + wy )]
	

(B.46)

The terms in brackets in equation ( B.46) are known as cross derivatives

and represent differentiation in the wave surface in a direction normal

to the bicharacteristic direction.

Equations (B.29) and (B.35) determine the number of independent

differential compatibility relations valid along a particular stream

surface and a particular wave surface, respectively. At any point

there exist an infinite number of stream surfaces and wave surfaces.

However, the number of independent compatibility relations cannot exceed

the number of independent equations of motion. Hence, it is necessary

to determine which of the possible combinations of compatibility rela-

tions are independent. Ru,anov ( 32), using a proof in the space of

characteristic normals, has shown that for steady three-diimensional

isentropic flow two of the stream surface compatibility relations and
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the single wave surface compatibility relation applied along three

different wave surfaces form an independent set of characteristic

equations. Rusanov's results may be extended to the present problem

since the principal parts of equations (B.1) to (B.5) are the same as

those for isentropic flow. Thus, for the present problem, an inde-

pendent set of compatibility equati-ons consists of equations (B.41)

and (B.42) applied along a streamline, and equation (B.43) [or equa-

tion (8.46)] applied along three different crave surfaces.

6. BUTLER'S PARAMETERIZATION OF THE CHARACTERISTIC EQUATIONS

The numerical algorithm that is employed in the present investiga-

tion is based on a second-order scheme devised by D.S. Butler (24).

This scheme has been used by Ransom, Hoffman, and Thompson ( 9) to

compute isentropic steady three-dimensional nozzle flows, and by Cline

and Hoffman (25) to compute chemically-reacting steady three-dimensional

nozzle flows.

In this section, Butler's parameterization of the characteristic

equations is presented. The discussion below is limited to the partic-

ular application of Butler's method to the present problem. An excel-

lent review of Butler's general method is given in Ransom, Hoffman, and

Thompson ( 9).

For Butler's scheme to be applicable, the characteristic determin-

ant must be composed of a quadratic factor and a repeated linear factor.

The determinant of the coefficient matrix in equation (8.16) is the

characteristic determinant for the present problem, and by examination

of equation (8.18) it is seen that it is composed of the required

factors. The quadratic factor corresponds to the wave surfaces. The

r •

)

i

f
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envelope of all wave surfaces at a point is the Mach cone, The line of

tangency between a particular wave surface and the Mach cone is a bi-

characteristic. The linear factor corresponds to the stream surfaces.

The axis of the envelope of all stream surfaces at a point is a

streamline. Butler's method assumes that for the linear factor,

differentiation can be expressed soley along the axis of the envelope

of the corresponding characteristic surfaces. Examination of equations

(B.41) and (8.42) demonstrates that this condition is applicable.

As discussed in the first section of this appendix, if the system

of governing partial differential equations has differentiation oc-

curring in n-space, then differentiation in the characteristic surfaces

occurs in (n-1)-space (i.e., differentiation is performed in a mani-

fold of one lower dimension). As a result, for three-dimensional flow

0=3), the general form of a compatibility relation valid along a

characteristic surface may be written as

1	 4

r.

3

F

E v (3u v/ax') f F^ Du ^/ax2) = D
	

(B.47)

}	 where the repeated index v implies summation over the range of 1 to 5,

xI 0=1,2) denotes two independent directions in the characteristic

surface, u  (v=1 to 5) denotes the dependent variables, and Ev,

F
V
 (v=1 to 5), and D are general functions of x! and u v . For stream

surfaces, differentiation may be expressed solely in the streamline

direction [see equations (8.41) and (B.42)]. Consequently, in the

following, the discussion will be limited to the wave surfaces.
t

For steady three-dimensional flow, butler introduced the following

parametric representation for a bicharacteristic.
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dxi = (ui + cai cos@ + 0 sin6)dt	 (i=1,2,3)	 (B,48)

In equation (B.48), x i (i=1,2,3) denotes the three Cartesian coordinates

^N

X11 Y. and z, respectively, u i	 (i=1,2,3) denotes the corresponding

velocity components u, v, and w, respectively, a is a parametric angle

denoting a particular element of the Mach cone and has the range
Y

ti

0 < 6 < 27r, t is 	 the time of travel of a fluid particle along the

Tstreamline that is the axis of the Mach cone, and c is defined by
2

i
s

t

f

C 	 2 2	 2= ag /(q	 - a2 )	 (B.49)
f

where q is the velocity magnitude and a is the sonic speed. 	 The vec-
a

tors a i and S i are parametric unit vectors with rx i , S i , and

ui /q (i=1,2,3) forming an orthonormal set.	 A geometrical representation 74

of this parameterization is given in Figure B.4.
:

The direction specified by equation (B.48) lies in the wave 	 surface 14

and	 is	 in the bicharacteristic direction. 	 A direction in the wave

surface and orthogonal to the bicharacteristic direction may be written 3

in parametric form as

E

mi	 = C$ case - crxi sine	 (i=1,2,3)	 (B.50)

Verification of the orthogonality of the directions given by equations

(B.48) and (B.50) may be accomplished by formi-ng the dot product

(mi dxi ) and using the orthonormality relations
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u ia i = u 0 i = 
(Iisi 

= 0

(B.51)

a iai = BiBi = uiui/q 2 = 1

By considering equation (8.47) and selecting x1 and x2 as the

directions given by equations (B.48) and (B.50), respectively, the

following form of the wave surface compatibility relation is obtained.

Du
AV (u i + ca i Cosa + aisine) ax"'

.
i

au
B + Cv

 
(Cs i cose - caisine) axv	 (B.52)

i

In equation (8.52), Av , B, and Cv are functions of 0, uv , and xi.

Employing equation (B.13), and noting from equation (8.48) that along a

bicharacteristic

zi = ui + Ca i cose + cB i sinB	 (i=1,2,3)	 (8.53)

equation (8.52) may be written as

du	 DU

Av	
-4= B + Cv (ca i cose - c(xisin4) axV
	

(B.54)
di

i

where the operator d(_)/dz represents the directional derivative along

the bicharacteristic. The general forms of the coefficients Av , B,

and C  are given by Butler as

AV - Alv + A2vcose + A3vsine
	

(8.55)

B = B1 + B2cose + 83sine
	

(B.56)
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C ^ = C 1 + C2V cose + C 3v sine	 (B.57)

where the Ake , Bk , and Ckv (k=1,2,3 and v=1 to 5) are independent of 6.

In addition to the parametric wave surface compatibility relation,

given by equation (B.54), Butler also developed a noncharacteristic

relation which is applied along a streamline. This noncha:racteristic

relation is used in the numerical scheme in conjunction with the wave

surface compatibility relation applied along four different bichar-

acteristics, and permits the formulation of three independent linear

combinations of these five equations which do not contain cross deriva-

tives at the solution point. The cross derivative terms [see equation

(B.46)] represent differentiation in the wave surface but in a direc-

tion orthogonal to the bicharacteristic direction [i.e., differentia-

tion in the direc±ion given by equation (8.50)]. Butler presents the

noncharacteristi-c relation in the form

	

du	 au
A	 v = B + (C co. - C caL.) y	 (B.58)

	lvda	 1	 2v i	 3v i ax 

where the operator d( )/da represents the directional derivative along

the streamline. The coefficients A lv , B1, C 2v , and C 3 (v=1 to 5) in

equation (B.58) are obtained by inspecting the form of equation (B.54)

and then using equations (B.55), (B.56), and (B.57).

For the present problem, the actual form of the parametric wave

surface compatibility relation, equation (B.54), may be obtained by

substituting the appropriate parametric form of the wave surface unit

normal into the compatibility relation, equation (B.43). The normal

to the wave surface is also the normal to the Mach cone at a point

common to both surfaces. The quadric surface of the Mach cone is
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represented by equation (B.27), repeated below.

z._

[uiuj - (q2 - a2)6ii]dxidxj = 0
	

(B.27)

Substituting the parametric form for dxj , given by equation (8.48),
r^

,.	 into equation (B.27) yields

[uiuJ - (q
2 - a2)diJl(ui + caj cos@ + c6j sin9)dxi = 0 (B.59)

'	 The ith component of the normal N to this surface is
—	 i

N. - [u.u. - (q 2 - a2 )d..a(u. + Cai
J
cos@

t	 ^-	 1 J 	 ^J	 J 

+ co3sine)	 (i=1,2,3) (B. 60)

Employing the orthonormality conditions given by equation 18.51), equa-

	

3	 ^	 1
tion (B . 60) may be written as

Ni = a2[u i - (q2/c)(a i Cosa + 6 i sine)]	 (i=1,2,3)	 (8.61)

Dividing equation (B.61) by the magnitude of the normal 1111N I

(IN 
iNi)1/I 

and using equation (8.51), the parametric form of the wave

surface unit normal is obtained.

n  = (a/c)(cui /q2 - a i Cosa - 5
i
 sine)	 (i=1,2,3)	 (B.62)

Substituting equation (B.62) and the orthonormality relation

aiaj + 6i B^ + u i u^/q2
 = ai3	

(B.63)

	

r	 into the wave surface compatibility relation, equation (B.43), gives

the following parametric form of that equation



E	 ^	 ;

i
I

^	 r

dR	
du.	

2dt + pc(a
icose + 8 i s ine)

dt
 = (D- pc(aisine

au
- 6 i cos9)(a^sine - 8	 i^cose	 (B.64)

where

1^ = - (c2/a2)a
	

(8.65)

The operator d( )/dt in equation (8.64) denotes differentiation in the

bicharacteristic direction.

It should be noted that the directional derivatives in equations

(B.46) and (B.64) are not identical.- The directional derivative in

equation (8.46) is based on equation (8.45). Substitution of the

parametric unit normal, given by equation (B.62), into equation (B.45)

yields

—1 = ( a2/c 2 )(ui + Ca cose + c8 i sine)a-( 	(8.66)

The directional derivative in equation (B.64) is given by

d( = ( ui + Ca i cos@ + cs i sine)aa l	 (8.67)

Hence, the two expressions differ by the facfcir (a2/c2).

Finally, it remains to determine the actual form of the nonchar-

acteristic relation, equation (B,58). Denote u  (v =1 to 5) and

xi (i=1,2,3) in equations (8.54) and (B.58) by

ul = u,	 u2 = v,	 u3 = w,	 u4 = P,	 u5 = p

x  = x,	 x2 
1'
	 x3 = z	 (B.68)

h f

^	 v

,F
x

=1

a

i

15

I



By inspection of equation (B.64), and use of equations (B.68), (B.55),

(B.56), and (B.57), the noncharacteristi ,c relation is seen to be

a
 

U.

= c - pc 2 (aiai + B,; Bi )aXJ 	 (B.69)

where

a = (c2/a2)Fe - (c2/g2)(uFx + vFy + wF Z )	 (B.70)

The operator d( )/dt in equation (B.69) denotes the directional deriva-

tive along a streamline.

In summary, Butler has developed a bicharacteristic parameteriza-

tion given by equation (B.48). The corresponding parametric form of

the wave surface compatibility relation is given by equation (8.64).

Butler also developed a noncharacteristic relation, given by equation

(B.69), which is applied along a streamline. These relations, along

with the stream surface compatibility relations, equations (B.41)

and (6.42), constitute the system of compatibility relations. The use

of this system of equations in the various unit processes is presented

in Appendix E.

1,
126

T

s



,i
h

i

t

{

4

1

	

	 APPENDIX C

INTERPOLATION

1. INTRODUCTION

In the course of computing the flow field, a number of situations

arise which require interpolation. To this end, univariate, bivariate,

and trivariate interpolation polynomials are employed in the numerical

algorithm. These interpolation schemes are presented in this appendix.

2. UNIVARIATE INTERPOLATION

Univariate interpolation is required in geometry description,

calculation of the transport forcing terms, and in determination of the

properties along a space curve formed by the focus of shock wave solu-

tion points. Applications to geometry description and transport term

computation are discussed in Appendices D and G, respectively. The

application to the determination of properties along a shock wave is

discussed here.

When a shock wave intersects either a solid boundary or a solution

plane (a plane of constant x), a space curve is defined as illustrated

in Figure C.I. Interpolated values of position, shock wave angle, and

flow properties are required along this curve. For this purpose, the

quadratic polynomial

f (9) = a l + a20 + 
a31 2
	

(C.1)
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is employed, where f(0) denotes a general function • expressed in terms

of the polar angle 6 given by

e = tan - 1 (z/y )	 (C.2)

where y and z are the coordinates of a point on the space curve. The

coefficients a i (i=1,2,3) in equation (C.1) are determined by fitting

this expression to three data points on the space curve, and, as a

consequence, a system of three simultaneous linear equations must be

solved for the coefficients a  of each function representation. The

solution to this system of equations is obtained using a Gaussian

elimination method with complete pivoting (40).

Figure C.1 illustrates typical data point stencils used for de-

termining coefficients in equation (C.1). The fit point array con-

sists of a base point, which is the point closest to the position of

the interpolated point, and the immediate neighbors of the base point.

3. BIVARIATE INTERPOLATION

Bivariate interpolation is required for property determinatiien in

a given solution plane (a plane of constant x). Two types of bivariate

interpolation polynomials are employed in the numerical algorithm.

They are a linear bivariate polynomial whose three coefficients are

determined by fitting this expression to three data points, and a

quadratic bivariate polynomial whose six coefficients are determined

by a least squares fitting of nine data points.

The linear bivariate polynomial is used in the single appli-

cation when a streamline-shock wave intersection point is sufficiently

close to the current solution plane so that an interior point unit

4

l

r=^

1

t
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process on the downstream side of the shock wave is not performed.

In that case the projection of the streamline onto the solution plane

and subsequent property interpolation in this plane is performed. The

bivari.ate interpolation polynomial used in this case is

f(y ,z) = a l + a2y + a 
3
	 (C.3)

where f(y,z) denotes a general function of the coordinates y and z.

The coeffficients a  (i = 1,2,3) in equation (C.3) are determined by

fitting this expression to three data points. This yields a system

of three simultaneous linear equations for the coefficients a  of each

function representation. This system of equations is solved using a

Gaussian elimination method with complete pivoting [as was done for

equation (C.01.

A typical data point stencil used for determining the coefficients

in equation (C.3) is illustrated in Figure C.2. Two shock wave solu-

tion points and a field point constitute the fit point array.

In all other situations which require bivariate interpolation, the

quadratic polynomial

f (y ,z) = al + a2y + a.3z + a4yz + a 6y2 + a6z2	(C.4)

is employed, where f(y,z) is a general function of the coordinates y

and z. The coefficients a  (i=1 to 6) in equation (CA) are determined

by a least squares fit of nine points. Using the standard theory of

least squares (40), the system of normal equations which determines

the coefficients in equation (CA) is
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(C.10)

z i a i + £ Yiz^a2 + I da3 + ^ y i z i a4 *	 yizia5

+ Y z^ab = z2 f.

j	 t
	

c	 ,

9a 1 + yi a2 + E z i a3 + Y y i z i a 4 + y2a5 + I z2ab = 7. fi (C.5)

y i a l +	 yia2
+ 

I yi z i a 3 +	 y i z i a4 +	 yia5

+ I y i z ab =	 y i fi (C. 6)

z i a l + I yi z i a 2 +	 z i a3 + j yi z i a4 + 1 yizia5

+ I z^ab =	 zi fi 	(C.7)

yizial + 
I y2zia2 + I yi z i a 3 + E Yi z i a4 + I yizia5

+ I y i z % = yi z i fi	 (C.8)

yi a l + I y^a2 + 1 y i z i a3 + 1 Yizi-aQ + 1 Y4 a5

22	 2
+ yizia6 = yifi (C.9)	

,E

a

In equations (C.5) to (C.10), the I sign implies summation over the

range of 1 to 9, while the subscript i denotes the ith data point

0=1 to 9). This system of simultaneous linear equations has a sym-

metric coefficient matrix and is solved using a Gaussian elimination

method with pivoti ng in the main diagonal.

Figure C.3 illustrates typical data point stencils used in de-

termining the coefficients in equation (CA). Basically, there are two
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types of stencils: interior point and boundary point. Since the

shock wave mathematically represents a discontinuity, the boundary

point stencil must be employed when the interpolation base point (the

data point closest to the interpolated point) is on the shock wave.

The fit point array consists of the base point and its eight immediate

neighbors. Special logic in the computer program is used to insure

that no stencil bridges the shock wave.

4. TRIVARIATE INTERPOLATION

Trivariate interpolation is required for property determination

on the surface of a solid boundary (a stream surface) and for property

determination on the upstream and downstream sides of the shock wave.

Two types of trivariate interpolation polynomials are employed in the

numerical algorithm. They are a linear trivariate polynomial whose

four coefficients are determined by fitting this expression to four

data points, and a quadratic trivariate polynomial whose eight coef-

ficients are determined by a least squares fitting of fourteen data

points.

The linear trivariate polynomial is used in the single appli-ca-

tion for property determination on the upstream side of the shock wave

surface. This polynomial has the form

t

i=

I

f(x,y,z) = a l + a2x + a3y + a 
4 
z	 (C.11)

where f(x,y,z) is a general function of the coordinates x, y, and z.

The coefficients a i (i=1,2,3,4) in equation (C.11) are determined by 	
k

flitting this expression to four data points. Hence, a system of four
	

A

simultaneous linear equations must be solved for the coefficient a 



of each function representation. This system of equations is solved

using a Gaussian elimination method with complete pivoting [as was

done for equations (C.1) and (C.3)].

A typical data point stencil used for determining the coefficients

in equation (C.11) is illustrated in Figure C.4. Three data points

are located on one space curve and one data point is located on the

other space curve.

In all other situations which require trivariate interpolation,

the quadratic polynomial

f (x ,y , z ) = a l + a2y + a 3 + a4yz + a. 5y + a 6 z 2

+ a
7
xy + a.xz
	

(C.12)

is employed, where f(x .,y,z) is a general function dependent on the

coordinates x, y, and z. The coefficients a  (i=1 to 8) in equation

(C.12) are determined by a 1-east squares fit of fourteen data points.

From the theory of least squares, the system of normal equations

which determines the coefficients in equation (C.12) is

14a 1 + I y i a 2 +	 z i a 3 + Y y i z i a4 + y2a5 + 1 z2 a8

+ I x i y i a
7
 +
	

x i z i a 8 = 	
f 
	 (C.13)

E y i
al * I yi a2 +	 yizia3

+
y i z i a4 +	 yi a5 +	 y i

zi 6

+ I xiy?a7 + x iyi z i a8 = y i fi (C.14)
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z i a l *	 zia2 +
	

z i a 3 +	 ^zia4 +
	

i z i a 5 +	 z i ai	 6

+ E x iy i z i a7 + E xiza 8 = E zifi
	

(C.15)

r

E yi z i a l + E y2z i a2 + E yi z 2a 3 + E Y2z;a4 + 
E y^zia'S

+ E yi za6 + E x iyiz i a 7 + E xiy i z^a8 = E yi zifi
	

(C.16)
	

r

E y2a + E qua +Ey?za +E y3za +E y4a +Ey?z?a
	it	 i2	 ^ i 3	 1i4	 15	 116

+ E x iya7 + I xiyzi a8 = E y fi
	

(C.17)

	 i

	

E zeal	 2a	 3azia3 + E y i z a4+ E y^za5+ E z4a6

+ E xiyi z?a7 + E xi z3a8 = E z?fi	(C.18)

E xiyial + E xiyia2 + E xiyizia3 + E x iy?z i a4 
+ E xiya5

+ E xiy i Za6 + E x2y 2a7 + E x,Y.Z.a8 = E xiyi f i	 (C.19)

E xi z i a l 
+ E xiyizia2 + E 

xi z2a3 + E xiyi z2a4 + E xiy?zia5

+ E xi xa6 + E x2y i z i a7 + E x2za8 = E x i zi fi	 (C.20)

In equations (C.13) to (C.20), the E sign implies summation over the

range of 1 to 14, while the subscript i denotes the ith data point

(i=l to 14). This system of simultaneous linear equations has a sym-

	

metric coefficient matrix and is solved using a Gaussian eiimination
	

l

method with pivoting in the main diagonal [as was done for equation

(C.4)].
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Figure C.5 illustrates typical data point stencils used in de-

tenmi-niing the coefficients in equation (C.12). The fit point array

consists of seven data points along each of the appropriate space

curves on either the shock wave or the solid boundary.

It should be noted that a ten term quadratic trivariate poly-

nomial, with coefficients determined by a least sugares fit of fourteen

data points, was tried in place of equation &.12). Use of this

polynomial in flows with axial symmetry, however, did not produce

results which were as symmetrical (especially for transverse velocity

components) as those produced by equation (C.12). This result could

possibly be due to the effects of ill-conditioning as is discussed in

Hamming (40). Furthermore, scaling of the dependent variables did

not appear to produce any improvement.

r

)	

JI

138

Ie



-VALUE PLANE

4^

.of .
SOLUTION PLANE

100

Qr	 WAVE

de

0

OV

L.J

SOLID BOUNDARY
01

6- DATA POINT FOR SHOCK WAVE STENCtl-
0 - DATA POINT FOR SO-LID BOUNDARY STENCIL
*- TYPICAL INTERPOLATION POINT

FIGURE C. 5. POINT STENCILS FOR QUADRATIC TRIVARIATE
INTERPOLATION

77,



APPENDIX D

SURFACE REPRESENTATIONS, AND STREAMLINE- AND

BICIIARACTERISTIC-SURFACE INTERSECTIONS

1. INTRODUCTION

The procedures employed for representing the solid boundary and

shock wave surfaces are presented in this appendix. The technique used

for determining the intersection point of either a streamline with the

shock wave, or a bi-characteristic with either the shock wave or the

solid boundary, is also discussed.

2. SOLID BOUNDARY SURFACES

The centerbody,  and cowl surfaces are specified in the computer

program by a separate geometry module that has the capability to de-

scribe a variety of axisymmetric contours. More arbitrary geometries,

such as those having elliptical or superelliptical cross sections, may

be considered by supplying an appropriate replacement module. In

general, to specify a surface completely, its functional form

Ef(x,y,x)	 constant] and its gradient at any point [V f(x,y,z)] must

i
'	 be available.

t

The existing geometry module, which describes axisymmetric con-

tours, divides the axial (x) domain into a number of intervals. In any

`	 interval, the body radius may be specified by either tabular input,

Zrb supplyingthe coefficients in a cubic polynomial written as ar	 .Y 	 P Y
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function of x. For the tabular input case, linear interpolation is

performed to obtain the radius r(x) between the points (x i ,ri ) and

(xi+l , ri+l ) where (xi < x < xi+l ), Alternatively, employing the

cubic polynomial

r(x) = a  + b i (x - x i ) + c i (x - x i ) 2 + d i (x - xi)3

( xi < x < xi+l)
	

(D. l}

requires that the coefficients a i , b i , c i , and di be supplied for the

ith interval (these coefficients must be externally generated). Since

equation (D.1) is a cubic, slope and curvature can be matched at the

junction point between two adjacent intervals (i.e., spline fits can

be employed).

3. SHOCK WAVE SURFACE

Some of the unit processes, which are described in Appendix E,

require an analytical representation fer the shock wave surface.

During the course of the program development, a number of different

representations were devised, including the fitting of both planar

surfaces and quadric surfaces to locally approximate the shock wave

surface. The quadric surface formulation displayed a tendency to

produce a (local) surface with undulations. The planar surface

representation did not exhibit this effect, and, for fine mesh spacings,

produced results essentially the same as the representation that was

ultimately selected for use in the numerical algorithm. However,

the accuracy of the planar surface representation suffered at coarse

mesh spacings. The shock wave surface formulation that was selected

for use in the algorithm is presented below.
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The shock wave surface is represented as a family of straight

lines between two space curves, as illustrated in Figure D.l. The

space curves represent either the intersection of the shock wave with

a solution plane (which is a plane of constant x), or the intersec-

tion of the shock wave with a solid boundary (i.e., an interplanar

ring of shock wave solution points). Each space curve is represented

by the two quadratic expressions

r0)) = a i + b i 0 + c i e2 (D.2)

X i (0) = di + e 1 0 + f i 0 
2

(D.3)

where r  is the radius of a point on space curve i (i = 1,2), x i is the

corresponding axial position of a point on space curve i, and 6 is the

polar angle given by

6 = tan ~1(z/y)	 (D.4)

where y and z are the coorifnates of a point on the space curve. In equa-

tions (9.2) and (D.3), the coefficients a  to f  0=1,2) are determined

by fitting these expressions to three known points on each space

curve as described in Appendix C. When the space curve lies in a

solution plane, x of course has no 9 dependency.

Once equations (0.2) and (D.3) are determined for the two space

curves, the shock wave surface is represented as an infinite family of

straight lines between the two space curves, where each straight line

falls in a meridianal plane (i.e., a plane of constant 6). Conse-

quently, for a given value of a and x, the shock wave surface is

represented by the linear interpolation formula

i
7
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(x - x2 ( e ))	 (x - xl(e})
r(x,e} =
	 - x a	 r l ( e } 

+ (x2 ( 0 ) - -  x o	
r2 ( e ) (D. 5)

x IM	 2	 ]

^I
In equation (D.5), r(x,e) is the shock wave radius at axial position x

and polar angle e, r l (a) and x 1 (6) are given by equations (D.2) and

(D.3), respectively, for one of the space curves, and r2 (e) and x2(6)

are given by equations (D.2) and (D.3), respectively, for the other

space curve (see Figure D.1). A strong point of this representation

is that a smooth (local) surface is produced because linear interpola-

tion is performed for the shock wave radius in a meridional plane,

while transverse curvature information is introduced through equations

(0.2) and (D.3).	 1
t

4. STREAMLINE- AND BICHARACTERISTIC-SURFACE INTERSECTIONS

A number of unit processes regal re determining the intersection

point of either a streamline with the shock wave, or a bicharacteristic

with either the shock wave or a solid boundary. The technique used

is the same for all cases and is presented below.

A streamline or bicharacteristic may be represented by the equa-

tion

dxi = ri dt	 (i=1,2,3)
	

(D.6)

where xi (i=1,2,3) denotes the three cartesian coordinates x, y, and z,

respectively, and t is a parameter proportional to the length of the

streamline or bicharacteristic. For a streamline, the parameter r  in

equation (D.6) is given by
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r  = U 
	

(i=1,2,3)
	

(D.7)

where u i 0 =1,2,3) denotes the velocity components u, v, and w,

respectively. For a bicharacteristic, r  is given by

r  = u  + ca i COO + 0 sin^	 (i=1,2,3)
	

(D.8)

where a i l B i , 0, and c are the parameters employed in Butler's

parameterization of the Mach cone (24), which is discussed in Appendix B.

Using equation (D.5), the following equation may be written.

dx/r l = dy/r2 = dz/r3

Solving equation (D.9) simultaneously, the linear expressions

y = Cy k - ( r2/ r I ) xk ] + (r2/rl)x

z = [zk - (r 3/r l )xk ] + (r3/r1)x

(D.9)

h

{D.IU)

(D.11)

may be obtained, where x k , yk , and z.k are the coordinates of a known

point on the streamline or bicharacteristi-c, while x, y, and z repre-

sent the coordinates of the point of intersection of the streamline

or bicharacteristic with a surface (see Figure D.2).

An iterative procedure is employed to determine the coordinates

x, y, and z. First, the values of 
F  

(i=1,2,3) are evaluated at the

known point. Then, a trial value is assumed for the axial coordinate

x. From equations (D.10) and (D.11), the corresponding coordinates y

and z may be obtained. Then, the radius r* = (y2 + z 2 ) 1/2 and the

polar angle e = tan - 1 ( z/y) of the assumed intersection point may be

computed. From the assumed value for x and the calculated value for 9,

8
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the body radius r [determined from the tabular wall data or equation

(D.1)] or the shock wave radius r 	 [given by equation (D.5)] may be

obtained. The difference between r and r 	 is reduced to within a

specified tolerance by employing a numerical relaxation technique

(secant method) which iterates on x. Once convergence has been ob-

tained, the values of 
F  

at the intersection point are computed using

the trivariate interpolation method discussed in Appendix G. Appropri-

ate averages of the values of r  at the known point and the intersec-

tion point are then formed, and the entire process is repeated until

overall convergence is obtained.

It should be noted that it is possible to use e, instead of x,

as the variable upon which the iterative scheme is based. The resulting

formulation, however, is singular when the streamline or bicharacter-

istic lies in a meridional plane.
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Computation of the flow field requires that a variety of unit

processes be employed. These subalgorithms may be classified into four

major types: interior point, solid boundary point, field-shock wave

point, and body-shock wave point. Computation of the external flow

field about the forebody portion of the centerbody requires using the

basic versions of the first three aforementioned algorithms. Computa-

tfon of the internal flow field, with its attendant reflected shock

wave system, requires using the .basic interior point and solid boundary

point algorithms plus modified versions of these routines, as well as

the other unit processes. All of the unit processes are presented in

this appendix.

2. SUMMARY OF THE WARACTERISTIC EQUATIONS

The equations for the characteristic surfaces and the compatibility

equations valid along these surfaces are developed in Appendix B. A

summary of the pertinent results is given below.

For steady three-dimensional supersonic flow, compatibility equa-

tions may be written which are valid when applied along either stream-

lines or bicharacte:ristics. A streamline is represented by the equa-

ti on

f

148
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dx i = u  dt	 (i=1,2,3)	 (E.1)

where xi (i = 1,2,3) denotes the three cartesian coordinates X. Y. and

z, respectively, u  (i = 1,2,3) denotes the corresponding velocity com-

ponents u, v, and w, respectively, and t is the time of travel of a

fluid particle along the streamline. Tfie compatibility equations valid

along a streamline are given by

dP - a2 dp = F
dt	 dt	 e

dP	 dui
at + pu i dt	 uiFi

(E.2)

(E.3)

where P denotes the pressure, p is the density, a is the sonic speed,

F  (i=1,2,3) denotes the transport forcing terrlis in the x, y, and z

component momentum equations, respectively, and F e is the transport

forcing term in the energy equation. The operator d( )/dt in equa-

tions (E.2) and (E.3) represents differentiation in the streamline

direction. The forcing terms F  and F e are defined by equations (A.b)

and (A.27), respectively.

A bicharacteristic, which is a ray or generator of the Mach cone,

is represented by

dx i = (u i + COL coso + co i sina)dt	 (i=1,2,3)	 (E.4)

where 6 is a parametric angle denoting a particular element of the Mach

cone and has the range 0 < p < 2T, t is the time of travel of a fluid

Repeated indices imply summation over the range of 1 to 3 unless other-
wise noted.

)

I	 ^	 k
1	 ^
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particle along the streamline that is the axis of the Mach cone, and c

is defined by

c2 = g2a2/(g2 - a2 )	 (E.5)

where q is the velocity magnitude. The vectors a  and 0 i in equation

(E.4) are parametric unit vectors with a i , O i , and ui /q (i=1,2,3)

forming an orthonormai set. The compatibility equation valid along a

bicharacteristic is given by

V du i2
dt + 

pc(a i Cos@ + b i sine) dt = - pe (aisine

au.
s i cose)(aj sine - aicose) ax ^ 	(E.5)

In equation (E.b), the operator d( )/dt represents differentiation in

the bicharacteristic direction, and the parameter t is given by

0 = (c2 /a2 )(Fe - ani F0	 (E.7)

where n  is the ith component of the wave surface unit normal and is

given by

ni = (a/c) ( cu i /q2 - ai cose - 5 i sine)	 (i= 1,2,3)	 (E.8)

In addition to the above relations, the following noncharacteristic

relation is applied along a streamline

dP
3u

Ft - o - Pc2(a i aj + Si
 

j)axj
(E.9)

where the operator d 1( )/dt represents differentiation in the streamline

direction, and tW parameter Q is given by
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CJ = ( c 2/a2 ),Fe •• (c
2
/g2 )(ui F i )
	

(E. 10)

	
1

e

Equations (E.1) to (E.IO) form the basis of the numerical inte-

gration method.

€t

3. GENERAL COMMENTS CONCERNING THE UNIT PROCESSES

An inverse marching scheme is employed in the numerical algorithm.

The solution is obtained on space-like planes of constant x, with the

x-axis being the longitudinal axis of the centerbody and cowl. For the

internal flow field, the solution is also obtained on the space curves

which represent the intersection of the internal shock wave with the

solid boundaries. These space curves are defined by the locus of shock

wave solution points.

Except in the vicinity of a shock wave-solid boundary intersec-

tion, the distance between successive solution planes is determined

by the application of the Courant-Fried-richs-Lewy (CFL) stability

criterion, which is presented in Appendix F. The axial step in the

vicinity of a shock wave-solid boundary intersection is controlled by

special constraints which are also discussed in Appendix F.

Each of the unit processes is presented below. In general, a unit

process is divided into a predictor step and a number of enusing cor-

rector steps. In most cases, a unit process employs an outer iterative

loop for determination of the flow properties at the solution point,

and an inner iterative loop (or loops) for location of bicharacteristic-

initial-value plane intersection points, etc. The terms "inner" and

"outer" are used in this context in the following discussions.

E

i
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4. INTERIOR POINT UNIT PROCESS

Figure E.1 is a depiction of the computational network used in the

determination of the solution for a typical interior point. Points (1)

to (5) are located on the initial-value plane which is a plane of

constant x on which the solution is known. Points (1) to (4) represent

the intersection points of four rearward-running bicharacteristics with

the initial-value plane, and point (5) is the intersection point of the

streamline with this plane. Point (6) is the interior solution point,

which is located at the intersection of the forward projection of the

streamline with the solution plane. The axial (x) distance between

the initial-value plane and the solution plane is determined by either

the application of the CFL stability criterion, or, in the vicinity

of a shock wave-solid boundary intersection, by the special constraints

discussed in Appendix F.

Interpolated values of the three velocity components u, v, and w,

the pressure P, and the density p are required at the bicharacteristic-

initial-value plane intersection points, points (1) to (4) in Figure

E.l. For this purpose, the following bivariate interpolation poly-
'	 I

nomi al is employed

f(y , z ) = al + a2y + a3  + a4yz + ay + a6z^	 (E.11)

^r	 where f(y,z) denotes a general function of the coordinates y and z.

j	 {	 The coefficients a i (i m l to 6) in equation (E.11) are determined by a

t
beast squares fit of nine data points in the initial-value plane

`	 [point (5) and its eight immediate field point neighbors]. The detailed

E	 implementation of equation (E.11) is discussed in Appendix C.
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In addition to using interpolated values for the flow properties

at points (1) to (4) ifn Figure E.1, interpolated values are also employ-

ed at point (5), the streamline base point, even though this is a field

solution point. As shown by Ranson, et al. ( 9), this interpolation

is required to produce a stable numerical scheme.

The interior point unit process is i-nitiated by locating the

i.
solution point, point (6). This is accomplished by extending the

streamline for;.,rd from point (5) to intersect the solution plane.
i..
f

The coordinates of point (6) are obtained using the following finite

difference form of equation (E.1).

x
i 
(6)- x

1 (5)= 2[ui ( 5 ) + ui (6)]1[t(6) - t(5)] 	 (i=1,2,3) (E.12)

In applying equati-on (E.12) for the predictor (first outer iteration),

u1 (6) is equated to u i (5), whereas, for the corrector (ensuing outer

iteration), the previously obtained value of u i (6) is used.

Equation (E.12) is first applied for i = 1 (i.e., the x-coordinate

direction). The axial step [x(6) - x(5)] is determined prior to the

application of the unit process. Hence, the time parameter [t(6) -

t(5)] may be obtained. Then, equation (E.12) is applied for i=2 and

i=3 to determine y(6) and z(6).

At this point, four bicharacteristics are extended backward from

the solution point to intersect the initial-value plane. This is

accomplished by applying the following finite difference form of

equation (E.4).
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,	 i

xi (6) - xi (k) = I [ui (k) + u i (6)] + [c(k) + c(6)][aicose'(k)

+ 0i sine(k)]}[t(6) - t(k)]	 (i=1,2,3)	 (E.13)

In equation (E.13), k denotes the bicharacteristic intersection points

in Figure E.1 and has the values 1, 2, 3, and 4 corresponding to the

a(k) values of 0, 7r/2, 7r, and 37r/2, respectively. The bicharacteristic

intersection points are determined in an inner iterative loop. That is,

for every outer iteration that is performed to determine the flow

properties at point (6), a number of inner iterations are performed to

locate points (1) to (4). On the first inner iteration of the predictor

(the first outer iteration), u i (k) and c(k) are equated to ui (5) and

c(5), respectively, for each of the four bicharacteristics. On ensuing

inner and outer iterations, the flow properties previously obtained at

each of the bicharacteristk intersection points are used. The flow

properties at these points are determined by employing the bivariate

interpolation polynomial given by equation (E.11). Moreover, as was

done for equation (E.12), for the predictor (the first outer iteration),

the flow properties at point (6) in equation (E.13) are set equal to

those at point (5), whereas, for the corrector (ensuing outer itera-

tions), previously computed values of the flow properties are used at

the solution point.

Equation (E.13) is first applied for i=1 (i.e., the x-coordinate

direction). The axial step [x(6) - x(k)] is determined prior to the

application of the unit process. Thus, the time parameter [t(6) -

t(k)] may be obtained for each of the four bicharacteristics. Then,

equation (E.13) is applied for i=2 and i =3 to determine y(k) and z(k)

for each bicharacteristic.
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The parametric unit vectors c% i and 
0  

appearing in equation

(E.13) are arbitrarily fixed at the solution point, point (6). Butler

(24), in his original work, held a i and B  constant along a bichar-

acteristisc but varied a in order to insure that the bicharacteristic

remained tangent to the Mach cone. Ransom, et al. (9 ) held a constant

along a bicharacteristic but varied a  and a  to satisfy this tangency

condition. As noted by Cline, et al. (25), Butler (41) later realized

that it is not necessary to satisfy the tangency condition in order

to achieve second-order accuracy in the resulting overall numerical

algorithm. As a consequence, in the present analysis, both 8 and the

unit vectors a  and 
Si 

are held constant along the bicharacteristics.

For the external flow field integration, a  and 
a  

are selected to

straddle the projection of the pressure gradient in the initial-value

plane. For the internal flow field integration, a i and 
$i 

are chosen

to straddle the meridional plane.

Once the positions of and the flow properties at points (1) to (4)

have been determined for a given outer iteration, the transport forcing

functions Fx , Fy , Fz , and Fe are computed at each of these points

and at the streamline base point, point (5), as described in Appendix G.

Approximations for the transport forcing functions at point (6) are also

made at this sta,e as described in Appendix G. The system of non-

linear compatibility equations is then solved for the flow properties

at point (6) as outlined below.

The compatibility equations valid along a streamline are given

by equations (E.2) and (E.3). Writing those relations in finite

difference form yields

t
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EP( 6) - P(5)]/Ct(6) - t ( 5 )] - -12-Ea2 (5) + a2 (6)1[p(6)

- P(5)]/Et(6) - t ( 5 )] = 2 Fe
( 5 ) + Fe (6)]	 (E.14)

E P (6) - P ( 5 )]/{ t(6) - t( 5)1 + 4 p ( 5 )u i ( 5 ) + p (6) u i (6 )1 Cui(6)

r

t

t

r

i

- u i (5)1I'Ct(6) - t(5)]	 11	 (5)F i (5) + u;(6)Fi(6)] (E.15)

The noncharacteristic equation, given by equation (E.9), is also

applied along a streamline. Writing that equation in finite differ-

ence form gives

C P ( 6 ) - P(5)]/Et(6) - t( 5 )] = ^0(5) + Q(6)] 

2
(5)c2-	 (5)(aiaa + Si$j)3u.i/3xj(5)

- 2P( 6 ) c2 (6)(ai (xj + ^i sj )au i /axj (6)	 (E.16)

In equation (E.16), o is given by equation (E.TO), and au i /ax 
i
(k) de-

notes the appropriate partial derivative evaluated at point (k) in

Figure E.1. Partial derivatives taken with respect to y and z are

found by analytically differentiating equation (E.11). Partial deriva-

tives taken with respect to x are then found by using the governing

partial differential equations.

The compatibility equation valid along a bicharacteristic is given

by equation (E.6). For a values of 0, n/2, 7r, and 37x/2, equation (E.6)

becomes

dP	 dui	 2
	 au

+ pcai dt1 = 1 " pc s i 6^ axe	
(E.17)

r

i
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(E.20)

I

dP
dt2 +

dui

pCs i - - 
^2 - 2	 Dui

PC aiOL 
axJ

dP
dt3 -

dui -
pCai dt3 - ^3 -

2	 au 

PC Yj axj

dt
4

pCs i dti -
	

4 -
4 pc2a}ai 2x^

i^

Ft
t

I F`T

I.

f

E

I	 {

1

In equations ( E.17) to (E.20), the operator d l ( )/dtk denotes differenti-

ation along the Mcharacteristic corresponding to 6(k), and 
0k 

is de-

termi,ned from equation (E.7). Writing equations (E.17) to (E.20) in

finite difference form yields

If

n

[ P ( 6 ) - P(1)]/[t(6) - t(1)] + 2 p( 1)c(1)
+ p ( 6 ) c ( 6 )]ai [ u i ( 6 ) - ui(1)]/[t(6) - t(1)]

4P, (1) + ID 1 (6)] - 2 M 
c2My  

aui/axj(1)

-

	

2p(6)c
2
 (6)0 

1 
0 
i 
au 

i 
/ax 

i 
(6) 	 (E.21)

[P(6) - P ( 2 )1/ Ct ( 6 ) - t(2)] + 42p(2)c(2)

+ p ( 6 ) c ( 6 )]6 i [ u i ( 6 ) - ui(2)]/'[t(6) - t(2)]

= 2 (D 2 (2) + 02 (6)] - r(2)c2(2)aiajaui/3xj(2)

	

- 2p(6)c2 (6)a.i aj aui /axj (6)	 (E.22)



[P(6) - p(3)1 /[t(6) - t( 3 )] - ,pp(3)c(3)

+ p (6)c(6)la i [u i (6) - ui(3)]/[t(6) - t(3)]

42"P) + X3(6)] - ?(3)c. (3)6 i 6 au i /ax^(3)

i

- 2 { 6}c2 (6)a1 0i 
i 
/ax 3 (6)	 (E.23)

[P(6) - P(4)1/[t(6) - t(4)] - ^p(4)C(4)

+ p(6)c(6)]6 i [ui (6) - ui(4)1/[t(6) - t(4)]

	

ti:	
= 2 (D

4 (4) + X4 (6)] - —p(4) c2 (4)a i oc^ Du i /axj(4)
i-

-(6)c2(6)(1 of i /ax^(6)	 (E.24)

It was noted in Appendix B that only three wave surface compatibil-

ity relations are independent. To obtain three independent relations,

linear combinations of equations (E.21) to (E.24) and the nonchar- 	 }

acteristi-c relation, equation (E.16), are formed in such a manner as

	

to algebraically eliminate the cross derivative terms at the solution 	 I	 ;5
_	 •G

point [i.e., terms ,oiltaining au i /axj (6)]. Subtracting equation (E.23)

from equation (E.21) yields

a

t	 ^
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[P (6) - P(1)]/[t(6) - t(1)3 - [P(6) - P(3)31[t(6) - t(3)]

+ -19{p(1)c(1) + p ( 6 ) c (6)]ai [u 1 (6) - ui(1)1/[t(6) - t(1)3

I,
+ 4p ( 3 )c( 3 ) + p (6)c(6)3« i [u i (6) - ui(3)3/'[t(6) - t(3)]

1
( 1 ) + X1 (6)] •-	 X3 (3) + 't3(6)]

- 2 Mc2M1 i 6j au i /axi (1) + yp(3)c2 (3)6 i ai au i /ax e(3) (E.25)

i

•	 f

r

Subtracting equation (E.24) from equation (E.22) yields

[ P (6) - P(2 )3/[t(6) - t(2)3 - [P(6) - P(4)]/Ct(6) - t(4)]

+ gp (2)c(2) + P( 6 ) c ( 6 )36i [ui (6 ) - ui(2)3/[t(6) - t(2)]

+ 4p (4)c(4) + p (6)c( 6 )]6i [u i (6) - ui(4)3/ [t(6) - t(4)]

2 
02( 2 ) + X2 (6)3 - 24

04(4)  + 04(6)]

- IP(2 )c2 ( 2 )a i a^a u i /a x^(2) + I M c2(4)aOL au i
/ax^(4) (E.26)

Adding equations (E.21) and ( E.22) and subtracting equation (E.16) from

the sum yields

[ P ( 6 ) - P(1 ) 3/[t(6) - t(1)] + [ P (6) - P(2)]/[t(6) - t(2)]

- [P(6) - P (6)3/[t(6) - t(5)3

+ 12-{P(1)c(1) + A(6)c(6)3a i [u i (6) - ui{1 }3/[t {6) - t(1 )1

+ -12{p(2)c(2) + p (6)c (6) 36 i [ u i (6) - ui(2)3/[t (6) - t(2)3
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1

r

`r = 2 ^ l (1) + ^P (6)] + Z{ 2 (2) + X2 (6)] - 2[c(5) + ff(b)] r

^i

2 0 )c 2 OM-6 au /3x  (1) - -I 	(2)c2 (2):4 i a^ aui /ax^( 2)

P

a

a

+ 2( 5)c2 ( 5 )(aij + Y)au
i /ax^(5)	 (E.27)

Equations	 (E.14),	 (E.15),	 (E.25),	 (E.26),	 and	 (E.27) are the five (!!!

finite difference equations which are used to solve for the flow

properties u(6), v(6), w(6), P(6), and p (6).	 Since these equations are

nonlinear, an iterative scheme is required to obtain the solution. 	 On {

the first outer iteration (the predictor), all of the flow properties

at point (6) appearing in the coefficients of the derivatives in the s

above set of equations are set equal to the respective properties at

point (5).	 This produces a system of simultaneous linear equations

which is solved using a Gaussian elimination method with complete

pivoting (40).	 On ensuing corrector applications 	 (oute r iterations),

previously computed values for the flow properties at point (6) are
.f

employed in the scheme.	 This method is similar to the Euler predictor- {

corrector algorithm used to obtain the solution for initial-value ^	 -Y
a

problems for ordinary differential equations, and can be shown to have

second-order accuracy either by direct numerical calculation ( 9) or t

by substituting an exact solution into the difference equations and

expanding the resulting terms in a Taylor series and thereby determining

the truncation error.	 The iterative scheme is terminated when all five

flow prope rties at point (6) have converged to within specified toler-

ances.
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5. SOLID BOUNDARY POINT UNIT PROCESS

Figure E.2 is a depiction of the computational network used in

determining the solution for a typical point on a solid boundary. The

point notation used in Figure E.2 is the same as that used in Figure

E.1 (interior point scheme). In this unit process, however, point (4),

corrvspona •i ng to the bi characteri sti c with 0 = 37r/2, falls outside of

the flow field and cannot be employed. Furthermore, the streamline

points (5) and (6) He on the stream surface formed by the solid boun-

dary. The formulations used for representing the solid boundaries

alre presented in Appendix 0.

The boundary condition used in this unit process is simply that

the flow be tangent to the surface of the boundary at the solution

point, point (6) in Figure E.2. Let nbi (i=1,2,3) denote the x, y,

and z components, respectively, of the outward unit normal to the solid

boundary surface. Then, the flow tangency boundary condition may be

wri teen as

u i (6) 
nbi(6) = 0	 (E.28)

The solid boundary point unit process is virtually identical to

the interior point unit process, ex:,-pt that the wave surface compati-

bility equation valid along the bicharacteristic corresponding to 0 =

3w/2 is not employed. That equation is replaced by equation (E.28).

Thus, the system of compatibility equations used for determining the

solution at a solid boundary point consists of equations (E.14), (E.15),

(E.25), (E.2.7), and (E.28). This system of equations is solved using

the same iterative scheme that was employed in the interior point
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The location of the solution point, point (6) in Figure E.2, ob-

tained by applying the finite difference form of the streamline equa-

tion, equation (E.12), is adjusted along the projection of the body

normal in the solution plane so that the solution point lies on the

solid boundary. The orientation of the parametric unit vectors a i and

^i is selected such that 6i = - n bi (i=1,2,3), and a  (i=1,2,3) is found

by employing the orthonormal relations between a i , 6 i9 and u i /q. This

selection for the reference vector set produces a computational network

in which the bicharacteristics corresponding to 6 = 0, ff/2, and iT

intersect the initial-value plane for convex boundaries. For concave

boundaries, those bicharacteristics intersect an extrapolation of the

initial-value plane (the required extrapolation is assumed to have an

error third-order in step size). The bicharacteristics corresponding

to 6 = 0 and n lie in the elemental plane which is tangent to the solid

boundary at point (6).

6. BOW SHOCK WAVE POINT UNIT PROCESS

A depiction of the computational network used in determining the

solution for a typical bow shock wave point is given in Figure E.3. A

segment of the shock wave surface extending from the initial-value plane

to the solution plane is shown in this figure. The space curve (A) is

defined by the intersection of the shock wave with the initial-value

plane, whereas, space curve (B) is defined by the intersection of the

shock wave with the solution plane. The axial distance between the

initial-value plane and the solution plane is determined by the appli-

cation of the CFL stability criterion.

The bow shock wave solution point is denoted by point (2) in

Figure E,3. The flow properties upstream of the shock wave are known
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a prtori. Hence, in the following discussion, the flow properties u,(2),

v(2), w(2), P(2), and p(2) refer to the properties at point (2) down-

stream of the shock wave. point (1) is the intersection point of a

rearward-running bicharacteristic with the initial-value plane. This

bicharacteristic is extended backward from the solution point. point

(3) is an interior point in the solution plane which is used to define

the meridional plane in which the shock wave solution point lies. Point

(4) is the intersection point of space curve (A) with the meridional

plane which passes through points (2) and (3).

In this unit process, a local Cartesian coordinate system is

employed for the description of the orientation of the local shock wave

surface. This local coordinate system has coordinates x', y', and z',

where x' is coincident with the x-axis, y' is in the radial direction

corresponding to the meridional plane which subtends an angle 0 with the

(x,y)-plane,and z' is normal to the(x',y')-plane (see Figure E.3). The
r rr

unit vectors in the x, y, and z directions are denoted by i t j, and k,

respectively, whereas, the unit vectors in the x', y', and z' directions

are denoted by i', j', and k', respectively. A vector quantity A may be

represented in these coordinate systems by

A = Axi + yj t A 
z 
k	 (E.29)

n	 n	 n
A = Ax j i' + A J 1 + A Z 

, k'	 (E.3O)

The relationships between the respective Components in equations (E.29)

and (E.3O) are given by

Ax, = Ax	 (E.31)
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Ay , = Aycose + AZsine

AZ , = Azcose - ysine

Ax = Ax,

Ay = Ay ,cose - AZ,sine

Az = AZ ,cose + Ay,sine

(E.32)	
^	 i

(E. 33)

(E.34)

(E. 15)

(E. 36)

The orientation of the local shock wave surface is specified by

a set of unit vectors referenced to the (x',y',z')-system. This set of

unit vectors, illustrated in Figure E.4, consists of a unit vector n 

which is normal to the shock wave surface and two unit vectors z and t

which are tangent to this surface. The tangential unit vector t lies

in the meridional plane [(x',y')-plane], subtends an angle $ with the

x'-axis, and is defined by the intersection of the shock wave with the

meridional plane at point (P). The tangential unit vector Q, lies in

the transverse plane [(y' ,z')-plane], subtends an angle a with the

z'-axis, and is defined by the intersection of the shock wave with the
n	 ^

transverse plane at point (P). The tangential vectors t and Z are

therefore given by

t = C04 i' + sino j 	 (E.37)

W sins j' + costs k'	 (E.38)

The shock wave normal unit vector, denoted by n s , is given by

ns = i x t/ I Q x tl	
(E. 39)
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The interior point and solid boundary point unit processes achieve

second-order accuracy by using local iteration. In local iteration,

a corrector application employs previously determined flow property

values at the solution point, but does not require using flow property

values at other points in the solution plane. The shock wave point

unit process, however, requires that global iteration be performed in

order to achieve second-order accuracy. In global iteration, a cor-

rector application employs previously determined flow property values 	 s

not only at the solution point, but also at neighboring points in the

solution plane. As a consequence, before a corrector application in

global iteration can be performed, the entire solution plane (or at

least an appropriate section of it) must be determined by a prior

calculation. In practice, since the interior point and solid boundary

point schemes require local iteration only, the interior point and

solid boundary points are computed first. Then, a prediction for each

shock wave solution point is made, thereby giving a tentative solution

for all of the shock wave points. Then, a global iteration is con-

ducted for the shock wave solution points using the previously de-

termi-ned field points in the solution plane. In the following discus-

sion, the term "predictor" will refer to the first application of the

shock wave point unit process used to obtain an initial estimate of the

solution without using field point data in the solution plane. The

term "global corrector" will refer to the application of the shock wave

point unit process which uses field point data in the solution plane.

The shock wave point unit process is now outlined.

If

I

v
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The shock wave point unit process is initiated by locating the

solution point, point (2) in Figure E.3. The meridional plane in which

the solution point li-es is arbitrarily selected to contain point (3).

Point (3) is the interior solution point adjacent to the shock wave sur-

face whose location is determined prior to the application of the shock

wave point unit process. The angle subtended by a meridi lonal plane

and the (x,y)-plane is denoted by 9. Then

6(2) = e(3) = tan - 1Cz(3)/y(3)]
	

(E.40)

Denote the radial position of a point by r. Then the radial position

of point (2) is obtained from

r(2) = r(4) + [x(2) - x(4)] tan f4p(2)  + ^( 4 ) 3
f
	(E.41)

`	 where [x(2) - x(4)3 is the axial distance between the initial-value

plane and the solution plane and is determined by the CFL stability

{
criterion. On the first application of equation (E.41), the shock wave

angle ^(2) is equated to ^(4), whereas, on ensuing applications, the

previously determined value of ^(2) is used. At point (4), the radial

i	 position r(4) and shock wave angle 0(4) are determined by interpolation
i

using the quadratic univariate formulae

'	 r(9) = a l + a2e + a
3
 02(E.42)

}	
{g) = b1 + b2g + b3a 2	(E.43)

{

}

a
In equations (E.42) and (E.43), the coefficients a i (i=1,2,3) and bi

0=1,2,3) are determined by fitting these expressions to three local

shock wave solution points on space curve (A) as described in Appendix C.
k^

]
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For the case of axisymmetric flow, or on a plane of flow symmetry in

three-dimensional flow, point (4) coincides with a previously determined

shock wave solution point so the interpolation would not be required.

In general, however, point (4) does not coincide with a known point

so the interpolation is necessary.

After the solution point has been located, the shock wave normal

unit vector n  at the solution point is found by forming the normalized

cross product of the tangential unit vectors R and t [see equation

(E.39)]. The tangential vector t is obtained by us t-ij the current

value of 0(2) in equation (E.37). The tangential vector x is obtained

by using the current value of a(2) in equation (E.38). For either

space curve (A) or space curve (B), the value of cx(2) may be obtained

from

a(2) = tan-1 ( dOj 10(2)	 (E.44)

For a predictor application, the analytical form of r(6) used in equa-

tion (E.44) is given by equation (E.42) applied along space curve (A),

whereas, for a global corrector application, r(o) is obtained from

equation (E.42) applied along space curve (B).

After the shock wave normal unit vector has been determined, the

local Hugoniot equations may be applied across the shock wave, thereby

yielding a solution for the flow properties u(2), v(2), w(2), P(2), and

p(2). In general, the local Hugoniot equations take the form ( 5)

puVnu = pdVnd	 (E.45)
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Vtu 
= Vtd	

(E.41)

Vzu = Vid	
(E.48)

hu + q
2 
/2 = hd + q2 /2	 (E.49)	

-

h - h ( p ,p )	 (E.50)

In equations (E.45) to (E.50), h is the enthalpy per unit mass, q is the

velocity magnitude (q 2 = u2 + v2 + w2 Vn is the velocity component in

the -ns direction, V  is the velocity component in the t direction, Vz

is the velocity component in the X direction, and the subscripts u and

d denote the properties on the upstream and downstream sides of the

shock wave, repsectively. Equations (E.45) to (E.50) are solved simul-

taneously for the downstream flow properties. To obtain the velocity

components V
nu , Vtu, and V

Qu , the upstream velocity vector is first

transformed from the (x,y,z)-system to the (x',y',z')-system using

equations (E.31) to (E.33), after which the appropriate dot products

are formed with -n s , t, and X. Similavly, the downstream velocity

components V
nd , Vtd, and V

U are transformed back to the (x,y,z)-system

after the local Hugoniot equations have been applied.

In the computer program, the local Hugoniot equations are contained

in a separate subroutine. The assumed thermodynamic model is that of

a thermally and calorically perfect gas. Other thermodynamic models

may be used by suitably modifying the existing subroutine or replacing

it. For the assumed model of a thermally and calorically perfect gas,

the pressure ratio across the shock wave is given by
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(E. 51)

where Mnu is the incident normal Mach number given by

Mnu = Vnu/au	 (E.52)

and y is the specific heat ratio. Using the result of equation (E.51),

the density ratio across the shock wave is given by

Pd - (Y + 1 )/(Y - 1) + (pu/Pd)

pu-l+	 y+1 /Y- 1	PuPd)	 (E.53)

With the downstream pressure and density determined, the downstream

normal velocity component V nd may, be obtained from equation (E.46), and

the tangential downstream velocity components V td and VQd may be com-

puted from equations (E.47) and (E.48). Transformation of the down-

stream velocity components back into the (x,y,z)-system yields the

required flow properties at the solution point.

At this stage, a rearward-running bicharacteristic is extended from

the solution point, point (2), back to the initial-value plane, inter-

secting this plane at point (1), as illustrated in Figure E.3. This

is accomplished by employing the following finite difference form of

equation (E.4) evaluated for the parametric angle 0 = 1T/2.

xi (2) - x i (1) = 2 ^[u i (1)	 ui(2)]

	

+ Lc(1) + c(2)j i jtt(2) - t(1)7	 ( i =1,2,3)	 (E.54)

As in the interior point and solid boundary point schemes, an inner

iteration is performed to locate point (1). On the first application
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of equation (E.54), the flow properties at point (1) are equated to

those at point (2), whereas, on ensuing applications, previously ob-

tained values of the flow properties at point (1) are used. The flow

property values at point (1) are found by employing the bivariate inter-

polation polynomial given by equation (E.11). The coefficients in

equation (E.11) are obtained by a least squares fit of nine data

points in the initial-, value plane using a boundary-type stencil as

described in Appendi

Equation (E.54) is first applied for i=1 (i.e., the x-coordinate

direction). Since the axial step [x(2) - x(1)] is known from the

application of the CFL stability criterion, the time parameter

[t(2) - t(1)] may be determined. Then, equation (E.54) is applied for

i=2 and i=3 to determine y(1) and z(1). For axisymmetirc flow, or for

a plane of flow symmetry in three-dimensional flow, point (J) lies in

the meridional plane which contains points (2) and (3). In general,

however, for other flow situations, point (1) lies outside of this

plane.

The orientation of the parametric unit vector a  in equation (E.54)

is arbitrarily selected such that

$3/02 = tan[e(2)]	 (E.55)

This relation, in conjunction with the orthonormality conditions

S i u i (2) = 0	 (E.56)

(E.57)

allows the values of a  (i=1,2,3) to be determined. Since equation

F	 ^.

i	 r

i
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(E.57) is a quadratic equation, a multiplicity of roots exist for the

0 i
 
0=1,20). The roots are chosen such that point (1) Iles under-

neath the shock wave in the initial- value plane. Once the values of

$i (i= 1,2,3) are determined, the values of a  (i=1,2,3) are found

through use of the orthogonality relation between a i , Vi i , and ui/q

(i.e., a =	 x V/q).

After the position of and the flow properties at point (1) have

been determined, the transport forcing functions F x , Fy , FZ , and Fe are

computed at point (1) as described in Appendix G. Approximations for

the transport forcing functions are also made at point (2) at this

time as described in Appendix G.

At this stage, the wave surface compatibility equation correspond-

ing to the parametric angle 	 = ,r/2 is applied between points (1) and

(2). From equation (E.6), the appropriate equation is

dP du i	 2	 3U 
dt + ^ic6 i dt = 'D	 - 

pc `i I^ ^x.	
(E.58)

where (Dr/2 is obtained from equation (E.7) for the parametric angle 6

Ti/2. Writing equation (E.58) in finite difference form, solving for

the pressure at point (2), and denoting this pressure by P*(2), the

following equation is obtained.

P*(2) = P (l) + 2 /2 (1) + s^/2(2)1!Ct(2) - t(1)7

- 2p(l)c2 (1 )L' i 't 3 u i /axe (1)

+ p (2)c 2 (2)(1 i a.i au i /DXi (2)1[t(2) - t(1)]

- p (1)c(1) + p(2)c(2)j, i 'u i (2) - ui 	 (E.59)

t
r
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Nate that the cross-derivative terms Eau 
i 
/ax i ( k)] in equation

(E.59) appear at both point (1) in the initial-value plane and at

point (2) in the solution plane. In general, these terms can be

evaluated by employing equation (E.11) fit to nine data points in the

appropriate plane, differentiating this expression analytically to ob-

tain partial derivatives with respect to y and z, and then using the

governing partial differential equations to obtain the required partial

dprivatives with respect to x. On the predictor application of the

shock wave point unit process, the flow property field in the solution

pl,.ne is not known, so the cross-derivatives at point (2) are set equal

to those at point (1). On a global corrector application of the

shock wave point unit process, tf;i cross deriatives at point (2) are

evaluated in the manner just desctibed.

The pressure P(2) is calculated from the local Hugoniot equations.

The pressure n*(2) is calculated from equation (E.59). The difference

between P(2) and P*(2) is driven to within a specified tolerance of

zero by employing a one-dimensional secant iteration scheme which

iterates on the shock wave angle $(2). Two initial estimates of 0(2)

are rpqui red to initiate  the subi teration.

The shock wave point unit process is first applied as a predictor

for each shock wave solution point. In this application, the value of

a used in equation (E.38) is obtained by curve fitting points along

space curve (A), and the cross- derivative terms at the shock wave solu-

tion point are equated to those terms at the bic.haracterist is base
4

176

i



'::..	 '';'.	 ^	 ,F,	 ^ '	 . 1	 ; ,^,w =s • ^ x^^a	 *a .^ :.^..^Y ^'i	 .^^ wv ^x :: era

point in the initial-value plane, point (1). After a tentative sol ution

is obtained for all of the shock wave points, a number of global cor-

rector applications are performed. Mere, the value of a used in equa-

tion (E.38) is based on data along space curve (B), and the cress-

derivative terms at the shock wave solution point are evaluated at that

point. The resulting overall scheme has second-order accuracy when

i	 the global correction is performed. The global iteration is terminated

when successive values of . % have converged at each of the shock wave

solution points.

In the course of the program development, an alternative algorithm

to the one just presented was devised in an attempt to compute the bow

shock wave solution points. In this alternative scheme, a multiplicity

of bicharacteristics were used, arid, like the interior point or solid	 .1
i

boundary point unit processes, linear combinations of the wave surface

compatibility equations were formed as to algebraically eliminate the
	

t y

cress-derivative terms at the solution ;point. A two-dimensional

Newton-Raphson method was devised for determining the angles ,^ and ,1

explicitly, and second-order accuracy was achieved without resorting to

global correction. This scheme was successful in computing axisymmetric

flows, but an apparent instability arose when attempting to compute

three-dimensional flow fields.

7. SOLID BODY--SHOCK WAVE POINT UNIT PROCESS

The solid body-shock wave paint unit process is used'to determine

the flow properties downstream of the shock wave at a point where the

shock wave intersects a solid boundary. This unit process is used to

determine the solution for the paints on the cowl on the downstream side
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of the cowl lip shock wave, and for the points on the centerbody, or cowl

on the downstream side of an internal reflected shock wave. The method

of computation is essentially the same for either application and is

discussed below. The solution points on the downstream side of the

k	 incident shock wave at an internal shock wave reflection are computed
I

using the field-shock wave point unit process which is presented later.

A depiction of the computational network used in the solid body-

!
shock wave point unit process is presented in Figure E.5. A typical

solid body-shock wave solution point is denoted by point (P) in this

figure. At point (P), the outward unit normal vector to the solid

boundary is denoted by n b . The locus of solid body-shock wave solution

points represents the intersection of the shock wave with the solid

boundary, and defines space curve (A) in Figure E.5. The intersection

of the shock wave with the meridienal plane passing through point (P)

is denoted by space curve (B). The tangential unit vectors to space

curves (A) and (B) at point (P) are denoted by z and t, respectively.

The unit normal vector to the shock wave at point ( p ) is denoted by

n.
s

As was done fir the bow shock wave point unit process, tkc roit

vectors Q, t, and n  are referenced to a local cartesian coordinate

system (x' y' 	 where again x' is coincident with the x-axis, y' is

in the radial direction along the meridian which subtends the angle

with the (x,y)--plane, and z' is normal to the (x',y')-plane. The rela-

tions between the components of a vector in the (x,y,z)-system and in

the (x',y',z')-syster, are given by equations (E.31) to (E.36). As in

the bow shock wave point unit process, the tangential unit vector t lies
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in the meridional plane [(x',y')-plane] and subtends the angle 0 with

the x'-axis. Hence,

t = coso i + stro i	 (E.60)

Unlike the bow shock wave point unit process, however, the tangential

unit vector x does not, to general, lie in the transverse plane

[(Y',z')-Flanea, but rather it may have a nonzero x'-component. This

tangential vector along space curve (A) may be represented by

dx'dXL	 + dz'-
Us— z + ds J	 ds 

k
	 (E.61)

where ds is the differential arc length given by

(ds) 2 = (dx') 2 + (dy') 2 + (dz') 2	(E.62)

The derivatives in equation (E.61) are obtained by analytically

differentiating the expressions

X'(6) = al + a2e + a3e2
	

(E.63)

,i
	

Y'($) = b  + b 
2 
e + b3$2
	

(E.64)

F

4•

i
Ig
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i,
r f

z'(e) = C  + c20 + c 3e 2 	 (E.65)

In equations (E.63) to (E.65), the coefficients a i , b i t and c 

(i=1,2,3) are obtained by fitting the respective expressions to three

points on space curve (A) as described in Appendix C. For the cowl lip

shock wave poi,.is, space curve (A) is defined by the cowl lip itself

since the shock wave is assumed -to be attached to the cowl lip. In

this case, the x'-component in equation (E.61) is identically zero,

_	 .w

180



^f.	 ^t3$^y} xId	 ' 	 ''	 y^y .s^.yi^s '+t.^ F 	1F —	 Fn .	 j	 : :'s`	 f3	 ' 	
y
R

and, as a consequence, t lies in the transverse plane. Furthermore, if

the cowl is axisymmetric, the y'-component is also identically zero.

Alternatively, for computing the downstream properties at a reflected

internal shock wave, space curve (A) is defined by the intersecton

of the incident shock wave with the solid boundary. Except for an axi-

symmetric flow field, or for a poiint on a plane of flow symmetry in

three-dimensional flow, the x'-component in equation (E.61) is nonzero.

With the tangential unit vectors determined, the shock wave normal unit

vector n  is obtained from equation (E.39).

The solid body-shock wave point unit process is initiated by

determining the body normal unit vector n  and the tangential unit

vector Q at point (P), expressing both of these vectors inn the

(x',y',z')-system. Then, an initial estimate is made for the value of

0 in equation (E.50), and, by use of equation (E.39), the shock wave

normal unit vector is obtained. In exactly the same manner as was done

in the bow shock wave point unit process, the downstream flow properties

at point (P) are computed by use of equa ons (E.45) to (E.53). At

this stage, the velocity normal to the body V nb at point (P) is computed

Crom the equation

w

Vnb - udnbx'	 vdnby' 
t 

wdnbz'
	

(E.66)

where u^, vd, and wd are the downstream velocity components at point

(P), and nbx „ nby „ and n bz , are the components of the body normal unit

vector, both vectors being expressed in terms of the (x',y',z')

coordinates. The body normal velocity Vnb is reduced to within a

specified tolerance of zero by varying the angle ^ using a ene-

r	 dimensional secant iteration procedure. Two initial estimates of ^ are
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required for starting the iterative procedure. Once convergence has

been obtained, the downstream velocity components are transformed back

into the (x,y,z)-coordinates using equation's (E.34) to (E.36).

In the course of the program development, an alternative algorithm

to the one just presented was devised to compute the solid body-shock

wave points. That algorithm determined the shock normal vector (and

thereby the downstream properties) by employing the shock wave rela-

tions which link the flow turning angle and the shock wave angle, both

these angles being measured from the approach streamline direction in

a plane defined by the approach velocity vector and the shock wave

normal vector. Since the shock wave normal vector is required to de-

fine this plane, an iterative procedure for determining that vector is

required in this method. This method was tested and produced results

identical to the method described earlier. However, due to the greater

complexity of the alternate method, it was not selected for use in the

final algorithm.

B. SHOOK•-MODIFIED INTERIOR POINT UNIT PROCESSES

In some situations during the computation of the internal flow,

the interior point unit process must be applied in a modified form.

One such application is illustrated in Figure E.6. In this situation,

the Mach cone, with apex at the solution point, intersects not only the

initial-value plane but also a solid boundary and an internal shock

wave. The point notation used in Figure E.6 is the same as that used

in the computational network of the basic interior point scheme, which

is illustrated in Figure E.1. The solution point, denoted by point (6)
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in Figure E.6,lies on the current solution plane. Point (5) represents

the streamline base point on the initial-value plane. As in the basic

interior point unit process, points (1) to (4) represent the bichar-

acteristic base points. Point (1), in this case, lies on the surface

of the internal shock wave, and point (3) lies on the solid boundary.

Points (2) and (4) lie on the initial-value plane.

The axial distance between the initial-value plane and the solu-

tion plane is determined by either the CFA. stability criterion or by

the special constraints which apply when an internal shock wave inter-

sects a solid boundary. Those procedures are discussed in Appendix F.

In either case, the axial step is determined prior to the application

l

of the unit processes.
t

In the overall algorithm for the computation of the internal flow,

the order of integration is selected so that the shock wave solution

points and the body solution points are determined before any attempt

is made to obtain the solution at any of the interior field points

which lie in the flow field sector that is downstream of the shock wave.

As a consequence, the flow property fields on the downstream side of

the shock wave and on the stream surface formed by the solid boundary

are determined before the solution at an interior point, such as

point (6) in Figure E.6, is attempted.

The procedure used to obtain the solution at point (6) in Figure

E.6 is almost identical to the basic interior point unit process, which

is presented in Section 4 of this appendix. The major difference be-

tween the two algorithms is that, in the present case, the bicharacter-

istic intersection points on the shock wave [point (1)] and on the
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solid boundary [point (3)] must be determined in addition to those bi-

characteristic intersection points [points (2) and (4)) on the initial-

value plane. Along with the location of these points, flow property

values and first partial derivatives of the flow properties at these

points must also be obtained.

As in the basic interior point unit process, flow property valuers

r

at points ( 2) and (4) on the initial - value plane are obtained using

the bivariate interpolation polynomial given by equation ( E.11). The

coefficients in this equation are determined by a least squares fit of

nine data points in the initial - value plane as discussed in Appendix C.

Flow property values at point (1) on the shock wave surface or at

point ( 3) on the solid boundary surface are obtained using the tri-

variate interpolation polynomial

f (x,y , z ) = a l + a 2y + a 
3 
z + a 4yz + a5y2 + a 

6 
z 2

+ a 7xy + aaxz	 (E.67)

The coefficients a  (i=1 to 8) in equation ( E.67) are determined by a

least squares fit of fourteen data points on either the downstream side

of the shock wave for interpolation on that surface, or on the solid

boundary for interpolation on that surface. The detailed implementa-

tion of equation (E.67) is presented in Appendix C.

An outline of the unit process used to determine the solution at

point (6) in Figure E.6 is now presented. The computation is initiated

by determining the location of the solution point, point (6), using

equation (E.12) in a manner identical to the procedure employed in the

basic interior point unit process. After the position of the solution
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point has been obtained for a given outer iteration, the four bi-

characteristics, corresponding to the values of the parametric angle

B = 4, w12, w, and 3Tr/2 in equation (E.13), are extended rearward from

the solution point to the initial-value plane. From the bicharacteris-

tic-initial-value plane intersection point coordinates, denoted by

y*(k) and z*(k) (k=1 to 4), the radius r*(k) = [y*(k) 2 + a*(k) 2 ] 112 and

the polar angle 9*(k) = tan - 1[z*(k)/y*(k)^ of each intersection point

are computed. The radius r*(k) is then compared to the shock wave

radius r  and the body radius r  in the meridional plane defined by the

polar angle a*(k). The shock wave radius is determined from the uni-

variate interpolation polynomial

rs (e) = a 1 + a 2 9 + a 
3 
a 
2
	 (E.68)

where the coefficients a  (i=1,2,3) are determined by fitting this ex-

pression to three shock wave solution points in the initial-value plane

as described in Appendix C. The solid body radius r  is obtained by

employing the formulations presented in Appendix D. For the orientation

shown in Figure E,6, if r s < r*(k) < rb , the bicharacteri•`ic inter-

sects the initial-value plane and the analysis proceeds as in the basic

interior point unit process. If r*(k) s rs , the bicharacteristic

intersects the internal shock wave. In this case, the bicharacteristic

base point location on the surface of the shock wave is found by

employing the bicharacteristic-surface intersection scheme presented in

Appendix D. For a shock wave intersection, that scheme requires that

equation (E.68) also be fitted to three shock wave solution points in

the current solution plane. If r*(k) > r b , the bicharacteristic
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intersects the solid boundary. The bi ,characteristic base point loca-

titon on the solid boundary is also obtained by using the iterative

scheme presented in Appendix D. As in the basic interior point unit

process, an i-nner iteration  i s performed for liecati ng points (1) to (4) .

Interpolated values of the flow properties at the respective points

are obtained by using either equation (E.11) or equation (E.67),

whichever is applicable.

After the bicharacteristi-c base points, points (1) to (4), have

been located, the first partial derivatives of the flow properties

with respect to y and z at these points are obtained by analytically

differentiating the appropriate interpolation polynomial. In a like

manner, these derivatives are also obtained at the streamline base

point, point (5). Then, using the governing partial differential

equations, the x-partial derivatives of the flow properties are found

at points (1) to (5). For any bicharacteristic which intersects the

shock wave or the solid boundary, the time parameter [t(6) - t(k)] is

found using equation (E.13) applied for i-i (i.e., the x-coordinate

direction) while employing the appropriate intersection coordinates.

At this stage, the system of compatibility equations may be solved

for the flow properties at point (6) in a manner identical to that

employed in the basic interior point scheme.

The situaticil illustrated in Figure E.6 is quite general. In some

instances, there are no bicharacteristic intersections with the solid

boundary. Alternatively, there may be no intersections of the bi-

characteristics with the internal shock wave. There may be two bichar-

acteristics intersecting with the shock wave, etc.

s
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Another situation in which the interior point unit process must

be applied in a modified form is illustrated in Figure E.7. In this

a	 figure, the Mach cone, with apex at the solution point, intersects

both the initial-value plane and the interna
.
` shock wave. The point

notation used in Figure E.7 is the same as that used in Figure E.6.

However, in this case, the streamline base point, point (5), does not

lie on the initial-value plane, but rather lies on the surface of

the internal shock wave.

The location of the streamline base point is obtained by extending

the streamline from the in i tial-value plane to the surface of the shock

wave. The point of intersection of the streamline with the shock wave

is determined by employing the iterative scheme which is presented in

Appendix U for finding a streamline-surface intersection point. That

procedure requires that equation (E.68) be applied to three known

shock wave solution points in the initial-value plane and three shock

wave solution points in the current solution plane. Furthermore,

interpolated values of the velocity components are required on the up-

stream side of the shock wave at the point where the streamline inter-

sects the shock wave. For this purpose, the following linear tri-

variate interpolation polynomial is employed.

f (x,y ,x) = a l + a 2 + a3Y + a4'z
	

(E.69)

The coefficients a  (i=1 to 4) in equation (E.69) are determined

by fitting this expression to four data points on the upstream side

of the shock wave, as discussed in Appendix C.

After the streamline-shock wave intersection point has been de-

termined, the following fraction is formed
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e = [x S - x(5)1/(Xs - x I )	 (E.70)

where x i and x  are t;ie axial positions of the initial-value plane
F	

and the solution plane, respectively. If a is greater than a specified

minimum value, an interior point unit process is performed on the

downstream side of the shock wave. This unit process is almost iden-

tical to that used for determining the solution at point (6) in

Figure E.6. In this case, however, the streamline formula given by

equation (E.12) is applied between the streamline-shock wave inter-

section point and the solution plane. Interpolated flow property

values at point (5) are -etermined by applying equation (E.67) to four-

teen data points on the downstream side of the shock wave.

If, on the other hand, a is leas than the specified minimum value,

an interior point unit process on the downstream side of the shock wave

is not performed. Instead, the streamline from point (5) is projected

onto the solution plane, and the flow properties at the solution point

are determined by interpolation in the solution plane. The streamline

integration from point (5) to point (6) employs equation (E.12). The

flow property values at point (5) are obtained from equation (E.61)

applied to fourteen, data points on the downstream side of the shcck

wave. Flow property values at the streamline-solution plane inter-

section point are determined from the linear bivariate polynomial

f(y,z) = a l + a 2y + a 3 z
	

(E.71)

The coefficients a  (i=1,2,3) in equation (E.71) are determined by

fitting this expression to three data points in the current solution

plane, as described in Appendix C. The order of integration for
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determining the internal flow field is specified so that the downstream

shock wave points and outer interior points in the downstream flow

field sector are determined first. The location of the solution point,

in this case, is determined by an iterative loop which is terminated

when the y and z coordinates of the projected solution point have

converged.

9. SHUCK-MODIFIED SOLID BOUNDARY POINT UNIT PROCESSES

In some situations, the solid boundary point unit proc:,ss must

be applied in a modified form. One such application is illustrated in

Figure E.8. In this situation, a portion of the Mach cone, with apex

at the solid body solution point, intersects both the initial-value

plane and the internal shock wave. The point notation used in Figure

E.8 is identical to that used in Figure E.2, which depicts the computa-

tional network for the standard body point unit process. The unit

process employed in the present case is almost identical to the standard

body point unit process. In the present case, however, the bichar-

a.cteristic-shock wave intersection is handled in a manner identical to

that employed in the shock-modified interior point unit process pre-

sented in the previous section.

In some situations, the entire Mach cone intersects the shock wave,

as illustrated in Figure E.9. This situation occurs at a body point

on the solution plane that is immediately downstream of a solid body-

,	 shock wave reflection, or at a body point on the solution plane that is

immediately behind the shock wave emanating from the cowl lip. In the

former case, the shock wave-solid body intersection is a space curve

in three-dimensions, whereas, in the latter case, the shock wave-solid
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body intersection is a curve in a plane of constant x. The appropriate

intersection algorithm is used as presented in Appendix D, and for the

most part, procedures identical to those employed in the shock-

modified interior point unit process are employed in this case.

10. INTERNAL FLOW FIELD-SHOCK WAVE POINT UNIT PROCESSES

Figure E.IO illtustrates the overall computational network used in

determining the solution for a typical shock wave point in the internal

flow field. To determine the solution at the shock wave point, an

interior point unit process must be performed to obtain the upstream

flow properties at the location of the shock wave solution point.

Figure EJO illustrates both the computational network for the interior

point unit process (denoted by primed numbers), and the computational

network for the standard shock wave point unit process (denoted by

unprimed numbers). The point notations employed in these computational

networks are identical to those used in the corresponding standard

unit processes.

The computational procedure employed for determining the solution

for an internal flow field-shock wave point is almost identical to the

bow shock wave point unit process. The major difference between the

two procedures is that for an internal flow shock wave point, the up-

stream flow properties at the solution point are obtained from an

interior point computation, rather than using free-stream data as in

the bow shock wave point unit process. The required interior point

unit process is essentially the same as the basic interior point unit

process presented in Section 4 of this appendix. In the present case,

however, the streamline is not extended from a field point in the
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initial -value plane to the solution plane, but rather it is extended

from the shock wave solution point back to the initial -value plane.

The position of the shock wave solution point is determined by the

shock wave point unit process. To initiate the interior point computa-

tion in the present case, flow property values are used from an

adjacent field point in the flow field sector that is upstream of the

shock wave in the solution plane. This modified interior point unit

process requires searching the flow field sector upstream of the shock

wave in the initial -value plane for the field point that is closest

to the streamline- initial-value plane intersection point. This point

is then used as the base point for the stencil of initial -value plane

field points that a-re used in formulating the bivariate interpolation

polynomial given by equation ( E.11) (see Appendix C).

For the first solution plane inside the inlet, the downstream

bicharacteristic base point, point ( 1) in Figure E.11, does not lie

on the initial - value plane, but rather is located on the stream sur-

face formed by the cowl boundary. To compute the pressure at point (2)

from the wave surface compatibility relation, equation ( E.59), the

flow property values must be available at point ( 1), which requires

that the flow property field must be known on the cowl surface. The

body points on the cowl surface at the first internal flow solution

plane, however, must be obtained from the unit process described in

Section 9 of this appendix. That unit process requires that the

flow property field on the downstream side of the shock wave be known.

Hence, a simultaneous solid body point - shock wave point algorithm must

be employed. This procedure was not developed in the present

r
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investigation. Rather, the shock wave points on the first internal

flow solution plane are computed using a value of 0 in equation (E.37)

equal to the value of 0 at the shock wave point in the initial-value

plane which lies 401 the same meridional plane as the solution point.

This provides a solution at each shock wave point on the first solu-

tion plane without employing the compatibility relation along the

bicharacteristic. The body points on the cowl are then computed in the

manner outlined in Section 9. On ensuing solution planes, except for

the one immediately after a solid body-shock wave intersection, the

bicharacteristic base point is located and the angle (P is iterated

to convergence.

When the internal shock wave intersects a solid boundary, as illus-

trated in Figure E.12, a modification is required to the shock wave

point unit process. In this case, instead of performing an interior

point unit process to obtain the upstream flow properties at the solution

point, a modified solid boundary point unit process must be employed.

Moreover, the shock wave solution point, in this case, does not lie

on the solution plane, but rather its position must be obtained by

computing the intersection of the incident shock wave with the solid

boundary.

Finally, it should be noted that in order to achieve strict

second-order accuracy in the internal flow shock wave point solution,

global correction must be performed [this involves evaluating the

cross derivatives at the solution point and using updated values of C1

in equation (E.38)]. Time constraints in the present investigation

did not permit the development of the global correction capability for
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the internal flow shock wave points. Hence, only local iteration Lan

be performed for those points.
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APPENDIX F

OVERALL NUMERICAL ALGORITHM

1. INTRODUCTION

The overall numerical algorithm consists of the repetitive

application of the various unit processes to generate the global solu-

tion for given boundary conditions and a specified set of initial

data,

The boundary conditions are represented by the firmulations pre-

sented in Appendix D. The initial data are specified on a space-like

plane of constant x. The x-coordinate axis is the longitudinal axis of

the centerbody and the cowl. Moreover, the mean flow direction is

assumed to be in the x-coordinate direction.

An inverse marching scheme is employed in the overall numerical

algorithm. The solution is obtained on space-like planes of constant

x. The solution points on each plane represent the intersection

points of continuous streamlines which are propagated from the data

points specified on the initial N iue plane. In addition to the

streamline solution points, are the solution points representing the

intersection of either the external or the internal shock wave with

the solution plane. For the internal flow, the solution is also ob-

tained on the space curves which represent the intersection of the

internal shock wave with the solid boundaries. These space curves

are defined by the locus of shock wave solution points.

i
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Except in the vicinity of a shock wave reflection with a solid

boundary, the axial (x) distance between successive solution planes

is determined by the application of the Courant-Friedrichs-Levy

(CFL) stability criterion. In the vicinity of a shock wave intersec-

tion with a solid boundary, the axial step is controlled by special

constraints which insure that the entire shock wave-solid boundary

intersection falls between two adjacent solution planes.

After each solution plane is computed, the mass flow rate across

that plane is calculated using trapezoidal rule integration. Constancy

of the overall mass flow rate in the internal flow field computation

gives an indication of the overall accuracy of the numerical integra-

tion. The stagnation pressure and stagnation temperature are

calculated at each solution point. For the adiabatic flow of a

calorically perfect gas, the stagnation temperature should remain

constant.

In the numerical anaiysis, the flow field is divided into two

regimes: the internal flow regime and the external flow regime, as

illustrated in Figure F.Z. The flow field integration in each of these

two regimes is controlled by separate logic modules in the computer

program. Tree forebody flow field ir.t^gration is performed first.

Then, the internal flow field is computed. The computer program

developed in the present investigation has the capability to perform
S;
3	

the internal flow field integration with or without the discrete

fitting of the internal shock wave system. The option in which shock

waves are not discretely fitted might be employed if the internal

shock waves are of relatively weak strength, and thereby an acceptable
t

solution could be obtained by smearing the internal discontinuities.

x
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From a computation point of view, the internal flow field in

which shock waves are not discretely fitted is the easiest solution

to compute. For flow fields in which shock waves are discretely

fitted, the external flow about the forebody is less difficult to ob-

tain than the internal flow, since in the external flow the shock wave

represents a bound to the computational regime. Discrete fitting

of the shock wave throughout the computational regime, as is done in

the internal flow field integration, greatly complicates the numerical

algorithm.

In this appendix, the overall control logic used in each of the

three flow field integration options is discussed. Regulation of the

axial marching step size, generation of the initial-value surface

data, and considerations of flow symmetry are also discussed. All of

the unit processes referred to in this appendix are discussed in

Appendix E.

2. COURANT-FRIEDRICHS-LEWY (CFL) STABILITY CRITERION

Except in the vicinity of an internal shock wave-solid boundary

intersection, the axial marching step between successive solution

planes is determined by the application of the Courant-Friedrichs-Levy

(CFL) stability criterion (9). The CFL stability criterion will be

satisfied at each solution point if the convex hull of the finite

.	 i
difference network contains the differential zone of dependence of

the solution point. The convex hull of the finite difference network,

illustrated in Figure F.2, is defined by the outer periphery of

initial-value plane field points used in determining the fit point

stencil for the quadratic bivariate interpolation polynomial. The
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differential zone of dependence, also illustrated in Figure F.2, is

the region defined by the intersection of the Mach -one (whose apex

is at the solution point) with the initial-value plane.

The maximum allowable marching step for each streamline is the

x-step for which the Mach cone just touches the convex hull. That

step size is given by

AX = [u2/(cq)][] - ( c/q )(
q2

/u2 - 1)1
/2]Rmin	

(F.1)

where ox is the maximum allowable axial step, u is the x-component

of the velocity, q is the velocity magnitude, and c is given by

c2 W a2g2/(q2 - a2 )
	

(F.2)

where a is the local sonic speed. In equation (F.1), Rmin is the

distance from the streamline base point in the initial-value plane

to the nearest field point on the convex hull of the finite differ-

ence network (see Figure F.2).

Equation (F.1) is applied at every streamline solution point,

the actual marching step being selected as the ax value at the most

restrictive point. It should be noted that this expression is applied

only to streamline points, the shock wave points being excluded.

Furthermore, in the internal flow field integration, the shock wave

points are ignored in defining the convex hull of the finite differ-

ence network when application of the stability criterion is made to

a streamline point.



3. INITIAL-VALUE PLANE

The initial data are specified on a plane of constant x. The

flow must be supersonic at every point on this plane. For uniqueness

and existence of a genuine solution, the values of the five dependent

variables (u, v, w. P, and p) prescribed on this surface must have

at least continuous first derivatives.

If the forebody flow field is to be determined, the initial-value

plane must be specified at an axial (x) station that is upstream of

the forebody computational flow regtme (see Figure F.1). The

solution is then found along the streamlines that pass through

the data points specified on the initial-value plane, although some

streamline addition and deletion are performed on the ensuing solu-

tion planes as described in Section 5 of this appendix.

If only the internal flow field is to be determined, the initial-

value plane must be specified at the axial station which corresponds

to the x-position of the cowl lip (see Figure F.1). The cowl lip is

assumed to be contained in a plane of constant x. For the integration

of the internal flow field, a point redistribution is performed on

the initial-value plane. This point redistribution is required in

order to have streamlines which lie in the stream surface formed by

the cowl boundary. The solution is then found along the streamlines

that pass through the redistributed points on the plane at the cowl

lip axial station.

The initial-value plane may be specified by the user, or if the

forebody is conical up to the axial station where the initial-value

plane is located, the flow property field on the initial-value plane

r
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can be generated internally in the computer program. The internally

generated initial-,aloe plane is obtained by an approximate technique

which employs the Taylor-Maccoll solution for the flow about a circu-

lar cone at zero incidence. A superposition procedure is used to ob-

tain an approximation to the flow about a circular cone at nonzero

angle of attack by neglecting the cross flow effects. This superposi-

tion procedure effectively amounts to compuV ng the flow turning

angle in the meridional plane of the given solution point, and then

obtaining the flow properties at that point by applying the Taylor-

Maccoll solution for a cone half-angle equal to the flow turning

angle. The shock wave angle is then measured from the original

streamline direction in the appropriate me.ridional plane. It must be

emphasized that this is only an approximate technique, giving the well

accepted Taylor-Maccoll solution at zero incidence, but becoming

increasingly less accurate as the angle of attack is increased.

The solution obtained by Tones ( 33) for the flow about a circu-

lar cone at nonzero incidence has been well substantiated. Using a

conversion algorithm, the results of the computer program developed by

Jones can be made compatible with the input data required by the

computer program developed in the present investigation. Many of the

computed results presented in Section VI were obtained using the

results of Jones' program as initial data. For situations in which

the forebody, is conical up to the axial station where the i nitial-

value plane 'A located, the Jones program is the recommended source

for the initial data.

a 
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If the forebody is not conical ahead of the axial station of the

initial-value plane, another source of initial data must be used.

s i
'	 If available, experimental data may be employed.

4. SOLUTION PLANE POINT NETWORK AND FLOW SYMMETRY

The Computational point network is based on a series of circum-

ferential and radial stations. The point networks for the various

flow symmetry options are illustrated in Figure F.3. In this figure,

the index i corresponds to the ith circumferential station and the

index j corresponds to the jth radial station. In all cases, the

streamlines on the surface of the centerbody are denoted by j = 1.

For the forebody flow field, the bow shock wave solution points are

denoted by j = n. For the internal flow field, the streamlines on

the surface of the cowl are denoted by j = n. The computed sector,

in general, is bounded by the circumferential stations corresponding

to i = l and i = m. This point arrangement produces a rectangular

logic array in the computer program.

The points at any circumferential station in axisymmetric flow,

or on a plane of flow symmetry in three-dimenstonal flow, lie on a

straight line. Moreover, for axisymmetric flow, the radial stations

correspond to circular rings. In general, however, the solution

points at a given circumferential station do not lie on a ray, nor

do the radial stations correspond to circular rings.

For the internal flow option in which shock waves are discretely

fitted, the shock wave solution points are also represented in this

point arrangement. Special logic is used in the computer program

such that the shock wave solution points float in the storage arrays

2.09
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as the shock wave travels between the centerbody and cowl on successive

solution planes. On a given solution plane, the shock wave solution

points at adjacent circumferential stations do not, in general, have

to lie at the same radial station.

The computer program takes advantage of flow symmetry when it

exists in the flow field. In these instances, the entire solution

plane does not have to be computed, but rather only an appropriate

section of it. The remaining sections of the solution plane may be

obtained by reflection of the points in the computed sector. This

procedure yields a significant reduction in computer execution time.

The four flow symmetry options that have been incorporated into

the analysis are depicted in Figure F.3. Figure F.3(a) illustrates

the most general case when no flow symmetry is present. Figure F.3(b)

illustrates the case when one plane of flow symmetry is present. In

this case the computed sector is the half-plane bounded by the

y-axis and containing the +z-axis. The integration region in this

case is bounded by the i = 1 circumferential station on the

+y-axis and by the i = m circumferential station on the -y-axis.

This case of flow symmetry is the one most likely to arise in the

class of problems being considered in this investigation. Figure

F.3(c) illustrates the case when two planes of flow symmetry are pre-

sent. This option would be used to compute the flow field about asym-

metric bodies at zero angle of attack. In this instance, the computed

sector is the quadrant bounded by the +y-axis and the +z-axis. The

circumferential station corresponding to i = 1 lies on the +y-axis

and the circumferential station corresponding to i = m lies on the
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option where the computed sector is limited to the single circumfer-

ential station (ray) lying on the +y-axis. This option would be used

to compute the flow field about axisymmetric bodies at zero angle of

attack.

The numerical algorithm does not apply special unit processes

when a solution point lies on a plane of symmetry. Rather, a point

reflection about the plane of symmetry is performed in the initial-

value plane, and the appropriate unit process is then applied in

standard form. This procedure yields satisfactory results and elimi-

nates the need for devising special unit processes.

S. EXTERNAL FLOW ABOUT THE FOREBOQY

With the forebody geometry specified and the flow property field
t

`	 on the initial-value plane determined, the external flow about the

forebody can be calculated. In the computation of this flow field,

the distance between successive solution planes is determined by the

application of the CFL stability criterion. The last solution plane

in the forebody flow field computation is made to coincide with the

x-position of the cowl lip.

After the axial step between the current initial-value plane and

the current solution plane has been determined, the solid boundary

point unit process (see Appendix E) and the interior point unit

process (see Appendix E) are applied. These unit processes achieve

second-order accuracy without the need for global iteration. Fence,

these unit processes are applied at the appropriate points until con-

vergence is obtained without using information from neighboring points
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in the solution plane.

Once the solution at each solid boundary point and interior point

has been determined, the bow shock wave point unit process (see

Appendix E) is applied at each shock wave solution point in the com-

puted sector. Global correction is then applied for these points,

if desired. The position of each shock wave solution point is made

to lie in the meridional plane defined by the outer -most interior

field point which is on the same circumferential station as the shock

wave point. As a consequence, in axisymmetric flow, the streamline

and shock wave solution points on a given circumferential station lie

in the same meridional plane on all succeeding solution planes. in

three-dimensional flow, however, except on a plane of flow symmetry,

the solution points corresponding to a given circumferential station

do not lie in the same meridional plane on successive solution planes.

In the forebody flow field integration, periodic streamline

addition and deletion are performed. The streamline addition is

required to retain a well-dispersed computational mesh, since at suc-

cessive solution planes more and more mass is captured. Moreover,

convergence of the streamlines towards the forebody occurs as the

flow progresses downstream. Periodic point deletion is required since

the continued addition of streamlines would produce an excessively

large number of computational m=..sh points, thereby unduly increasing

computer execution time and machine storage requirements. The stream-

line addition and deletion procedures are outlined in the following.

A depiction of a typical forebody flow streamline pattern is given in

Figure F.4.

214

^	 F

i
i

•



t	 '

Y

(Z-AXIS OUT OF PAGE)

f
BOW SHOCK WAVE

INITIAL-VALUE
PLANE

O	 F 0 RE BODY

FIGURE F.4. TYPICAL FORE.BODY FLOW STREAMLINE PATTERN
N

C'Jt



x

r	 k

i

.{	 y

•	 y
Z

For the purposes of point addition, after the points on the solu-

tion plane have been computed, the mass flow rate across that plane

is calculated. If this mass flow rate is significantly larger than

the mass flow rate across the last solution plane where point redis-

tribution was performed, a new ring of solution points is added

between the ring of shock wave solution points (j = n) and the ring

of outermost interior field solution points 0 = n - 1). The co-

ordinates of each of these inserted solution points is obtained by

forming the arithmetic average of the coordinates of the shock wave

solution point and the outermost interior field point corresponding

to the circumferential station of the new point. The flow properties

at each of the inserted solution points are obtained by interpolation

using the quadratic bivariate polynomial

3

f(y,z) = a +a	 +a z+ayz+ayZ +a z2	(F.3)
1	 3	 4	 5	 6

where f(y,z) denotes a general function of the coordinates y and z.

The coefficients a i (i=1 to 6) in equation (F.3) are obtained by a

least squares fit of nine data points in the solution plane, as de-

scribed in Appendix C.
x

,f Point deletion occurs when the number of radial stations has

reached a specified limit. In point deletion, the body streamline

points are retained in storage, while selected interior streamline

points are deleted from storage. refinement of this technique is pro-

vided by having two limits to the number of allowable radial stations.

The first limit is employed when the mass flow rate at the given

4

solution plane is less than a specified fraction of the estimated

t}
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flow rate at the cowl lip. The second and larger limit is employed

when that fraction has been exceeded.

Finally, it should be noted that the influence of molecular

diffusion can be included in the forebody flow field computation.

6. INTERNAL FLOW IN WHICH SHOCK WAVES ARE NOT DISCRETELY FITTED

The program option in which the internal flow field is computed

without the discrete fitting of the internal shock wave system might

be employed in the cases where the internal shock waves are weak in

strength, and thereby an acceptable solution could be obtained by

smearing all internal discontinuities. This option requires that

only two unit processes be employed: the interior point unit process

and the solid boundary point unit process. The influence of molecular

transport can be included in the computation of this flow field.

The initial-value plane of the internal flow computation is

constituted by the last solution plane of the forebody flow field

integration. Alternatively, the initial-value plane may be specified

at the cowl lip axial station without employing the forebody flow

field integration option. This technique is recommended if the fore-

body is conical up to the cowl lip axial station.

The computer program developed in the present investigation assumes

that the bow shock wave falls outside of the cowl lip, or, in the

limit, intersects the cowl lip exactly. The program does not have the

capability to compute the internal flow field when the bow shock wave

has been ingested into the annulus.

With the initial-value plane specified, a point redistribution

on this plane is performed to obtain a uniform point distribution and

I;^1
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to obtain streamlines which lie in the stream surface formed by the

cowl boundary. The redistributed points are arranged symmetrically

in the computed sector. These points lie on rays which have equal

angular increments from one another, with the points on each ray

being spaced at equal radial increments. The radial station j = 1 	 -

corresponds to the centerbody streamline points, and j = n corresponds

to the cowl streamline points. The properties at these points are

obtained by interpolation.

With the point redistribution performed, the internal flow field

integration proceeds in a manner similar to the external flow field

integration, except that only two unit processes are used: the

interior point unit process and the solid boundary point unit process.

No point addition or deletion is performed. The internal flow field

integration is terminated either when a specified axial station is

reached or when the flow becomes subsonic.

7. INTERNAL FLOW IN WHICH SHUCK WAVES ARE DISCRETELY FITTED

A point redistribution is first performed on the initial-value

plane at the axial station of the cowl lip as described in the previous

section. After the upstream flow properties have been determined at

each of the cowl lip solution points in the computed sector, the

downstream flow properties are obtained at each of these points by

application of the solid bode-shock wave point unit process.

In the integration of the internal flow field in which shock waves

are discretely fitted, the axial step is obtained by the application

of the CFL stability criterion, except in the vicinity of a shock

wave reflection, where special constraints are employed. After the
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rs(a) = al + a20 + a302 (F.5)

i

l

axial station of the solution plane has been determined, the internal

shock wave is projected from the current initial-value plane to the

current solution plane in the meridional plane passing through the

x-axis and the previous shock wave point on the initial-value plane

as illustrated in Figure F.5. The location of the shock wave solu-

tion point is obtained by applying the following equation.

drs/dx = tanaI
	

(F. 4)

In equation (F.4), dr S is the increment in radius between the pro-

jected shock wave point and the previous shock wave point on the

initial-value plane, dx is the corresponding increment in axial dis-

tance, and 
S  

is the angle subtended by the shock wave and the x-axis

at the initial-value plane shock wave point and in the meridional

plane defined by the initial-value plane shock wave point. Equation

(F.4) is applied for each shock wave point in the computed sector,

thereby yielding the locus of projected shock wave points in the

solution plane. Interpolated values of the shock wave radius in the

solution plane are obtained by employing the following equation.

In equation (F.5), rs (0) is the shock wave radius at the polar angle

6 = tan-1 (z/y), and the coefficients a  (i=1,2,3) are obtained by

fitting this expression to three projected shock wave points, as de-

scribed in Appendix C. Equation (F.5) is applied at every circumfer-

ential station in the computed sector. Hence, the shock wave location

in the solution plane is represented by a series of overlapping one-

dimensional curve fits.
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After the tentative position of the shock wave in the solution

plane has been determined, the streamlines that are in the flow field

sector that is upstream of the shock wave in the initial-value plane

are projected from the initial-value plane to the solution plane, as

illustrated by streamlines 1 to 6 in Figure F.5(a) and by streamlines

9 to 13 in Figure F.5(b). This is accomplished by applying the equa-

tion of a streamline

dx i = u i dt	 (i=1,2,3)
	

(F.6)

where xi (i=1,2,3) denotes the three Cartesian coordinates x, y, and

z, respectively, u  (i=1,2,3) denotes the corresponding velocity com-

ponents u, v, and w, respectively, and t is the time of travel of a

fluid particle along the streamline. Equation (F.6) is first applied

in the x direction. Since the axial step dx is known from the appli-

cation of the CFL stability criterion, the time parameter dt may be

determined. Then, application of equation (F.6) for the y and z

directions allows the y and z coordinates of the projected streamline

point to be computed. The radius r = (y2 + z 2 ) 1/2 and polar angle

e = tan-l (z/y) of each of the projected streamline points are then

computed.

The radius of the projected streamline point is then compared to

the radius of the shock wave, given by equation (17 .5), in the meri-

dional plane defined by the projected streamline point. If the pro-

jected streamline point is in the upstream flow field sector on the

solution plane (i.e., the streamline does not intersect *fie shock

wave), then a standard interior point or solid boundary point unit
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process is applied to obtain the solution at this point. If the

streamline appears to intersect the shock wave, as illustrated by

streamlines 5 and 6 in Figure F.5(a) and streamlines 9 and 10 in

Figure F.5(b), then the application of the unit process to determine

the solution is deferred.

At this stage, the upstream and downstream shock wave solution

points are determined at each circumferential station in the solution

plane computed sector using the internal shock wave point unit process.

This procedure defines the property field on both the upstream and

downstream sides of the internal shock wave.

Next, the body streamline solution points are computed at every

circumferential station in the downstream flow field sector on the

solution plane. In some instances, computing the solution at these

points may entail using flow property information from the downstream

side of the internal shock wave if the Mach cone, with apex at the

solution point, intersects the shock wave surface. Determining the

solution at each of these points thereby defines the flow property

field on the boundary stream surface in the downstream flow field

sector.

At ;...is stage, the solution on each of the streamlines which have

not yet been computed is determined. The streamlines that are in the

downstream flow field sector on the initial-value plane will remain

in the downstream flow field sector on the solution plane (see Figure

F.5). The :solution at these points is determined by the application

of the standard interior point unit process, unless a portion of the

Mach cone, with apex at the solution point, intersects the internal
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shock wave or the solid boundary, in which case the modified interior

point unit process is applied. For streamlines which penetrate the

internal shock wave [streamlines 5 and 6 in Figure F.5(a) and stream-

lines 9 and 10 in Figure F.5(b)], the appropriate modified interior

point unit process is applied. For the streamlines whose solution

was deferred due to a possible shock wave penetration, but which

ultimately did not intersect the shock wave, the standard interior

point scheme is applied. The solution points are ordered in the

storage arrays in the order of increasing radius on a given circum-

ferential station. So a post computation interchange of the stream-

line solution points with the shock wave solution points is performed
k

t	 for the streamlines which initially appeared to intersect the shock

wave but ultimately did not.
P	 ^

The process just outlined is applied repetitively until the

internal shock wave intersects a solid boundary. Special logic is

used in the computer program for the computation of a shock wave

reflection. The overall scheme used in this case is now presented.

The initial step in the computation of the shock wave-solid

boundary reflection is to obtain an estimate of the axial location,

at a discrete number of points, where the incident shock wave inter-

sects the solid boundary. Except for the case of axisymmetric flow,

the intersection of the incident shock wave with the solid boundary

defines a three -dimensional space curve, as illustrated in Figure F.6.

In axisymmetric flow, this curve lies in a plane of constant x.

Points along the space curve are determined by obtaining the inter-

section of the shock wave and the solid boundary, where both of these

If

,r J

6
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surfaces are represented as straight line segments in the meridionai

t

i

planes passing through the shock wave points in the initial - value

plane.	 For a given meridional plane, the shock wave is represented

by equation (F.4), where dry is the increment in radius between the 3.311

shock wave-body intersection point and the shock wave point in the
•	 3

initial-value plane, dx is the corresponding increment in axial y`

^
k	

,

distance, and S I is the angle subtended by the shack wave and the x-

f axis in the meridional plane defined by the appropriate shock wave

t solution point in the initial-value plane. 	 The local body surface is

approximated in the meridional plane by the equation

drb/dx - m	 (F.7)

where drb is the change in the radius of the body between the shock
P^

wave-body intersection point and the body point in the initial-value

k plane, dx is the corresponding increment in axial distance, and m is t

.F
the local slope of the body in the given me.ridional plane. 	 Equations

,T (F.4) and (F.1) are solved simultaneously to obtain the intersection

point in the given meridional plane. 	 The intersection point for

every meridional plane defined by the shock wave points on the initial-

r- value plane is so determined.	 The locus of these intersection points

determines the space curve illustrated in Figure F.6.

At this stage, the points on the space curve which are nearest
t

i
to and farthest away from the initial-value plane are determined. If

the axial distance between the nearest point and the initial-value

plane is greater than a specified fraction of the marching step

allowed by the CFA. stability criterion, then another solution plane
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is computed, the location of this plane being just slightly upstream

of the shock wave-body intersection. The entire procedure outlined

above is then repeated. Alternatively, if the distance between the

nearest shock wave-body intersection point and the initial-value plane

is less than this fraction of the allowable marching step, then the

axial position of the next solution plane is selected such that the

space curve representing the incident shock wave-body intersection

is entirely contained between the initial-value plane and the solution

plane. At high angles of attack, this procedure may require that the

axial step between the initial-value plane and the solution plane

be greater than that allowed by the CFL stability criterion. This

implies that the Courant number, which is the ratio of the axial step

taken to the axial step alliewed by the CFL stability criterion, is

greater than unity. To maintain an effective Courant number less

than unity, the fit point stencils used in the univariate, bivariate,

and trivariate interpolation polynomials are adjusted in accord with

the Courant number of the actual step taken. That is, if the Courant

number is approximately two, then every other point is used in the

interpolation fit point stencils instead of the immediate neighbors

(which correspond to a unity Courant number), etc. This ensures that

the convex hull of the finite difference network engulfs the differ-

ential domain of dependence, thereby satisfying the CFL stability

criterion.

After the axial position of the solution plane has been determined

and the Courant number computed, the internal shock wave point unit
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sector at the intersection of the incident shock wave with the solid

boundary. This procedure defines the property field on both the up-

stream and downstream sides of the incident shock wave.

At this stage, the initial-value plane upstream sector body

streamlines are extended from the initial-value plane to the space

curve defined by the intersection of the incident shock wave with the

solid boundary, as illustrated in Figure F.6. The solution for both

the upstream and downstream shock wave properties has been obtained

on the space curve by the application of the internal shock wave

point unit process. Hence, both the upstream and downstream properties

at the points where the body streamlines intersect the space curve

may be found by interpolation. For this purpose the following quad-

ratic univariate polynomial is employed

f(e) = al + a 20 + a 38 2	(F.8)

where f(9) denotes a general function of the polar angle e. The

coefficients a  (i-1,2,3) in equation (F.8) are obtained by fitting

this expression to three data points on the space curve as described in

Appendix C. To determine the intersection point of the body streamline

with the space curve, an iterative technique is used. Moreover, after
F

each iteration, the projected streamline point is adjusted along the

direction of the body normal projection in the (y,z)-plane such that
i

the streamline point lies on the boundary surface. Equation (F.8)

is applied for both the upstream and downstream shock wave properties.

Hence, the incident shock wave downstream properties are known at the

€r
body streamline points.

s	 ,
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At this stage, the solid body-shock wave point unit process is

Al

kF

applied at each of the body streamline points in the computed sector
^s

that are on the space curve. This defines the reflected shock wave

downstream properties at the body streamline points on the space
•	 E

curve.

i	 Using a procedure similar to that used previously, the shock wave

is then projected from the space curve to the current solution plane.

ti
This projection is performed in the meridional planes containing the

body streamline points on the space curve. This procedure yields the

tentative shock wave shape in the solution plane-

At this stage, the body streamline points in the solution plane

that are in the downstream flow field sector in the initial-value
i	 11 	i

plane are computed by use of the solid boundary point unit process

(see Figure F.7). This unit process is applied at every such point

in the computed sector. As a consequence, the flow property field on

the stream surface formed by the solid boundary is defined.

Next, the remaining streamlines that are in the initial-value

plane downstream flow field sector are projected from the initial-value

plane onto the solution plane. A test is then made to determine

whether or not each of these streamlines intersects the reflected

shock wave (see Figure F.1). Those streamlines which do not intersect

the reflected shock wave will lie in the upstream flow field sector
e

on the solution plane (points 7 to 13 in Figure F.7). The solution 	 j

at these points is determined using the standard interior point

scheme, or if the Mach cone, with apex at the solution point, inter-

'.	 sects the incident shock wave or solid boundary, the appropriate
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modified interior point unit process is applied. Those streamlines

which appear to intersect the reflected shock wave have their compu-

tation deferred.

At this stage, the upstream and downstream shock wave points are

determined at every circumferential station in the solution plane com-

puted sector. This procedure defines the property field on both the

upstream and downstream sides of the reflected internal shock wave.

next, the solution is obtained at each body streamline point in

the downstream flow field sector on the solution plane (see Figure

F.7). The modified solid boundary point unit process is applied in

this situation, which requires using flow property information on the

downstream side of the reflected shock wave. After the application

of the body point unit process at each point in the computed sector,

the property field on the solid boundary is defined.

At this stage, the streamlines that are in the downstream flow

field rector in the initial-value plane and that intersect the re-

flected shock wave are computed. These points require using the

modified interior point unit process and use flow property information

on both the upstream and downstream sides of the reflected internal

shock wave (see Figure F.7).

Finally, the streamlines that are in the upstream flow field

sector in the initial-value plane are extended to the surface of the

incident shock wave and their respective intersection points with this

surface are determined (see Figures F.7 and F.8). These streamlines

are then extended from the downstream side of the incident shock wave

to the current solution plane. If the projected streamline does not
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intersect the reflected shock wave, a modified interior point unit

process is applied using flow property information on the downstream
rb

H	 .
side of the incident shock wave. If the projected streamline inter-

,c
sects the reflected shock wave, the intersection point is found with

this surface. A modified interior point unit process is then applied

'	 on the downstream side of the reflected shock wave.

After all of the points have been determined on the solution

plane that is immediately downstreav of the shock wave-solid body

}
s	 reflection, control is returned to the driving algorithm until another

shock wave-solid body reflection is encountered.

.	 Figures F.b to F.8 illustrate the intersection of the shock wave
i'

with the centerbody. Similar results hold when the shock wave ir.te:r-

sects the cowl.

The internal flow field integration is terminated when either a

specified axial station is reached or when the flow becomes subsonic.
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APPENDIX G

CALCULATION OF THE TRANSPORT TERMS
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1. INTRODUCTION

The numerical procedure developed to this investigation has the

capability to include the influence of molecular transport on the

solution by treating the viscous and thermal diffusion terms in the

governing equations as forcing functions, or correction terms, in the

method of characteristics scheme. At present, the computer program

has the capability to include the influence of viscous and thermal

diffusion in the computation of the external flow field about the

forebody, and in the computation of the internal flow field in which
f

shock waves are not discretely traced. The program option which per-

forms discrete fitting of the internal shock wave system does not have

the capability to include the influence of molecular transport in the

computation, but rather assures the flow to be inviscid and adiabatic.

s

4	 9

2. EXPRESSIONS FOR THE TRANSPORT TERMS

The expressions for the transport forcing functions are derived in

Appendix A, and are summarized below.

Fx - w x 3 ux 3 (vy + wz ) + py (uy + vx ) + uz (uz + wx)

'	 +, 4 u	 + u	 + u	 +	 (v	 + w )	 (G.1)
3 xx	 yy	 zz 3 xy	 xz1.	 1

4
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F = 
uy 3 v

y - 3 (ux + wz) + ux ( vx + uy ) + 
4z 
(V+ w )

Y

+ u 3 vYY + vxx + vzz + 3 (uyx + wyz)	
(C.2)

F =N	 w
z 

- 2 ( u
x 
+v) {u (w + u ) +uy (y+vz z)z	 3	 '3	 y])	 x x	 z

+ V 3 wzz + wxx + YY + 3 (uzx + v
zy )	 (G.3)

Fe = I K(Txx + Tyy + Tzz ) + KxTx + KyTy + K z 
T 
z

+Pr2(ux+y2+wz+uyvx+uzwx+vzy)+v2+wX

+u2+wy+uz+vz- 
3 

(ux +vy +wz)jj	 (GA)

where

= 
1

(--5)p	 (G.5)pT

In equations (G.1) to (G.5), u, v, and w denote the velocity components

in the x, y, and z coordinate directions, respectively, P is the pres-

sure, p denotes the density, T is the absolute temperature, s denotes

the entropy per unit mass, p represents the dynamic viscosity, and re is

the thermal conductivity. The subscripts x, y, and z on the right-hand

sides of equations (G.1) to (GA) denote partial differentiation in the

corresponding coordinate direction, whereas F x , Fy , and F  on the left-

hand sides denote the transport forcing functions in the x, y, and

z component momentum equations, respectively. Fe is the transport

forcing function in the energy equation.

r

(
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3. COMPUTATION OF THE TRANSPORT FORCING FUNCTIONS

During the course of the program development, a number of methods

were devi<ed in an effort to obtain a good approximation to the trans-

port fort ng functions. One such method was based on employing a

quadratic trivariate interpolation polynomial whose coefficients were

determined by a least squares fitting of a number of known field points

on the initial-value plane and the previous solution planes. This

polynomial was employed to determine the five dependent properties u,

v, w, P, and p. The spatial derivatives of the velocity components ap-

pearing in equations (G.1) to (G.4) were then obtained by analytically

differentiating the respective interpolation polynomials. Spatial

gradients of pressure, and density were obtained in a similar manner.

Then, by differentiation of the thermal equation state, temperature

derivatives were expressed in terms of the pressure and density deriva-

tives. The molecular transport properties and their spatial gradients

were obtained using the procedures presented in Appendix A.

This method of calculating the transport forcing terms was con-

sidered to have good accuracy. The computer execution time required by

this method, however, was felt to be unacceptable. This prohibitive

execution time was primarily due to the least squares curve fitting of

the trivariate interpolation polynomials. Consequently, a more

efficient method with acceptable accuracy was sought for approximating

the transport terms. The method which was selected is presented below.

For the interior point and solid boundary point unit

processes, the transport terms must be computed at all points in the

computational network (see Figures E.1 and E.2). For the bow shock

t,
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wave point unit process., the transport terms must be computed at the

solution point and at the intersection point of the bicharacte:ristic

with the initial-value plane (see Figure E.3). For each of these

unit processes, partial derivatives of the dependent properties with

respect to y and z in the initial-value plane are obtained by analyti-

cally differentiating the quadratic bivariate interpolation polynomial

f(y,z) = a l + a2y + a 3 + a4yz + a5y2 + a 6 z 2	 (G.6)

The coefficients a  (i=l to 6) in equation (G.6) are determined by a

least squares fit of nine data points in the initial-value plane as

discussed in Appendix C. Equation (G.6) is applied for the five

dependent flow properties U. v, ter, P, and p. Spatial derivatives of

pressure and density are required [even though they do not appear

explicitly in equations (G.1) to (G.4)] because spatial derivatives

of temperature are expressed in terms of pressure and density deriva-

tives through differentiation of the thermal equation of state as

discussed in Appendix A.

In the solution plane, partial derivatives of the dependent

properties with respect to y and z are equated to the corresponding

derivatives in the initial-value plane. For the interior point and

boundary point schemes, the derivatives at the solution point are set

equal to those at the streamline base point. For the bow shock wave

point scheme, the solution point derivatives are equated to those at

the bicharacteristic base point. The evaluation of these derivatives

in the solution plane would require that a global iteration algorithm

be employed. In this algorithm, the property field on the solution

I

r.

'M

237



Y

5
a

I
r

.i
ti

F

r
	 I	 1	 !	 i

A

3s
	

plane would first be determined by a predictor application of the

appropriate unit process at each point in the computed sector. Then,

by fitting equation (G.6) to solution plane field points the appropriate
I

partial derivatives could be obtained. In a similar manner, ensuing

corrector applications would be performed until overall convergence was

achieved. The attendant increase in algorithm complexity and computer

execution time using this global iteration procedure, however, was felt

to be unwarranted since the transport terms are assumed to be of

secondary importance in determining the solution.

c	 Partial derivatives with respect to x in equations (G.1) to

f (GA) are obtained from the following quadratic univariate interpolation

polynomial.
i

z
`	

f(x) = a l + a2  + a
3
 x2(G.7)

The coefficients a  (i=1,2,3) in equation (G.7) are determined by fitting

this expression to three data points. The first data point is located

on the solution plane that is immediately upstream of the current

initial-value plane, the second data point is on the initial--value

plane, and the third data point is the solution point itself. For the

interior point and boundary point unit processes, the fit points are

located on the streamline which passes through the solution point. For

the bow shock wave point unit process, the fit points are the shock

wave solution points corresponding to the circumferential index of the

solution point. Special logic in the computer program takes account

}	 of point deletion and addition in the forebody flow field computation
^I

and thereby insures that the appropriate fit points are selected. Of

course, for a predictor application of either the interior point or

It
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boundary point unit processes, property values at the solution point

are equated to those at the streamline base point in the initial -value

plane.
,k

Equation (G.7) is applied for the five dependent flow properties

`

	

	 u, v, w, p , and p. Analytical differentiation of equation (G.7) yields

approximations to the x-partial derivatives. Differentiation of the

thermal equation of state allows the spatial derivatives of temperature

in the x-coordinate direction to be expressed in terms of the correspond-

ing pressure and density derivatives. This formulation yields an x-

i	 partial derivative which is constant in a given x-plane.

Since equation (G.7) uses data on a previous solution plane,

derivatives cannot be evaluted using this representation until at least

one previous solution plane is available. Furthermore, the derivatives

obtained using this formulation are only approximations to the x-partial

derivatives since the y and z coordinates of each of the three fit

points are not, in general, identical. Considering that the effects of

molecular diffusion are assumed to be small, this approximation is

acceptable.

The molecular transport properties and their spatial gradients

are obtained using the procedures presented in Appendix A.
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APPENDIX H

NOMENCLATURE

ENGLISH SYMBOLS

a sonic speed

a i ,b i ,c i ,di general curve fit coefficients

B; body force vector in index notation

c velocity of divergence of Mach conoid surface

e internal	 energy per unit mass

f general interpolation polynomial function

F x ,Fy ,FZ ,Fe forcing functions in the x, y, and z component

momentum equations and energy equation,

respectively

i,j,k unit vectors in the x, y, and z directions,

respectively

i',j',k' unit vectors in the x', y', and z' directions,

respectively

z	
(I'x'' ky' s	`)

unit vector aiang the space curve defined by

the intersection of the shock wave with either

the initial-value plane or a solid boundary

M Mach number

^- It	 fn - (nx ,ny ,nz )	 unit vector norma o a wave sur ace

ni	above unit vector in index notation

nb	(nbx' nby' nbz )	 unit vector normal to a solid boundary
i

nbi	
above unit vector in index notation

;,

4
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ns 
= (nsx „ n

sy  ,n
sz,) unit vector normal to the shock wave surface

[expressed in the (x',y',z')-system]

N = (Nx ,Ny,Nz ) vector normal to either a wave surface or a

stream surface

-	 P pressure

q velocity magnitude

r radial position of a point

R gas constant

Rc cowl lip radius

Rmin distance from streamline base point to nearest

point on convex hull

s either entropy per unit mass, or arc length

S temperature base in Sutherland's formula

S	 (Sx ,Sy ,S vector in the wave surface and normal to the

bicharacteristic direction

t time or time-like parameter

t unit vector along the space curve defined by

the intersection of the shock wave with a

meridional plane

T absolute temperature

u,v,w velocity components in the x, y, and z

directions, respectively

.	 ui velocity in index notation

Y velocity vector

x,y,z cartesian coordinates of base coordinate system

x i base system coordinates in index notation

r
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x',y`,z 	 cartesian coordinates of local coordinate

t 4	 system

GREEK SYMBOLS

a either the angl e of attack, or the angle sub-

tended by the unit vector k and the z'-axis

ai'oi
unit vectors used in the parameterization of

the characteristic equations

Y specific heat ratio

d id Kronecker delta

r^ second coefficient of viscosity

$ either the angle used in the parameterization

of the characteristic equations, or the angle

subtended by a meridian and the (x,y)-plane

K thermal conductivity

,l term in the wave surface compatibility relation

u dynamic viscosity

thermodynamic parameter

P density

c term in the noncharacteristic relation

0 angle subtended by the unit vector t and the

X'-axis

1^ either the viscous dissipation function, or a

term in the wave surface compatibility relation

r
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SUBSCRIPTS

i ,j,k

x,y,z

m

OPERATORS

D( )/Dt

rectangular cartesian coordinate indices ranging

from 1 to 3

denotes either partial differentiation with

respect to x, y, and z, or the x, y, and z

components of a vector

free-stream conditions

material derivative

vector

unit vector

k	 #

r-

gas;Y.,?:	
qp y s cur	 ^° p ct .w^'1;S
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