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FLIGHT EFFECTS ON NOISE GENERATED BY THE JT8D ENGINE
WITH INVERTED PRIMARY/FAN FLOW AS MEASURED IN
THE NASA-AMES 40- BY 80-FOOT WIND TUNNEL

Frank G. Strout
Boeing Commercial Airplane Company

1.0 SUMMARY

Tests were conducted at the Boeing-Boardman site and the NASA-Ames Research Center
(ARC) 40- by 80-Foot Wind Tunnel to study the static and flight noise characteristics of

the JT8D engine with inverted primary and fan flow. The objectives of the program were
to:

®  Design and fabricate a primary/fan inverter duct for the JT8D engine
° Determine static noise characteristics of the engine with uninverted and inverted flow

° Determine flight effects on noise generated by the inverted profile and compare with
previously obtained results for uninverted and mixed flows

®  Evaluate static and flight noise suppression potential of the inverted profile with
several exhaust nozzle modifications

The test at the Boardman, Oregon site was conducted to establish proper engine match,
measure thrust performance, and define static far field noise characteristics and near to far
field correlations. Configurations included the baseline (uninverted flow with conical
nozzle), the inverter with a conical nozzle and a plug nozzle, and the inverter combined with
a 20 lobe external mixing nozzle. The 20 lobe configuration was tested with and without

an acoustically lined shield. Noise data were measured on three sidelines covering a range

of far field angles from 50° to 155° and near field angles from 30° to 165°. At takeoff
power and a 649 m sideline the basic inverter (conical nozzle) achieved static peak to peak
PNL and EPNL suppression values of 5.5 PNdB and 5.0 EPNdB relative to the baseline.
Suppression values ranged up to 10 EPNdB for the inverter configuration with 20 lobe nozzle
and acoustic shield.

The wind tunnel test results showed that significant noise changes occur in going from static
to flight operation. Relatively large reductions were observed in the peak to peak PNL
suppression values. The PNL suppression of the basic inverter was reduced from the static
value of 5.5 PNdB to 2.5 PNdB under flight conditions. The EPNL suppression was not as
severely influenced by forward velocity, changing from a static value of 5.0 EPNdB to an
in-flight value of 4.0 EPNdB.

The inverter with 20 lobe nozzle and acoustic shield provided the highest in-flight EPNL
suppression of 7.5 EPNdB.



The inverted flow profile produces lower noise than the mixed profile under both static and -
. flight conditions at takeoff power. The inverter noise is lower by 3 EPNdB during static
operation and by 1 EPNdB during flight operation.

The inverter configurations experience thrust loss relative to the baseline. The thrust loss at
takeoff power ranged from 1.5% for the basic inverter to 5% for the inverter with 20 lobe

nozzle.



2.0 INTRODUCTION

Static model tests conducted by Boeing and others in industry have shown that inverting
the primary and fan streams of a turbofan engine offers significant potential for reducing jet
noise. The suppression concept is of particular interest to Advanced Supersonic Transport
(AST) engine cycle studies where high jet velocities create a serious noise problem during
takeoff operation. NASA is sponsoring programs to determine the effect of forward
velocity on the suppression characteristics of model jets with inverted flow. The influence
of scaling and engine operating characteristics on the effectiveness of the inverted flow con-
cept will remain as a major concern.

The purpose of this program is to establish the static and flight noise characteristics of a
JT8D engine with inverted primary and fan flow. The JT8D engine matches important
AST cycle flow parameters reasonably well and allows a large scale evaluation of the
inverted flow concept to be made. The static data were acquired at the Boeing test facility
at Boardman, Oregon while the simulated flight data were measured in the NASA-Ames
Research Center 40- by 80-Foot Wind Tunnel (40 by 80). The feasibility of using the 40
by 80 wind tunnel to determine flight effects on engine noise was established by NASA-
Ames Contract NAS2-8213 (references 1 to 3). The program included model tests with
near and far field measurements and full scale JT8D engine tests using near field measure-
ments. The model test showed that flight effects measured in the near field are the same
as those measured in the far field. The JT8D engine test showed that the flight noise
determined in the wind tunnel matched measured flight noise of the 727/JT8D for a base-
line and quiet nacelle installation.

The inverted flow program consists of the following major elements:
®  Design and fabricate a primary/fan inverter duct for the JT8D engine

® Conduct a static, free field test to define far field noise characteristics and establish
near to far field correlations

®  Conduct a flight effects test in the 40 by 80

Wind tunnel derived flight effects for the JT8D with inverted flow and a conical nozzle are
compared with corresponding results previously obtained for the JT8D configured as a base-
line and internal mixer. Static and wind tunnel tests were also conducted with Boeing
supplied nozzle variations to further explore the noise suppression potential of the inverted
flow concept. The add-on configurations were designed to increase the mixing perimeter
and mixing rate of the high velocity primary flow. This was done by replacing the conical
nozzle with a plug nozzle and a 20 lobe nozzle. The effect of an acoustic shield on noise
was also evaluated.
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3.0 ABBREVIATIONS AND SYMBOLS

ambient

Ames Research Center

Advanced Supersonic Transport

Bruel & Kjaer

ambient speed of sound, m/s

engine thrust coefficient

centerline

configuration

decibel

diameter, m

effective perceived noise level, EPNdB
unit of effective perceived noise level
engine pressure ratio — PT7/PT2
extrapolated

one-third octave band center frequency, Hz
ground

knot

length, m

velocity exponent corrected for source convection
microphone

freestream Mach number

velocity index



NPR
OASPL
OB
P&WA
PNdB

PNL

RC
RE
RH
S/N
SL

SPL

nozzle pressure ratio — PT7/Pamb

overall sound pressure level, dB

octave band

Pratt & Whitney Aircraft

unit of perceived noise

perceived noise level, PNdB

ambient pressure, N/m2

total pressure, N/m2

engine inlet total pressure, N/m2

exhaust nozzle primary total pressure, N/m2
exhaust nozzle fan total pressure, N/ m?
exhaust nozzle mixed total pressure, N/ m?
radial distance from sound source to observer, m
round convergent

referenced to

relative humidity, percent

Strouhal number

sideline

sound pressure level, dB

temperature, °C

ambient temperature, °C

primary total temperature, °C

fan total temperature, °C

velocity, m/s



engine fan jet velocity, m/s

jet velocity of mixed fan and primary flows, m/s
engine primary jet velocity, m/s

relative jet velocity = Vpri - Vo, m/s

aircraft or tunnel velocity, m/s

axial distance from nozzle exit to noise source, m
NASA-Ames 40- by 80-Foot Wind Tunnel

delta

wave length, m

angle, deg

far field angle, deg

noise emission angle, deg

ambient




4.0 TEST DESCRIPTION

4.1 STATIC TEST

The static test phase of the inverter program was conducted at the Boeing facility located
at Boardman, Oregon during the period January 4 to 31, 1977.

4.1.1 FACILITY DESCRIPTION

The facility includes a steel test stand that is attached to a concrete footing. A concrete
acoustic arena is adjacent to the concrete footing and covers an area of approximately

5575 sq.m. (60,000 sq. ft.). The test stand and part of the acoustic arena are shown in
figure 1. The test engine is mounted as a 727 center engine at a centerline height of 4 m
{13 ft). The surface between the engine centerline and the near field microphone array was
covered with a 7.6 cm (3 in.} thick pad of polyurethane foam (figure 1).

4.1.2 ENGINE DESCRIPTION

The test engine was a JT8D-17R turbofan with bypass ratio 1.1 and a nominal air flow rate
of 148 kg/sec (326 Ibfsec). The engine develops a thrust of 77.9 kn (16,400 Ib) at 2
pressure ratio of 2.2. The engine has a two-stage fan, and eleven-stage high pressure com-
pressor, a single-stage high pressure turbine, and a three-stage low pressure turbine.

4.1.3 TEST HARDWARE DESCRIPTION

Each configuration was tested with a Pratt & Whitney (P&WA) reference belimouth inlet
{engine mafch and thrust} and a quiet nacelle two-ring inlet (acoustics). All acoustic runs
included both upper and lower cowling. A schematic drawing of test configurations is
provided in figure 2.

4.1.3.1 Inverter Duct

The inverter duct is a series of constant area, nested duct elements that invert the fan and
primary flow streams of the JT8D engine (figure 3). The welded assembly includes eight
primary and eight fan gas flow passages and has a iength of 0.914 m (3 ft). The flow at the
inverter exit consists of an outer annulus of high temperature primary gas and an inner
annulus of fan air. The inverter attaches at the engine “M” flange on the upstream end and
mates with a modified production tailpipe on the downstream end. Some mixing occurs
between the two streams prior to exhausting through a conical nozzle.

4.1.3.2 Baseline

The baseline contfiguration operated with conventional or uninverted flow with the high
velocity primary on the inside and the low velocity fan flow on the outside. The two
streams merge downsiream of the fan splitter case and exhaust through a 0.76 m (2.5 ft)
diameter producticon conical nozzle.




4.1.3.3 Inverter

The primary/Tan inverter configuration was operated with the inverter duct installed down-
stream of the splitter case. Fhe inverter duct is followed by a modified production tailpipe
and a conical exhaust nozzle. The high velocity primary is located in an outer, annular flow
region with the fan air located on the inside. The nozzle diameter is about the saume as the
baseline although slightly larger to compensate for the inverter duct pressure loss. At takeoff
power the primary to fan area ratio is 1.4 and the velocity ratio is 1.6.

4.1.3.4 Inverter/Plug

This configuration included the inverter duct but replaced the conical nozzle with a conical
plug nozzle. The plug has a maximum diameter of 0.54 m {1.76 ft) providing a total to flow
area ratio of 1.5,

4.1.3.5 Inverter/Mixer

This configuration replaces the conical nozzle of the inverter/plug with a 20 lobe external
mixing nozzle. The lobes are designed to penetrate the outer primary flow (about 12.7 cm)
and rapidly mix this flow with ambient air. Each lobe has a length of 25.4 cm {10 in.).

4.1.3.6 Inverter/Mixer/Shield

An acoustic shield is added to the inverter/mixer to provide a reflecting/absorbing barrier
between the jet and observer. The shield has a length and diameter of 1.27 m {4.2 {t) cover-
ing a 180° segment. The inner shield surface includes bulk absorber acoustic lining covered
by a perforated plate. The shield was tesied in a hardwall and lined configuration. The
shield was designed to reflect and absorb the high frequency pre-merged mixing noise
generated by the 20 lobe nozzle.

4.1.4 INSTRUMENTATION
4.1.4.1 Engine Instrumentation

[n addition to thrust, rotor speed, and fuel {flow, normal engine gas flow pressures and
temperatures were measured. Engine air flow was measured during performance runs by
means of a calibrated bellmouth inlet. A survey of the inverter exhaust flow was made with
a rake having 40 total pressure and 40 total temperature probes. A 180° segment was
covered by the survey.

4.1.4.2 Acoustic Instrumentation

The acoustic instrumentation (table 1} included three microphone arrays located on side-
lines of 3.05m (10 1), 15.2 m (50 ft), and 30.5 m (100 fi). The near array employed

16 centerline microphones covering a range of angles from 30° to 165° referenced to the
nozzle exit plane and inlet axis. The intermediate array used 15 ground microphones
covering angles from 30° to 160°. The far array were also ground microphones and in-
cluded 12 microphones from 507 to 155°. The near array used 0.64 cm (0.25 in.) Bruei &



Kjaer (B&K) 4136 micraphones that were oriented for grazing incidence (fisure 1). The
other two arrays used 1.27 ¢cm (0.5 in.) B&K 4134 microphones that were oriented down-
ward, 1.27 cm (0.5 in.) above individual steel plates.

Noise data were recorded on a fourteen track Sangamo model 3500 tape recorder. On-line
data were processed by a General Radio 1925 filter, 1926 detector, and a Hewlett Packard
7001A plotter.

4.1.5 ACOUSTIC DATA REDUCTION

Data reduction provided one-third octave band (OB) spectra in the form of a digital
magnefic tape.

4.1.6 TEST PROCEDURE

Each configuration included an engine match run, a thrust performance run, and an acoustic
run. The match run was made to assure that the engine was operating within limits
prescribed by P&WA for a flight-worthy engine. The inverter duct included tabs to adjust
the relative fan and primary flow areas. The nozzle exit area was also adjusted to assure
proper engine operation with the inverter test hardware. The engine match and thrust
performance runs were conducted with the bellmouth inlet. Following engine start and a
nominal five minute warm-up, the test conditions were set starting with the [owest pressure
ratio. After a three minute stabilization time at each pressure ratio, engine performance
data were recorded. During acoustic runs, noise data recording began as soon as the target
condition was established. Engine performance was calculated on-site immediately after
each test condition to assure that the desired condition was set.

4.1.7 TEST CONDITIONS

Engine test conditions for the acoustic runs are listed in table [. Match and thrust perform-
ance runs generally covered a range of pressure ratios from 1.4 to 2.2,

4.2 WIND TUNNEL TEST

The wind tunnel test phase of the inverter program was conducted at the NASA-Ames
Research Center 40- by 80-Foot Wind Tunnel (40 by 80} during the period June 13 to
24, 1977.

4.2.1 FACILITY DESCRIPTION

The 40 by 80 is a closed circuit wind tunnel powered by six 12.2 m diameter fans and six
4480 kw electric motors. The test section is 24.4 m long in the tunnel airflow direction and
has a cross section consisting of a 12.2 m square and two semicircles of 12.2 m diameter on
each side of the square section (figure 4). The tunnel operates with a stagnation pressure
equal to the atmospheric pressure. The tunnel stagnation temperature is time variant
because of the wind tunnel drive power and engine exhaust. Typically the temperature
would range between 15°C to 55°C (60°F to 130°F). About 400 sq. m of 7.6 cm-thick



polyurethane foam was installed on the floor and part way up the sidewalls. The lining
extended approximately 3 m upstream of the engine exit plane and 15 m downstream. The
test installation is shown in figures 4 and 5.

4.2.2 TEST CONFIGURATIONS

The following configurations were tested in the 40 by 80:
®  Inverter (figure 4)

©  |nverter/plug (Tigure 5)

®  Inverter/mixer (figure 6)

©  Inverter/mixer/lined shield (figure 7)

Each configuration included the quiet nacelle two-ring inlet and full engine cowling. Addi-
tienal contiguration description is provided in section 4.1.3. The JT8D-17 engine con-
figured as a baseline and with an internal mixer were tested in the 40 by 80 during Contract
NAS2-8213 (references 1 and 2).

4.2.3 INSTRUMENTATION
4.2.3.1 Engine Instrumentation

Engine operating parameters were measured including rotor speeds, fan and primary static,
and total pressures and temperatures.

4.2 3.2 Acoustic Instrumentation

Acoustic data for flight effects analysis were recorded by a pair of traversing microphones
in swzep mode (tigures 4 and 5). The microphones were 0.64 cm (0.25 in.) B&K type
4136 with B&K UA 0385 aerodynamic nose cones. They were mounted at engine center-
line height (4 m) on a 3.05 m sideline relative to the center of the jet. The traverse moved
at a steady rate of 0.15 m/sec (0.5 ft/sec) and covered a range of angles from 30° to 168Y
relative to the nozzle exit plane and inlet axis. In addition to the traverse microphones, two
fixed microphones were installed on the side opposite the traverse. One fixed microphone
was mounted at centerline height on a 3.05 m sideline at 160° for on-line monitoring.
The second fixed microphone was positioned on the same sideline but at a height of 1.8 m
and an angle of 8°. These data were recorded and used as an indication of the reverberant
field noise level. The noise data were recorded on 2 fourteen track Sangamo model 3500
type recorder for later reduction at Boeing.

4.2.3.3 Facility Instrumentation
Tunnel parameters were recorded on the Boeing data system including static and toftal

pressure. total temperature, and relative humidity. It is noted that engine thrust was not
measured.



4.2.4 ACOUSTIC DATA REDUCTION

The sweep data were analyzed to define one-third octave band spectra each 5° from 30°
through 110° and every 2.5° from 112.5° through 167.5°. A one second mtegratlon time
was used, 0.5 second before and after the desired angle.

4.2.5 TEST PROCEDURE

Engine test conditions were set by monitoring nozzle pressure ratio (P77/Pamp) and on-line
calculated primary jet velocity. At the start of each run, the desired primary jet velocity
was set and maintained as closely as possible until all data were recorded. The traverse
microphones were positioned in the region of peak noise where gains were set and on-line
data were recorded. The traverse was then moved to a position just downstream of 30°.

A sweep was then made to an angle of 168° with each microphone output recorded on two
channels at different gain settings. One channel recorded the microphone position voltage
output and another the voice input. Two propulsion data points were recorded during each
traverse, one near the beginning and the other near the end.

Selection of engine power setting and tunnel velocity was made on the basis of tunnel
heating. Periods with the engine at idle power and test section ventilation doors open were
used on occasion to reduce tunnel temperature prior to another run.

4.2.6 TEST CONDITIONS

Engine and wind tunnel test conditions are listed in table 2 for each configuration.

11
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5.0 DATA ANALYSIS

5.1 ANALYSIS TECHNIQUE
5.1.1 NOISE SOURCE LOCATIONS

The technique for determining flight effects in a closed wind tunnel requires that noise
source locations and directivities be known for the frequencies of interest. The multiple
sideline noise measurement procedure described in references 1 to 3 is used to define the
required source location correlations. Sound pressure level (SPL) directivities were plotted
as a function of 1/tan (180° - ) for the three sideline microphone arrays and each one-third
octave band from 50 to 10,000 Hz. Typical plots for the inverter configuration are shown in
figure 8 for takeoff power and a range of frequencies. The difference in peak noise levels
is used as a basis for relating a given signal that propagates from the source through the
three sidelines. This peak to peak difference includes the effect of spherical divergence,
atmospheric absorption, and noise measurement in the near field. For high frequencies the
peak to peak increment is adjusted to account for longer or shorter propagation paths
relative to the peak noise. The adjustment is determined by multiplying the difference in
propagation length by the atmospheric absorption coefficient. The procedure is illustrated
in figure 8a for frequencies of 200 and 250 Hz. The peak to peak SPL increments for

200 Hz are about 14 dB between the 30.5 and 3.05 m sidelines and 6 dB between the 30.5
and 15.2 m sidelines. Since atmospheric attenuation is very small for this frequency range,
the 14 dB and 6 dB increments are used to track a given signal from each 30.5 m micro-
phone station to a corresponding station on the other sidelines. For each measured SPL on
the 30.5 m sideline, increments of 6 dB and 14 dB are added and define intercepts on the
15.2 m and 3.05 m sidelines respectively. The intercepts on each sideline are joined by the
dashed lines of figure 8a that establish propagation paths for each signal.

The intercept of the dashed lines with each sideline defines an axial station equal to the
sideline distance times (1/tan (180° - 8). These results are plotted as shown in figure 9.

A line drawn from the 30.5 m measurement position through the corresponding points
from the other two sidelines defines the apparent source location and directivity for a given
signal. The source locations of figure 9 show that noise propagating to low angles appears
to emanate from a point near the nozzle exit. The source location moves downstream as
the propagation angle increases.

The source location and directivity from figure 9 is replotted as shown in figure 10. The
source location, in terms of nozzle diameters, is defined as a function of noise emission
angle for takeoff power and the available range of Strouhal numbers. Source location results
for nozzle pressure ratios of 1.4 to 2.2 were used to define the correlation curves of figure
11. These relationships covered a wide range of Strouhal numbers and served as inputs to

a computer program that extrapolated data from the three sidelines to a 122 m (400 ft)
sideline. The 122 m data were treated as far field, thus permitting point source extrapola-
tions to other sidelines.

The near field level effect described in reference 3 is also observed for the full scale data.
The correlation shown in figure 12 was used as an input to the data extrapolation program
to compensate for this effect. For the 3.05 m data (SL/D = 4) the near field effect is up to
2 dB. The 15.2 m and 30.5 m data require no level adjustment for near field effects.
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The source location and near field level correlations of figures 11 and 12 were used to
extrapolate the Boardman static data and the 40 by 80 wind tunnel data for the inverter
configuration. Similar correlations were defined for each of the other configurations that
are evaluated in this report.

5.1.2 WIND TUNNEL REVERBERANT FIELD

Although part of the test section hard surface was covered by polyurethane foam, a promi-
nent reverberant field problem remains. The reverberant field is found to be a function of
frequency, engine power condition, nozzle configuration, and tunnel velocity. The
reverberant level at a given frequency appears to be strongly related to the peak level that is
generated. Thus the reverberant field becomes a problem at off-peak angles (low and high)
and is more pronounced when there is a large fall-off in SPL at off-peak angles, Since the
reverberant field is related to the peak SPL values, it will vary with the engine power condi-
tion and tunnel velocity. The nozzle configuration will influence the peak noise generated
at each frequency and the directivity characteristics.

Reverberant field spectra were defined for each engine configuration, engine power condi-
tion, and wind tunnel operating velocity. The spectra for the inverter configuration are
shown in figure 13 and represent nominal reverberant field noise levels within the test
section for the specified test condition. The 40 by 80 noise data were corrected by log-
arithmically subtracting the reverberant field spectra from the measured engine noise
spectra at each angle.

Different techniques were used to determine the reverberant field noise level for tunnel-off
and -on operation. The tunnel-off reverberant field was determined by logarithmically
subtracting free field SPL’s from the 40 by 80 SPL values at equal primary jet velocity.
This procedure is illustrated in figure 14 for takeoff power and several frequencies. The
reverberant field noise level at a given frequency appears to be relatively constant through
the test section. A nominal reverberant field level is estimated for each frequency and
tunnel-off power condition to form the spectra shown in figure 13a.

A different procedure is required to estimate the reverberant field for tunnel-on opera-

tion. As indicated in figure 13a, the tunnel-off reverberant field level is quite sensitive to
engine power condition. It is reasonable that as the engine power is reduced the reverberant
field level will be lower due primarily to reduced noise source strengths at each frequency.
Tunnel velocity should have an effect similar to engine power reduction since source
strengths are reduced as tunnel velocity increases. Two methods were combined to estimate
the reverberant field level during tunnel-on conditions. One method employed a correlation
between peak SPL and reverberant field level while the other method relied on 8° micro-
phone spectra measured in the 40 by 80 test section.

The peak SPL correlation is shown in figure 15 and is based on the tunnel-off reverberant
field data. Each data point represents the difference between the peak SPL measured on
the 3.05 m sideline and the resulting reverberant field level for a given engine power condi-
tion and frequency. Data are included for NPR’s of 1.1 to 2.1 and show that the reverber-
ant field level is closely related to the peak SPL that is generated. The directivity of the
peak SPL undoubtedly influences the resulting reverberant field level. That is, spherical
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divergence noise reduction beyond the 3.05 m sideline will be less at 90° than in an up-
stream or downstream direction. The solid symbols of figure 15 reflect a spherical diver-
gence level adjustment due to changes in peak noise directivity. The adjustment is made
relative to directivity characteristics of the NPR = 2.1 condition. The data for NPR 2.1 and
the adjusted data for lower power conditions collapse reasonably well. The purpose of this
correlation is to show that the change in reverberant field level will follow the change in
measured peak SPL. Although the difference in peak SPL between NPR 2.1 and NPR 1.1
is quite large for all frequencies (about 20 dB), the resulting reverberant levels are pre-
dictable within approximately 1 dB based on figure 15. This finding is used to determine
the tunnel-on reverberant field level by incrementing from the tunnel-off level. The incre-
ment is determined for each frequency by the change in peak SPL between tunnel-off and
tunnel-on operation at a given power condition. Adjustment for changes in peak noise
directivity is made, if required.

The second method for estimating the tunnel-on reverberant field level used spectra mea-
sured by a microphone located in the forward part of the test section. The microphone was
positioned opposite the traverse on a 3.05 m sideline at an angle of 8° referenced to the
nozzle exit station and the inlet axis. It was surmised that the measured signal might be
representative of the test section reverberant field level due to the low engine noise radiated
to this position. Typical 8° microphone spectra are provided in figure 16 for takeoff power
and both tunnel-off and tunnel-on operation. It is noted that the tunnel-on spectra have
been corrected for tunnel background noise. Tunnel-off reverberant field levels determined
by the method of figure 14 are plotted for comparison with the tunnel-off 8° microphone
spectra. The agreement is good as it was for lower power conditions and the other con-
figurations.

This analysis shows that the 8° microphone spectra provides a good estimate of reverberant
field level for tunnel-off conditions. When corrected for background noise, the 8° micro-
phone spectra should also provide a reasonable estimate for tunnel-on operation. The
tunnel-on 8° microphone spectra of figure 16 is lower than the tunnel-off spectra which is
expected. A check on the level is made by applying the change-in-peak-SPL method that
was previously described. The incremental reductions in peak SPL between tunnel-off

and tunnel-on are equated to corresponding reductions in reverberant field level. The
increments are subtracted from the tunnel-off reverberant field level and define an estimated
tunnel-on reverberant field level as shown in figure 16. The resulting spectra compare
favorably with the measured 8° microphone spectra for tunnel-on operation. Thus both
methods appear to provide about the same estimate for the tunnel-on spectra of figure 13.
The spectra are based primarily on the measured 8° microphone spectra. Level checks and
adjustments were made by the peak SPL increment method. For cases where tunnel back-
ground noise obscured the 8° microphone data, the SPL increment technique was used
exclusively.

5.1.3 BACKGROUND NOISE

Wind tunnel background noise levels were subtracted from the tunnel-on data. Background
noise was measured during the inverter test and the inverter/mixer test with and without
shield. No significant difference was noted due to configuration; thus the background noise
taken during the inverter test was used for all configurations. A background noise spectra
was defined for each angle of interest between 30° and 165° as typified by figure 17.



5.2 BASELINE ANALYSIS

Data for the JT8D-17R engine configured as a baseline (uninverted flow) was acquired during
the Boardman test phase. Wind tunnel data were measured during contract NAS2-8213
(references 1 and 2) using a JT8D-17 engine. The -17 and -17R engines generate near
identical static jet noise; consequently, the flight effects measured for the -17 are assumed
to be applicable to the -17R.

5.2.1 STATIC DATA ANALYSIS

The measured 30.5 m (100 ft) sideline data were extrapolated to the far field using source
location correlations described in reference 1. The resulting spectra, OASPL and PNL
directivities, and EPNL characteristics are compared with corresponding data for the sup-
pressor configurations in following sections. In general, spectra comparisons are made on a
122 m (400 ft) sideline that is considered to be far field. Directivity and EPNL comparisons
emphasize a 649 m (2128 ft) sideline (AST noise certification sideline). Some comparisons
are also provided for an intermediate sideline of 457 m (1500 ft) to establish trends as a
function of sideline distance.

5.2.2 WIND TUNNEL DATA ANALYSIS

The wind tunnel data from the previous test were re-processed using the technique described
in section 5.0. The resulting tunnel-off and tunnel-on OASPL and PNL directivities are
compared in figure 18 for NPR 2.1 and 1.8. The results of figure 18 are converted to veloc-
ity coefficients (n) in figure 19 where:

- OASPLgjiont

v .
IOlogﬂ
VR

_ OASPLstatic

n =

Effective perceived noise level (EPNL) is used to evaluate the noise reduction effectiveness
of the various suppressor configurations in this report. EPNL is the logarithmic summation
of PNL each 0.5 second between the 10 PNdB down points from the peak PNL. The calcu-
lation for both static and flight EPNL assumes a single engine moving past an observer at a
velocity of 91.5 m/s (300 ft/sec) and at a distance of 649 m (2128 ft). Installation on an
aircraft, angle of attack, flight trajectory, ground reflections, and extra ground attenuation
are factors that are not included in the calculation.

A static and flight EPNL comparison is provided in figure 20 for the baseline configuration.
The static or solid line is plotted as a function of primary velocity and defines a throttle
line for comparison with flight EPNL. The EPNL values are calculated using far field static
PNL data assuming no change in level due to forward velocity. The diamond symbols
represent flight EPNL’s and are plotted versus primary relative velocity.
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The flight levels are calculated by applying PNL velocity exponents (figure 19) to the static
PNL values where: :

Vpn
PNLﬂight = PNLStatiC - 10n log VR

The comparison of figure 20 shows that the EPNL reduction due to flight is less than
predicted by relative velocity. That is, the diamond symbols would fall on the solid throttle
line if the relative velocity prediction were correct. The departure from the throttle line is
less at high power than at low power.

5.3 INVERTER ANALYSIS

The analysis of the inverter configuration data is given major emphasis in this report. Analy-
sis of the other configurations was done in a similar manner but is not reported in as much
depth.

5.3.1 STATIC DATA ANALYSIS
5.3.1.1 Comparison of Near and Far Field Data

Comparisons are made between static noise data measured on the three sidelines and extra-
polated to the same far field sideline using source location correlations. Spectra are com-
pared in figure 21 for the 3.05 and 30.5 m data at a NPR of 2.1. The spectra compare
reasonably well in terms of shape and absolute level. OASPL and PNL directivities are
compared in figure 22 for the noted pressure ratios. Agreement between the three sidelines
is generally good in terms of level and directivity shape.

Another method of comparing near and far field data is illustrated by figures 23 and 24 that
plot OASPL and PNL as a function of ideal primary velocity. The slope and level of OASPL
and PNL compare well between the extrapolated 3.05 and 30.5 m data. These comparisons
along with the spectra and directivity plots indicate that the noise source location correla-
tions of figure 11 are satisfactory. Near and far field comparisons were also made at lower
power conditions with similar favorable results.

Good agreement between near and far field results is quite important to the analysis of the
wind tunnel data. These measurements are restricted to the 3.05 m sideline and must be
extrapolated to define far field flight effects. Verification of the source location correla-
tions provides confidence that the resulting flight effects for the inverter will be relatively
accurate.

5.3.1.2 Comparison of Inverter and Baseline Data

Static data for the inverter configuration are compared with data for the baseline configura-
tion in this section. In all cases the data were measured on the 30.5 m sideline and extra-
polated to the far field using source location correlations. Spectra comparisons are provided
in figures 25 to 29 for NPR’s of 2.2, 2.1, 1.8, 1.6, and 1.4. Empbhasis is placed on the NPR



2.1 condition since this represents the highest power tested for flight effects in the 40 by 80.
At low angles (figure 26) the inverter is not effective in reducing noise, relative to the base-
line, regardless of frequency. As the angle increases toward the jet axis the inverter shows
increasing reduction in the low and middle frequency range. At angles of 130° to 155°
(figures 26e and 26f) the amount of reduction is quite substantial in particular for frequen-
cies in the region of 200 to 400 Hz (6 to 10 dB). At high frequencies (above 1600 Hz)

the baseline and inverter have comparable noise levels. Similar results are observed for the
other power conditions.

Baseline and inverter static OASPL and PNL directivities are compared in figure 30 for
NPR’s of 2.2 to 1.4. In general, the inverter is an effective suppressor at angles of 120°
and higher. At takeoff power (NPR 2.2) peak to peak suppression for OASPL is 6.0 dB and
for PNL is 5.5 PNdB. The low angle (50° to 110°) suppression of OASPL and PNL is
relatively small.

Static EPNL characteristics are compared in figure 31, where flight PNL’s are assumed to
equal static values. At takeoff power (600 m/s) the inverter provides an EPNL suppression
of 5.0 EPNdB. The amount of EPNL suppression is reduced slightly as the engine power
is reduced.

5.3.2 WIND TUNNEL DATA ANALYSIS
5.3.2.1 Comparison of Free Field and Tunnel-Off Data

Boardman free field data are compared with 40 by 80 tunnel-off data in this section. The
data are measured on a 3.05 m (10 ft) sideline and extrapolated to a 122 m (400 ft) sideline
using source location correlations. Low angle and high angle spectra are compared in

figure 32 for a NPR of 2.1. The two sets of data compare reasonably well indicating the
validity of the reverberant field corrections. It is noted that spikes were observed in the

40 by 80 spectra at frequencies up to 200 Hz and low angles after correcting for the rever-
berant field. These spikes were smoothed to fair in with the adjacent frequencies to mini-
mize errors in calculated OASPL and PNL.

OASPL and PNL directivities are compared in figure 33 for the NPR 2.1 condition. The
agreement is basically acceptable for both OASPL and PNL. An exact agreement is not
expected due to the entrained velocity that results during tunnel-off operation. The com-
parison is made by interpolating the free field data at the wind tunnel primary relative
velocity. A comparison at equal primary velocity would result in a better match at low
angles where the effect of forward velocity is generally small. Comparisons of spectra and
directivities at lower power conditions also show good agreement between free field and
wind tunnel.

5.3.2.2 Flight Effects for NPR 2.1
Flight effects on engine noise for the inverter configuration at NPR 2.1 are evaulated in

this section. The analysis includes spectra, OASPL and PNL directivity, and SPL directivity.
Velocity exponents are defined for OASPL, PNL, and SPL.
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5.3.2.2.1 Spectra

Tunnel-off and tunnel-on spectra are compared in figure 34 for NPR 2.1 and angles of
50° to 155°. The sideline is at 122 m (400 ft) and the angles are representative of far
field. The results show that tunnel velocity produces negligible noise reduction at low
angles (50° to 100°, figures 34a to 34c). The low frequencies (50 to 315 Hz) indicate a
slight reduction (about 1 dB). The intermediate to high frequencies show either no reduc-
tion or a slight increase in noise level with forward velocity. As the angle increases from
110° to 150° the amount of SPL reduction with forward velocity increases at all frequen-
cies. At 1400 to 155° the reduction of the peak noise (125 Hz) is greater than higher or
lower frequencies.

5.3.2.2.2 OASPL and PNL Directivity

Tunnel-off and tunnel-on OASPL and PNL directivities are compared in figures 35 and 36
for NPR 2.1. The sideline varies from 122 to 649 m for tunnel velocities of 150 and 185 kn.
Tunnel velocity results in relatively small reductions in OASPL and PNL at angles of 50°

to 100°. As the angle-increases, the amount of reduction increases. For the 185 kn tunnel
condition and a 649 m sideline (figure 36¢) a reduction of 5 dB or 5 PNdB results at an
angle of 140°. The corresponding reductions on the 122 m sideline are slightly less (4.6

dB and 4.0 PNdB). This difference is the result of atmospheric attenuation that changes
the spectra shape and weighting of frequencies.

5.3.2.2.3 SPL Directivity

Tunnel-off and tunnel-on SPL directivities are compared in figure 37 for NPR 2.1 and
one-third octave band frequencies from 50 Hz to 10,000 Hz. The data reflect a sideline of
122 m and tunnel velocities of 150 and 185 kn. In general, tunnel velocity causes a small
reduction in SPL at low angles (50° to 100°). Large reductions (6 to 7 dB) are experienced
at higher angles for frequencies of 100 Hz to 250 (figures 37b to 37d). The reduction of
high frequency SPL with tunnel velocity is more modest at high angles ranging from 1 dB
to 3 dB depending upon frequency.

5.3.2.2.4 Velocity Fxponents

The results of figures 35 to 37 are converted to velocity exponents for OASPL, PNL, and
SPL in figures 38 to 40. Velocity exponents (n) are provided for OASPL and PNL at
sidelines of 122,457, and 649 m in figure 38. An alternate velocity exponent (m) is shown
in figure 39 for a 649 m sideline where the source convection correction is made as follows:

PNLtatic = PNLpight log(1-M,, COS 6)
m = -
10 log log

The velocity exponent curves for OASPL and PNL are consistent with small flight noise
reductions at low angles and large reductions at angles near the jet axis. The effect of side-
line is most prominent for PNL at high angles where higher n values result at the further
sidelines.



The velocity exponent curves for discrete frequencies (figure 40) were arrived at by plotting
the n values as a function of frequency (figure 41). This was done to minimize the effects
of data scatter and assumes that reasonably smooth variations in n will occur with frequency
at a given angle. The n curves of figure 40 are defined by the faired data from plots similar
to figure 41. '

5.3.2.3 Flight Effects for NPR 1.8

Tunnel-off and tunnel-on data are compared for an NPR of 1.8 in figures 42 to 45. Spectra
comparisons are provided in figure 42 for a 122 m sideline and angles of 50° to 155°. The
effects of tunnel velocity on the tunnel-off spectra are comparable with the NPR 2.1 condi-
tion described in section 5.3.2.2.1.

OASPL and PNL directivity plots are shown for 100 and 150 kn tunnel speeds in figure 43.
Tunnel velocity causes a small reduction in OASPL and PNL at low angles (50° to 100°)
with increasing reduction at higher angles. Velocity exponents are provided in figures 44
and 45 for a 649 m sideline and are similar to the NPR 2.1 curves in terms of trend with
angle.

5.3.2.4 Flight Effects for NPR 1.6 and NPR 1.4

Tunnel-off and tunnel-on spectra are provided in figure 46 for an NPR of 1.6 anda 122 m
sideline. OASPL and PNL directivities are compared in figure 47 and are used to define the
velocity exponent curves of figures 48 and 49. The peak velocity exponent values at this
power condition are significantly less than those at the higher power conditions (figures
38c and 44).

Tunnel-off and tunnel-on OASPL and PNL directivities are compared in figure 50 for an
NPR of 1.4 and a 649 m sideline. Only the directivity plot is shown for this power condi-
tion due to the small difference in test relative velocity between the tunnel-off and -on
cases. The noise reduction trend with angle is comparable to the higher power conditions.
Velocity exponents are not calculated because of the small difference in relative velocity
and the sensitivity of n values to this parameter.

5.3.2.5 Summary and Comparison of Flight Effects

Flight effects for the inverter configuration are summarized in this section by evaluating
trends with relative velocity and by comparison of static and flight OASPL, PNL, and
EPNL suppression relative to the baseline. Tunnel-off and tunnel-on OASPL and PNL are
plotted as a function of primary relative jet velocity in figure S1. The results are for a

649 m sideline and cover a range of angles from 50° to 155°. Static data from the Board-
man test are included and are used to define the throttle lines shown on each plot. The
departure of the tunnel-on data from the static throttle line is quite pronounced at low
angles (50° to 100°, figures 51a to 51f). The use of relative velocity to predict flight noise
would result in large errors for this range of angles (low predicted noise level). At 110°
and 120° (figures 51g and 51h) the tunnel-on data approaches the throttle line. At angles
of 130° and higher the tunnel-on data fall on the throttle line or show the same slope with
relative velocity.
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Based on these characteristics one approach to estimating the flight noise of inverted pro-
files for other engines or cycle conditions is as follows: Flight OASPL or PNL can be
defined by assuming a relative velocity relationship at angles of 120° and higher. That is,
interpolate static data or calculate noise levels at a primary velocity equal to flight relative
velocity (V. - Vailplane)' The reduction of OASPL and PNL at lower angles will best

be estimated by using the velocity exponents provided in this report. The reduction of

low angle noise is small regardless of power setting for the JT8D and appears to be a charac-
teristic of the inverted flow profile. Any error in true flight PNL reductions at low angle
will generally have a small effect on the flight EPNL estimate.

Static and flight EPNL’s are plotted as a function of primary relative velocity in figure 52.
The static EPNL values are based on Boardman static PNL’s assuming no reduction in level
due to flight. The flight EPNL values are calculated by applying the velocity exponent
curves of figures 38c, 44, and 48 to the static PNL’s. The flight EPNL’s are higher than
predicted by relative velocity. The departure from the throttle line increases as the engine
power is decreased.

Static and flight OASPL and PNL comparisons are provided in figures 53 and 54 for the
baseline and inverter configurations at takeoff power. The static curves are based on Board-
man 30.5 m data that are extrapolated to the 649 m sideline using source location correla-
tions. The flight noise levels are obtained by applying the velocity exponent curves (figures
19a and 38c¢) to the static OASPL and PNL values. The peak OASPL suppression is reduced
slightly in going from static to flight operation (from 6 dB to 5.5 dB). The in-flight OASPL
suppression is less at low angles and greater at angles of 140° and higher. The peak PNL
suppression is reduced significantly by flight going from 5.5 PNdB to 2.5 PNdB. This is

due to the inverter having a peak static PNL at 120° in contrast to 135° for the baseline
(figure 54). The reduction of PNL with forward velocity is much smaller for the inverter

at 120° than the baseline at 135° and results in a substantial loss of peak PNL suppression.
Generally suppressor nozzles have peak PNL values in the 110° to 120° region that are
dominated by relatively high frequencies. The high frequencies originate close to the nozzle
exit and experience small level reductions with forward velocity. In contrast, the peak PNL
of the baseline is dominated by low frequencies having source locations further downstream.
The low frequencies are substantially reduced by forward velocity providing a corresponding
large reduction in PNL for the baseline. The in-flight PNL suppression is essentially zero

at low angles but is greater than the static value at angles of 140° and higher. Basically

the inverter is an effective suppressor of OASPL at angles of 120° and higher and PNL at
1259 and higher.

The in-flight EPNL characteristics of the inverter and baseline are compared in figure 55.

At takeoff power (600 m/s) the suppression is 4.0 EPNdB. This compares with a static

data estimate of 5.0 EPNdAB (figure 31) indicating a suppression loss of 1.0 EPNdB due to
flight. The loss of EPNL suppression is due to the poor in-flight PNL suppression character-
istics at low angles (figure 54).

54 INTERNAL MIXER ANALYSIS

Static and wind tunnel data for the 12 lobe internal mixer were measured using a JT8D-17
engine as reported in references 1 and 2.



5.4.1 STATIC DATA ANALYSIS

Static data were measured on a 30.5 m (100 ft) sideline and extrapolated to the far field
using source location correlations reported in reference 1. Comparisons of OASPL, PNL,
and EPNL are made with the baseline and inverter in the following section.

5.4.2 WIND TUNNEL DATA ANALYSIS

The wind tunnel data from the previous test were reprocessed using the technique de-
scribed in section 5.1. Tunnel-off and tunnel-on OASPL and PNL directivities are shown
in figure 56 for NPR 2.1 and 1.8. From these results the velocity exponent curves of
figure 57 are determined.

Static and flight EPNL’s are plotted versus primary relative velocity in figure 58. The
procedure for calculation of the EPNL values was previously described in section 5.2.2.
The in-flight EPNL values fall slightly above the throttle line similar to the baseline (fig-
ure 20). It is noted that the slope of the throttle line for the internal mixer is steeper than
that of the baseline. Thus equal departure from the throttle line in terms of EPNL would
show up as a gain in flight suppression for the internal mixer.

Static and flight OASPL and PNL directivities for the baseline, inverter, and internal mixer
are compared in figures 59 and 60. The curves were defined in the manner described in
section 5.3.2.5. The three configurations represent extremes in jet flow profile. The pro-
file ranges from: the low velocity outer fan and high velocity inner primary flows (base-
line); relatively well mixed fan and primary flows (internal mixer); to the high velocity outer
primary and low velocity inner fan flows (inverter). The comparison of static OASPL shows
that the inverter and internal mixer produce equal suppression at low angles (50° to 110°)
but the inverter is significantly better at higher angles. The peak OASPL suppression for
the inverter is about 6.0 dB while the internal mixer shows about 2 dB. In flight the in-
ternal mixer provides about 1 dB lower noise at low angles while the inverter noise is
significantly lower at high angles. The in-flight peak OASPL suppression of the internal
mixer improves relative to static operation, going from about 2 dB to 3 dB. The inverter
experiences a slight loss of peak OASPL suppression due to flight, going from 6.0 dB to

5.5 dB.

The effect of flight on PNL suppression characteristics is more pronounced than observed
for OASPL. Under static conditions (figure 60) the inverter and internal mixer show

equal suppression at low angles but the inverter suppression at high angles is clearly superior.
The peak PNL suppression of the internal mixer is about 2 PNdB as opposed to 5.5 PNdB
for the inverter.

Under flight conditions the peak PNL suppression of the two configurations is approxi-
mately the same (2.5 PNdB). The internal mixer shows a slight gain in peak PNL suppres-
sion with forward velocity while the inverter undergoes a significant loss. The primary
cause of peak PNL suppression loss for the inverter is the low static peak noise angle (120°)
and relatively small flight PNL reduction at this angle (see section 5.3.2.5). The internal
mixer provides more PNL suppression at low angles; however, the inverter is the better
suppressor of PNL at high angles.
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Static and flight EPNL characteristics for the three configurations are compared in figures
61 and 62. At takeoff power (600 m/s) and with static PNL values, the EPNL suppressions
are 2 EPNdB for the internal mixer and 5 EPNdB for the inverter. At lower power condi-
tions the difference in suppression becomes smaller. It is noted that the internal mixer

has less thrust loss than the inverter, as configured for this test. A slight improvement

in low power suppression would result for the internal mixer relative to the inverter for
equal in-flight thrust.

At takeoff power the in-flight EPNL suppression values are 3 EPNdB for the internal mixer
and 4 EPNdB for the inverter. Relative to static operation this represents a gain in suppres-
sion of 1 EPNdB for the internal mixer and a loss of 1 EPNdB for the inverter. At a jet
velocity of 500 m/s the in-flight suppression of the two configurations is equal (about 3
EPNdB).

On the basis of these comparisons the inverted flow profile will produce about 1 EPNdB
lower noise in flight than the internal mixer at takeoff power. At lower power settings

the two concepts are basically equivalent. There is a trend indicated that increasing the
primary jet velocity above 600 m/s will favor the suppression potential of the inverted flow
profile. Higher jet velocities will tend to shift the static peak noise of the inverter to a
higher angle where a more favorable flight effect will result. This will help in reducing the
in-flight EPNL in relation to the baseline and internal mixer. This is of importance to AST
engines where primary jet velocities of about 760 m/s will be required during takeoff opera-
tions.

5.5 INVERTER/PLUG ANALYSIS
5.5.1 STATIC DATA ANALYSIS

Static data for the inverter/plug configuration are compared with the baseline and inverter
configurations in figures 63 to 65. The spectra plots of figure 63 show that only a slight
reduction of SPL occurs relative to the baseline at low angles. The reduction at higher
angles (figure 64) is more substantial at all frequencies. When compared with the inverter
spectra the inverter/plug produces lower high frequency noise (figure 65). The low fre-
quency noise at angles near the jet axis (1400°) is slightly higher, however.

OASPL and PNL directivities are compared in figure 65 for a NPR of 2.2. The inverter/plug
produces lower noise in the low angle region primarily because of the reduced high fre-
quency noise. The inverter/plug peak PNL suppression is slightly greater than the inverter
(6.0 versus 5.5 PNdB). The peak OASPL suppression of the inverter/plug is slightly less

(5 versus 6 dB). At angles near the jet axis the inverter produces lower OASPL and PNL
than the inverter/plug. This is the result of reduced low frequency noise in this region that
is generated by the inverter.

5.5.2 WIND TUNNEL DATA ANALYSIS

Wind tunnel test results for the inverter/plug are provided in figures 66 to 70. Tunnel-off
and tunnel-on spectra are compared in figure 66 for an NPR of 2.1 and a range of angles
from 60° to 150°. In general, the effect of tunnel velocity on the inverter/plug spectra is
comparable with the inverter (figure 34); that is, relatively small reduction of SPL at low
angles with increasing reduction at higher angles.



Tunnel-off and tunnel-on OASPL and PNL directivities are shown in figure 67 for NPR’s
of 2.1 and 1.8. Tunnel velocity causes a small reduction of OASPL and PNL at low angles
(50° to 100°). The amount of reduction increases at higher angles with maximum reduc-
tion occurring in the 140° to 145° range. Velocity index values are calculated from the
results of figure 67 and are plotted in figure 68. At an NPR of 2.1 and 649 m sideline the
velocity exponent values for the inverter/plug at low angles are slightly greater than the
values for the inverter (figure 38c). At high angles the inverter n values are larger indicating
greater reduction of noise with forward velocity in this region relative to the inverter/plug.

OASPL and PNL are plotted as a function of primary relative velocity in figure 69 for
several angles. The reduction of OASPL and PNL with tunnel velocity follows relative
velocity at high angles (figure 69¢) but not at low angles (figures 69a and 69b). This result
is consistent with trends observed for the inverter configuration (figure 51).

Static and flight EPNL’s are plotted versus primary relative velocity in figure 70. The
relationship of the flight EPNL values with the throttle line is similar to results obtained for
the inverter (figure 52). Static and flight OASPL, PNL and EPNL characteristics of the

inverter/plug are compared with the baseline and other inverter configurations in section 5.7.
5.6 INVERTER/MIXER ANALYSIS

The inverter/plug configuration was tested with a 20 lobe external mixing nozzle. This
configuration was tested with and without an acoustically lined shield that was designed to
reflect and absorb pre-merged mixing noise (see figures 6 and 7). Results and analysis for
both mixer configurations are presented and described in this section.

5.6.1 STATIC DATA ANALYSIS

Static spectra comparisons are made for the baseline and inverter/mixer configurations with
and without shield in figure 71. The 20 lobe nozzle configuration produces a large reduc-
tion in low frequency noise relative to the baseline, in particular at angles near the jet axis
(figure 71b). A significant component of pre-merged mixing noise is generated by the
mixing between the primary jets and the entrained ambient air. This frequency component
is centered at about 1250 Hz and causes a crossover of noise relative to the baseline at the
lower angles (figure 71a). The lined shield markedly reduces the pre-merged mixing noise
component at all angles. The greatest reduction (up to 10 dB) occurs at angles near the jet
axis (1409, figure 71b). The reduction is also considerable at low angles (figure 71a) with
the pre-merged component lowered by about 5 to 6 dB. The shield is least effective in the
region of peak noise (1209, figure 71b) where only 2 to 3 dB reductions are observed. It

is known from model tests that the effectiveness of a shield is very sensitive to shield size,
orientation, and spacing relative to the noise source. It is likely that a shield of similar
dimensions could be designed to more effectively reduce the pre-merged noise in the region
of peak noise. There is also a change in low frequency noise that results when the shield is
installed. The shield causes an increase in the low frequency noise at low angles (figure
71a). This may be caused by a slight directivity change in the shielded jet since the jet is
turned toward the shield. The jet turning is the result of low pressure created between the
jet and shield by the jet pumping process.
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Static OASPL and PNL directivities are provided in figure 72 for the baseline and 20 lobe
mixer configurations. The comparison reflects an NPR of 2.2 and a sideline of 649 m.

The mixer is an effective suppressor of OASPL, relative to the baseline, at all angles. A peak
OASPL suppression of about 9.5 dB is achieved. The shield has a small effect on OASPL
providing an additional 1 dB reduction in peak OASPL. The mixer provides little suppres-
sion of PNL at low angles (50° to 110°) but substantially reduces PNL at the higher angles.
The peak PNL suppression is 5 PNdB; however, the suppression at 140° is about 9.5 PNdB.
The shield is effective in reducing the PNL at all angles but shows more reduction at off-
peak noise locations. The peak PNL suppression of the shielded configuration is about 7.5
PNdB while the suppression at 140° is 13 PNdB.

5.6.2 WIND TUNNEL DATA ANALYSIS

Tunnel-off and tunnel-on takeoff power spectra are compared for the 20 lobe mixer in
figure 73 and for the mixer with shield in figure 74. Wind tunnel velocity reduces the low
frequency noise at high angles by a substantial amount (figure 73c). At low angles (fig-
ures 73a and 73b) the low frequencies are reduced by a modest amount. The pre-merged
mixing noise component undergoes a slight increase (figure 73a) or slight decrease (figures
73b and 73¢) with tunnel velocity, depending upon angle. The effect of tunnel velocity
on the mixer with shield configuration is quite similar to the effect on the mixer without
shield (figure 74).

Tunnel-off and tunnel-on OASPL and PNL directivities are provided in figures 75 and 76
for the 20 lobe mixer without and with shield. The data reflect an NPR of 2.1 and a side-
line of 649 m. At low angles forward velocity has little effect on the OASPL or PNL of
the 20 lobe mixer configuration (figure 75). At angles from 50° to 60° a slight increase in
noise results while at angles from 70° to 1000 a slight decrease in noise occurs with in-
creasing tunnel velocity. A modest reduction of peak noise is observed with larger reduc-
tions at angles near the jet axis. The same trends with tunnel velocity are observed for

the 20 lobe nozzle with shield (figure 76).

The results of figures 75 and 76 and similar data for NPR 1.8 are used to define the velocity
exponent curves of figures 77 and 78. In general the velocity exponent characteristics for
the 20 lobe nozzle with shield are superior to the configuration without shield. The
shielded configuration produces higher velocity exponents at angles of 120° and above for
the takeoff power condition (figures 77a and 78a). This is the result of the lower pre-
merged mixing noise in the shielded spectra (figure 71b) where both OASPL and PNL are
dominated by low frequency. The low frequency noise experiences a more favorable

flight effect than the higher pre-merged frequencies that are more dominant in the spectra
of the mixer without shield.

Tunnel-off and tunnel-on OASPL and PNL values are plotted as a function of primary
relative velocity in figures 79 and 80 for the 20 lobe mixer without and with shield. For the
mixer without shield the reduction of OASPL and PNL with tunnel velocity is small at Jow
angles compared with the throttle line (figure 79a). At 60° and high power the noise is
observed to increase slightly with forward velocity. At 140° and 150° (figures 79¢ and
79d) the tunnel-on data follow a slope close to that of the throttle line. That is, the in-
flight OASPL and PNL can be predicted by applying the relative velocity principle. The
relative velocity trends for the mixer with shield are basically the same as those observed

for the mixer without shield (figure 80).



Static and flight EPNL’s are plotted versus primary relative velocity in figures 81 and 82
for the two 20 lobe mixer configurations. In each case the flight EPNL shows a significant
departure from the throttle line. This is the result of the small reductions in PNL at low
angles through peak that occur with forward velocity.

Static and flight OASPL, PNL, and EPNL for the 20 lobe mixer with and without shield
are compared with the baseline, inverter, and inverter/plug configurations in section 5.7.

5.7 COMPARISON OF STATIC AND FLIGHT
NOISE OF INVERTER CONFIGURATIONS

Static and flight OASPL, PNL, and EPNL comparisons are provided in figures 83 to 86 for
the family of inverter configurations evaluated in this report. The static noise levels are
based on Boardman 30.5 m (100 ft) sideline data that are extrapolated to a 649 m (2128 ft)

sideline using source location correlations. The flight noise levels are based on 40 by 80
wind tunnel results and are defined by applying velocity exponents to the static data.
Peak suppression values for OASPL, PNL, and EPNL are defined relative to the baseline

and are summarized in table 3.
5.7.1 OASPL DIRECTIVITY COMPARISON

Static and flight OASPL directivities are compared in figure 83 for the various inverter
configurations. Under static conditions the peak OASPL suppression ranges from 5.0 dB
for the inverter/plug to 10.5 dB for the inverter with 20 lobe mixer nozzle plus shield
(table 3). The in-flight peak OASPL suppression ranges from 5.0 dB for the 20 lobe nozzle
to 7.0 dB for the 20 lobe nozzle with shield. The inverter/plug peak OASPL suppression
is slightly higher in flight than under static conditions (6 versus 5§ dB). The biggest loss of
peak OASPL suppression due to flight is experienced by the 20 lobe nozzle in going from
9.5 to 5 dB. In general, the inverter family provides significant OASPL suppression at
angles of 120° and higher during flight. The OASPL suppression at lower angles (5 0° to
110°) is modest.

5.7.2 PNL DIRECTIVITY COMPARISON

Static and flight PNL directivities are compared in figure 84 for the inverter configurations.
During static operation the peak PNL suppression varies from 5 PNdB for the 20 lobe
nozzle to 7.5 PNdB for the 20 lobe nozzle with shield. Forward velocity causes a significant
loss in peak noise suppression. The in-flight suppression values range from 0.5 PNdB for the
20 lobe nozzle to 3.5 PNdB for the inverter/plug. The loss of peak PNL suppression varies
from 2.5 PNdB for the inverter/plug to 4.5 PNdB for the 20 lobe nozzle with and without
shield.

The relatively low in-flight peak PNL suppression values are primarily the result of where
the static peak PNL’s occur. The inverter configurations have peak PNL’s at relatively low
angles (110° to 120°) compared with the baseline (135°). The reduction in PNL with
forward velocity is considerably less at low angles than at high angles. For this reason the
inverter configurations experience a significant loss of peak noise suppression due to flight.
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The in-flight PNL suppression of the inverter configurations is substantial at angles of 130°
and higher. At low angles (50° to 110°) these configurations are not effective in reducing
PNL relative to the baseline.

5.7.3 EPNL SUPPRESSION COMPARISON

Static and flight EPNL comparisons are made for the inverter configurations in figures 85
and 86. The static EPNL results of figure 85 assume that PNL’s, measured under static
conditions, are not changed with forward velocity. The resulting static EPNL suppres-
sion values range from about 5 EPNdB for the basic inverter to nearly 10 EPNdB for the
inverter/20 lobe nozzle with acoustic shield at takeoff power (600 m/s).

Under flight conditions (figure 86) the inverter, inverter/plug, and inverter/20 lobe nozzle
all have EPNL suppression values of about 4 EPNdB at takeoff power. The largest in-flight
suppression is provided by the 20 lobe nozzle with acoustic shield (7.5 EPNdB). Although
the in-flight EPNL suppression is less than static, the loss is relatively modest. The EPNL
suppression is 1 EPNdB lower for the basic inverter and 3 EPNdB lower for the 20 lobe
nozzle in going from static to flight conditions.

It is evident from the comparison of figure 86 that the 20 lobe nozzle with acoustic shield
has considerable potential for reducing in-flight EPNL. This potential is the result of rapid
mixing of the high velocity primary with ambient air and subsequent removal of the high
frequency pre-merged mixing noise. The 20 lobe nozzle without shield is not effective at
low power but improves significantly as the primary velocity increases. At high primary
velocity the post-merged mixing noise becomes more dominant in relation to the pre-merged
mixing noise. The resulting flight effects are more favorable and the in-flight suppression
potential of this configuration improves. At an extrapolated primary velocity of 650 m/s
the EPNL suppression of the 20 lobe nozzle is estimated to be 1 EPNdB greater than the
basic inverter. This favorable trend with increasing primary velocity makes the 20 lobe
nozzle (or similar external mixing nozzle) more attractive for application with high velocity
engines such as those being studied for AST.

5.8 ENGINE/INVERTER DUCT PERFORMANCE

Thrust performance characteristics of the inverter configurations are compared in figure 87.
The performance is presented as thrust coefficient (Cy;) versus pressure ratio of the mixed
flow. The thrust data were measured during the Boardman static test with a bell mouth
inlet replacing the two ring acoustic inlet. At takeoff power (PTM7/Pamb = 2.1) thrust loss
values are 1.5% for the basic inverter, 3.0% for the inverter/plug, and 5.0% for the inverter/
20 lobe nozzle relative to the baseline (figure 87a). The 20 lobe nozzle with shield was not
tested with a bell mouth inlet. Performance characteristics of the 20 lobe nozzle with and
without shield are compared in figure 87b where both configurations included the two ring
inlet. No significant difference in thrust coefficient is evident due to the presence of the
shield. It is noted that force balance data were not measured during the 40 by 80 test; thus
the effect of forward velocity on thrust performance is not known.

Representative results of the inverted flow total pressure and temperature surveys are pro-
vided in figures 88 to 90. The data are for a takeoff power (NPR 2.1) and are typical of



results obtained at other engine power conditions. Lines of constant total pressure are
plotted in figure 88 for one quadrant of the nozzle exit station. The lobe formation is
typical of this type of flow ducting. An assessment of total pressure loss due to the inverter
duct is difficult to make from these measurements. On the basis of the thrust coefficient
loss for this configuration (1.5%) it is estimated that the effective total pressure loss of both
streams is 2.5 to 3.0%.

The total temperature data of figure 89 show that the high temperatures associated with the
primary are confined to the outer flow region. The temperature profile in this region is far
from uniform and indicates a lobe characteristic similar to the total pressure results of
figure 88. The temperature lobe is caused by heat transfer between the primary and fan
streams within the inverter duct and downstream of the duct prior to exhausting from the
nozzle.

The total pressure and temperature data are combined to define the exhaust velocity plot
provided in figure 90. The lobe characteristic is evident in the outer flow region and reflects
similar results obtained for both total pressure and total temperature profiles. The influence
of the non-uniform flow region on noise characteristics is difficult to assess but is probably
minor.

5.9 MODEL RESULTS

Model tests were conducted by Boeing prior to the JT8D engine inverted flow program.
The one-seventh scale models were tested under static conditions to determine the influence
of flow profile on jet noise characteristics. Some of the model data are included in figures
91 and 92 for comparison with full scale results. Model OASPL and PNL directivities are
shown in figure 91 for the baseline (uninverted), mixed, and inverted flow profiles. The
results are for a takeoff power condition and a 457 m sideline. Similar OASPL and PNL
directivity curves are provided for the full scale engine in figures 59 and 60, but for a 649 m
sideline. The model data indicates larger OASPL and PNL suppression than the full scale
data for both the inverter and internal mixer. Recent findings show that the baseline model
data is high by several dB relative to the suppressors. This is based on comparisons with
full scale results and recent model tests in a new facility. The model OASPL directivity
characteristics of the internal mixer relative to the inverter are similar to full scale results
(figures 91 and 59). The same comparison for PNL directivity indicates significant dif-
ferences between model and full scale results (figures 91 and 60). The full scale data show
the inverter PNL’s to be lower relative to the internal mixer at angles up to about 150°.

Model and full scale peak PNL values are plotted versus velocity ratio in figure 92. The
model data indicate minimum PNL at a partially inverted velocity ratio. A partially inverted
flow profile assumes that the interchange of primary and fan streams is not complete. Thus
the average outer flow velocity is slightly less than the fully inverted primary velocity while
the average inner velocity is slightly greater than the fully inverted fan velocity. The full
scale results show that the peak noise of the fully inverted flow is lower than the fully
mixed flow. This finding is not necessarily contrary to the model results. The model
velocity profiles were relatively more uniform than the full scale profiles for a given outer or
inner velocity regime. The engine internal mixer did not provide a uniform, fully mixed
flow nor the inverter a uniform inverted profile. The resulting unique flow profiles for the
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internal mixer and inverter could explain the different model and full scale curve shapes in
figure 92. For example, the poorly mixed, high velocity regions in the internal mixer flow
could raise the peak PNL relative to a uniform profile. In contrast, the non-uniformity of
the inverted profile may be representative of a partially inverted flow and cause a reduction
in peak PNL relative to a uniform, fully inverted profile. These two occurrences would
justify the shape of the full scale curve. In effect, the full scale internal mixer and inverter
data points are plotted at an invalid velocity ratio and should be shifted toward the right in
figure 92. The magnitude of the shift is difficult to evaluate but would be in a direction to
make the model and full scale curves more alike.

The model and full scale comparisons indicate that model profile tests can be used to
indicate general trends. Full scale engines designed for a unique profile will likely include
significant non-uniformities in flow profiles. This may make accurate predictions of full
scale noise levels from model results difficult to achieve for both static and flight conditions.



6.0 CONCLUSIONS

The following conclusions are made as a result of the test program to determine static and
wind tunnel-derived flight noise characteristics of the JT8D-17R engine with inverted
primary and fan flows. The suppression results described are relative to the baseline con-
figuration (uninverted flow) and reflect takeoff power at a 649 m sideline.

6.1 BASIC INVERTER

1. The basic inverter configuration (inverter with conical nozzle) provides an in-flight
EPNL suppression of 4.0 EPNdB. The comparable static suppression (summation of
static PNL’s) is 5.0 EPNdB, indicating a relatively modest loss of EPNL suppression
due to flight.

2. Forward velocity causes a significant loss of peak PNL suppression. The in-flight peak
PNL suppression is 2.5 PNdB compared with a static value of 5.5 PNdB. The inverter
is effective in suppressing PNL at angles of 130° and higher but ineffective at lower
angles where the inverter peak noise occurs.

3. The influence of forward velocity on OASPL suppression is relatively small. The peak
OASPL suppression changes from 6.0 dB to 5.5 dB in going from static to flight condi-
tions. Significant in-flight OASPL suppression is achieved at angles of 120° and higher.
Suppression of OASPL at lower angles is modest.

4. The inverted flow provides lower EPNL than the mixed flow under both static and
flight conditions. Static EPNL suppression is 5.0 EPNdB for the inverter and 2.0
EPNdB for the internal mixer. The in-flight suppression values are 4.0 and 3.0 EPNdB
respectively.

5. The inverter configuration experienced a thrust loss of 1.5% relative to the baseline.
The lower thrust is largely due to total pressure losses in the primary/fan inverter duct.

6.2 INVERTER/PLUG

1. Replacing the conical nozzle with a plug nozzle produced minor reductions in the
flight noise levels determined for the basic inverter. Improvements in peak OASPL and
PNL suppression values were 0.5 dB and 1.0 PNdB respectively. The in-flight EPNL
suppression was virtually the same for the two nozzle configurations.

2. The inverter/plug had a thrust loss of 3.0% compared with 1.5% for the basic inverter.
The additional thrust loss may have contributed to the slightly lower noise levels
generated by this configuration.
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6.3 INVERTER/20 LOBE MIXER

The inverter with 20 lobe mixer nozzle provided improved static EPNL suppression
when compared with the basic inverter (7.0 versus 5.0 EPNdB). In-flight suppression
values were equal indicating a larger loss of EPNL suppression for the 20 lobe con-
figuration with forward velocity.

The inverter with 20 lobe nozzle and lined acoustic shield produced the lowest EPNL
for both static and flight operation. A static EPNL suppression of about 10 EPNdB
was achieved while the flight suppression was 7.5 EPNdB. The improved suppression
was caused by the absorption and reflection of high frequency pre-merged mixing
noise.

The thrust loss of the 20 lobe nozzle configurations was 5%. The thrust loss, weight,
and design integration factors must be considered in evaluating potential applications
for this suppressor concept.

6.4 MODEL RESULTS

Static model data for the JT8D baseline, internal mixer, and inverter indicate trends
similar to those measured for the full scale engine. This includes OASPL and PNL
directivities and peak PNL as a function of flow profile velocity ratio. Some dif-
ferences in model and full scale results are noted, but are generally explainable due
to non-uniformity in the full scale flow profiles.
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Table 1.—Acoustic Test Conditions and Microphone Locations for Boardman Static Test

Configuration Nozzle pressure ratio
Baseline 1.05;1.1;1.2;1.3;1.4;1.5; 1.6; 1.7, 1.8; 1.9; 2.0; 2.1; 2.2
Inverter 1.05;1.1;1.2; 1.3; 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; 2.0;2.1;2.2
Inverter/Plug 1.05;1.1;1.2;1.3; 1.4;1.5;1.6: 1.7, 1.8, 1.9; 2.0; 2.1; 2.2
Inverter/Mixer 1.05; 1.1;1.2;1.3;1.4;1.5;1.6;1.7;1.8;1.9;2.0; 2.1; 2.2

Inverter/Mixer/Hard Shield

Inverter/Mixer/Lined Shield

1.1;1.4;1.6;1.8;2.1;2.2
1.1;14;1.6;1.8;2.1;2.2

Microphone sideline Type Microphone angle
3.05m (10 ft) c/L 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110° 120°, 130°,
140°, 150°, 155°, 160°, 165°
15.2 m (50 ft) ground | 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°,
140°, 150°, 155°, 160°
30.5 m (100 1) ground | 50°,60°, 70°, 80°, 90°, 100°, 110°, 120°, 130°, 140°,
150°, 155°

Table 2.—Test Conditions for 40- by 80-Foot Wind Tunnel Test

Configuration

Tunnel velocity
(knots)

Nozzle pressure ratio

inverter 0

100
150
185

Inverter/Plug 0

100
150
185

Inverter/Mixer o]

100
150
185

Inverter/Mixer/Shield 0
100
150

100
150
185

Inverter and Inverter/Mixer

Inverter/Mixer/Shield 100

4;1.5;1.6;18;1.9; 2.1
.6;1.8
1




Table 3.—Summary of Inverter Suppression Characteristics

OASPLigppression—db PNL suppression—PNdB | EPNL suppression—EPNdB
Configuration Static | Flight Chfgge Static | Flight | Change | Static | Flight { Change

Inverter 6.0 5.5 -0.5 5.5 25 -3.0 5.0 4.0 -1.0
Inverter/Plug 5.0 6.0 +1.0 6.0 3.5 -25 5.2 4.0 -1.2
Inverter/20 Lobe 9.5 5.0 -4.5 5.0 0.5 -4.5 7.0 4.0 -3.0
Inverter/20 Lobe 10.5 7.0 -35 7.5 3.0 -4.5 9.8 7.5 -2.3
with Lined Shield

Internal Mixer 20 3.0 +1.0 2.0 25 +0.5 2.0 3.0 +1.0

Note: Peak noise suppression relative to baseline at takeoff power and 649m (2128 ft) sideline
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Figure 1.—Static Test Installation, Inverter Configuration
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Figure 3.—Primary/Fan Flow Inverter, Exit Station



Figure 4.—Test Installation in 40 by 80 Wind Tunnel




Nt

Figure 5.—Inverter/Plug Configuration
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Figure 7.—Inverter/20 Lobe Mixer Configuration with Acoustic Shield
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Figure 38.—Velocity Exponents for OASPL and PNL, Inverter Configuration: NPR = 2.1
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Figure 70.—Static and Estimated Flight EPNL Characteristics, Inverter/Plug Configuration
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Figure 79.—(Concluded)
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Figure 81.—Static and Estimated Flight EPNL Characteristics, Inverter/Mixer Configuration
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VELOGITY: 91.5 m/s (300 ft/s)
102} BOARDMAN 30.5m DATA

——©— EPNL WITHOUT FLIGHT EFFECT
PLOTTED VERSUS VP

R1
----Q---- EPNL WITH 40 by 80 FLIGHT EFFECTS
a7} PLOTTED VERSUS (vPlI - Va)

2
£
m
, 92t
g
[l
m

87|

82t

77t

L A 'l A -
200 300 400 500 - 600
PRIMARY VELOCITY - V.., OR (vnu - Ve }vn/8

Figure 82.—Static and Estimated Flight EPNL Characteristics, Inverter/Mixer/Shield Configuration
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Figure 83.—Comparison of Static and Flight OASPL Directivity for Baseline and Inverted
Flow Suppressors
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Figure 85.—Comparison of Baseline and Inverted Flow Suppressor EPNL, Static Levels
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Figure 86.—Comparison of Baseline and Inverted Flow Supressor EPNL, Flight Levels
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Figure 87.—~Comparison of Engine Thrust Coefficients
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Figure 87.—(Concluded)
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TEST 25S2T# - JTBD INVERTED FLOW TESY - PWASE I - STATIC YEST
INVERTER EXIT? FLOW SURVEY { PRESSURE PLOT )
CONFIG - 2-RING INLET. FLOW INVERTER. &C NOZ2LE

1 206.8N/M2

2 203.4

3 199.9

4 196.5

3 193.1

A 1724

B 168.9

c 165.5

o] 162.0

3 158.6

TEST NO. 2552 TEST DATE 20177 CALC. 'onze 30877
RUN NO. 19 COND. N 1 PAMB N/mZ 100.7
TAMB DEGC 0 PTT N/m 211.7 PTFY N/m 194.0
TT7 DEGC 513 TTF? DEGC 76 PT7/PAMB 2.102
PTF7/PAMB 1,926 VPRI m/s 551 VFAN m/s 346

Figure 88.—Inverter Exit Flow Survey (Pressure Plot}
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TESY 2SS2TP - JTBD INVERTED FLOW TESY - PrHASE ] - STATILD TEST
INVERTER ExIT FLOW SURVEY [ TEMPERATURE PLOT ) :
CONFIG - 2-RING INLET. FLOW INVERTER. RC NDZZLE

H 505 °C [] 310
2 a4 < 7 282
3 393 8 254
4. 365 g 227
3 338 o 199
h\ ﬁ

A 171

8 143

c 115

] 88

E 60

TEST NO. 2552 TEST DATE 20177 CALC. DATE 10977
RUN ND. 19 COND. NO. 1 PAMB N/ml 100.7
TAMB DEGC ° PT7 N/m° 211.7 PTF?7 N/m 194.0
TT7 DEGC 513 TTF7 DEGC 76 PT7/PANB 2.102
PTF7/PAMB 3.926 VPRI m/s 551 VFAN m/s 346

Figure 89.—Inverter Exit Flow Survey (Temperature Plot)

235



236

TEST 2SS2TP - JTBO INVERYEID FLDOMW TEST - PHASE 1 - STATIC TEST

INVERTER CXIY FLOW SURVEY ( VELDCITY PLOT )
CONFIG - 2-RING INLET. FLDW INVERTER. RC NOZ22LE
) 503 m/s 5 296
2 488 7
3 457 8
a 427 ] 8
[ 412 0

[\

g )
A 320
8 305
c 290
D 274
TEST NO. 2552 TEST DATE 20177 CALC. DAJE 30977
RUN NO. 19 COND. NO. 1 PAMB N/m 100.7
TAMB DEGC 0 PT7 N/m 211.7 PTFT N/m’ 194.0
T17 DEGC 513 TTF7 DEGC 76 PT7/BANS 2.102
PTF7/PAMB 1.926 VPRI m/s 551 VFAN m/s 346

Figure 90.—Inverter Exit Flow Survey (Velocity Plot)
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Figure 91.—Comparison of Model Static OASPL and PNL Directivity, Baseline, Inverter,
and Internal Mixer
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