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Chapter 1

INTRODUCTION

During the period June 1974 to the present, research

relative to the understanding and alleviation of aircraft noise

has been carried out by the investigators with grant support

from the National Aeronautics and Space Administration. This

report summarizes the principal results from this research.

Among the activities during the grant period were lab-

•	 oratory experiments and theoretical studies on the diffraction

of sound by surfaces with the intention of providing basic

information relevant to the understanding of the acoustical

implications of the engine over wing configuration. That the

presence of the wing below the engine may partially shield

listeners on the ground from engine noise during flyovers has

been the topic of a number of previous reports and papersl-S

and has been the subject of investigation by Hellstrom 6 , by

von Glahn, Goodykoontz and Wagner, by Conticelli, Di Blasi

and O'Keefe $ , by Jeffery and Holbeche 9 , and by Sears. 10 A

principal objective is the attainment of a rational method

for quantitatively estimating just how much noise reduction

would be achieved by a given design. Such a method would
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serve as a guide in the design of future EOW aircraft and

would enable one to make quantitative comparisons of alterna-

tive designs.

In order to gain some quantitative insight into the nature

of sound diffraction by wings and to provide a data base for

the assessment of various theoretical approaches to the over-

all problem, a series of experiments were conducted at NASA

Langley Research Center during the summer of 1976. These were

carried out by Allan D. Pierce and Robin Vidimos in collabora-

tion with John S. Priesser and other NASA personnel; the

reduction of the data was carried out under the direction of

W. James Hadden, Jr. In Chapter 2, a summary is given of the

nature of these experiments and of the results.

One of the theoretical problems presented by the overall

topic of aircraft engine noise diffraction by wings is that

the source of the sound is not a large number of wavelengths

away from the diffracting surface (although in cases of

interest the listener is). Virtually all existing computa-

tional techniques for sound diffraction by bodies are based

on the assumption that both distances are large, so some

analytical development was necessary to revise existing

theories such that they would be amenable to rapid computation

and would give quantitative insight for cases corresponding

to the topic of wing shielding of engine noise. The details

of this analytical study are given in Chapter 3.
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Another topic considered during the period of the grant

was the effect of variable ground impedance on aircraft noise

propagation. A pertinent question is to what extent the sound

received on the ground is characteristic of the local impedance

near the listener and to what extent the impedance at distant

points affects the local reception. Chapter 3, prepared by

Dr. Hadden, gives a theory for the scattering of spherical

waves by a rectangular area whose acoustic impedance differs

from that of the surrounding plane. Results of experiments

(performed during summer 1975 at NASA Langley Research Center

by W. James Hadden, Jr., Robin A. Vidimos, and Philip Sencil)

concerning reflection from rectangular patches are also

described in Chapter 4.	 i

A topic related to both the variable ground impedance

problem and that of the diffraction of noise by wings is that

of the effects of finite surface impedance on diffraction.

Chapter 5 is comprised of a paper by the authors written

during the grant period which summarizes the principal results

of an analytical study concerned with this topic.

Chapter 6 gives a theory developed during the grant

period for the diffraction of sound from a point source by

a thin rigid screen in the absence of ambient flow. The work

described there is a simple extension of work reported by

S. Candel on the plane wave diffraction problem. (See Chapter

6 for a listing of relevant references.) Analysis given here

shows that a simple transformation will reduce the point source
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S.

problem in the presence of ambient flow to one in which there

is no flow. The solution so derived should allow some insight

into the influence of forward motion effects on aircraft

noise diffraction by wings.

w

•
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Chapter 2

LABORATORY EXPERIMENTS ON SOUND DIFFRACTION

The experiments performed in connection with the study of

wing-shielding of noise were divided into three parts. In the

first experiment (Fig. 1), the obstacle used was a thin screen,

the source was an acoustically small drive: through which

selected pure tones were projected, the source being located

close to the barrier. Narrow-band sound pressure levels were

measured on a circular arc far from the edge of the screen and

also at several locations close to the screen but well inside

its acoustic shadow. In the second experiment the previously

described barrier and receiver configuration was used, the

pure-tone source being replaced by a 1 inch diameter jet. The

third experimental configuration (Fig. 2) consisted of the

acoustic driver, a thick straight-sided barrier with a cylin-

drical cap, and receiver and arc centered on the junction of

the cap and the straight side of the barrier which was nearer

to the driver.

The source-obstacle-receiver configuration for the first

experiment is sketched in Fig. 3. Narrow-band pressure levels

were recorded at the microphone positions shown. Results for

pure tone exciation of the driver at 490, 900 and 2050 Hz with

the driver in positions 2 (level with the top of the screen)

and 4 (9 inches below the top of the screen) are presented in
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Figs. 4-6. The pressure levels for microphone positions 1, 7,

and 8, shown in Fig. 3, are presented in Table I. Although the

pressure levels measured at a fixed distance from the edge of

the screen show the expected trends of increased shadowing

effect on the screen as the frequency increases and as the

source height decreases, we strongly suspect that these data

were affected by transmission through the plywood screen. A

brief calculation indicates that the coincidence frequency for

such a panel is approximately 800 Hz. Thus, the measurements

at the lower two frequencies mentioned above may be significantly

contaminated by sound transmission through the screen.

The geometric arrangement for the second experiment is

shown in Figs. 7 and 8. The one-inch diameter jet was operated

at pressures of 2.8 and 5 psi; one-third octave band levels

were recorded at the microphone positions indicated in Fig. 7,

for center frequencies 500, 1000, 2000, and 4000 Hz. The

measured 1/3-octave band levels for the reference condition

(Fig. 7) and in the presence of the screen (Fig. 8) are com-

pared in Figs. 9-11. It should be noted that the results for

1000 Hz in Fig. 9 and for 4000 Hz in Fig. 10 have been shifted

upward by 10 dB for convenience in presentation. Similarly,

the results for 2000 Hz in Fig. 12 have been shifted downward

by 10 dB. As in the first experiment, it is likely that

s	 transmission through the plywood screen is a contaminating

artifact of the measurements in the bands centered at 500 and

1000 Hz. The measured 1/3-octave band levels for microphone
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:reen in the Acoustic Shadow of a Point Source

•

Frequency	 490 Hz 900 Hz 2050 Hz 4050 Hz

Microphone Driver Driver Driver Driver

Location$ Position	 Position Position Position Position	 Position Position	 Position
2 4 2 4 2 4 2 4

1 59.0 dB 65.3 dB 84.0 dB 85.3 dB 82.8 dB	 83.0 dB 88.3 dB	 86.3 dB

7 69.5 66.0 89.8 84.0 82.8 84.0 76.5 80.0

8 58.8 56.3 81.5 71.0 82.8 81.3 76.0 73.0

$Refer to Figure 1 for microphone positions.

N
O
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positions 1, 7, 8, and 9 are presented in Table II.

The third experiment was intended to supply information

as to the effects of a thick barrier and a curved diffracting

surface. The source-barrier-receiver geometry for this

experiment is sketched in Fig. 13. The sides of the barrier

were sheets of 1 " plywood. The cap was also constructed of

III
	 formed so as to produce a half-cylinder with a

radius of 12 inches. As in the first experiment, pure-tone

excitation was applied to an acoustically small source. The

source was located close (in terms of acoustic wavelengths) to

one side of the obstacle. Several source heights relative to

the highest point on the barrier were used. Narrow-band sound

pressure levels were measured on an arc at a fixed distance from

a point near the junction between the straight and curved por-

tions of the barrier. Additional sound level measurements

were made in a vertical plane in the acoustical shadow of the

barrier at a horizontal distance of 88 inches from the source.

The measured pressure levels for several source heights are

presented in Tables III-V. These measurements show the expected

increase of the shadowing effect with frequency and, in the

main, the expected increase of the shadowing effect with

difference between the source heights and the highest point o

the obstacle. In some cases the variation in pressure level

with angle is not a uniform decrease from the position almost

directly above the source to that well inside the shadow of

the barrier: the deviations which arise . are no doubt due to

.._ s ar. ,Wawa



22
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Table II. One-third Octave Band Levels Close to the Screen in the Acoustic Shadow of a 1-inch Jet

Frequency 500 Hz 1000 Hz 2000 Hz 4000 Hz

Microphone Screen Screen Screen Screen Screen Screen Screen Screen
Locationa Absent Present Absent Present Absent Present Absent Present

Pressure:	 2.8 psi

1 69.8 dB 70.0 dB 74.2 dB 74.0 dB 76.0 dB 75.6 dB 74.2 d6 74.0 dB

7 64.5 62.6 68.6 64.0 72.0 65.0 73.5 E3.15;

8 62.8 60.8 65.5 60.2 70.0 60.2 72.2 59.2

9 61.0 58.2 63.0 56.0 66.0 57.8 69.5 56.5

Pressure: 5.0 psi

1 78.0 77.5 83.5 84.0 87.8 88.0 85.5 85.0

7 71.0 70.5 77.0 72.0 83.0 75.0 85.0 74.2

8 69.0 67.5 73.8 68.0 80.0 70.5 83.5 70.0

9 57.6 66.0 61.2 63.8 66.6 68.2 70.8 67.0

a Refer to Figs. 7 and 8 for microphone positions.

N
W
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Table III. Narrow -band Pressure Levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
12" Below Highest Point on Barrier.

Microphone - Frequency
Locationa 490 Hz 900 Hz 2050 Hz 4050 Hz

1 64.5 dB 86.8 d6 81.5 dB 91.5 dB

2 64.0 88.0 83.5 90.3

3 59.0 82.0 79.8 82.5

4 55.5 80.3 66.3 66.8

5 52.3 68.5- 60.5 66.5

7 50.5 74.5 69.5 62.0

8 39.5 71.5 58.8 64.5

9 51.5 70.0 47.8 70.3

aRefer to Fig. 13 for microphone positions.
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Table IV. Narrow-band Pressure levels for Diffraction of
Sound by a Cylindrically Capped Barrier: Source
6" Below Highest Point on Barrier.

25

..

E	 r

Microphone
Frequency

Locationa 490 Hz 900 Hz 2050 Hz 4050 Hz

1 66.0 dB 91.0 dB 89.0 dB 95.0 dB

2 63.8 86.8 83.3 87.5

3 59.3 84.5 77.0 87.5

4 58.0 78.3 69.5 75.8

5 53.8 68.3 65.0 70.5

7 49.5 73.5 68.0 67.5

8 45.0 75.3 67.5 69.8

9 51.3 74.8 65.3 61.3

aRefer to Fig. 13 for microphone positions.

•
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Table V. Narrow-band Pressure Levels for Diffraction of Sound
by a Cylindrically Capped Barrier: Source at Height
of Highest Point on Barrier.

Microphone	
Frequency

Locationa	490 Hz	 900 Hz	 2050 Hz	 4050 Hz

1 66.3 dB 91.3 dB 87.3 dB 85.8 dB

2 64.5 84.5 86.3 89.5

3 61.8 86.8 81.5 86.6

4 56.0 75.8 68.5 78.8

5 55.0 71.5 68.3 69.8

7 49.3 75.3 72.3 74.8

8 47.5 77.0 66.3 61.0

9 51.0 71.3 63.3 65.0

aRefer to Fig. 13 for microphone positions.
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constructive interference between waves transmitted directly to

the receiver and those reflected from the cylindrical cap.



Chapter 3

THEORY OF SOUND DIFFRACTION

AROUND SCREENS AND WEDGES



Solutions corresponding to constant frequency sound dif-

fraction by a rigid wedge or a rigid screen (a limiting case

of a wedge) are well known. 1 ' 2 In particular, the exact so-

lution for the case of a point source in the vicinity of such

a wedge or screen appears in various places in the literature

as a contour integral in the complex plane with an integrand

of moderate complexity involving elementary transcendental

functions. 3 ' 4 This integral is not directly expressible in a

closed form, but its value when both source and listener dis-

tances from the edge are large compared to a wavelength can

be expressed to a uniform asymptotic approximation in terms

of Fresnel integrals s ' 6 or related functions . Expansions

have also been derived which are appropriate to the case when

either source or listener is close (relative to a wavelength)

to the edge.$

For those situations in which one of the distances in-

volved is neither large nor small compared to a wavelength,

it may be necessary to perform a numerical integration of the

contour integral (or of other integrals which would appear in

equivalent expressions) or to sum a'large number of terms of

the expansion appropriate to the length being small compared

•	 to a wavelength. Such numerical integration or summation,

however, may be slowly convergent and may be difficult to per-

form even with the aid of a large digital computer. Although
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direct computations of this sort have been performed by Ambaud

and Bergassoli 9 , the method they describe, while leading to

accurate values which agree well with their experiments, is

intrinsically limited in application to source-listener geo-

metries in which neither location is at an extremely large

number of wavelengths from the edge. Further, the method is such

that severe computational difficulties would be encountered

were the listener arbitrarily close to the shadow zone boundary.

While one might expect such calculations to meld with calcula-

tions using the results of a uniform asymptotic approximation,

the match would be evident only from a direct numerical com-

parison.

The present chapter is prompted by the problem of estimating

aircraft noise shielding by wings (engine-over-wing configura-

tion), one of the features of which is that the sound sources

are neither very close or very far (relative to all wavelengths

of interest) from the wing trailing edge. Research on this

topic should be aided by the availability of a convenient gen-

eral purpose method for the calculation of the acoustic pressure

(i.e., the Green's function) at an arbitrary listener location

caused by the presence of a unit strength point source near a

rigid wedge or screen. Ideally, the method should be based on

a formulation which reduces directly (without excessively intri-

cate manipulations) to know limiting cases (i.e., source on

edge or source and listener both far from edge).
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WEDGE

Fig. 1. Geometry used to describe diffraction of sound
waves from a point source by a wedge.



Such a formulation, with accompanying numerical examples,
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is presented here. Furthermore, the plots included here should

enable one, without further need of a digital computer, to esti-

mate the sound field and the sound reduction for the important

limiting case when the listener is many wavelengths away from

the edge and much further than is the source (kL»1,rro/L2«1

in the notation explained below). Discussion is also given of

the accuracy of approximations commonly made in acoustical

studies.

I. GEOMETRY AND FORMAL SOLUTION

The geometry appropriate to the problem under consideration

is that of a rigid wedge whose edge lies along the z-axis (Fig.

1) in a cylindrical coordinate system (r,e,z), with the two

faces taken as the e - 0 and e - s planes, such that the region

exterior to the wedge extends from e - 0 to e - a (with s>n).

A thin screen corresponds to s - 2A. (Here we use the same

notation as was used in a previous paper ? by one of the authors.)

The source of sound is a single harmonic point source (ang-

ular frequency w, wavenumber k - w/c) located at a point (ro,eo

zo ) and of strength such that the acoustic pressure field p in

the source's immediate vicinity is given by e ikR/R plus bounded

terms when R, the net distance from the source, is substantially

less than the distance of source from edge. Here a customary

•	 time dependent factor of a-lwt is understood but omitted for
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w

simplicity. The acoustic pressure field dependence thus cor-

responds to a Green ' s function G{ , 1ko ) which satisfies the

scalar Helmholtz equation with the customary source term

-4w6Q - NCO ) on the right hand side. Boundary conditions cor-

responding to the rigid wedge are that aG/ae - 0 at e - 0 and

8	 B, respectively.

For present purposes, it is convenient to take the solu-

tion to the problem just posed ` in the form (but in the present

notation) utilized by Ambaud and Bergassoli 9 . This, with some

paraphrasing of notation, can be written

4

G{ I, o ) _ [G(4 i m w -^ i ) + V(C i )]	 {1)

i=1

where

S1	 -	 (e-e o i	 (2a)

42 
-	 26- 1e- e 0

1
	 (2b)

z 
3	

e + eQ
	 (2c)

C 4	 2a - (e +e 0 )	 (2d)

Here U W is the Heaviside unit step function. The G ( 4i)U(n -ci)

terms for i - 1,3,4 correspond to waves inferred from purely geo-

metrical acoustical considerations, i.e., (i-1) a direct wave,

(i-3) a wave reflected from the e - 0 face, and (i - 4) a wave re-

flected from the e - a face. (The term G(C Z )U(%_Y is always

- ,



r^.

34

zero, since S 2 is always greater than w, but is included to

preserve the symmetry of the expression.) The term G(C)

represents a radially symmetric spherically spreading wave,

generically denoted by 
elkR

/R, where (arbitrary argument C)

R = [r2 + r0 + (z-z0 )2- 2rr0
 cos {]
	

(3)

This distance, for the four particular values of S listed

above, may be interpreted as: (i = 1) distance from source;

(i=2) distance from an image-image point; (ro' 2(0-n) + eo'zo)

if 9>e 0 ; (i=3) distance from image of source reflected through
E.

e = 0 plane; and (i=4) distance from image of source reflected

through e = 8 plane. (While the geometrical interpretation of

C 2 may seem irrelevant since U(n-^ 2)is always zero, the inter-

pretation is germane to the interpretation of V(^ 2 ) in the

limiting case, termed the Fresnel number approximation, below.

The image-image is formed either by reflecting the source

through the e = 0 plane, then reflecting this image through

the e - B plane or by carrying out the reflections in inverse

order. The construction is indicated in Fig. 2.) In the cases

i - 1,3,4, the presence of the Heaviside unit step functions as

factors in the geometrical acoustics terms insures that: (i=1)

the direct wave is zero unless the source may be "seen" by the

Be

	

	
listener; (i=3) there is no contribution from a wave reflected

from the e - 0 face unless one can construct a specularly re-

flected ray going from source to face to listener; and (i=4)



35

there should be an analogous ray reflected from the e = s face

connecting source and listener if the corresponding geometrical

acoustics term can contribute to the field.

The sum of the terms V(c i ) in Eq. (1) may be interpreted

as the diffracted wave. Each may be written in a similar

fashion as a definite integral, which, in the form taken by

Ambaud and Bergassoli, is

V(0 _ '(1/ n ) f ^ G( n+iw) Q(w,v,^) dw	 (4)

0

with

(v/2) sin[v(n-c)]

Q(w,v,0 = cosh(vw) - cos[v(n - ^)]	 (5)

the index v being n/s (v - 112 for the thin screen, 2/3 for a

right angled wedge). Here G ( n+iw) represen - s the wave function

e ik R/R, R being given by Eq. ( 3), with ; replaced by n+iw, or,

equivalently, with cos c replaced by -cosh w. The quantity R2

is real and positive, R being understood to be the positive

square root of R 2 , throughout the integration over w.

II. REFORMULATION OF DIFFRACTION INTEGRAL

Direct numerical evaluation of V(^), while possible, is.

•	 unwieldy because of (1) the infinite limits, ( 2) the oscilla-

tory nature of the integrand and the attendant slow convergence

in many cases of interest, and (3) the fact that Q is unbounded
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near w - 0 as +nr. To avoid such difficulties we change the

variable of integration and the path of integration. To this

purpose, we note that Q = d*/dw where * is such that

tan *	 =	 tan[A(^)]tanh[(v/2)w]

and where A is (v/2)(-0-n+c) plus any multiple of n. If we

refine the definition of A(c) and * such that * varies from

0 to A as w varies from 0 to -, the proper choice for A is

(given 0<c<20)

0

A(c) _ (v/2)(-0-n+;)	 +	 nr U( nr	 (6)

The value of * corresponding to its tangent as given above is

understood to lie between - w and n and to have the same sign as

A. One may note that A(c) is discontinuous at c = nr: A(c) in-

creases from a positive value (v/2)(s — w) at S = 0 up to nr/2 at

C = n , then drops abruptly to - n/2 at C = nr + and subsequently

increases linearly, passing through 0 at 	 = s +nr, up to the

original value (v/2)(s-n) when c = 2s.

Some indication of the variation of values of the A(ci)

[abbreviated Ai here] with the source and listener coordinates

9 0 and a may be obtained if one considers the specific case

Ttypically of greatest interest) in which the source is on the

far side of the wedge, s > e o > ,r, the listener is in the

•	 shadow.zone, 0 < e < e a - n (See Figure 3).	 In this case all

the A i are negative and between — nr /2 and 0, the magnitudes

_1
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Fig. 3. The functions A(= i ) for i = 1,2,3,4 (where ci
is a function of the wedge angle and the source
and listener angles).
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JAI I and ' A4 1 increasing with increasing a and conversely for

J A3 1 and + A2 1. At e = 0, Al - A3 and A2 = A4 ; in general one

has iAl j > I A 3 1 > JA ` ) and 'Al j > IA41 > + A2 1. One may note

+	 that the line, A l versus a equals -n / 2 at the shadow zone boundary.

The lines A 3 and A4 cross only if e o > ( s+n)/2 and, when they do,

they cross at 6 =	 g - eo with the mutual

value A3 = A4 = -n/2 + (v/2)(s-n) _ -nv/2.

If we now change the variable of integration Ao q = 0A,

then Q dw = A dq and q varies from O.to 1. The remainder of the

integrand can also, after some algebra, be expressed in terms of

q rather than w. The pertinent intermediate result is

R =	 [L 2 + rro (Y - Y -1 ) 2 1^	 (7)

where we abbreviate

L =	 f(r + r0 ) 2 + (z - z0 ) 2 ]^2 	(8)

Y = ^ tan A + tan A	
1/(2v)	

(9)
tan A - tan qA ^	

9

The quantity Y, and therefore the spherical wave factor, is in-

dependent of the sign of A. Thus we may rewrite the integral in

Eq. (4) as

v(^) _	
- (1/n) A(^)(eikL/L) Fv(IAI,(%,E) 	 (10)

where

FV(jAj,a,c)	 J	 I ( q ) dq

0
(lla)
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a = k rro/L; E = rro/L2

I( q ) _ (L/R) 
e ik(R-L)	 (llb)

with L and R as given above.

The set of arguments of F
v 

is readily seen from the above

equations to be complete. The forms chosen for the parameters

e anda are particularly convenient in the consideration of limit-

ing cases. From geometrical considerations, c is always less than

1/4. The parameter a, which has the appearance of a Fresnel wave

parameter, may in principle have any value. The quantity L has

the important geometrical interpretation of being the length of

the shortest two segment path which goes from source to edge

and then to listener (i.e., L is the length of a diffracted

ray path).

III. THE DEFORMED CONTOUR

The variable q is now considered as a complex variable

and the integral over I(q) in the definition of F
v 

above is

interpreted as a contour integral in the complex q plane.

Rather than integrate directly along the real axis, we choose

a path C which (1) goes from 0 to 1, (2) has finite length,

(3) is such that Re(R-L) - 0 at every point . on the path, and

(4) is such that, for nonzero a, eik(R-L) decreases monotonic-

ally from 1 to 0 as q travels the path C from q - 0 to q = 1.

That a path with these properties exists is supported by the

mathematical foundations of the method of steepest descents and

is substantiated by the construction given below.

The evaluation of the integral along the contour C is

facilitated by a reformulation of the function I(q), Eq. (12).

:'
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The restriction Re(R-L) - 0 along the path implies that we may

introduce a real parameter K such that, at any point on the

path, R is related to K by

R - L[1 + isK 2 )
	

(13)

Here K ranges from 0 through positive values when q ranges from

0 through successive points on the path. The relationship

between q and K may be determined by equating the squares of

Eqs. (7) and (13), then inserting the expression (9) for Y,

and solving for q. In this manner one finds

q = 1	 tan -1 [tanh X tan JAI]	 (14a)
JAI	 2

with

sinh X = K[i/2 - EK 2 /4] 1/2	 (14b)

The several ambiguities in the definitions of the square root

and of the implied inverse trigonometric functions are

resolved by the requirement that q vary continuously from 0

to 1 (although not on the real axis) as K varies from 0 to -.

To accomplish this, one defines the square root in Eq. (14b)

to be such that its phase is between n/4 and n/2, then defines

X to be such that Re(X) > 0 0 0 < Im(X) < n/2, and q to be such

that it lies in the first quadrant.

The computation of q R and q I for given values of K is

•	 generally facilitated by reducing Eqs. (14) to explicit equations

involving only elementary functions of real variables. Such a

reduction yields, for example
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P.

tan(21AIgR) : sin (21AJ) sinh a	 (15a)
cos b + cosh a cos(21AI)

in which

sinh ( a/v)

sin (b/v) = K[(1 + 
Q2)1/2 ± Q]1/2	 (15b)

with

Q =	 K2 [1 - E + 1 E2K4 ]	 ( 15c)

The expression for tanh (21AIg j ) is similar to Eq. (16a):

sinh a, cosh a and cos b should be replaced by sin b, cos b,

and cosh a, respectively.	 The restrictions mentioned above

concerning phases and btanches imply that b/v is between 0 and

a/2 for K < ( 2 /s) 1/4 and is between w/2 and w for K > (2/e)1/4.

The restrictions further imply that 21AIgR lies between

0 and n.

Some computed plots of the deformed contour C in the com-

plex q plane and of the corresponding variation of K along the

contour are shown in Figs. 4 and S. Analysis of the equations

given above indicates that such contours always proceed from

q - 0 obliquely upward at an angle of 45° with the real axis

and this is confirmed by the computations. The terminal point

q - 1, is approached from above and to the right, making an

angle (1-v)n with the real axis to the right of q - 1 for non-

'	 zero e. In the limiting case of a screen, v - k, the contour

terminates at a right angle with the real axis. In the limit
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Fig. 4. Typical deformed contours in the complex q-plane which correspond to
paths of steepest descent for a factor in the exponential in the
integrals described in the text.
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of vanishingly small e, the contour C approaches a limiting form

which approaches q - 1 obliquely downward from the left, making

an angle of vR /2 with the real axis. The principal modification

of this limiting form caused by nonzero E is a small "kink"

near q - 1 in which q  overshoots qR - 1 slightly (except for

V = h), the contour then bending back and approaching q - 1

obliquely downward from the right. The quantity K always in-

creases monotonically from 0 to W along the contour, except for

the limiting case where (A+ is identically n/2. If JAI is

slightly less than this upper limit, K remains virtually zero

along the major bulk of the contour but increases rapidly to

near the very end of the path.

At this point, we may note that the reformulation of the

diffraction integral as represented by Eqs. (10-12), with C

taken as the integration contour, has removed all the difficul-

ties pointed out at the beginning of this section. The limits

of integration are now finite, the modulus of the integrand I(q)

is bounded by 1, and the integration along C removes the problem

of the oscillatory nature of the integrand.

IV. LIMITING CASES

The formulation as presented leads either directly or with

minor mathematical manipulation to a number of important limit-

ing expressions for the Green's function and for the various

terms which contribute to it.
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`	 1. Source or listener on edge. This case is characterized

by E	 0 and R - L for all values of q, so we have

Fv (JAJ,0,0) - 1	 (19a)

and the total Green's function reduces to

G(xJx0 ) = 2vL
-l e ikL - (2n/$)L -ie M	 (19b)

where, in this instance, L is simply the distance from source to

listener. The above pressure field, except for the limiting case

of a thin screen (where s = 2n), is always larger than what would

be expected were the wedge not present. The Green's function for

source or receiver on the edge could also be derived from simple

'

	

	 symmetry arguments (the field must exhibit spherical symmetry for

source on edge, the total volume velocity of the source must be

the same as in the absence of the wedge, but the volume velocity

per unit solid angle increases by a factor of 4n/26, where 26 is the

solid angle external to the wedge about a point on the edge)

without the necessity of the general solution.

2. The limit JAI - n/2 or C - n. In this case the ap-

proximation R = L is valid over most of the length of the contour

C, the contribution from portions of the contour where this ap-

proximation does not hold becoming increasingly negligible as JA'J

becomes progressively closer to w/2. Thus, we obtain
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so the sum of the corresponding geometrical wave G(c)U(n-c) and

the appropriate diffracted wave term V(c) should have the limit

lim {G(c)U( w - c) + V(c)) = (1/2)e
ikL/L	 (16b)

c+n

regardless of from which side the limit is approached. Thus, the

total field, as expected, is continuous.

3. The uniform asymptotic limit, where krro/L >> 1, JAS is

arbitrary. This corresponds to both kr and kr o being large and

Iz - zo ) being less than or comparable to (r 2 + r2
0 ) 42 . Equiva-

•	 lently, both source and listener are far from the ;dge and the

angle between the edge and the broken ray from source to edge to

listener is not close to 0.

In the evaluation of this asymptotic limit, it is convenient

to regard K as the variable of integration. The derivative dq/dK

may be evaluated by implicit differentiation of Eqs. (15b) such

that dq/dK is a function of a and b times the derivative

d(a+ib)/dK. Since krro/L is large we may expect the dominant

contribution to the integral to come from small values of K.

However in the limit K + 0, dq/dK is inversely proportional to

cos(21AI) and is singular when JAI -► w/2. To cover this contingency

one expands the denominator in the function just mentioned to the

•	 next order nonvanishing term (which turns out to be second order)
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... 0	 (17)

= f(X)-i g(X)	 (X > 0)

where

X a [4a/nj ll (1/v) cos( J A I )	 (18)

Here F(X) and g(X) are the auxiliary Fresnel functions discussed

in a previous paper ? by one of the authors and which are tabu-

lated on pages 323-324 of the NBS Handbook of Mathematical Func-

tions. 11 The mathematical manipulations as outlined above then

lead to the expression

F v 2 (%//L) e ii/4 [(sinlAl ) / IAI] [f(X) - i 9M]	 (19)
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for krro/L >> 1. One may note that, although the coefficient of

cos(IAI) in Eq. (18) is presumed large, it cannot necessarily be

assumed that X is large since cos(IAI) would be very small were

JAS close to n/2.

In the limit of large X, the quantity f - ig approaches

1/(nX) and thus F  de-creases asymptotically as the inverse square

root of a for nonzero value of cos(IAI). When CAI approaches n/2,

both f(X) and.g(X) approach the value 1/2, the limiting values for

X -* 0. In this limit F  goes to 1, just as indicated by Eq. (16a).

It should also be noted that in this approximation F  is indepen-

dent of the parameter E for a fixed value of a,

4. The Fresnel number approximation 1 2 If, in addi _,< ^n to

krro/L >> 1, it is true that cos(IAI) is substantially less than

v,the parameter X in Eq.(18) may be interpreted as X = (2N)^

where N is a Fresnel number given by

N = (L - RA )/( X/2)
	

(20)

which represents the excess of the diffracted path length L be-

yond some direct path length RA in units of half wavelengths.

The appropriate identification of R A is	 I']
RA - [r2 + ro + (z-z o ) 2 - 2rrocos(B v )]'	 (21)

with B v (JAI) taken as
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E^(JAI) _ t {n - (2/v)(n/2 - JAI)) + 2nir	 (22)

with n being an integer (0, Positive, or negative) and with any

choice of the two signs. With the purpose of giving a meaning-

ful geometrical interpretation of B v , one may show with some

effort that it is possible to choose the sign and the integer

n such that

e + R v 	 e0	 (^ = Ie - e0I)	
(23a)

= e 0 +	 26 -I0 -a 0 1, e > e o )	 (23b)

= e o - 2(6-n)	 (t = 28 -Ie - e o I, e 0 > e)	 (23c)

= -e	 e + e )	 (23d)
0	 0

= 26 - 9 0	 (^ = 2B - e - e0)	 (23e)

Thus, with reference to the discussion following Eq. (3). R A is

the direct distance of listener from (i = 1) the source; (i = 2)

the image of the image; (i - 3) the image formed by reflection

through the e	 0 plane; or (i = 4) the image formed oy reflec-

tion through e = R plane.

That X is approximately (2N)'^ where N is as defined above

in the limits cos(JAI) << v, a, follows from the general expres-

ion (22), from the (consistent) approximation sin[(1/v)(n/2 - IAI)]

(1/v)cos(IAI), from the fact that a is always less or equal to

114, from the definition (8) of I., and from an appropriate binomial

1	 ^	 -

.L
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•	 expansion of RA.

When the Fresnel number approximation is valid, JAI should

be close to n/2, so it is consistent to approximate the

sin(IAI) /IA) factor in Eq. (19) by 2/,► and the resulting expres-

sion for F becomes
V

Fv = (/) e in
/4 (f([2NI h ) - i g([2N) h ) )	 (24)

This represents a considerable simplification in that the right

side depends on one and only one parameter N of relatively simple

geometrical interpretation. There is no explicit v, JAI, a, or

e dependence, other than the -tanner in which these enter into the

determination of N. The expression above also has the virtue of

never giving a magnitude of F  greater than 1.

The corresponding expression for V(c) in the Fresnel number

approximation may be obtained from Eck. (10) with A(c) replaced

by ( n/2)sin(n - c). This is in accordance with Eq. (6) and the

fact that (AI should be close to n/2. Consequently, Eq. (24)

should be multiplied by sin(C - n)(2L) -i e ikL to obtain V(d .

S. The case when kL is large but krr o/L is finite or e.<1, a

finite. The two statements are equivalent since kL ► 	 with krro/L

fixed implies rro/L2 -► 0. This limiting case is of interest in

those problems where the source is at finite or small distance re-

lative to a wavelength from the edge but the listener is at a large

number of wavelengths from the edge, much further than is the

source. Conversely, because the solution conforms to reciprocity
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(interchange of source and listener), the corresponding limiting

solution corresponds to the pressure field in the vicinity of the

edge when the source is a large distance away. in this reciprocal

problem the incident wave near the edge is very nearly planar, so

the limit can be obtained from the solution of the related problem

of plane waves incident on a rigid wedge. The limiting case,

so-. •rce near edge, listener far from edge, is of principle interest

in aircraft noise problems where the source is in the vicinity of

n wing but the listener is on the ground at a large distance away.

The limiting value of the diffraction integral Fv as

rro/L2 -► 0 may be simply denoted as F v (IAI,a,O). The limit exists

and may be readily obtained from the formulation given in the

previous section by (1) replacing the factor L/x in the integrand

by 1 and (2) setting e = 0 in Eqs. (14) and (15). This

yields sin(b/v) = tanh(a/v) and Eq. (15h)gives K 2 = sinh2(a/v)/
,z

cosh(a/v). The integrand I(q) reduces toe - "K2
along the contour C.

The value of the integral F v (IA',a,0) for !AI = n/2, or for

a =•0, or for a >> 1 may be inferred from the cases 1-3 discussed

above. Thus Fv is 1 for JAI = n/2 or for a - 0 and is given by

Eq.(19) for a >> 1. Also, the Fresnel number approximation, Eq.

(24), should be applicable in the double limit a >> 1 and cos A << v,

the appropriate identification for the Fresnel number N in the

limit a -► 0 being

N	 4[rro /(?1..))cos 2 (B v /2)	 (25)

4^
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As regards the behavior of Fv (`AJ,a,O) for a << 1, one can

derive an expansion of the contour integral in lioninteger

powers of a, the starting point being

Fv (IAI,a,O) = 1 - f 
o
(1 - e -O' 	 (26)

0

In view of the restriction krro/L << 1, the first factor in

integrand above is small unless a is relatively large. Thus,

if we seek just the leading term and anticipate that this, for

sufficiently small values of the expansion parameter, is larger

than any given constant times this parameter, it is sufficient

•	 to adopt the approximations K 2 = (1/2)ea/v , dq/da =JAI-'sin

(21A()e lvn/2 a -a , i.e. asymptotic limits fur e = 0, a large.

Then the variable of integration may be changed to u = (1/2) a ea/v

such that (dq/da)da is a product of u-independent factors and

u- v-l du,one of these factors being [a/2] v . The lower limit on

the u integration becomes a/2, but, providing v is not very

close to 1 (i.e., we here exclude the case of highly obtuse

wedges), this can be approximated by 0 insofar as we are only

interested here in the lowest order (which is lower than first

order) term in a. In this manner, one obtains

Fv (IAI,a,O) = 1 - JAI -l sin(21AI)e -ivn/2 [a/2] V r(1-v)	 (27)

Here we recognize (after integration by parts) that the inte-

gral over u of v(1-e-u)u-v-' is the gamma function with ar-

gument 1-v.

...1 ... ...i 	 ..wi......,.-J _.^,.^....1....^. ^ ^ ..^... .._^. :^.I .,^...I	 ....^J ^..m... .... ..ter....- 	 ^.	 .....
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The fact that v is less than 1 implies that the magnitude

of Fv decreases sharply from 1 (the derivative of its magnitude

with respect to the expansion parameter is negative and becomes

singular when the parameter approaches zero) when a increases

from zero. As discussed subsequently below, this implies that

a modest amount of sound reduction in the shadow zone is

achieved even when the source is only a slight distance from

the edge.

In this same limit of rr o/L2 - 0, krro/L << 1, the total

Green's function (found by inserting the above into Eq. 1)

becomes

G( JX ) ' (2n/0)L-1eikL {1 + 2e- iv,r
/2[1/r(l+v)][krro /(2L)]v

(28)
cos(ve)cos(veo))

where we make use of the identity

sin(vn)r(1 -v) = vn /r(l+v)

The above approximate Green's function is consistent with a

more general expansion given by Tuzhilin. 8 One may note that,

if the listener is in the shadow zone, cos(ve) and cos(ve0)

have opposite signs, so the second term in Eq. (28) would de-

crease the magnitude of the Green's function in such cases

(as .should be expected) from that represented by just the first

term. The phase of the Green's function is predicted to be

greater than U . (The formulation in general requires the
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phase in the shadow zone to lie between U and U + n /4.)

6. The case of a thin screen (v = 1/2) for a -. 0 with

a finite. For the most part, it is conceptually simpler to

consider each V(S i ) in Eq. (1) as being calculated individu-

aily, the sum being found subsequently. Although these occur

in pairs, V(c) and V(20-c), there appears in general to be no

major analytical simplification obtained by considering such

a pair as a unit. An important exception is the case of the

thin screen (v = 1/2). The fact that some simplification

should be possible in this limit should be evident from the

fact that the geometry of source, images, and image-image in

this limit is degenerate: the source and image-image coincide

and the locations of the two images coincide. The analytical

simplification is of minor computational advantage except in

the limit E ; 0. The simplification which results in this limit

(which, as pointed out above, is equivalent to the problem of

diffraction of plane waves by a thin screen) is that the

Green's function and each of its two constituent pairs,

V(g l ) + V(20-c 1 ) and V(C 3 )+ V(20-; 3 ), can be expressed rather

simply in terms of Fresnel integrals. (Given the incident

plane wave interpretation of this limit, this is a well known

result.)

The manner in which the result may be obtained from the

•	 formulation presented here is first to change the integration

over q to one over a. 'Then the sum V(c) + V(26-{), with V(O as

given by Eqs. (10-12), with the q integration along the contour

owl
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C, may be grouped as a single integral over a from 0 to

which involves a factor

A(c) dq ( I A c)I,a)/da + A(20-c) dq(IA 20-c)I,a)/da

One should note that q, considered as a function of A and a,

will in general have different values if JAI is taken as

IA(c)j or jA(28-c)j. Evaluating this expression for v - 1/2,

0 = 27r, e - 0, such that sin[2jA(c)j] - Icos(c/2)I, cos[2IA(c)j] =

-sin(c/2), tan ^ tanh a, K 2 = sinh(2a)tanh(2a), etc., it

eventuates, after some lengthy algebra and application

of various trigonometric identities, that this can be expressed

rather simply as a function of K and cos(4/2) times the der-

ivative dK /da with no explicit dependence on a. Consequently,

the variable of integration can readily be changed to u - al/2K.

Once this is done, the integral appears in the form of a constant

times the diffraction integral AD(X) of Eq. (17) with the ap-

propriate identification for X being

X - [4a /,r];'jcos(c /2)j 	 (29)

In this manner, we obtain

A (c) F (IA(c)j,a,0) + A(20-c)FIf(jA(2a- c)j,a,0)

(30)

-sign(cos(c/2))(n/2')e' n" [f(X)-i g(X)]

•

with X as given above. The corresponding expression for
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VU) + V(26-c) is just -(1/n)L -l e ikL
 times Eq. (30). The

total Green's function may then easily be written down from

Eq. (1)	 In the case where the listener is in the shadow zone

(diffracted field only), cos(;/2) is negative both for

(e-eo ( and for c - e+e o , so the field is

G(XIXO) = 2-hL-leikLeiw/4 {[f(X) - 
i g(X)lC _ le-eo)

(31)

+ [f(X) - i g(x)lc = 6 + e }0

in which the indicated values of c are to be used in Eq. (29)

to compute the variable X.	
s

V. NUMERICAL INTEGRATION SCHEME

We return now to the general problem of determining the

integral FV . The integral over I(q) along the curve C can be

symbolically written

Fv	 f I(K,c,a)dq	 (32)

C

'where

(1 + ieK 2 ) 1 e-aK2	 (33)

• The quantity K is that given implicitly by Eqs. (15) and may be

considered a monotonically increasing real function of distance

along the contour C.



57

ft

The prototype integration scheme suggested is one in which:

(1) the variable of integration is first changed to K; (2) the

domain of K integration is broken into N + 1 intervals (0, Kl),

(K1 , K2 ), ...., (KN , m) where N > 1; (generally one takes

N = 1) and (3) the integration over the first N intervals is

transformed through an "integration by parts". Thus one has

N	 Kn

F
V
 =	 J(K, s, a,IAI) dK	 (34)
 E

n 1	 K n
-1

m

+ I(KN , e, a) q(KN . e) +	 ( I)(dq/dK)dK

fK 

where

J (K) _ - 2 I (K) q (K) K

We also use the fact that q(K) - 0 if K - 0.

One may note that the real and imaginary parts of the

function J(K) are bounded and continuously differentiable and

that these component parts are certainly not oscillatory.

Thus, one may expect that the first N integrals of the above will

be amenable to any numerical integration scheme which, while
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utilizing values of the integrand at only a relatively limited

number of points (less than, say, 10), achieves a high accuracy

because of the "smoothness" of the integrand. Possible integration

formulas (Chebyshev's equal weight, Gauss's, or Lobatto's, for

example) are summarized in particular in Sec. 254 of the

Handbook of Mathematical Functions 1 4 . (Our experience has been,

in the present context, that 10 point Lobatto integration

invariably gives at least eight digit accuracy.)

As regards the integral from X  
to -, the qualitity

I (KN) (1-q (KN) may for most practical purposes be considered

as an upper bound to its magnitude. It may be presumed that one

has chosen K  sufficiently large, either that the magnitude of the

integral is definitely negligible within the desired computational

accuracy or else that the a
-aK 2 factor in the integrand dominates

its decay. In the former case the last term is discarded while

in the latter case it is evaluated by (1) integrating by parts

and (2) performing the integration over the resulting expression,

which has the form (representing the sum of the last two terms in

Eq. (34).

fK 

eaK2 L(K) dK

N

(with an obvious identification for L(K)) by Hermite integration.14

(Our experience is that an 8 point scheme is more than adequate).

The choice for the Kl , ...,KN as well as the parameter N

should not be too critical. One could compare answers obtained
Y

with different choices of these parameters in order to assess
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whether or not some desired accuracy has been obtained. One
f fig

could, for example, simply take N 	 1 and KN = 1 /a, unless

a were extremely small compared to unity. (We have at present

a somewhat elaborate scheme for chosing these parameters, but

the details seem too arbitrary and unimportant to warrant their

inclusion here.)

Computation time for a single value of F  may be considered

as roughly directly proportional to the number of times which the

function q(K) must be computed from Eq. (15) (which is a straight-

forward evaluation requiring trigonometric and inverse trigonometric

functions). This number is typically just 18 with the scheme

as outlined above so the computation time should be of minor

consequence, given the availability of a modern high speed

digital computer.

Some sample calculations are presented in Figs. 6 and 7.

0

4
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Chapter 4

SCATTERING OF SPHERICAL WAVES

BY RECTANGULAR PATCHES

The body of this chapter consists of a copy of a

paper prepared for submission to the Journal of Sound

and Vibration by W. James Hadden, Jr., Robin A. Vidimos

and Philip M. Sencil. [The experiments described in

the paper were performed in an anechoic chamber at

NASA Langley Research Center (Fig. i).]

9 .
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Abstract

A theory is presented for the scattering of spherical waves

by a rectangular area whose acoustic impedance differs from that

of the surrounding plane. T!iis theory extends previous analyses

to include diffraction effects explicitly. Results of experiments

concerning reflection. from rectangular patches are also reported.

Agreement between these results and predicted values is not

uniformly good, although improvements could be achieved through

alterations in the measurement procedure.

f
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INTRODUCTION

The present paper is motivated by an interest in the effects

of acoustical characteristics of the ground on sound originating

in low-flying aircraft. As part of this study, analytical and

laboratory investigations have been performed on the reflection of

sound by plane surfaces of known acoustic impedance [11. In

analyses of the reflection of spherical waves by plane surface

on which. a local-reaction impedance boundary condition is imposed,

it is customary to employ the method of steepest descents in order

to obtain an approximation for the reflected pressure [2,3]. The

use of this approximation can be interpreted in terms of geometrical

acoustics as neglecting the effect of waves scattered from regions

of the surface outside a neighborhood of the shortest reflected

ray path from the source to the receiver. The investigation with

which the present paper is concerned sought to determine the size

of the effective area near the vertex of the reflected ray. This

information could be used in developing a simplified technique for

predicting the received sound for moving sources near the surface.

In the interest of simplicity, experimental measurements were

made in an anechoic chamber of sound pressure levels above rectan-

gular patches of various areas. Pure tones were used to excite a

small source. Sound pressure level measurements were made in the

direction of the presumed reflected ray path. These experiments
i

are described more fully in Section IV. In conjunction with the

67
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experimental work, a theoretical investigation of scattering by

rectangular areas was undertaken in which diffraction effects due

to the finite size of patches were included. This analysis is

discussed in Sections I-III.

I. DEORETICAL EXPOSITION

The analytical development is roughly parallel to that of

Morse and Ingard for plane wave incidence [4). The surface z - 0
4

contains a rectangular patch with point impedance pcn A; outside

the patch the normalized impedance is taken as n. The geometry

is illustrated in Figure 1: A point source is located at (rs'©s'os)'

the receiver coordinates are (r,e,o).

The received pressure may be expressed, employing Green's

theorem, as

a 
P(r) = poG(r jrs) -JdSo [G(rlro) ---- (ro)

.	 az0
S

P(ro) 	 (El ro)az	
]	 (1)

0
zo=o

in which the Green's function G(rlro) is approximated by terms

representing a source point ro = (ro ,eo ,^o) and a single image

point ro = (ro ,71-90 40) with the image source strength (a modified

plane-wave reflection coefficient) chosen such that the condition

=77!7777 77
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in aG(rlr )
G(r,ro) - — — -°	 0	 z = 0	 (2)

-	 k az

is satisfied to a better degree of approximation than could be

obtained by using the plane-wave reflection coefficient. The

approximation to the Green's function is

ik(r - roI	 iklr - roI

G(rlro) 7 
e	

-	 + R' 
e	

-	 (3a)

	

4nlr - ro I 	 4nlr -roI

n B' coseo - 1
R' _

	

	 (3b)
n B' coseo + 1

i

kIr - roI

where eo is the azimuthal angle between the source-to-receiver

point line and a line parallel to the z axis, and the inclusion

of the factor B' represents an attempt to account for the curvature

of the wavefront.

The pressure terms in the integrand of equation (1) are

approximated in a similar fashion as a combination of waves

incident from a point source at rs and an image source at rs

below a plane characterized by the normalized impedance n A. The

appropriate form for this approximation for the pressure may be
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•	 inferred readily from equations (3) with suitable modifications

•	 of parameters. Thus the "direct" pressure term in equation (1)

is taken as

ikIr - rs i	 ikIr - rsI
e	 e

pDir(r)	 po	 Ir _	 ^	 r+ Rs (r _ ^l	 (4)r
s	 s

in which Rs has the form of equation (3b) with

B'^ Bs = 1 + i/krs and eo-► es = cos -1 (zs/rs). The scattered

pressure term may be written as

	

ikp	 ik(Ir - ro ) + gyro - rsj)

ff 	
-

psc(r) 	
o	

^o 
e

	

n	 IF - roll ro - rs l

S	 -	 -	 -

X

B' B5 cose' cose , (n - nA)

(1 + nB' cose')(1 + nABs coses)
(5)

In order to obtain a closed-form expression for the pressure at

some distance from the scattering area it is expedient to expand

the factors in equation (S) which involve the distances (r - rod

and fro - rs ) as power series in xo and yo . The expansions of

such factors multiplying the exponential in equation (5) may be

truncated so as to yield a desired accuracy which depends on

ratios such as L/r and W/r. However, in the exponent the
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criterion governing truncation of the expansion involves the

Fresnel wave parameters, which have the form r/kL2.

Retaining second-order terms in xo , yo in the exponent in

equation (S) yields approximations for the scattered pressure in

which diffraction effects are readily discernible. In addition,

Vi.s treatment allows one to investigate the transition from the

Fraunhofer diffraction regime (large Fresnel parameter - equivalent

to the Nbrse-Ingard treatment [4]) to the Fresnel diffraction

(small Fresnel parameter) range and beyond to the ray theory

limit. An outline of the present expansion of equation (S) is

given in Appendix A. The scattered pressure is approximated by

kLW e 
ik(r + rs)

Psc (1) --
 4nrr	 Psc 

I (al . a2 ,sl,s2,Y)	 (6)
s

with the abbreviations

B Bs cose coses
Psc = ipo

	

	(7)
(1 + nB cose)(1 + nABs coses)

and

I - -1 1 dX a
	f-i(a1X-81X2)1 dY e -i[(a 2+yX)Y ' 02Y21

-	
1

X (1 + MX + NY + QX2 + RY2 + SXY) (n - nA)	 (8)
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and, finally

	

al	 (sine c?si f + sines sin f s) 2 W	
(9a)

2

Sl = [rs (1 - sin 2e cos t ^)

	

2	 Sin

2(L2)
+ r(1 - singes s

cin2 ^	 s)] 8rr W2	 (9b)

y	 =	 (rs singe sin2f + r singes sin2^S)
kLW	

(90

• 8rrs

The parameters a l and a2 involve projections of the scattering

area's dimensions (normalized by wavelength) on the lines from

source and receiver for the center of the area. The parameters

Oil 02 and y are similarly projected inverses of Fresnel wave

parameters. These parameters characterize the diffraction effects

in the approximation for the scattered pressure. The coefficients

M, N, Q, R and S in equation (8), in addition to providing

correction terms depending on the size of the scattering area

relative to source and receiver distances from the patch, are

functions of the other geometrical and impedance parameters. The

coefficients M and N are linearly dependent on quantities such as

sine, sink and L/r or W/r. Q, R and S are quadratic in these

quantities. Explicit expression for these coefficients are given
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in Appendix A.

II. PATCH WITH CONSTANT INPEDANCE

For cases in which the impedance of the scattering area is

constant, the integrals in equation (8) could be evaluated by

completion of squares in the exponents followed by application

of standard integration formula, but for one complication - the

inner integral (e.g., the integration with respect to Y in

equation (8) results in several terms involving Fresnel integrals

[5] whose arguments have the form, in this case,

•

s1/2 a2 + YX
.	 2	

±1
2s2

The presence of the second integration variable precludes exact

analytical evaluation of the remaining integration. However,

reference to equations (9) indicates that the X-dependent and

unity terms in t1he arguments are of order (L/r) coipared to the

Q2 terms. In addition it can be seen that both a 2 and Y vanish

in the important case of specular reflection (e = e s , = 00

0s = n). For these reasons, and in view of the behavior of the

Fresnel integrals in the small- and large-arguient limits [5],

it seems a reasonable approximation to neglect the X-dependent

terms but to retain the unity terms in the arguments exemplified

by equation (10).

(10)



Al MRM

If this approximation is accepted and the resulting expressionr

simplified by neglecting terms which are of order (kr) -1 , (L2/r2)

or smaller, the integral in equation (8) may be approximated as

I z	 2 u-1/2e - it1 
AF (s2 ,a2/262) AlaF(uBl,val/2uRl)(6

162)	 [

i B1
+ --__ (e i02+ _ ei^2-ll

	

2n 6	 \	 JJ( u 1)

X62	iB2 a	 it 3+	
a1 + Y

	

- ---1/2e
	

AF(01,

	

(2n62)	
261

	

-i^ 3_	 a1 + Y
- e	 of 61,	

26	
(11)

1

with

U = 1 -Y 2/46162 ,	 v = 1 + a2Y/2al 62	(12a)

(Val) 2	 a2

1 461	462	
(12b

val	2

^2t	 Val ± 1	 (12c)
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V7T	

"I d	 J	 3

(al ± Y)2

03±	 40	
* a2

1

and

AF(a,b) = Ff [a1/2 (b * 1)] - Ff[a1/21

in which we have employed the abbreviation Ff(I

C and S being the well-known Fresnel integrals

of the several terms in equation (11) are

Ra2 	 RY	 al
B2 = N + 

202 
+ S + 

20 2 201

NY + Sa2 RYa2

B = M+	 +
1 2$ 2

 202

Nat Rat vat
Al 	1 +	 + _77+	 B1

202 402 	 21101

SY	
RY2 

val 
Z

+ Q + 202 + 40 21101

Al contains terms of order unity. The terms iz

which involve B1 and B2 are of order (kr) -1/2 .

expressions for M, N, Q, R and S are given in 4
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One may check that equation (11) reduces to an extension of the

result reported by Morse and Ingard [4] by noting that in the limit

as s1' p2 and y become very small the function O(a,b) [equation

(13)], with arguments such as those in equation (11), may be

approximated [6] as

eF(a,b) -- (-1-
)1/2

 b-1 elm 2 sin(2ab)	 (15)

Upon substituting this expression in equation (11), the first

term reduces to a form similar to equation (8.3.5) of reference

4. The second term in equation (11) vanishes in this limit, while

the third term is of order (S1/2) and hence negligible.

III. TWO LIMITING CASES

Although considerable simplification in the above expressions

for the scattered pressure may be achieved in several interesting

special geometrical configurations - forward scattering (^ = ^ s - n)

and specular reflection (m_= Os - n and e = es) - only two special

or limiting cases will be considered in detail here for brevity.

The first, which is relevant to the experiments reported in

Section IV, concerns reflection in the special case in which the

source and receiver are in the plane bisecting perpendicularly

the scattering area, i.e., Os = Tf. [The case in which the

_	 source and receiver are in a plane parallel to the x - z plane

of Figure 1 can be treated by an obvious modification of the
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limits of integration in equation (8).] The second case for which

•	 a compact expression for the scattered pressure can be obtained

concerns scattering by a strip (taken here as lying along the y-axis
Ft

of Figure 1).

An explicit expression for the scattered pressure can be

readily obtained in the special case of specular reflection with

Os = n:

	

ik(r+rs)	 B B c6se

	

e	 s	 s (n-nA)

pspec - 
1p0 (r+rs )	 (1+nB coses)(1+nos cosec)

4Ff(61/2)Ff(B1/2)
	

(16)

where the factors B and Bs are defined after equation (4). In

this case the parameters s l and 62 become

k(r + rs)	 L2
 Cos 2 O J

g	 =	 s	 (17)

2	
8rrsw2

The reduction of equation (16) to the form obtained by Leizer [7]

for a rigid rectangle is readily apparent if one takes the limit of

equation (16) as the normalized impedance nA becomes very large.

An expression for the scattering by a strip of width L may be

obtained from equations (11)-(14) by considering the limit as

,act, 02 , 
and y become very large. It is also convenient to take

Ago
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161

-	 advantage of the y-translational invariance of the geometry by

setting 4s w. In the case of scattering in the specular plane,

the scattered pressure term reduces to

1.[k(r+r,)+1/4w]
e 
	

- i0i	
01

	

Pspec,strip	
2 - r - r _0 I ) 

1/2 
U P

SC	
4F(al,

S (8 1 2	 116 1)

1^) + A]	
it+
2 +Q

	

+ 
0 

Al 4. —	 i	
.	

2 S i
2 
e	

" I - I)]

	

x [1 2 1	
0,	 2 s.	 sl 1	

IM (

	

2 1	
2	 (2w)l

1

	e 	 + Q

in which the parawter 6, of equtition (9b) has been nWified to

k

	

Zrr
 (r	 r.)
s 

to produce a form consistent with the direct coMutation froin

equation (M) et .M.Frith the y 
0- 

limits set to infinity. The

coefficients 1+1 cruel Q in this case are:

	

(" + TI R coso) Sindi 
+ [saw] ,	 (20a)

0 + nB COSO)
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gu.

w

Q	
L2	 sin 2e	

_ 1/2 
(2+n B cose)(1-3 singe)a	

(1+n B cose) 2	(1+n B cose)

L2	 L2 sine sines
+ 2 [same +

Ors	rrs(l+n B cose)(1+nA Bs cosec)

[2+ nB cose+nos cosec+1/2nnABBs cose coses]

For e = es (specular reflection),equation (18) reduces to

e
21prefl,strip	 2 P Ff(81sc	 ( )

(r+rs) coses

with B 1 given by equation (17).

IV. EXPERIMENTS ON REFLECTION

In the experimental phase of this investigation, measurements

of sound pressure level were made in the specular reflection

direction above rectangular scattering areas composed, in one

instance, from 4' x 8' (1.22m x 2.44m) sheets of 3/4-inch (0.019 m)

plywood laid on the floor of the Anechoic Noise Facility at the

•	 NASA Langley Research Center; in a second set of measurements the
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Plywood was overlaid with one-inch (0.02S m) glass-fiber panels.

In each case,, 	 tones were projected from a source small

compared with the acoustic wavelength. The source and receiver

(a 1/2-inch microphone) were arranged so that the specular plane

bisected the scattering area. Incidence angles of 70 0 and 800

were used. Normal impedances of samples of the plywood and

glass-fiber plus plywood were obtained from impedance tube measure-

ments.

The measured impedances were employed in computations based

on equation (16); the 'background" specific impedance was assumed

as unity. The measured impedances for two selected frequencies are

presented in Table I. Comparisons of the experimentally obtained

sound pressure levels with those computed from equations (1), (3)

and (16) are presented in Tables II-IX. Because the primary

interest in this study was the variation of the reflected sound

with size of the scattering area, all measurements have been

normalized to the experimental result for the largest rectangle.

As may be seen from Tables II-IX, the agreement between

experimental and theoretical results is by no means uniformly

good. Two possible causes of the discrepancies are suggested:

First, the assumption that the impedance of the grill-work flour

which surrounded the scattering areas can be taken as that of air

is suspect. Second, there is the possibility of a distributed-

reaction effect in the measurements. The former question could be

resolved by further measurements of sound pressures above the
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could be rectified by the inclusion of a distributed impedance in

the development following equations (3).

V. CONCLUSION

A theory has been presented for the scattering of sound by

rectangular patches characterized by uniform (local-reaction)

acoustic impedances. The theory explicitly includes diffraction

effects absent from previous analyses. Comparison between this

theory and a set of laboratory experiments reveals discrepancies

which may be reduced by changes in the measurement procedure or in

the analytical model.

This work was supported by the Acoustics and Noise Reduction

Division of NASA Langley Research Center under grant NSG 1047.
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Fig. 1. Sketch of the s ource-patch-receiver configuration used
in the analysis of scattering of sound by a rectangular
patch in which the acoustic impedance differs from that
in the rest of the plane including the patch.
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Table II. Relative SPL above Rectangular Areas of Plywood with
Receiver Distance 2.7 m and Incidence Angle 800.

lb	 Scatterer
Dimensions

(m)	 f = 1600 Hz

Theory

6.6 x 5.8
	

0 db

4.4 x 2.9
	

3.2

2.9 x 2.9
	

1.9

2.9 x 1.5
	

-0.6

1.5 x 1.5
	

-2.4

f = 3200 Hz

Theory	 Experiment

0 db	 0 db

Experiment

0 db

2.8 6.1 -2.8

2.0 2.5 -1.6

3.0 3.1 -3.3

3.4 -7.4 -4.3



Table IV. Relative SPL above Rectangular Areas of Plywood with
Receiver Distance 2.6 m and Incidence Angle 80°.

Scatterer
Dimensions

(m) f = 1600 Hz f = 3200 Hz

Theory Experiment Theory Experiment

6.6 x 5.8 0	 db 0	 db 0	 db 0	 db

4.4 x 2.9 2.3 3.0 6.5 -0.5

2.9 x 1.5 -1.6 8.0 3.1 8.5

1.5 x 1.5 -3.4 3.0 -9.1 6.0



Receiver Distance 2.4 m and Incidence Angle 80".

Scatterer
Dimensions

°(m) f = 1600 Hz f = 3200 Hz

Theory Experiment Theory Experiment

4.4 x 2.9 0	 db 0	 db 0	 db 0	 db

2.9 x 2.9 0.6 -0.1 1.4 -7.9

`	 2.9 x 1.5 -0.2 3.0 1.0 -10.2

1.5 x I.5 -2.8 0.6 2.3 2.0

w

Table VI. Relative SPL above Rectangular Areas of Glass
Fiber over Plywood with Receiver Distance 2.7 m
and Incidence Angle 80°.

Scatterer
Dimensions

(m)	 f - 1600 Hz	 f - 3200 Hz

Theory	 Experiment	 Theory	 Experiment

6.6 x 5.8	 0 db	 0 db	 0 db	 0 db

4.4 x 2.9 -0.3 -2.6 0.2 1.0

2.9 x 2.9 -1.4 -1.6 0.1 0

1.5 x 1.5 -2.6 0.4 0.1 -3.4



Theory Experiment Theory Experiment

6.6 x S.8 0	 db 0	 db 0	 db 0	 db

4.4 x 2.9 -0.6 -1.0 0.1 -3.0

2.9 x 2.9 0 -1.2 0.1 -4.7

1.S x 1.5 -1.0 -2.8 -0.4 -S.4

•	 Table VIII. Relative SPL above Rectangular Areas of Glass Fiber
over Plywood with Receiver Distance 2.6 m and
Incidence Angle 800.

Scatterer
Dimensions

(m)	 f - 1600 Hz	 f = 3200 Hz

Theory Experiment Theory Experiment

6.6 x 5.8 0	 db 0	 db 0	 db 0	 db

4.4 x 2.9 -1.1 -10.0 0.6 -13.8

2.9 x 2.9 -1.9 -2.5 0.4 -21.8

1.5 x 1.5 -0.8 -7.5 0.2 -3.4



88

Theory Experiment Theory Experiment

6.6 x 5.8 0	 db 0	 db 0	 db 0	 db

4.4 x 2.9 -_	 -0.6 5.5 0.1 -0.9

2.9 x 2.9 -0.9 5.5 0.2 -0.8

1.5 x 1.5 -0.6 6.0 -0.4 3.0
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It is desired to obtain an approximation for the integrand of

equation (5) in which the source and receiver distances from the

center of the scattering area are used as reference quantities,

correction terms being incorporated in the exponent in the integrand

to include diffraction effects and in the remaining factors in the

integrand to indicate additional dependences on the size of

scattering region.

In order to accomplish this, it is expedient to expand the

factors in equation (5) which involve the distances !r - ro d and

and Ir9 - r.1 as power series in xo and yo , yielding (to second

order) ,

IF - ro) = r(l - Or + V/r2)
	

(Al)

G

rD1 -1 - r- l (1 + Or - Tr 2)
	

(A2)

with

.	 *(e,f) - sine (xo coso + yo sino)
	

(A3a)

l
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2	 y2

V(9,4)	 2 (1 - sin2e cos2#) + 2 (1 - sin2e sin2^)

- 
2 x

oyo sin2e sin2^
	

(A.3b)

2	 y2

T(e,m) = x-° (1 - 3sin2e cos2f) + —o (1 - 3sin2e sin2#)
2	 2

- 3 xoyo sin2e sin2f
2

(A3c)

Applying these approximations throughout equation (5) and factoring

out the constants results in an integral of the form

-ikF(xo'yo)

(
dSoa	 G(xo.Yo)	 (A4)

in which the abbreviations are

F - 0 + *s - (V/r + Vs/rs )	 (tea)

l (!)
2	

2]rz

C \

2**s
	

1
+ (same] +	

\^ + E
s -2 + 2 EEsBgs	(A5b)

[	 \\s



91

•	 and

E = 1 + i(krB) - 1	 E = nB 
cose

1 + nB cose

E	 1 +
ff

 (A5c)
l+n Bcosa

Upon collecting like powers of xo , yo and introducing the change of

variables X - 2xo/L, Y = 2yn/W the expressions for F and G become:

F = -(01X2 + 02Y2) + (a2 + YX)Y + alX	 (A6)

G = (1 + MX + I4Y + QX2 + RY2 + SXY) (n - nA)	 (A7)

with

M
 = (

L 
E 

sine coso) + (same) s
r2

N
 = (

W 
r 

sine sinm) + (same)s
r2

a
2Q	 ^ L2 	 (i-E$) sin

ge cos ` - 8 (1-3sin26 cos @)1'
'	 r	 4	 JC	 ^

2
+ 'sameL + L (E-+Es-2+ 2 EE

SBBs) sine sine s coso costs

}



(A9)
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W2 1
R =	 1 (1-E7B) 2 singe sin2^ - 8 (1-3sin2e sin2^)

J

2 (E+if_+ ^same^ + 
rLr

s-2+ 
2 EE

sBBsI sine sines sink sinus
s	 s 	 //

S = ILW sin 2e sin2o 3 IT + (1 - 
E3)	

+ same
r2	8	 4	 1	 s

+ 2r (E + Es - 2 + Z EE
SBBS) sine sines sin( + Os)r•	 s

and

L

1 (L	 cos + sine cos
ai 

= 2 
k 
\W 

(sine sink 	s sin ^s)
2 1

•

(L2)[	 2 cost
gl =	

k	
W2 r

s 1 - sin a Sin2^
2	 $rrS

+ r 1 - singes
Cos 

2
 
sin g ms

UN
y 	 (rs sin2e sin2^ + r sin 2es sin2^s)

8rrs

These expressions are to be used in equations (6)-(8).
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PLANE WAVE DIFFRACTION BY A WEDGE

WITH FINITE IMPEDANCE

•

This chapter consists of a paper by Allan D. Pierce

and W. James Hadden Jr. which appeared in the Journal of the

Acoustical Society of America, volume 63, pages 17-27.
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Plane wave diffraction by a wedge with finite impedance
Allan D. Pierce and W. James Hadden, Jr.

School of Mechanical Engineering, Georgia Institute of Technology. Atlanta, Georgia 30332
(Received 8 September 1976; revised 30 July 1977)

A theory is presented for the diffraction of acoustic waves by barriers with finite acoustical impedance,
the shape of the barriers being such that, insofar as diffraction into the shadow zone is concerned, they
may be idealized as semi -infinite wedges. The analytical development is based on the known exact
solution for plane wave diffraction by a finite impedance wedge, versions of which have been previously
given in the literature by Williams (Prot. R. Soc. London Set. A 252. 376-393 (1959)), by Senior
[Common. Pure Appl. Math. 12, 337-372 (1959); Proc. R. Soc. London Ser. A: 213, 436-458
(1952)), and by Maliuzhinets [Sov. Phys. Acoust. 1, 152-174, 244-248 (1955)). This solution is
described in detail and the asymptotic limit is derived in a form which demonstrates the satisfaction of the
reciprocity principle. Practical implementation is discussed, both through numerical examples and through
the presentation of graphs of quantities which will be helpful in barrier design.

PALS numbers: 43.20.Fn, 43.20.Bi

INTRODUCTION

While the diffraction of sound around obstacles is a
classic problem in wave theory, dating back to Poin-
care ' .a and Sommerfeld, s the design or assessment of
proposed designs of barriers to reduce noise levels in
areas adjacent to community noise sources is currently
a topic of considerable interest in applied acoustics. 4-7
Ideally, such designs should be based on a comprehen-
sive and accurate theory of sound diffraction around
barrieri. In practice, however, the inherent complexi-
ties associated with the development of such a theory
have necessitated the introduction of a variety of approx-
imations and idealizations. Because of the remanent
analytical difficulties, it is difficult to assess the ap-
plicability of such approximations and idealizations to
actual or proposed oarriers. In one of the most severe
idealizations, the barrier is assumed to be perfectly
rigid. Within the context of this idealization, it is prob-
ably fair to state that the current status of the available
theories and computation procedures is relatively satis-
factory . 4 Diffraction around rigid barriers with planar
surfaces can be considered using results derived from
theories based on the ideal models of thin screens, 1-0
wedges , 6* 9 and trapezoidal (three -sided) barriers. 719, 10

The rigid-barrier theories, however, give informa-
tion only on the effec' g of barrier size, shape, and ge-
ometry on diffraction; they give no insight into the ef-
fect of the surface properties on sound levels in the
shadow zone. Conceivably, the latter should be an im-
portant consideration in barrier design. It is well
known, for example, that the finite impedance of the
ground may drastically alter the sound levels received
near the ground from a source also located near the
ground (i.e. , the so-called excess ground attenuation
effecttt,tz caused by the interference of direct and phase-
shifted ground reflected waves).

As regards available theories on the effect of surface
impedance on sound diffraction by barriers, the only one
specifically devoted to acoustic diffraction of which we
are aware is that of Jonasson ts who gives an approximate
theory of sound diffraction by a wedge of finite imped-

ance. This theory, however, applies at best only to
highly obtuse wedges, i.e., where the exterior angle 0
is only slightly greater than 180*. Moreover, it suffers
from a lack of rigorous basis and is cumbersome to ap-
ply: a crucial set of variables is presented only pictori-
ally. Furthermore, a completely separate construction
must be performed and several variables reinterpreted
in order to show that the reciprocity principle 's is sat-
isfied (the point source solution should be invariant on
interchange of source and receiver locations). It is ac-
cordingly suspect, notwithstanding its good agreement
with a limited amount of field data.

There is, however, in the electromagnetic wave prop-
agation literature, an exact solution for diffraction of
plane waves by wedges of finite conductivity. Versions
of this theory have been independently given by Wil-
tiams, 15-17 Senior, 16,19 and by Maliuzhinets . zazt (Of the
three, we have found Williams 's account's to be the most
readable, although it suffers from a number of minor
misprints and algebraic errors.) The purpose of the

present paper is to extend and apply this theory to prob-
lems of acoustic wave diffraction by wedges of finite im-
pedance.

1. STATEMENT OF PROBLEM AND SUMMARY OF
RESULTS

In this section we first describe the mathematical
model on which our analysis is founded. Immediately
following this statement of the problem, we present a
concise summary of formulas for the estimation of the
acoustic pressure diffracted around a wedge with finite
acoustic impedance. This statement of results prior to
their derivation is intended to facilitate the application
of the results and to give an indication of the objective
of the theoretical development in the following sections.

A. The model

We consider sources of such an extent and/or distance
from the barrier 's tip that the incident pressure waves
may be approximated as plane waves. The geometrical
arrangement is depicted in Fig. 1; the z axis of a cy-
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FIG. 1. Diffraction of incident plane wave by wedge of finite
impedance. Listener coordinates are r. 0. z. The ware is
incident from the 0, direction. wave-front normals make an
angle y with the wedge edge (z axis).

lindrical coordinate system is taken along the apex of
the wedge; the surfaces of the wedge are the planes
8 = 0 and 0 = p, where p is the exterior angle of the wedge
W- 0. We consider plane waves [with time dependence
(e 1rt ) suppressed throughout the analysis] incident from
the direction Bo and at an angle y with respect to the z
axis. On the surfaces 8 = 0 and 0 = 0, the acoustic im-
pedance is given in terms of a dimensionless quantity
n as

Z=po ol ,
	

(1)

where poe is the characteristic impedance of air. This
description of the problem is amplified in Sec, 1I; it
should suffice however, in the explanation of the nature
of the results.

B. Estimated insertion loss

For purposes of barrier selection or design, it is de-
sirable to have an estimate of the effectiveness of a
barrier in reducing sound levels at a given location.
Ease of computation is certainly desirable. The model
should be a reasonable idealization of practical cases.
These conditions are fulfilled for the case of plane waves
diffracted by a nearly rigid wedge with exterior angle

p(> tr) for larger observer distances r from the wedge
Up, viz., such that the condition krsiny » 1 holds (where
k * w/c), and for angles 0 considerably less than 8 0 -
(i.e. , listener well inside the shadow zone).

The quantity of interest is the insertion loss

IL - 201og ta( I P.. ur, I / I Pwet h ►r. I )	 (2)

which, in the case of a rigid barrier, is well described
by the formula*

IL * 10log lo(kr sin-r) - 20logto [ M;, t(B - Bo) + M;, 1(8 + 00)l
(3)

In which we have used

U.0) - 
cos(vw) - cos(v8) 	 (4)

V sin va
and v - w10. The principal result of this paper is that
for a hard (but not rigid) wedge, there is an additional
term in the insertion loss estimate, given by

Sa(8, Bo) = 2 [ Mr(8 + 00) + M,(8 — 00)1- 1 - Qa(- 8 ) - Qa(- 80)
(6)

with Qa( - 0) obtained from Fig. 2 or Fig. 9. Further
discussion of the function Qa(- 8) is presented in Appen-
dix D. Several numerical examples, in which the com-
putations may be performed using modern desk calcu-
lators, are discussed in Sec. VII. The analytical steps
which intervene between Pts. A and B of this section

are discussed in the following sections.

11. FORMAL SOLUTION FOR DIFFRACTION OF
OBLIQUELY INCIDENT PLANE WAVES

In the present section, the formal solution is summa-
rized for the diffraction of obliquely incident plane waves
by a wedge of finite acoustic impedance. This is es-
sentially the same as those solutions given previously in
the literature by Williams , " by Senior, 10 and by
Maliuzhinets , t0 although with considerable changes in
nomenclature. Consistent with the discussion in Sec.
I. A, the incident plane wave is taken in the form

p lic =exp[- ikrsinycos ( 8-Ho)le.xp(ikzcos)) .	 (7)

Here 00 denotes the angular coordinate of the direction
from which the incident wave is coming, y (taken be-
tween 0 and 1 0 represents the angle which incident
wave-front normals make with the z axis; k is w/r. One
may note that the z-translational symmetry of the prob-
lem implies that the resulting solution for the acoustic
pressure should have the same z -dependent factor as in
(7) above. The dependence on 8 and ris governed by

the reduced wave equation

I8YY + r r + Z ^ + k sine p = 0	 (6)

Boundary conditions at the wedge faces are that the rati,.)
of pressure amplitude to inward normal fluid velocity
component amplitude be pool, where n, the specific (di-
mensionless) normal incidence impedance, should have
a real part greater than zero for an absorbing wedge.
(Typically its imaginary part is positive, although not
necessarily. ) Thus one has

8p188 t (ikr/n) p = 0 , at 0=0  and 0= 0  ,	 (9)

where the upper and lower signs correspond to 0 = 0 and
p, respectively.

An alternate parameter describing the wedge imped-
ance which proves to be especially convenient is that
of the (complex) angle a, defined such that

Cosa -(nsiny)"	 (10)

and such that - ! * < aft < } A , a I > 0 given nR > 0 and siny
positive. The sign of a ft is determined from agn(aR)
=sgn(n I). For a rigid wedge, n-+-o, a cr } R , For a
perfectly soft wedge, n - 0, a - i -.

The solution for the boundary value problem as posed
above may be taken in the form of a contour integral

AIL= - 1 010910 {I1 + I Sj(0,e 0)'(17SWII*}	 (9)

in which one must use
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FIG. 4. Integration contours in the complex t plane for evalua-
tion of the acoustic field caused by a plane wave incident on a
wedge of finite impedance.

p = exp(iks cos? 1) tai	 exp(— ikr sing cost)
c

f(t,8,00,0)A,	 (11)
where the contour Cc for the C integration may be taken
(see Fig. 4) as (', +C„ +C,,, where C, is the path of
steepest descents passing through the saddle point at
t = 0 of the exponential factor in the integrand, going
from C = — I A — i - to C = # N +i a . Similarly, C„ is the
path of steepest descents going from C = 1 v + i - to t = 1 n
— i -* through the saddle point at t = v. The contour C„t
encircles in the counterclockwise sense all poles of
.f(C, 8, Po , a) which lie in the t plane between C, and C,,
Since f (described below) is an odd function of C, the in-
tegral on contour C, vanishes identically, so only con-
tours C„ and CI,, are of interest.

The function •f(t, 8, Bo, a) is of a relatively complicated
form and given by

f - S(— C — A, Be, a) h(C+ A , 9o, a)

— S(C — 9, Bo, a) h(t — A , Bo, a)	 (12)

with

h(C,B0,a)m (P/2)sin(v9 )*Y (C IV — a —

	

d)	 (l3)
4'.(Bo,tl *Mo,1A—a—p

Here we have abbreviated

*„(a, b) - sin((; v)(a + 01 sin((I v)(a — b))

i ( cos(Pb) — cos(va) I .	 (14)

V- w/o . (15)
(Note that h is an even function of C.) The function S is
defined by

S(C,Oo,a) = HWC,O) 1HW — do,(V ) ,	 (18)

where the function Hs(t.a) is defined in terms of a func-
tion Fit) (here termed Williams' F tanclion in recogni-
tion of the fact that it is the same as used by Williams")

a) F C+d— tt +a)F(C+fl+tr —a)
Hit, - Fs(C+2p+a) Fe(C+20—a)	 (17)

The analytic properties of the functions Fit) and
Hit, a) are discussed extensively in Appendix A. For
angles d of the form

d = P A/2q

with p an odd integer and p, q relative primes, the func-
tion Fit) is given by

,0-uia
FWC) =	 sin{i vI C + 1 v(4" -0-2d11/

^.t
r ►

•^ sirt{^^C— liA-2d(nn+l)^}	 (18)
..o

Expressions for Felt) can be obtained for other values of
p, but at the expense of considerably more computational
effort, is

That Eq. ( 11) is indeed the appropriate solution can
be ascertained by explicitly substituting it into Eqs. (8)
and (9) followed by some integrations by parts. The
fact that . f is the sum of a function of C — A and a function
of C + p is sufficient to insure that the partial differential
equation be satisfied. The boundary conditions are sat-
isfied by virtue of the manner in which He(C,a) is de-
fined in terms of Williams' F functions and of the fact
that the h's in Eq. ( 13) are periodic in C with period
20. The explicit form of the function h was chosen in
conformance with notions of radiation conditions, i.e.,
that at large r the solution must consist of waves (other
than the incident wave) which proceed outwards from
the wedge and which do not grow exponentially with r.
This requires in particular that .f not have any poles
between C', and C„ for which the imaginary part of cost
is positive. Since the function Hit — A, a) does not nec-
essarily have this property, h(C — p , Po, a) was designed
to have a zero which just canceled the "forbidden" pole

of Holt — P, a). Also, in order that the solution repro-
duce the assumed incident wave, it was required that •f
have poles at C = A — ao and at t = Bo — B one of which is
enclosed by C,n when geometry indicates the incident
wave is present. Finally, the function was required to
have residues of appropriate values at these poles such

that the C,,, integration would give a term in the evalua-
tion of ( 11) equal to ( 7) when geometry indicated the
presence of the incident wave. It has been verifledu
that this formulation is consistent with notions of reci-
procity.

The limiting cases of rigid and soft wedges may be
obtained by examining the limiting forms of the functions
Hit, a), S(t,00,a), and h(t,9o,a), In the limit of a rig-
id wedge (a — j nr), the limiting form off (C, B, Ao, a), Eq.
(12) is

f(C, A , Aa, !a)-Q.(t,0— 
g

o) +WC, P+Bo)	 (19)

with
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"I.
• Q.(t, $) = v sin(q) , [ cos(v8) - cos(vC)1 .

Equation ( 19) corresponds exactly to the function used
in Eq. (1) of a previous paper° by one of the authors.
In the limit of an acoustically soft wedge (a - i a), the
function , f becomes

f(C, 8 , 90, i-)= WC, 0- 00)-Q.(C, e +80)	 (20)

which, again, is the correct limit.

111. ASYMPTOTIC SOLUTION FOR DIFFRACTED
WAVE

In the shadow zone, the major contribution at large
distances r from the edge comes from the C l, portion of
the contour integral in Eq. (11). The 0111 integration
simply gives the incident wave, a specularly reflected
wave, and possibly a surface wave; the former two of
which do not exist in the shadow zone, the third of which
generally dies out exponentially with large r. The con-
tribution PDlrr, tr from contour C 11 at large r may be ob-
tained by application of the saddle -point approximation
taking into account the possible proximity of poles and
zeros to the saddle point at C = r.

The poles of f(C, 8, Bo, a) are (i) those corresponding
to the incident and specularly reflected waves and (ii)
any pole of H,(r - e, a) or H0(- r - e, a) which is not also
a zero of *„(-t -0, v,!2-a- 0) or *,(C -8, n/2 - a -0),
respectively. [ See Eqs. ( 12) and ( 13). 1 The first cate-
gory of pole is manifested by the factor *„ ( 80 ,C) in the
donominator of the definition ( 13). The second category
of poles may be determined with reference to Eqs. (A8);
the only ones which could conceivably be close to the
C = c saddle point are where C - A or - C - e equals 2 n
t a or - , r, t a T ,1. respectively, or thus where r = it
:a+8, C=a nta+p -8. For given B and a, at most
one of these poles will be near the saddle point. Let
us assume that the relevant pole is at C = a+ P,; we then
set

D3 =C-n-P, .	 (21)

Consequently, if one sets

f (r ' B, eo, a) _ + (Z ' 8 ' 8 0 ' a) 	 (22)Dl D2 D3

where, upon rearranging the product of *. ( 80i C - 8) and
*,,(Go, C + 8) into the factors

Dl =cos(4)-cos v(9-80) ,	 (23a)

D==cos(vC)-cosv(8+eo) , 	 (23b)

The function #(C. B, 0 0 , a) so defined will have no poles
in the vicinity of C = n,

r.e analysis then proceeds, as described in Appendix

C, by replacing b, D l , Da, Dt by power series expansions
to first order in ( C - n) and integrating the resulting form
of Eq. ( 11) along the line of steepest descents through
the saddle point at C = n. Thus the integral on contour
Cp in Eq. ( 11) can tie expressed in terms of standard
functions occurring in diffraction problems as

x [ G ' ' ,A D(rM,', ' ► ) + G' ''A o(rm,',* ► ) + G'*'A D( rP . )1 .
(24)

where

1 ,1=	 G(n,8.8 ,a)

AI.', ^=M„(8-Bo): M,',	 Af (e+00)	 (26)

with M.'" given by Eq. (4), and

G(C,8,00 ,a)-O(C,0,80 ,a) (vsinvvr .	 (27)

The other two coefficients of the function A D(X) in Eq.
(24) are obtained by cyclic permutations of the quantities
M,1,' 1 , M." ) , and P,,. In the argument of A D(X). we have
used

rL[(krsiry) nil" (28)

The function A D(X) which appears in Eq. (24) is the dif-
fraction integral defined in the previous paper° by

A X	 r	 e'^ds	 129)D( )= 2n J. (zn) X-e., s

which, when X is real, can be expressed as

A D(X) = sign(X) l.f(iXJ)—ix(IXI)l , (30)
where f(X) and g(X) are the auxiliary Fresnel functions
tabulated on pages 323-324 of the NBS Hardbook of
Mathematical Functions. E3 If X is not real, as would be
the case for X = rP„ the above would be inapplicable,
but, instead, one could write

AD (X)=(e
-"11/ r2)11Je 1 ' 14 (n /2)1/E Xl	 (31 a)

or

A,, (X) n/4/v2)rv[e'i•/4(n,'211/ X.ls (31b)

which would hold for Im(e" 14 X) positive or negative, re-
spectively. The function w(z) is related to the error
function of complex argument and is tabulated on pages
325-328 of the NBS Ha ►rdboo03 for complex values of z.

The calculation of the function C(C, B, 80 , (y ), which is
quite tedious, is sketched in Appendix C. The results
which are relevant to Eq. ( 25) are

G (n, 8r 80, a) = Pe U( 8o, a) (1(8, n) D(8, e0r n),	 (32)

where

U(8, a) _	 () sin(v8)
0, of)	

(33)
Ne(- 4'^(B, n-a - P1

and

D(8, 00, a) = U.(9 + 00) + At„(B - Bo)

cos(2va) - cos(vu)+ 	
(34)V sinvn

In the complete asymptotic limit, where P„ At;,i1,
Af;,' 1 are all finite and r is large. AD (X) can be replaced
by (nX)' 1 and a considerable simplification results in
Eq. (24). Specifically, one finds

polrrr, 11 = exp [ik(i cosy + rainy ) ]
X (ell"I 1 (nrr G(8, go, a),	 (35)

p olrrr, r 1 =exp[ik(z cosy +rsiry)1(e"I 11%rg)
	

where
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GO, eo, a) =C(w, 0, 00, a)/P.:tit,''M^ ► .	 (38)

Note that, with G(w, 8, 80, a) given by Eq. (32), the fac-
tor P„ cancels out.

The symmetry of Eq. (36) with respect to 8 and e0 is
obvious from M.(B - 80) - M,(8o - 8). Thus the reciprocity
requirement is definitely satisfied. In the limit of a rigid
wedge (a - iw) one has tAO, }s) _ -1 by virtue of Eqs.
(14), (17), and (A3), and D(8, 04i1w)=M„(8+00)+ We-80).
Consequently, one has

G(8, 801, w) = M„ ( e + 80) + bl„ (6 - e0)	
(3?)

and the result for asymptotic diffraction by a rigid wedge
is recovered.

Similarly, in the limit of an acoustically soft wedge,
I. e., a - i -, D(8, 00, a) approaches exp(- i2va) f 2v sinew.
*jf, j w - a - d) approaches - 4 exp[f v(w I - a) I,
He(- b, a) approaches expl - ji 6r01, so 1100 , a)1,1(0 0 , a)
x00, b0 , a) approaches 2 sinvb sin6o divided by i , sinvw
or just M.(b + 40 0) - M,,(b - 80). Consequently, one has

We, do, i -) - ,I1„ 0I- bo) - 11,01+ 00)	
(36)

which, again, is the correct limit.

In addition to the above-mentioned contributions from
the integration contour C 11, a complete description of
the pressure field in the shadow zone should include the
possibility of a contribution from a surface wave which
is refracted from the shadowed face of the wedge. Such
a contribution would arise from a pole enclosed by the
contour C 111. For 0 < w and too,'- r + d, the only pole of
f (t, 0, 00 , a) that could conceivably lie within C, ► , is at
C = I w - a + U. This pole will lie within the contour only
if

3 w - as<sin 1 (tanha i )	 (39)

and since in this case the imaginary part of cosd w - a
+b) is negative, by (11) the C I I I contribution Iron' this
pole decays exponentially with distance from the sur-
face. Furthermore, reference to Eq. (10) indicates
that the inequality (39) is not likely to be satisfied in
situations of physical interest. For these reasons we
omit an explicit description of the surface wave contri-
bution (which is included in Sec. IV of Ref. 22).

IV. NEARLY RIGID BARRIERS
If the barrier is nearly rigid, for n I > 0 a is close to

w and one can take the solution of Eq. (10) as

1w-a a 01sinO`
	

(40)

Thus it would seem appropriate to expand Ho (t, al in a
power series in 4 w - a, keeping up to first-order terms
in $ w - a, In this event on' has, from Eq. (17)

Hp (t,a ) 1 - tan[ tvxl[1 +w o(0011-a)I,	 (41)
where

YoW = e lnf Fj(+ _
-:
+4- 0 (L + 2 ► t2j14w)1	 (42)

at	 P.,(x +d A)F4, + 2ii- sw)

Making similar expansions in Eqs. (33) and (34) the
function C(w, 0, 00, a) in Eq. (32) may be written as
C(w,b, b0, a)-P,IM;'+ml-11JI+Sp(0,00)(1A-a)1	 (43)
and consequently, from Eq. (36),

G(8. Igo, a) °' [M„(b+ b0)+Nr„(b1 ioo-^'1+sate,00)(z*-oft

(44)

in which

Sp(b, b0) = 2[M„(b + b0) + M„(b - NO) r' - We (- N) - fie(- bo) .
(45)

For observation angles other than N =0, the diffracted
pressure field may be approximated-by combining Eqs.
(24), (25) ► (40), (43), and (45)-as

PDlttr. tl' exp [ik(a cos) + rsin)) I (e'' 1 4'al)

x P=Ib1,',''+M;''I I1.^.'AolrAl,`,' ► )

+ Y' 'Ap(rm:-) ) + 1''='Ar,(rP=) I	 (46)

where

Y '. ► =	 1	 (47);ti ►,' 

and the other coefficients in Eq. (46) are obtained by
cyclic permutation ofA/,"', 11„", and P,,. Similarly, in
the complete asymptotic limit, one has

Po'tt.. 1 1. a' , exp [ ik(a cos) +r sin) ) I lr" I t .'^^L (vr)-'

K Um.''.'r' + [M `- ' I-1I 11 + 900, bo)/q sine I .
(46)

From this last expression one may obtain a correction
to the insertion loss for a hardbarrier (ris-a-vis a t7),id
barrier) given by

- 10logiol 1 + Sa(0, too)/'1 sin) I = dI3	 (49)

which Is just Eq. (5).

V. PRACTICAL APPLICATIONS

The formulas presented in the preceding sections
probably appear more formidable than is actually the
case. The first important point is that these results
can be used most fruitfully in the computation of barrier
insertion loss, as set forth in Eq. (2)

ILIAh=201og'o(IP.. Mr. I / IP1..I ) -
If. as is generally true, the surface wave contribution
may be neglected, Eq. (5) provides an estimate of the
change in insertion loss, with respect to a rigid bar-
rier's effect, of a barrier with finite impedance.

The second important consideration concerns the func-
tion s 0(- 0 which appears in this correction term. It is
shown in Appendix D that for angles '+ of the form pwI
2y, X10 (- b) has a form which is amenable to numerical
computations, in some cases computations are not so
taxing as to require a large computer. In practice, it
should be possible to obtain useful estimates of the in-
sertion loss (or sound pressure distribution) using a
value of 0 of the above form, One then has Isee Eq.
(1)4) 1

-	 -,.-.	 - - _ _.	 _.__,
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4	 7d'	 70' T	 4
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45'	 1>12,3

3d

1,2
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CONFIGURATION

AIL (de)	 23	 17	 11	 OS

FIG. 5. The flnite -impedance correction to the Insertion loss
for a wedge with Interior angle 10'. The surface admittance
was taken as (1 ,10- 0.1= 0.1 —10 . 05. The source -receiver orienta-
tions are identified by the configuration numbers: In configura-
tion 1 the incidence direction Is at 30' from the adjacent wedge
face while the receiver is at 45' from Its adjacent wedge face.

Qe(- b) 	 v sin(vv)	
siTv(b - 2nn) I sin v d -(2n-1)x }

	

sin(0+2ms)+sinkb +(2m+001	 (50)+	 sin(d+2mp)siT+(2 ►n+l)pr

For angles b of the form 6 =kA/2q, k an integer less
than or equal top, there is a singlular term in each sum
in Eq. (50). A straightforward expansion of the two
terms reveals that they combine so that Qe(- 0) is in
fact regular. Difficulties in numerical computations
may be avoided by avoiding such angles.

A more detailed investigation of the cases in which
the receiver angle 8 is very small or the source angle
ba approaches p reveals that Qe(- b) becomes

Qs(- a) ^Q,(- p +a) ^ (sin8)' t , 8 << 1	 (51)

Since Qs(- 8)/(n sin?) serves as a first-order correction
term to the r/gld-wedge limit for Hs(- 0) [see Eq. (41)],
the behavior of Qs exhibited in Eq. (51) Indicates that
the approximation in Eq. (41) is not useful for situations
In which the incidence or receiver directions are at
small angles 8 with respect to a wedge face. This be-
havior is a manifestation of the familiar phenomenon
of the vanishing effective surface impedance for plane
waves at grazing incidence. so This is borne out by in-
spection of Eq. (A5): Substituting in the appropriate
values for C and a, one has

R[8, J a - (n siny)'t ] -R[R - 8, 1 v - (n siny)' t
tan(i v8) - tan(v/Znsin )l	 (52)( v8)tan + tan(v 17siny f

for the plane wave reflection coefficient at each face.
For a given value of n, the reflection coefficient ap-
proaches - 1 as 8 goes to zero. These considerations
indicate that useful estimates of the insertion loss cor-
rection can be obtained for 8n siny >> 1.

As an alternate aid to applications of these results,
we have computed Qs(- 6) for a number of values of 0
and 6. These are presented in Fig. (2). In addition,
these curves are plotted again, with p appearing as the
independent variable, 6 as a parameter, in Fig. (3).

Thus one has the option of using one of the "spei:14"
values of p to approximate a desired wedge or of using
values for the desired wedge angle for a selection set
of angles 6.

As an illustration of the use of these results we have
calculated the correction to the insertion loss via Eq.
(5) for perpendicular incidence (y = z A) on wedges with
exterior angles Q=350 ° and 240° for a surface admit-
tance n.t =0.1 -10 . 05, which is representative of turf
at 1000 Hz. >a Values for the function Q were obtained
from Figs. 2 and 3. Insertion-loss corrections are

presented in Figs. 5 and 6 for several incidence and
observation angles.

In the case of the acute -angled wedge, the surface im-
pedance has a small effect —less than 3 dB. For the
obtuse -angled wedge, the effect from considering the
finite acoustic impedance is on the order of 6 dB when
both source and receiver are at fairly small angles with
respect to their adjacent sides of the wedge. Thus con-
sideration of the finite impedance seems to be of con-
siderably greater significance for obtuse wedges than
for acute ones, especially since in many practical real-

izations of the obtuse wedge model the sources and re-
ceivers are close to the surface.

VI. CONCLUSION
A theoretical analysis has been presented for the dif-

fraction of plane waves by a wedge of arbitrary surface
impedance. Particular attention has been given to the
pressure field in the shadow zone for large distances

from this tip of the wedge. The results presented here
make use of simplifications that result for a large num-
ber of special wedge angles. In a detailed discussion of

RECEIVER

3,4

1	 _--1,2

2d' 10'

13	
120'

y20'
W E DGE

2,3	 .

I'

4'
SOURCE

CONFIGURATION

AIL (as)	 61	 4•e	 14	 s4

FIG. 6. The finite - Impedance correction to the insertion loss
for a wedge with interior angle 120° and surface admittance
(1, 17) -0. 1 # 10 . 05. Source and receiver orientations are
labelled as In Fig. 5.
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IF

the nearly rigid wedge a correction to the insertion loss
of a rigid wedge has been obtained. Numerical computa-
tions indicate a significant effect of finite surface im-
pedance for obtuse wedges with source and/or receiver
at a fairly small angle with respect to the plane of the
wedge face. In addition, the solution presented here
should provide a good point of departure for the analysis
of diffraction by spherical waves or by broad barriers.
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APPENDIX A: DISCUSSION OF THE F AND H
FUNCTIONS

The F function Fs(C) appearing in Eq. (17) i s defined
such that it satisfied the two recurrence relations

Fa(C +2d) = Fa(C) tan[A - a r)I	 (Ala)

Fs(C+20) = Fa(-C) ,	 (Alb)

and such that it is analytic and has no poles or zeros in
the strip 0< C,, < 2p, the function asymptotically approach
ing zero as C I - t -. Explicit expressions for this func-
tion for some particular values of p are given in Appen-
dix B.

Since Fa(C) has no zeros or poles in the strip (0, 20)
it follows from Eqs. (Al) that its zeros must be at

C =pt (1' w+p +K) 	 (A2a)

while its poles are at

C -^* (Z w+p+K) ,	 (A2b)

where K = 2nw + 2mp ? 0, n and its being arbitrary non-
negative integers. (Of course, there is the possibility
that a pole location may coincide with a zero location,
in which case the function will have neither a pole nor
a zero at the point in question.) Examination of the
locations of the poles and zeros of the function {sirs[ (IV)
x (C + # w) ] Fa(C + Or 1 , reveals that these are identical to
those given above, so one may infer that Fa(C) has the
property

Fa(C) Fa(C + w) = sin ( )(C + +► )	 '	 (A3)

where As is some number independent of C (the precise
value of which is immaterial). It then follows from this
and Eq. (A2b) that the asymptotic values of Fa(C) should
be

Fa(C)-AaeI4rian , Cr 	 (A4a)
- fAee.I wicrc , 

CI- — N, •	 (Aft)
Analogous relations may be deduced for the Ha(C, a)

function starting from the definition of Eq. (17). It sat-

1

isfies recurrence relations of the form

H'sk, a) _ _ (sin(vf) - cos(vo)1
Ha(-Ea)	 sin(v0+cos(va)J

tan j (I Mt- s w + a) ]

_- tan ( av)(C +za -a)

= H - r—pL =-R(l a)	 (A5)
Ho(C - p, a)

where R (C, a) may be interpreted as a plane wave re-
flection coefficient. The zeros of Ha (C, a) are at

C = - pt a * (I w + P+ K)	 (A6a)

and

C =t (v - a)* (z w + p +K)	 (A6b)

any sign combinatim being a possibility, while its poles
are at

C=-ptat(a' a +p +K)	 (A7a)

and

C =t (+r - a) t (Z rr + p + K)	 (A7b)

for, again, K = 2nw + 2mp, n ? 0, to ??^ 0. Also, it follows
from Eq. (A3) that

Ha(C,a)Ha(C+ IT, a)

sin = v( -'z(6+w)+n]}sin i v (f+rr) - aj	 (A6)
cos,=v 2(C - n)+a cosljl z(C +3a)-a

APPENDIX B: THE FUNCTION FJ W FOR
PARTICULAR VALUES OF THE WEDGE
ANGLER

The function FI (w) defined in Eq. (32) of Williams'
pnperls fails to exhibit the proper asymptotic behavior
in the limit as a-ire, e.g., it does not obey our Eq.
(A4). Accordingly, we describe here the construction
of our function Fo(C) for 0=pw!2q, with p an odd integer,
q an integer. We shall include two examples for wedge
angles of particular physical interest.

We begin by recalling from Eq. (A2a) that the function
Fs(C) has zeros at the values

C-A=tdw+ p +K)	 (131)

which, for the particular values of A under consideration
here, may be written as

(2q/w)(9 - pw/2q)=t(p+3q+4nq+2mp) n tFs(n,m). (82)

Similarly, Fs(C) has poles at (see Eq. (A2b)

C - A= t (#w+A+K)	 (83)

which in turn may be written as

(2q1w)(C-pw/2q) =t(p+q+ 4nq + 2mp) n tFa (n,in).	 (134)

We may use Eqs. (82) and (84) to represent the function
Fa (C) schematically by

a
Fa(C1 • r Fs(n, "I) I [ x + Fr (n, in)) I 	 [x- Fa(n, m)j[x+Fa(n, m)j .

0.11	 n .11

(85)
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There are several relationships between the pole and zero locations, Fs(n, m) and F,(n, m), which are important in
the development of F0(0. They are

Fs(n+}(p -1), m-q)=F, (n, m), (Be)

F,(n, m)=F(- n+ #(p -1), - m -1-q), and (B7)

F,(n+ p, m - 2q) = F,(n, m) , (B8)

Substituting Eq. (B8) into Eq. (B5), with appropriate changes of limits, yields

rr.TT
I
.7l[x-F,(n,m)][z+F,(n,m)1 1(I II [x-F,(n,m)][x+F,(n, m )J.F,(:tl = ...1f (B9)

11
After canceling out the common factors. we have

t	 •	 .-1
FO(S)=	 II	 II [.r-F,(n,m)1[z + F,(n,m) 1/(I (( [x-F,(n,m))[X+F,(n,m)1. (B10)

01•-MO-0 wq	 0-0 0.0

We next apply Eq. (B7) to the [x+F,(n, m)] factors in Eq. (B10) and rearrange the factors to obtain
.1	 •	 ,.l d*Nl)	 /	 r	 .-1	 1/alMl) -(1.1)

F8(0	 (I	 II Ix- F,(n, m)I	 II	 II Ix-F,(n, m)11	 I I I 	 [x - F,(n, m01	 II	 II [x- F,(n, 01 (1311)
^•-111,1-t) wy 01.1/211•0	 w.-• 	X.0	 w	 ^.-+	 w2.

which becomes, after use of Eq. (B8) and further adjustment of the product limits,

tFs(f )= 	 II	 II IX- F, (n, r)r)1	 1	 II I x -F,(n, m)['t I II [x- F,(n, m))	 n	 II [ x -F,(n, m)]. (B12)
n•.1/al ►-llwy	 n•.l E( ►-l) W- 	̂ 0.0 w-0	 n•-`	 w-0

Note that the numerator of Eq. (B12) may be consolidated to read
.11

Num =	 Ix- F,(n. m)1 /	 If	 Ix- F,(n, m)1. (1313)
e.-t/211-11	 w.-• 	^-•1 /211-11	 0.0

Similar treatment of the denominator of Eq. (B12) yields a form similar to Eq. (B13), but with the limits, I n I =^,
0 :s m 5 q -1.	 Thus we have the final schematic representation for F,(t)

` f 4-1	 -

F8(0	 I	 ft I x - F,(11, m1I) 
ri n i x -  F,(n, m )1 (B14)

R-1/20-11 w..•.
	

e..-

A specific functional form for F,(0 which satisfies all the requirements of zero and pole locations is
1	 ^-1sin a ( x- p - (2m +1)p1,Fe(t1 =	II	 sin(*/2p)[x-P-(4n+1)g1f	 4q (B15)

...1 / au-11	 w.0

where we have used the definition of F,(n, m), Eq. (A4).	 Finally, making the substitution, x= (2q/1) (t - p1/2q), and
simplifying, we obtain

t/a
F8 (C) 	 a sin [lq /P1t - 1 +(1q /2p)(4n -1)/ 11 sin [0r-:1- (p1/2g)(m +1)I• (818)

4

We conclude by quoting two examples for particular
wedge angles 0 which are of physical interest. First
for the right-angle wedge, 0 =1w, Eq. (BIB) yields:

J'^cos t)

Fa' /a(tl - sin( t)+cos( r)	 (B17)

Secondly. for the oblique wedge, 0=5v/4,  we find

Fn/	
Mcos 3:)—0060 101	 (BIB)l+cos( tl+stn( C)

Other wedge angles may be treated with greater effort.
It is noteworthy, however, that the expression we have
obtained for F#(C) is considerably simpler than that ob-
tained by Williams. it may be verified readily that Eq.
(BIB) exhibits the correct asymptotic limits prescribed
by Eq. (A4).
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APPENDIX C: ASYMPTOTIC APPROXIMATION
OF 1((', 0, 0 0 , a)

In obtaining an approximation for the function j(t, A,
60 , a) in the vicinity of the saddle point at t = w, the
quantities Dl , Da, Da and 0(t, e, 90 , a) in Eqs. (23)-(25)
are expanded in powers of (t - w) to yield

- G(t, B, B , a)
I(t,e, go, a)= P• - t - w M - t - w M,'

(CO
where we have used Af,'," = M,,(9 + Bo) and M,1,- ' = Af„ 9 - P1),
with M,, given in Eq. (5), while

G(t, s, Bo, a) _ *(tp o f Ga g 01)	 (C2)v sinvw

is assumed to be expanded in a power series in t - w up
to first or or in It - w).
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As regards the actual integration, one replaces cost
by -1+(1)(t - *p in the exponential factor of Eq. (11)
and integrates along the line of steepest descent of the
approximate integrand, I. e. , along a line going oblique-
ly downwards making an angle of 45° with the real axis
and passing through the saddle point at x. The integra-
tion variable is charged to s, given by

(t - A)= (21krsim)t1:se''1e

the s integration now going from -- to -. The approx-
imate factor for j is also replaced by means of the al-
gebraic identity

w +Xs _ 	 1	 f w+xa -xl (C3)a-s b -s c-sj b-a c-a a-s	 /

+ two additional terms obtained by
cyclic permutation of a, b, and c.

This yields the asymptotic approximation to the dif-
fracted pressure field, Eq. (24).

It is now necessary to obtain a suitable expression forft, 0, 00 , a). By comparing Eqs. (12) and (22) and their
associated definitions, one may obtain an explicit rep-
resentation for 0

2v ain(ve)D-W, 6, Bo, a) = 4'. *	 0, 1 n - a - A He - 9o, a

x 1 4'„( 00, t + 00 1 — *„(00 , t — 002  , (C4)
where

0 12 a *(t t-e, 12 A-a- MiAtt-e, a).	 (C5)

Now, by using Eqs. (AS) and (14) in Eq. (CO and per-
forming several trigonometric manipulations, one may
obtain

I	 4,2A	 Ir,a)
Olt = 4Hett_esA,a 4'rtre- A,2 II -a-S' We)

Then after substituting Eqs. (C6) into Eq. (C4), the re-
sult into Eq. (0), and expanding and recombining the
terms

4''(00, t + e)4'tr(t - e - er a) - 1Yr(9o, a - e)*2r(t + 6 - W, a)

and using the definition

U(8, a) 	
sins*	 (C7)

He -Bra 4' *, A-a-B

one has finally
4:(1, 0. go, a) - P. U (e, a)U (*0, a)D(*, *s, a)	 (CS)

with

DO, *0 , a) - We + ge)+ Mr(e - e0) + 
cos(2va) - cos(vs)

V sin vw
(Ce)

which completes the outline of the analysis leading to
Eqs. (32)-(34).

APPENDIX D: THE FUNCTION Q, (t) FOR
PARTICULAR ANGLES R

The function Qs(t) is defined in Eq. (42) as

- a	 F (t+ + r)F(t+2p+ e)
Qe(t) at b'1,Fgjt+0-jv)F(r+20-jvj.	 (Dl)

J. As". toe. Am., Vol. $3, No. 1, AWW" Im

It serves ar a corection term in the function He(t) for
nearly rigid wedges. Since the function Fe(t) takes on a
simple form for angles 0 of the form pv/2.7, it is rea-
sonable to expect that Qe(t) might also be cast in a rela-
tively simple form in the same instances.

One begins by noting that from Eq. (BIS) one has
t!e4ru

1nFe(t) =	 ln(sin{; v(t - 2p+ i A(4n -1)]})

.'t
-1: ln(sin61t - j v- 2(i(m+ 1)J})	 02)

M.0
and thus

i/24-r ►
d lnFe(t) = i v r, cot{1, v1t - 2p+ i v(4n - 1))}

1 rt
- 2 cot{z1t-1 A - 2p( m + 1 ))} . (D3)

Then upon substitution of Eq. 03) into Eq. (D1), con-
solidation of arguments of the several cotangents, and
use of the identity

cote, t cot(e2 ) a sin(p= t e,)
sine, sine=

followed by the use of trigonometric angle-addition re-
lationships, one may obtain
_	 1/21011)	 1
Qe(t)	 v sin(vv)	 sin t + 2ni sin v t + 2"___1)T

rt
-	 sin(t - 21n0)+ sinit - 0(2m+ 1)	

(D4)•,,o sin(t -2mp)sin t - p(2m+ 1

It should be pointed out that for t = - k /2q, with k a posi
tive integer less than p, there is one singular term in
each sum in Eq. (D4). It can be shown, however, that
the two singular terms combine in such a way that Q(t)
is continuous at the apparent singularity. For t = 0,
there is a true singularity in @e. In this case one may
see from Eq. (41) that this singularity is cancelled by
the tan(jvt) factor in Hs to give

He(0, a') - M7 sib	(D5)

for a' - 4 r - (n tiny)'', which indicates the manner in
which the rigid wedge limit of Ho(0, a) is approached as
the impedance q becomes infinite. Similar behavior may
be noted for t - - d.
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Chapter 6

EFFECTS OF AMBIENT FLOW AND

DISTRIBUTED SOURCES

Diffraction in the Pressure of Ambient Flow

The model sketched in Fig. 1 may be used to assess the

M A

effects of ambient flow on barrier diffraction. 	 The barrier F

is taken as a thin screen which occupies the region x< 0 of a

the y -0 plane; the edge of the screen lies along the z axis.'

The source is taken as being localized as a point xS ,yS' zS d

where yS <0, the listener is at (x L ,yL ,z L ).	 A uniform ambient

flow of velocity Uo is in the +x direction, tangential to the

screen and having the same velocity on both sides of the
a

screen.	 Since the screen is idealized as being arbitrarily

thin, there is no discontinuity in U o at the edge.

The solution for plane wave diffraction in terms of such

a model has previously been given by Candel. 1 ' 2 	Here, a

slightly different approach is used for the case when the inci-

dent wave ensues from a point source.

If one limits one's consideration to a single frequency

component and uses the device of taking a-iu,t to describe the .'
f

N
e{

+7
..-s aiW^^. '

	 7	 '777 	 J.
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Fig. 1. Geometry used in the study of the effects of
ambient flow on sound diffraction. A point
source is immersed in a uniform steady flow
near a thin screen.

b-



107

time dependence, then the complex amplitudes of the acoustic

•	 field variables satisfy the equations

[ -iw + Uo a/ax]p/c 2 + p ov-u = 0	 (la)

P o [-iw + Uoa/ax]u + vp = 0
	

(lb)

everywhere except in the immediate vicinity of the source.

From these one may derive the generalization of the scalar

Helmholtz equation which takes ambient flow into account, i.e.,

Ll {p} = 0	 (2)

L1 = v
2 - c -2 [- iw + Uo a/ax] 2 	(3)

There is a transformation  which, for U0/c < 1, will reduce

equation (2) to one resembling the scalar Helmholtz equation

without ambient flow, i.e.,

klp	
e- i(Mw/c)x/s2 L2 p e i(Mw/c)x /s 2 l	 (4)

1

where

M	 U0/c
	

(5)

is the Mach number, and

PW
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•

0 - [1 - M2 1 1/2	 (6)

k2 = a 2 /a(x/s) 2 + 3 2 /ay 2 + a 2 /az 2 + ( w /o) 2 /c 2 	(1)

Consequently, one may conclude that any solution of Eq.

(2) corresponding to a given angular frequency w may be taken

as

p(x,Y,z,w) = e- i(Mw/c)x/s2
	 (8)

where

x = x/ s	 (9a)

Y = Y	 (9b)

z = z	 (9c)

w = w/o	 (9d)

and

[a2/ax2 + a 2 /ay 2 + a 2 /az 2 + ( w / c ) 2 ]P = 0	 (10)

The latter is the scalar Helmholtz equation corresponding to

no ambient flow. ,

For the screen diffraction problem, one requires that

uy = 0 at y - 0 for x< 0. Consequently, from Eq. (lb), ap/ay

should also be zero for the same circumstances. However, one



109

sees from Eq. (8) that this requires

ap/ay = 0	 y	 0 0	x < 0	 (11)

which is the same boundary condition as one would have in the

absence of ambient flow. Also, if the source is at xS'yS'zS'

then p should correspond to a field generated by a source at

xS ,yS ,iS . Consequently, one concludes that the solution of

£lp = -4nS(x,y,z)
	 (12)

subject to the boundary condition mentioned above may be taken

as

frf 1OVC) (x
o
 -x) /s2

P OJJJ e 	 S(xo,yo,zo)G(x/s,Y,zlxo/$,yo,zolw /$)dxody dzo

(13)

where G(x,y,z)xo ,yo ,z o lw) is the Green's function for the

scalar Helmholtz equation in the absence of ambient flow,

satisfying

( 02 + ( w/ c ) 2 I G (x ,Y, z l xo,Yo, z o1 .) _ -4n6(x - Xo) (14)

In the case S(x,y,z) is taken as S o 6(+x- 'S), the above reduces

to
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M

p = e	 G(x/s,y,ZjxS/s)yg,ZgIw/s) 	 (15)

which may be considered as the Green's function for the

problem of diffraction of waves by a thin screen in the

presence of ambient flow.

Effect of Ambient Flow on Insertion Loss

The Green's function without ambient flow included is

described in some length in Chapter 1 of the present report

and the fact that it is amenable to numerical computation

implies that the problem discussed above is also. Here, for

simplicity, we limit our discussion to the circumstances

described by Fig. 2. The Green's function in the absence of

ambient flow for such circumstances is given by the Fresnel

number approximation .

ikL in/

	

G = L	

V —2 	
f ( ^ 2N ) 1/2 ) - iS(I2N1 1/2 )	 (16a)

	

IM	 1/2 -i,r /4_	 (1/2) - N	 e	 N « 1	 (16b)
L

	

ikL	 in/4

	

-► e
	 e	

N >> 1	 (16c)

	

L	 2RN1/2

•

,

where N is the Fresnel number given by
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Fig. 2. Sketch of limiting case discussed in the text.
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N = L - R	
(17)

(a/2)

where a = 2n/k and

L = [(zL - zS ) 2 + (rL + rs) 2 1 1J2	(18a)

R = [(xL - xSI 2 + (yL - yS ) 2 
+ (zL - 

zS ) 2 1 1/2 (18b)

rL = (x2 + yL) 1/2 ;	 rs = (x2 + ys) 1/2	 (18c)

The functions f and g are the auxiliary Fresnel functions

tabulated in the NBS Handbook of Mathematical Functions.4

For most purposes, the asymptotic limit (16c) may be con-

sidered as realized when (2N) 1/2 >2 or N >2.

The insertion loss due to the barrier is defined as the

loss in decibels of the sound pressure level at the listener

location due to the presence of the barrier and, for waves

from a point source, is accordingly

IL - 10 log10 IG NB/GB I2

	
(19)

where GNB and GB are the Green ' s function without and with

the barrier present, respectively, Thus, in the absence of

ambient flow and in the Fresnel number approximation, one has



a
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•	 IL = -10 1og10I(1/2)(R/L)2 If 2( [2N] 1/2) + G2([2N]1/21;

(20)

Furthermore, for circumstances allowing the Fresnel number

approximation, it is a good approximation also to set the

factor R/L n 1, so one has

IL • -10 log10 (1/2)[f2([2N]1/2) + g 2 ([2N] 1/2 )1 	(21)

	

20 log 10 2[l + (2N) 1/2 I 	 N << 1

z 20 log10 2 + [20/tn 10](2N) 1/2	N << 1

= 6 + (12.3)N1/2	dB	 N<< 1	 (22)

-► 10 log10 (4n 2N) - 16 + 10 log 10 N	 N >> 1	 (23)

which is a monotomically increasing function of Fresnel num-

ber only.

According to the analysis of the preceding section the

magnitude of a Green's function when ambient flow is present

is that of the Green's function when ambient flow is not

present providing one lets x- x/g, w+ w/B, xS - xS/B in the

arguments of the latter. (This is true regardless of whether

or not the barrier is present.) Consequently, the above

approximate expressions for the insertion loss will still
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4

apply to the case when there is an ambient flow, providing the

Fresnel number is similarly transformed, i.e.,

N(xL,YL,zLIxS,YS,zSlw)

N ( xL/B,YL , z L IxS/O,yS ,zslw/s)
	

(24)

In general, the ratio of the transformed and untransformed

Fresnel numbers is spatizTly dependent. However, for the

case when 
IYL/xLl «1 and IYS/xS) «1, one has

s
rL • ^yL + xL/2YL^

rS 	Sys + xS/2ysl

(2Sa)

(M)

(26)

(rL + rs) 2 -' (YL 
+ xL/2yL - YS - xS/2YS) 2

' ( YL - YS) 2 " (YL - Ys) [x 2 /yS - xL/yL]

L	 r	 2	 2]1/2 - (YL - YS ) [x 2 /yS - xL /yL]
L(zL - zS) + (YL - YS)`	

2(zL " 
ZS) 

2 * (YL - yS) 211/2

(27a)

[(z	 z ) 2 +	 2 1/2 +	 (xS - X L ) 2

2 [(Z L_
z S )2 +(YL-YS) 2J11/2

(27b)
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and, consequently,	 -

L - R y - (YL/YS) xS - (YS/YL ) xL + 2xSxL	
i 2 7c)

2 [(ZL _ 
ZS) 2 + (YL _ YS) 211/2

(Here, it should be recalled that the source and listener are

presumed to be on opposite sides of the barrier, so y L and yS

have opposite signs. Consequently, the above gives L - R> 0,

as must be the case.)

The above expression for L- R is bilinear in x S and x 

so with the substitutions xS -*xS/s, YS-1'yS
/8 one has

L- R -(L -R)/0 2 . Also the substitution w -► w/s causes

+	 a /2-+s a /2. Consequently, in the case described above

N -+ N/s3

Since a - ( 1 -M 2 ) 1/2  is less than 1, the transformed Fresnel

number is larger than that corresponding to no flow. The

insertion loss with ambient flow present is then given by

Eqs. (21,22,23) only with N replaced by N10  so one has in
particular

IL - 6 + (12.3)Nl/2/0 3/2 	 N<<1	 (28a)

•	 IL % 10 log 10 (4n 2N/0 3 )	 N>>1	 (28b)

In summary, the insertion loss is increased when there

is an ambient flow, the increase being independent
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of the direction of the flow.	 For larger values of the

•	 Fresnel number, the effect of ambient flow is to add an additional

increment to the insertion loss of

a(IL) = 10 log 10 [l/(1 - M2)3/21	 (29)

If the Mach number is 0.5, for example, the additional

insertion loss is 1.9 dB.

Green's Function for Source Near Edge

In Chapter 3, one of the limiting cases examined was

that of a thin screen (v= 1/2) when rr s /L 2 - 0, krSr/L finite.

This includes the case shown in Fig. 3 when the listener is

many wavelengths from the diffracting edge and when the source

is much closer to the edge than is the listener. However, the

source is not presumed to be either very close or very far

from the edge relative to a wavelength. The Green's function

for this case can be constructed easily by the principle of

reciprocity from Sommerfeld's known exact solution for the

diffraction of an incident plane wave by a thin screen. (This

was pointed out to one of the authors by Donald Lansing.)

The result, for the case when the listener is in the shadow

zone, is that the Green's function is given by

w

ikL i^r/4
e	 G = L

	
[f (X)	 - ig(X) l; _ 19 -e

S
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+ [f (X) - ig ( X) ]
+	

(30)
c=ees

with

X = [8rrs /XL] 1J2 1 cos ( C /2)1	 (31)

The functions f(X) and g(X) are the auxiliary Fresnel functions

described in the previous section. This Green's function may

also be modified to take into account the presence of ambient

flow by use of the transformation described previously.

The fact that the above Green's function covers cases

when rs is very close and not so close to the edge, that it

`	 is easily computed, and that it may be easily extended to

include ambient flow suggests that it may be useful in studies

of the diffraction of engine noise around wings while an air-

plane is in flight.

Sound from Distributed Sources

In order to illustrate the application of the general

theory to sound diffraction from a distributed source (Fig. 4),

one may take, for simplicity, all the sources to be along the

far side of the screen with es- 2n in each case and to each

have zS - 0 (i.e., the sources lie along a line transverse to
Is

the edge of the screen). The listener is considered also to

have z coordinates equal to 0 and we consider r>> rs such that
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Fig. 3. Limiting case of listener many wavelengths from
edge of thin screen.

IN

•



3

119

f

s

It

TURBULENT
JET, EXIT	 ti	 RAYS FROM ELEMENTS OF
VELOCITY 'U' 	 DISTRIBUTED SOURCE

THIN SCREEN

i
DIFFRACTED RAY

i

i

LISTENER

Fig. 4. Sketch of concepts utilized in the analysis
of diffraction from a distributed source.
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i

we may approximate L by r except in the exponent where it is

s
taken as r+ rS . In this manner, G reduces to

i [kr + n/4 J
G =	 2 g	 f(8rs/A]1/2 cos[9/2])

- ig([
kr

8rS/a] 1/2 coscos[e /2J) e	 S	 (32)

If the source strength per unit length is taken as

s(rS) for a given frequency component, then the corresponding

complex pressure amplitude in the far field is given by super-

position as

L

ei [kr + n /4]	 ikrs
p =	 r	 [f- ig]s (rs) a	 drS	 (33)fo

Here, for simplicity, we assume the source does not extend

beyond the "trailing" edge, so all of the received sound is

diffracted.

For simplicity, we also assume the spatial extent of the

source is somewhat less than a wavelength of the radiated

sound such that we may approximate f, g and a 
ikrs 

by

appropriate truncated power series expansions. If we do so,

we have

eikr

p z 2 —
r	 o

I1/2 - ( 4rS /a) 1/2 cos(e/2)e-in/41

i
Aa

a
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V

• s(rS) [1 + ikrS - ( 1/2)k 2 r 2 ] drS	 (34)

One of the interesting aspects of the above is that the

diffraction could enhance the received sound at low frequencies.

Suppose, for example, that the source were a quadrupole (e.g.,

as for jet noise) such that

fs (rS ) drS = J rS s (rS) drS = 0	 ( 35)

Then the expression for p would reduce to

ikr
p = -(1/4)k2  

r 
f rS  (rS ) drS

 1/2 eikr	 -i,r/4 r 1/24/(2w) 1/2k 	r	 cos(s/2)e	 J rS	s(rS)drS

(36)

The first term is weakened at low frequencies by the presence

of the k 2 factor while the second has a factor of k l/2 which

may be larger when the frequency is low. The first term,

incidentally, is just the sound field expected in the absence

of the screen. [Time limitations, unfortunately, have pre-

cluded a more thorough investigation of the question of

whether diffraction could actually enhance the sound of a

distributed source which tends to radiate as a quadrupole in

the absence of a barrier.]
•

r
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