MBA C: 7 - 156782

CSC/TR-77/6010

A RECURSIVELY FORMULATED FIRST-ORDER SEMIANALYTIC ARTIFICIAL SATELLITE THEORY BASED ON THE GENERALIZED METHOD OF AVERAGING

VOLUME 1
THE GENERALIZED METHOD OF AVERAGING APFLIED TO THE AR Tificicial SATELLITE PROBLEM

Prepared For
NATIGÑAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland

CONTRACT NAS 5-24300
Task Assignment 880

NOVEMBER 1977
(NASA-CR-156782) A RECJRSIVELY FORMULATED
N78-28147
FIRST-OREER SEMIANALYTIC ARTIFICIAL
SATELLIte THEORy BASED DN THE GENERALIZED
METHOD OO AVERAGING. VOLtME 1: THE
faclas
generalized method of computer sciences
G3/95
27058

A RECURSIVELY FORMULATED FIRST-ORDER SEMIANALYTIC ARTIFICIAL
 SATELLITE THEORY BASED ON THE GENERALIZED METHOD OF AVERAGING

Volume I. The Generalized Method of Averaging

Applied to the Artificial Satellite Problem

Prepared by
COMPUTER SCIENCES CORPORATION

For
GODDARD SPACE FLIGHT CENTER

Under
Coutract No. NAS 5-24300
Task Assignment No. 880

Prepared by:

 Reviewed by:

Approved by:

ACKNOWLEDGEMENTS

The author gratefully acknowledges P. Cefola (Charles Stark Draper Laboratory) for suggesting the approach adopted for this investigation, for many thoughtful suggestions and ideas, and for freely communicating the results of his own investigation. The author would like to thank A. Long (Computer Sciences Corporation) for several contributions to the analysis and for a comprehensive technical review of this report. L. Early (Computer Sciences Corporation) is acknowledged for several helpful discussions concerning the theory and its optimal implementation and especially for an exceptionally well done software implementation of the zonal harmonic, nonresonant tesseral harmonic, and third-body theories. In addition, J. Dunham (Computer Sciences Corporation) is acknowledged for the software implementation of the resonant tesseral harmonic theory. Thanks are also given to E. Smith (Computer Sciences Corporation) whose assistance in the preparation of this report substantially contributed to the quality of the document. Finally, the author gratefully acknowledges A. Fuchs and R. Pajerski of the Goddard Space Flight Center for their interest in and continuing support of this investigation.

ABSTRACT

This report presents, in two volumes, a recursively formulated, first-order, semianalytic artificial satellite theory, based on the generalized method of averaging. Volume I comprehensively discusses the thenry of the generalized method of averaging applied to the artificial satellite problem. Volume 11 (to be published in early 1978) presents the explicit development in the nonsingular equinoctial elements of the first-order averaged equations of motion. The recursive algorithms used to evaluate the first-order averaged equations of motion are also presented in Volume II.

This semianalytic theory is, in principle, valid for a term of arbitrary degree in the expansion of the third-body disturbing function (nonresonant cases only) and for a term of arbitrary degree and order in the expansion of the nonspherical gravitational potential function. This theory has been implemented in the Goddard Trajectory Determination System (GTDS) Research and Development (R\&D) version.

TABLE OF CONTENTS

Section 1 - Introduction 1-1
1.1 Review of Orbit Generation Techniques 1-3
1.2 The Numerical Averaging Approach 1-7
1.3 The Analytical Averaging Approach 1-8
1.4 Recent Developments in Analytical Averaging Theor: 1-10
1.5 Summary 1-12
Section 2 - The Variation of Parameters (VOP) Equations 2-1
2.1 Principles of the VOP Formulation 2-2
2.2 The Gaussian VOP Equations 2-7
2.3 The Lagrange Planetary Equations 2-10
2.4 Discussion of Orbital Element Sets 2-16
Section 3-The Averaged VOP Equations of i,iotion 3-1
3.1 Criteria for Selecting Short-Period Terms 3-4
3.1.1 Satellite-Dependent Frequencies 3-5
3.1.2 Third-Body Effects on the Motion 3-5
3.1.3 Nonspherical Gravitational Effects on the Motion 3-7
3.1.4 Implications for the Application of the Method of Averaging 3-8
3.1.5 Mean Elements 3-11
3.2 The Averaged Equations of Motion for a Single PerturbingFunction3-12
3.2.1 Formulation of the VOP Equations in Mean Elements 3-14
3.2.2 Elimination of the Fast Variable Dependence 3-18
3.2.3 Determination of the Short-Period Functions, $\eta_{i, j}$ 3-23
3.2.4 Computational Procedure 3-26
3.3 Averaged Equations of Motion for Multiple Perturbing Functions 3-30
3.4 Modification of the Averaging Operation for Resonant Phenomena 3-45
3.4.1 Frequency Characteristics Specific to Resonant Phenomena 3-45
3.4.2 The Averaging Operation for Resonant Phenomena 3-48
3.5 The Application of Higher Order Averaging Theories 3-53
3.5.1 The Significance of Second-Order Terms 3-53
3.5.2 Application of a Restricted Second-Order Theory ofAveraging3-69

SECTION 1-INTRODUCTION

In the past, considerable attention was focused on the formulation of the equations of motion for complex dynamical probleris and on the method of solution to insure that a sufficiently accurate result, meeting the investigators requirements, was obtained with an economy of effort. Without such careful consideration, the most prominent problem of classical mechanics, i.e., the motion of planets about the Sun, would probably not have been solved with anywhere near the accuracy actually obtained. It is a testimony to the ability of men such as Lagrange, Gauss, Leverrier, Hill, Hansen, and others that not only ingenious formulations of the equations of motion were obtained but that the thousands of arithmetic operations required to evaluate the solution were urganized in such a manner as to minimize the number of these operations and considerably reduce the probability of undetected accidental errors.

The advent of the high-speed electronic computer has relaxed this consideration by making brute-force, error-free calculations possible. However, the competition for computer access has grown rapidly within the last decade. As a result of this overload on computer resources, current problems of interest should be formulated in a manner that not only fulfills the investigator's requirements but also minimizes computational cost.

One of the more computationally expensive dynamical problems today is the prediction and definitive determination of artificial satellite orbits. Maintaining reasonably accurate ephemerides for the ever-increasing number of artificial satellites (which include active scientific, defense, communication, and weather satellites as well as defunct satellites, launch vehicles, and other debris) requires a considerable expenditure in terms of computing time. Also, prelaunch mission analysis requires that several hundred satellite trajectories over periods of up to several years be generated for the purposes of lifetime and geometry constraint analysis. In addition, mission feasibility studies corsume an inordinate amount

1.1 REVIEW OF ORBIT GENERATION TECHNIQUES

Another approach to the artificial satellite problem is provided by the purely analytical methods of solution in which analytical formulas for the coordinates or orbital elements are usually obtained to first or second order in a small parameter. A standard approach is to separate the short-period, long-period, and secular components of the motion through a series of canonical transformations (Reference 1). The secular contributions to the motion are evaluated at a given time, and the canonical transformation used to remove the long-period component of motion is inverted to provide the long-period mation in terms of the secular elements. Finally, the transformation to remove the short-period terms is inverted and evaluated with the secular and long-period contributions to the elements, thus obtaining the short-period contributions to the motion.

Although computationally efficient analytical satellite theories have been developed, ${ }^{1}$ many of these theories suffer from severely restricted perturbation models. Several thcories are limited to the lower degree zonal harmonic terms in the nonspherical gravitational model of the central body. The third-body perturbation, when included, is usually restricted to the cases of very close-Earth satellites. Also, many of these theories are restricted further by the use of the small eccentricity and/or small inclination approximations. In addition, the use of Keplerian elements in these formulations introduces singularities caused by vanishing eccentricity and/or inclination. Some of these limitations are accounted for by the fact that many of these analytical theories were developed manually. The tremendous amount of necessary algebraic manipulation required that these theories be severely restricted.

In the last decade, the appearance of machine automated algebraic processors has facilitated the development of analytical satellite theories with more sophisticated perturbation models. All that is required is sufficient computer time

[^0]and storage. However, a reasonably general first-order analytical satellite theory can comprise tens of thousands of terms which require a prohibitive sionage capacity. The only way to reduce the storage requirements for an explicit analytical theory is to restrict the theory itself. ${ }^{1}$

Finally, although several attempts to incorporate atmospheric drag in analytical satellite theories have been made, they have proven less than adequate for producing reasonably accurate ephemerides over extended time intervals. This is not surprising in view of the fact that even high-precision numerical techniques which use sophisticated atmospheric models have difficulty predicting ephemerides of strongly drag perturbed satellites over periods of several weeks (Reference 3). The method of averaging offers another approach to the artificial satellite problem that has been shown to be more computationally efficient by several orders of magnitude than the high-precision txchniques (Reference 4). In addition, the method is very flexible with respect to the perturbation models and suffers fewer restrictions than purely analytical satellite theories. Although not as accurate as the high-precision techniques, this technique produces results sufficiently accurate for all but the highest accuracy requiroments, e.g., maneuvers, etc. More specifically, an application to first ordar of the method of averagiug produces the long-period and secular motion of a satellite extremely accurately in most cases (Reference 4) and provides for the vecovery of probably 90 to 95 percent of the short-period motion (Reference 5). Consequently, this approach provides a low-cost, long-term orbit prediction capability for the following:

- Mission feasibility studies
- Mission analysis (lifetime and geometric constraints)

[^1]- Tracking station acquisition schedules
- Dyamic mobleling in definitive orbit determination procedures where either extended data intervals or extembed data gaps are encountered
- Dynamic modeling required for differential correction (D) pre veres used to solve for dynamical parameters, e. f. . high-orker ge : Me ial cocficients

The motivation for using the method of averaging procedure is as follows. The maximum step size which can be used in the numerical integration of a set of differential equations is constrained by the highest significant frequency contaited therein. The method of averaging is used to remove high-freque'mey components from the equations of motion. The resulting averaged equations of motion are integratad numerically but with a significantly greater step size than can be ased with the high-precision equations. The long-period and secular components of the satellite motion are thus obtained. The short-period componment of the motion can be computed either numerically (beference 5) or from analytial formulas which are presented in Volume 11 of this report. In most cases, the computational saviags arhieved by the lager step size (which results in fewer force evaluations) far outwieghs the increased cost of the derinative evaluation, thereby efferting a signitioant decrease in the overall computational costs.

The technique of removing the high-frequency terms from the equations of motion Was firet used by lagrange in his investigations of the planetary motion. Fecause of a particular formulation of the equations of motion dereloped by lagramer, the high-frequency terms, in the case of conselvative perturbing fories, could be isolated more or less by inepwetion. However, a rigorous mathematical foumiation for this technique was not provided until the relatively wecent work by Kivlow and Bogoliubov (Reference 6) on asymptotic methods for uonlinear oscillations.

$$
1-5
$$

Two approaches are available for the application of the method of averaging. The high-frequency components of the equations of motion can be removed numerically by application of a quadrature around an ippropriate formulation of the high-precision equations of motion. This procedure is known as the numerical averaging approach. If the perturbing forces are conservative, the equations of motion can be expressed using Lagrange's formulation, and the averaging quadrature can be performed analytically. Under certain assumptions, ${ }^{1}$ this method produces the same result as that obtained by inspection. This semianalytical procedure of numerically integrating the analytically averaged equations of motion is referred to as the analytical areraging approach.

The asamplionn arise when either the Grawnwich Hour Angle, i.e., the Eiarth'e rotation, or the fast variable of the disturbing third body apper in the perturbation motels. Specifically, these quantities are assumed to be completely indeymand of the atellite fast variable. both explicitly and implicitly through the time.

1.3 Tre ANALYTICAL AVERAGING APPROACH

The method of analytical averaging is attractive because it is not only significantly more computationally efficient than high-precision techaniques but also is usually an order of magnitude more efficient than numerical averaging techniques (Reference 9). This computational advantage is accounted for by the fact that the analytically averaged perturbation models, although more complex than the high-precision perturbation models, are evaluated only once per integration step. The numerical averaging approach r quires that the high-precision perturbation models be evaluated once at each abscissa of the quadrature. Thus, the method of numerical averaging requires between 12 and 96 force evaluations to compute the averaged element rates (Reference 10). In addition to the greater computational efficiency, the analytical averaging method offers greater precision with respect to $\mathrm{co}^{-\quad \text { pputation of the element rates and therefore should be }}$ used whe"ever possi se (Reference 8).

The analytical averaging method has been used in the divelopment of several averaged orbit genorator programs (References $11,12,13,14,15$, and 16). These programs suffer from one or more limitations, however. In particular, most programs are based on theories formulated in terms of the Keplerian elements, which produce singularities in the equations of motion for vanishing eccentricities or inclinations. ${ }^{1}$ Dallas and Khan (Reference 14) modified the element set to remove the small eccentricity problem; however, the small inclination problem remains. The Earth Satellite Mission Analysis Program (ESMAP) initiated by Cefola (Reference 11) is formulated in a completely nonsingular element set but is severely restricted in its perturbation models as are the programs described in Reference 15 and 16.

[^2]
Abstract

The program devoloped by Wagner (Roference 13) is based ongeneral expressions for the analytieally averaged perturbation models developed by Kana (Reforencos 17 and $1 s$ which are formulated in torms of singular keplerian elomente. Cook (Reforence 1(i) implemented Kala's perturbation models using Allan's recursive algorithm for the inclination functions and a recursive algorithm for the llansen coofficients based on the recursive properites of lagendre polynomials. Unfortunately, Cook's program is based on the singular Keplorian eloment set, and the nomsporical gravitational potential is rostrictod to the romal harmonies. Examples of computer-generatod, explicit amalytically averaged perturbation models are given by sidharan and Remad (Refirenee 1 bo for the long-period, disturbing third-hody model using the potentially singular keplerian olemonts and by collins (Reforence 20) for a restricted $2: 1$ resonat peopoteratial moded using the nonsingular oquinoctial elements.

Very recontly, several authors have investigated general, analytically areragod perturbation models for the third-body and nomspherical gravitational perturbations in terms of nonsingular eloment sets. Cefola ad Broucke (Reference 21) developed recursively formulated models for the nonresonant third-body and zonal harmonic perturbations based on the equinoctial eleraents. The devolopment of the zonal harmonic model is similar to that of Cook's model, with the exception that the inclination function is developed in terms of associated lagendre polynomials and their derivatives and cortain complex polynomials. Cefola's thirdbody model is developed in terms of the direction cosines of the disturbing thirdbody position vector, which proves computationally efficient but is limited to nonresonant cases. Cefola outlined an extension of his zonal harmonic model to include the nonresonant tesseral harmonic terms (Reference 22) and later completed and extended the model to include resonant phenomena (Reference 23). Giacaglia (Reference 24) beformulated Kaula's perturbation models (using Allan's inclination function) in a nonsingular oloment set and provided a set of recursive algorithms for computational purposes. Finally, Nacozy and Dallas (bererence 25) also reformulated the Kaula goopotential model (using Allan's inclination function) in torms of a nonsingular element set. No recursive algorithms were provided. The relatively simple recursive algorithms of cook, cofola, and ciacaglas are appeating in view of the alternative of evaluating the complicated polynomials found in the work of Nacozy and Dathas. However, the brute-fore implementation of recursive algorithms can :ontribute to computational inefficiency and can possibly introduce artificial singularities (not in the equations of motion, but in the model evaluation). To inaure against this possibility, cateful considoration must be given to the ordoring of the terms in the models such that the recursion formul: ;roceed in the proper direction to aroid small divisors and the amount of recomputation and storage requirements are minimized. ${ }^{1}$ The

[^3]
alteratives of compatation and recomputation of all quantitices as axecked while storing mondig or the computation of all distinct quatities once and stority of

1. 5 SUMMARY

 matically aroteged equations of motion for an artifioial satellite perturbed by nomeresonat thict-bondy and nonsphorical grabitational perturbations. This ana-
 (hatermice 4) and provides for cquimat avorized perturbation motels for ench
cilic type of perfurbation with the pessitho exception of thiti-boty resoname caos, whilch wesw mat considerwil). Piutial results abtaimet for some of the (ppiant aver:med perturbation models in cirtsi have iwen plessentod in Furforence 9.
 buty and zonal harmonic porturbations. The asseral harmonic modol was developed usity the appromil ourlind by Criola in Redevence 29. The matels savoliped wore peneralized to hande retcograke as woll a direct equianctial elemonts (sew Aptemilis A).

As part of thes invostigation a faity intsited comparison of the theorios of Cofola sad ciancaglia was performod. Ariofly statod, the theories mere fombit
 masingular ctoment sots mad different computational prosedures for the indination fimetion. Arguments can la' make coltorning tho relative adrantages
 of the singularitios from the equations of motion, both ate accoptable. siaceatia computes the eatite iactination function rocursivoly, reguiring a mom complicated rocursion whation with more back vishos of the function. Cofola users
 The werursion ielations ary simpler, riquiriug fowor hack values, thit more recursioll furmulas aw morwad.

Regarding the implementation in the GTDS R\&D version of the resomant tesseral harmonio model, it was felt that this capability should ke very flexible with respect to the specific reaconant harmonic terms used. The existence of a resonance dictetes which terms in the potental expansion ate significant to the long-period motion. Knop ge of the common characteristice of these terms and the proper use of the recursive algorithms would have provided a means for further optimization of this model. However, the procedure would have been automatic, with the program expecting a certain set of terms. Therefore, for the purposes of flexibility and at some additional computational costs, the contributions from each spherical harmonic term are computed entirely independently from all other terms. ${ }^{1}$

Due to the extensive new software for the analytical averaging capability as well as to the extensive modifications required to the previously implemented areraging software (particularly the input processor and initialisation procedures and the attendant added complexity of executing the (i'los R\&l) averaging capability), it was decided that a system description and user's guide for the G'TDS R\&D averaging capability would be issued under a separate cover. In addition, a document extending the numerical results beyond those presented in lieference 9 is also in preparation. Thie document will discuss the computational costs in terms of machine processing time, the accuracy of the analytical aroraping methods, and the procedure and algorithmis used to develop an automatic truncation capability to furtler optimize the perturbation mondels for earh particular case.

The current report consists of two volumes. The theors of the method of areraring is discussed in Volume I. Volume 11 prestent: the explicit development of a semianalytical artificial satellite theory hased on the method of aroraging. Volume I presents a faidy comprehensive diseussion of the application of the guneralired method of averagiag to the artificial satellite problem and the resulting formulation of the averyed equatious of motion. In iwetion 2 , a disoussion

[^4]of Veriation of Parameters (VOP) formulation of the equations of motion, upam which the mothod of avoraging is basod, is precented. Section 3 discunses the epplication of the method of averaging to the VOP equations of motion. The oriterion for the selection of short-period terms is digcussed in Saction 3.1. and the seneralized method of averaging is applied to the VOP equations for the case of a single perturbing function in Section 3.2. A diacussion of the application of the method of averaging to the case of two or more perturbing functions is presented in Section 3.3, followed by a description of the modification required for the application of the method of averaging to cased involving resonance phenomena in Section 3.4. Neat, Section 3.5 addreeses the application of higher order averaging theories. Finally, a discussion of the first-order short-period variations ia the elements and their application to osculating-to-niean and inean-to-osculating eloment conversions is given in Section 4.

Volume II presents the mathematical formulation of the anspherical gravitational and nonresonant third-body models required for the first-order avaraged equations of motion. In this volume, the nonspherical gravitational potential is developed in the nonsingular equinoctial element set, and the zonal harmonic model, the combined zonal and nonresonant tesseral harmonic model, and the resonant tesseral harmonic model are isolated. The nonresonant third-body disturbing function is also developed in equinoctial eloments and in the direction cosines of the third body. All models are presented in what is considered to be an optimal form, tabing into account the miaimisation of the combined computational and storage costs while avoiding computational singularities. It is this final form of the models that was implemented in the GTLS R\&D version.

SECTION 2 - THE DARLATION OF PARAMETERS (VOP) FQUATIONS

Classically, the Variation of Parameters (NOP) formulation of the equatic...a of motion was used to investigate the long-period and secular motion of the planets. The Vol formulation was introduced by Fuler while investignting the mutual perturbations of Jupiter and Saturn and was later generalized and completed be Lagrange (Reference 26). Since the primary objective of the current investigntion is the development of an efficient orbit generation method for the prediction of the long-period and secular motion of artficial satellites, the Voll formulatich was used.

In this section, a derivation of the basic Vor equations is prosented in an attempt to provide some backpround information to the reader who is not already familiar With the method. Although the derivation presented is not the most elegant, it serves the purpose of explaming the basic prineiples of the methon and provides a logieal foundation for the form of the lol equations used in this investigation.

2.1 PRINCIPLES OF THE VOP FORMULATION

The VOP formulation of the equations of motion for a perturbed dynamical system requires that the solution for the corresponding unperturbed system be known. The unperturbed dynamical system associated with the artificial satellite problem is the classical two-problem of celestial mechanics. As a starting point in the development of the VOP formulation, the differential equation of Newton describing the perturbed motion of a satellite relative to the central body is considered, i.e.,

$$
\begin{equation*}
\ddot{\vec{F}}+k^{2}\left(m+m_{s}\right) \frac{\stackrel{\rightharpoonup}{r}}{r^{3}}=\vec{Q}(\stackrel{\rightharpoonup}{r}, \dot{\vec{r}}, t) \tag{2-1}
\end{equation*}
$$

where $\stackrel{\rightharpoonup}{r}$ and \mathbf{r} denote the satellite position vector and its magnitude, $\dot{\vec{r}}$ is the velocity vector, k is the Gaussian constant, m and m_{s} are the masses of the central body and satellite, respectively, \vec{Q} is the perturbing acceleration vector caused by conservative and/or nonconservative perturbing forces, and t is the time. For $m_{s} \ll m$, the satellite mass can be neglected.

For the unperturbed problem where $\vec{Q} \equiv \overrightarrow{0}$, Equation (2-1) reduces to

$$
\begin{equation*}
\ddot{\vec{r}}+k^{2} m \frac{\stackrel{\rightharpoonup}{r}}{r^{3}}=\stackrel{\rightharpoonup}{0} \tag{2-2}
\end{equation*}
$$

A solution of this system of equations requires six constants of integration. These constants are denoced by a_{i} (where $i=1,2, \ldots, 6$) or by the vector $\stackrel{\rightharpoonup}{a}$. The constants are identically the components of the initial position and velocity veotors or any set of six independent functions of the initial position and velocity. The solution of Equation (2-2) is denoted by the vector function $\vec{\phi}_{0}(a, t)$. The method used to obtain this solution is discussed in References 27 and 28. The solution $\overrightarrow{\boldsymbol{\phi}}_{0}$ describes the motion of a point on an ellipse at a particular spatial orientation with the central body located at one of the foci.

In the VOP formulation, the perturbed two-body problem represented by Equation (2-1) is assumed to possess a solution ϕ of the same form as the function $\vec{\phi}_{0}$ with the single exception that the constants of the unperturbed motion, a_{i}, vary with time. Solving Equations (2-1) then reduces to determining this time dependence.

The VOP equations of motion consist of a set of six first-order differential equations as foiturs:

$$
\begin{equation*}
\frac{d a_{k}}{d t}=G_{k}(\vec{a}, t) \quad(k-1,2, \ldots, 6) \tag{2-3}
\end{equation*}
$$

whore the constants of the unperturbed motion, referred to as elements, are treated as time-dependent parameters. This system of equations can be obtained directly by transformation of Equations (2-1). Expressing the three coordinate variables in Equations (2-1) formally in terms of the six elements and the time resulte in the three equations

$$
\begin{equation*}
x_{i}=f_{i}(\vec{a}, t) \tag{2-4}
\end{equation*}
$$

$$
(i-1,2,3)
$$

involving six unknowns a_{k}. Consequently, three arbitrary relations or constrainta may be imposed on the six tements. These relations may be specified implicitly and are usually chosen such that the following equations are satisfied:

$$
\begin{equation*}
\frac{d x_{i}}{d t}=\frac{\partial f_{i}}{\partial t} \quad(1=1,2,3) \tag{2-5}
\end{equation*}
$$

$$
2-3
$$

which requires that

$$
\begin{equation*}
\sum_{k=1}^{6} \frac{\partial f_{i}}{\partial a_{k}} \frac{d a_{k}}{d t}=0 \quad(i=1,2,3) \tag{2-6}
\end{equation*}
$$

The metivation for this particular choice is discussed below.
The implicit relations between the position and velocity and the six unknowns a_{k} spectfied by Equations (2-4) and (2-5) will be used to transform Equation (2-1) into Equations (2-3). Differentiating Equations (2-5) with respect to the time yields

$$
\begin{equation*}
\frac{d^{2} x_{i}}{d t^{2}}=\frac{\partial^{2} f_{i}}{\partial t^{2}}+\sum_{k=1}^{6} \frac{\partial^{2} f_{i}}{\partial a_{k} \partial t} \frac{d a_{k}}{d t} \quad(i=1,2,3) \tag{2-7}
\end{equation*}
$$

Substituting the right-hand sides of Equations (2-7), (2-5), and (2-4) into Equations (2-1) yields the following three first-order differential equations in the six unknowns a_{k} :

$$
\begin{gather*}
\frac{\partial^{2} f_{i}}{\partial t^{2}}+\sum_{k=1}^{6} \frac{\partial^{2} f_{i}}{\partial a_{i} \partial t} \frac{d a_{k}}{d t}+k^{2} m \frac{f_{i}}{\left(\sum_{j=1}^{3} f_{j}^{2}\right)^{3 / 2}}=Q_{i}\left(f_{j}, \frac{\partial f_{j}}{\partial t}, t\right) \tag{2-8}\\
(i-1,2,3 ; \quad j=1,2,3)
\end{gather*}
$$

Equations (2-6) provide the three other first-order differential equations required to determine the system.

The function f_{i}, representing the ith component of the position vector, is determined from the formulas for elliptic (unperturbed) motion, i.e., through $\vec{\phi}_{0}$, which relate an instantaneous position to a set of instantaneous elements (in fact, infinitely many). It is not imm diately obvious from Equation (2-4) alone that the
purturbed relacity rector can be relatad to the same set of inatantapeous elementa through these formulas. However, Equation (2-5) indicates that the velocity components are determined by differentiating the position functions. \mathcal{I}_{i}. while tolding the olements constant, which is exactly the requirement for unperturbed motion. As a result. at any time t, the perturbed elements always correspond to a set of unperturbed elemonts. Such elements are referred to as osculating elements. The three constraints imposed on the elements by Equations (2-5) are not the only set possible, but they are the only set that allow both position and velocity to be related to these perturbed elements through the formulas for elliptic motion.
In Equations (2-3), five elements can be chosen such that they completely specify the osculating ellipse in space. The sixth element, \mathbf{a}_{6}, in conjunction with the time t epeoffies the position of the object on the occulating ellipse at time t. The function $G_{k}(\vec{a}, t)$ represents the time rate of change of the ith osculating element caused by the perturbing force. In most cases, the porturbations are small compared with the central force, and, therefore, the magniturde of the function G_{k} is small. Consequently, in most problems the elements a_{k} are slow ly varying.
For conservative parturbing forces, the osculatiag elemeat ratus can be represented in terms of the partial derivatives of a disturbing function. The disturbing function is the megation of the potential function, honow tixe restricion to copservative perturbing forces. To obtain a formulation depenctert only ou the ebments, the disturbing function is developed in terms of the cloments through a formal Fourier series expansion. Also, the Fourier seried representation permite isolation of specific fiequeacieg in the motion by inspretion. If the series expansion is developer literally, Equations (2-3) can be ietegrated term by torm uaing the method of accessive approximations to obtain an aaalytical approximation to the solution (ikeference 2). This approach is ksown ae the method of general peiturbations.

Under the category of epecial perturbation methods, several mumerical techmiques have been developed for evaluating the osculating element rates given by Equations (2-3). A particular solution for these equations is then generated ueing a numerical integration procedure. There are essentially two formulatione of the special perturbation technique associated wtin the VOP formulation of the equations of motion. One formulation, associated with the name of Gauss, uses closed form expressions for the osculating element rates, i.e., the functions \mathbf{G}_{k} are formulated in terms of the components of the acceleration. The other formulation is based on \& Fourier series expansion for the disturbing fumetion as used in the seteral perturbation method except that the coefficienta are generated by some numerical scheme.

2.2 THIE GAELSSIAN VOV EGAIATION:
 Squation (2-5) is subetituted into Equations (2-8) to yiold

$$
\frac{\partial^{2} f_{i}}{\partial t^{2}}+\sum_{m=1}^{6} \frac{\partial i_{i}}{\partial a_{i}} \dot{a}_{m} \cdot k^{2} m \frac{t_{i}}{\left(\sum_{j=1}^{3} a_{i}^{t}\right)^{1 / 6}}=Q_{i}
$$

$(i=1,2,3) \quad(2-9)$

Clearly, the corresponding equation for the unowewrter motion is

$$
\frac{\partial^{2} f_{i}}{\partial x^{2}}+h^{\lambda} m \frac{t_{i}}{\left(\sum_{j=1}^{3} f_{i}^{2}\right)^{2 / 2}}=0
$$

(i $-1,2,3$)
$(2-10)$

Shbtrarting Equation ($9-10$) from tipation (2-9) gives

$$
\sum_{i=1}^{t} \frac{\Delta i_{i}}{\partial a_{i}} i_{i} \cdot \theta_{i}
$$

(i) $1,2,31$
$(2-11)$

Multiplying both sides of Equations $(2-11) b y \boldsymbol{m}_{\mathrm{i}}$ and somming over the index i vields

$$
\sum_{i=1}^{3} \sum_{i=1}^{6} \frac{\partial a_{j}}{\partial \dot{x}_{i}} \frac{\partial \dot{i}_{i}}{\partial a_{i}} \dot{i}_{i}=\sum_{i=1}^{i} \frac{d \dot{i}_{i}}{\partial \dot{x}_{i}} Q_{i}
$$

(i) $1,2, \ldots,(i)$
(2-12)

But

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\partial a_{j}}{\partial \dot{x}_{i}} \frac{\partial \dot{x}_{i}}{\partial a_{k}}=\delta_{j, k} \quad(j=1,2, \ldots, 6) \tag{2-13}
\end{equation*}
$$

where $\delta_{\mathrm{j}, \mathrm{k}}$ is the classical Kronecker delta function since the elements a_{k} are mutually independent. Consequently, Equation (2-12) takes the form

$$
\begin{equation*}
\sum_{k=1}^{6} \delta_{j, k} \dot{a}_{k}=\sum_{i=1}^{3} \frac{\partial a_{j}}{\partial \dot{x}_{i}} Q_{i} \tag{2-14}
\end{equation*}
$$

or, more simply,

$$
\begin{equation*}
\dot{a}_{j}=\sum_{i=1}^{3} \frac{\partial a_{j}}{\partial \dot{x}_{i}} Q_{i} \quad(j=1,2, \ldots, 6) \tag{2-15}
\end{equation*}
$$

This result is known as the Gaussian form of the VOP equations of motion. The right-hand side of these equations can also be formulated in cylindrical coordinates where the radial, transverse, and normal components of the acceleration are used. This particular form of the equations can be found in most celestial mechanics references (e.g., Reference 29). The Gaussian formulation is particularly attractive becuase it is appropriate for both conservative and nonconservative perturbations. However, because most accelerations are $k \times t$ formulated in terms of position or position and velocity rather than as a Fourier series expansion, periodic phenomena cannot be isolated from the acceleration model by selecting the appropriate terms by inspection. Therefore, a numerical procedure must be used for isolating specific frequencies in the motion.

Because of the flexibility and relative ease of implementation, the Gaussian formulation has been used in the development of numerical first-order averaging procedures (References 4,5,11,12,13, and 14). This formulation has the disadvantage that conversions from the elements to position and velocity must be applied whenever the element rates are evaluated, i.e., at every integration step. In the Lagrangian formulation, this particular disadvantage is avoided at the possible expense of the closed-form expressions for the equations of motion.

2. 5 THE LAGRANGE PLANETARY EQUATIONS

The derivation of the Lagrange VOP equations of motion (referred to as the Lagrange Planetary Equations) is identical to the Gaussian formulation through Equations (2-11), with the exception that the perturbing function or acceleration component, Q_{i}, is restricted to depend only on the position and can then be expressed as the gradient of the disturbing function, $R\left(x_{1}, x_{2}, x_{3}\right)$, i,e.,

$$
\begin{equation*}
Q_{i}=\frac{\partial R}{\partial x_{i}} \quad(i=1,2,3) \tag{2-16}
\end{equation*}
$$

Equations (2-11) then take the form

$$
\begin{equation*}
\sum_{k=1}^{6} \frac{\partial \dot{x}_{i}}{\partial a_{k}} \dot{a}_{k}=\frac{\partial R}{\partial x_{i}} \quad(i-1,2,3) \tag{2-17}
\end{equation*}
$$

Multiplying Equation (2-17) by $\partial x_{i} / \partial a_{j}$ and summing over i yields

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{k=1}^{6} \frac{\partial x_{i}}{\partial a_{i}} \frac{\partial \dot{x}_{i}}{\partial a_{k}} \dot{a}_{k}=\sum_{i=1}^{3} \frac{\partial x_{i}}{\partial a_{j}} \frac{\partial R}{\partial x_{i}}=\frac{\partial R}{\partial a_{j}}(j=1,2, \ldots, 6) \tag{2-18}
\end{equation*}
$$

Similarly, multiplying Equation (2-6) by $\partial \dot{x}_{i} / \partial a_{j}$ and summing over i yields

$$
\begin{equation*}
\sum_{i=1}^{3} \sum_{k=1}^{6} \frac{\partial \dot{x}_{i}}{\partial a_{j}} \frac{\partial x_{i}}{\partial a_{k}} \dot{a}_{k}=0 \tag{2-19}
\end{equation*}
$$

(It should be noted that x_{i} has been substituted for f_{i} in Equations (2-6).)
Sultreating Equation (2-19) from Equations (2-18) yields

$$
\begin{equation*}
\sum_{k=1}^{6}\left[a_{j}, a_{k}\right] \dot{a}_{k}=\frac{\partial R}{\partial a_{j}} \quad(j=1,2, \ldots, 6) \tag{2-20}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[a_{j}, a_{k}\right]=\sum_{i=1}^{3}\left(\frac{\partial x_{i}}{\partial a_{j}} \frac{\partial \dot{x}_{i}}{\partial a_{k}}-\frac{\partial \dot{x}_{i}}{\partial a_{i}} \frac{\partial x_{i}}{\partial a_{k}}\right) \tag{2-21}
\end{equation*}
$$

ts called the Lagrange Bracket.
Although there are a total of 36 Lagrange Brackets required for the complete set of equations specified by Equation (2-20), at most only fifteen must be determined because

$$
\begin{equation*}
\left[a_{j}, a_{j}\right]=0 \tag{2-22a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[a_{j}, a_{k}\right]=-\left[a_{k}, a_{j}\right] \tag{2-22b}
\end{equation*}
$$

These conditions follow from inspection of the definition given by Equations (2-21). It should be pointed out that the Lagrange Brackets depend only on the formulas for elliptic motion because

$$
\frac{\partial x_{i}}{\partial a_{k}} \equiv \frac{\partial f_{i}}{\partial a_{k}} \quad \text { and } \quad \frac{\partial \dot{x}_{i}}{\partial a_{k}} \equiv \frac{\partial}{\partial a_{k}} \frac{\partial f_{i}}{\partial t}
$$

The fifteen necessary Lagrange Brackete required for Equations (2-20) can be evaluated explicitly in terms of the elements and the system of equations inverted to yield $\dot{a}_{\mathbf{k}}$. An explanation of the evaluation of these quantities is presented in Heference 29.

An alternate derivation of the Lagrange Planetary Equations can be obtained with the aid of the following relation given by Broucke (Reference 30):

$$
\begin{equation*}
\frac{\partial a_{k}}{\partial \dot{x}_{i}}=-\sum_{j=1}^{6}\left(a_{k}, a_{j}\right) \frac{\partial x_{i}}{\partial a_{j}} \tag{2-23}
\end{equation*}
$$

where the quantity (a_{j}, a_{k}) is the well-known Poisson bracket and is defined in Cartesian coordinates by

$$
\begin{equation*}
\left(a_{n}, a_{j}\right)=\sum_{i=1}^{3}\left(\frac{\partial a_{k}}{\partial x_{i}} \frac{\partial a_{j}}{\partial \dot{x}_{i}}-\frac{\partial a_{k}}{\partial \dot{x}_{i}} \frac{\partial a_{j}}{\partial x_{i}}\right) \tag{2-24}
\end{equation*}
$$

Tho Poisson Brackets also share the properites of the Lagrange Brackets, i.e.,

$$
\begin{align*}
& \left(a_{k}, a_{k}\right)=0 \tag{2-25a}\\
& \left(a_{k}, a_{j}\right)=-\left(a_{j}, a_{k}\right) \tag{2-25b}
\end{align*}
$$

Equation (2-23) is immediately verified by direct substitution of the Poiseon Bractet definition.

Expreasing the Gaussian VOP equations (Equatione (2-15)) in terms of the disenrbing function yield

$$
\dot{a}_{n}-\sum_{i=i}^{3} \frac{\partial a_{k}}{\partial \dot{x}_{i}} \frac{\partial R}{\partial x_{i}} \quad \begin{align*}
& \text { ORIGNNAL PAGL } 14,2, \ldots, 6) \tag{2-26}\\
& \text { OF POOR QUALITY }
\end{align*}
$$

Subatituting the expression for $\partial a_{k} / \partial \dot{x}_{i}$ in Equation (2-23) into Equation (2-26) iromediately yields

$$
a_{n}=\sum_{j=1}^{6}\left(a_{n}, a_{j}\right) \sum_{i=1}^{3} \frac{\partial R}{\partial x_{i}} \frac{\partial x_{i}}{\partial a_{j}} \quad(k=1,2, \ldots, 6) \quad(2-27)
$$

or aimply

$$
\begin{equation*}
\dot{a}_{h}-\sum_{j=1}^{6}\left(a_{k}, a_{j}\right) \frac{\partial R}{\partial a_{j}} \tag{2-28}
\end{equation*}
$$

$$
(k=1,2, \ldots, 6)
$$

Equations (2-28) are the Poisson Bracket representation of the Lagrange Planetary Equations.

The relationship is $: i:$:en the Lagrange and Poisson brackets is immediately obtained by substituting Equation (2-28) into Equation (2-20). The result is

$$
\begin{equation*}
-\sum_{n=1}^{6} \sum_{j=1}^{6}\left[a_{i}, a_{k}\right]\left(a_{n}, a_{j}\right) \frac{\partial R}{\partial a_{j}}=\frac{\partial R}{\partial a_{i}} \tag{2-29}
\end{equation*}
$$

which requirea the condition

$$
\begin{equation*}
\sum_{k=1}^{6}\left[a_{i}, a_{k}\right]\left(a_{i}, a_{k}\right)=\delta_{i j} \tag{2-30}
\end{equation*}
$$

(Equation (2-25) was used to remove the negative sign in Equation (2-30).)
The particular VOP formulation adopted for this report is a modified version of Lagrange's Planetary Equations and is given by

$$
\begin{align*}
& \frac{d a_{i}}{d t}=-\sum_{j=1}^{6}\left(a_{i}, a_{j}\right) \frac{\partial R}{\partial a_{j}} \quad(i=1,2, \ldots, 5) \tag{2-31a}\\
& \frac{d L}{d t}=n-\sum_{j=1}^{6}\left(1, a_{j}\right) \frac{\partial R}{\partial a_{j}} \tag{2-31b}
\end{align*}
$$

Where n is the mean motion and a_{6} now denotes the variable L under the summation. The variable $\mathcal{\ell}$, referred to variously as the fast variable or the rapidly rotating phase, is not a true slowly varying element but is a linear combination of the time with an element such that

$$
\begin{equation*}
l=n t+a_{6} \tag{2-32}
\end{equation*}
$$

The parameter if measures the angular distance of the satellite from nome departure point in the orbit. This modification, which was made by Tisserand

ORIGNAL Page is
 OF POOR QUALITY

(Raference 31), is neceseary to avoid the presence of mixed secular terms in the equations of motion. A mixed secular term has the form

$$
\begin{aligned}
& t^{n} \cos m l \\
& t^{n} \sin m t
\end{aligned}
$$

and quickly degrades the aolution as time t increases. The appearance of such terms is not inherent to the problem but to the formulation of the problem. The mean motion, n, enters into Equations (2-31) through Equation (2-32). Use of the variable \& appears to have significantly changed the form of the Lagrange Planctary Equations. However, the original form of the equations given by Equations (2-28) is easily recovered by modifying the disturbing function with the addition of the negative of the total energy to the original disturbing function, i.e., if the semimajor axis is denoted by a, then

$$
R^{\prime}=R+\frac{\mu}{2 a}
$$

Equations (2-31) can then be explessed as

$$
\begin{equation*}
\frac{d a_{i}}{d t}=-\sum_{j=1}^{6}\left(a_{i}, a_{j}\right) \frac{\partial R^{\prime}}{\partial a_{j}} \tag{2-33}
\end{equation*}
$$

where a_{6} is understood to represent the variable $\&$. A more complete discussion of this question is presented by Plummer (Reference 32). This refinement is not a ceseary for the purpose of this investigation and, accordingly, will not le used.
2.4 DISCUSSION OF ORBITAL ELEMENT SETS

The preceding discussion of the VOP equations has made numerous references to the "elements" or "osculating elements." The question of which element set to use has not been addressed, and, in fact, a general discussion of the VOP formulation need not be concerned with any specific element set. However, the application of the VOP equations does require the selection of a set of elements. There are several well-known element sets, the best known of which is the set of cl. tical or Keplerian elements. The VOP equations formulated in Keplerian elements contain the eccentricity, e, and the sine of the inclination as divisors and therefore are singular for vanishing eccentricity and/or inclination. There are several nonsingular element sets available, and the choice of a particular set is arbitrary insofar as removing the singularities from the equations of motion. However, some of these sets can present a slight computational admantape over other set when converting from elements to position and velocity. For other applications, such as differential correction and error analysis procodures, the choice of the element set may no longer be quite so artibrary. According to Broucke and Cefola (Reference 33), the nonsingular set of elements, which are called equinoctial elements, can possess marked computational admantages over other nonsingular element sets.

The equinoctial element set, $a=(a, h, k, p, q, \lambda)$, is used in this investigation. It is defined in terms of the Keplerian elements by the following:
$a=a$
$h=e \sin (\omega+I \Omega)$
$k=e \cos (\omega+I \Omega)$
$p=\tan ^{I}(i / 2) \sin \Omega$
$q=\tan ^{I}(i / 2) \cos \Omega$
$\lambda=\boldsymbol{L}+\omega+I \Omega$
where I is the retrograde factor which takes on the values

$$
\begin{array}{ll}
I=1 & (\text { for } 0 \leq i \leq(\pi / 2)) \\
I=-1 & (\text { for }(\pi / 2)<1 \leq \pi)
\end{array}
$$

A more complete discussion of this element set, including the Lagrange and Poisson brackets and the conversion to position and velocity, is presented in Appendix A.

The VOP equations expressed in equinoctial elements take the form

$$
\begin{align*}
& \frac{d a}{d t}=\frac{2 a}{A} \frac{\partial R}{\partial \lambda} \tag{2-34a}\\
& \frac{d h}{d t}=\frac{B}{A}\left(\frac{\partial R}{\partial k}-\frac{h}{1+B} \frac{\partial R}{\partial \lambda}\right)+\frac{k C}{2 A B}\left(p \frac{\partial R}{\partial p}+q \frac{\partial R}{\partial q}\right) \tag{2-34b}
\end{align*}
$$

$$
\begin{equation*}
\frac{d k}{d t}=-\frac{B}{A}\left(\frac{\partial R}{\partial h}+\frac{k}{1+B} \frac{\partial R}{\partial \lambda}\right)-\frac{h C}{2 A B}\left(p \frac{\partial R}{\partial p}+q \frac{\partial R}{\partial q}\right) \tag{2-34c}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d p}{d t}=-\frac{p C}{2 A B}\left(k \frac{\partial R}{\partial h}-h \frac{\partial R}{\partial k}+\frac{\partial R}{\partial \lambda}\right)+\frac{I C^{2}}{4 A B} \frac{\partial R}{\partial q} \tag{2-34~d}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d q}{d t}=-\frac{q C}{2 A B}\left(k \frac{\partial R}{\partial h}-h \frac{\partial R}{\partial k}+\frac{\partial R}{\partial \lambda}\right)-\frac{I C^{2}}{4 A B} \frac{\partial R}{\partial p} \tag{2-34e}
\end{equation*}
$$

The dieturbing functiong presented in Volume II of this report are better expressed in terms of the direction cosines (α, β, γ) with respect to the equinoctial reference frame ($\widehat{f}, \hat{g}, \widehat{w}$) of either the equatorial \hat{z} axis or the third-body position vector, rather than in terms of the equinoctial elements p and q. Consequently, expressions of the form

$$
\begin{aligned}
& \frac{\partial R}{\partial p}=\frac{\partial R}{\partial \alpha} \frac{\partial \alpha}{\partial p}+\frac{\partial R}{\partial \beta} \frac{\partial \beta}{\partial p}+\frac{\partial R}{\partial \gamma} \frac{\partial \gamma}{\partial p} \\
& \frac{\partial R}{\partial q}=\frac{\partial R}{\partial \alpha} \frac{\partial \alpha}{\partial q}+\frac{\partial R}{\partial \beta} \frac{\partial \beta}{\partial q}+\frac{\partial R}{\partial \gamma} \frac{\partial \gamma}{\partial q}
\end{aligned}
$$

will be used to modify Equations (2-34) in order to accommodate the particuliar form of the disturbing functions. The following results, presented here without proof, are demonstrated in Volume II:

$$
\begin{equation*}
\frac{\partial \alpha}{\partial p}=-\frac{2}{c}(q \beta I+\gamma) \tag{2-35a}
\end{equation*}
$$

where C in defined as before. Substituting these expretaions into Equations (2-34) yimld the final form of the VOP equatione of motion weed in the current investigntion. i.e..

$$
\begin{align*}
& \frac{d a}{d t} \cdot \frac{2 a}{\lambda} \frac{\partial R}{\partial \lambda} \\
& \text { (2-38a) } \\
& \frac{d h}{d t} \cdot \frac{B}{A} \frac{\partial h^{\prime}}{\partial h} \cdot \frac{h}{A B}\left(p R_{a, r}-l q R_{a, r}\right)-\frac{h B}{A(1+B)} \frac{\partial R}{\partial \lambda} \quad(2-38 b) \\
& \frac{d k}{d t}-\left[\frac{B}{A} \frac{\partial R}{d h}+\frac{h}{A B}\left(p R_{A, t}-I q R_{A, r}\right)-\frac{k B}{A(t+B)} \frac{\partial R}{\partial \lambda}\right] \\
& \frac{d p}{d t}=\frac{c}{2 A B}\left[p\left(R_{h, k} \cdot R_{\alpha, \beta} \cdot \frac{\partial R}{\partial \lambda}\right)-R_{\theta_{1},}\right] \\
& \text { (2-38c): } \\
& \text { (2-38d) } \\
& \frac{d}{d t}=\frac{c}{2 A B}\left[g\left(R_{m, m}-R_{M A}-\frac{\partial R}{\partial \lambda}\right)-I R_{m_{1} r}\right] \\
& \frac{d \lambda}{d t}+n-\frac{d a}{A} \frac{\partial R}{\partial a}+\frac{8}{A(L+\theta)} R_{a, n}+\frac{s}{A B}\left(p R_{a, r}-I q R_{B, r}\right) \\
& \text { (2-38n) } \\
& \text { (2-38e) }
\end{align*}
$$!

where $A_{0} H_{0}$ and C are dined as in tommion (2-34) and

$$
R_{x, y}=\times \frac{\partial Q}{\partial y}-y \frac{\partial A}{d i}
$$

for any two variables x and y.
It thould be pointed out that a cowiderable simplificallon oceurs for the remonant third-body and zoanl harmonic perturations whete

$$
n_{n, k} \cdot n_{a, s}=0
$$

\square
II
\square
This aimplification was first reported in tazatione (5-57) of Referene ${ }^{6} 1$ and will be demonstrated in Volume Il of this nemert.

I
\square

SECTION 3 - THE AVERAGED VOP EQUATIONS OF MOTION

Classically, in the investigation of the long-period and secular motion of the planets, the Lagrangian Variation of Parameters (VOP) equations (known as the Lagrangian Planetary Equations) were expanded in a literal Fourier stries and, with the proper assumptions, the terms which contribute to the long-period and secular motion could be easily isolated by inspection. This technique produces excellent results when the perturbations are small, and it has been used extensively to investigate the planetary motions over long time intervals.

Alternatively, the long-period and secular contributions to the motion can be systematically isolated by applying the method of averaging to the VOP equations of motion to eliminate the short-period contributions. The solution of the result'ng system of averaged equations is a set of parameters, usually referred to as mean ${ }^{1}$ elements, that describe the long-period and secular deviations of the perturbed dynamical system from the unperturbed system.

The technique of eliminating the short-period terms from the equations of motion was without a mathematically rigorous foundation until the relatively recent work of Krylov and Logoliubov (Reference 6) on asymptotic methods for nonlinear oscillations. The theory of the method of averaging is based on Poincare's theory of asymptotic expansions (Reference 34) and the introduction by Krylov and Bogoliubov of the concept of a near-identity transformation. The theory hes been extended most notably by Mitropolsky (Reference 35).

Further elahoration and discussion of the theory has been contributed by several authors. Kruskal (Reference 36) remarked on ihe possibility of a recursively formulated general inversion of the near-identity transformation. Stern

[^5](Reforence 37) developed this recursive algorithm explicitly. ${ }^{1}$ Kyner (Reforence 38) and J. A. Morrison (Reference 39) have shown the Von Zeipel trinsformation methed to be a special case of the gencralized method of averaging, at loast to second order, thus establishing a direct link to the methods used in developing analytical satellite theories. ${ }^{2}$ F. Morrison (Reference 40) has presented a lucid discussion of the first-order appliention of the method. A discussion of the generalized mothod of averaging is also given by Nayfeh (Reference 41).

Although the discussion in this section is equally valid for many wher dynamieal systems, the primary objective of this report is the application of the method of averaging to the equations of motion for an artificial satellite. Consequently, the concepts of short and long period are developed in this context. Also, since the method of averaging can be appliod to either the Gaussian (Equation (2-15)) or Lagrangian (Equation (2-31)) formulation of the VOP equations, the general expression

$$
\begin{array}{ll}
\frac{d a_{i}}{d t}=\epsilon F_{i}(t, \ell) \\
\frac{d \ell}{d t}=n(a)+\epsilon F_{6}(\vec{a}, \ell) & (i=1,2, \ldots, 5)(3-1: a) \\
(3-1 b)
\end{array}
$$

(where \vec{a} consists of the five eloments n_{i}) is used in the following discussion.

[^6]In this section, the generalized method of averaging is applied to the VOP equations of motion to obtain systematically the equations for the long-period and secular motion. A discussion of the criteria for the selection of short-period terms is presented in Section 3.1, and the averaged equations of motion for a $s^{\text {: }}$ sle perturbing function are derived in Section 3.2. Section 3.3 extends the application of the method of averaging to cases with multiple perturbing functions. Next, in Section 3.4, the modifications required to extend the application of the method of averaging in the case of resonance phenomena is presented. Finally, the application of higher order averaging theories is discussed in section 3.5.

3.1 CRITERIA FOR SELECTING SHORT-PERIOD TERMS

The criteria for distinguishing short-period terms are, in general, subjective. The shortest period of significance in the equations of motion effectively constrains the integration step size. For efficient computation, it is desirable to maximize this step size while retaining the essential character of the motion over an extended interval of time. This is the primary consideration in the selection of appropriate criteria for distinguishing short-period phenomena. To illustrate this point, the following simple differential equation is considered:

$$
\dot{a}=C_{j} \cos \left[j\left(l-l_{0}\right)\right]
$$

In general, the minimum number of function evaluations required to integrate a function of this type over one period is four. The cosine function has three zeroes in the interval of one period. In view of the Fundamental Theorem of Algebra, any approximating polynomial which is valid over one complete period must be of at least third degree. Consequently, the function must be e:aluated at four points to determine the coefficients of this third-degree approximating polynomial, or, equivalently, the function and its first three derivatives can be evaluated at a single point, requiring four function evaluations. This does not mean that four function evaluations per period provide the best representation of the element rate in the example, but only that this is the minimum number of function evaluation per period required to obtain the gross behavior of the real solution. The accurate integration of such a periodic function using arbitrary, equally spaced abscissae would probably require six, and more likely, eight function evaluations per period, requiring a corresponding number of integration steps.

A useful criterion for the selection of long-period terms is provided by careful examination of the frequencies in the artificial satellite problem.

3.1.1 Satellite-Dependent Froquencies

The perturbing functions $F_{i}(\vec{a}, \boldsymbol{l})$ in Equations ($3-1$) are assumed to be 2π priodic in the satellite fast variable, \mathcal{L}. Some of the slow variables are angular quantitios (heplerian elements) or functions of angular quantities (equinoctial elements) that produce fundamental periods in the motion of order $\mathrm{O}_{\mathrm{f}} \mathrm{e}^{-1}$). If P_{i}^{\prime} denotes the fundamental period produced by one of the slow ly rarying angles and if the fundamental period produced by the fast variable ℓ is 2π, then the fundemental period, P_{i}^{\prime}, satiofies the relation

$$
P_{i}^{\prime} \geq \frac{2 \pi}{\epsilon\left|F_{i}\right|_{\max }}
$$

If the quantity $\left|F_{i}\right|_{\text {max }} \ll 1$, the period P_{i}^{\prime} must $b x^{\prime}$ such that $v_{i}^{\prime} \gg 2 \pi$, i.e., it is much greater than the periods contribubed by terms containing the fast variable \& . In addition, the lop formulation implicitly assumes that the quantity $\epsilon\left|F_{i}\right|_{\text {max }}$ is not large. This discussion suggests that terms dependent on the satellite fast variable \mathcal{L} and all multiples of $\boldsymbol{\ell}$ (i.e,, m $\boldsymbol{\ell}$, where $m \quad 1,2,3, \ldots$, which are of period $2 \pi \mathrm{~m}$, be considered to be short periodic as conpared with terms containing the slowly varying angular quantities. Consequently, all terms with periods of the same order of magnitude as the satellite period and all smaller periods will be considered to be short period terms.

Other variables which can introduce short-period cflects also appear in the perturbing function. More sperifically, the effects on the satellite motion caused by the fast variable of the disturbing third body (i.e., Moon, sun, etc.) or the Greenwich Hour Angle in the nouspherical gravitational powntial model must be considered.

3.1.2 Third-Body Fifects on the Mation

The presence of the disturbing third-body fast variable in the equations of motion will contribute terms with a fundamental period of approximately $2 s$ days for the Moon and lear for the sun. ? ?ither of the se can certainly be considered to
produce long-period effects (relative to the satellite period) in the motion of the vast majority of artificial Earth satellites. An infinity of multiples of the thirdbody fast variable also appear in the third-body model. Such terms will contribute the periodicities P_{n}^{*} to the motion of the satellite where

$$
P_{n}^{*}=\frac{P^{*}}{n} \quad(n=1,2,3 \ldots)
$$

and where P^{*} is the fundamental period produced by the fast variable of the disturbing body.

Clearly, as n increases, the periods P_{n}^{*} decrease; therefore, very high harmonics in the third-body perturbation model will contribute terms with periods similar to that of the Earth satellite, thus introducing third-body-dependent shcrt-period terms. However, in the absence of resonance, the coefficients of these high-harmonic terms are very small in magnitude, readering the contributions of these terms insignificant. ${ }^{1}$ Consequently, the third-body motion (in the absence of resonance) contributes significant effects with periods of $\mathbf{P}^{*} / \mathbf{n}$, where n usually remains a small integer. Such periods are, in most cases, still very long compared with the periods of most Earth satellites.

However, certain classes of satellites (e.g., Interplanetary Monitoring Platform (IMP) satellites) have orbital periods comparable to the periods of the lower harmonic lunar terms cited above. For this class of satellites, the lunar effects on the motion cannct be considered to be long period. However, in the case of a strong resonance, a long-period component of the motion is introduced. The period of the resonant or critical term is significantly greater than the period of the satellite.
${ }^{1}$ In resonance, the commensurability between the mean motion of the satellite and the mean motion of the third body or the Earth's rotation rate causes the appearance of a small divisor in the coefficient of the critical term, resulting in a significantly increased miagnitude for the coefficient and a corresponding increase in the contribution of the term.

3.1.4 Implications for the Application of the Method of Averaging

The method of averaging is best suited to cases where quite distinct groups or families of frequencies are present. Each of these distinct families is introcluced by its own source, and the distinction is found in the specific frequencies and amplitudes introduced. Occasionally, the higher frequencies in one family approach the primary frequency in another family and the separate contributions become more difficult to distinguish. Furthermore, elimination of one of these families of frequencies by a single application of the method of areraging does not eliminate the similar frequencies contributed by the other famuly. ${ }^{1}$
Additional applications of the averaging procedure are expensive in the numerical averaging approach or require multiple forms of the analytically averaged equations of motion necessary for all cases that might be encountered. Also, multiple applications of the averaging procedure are not always suitable as a bechnique for developing a reasonably accurate orbit generator. In contrast to a second averaging procedure, other means sometimes exist for eliminating unvanted high frequencies in the motion.
Proper restriction of the tesseral harmonic terms in the nonspherical gravitational model will eliminate the θ-dependent short-period terms they introduce into the motion. Such a restriction has no effect on the secular motion, at least to first order, since the tesseral harmonics produce no secular contributions to the motion to first order (Reference 2). In fact, for all nonresonant satellites, it ie recommended that the contribution of all tesseral harmone terms be deleted from the averaged equations of motion.
In the case of exact resonance, two of the families of frequencies are no longer distinct. The frequencies in one of the families appear to be integral multiples of the frequencies in the other family. Furthermore, a single application of the averaging procedure will remove all frequencies contributed by both sources up to a cut-off frequency specified in the averaging operation. 'This is discussed in more detail in section 3.4.

The inclusion of these medium-period and θ-dependent short-proiod contributions in the evaluation of the mean element rates severely restricts the step size in the numerical integration procedure. The medium-period contributions have periods of 24 hours or less and they necessarily restrict the integration step size to at most 3 to t hours. Although the amplitudes of these terms are not negligible, they do not significantly affect the long-term motion as compared with the long-period and secular contributions of the zonal harmonics. Furthermore, these medium-period tesseral harmonic contributions can be evaluated analytically in the same manner, and at the same time if desired, as the shortperiod element variations discussed in Section t.

If the medium-period effects contributed by the low-order zonal harmonics are retained in the equations of motion, the θ-dependent short-period terms should still be eliminated as described above, since it is inconsistent to eliminate the satellite-dependent short-period terms while retaining the θ-dependent terms with similar periods. This, in effect, defeats the whole purpose in the application of the method of areraging by imposing small step sizes in the numerical integration procedure. The arbitrary imposition of larger step sizes in this case causes these θ-dependent short-period terms to introduce spurious noise in the mean element rates and, consequently, in the numerically integrated solution. This is explained by the fact that the contributions of these short-period terms are propagated through the numerical integration as though it were part of the contribution of a term with a perod approximately six to sight times the step-size interval.

The effects caused by the third body can be considered as exclusively long-period for the vast majority of artificial satellites. However, for ver-long-period satellites (such as the IMP class with periods of suveral days), the third-body (lunar) contribution can in no way be considered to be long period and the application of the method of averaging must be reevaluated in this light.

The usual procedure in these cases has been to use Gauss' method of secular perturbations (Reference 32), which is also referred to as the method of double averaging. In this approach, the method of averaging is applied twice in succession, once to remove the satellite-dependent frequencies and then again to remove the third-body-dependent frequencies. While this method does isolate the secular motion of the satellite quite well, the periodic variations contributed by the third body to the motion of the satellite may have amplitudes of several thousands of kilometers. The elimination of such contributions is usually not suitable for generating a reasonably accurate satellite ephemen The alternative of using a high-precision technique to generate a satellite ephemeris should be strongly considered in this case, since such large step sizes are appropriate even for the frequencies in the high-precision case.

A strong resonance in the problem introduces a long-period contribution to the satellite motion of considerably larger period than either the satellite or lunar periods. In this instance, a single application of the method of averaging will isolate these contrikutions to the motion. However, due to the strong shortperiod variations in the problem contributed by the fast variahles of the satellite and third body, a second or higher order averaging theory is probably required. This is also probably true for the double averaging approach discussed above. Based on the above discussion, a single application of the method of averaging is used in the development of the semianalytical theory presented in this report. The θ-dependent short-period terms will be eliminated by appropriate :estriction of the potential model. Although it is not recommended, ${ }^{1}$ the theory for the medium-period contributions to the equations of motion will be developed. The third-body theory developed in this report is restricted to nonresonant cases only and to satellites with periods significantly shorter than the third-body orbital period.

[^7]

3. 2 THF AVERAGED EQUATIONS OF MOTION FOR A SINGLE PERTURBING FUNCTION

The followins eet of diferential equations is considered:

$$
\begin{array}{ll}
\frac{d a_{i}}{d t}=\epsilon F_{i}(\vec{a}, \ell) & (i=1,2, \ldots, 5) \\
\frac{d l}{d t}=n\left(a_{1}\right)+\epsilon F_{6}(\vec{a}, l)
\end{array}
$$

Whore the vector $\stackrel{\rightharpoonup}{\mathbf{a}}$ conslets of the five slowly varying elements a_{i}. The nearidenity transformation from (\vec{a}, ℓ) to $(\overrightarrow{\bar{a}}, \bar{\ell})$ is assumed to take the form

$$
\begin{align*}
& a_{i}=\bar{a}_{i}+\sum_{j=1}^{n} d \eta_{i, j}(\bar{a}, \bar{l})+O\left(\epsilon^{N+1}\right) \quad(i-1,2, \ldots, 5)(3-3 a) \\
& \ell=I+\sum_{j=1}^{n} \epsilon^{j} \eta_{6, j}(\bar{a}, \bar{l})+O\left(\epsilon^{i+1}\right) \tag{3-3b}
\end{align*}
$$

where the functions $\boldsymbol{r}_{i, j}$ are 2π periodic in $\overline{\boldsymbol{l}}$. The barred varinbles are reforred to as moan elements. The quantity c is assumed to be a small paramoter, e. g., a coefficient in one of the terms of the spherical harmonic expasaion of the geopotential model or the ratio of the semimajor axes of the satellite and third-body orbits in the series expansion of the third-body disturbing function. The presence of such a small parameter is basic to the method of averaging.
F. the application of the method of averaging, the transform of the original ayetem of equation (Equation $(3-2))$ (i.e., the enuations of motion for the mern elemente) is assunned to be of the form

$$
\begin{align*}
& \frac{d t_{i}}{d t}=\sum_{i=1}^{n} i^{j} A_{i, j}\left(\frac{t}{a}\right)+O\left(e^{n+1}\right) \quad(i=1,2, \ldots, 5)(3-4 a) \\
& \frac{d I}{d t}=n\left(d_{1}\right)+\sum_{j=1}^{n} a^{j} A_{6, j}(a)+O\left(a^{n+1}\right) \tag{3-4b}
\end{align*}
$$

so that the rate of change of the mean elements depends only an the slowly varying mean elements.
Basically, the procedure for obtaining the mean element equations of motion is to express both sides of Equation (3-2) in terms of the mean elements ($\mathbf{i}, \boldsymbol{i}$). Equations (3-3) and (3-4) are used to transform the left-hand side of Equation (3-2). The perturbing function on the right-hand side is expanded in a Taylor oeries about the meat elements and then rearranged as a power deries in the small parameter ϵ. The resulting equations are aleraged such that all dependenct on the mean fast variable is eliminited. The final reault yields oriter-by-orider expressions for the moan element rates, $\lambda_{1, j} j(\overrightarrow{\bar{a}})$, in terme of aitably averaged functions of the perturbing fuaction and its partial derivatives.

3.2.1 Yormulation of the VOP Equations in Mean Elements

Equatione (3-2) are expresived in terms of mean elements as follume. Tiest Equation (3-3) is differentiated. obtaining expressions for the oactating owment rates which depent only ou the correspondimg mean elemonts and thet rates, $\mathrm{h}_{\mathrm{c}} \mathrm{e}$.

$$
\begin{align*}
& \frac{d a_{i}}{d t} \cdot \frac{d \bar{a}_{i}}{d t} \cdot \sum_{j=1}^{n} j \sum_{n=1}^{b} \frac{\partial \eta_{i_{i, j}}}{\partial \bar{a}_{n}} \frac{d \bar{a}_{k}}{d t} \cdot O\left(\epsilon^{N+1}\right) \quad(i \quad 1,2, \ldots, 5)(3-5 \pi) \\
& \frac{d t}{d t} \cdot \frac{d i}{d t} \cdot \sum_{j=1}^{n} \epsilon^{j} \sum_{i=1}^{6} \frac{d \eta_{s i j}}{d \bar{\sigma}_{n}} \frac{d \bar{\sigma}_{n}}{d t}+O\left(\epsilon^{m-1}\right) \tag{2}
\end{align*}
$$

where \bar{a}_{6} is understood to wesignate $\overline{\boldsymbol{i}}$ under the summation. substituting Liquations ($3-4$) into tiguations ($3-5$). thus introtucian the fuactions $i_{i_{4}}$, icto the equations of motion for the osculatiag elements, results in the expressione

$$
\begin{aligned}
\frac{d a_{i}}{d t} \cdot & \sum_{j=1}^{n} e^{i}\left[A_{i, j}(t)+n\left(a_{i}\right) \frac{\partial \eta_{i, j}}{\partial t}\right. \\
& \left.* \sum_{m=i}^{\infty} e^{m} \sum_{m=1}^{\infty} A_{n, k} \frac{\partial \eta_{i, j}}{\partial a_{k}}\right]+O\left(e^{n o t}\right)
\end{aligned}
$$

$$
\begin{align*}
\frac{d l}{d t}= & n\left(\bar{a}_{1}\right)+\sum_{j=1}^{N} \epsilon^{j}\left[A_{6, j}(\vec{a})+n\left(\bar{a}_{1}\right) \frac{\partial \eta_{6, j}}{\partial \bar{l}}\right. \\
& \left.+\sum_{m=1}^{N-j} \epsilon^{m} \sum_{k=1}^{6} A_{k, m}(\overline{\bar{a}}) \frac{\partial \eta_{6, j}}{\partial \bar{a}_{k}}\right]+O\left(\epsilon^{N+1}\right) \tag{}
\end{align*}
$$

The form of these expressions can be rearranged to give

$$
\begin{align*}
\frac{d a_{i}}{d t}= & \sum_{j=1}^{N} \epsilon^{j}\left[A_{i, j}(\vec{a})+n\left(\bar{a}_{1}\right) \frac{\partial \eta_{i, j}}{\partial \bar{l}}\right. \\
& \left.+\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p}(\vec{a}) \frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}\right]+O\left(\epsilon^{N+1}\right) \\
\frac{d l}{d t}= & n\left(\bar{a}_{1}\right)+\sum_{j=1} \epsilon^{j}\left[A_{6, j}(\vec{a})+n\left(\bar{a}_{1}\right) \frac{\partial \eta_{6, j}}{\partial \bar{l}}\right. \\
& \left.+\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p}\left(\frac{t}{a}\right) \frac{\partial \eta_{6, j-p}}{\partial a_{k}}\right]+O\left(\epsilon^{N+1}\right) \tag{3-7b}
\end{align*}
$$

The summation over p is not performed for $\mathrm{j}=1$ and thus does not contribute to the first-order terms.

Next, the perturbing functions on the right-hand side of Equations (3-2) are expanded via a Taylor series about the mean elements as follows:

$$
F_{i}(\vec{a}, l)=\left.\sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{k=1}^{6} \Delta a_{k} \frac{\partial}{\partial \bar{a}_{k}}\right)^{n} F_{i}(\vec{a}, l)\right|_{\substack{a=\frac{\pi}{l} \\ l=\bar{l}}}(i=-1,2, \ldots, 6)(3-8)
$$

where $\Delta a_{k}=a_{k}-\bar{a}_{k}$ are defined by Equation (3-3). The notation $\partial /\left(\partial \bar{a}_{k}\right)$ denotes the operation

$$
\left.\frac{\partial}{\partial a_{k}}\right|_{a_{k}=\sigma_{k}}
$$

and for the sake of conciseness will be used throughout this report. Rearranging Equation (3-8) as a power series in ϵ yields

$$
F_{i}(\vec{a}, l)=\sum_{j=0}^{N} \epsilon^{j} f_{i, j}(\vec{a}, \bar{l})+O\left(\epsilon^{N+1}\right) \quad(i=1,2, \ldots, 6) \quad(3-9)
$$

where

$$
\begin{align*}
& f_{i, 0}(\overline{\bar{a}}, \bar{l})=F_{i}(\overline{\bar{a}}, \bar{l}) \tag{3-10a}\\
& f_{i, 1}(\overline{\bar{a}}, \bar{l})=\sum_{k=1}^{6} \eta_{k, 1} \frac{\partial F_{i}}{\partial \bar{a}_{k}}
\end{align*}
$$

$$
\begin{equation*}
f_{i, 2}(\overline{\bar{a}}, \bar{l})=\sum_{k=1}^{6}\left(\eta_{k, 2} \frac{\partial F_{i}}{\partial \bar{a}_{k}}+\frac{1}{2} \sum_{l, 1}^{6} \eta_{k, 1} \eta_{l, 1} \frac{\partial^{2} F_{i}}{\partial a_{k} \partial \bar{a}_{l}}\right) \tag{3-10c}
\end{equation*}
$$

originat, page lis OF POOR QUALII'Y

$$
\begin{align*}
f_{i, 3}\left(\vec{a}_{1}, \bar{l}\right) & =\sum_{k=1}^{6}\left\{\eta_{k, 3} \frac{\partial F_{i}}{\partial \bar{a}_{k}}+\frac{1}{2} \sum_{l=1}^{6}\left[\left(\eta_{k, 2} \eta_{l, 1}+\eta_{k, 1} \eta_{\ell, 2}\right)\right.\right. \tag{3-10,1}\\
& \left.\left.\times \frac{\partial^{2} F_{i}}{\partial \bar{a}_{k} \partial \bar{a}_{l}}+\frac{1}{3} \sum_{j=1}^{6} \eta_{k, 1} \eta_{l, 1} \eta_{j, 1} \frac{\partial^{3} F_{i}}{\partial \bar{a}_{k} \partial \bar{a}_{l} \partial \bar{a}_{j}}\right]\right\}
\end{align*}
$$

ete. The mean motion, $n\left(a_{1}\right)$, is also expanded in a Taylor series about the mean element, \bar{i}_{1}, i.e.,

$$
\begin{equation*}
n\left(a_{1}\right)=\sum_{k=0}^{\infty} \frac{\left(\Delta a_{1}\right)^{k}}{k!} \frac{d^{k} n}{d a^{k}} \tag{3-11}
\end{equation*}
$$

Rearranging Equation (3-11) as a power sories in e fichds

$$
\begin{equation*}
n\left(a_{1}\right)=\sum_{k=0}^{N} \epsilon^{k} N_{k}(\overrightarrow{\bar{a}}, \bar{\ell})+O\left(\epsilon^{N+1}\right) \tag{i-1:2}
\end{equation*}
$$

where

$$
\begin{align*}
& N_{0}\left(\frac{1}{a}, \bar{l}\right)=n\left(\bar{a}_{1}\right)=\pi \\
& N_{1}(\bar{a}, \bar{l})=-\frac{3}{2} \frac{\bar{n}}{\bar{a}} \eta_{1,1} \\
& N_{2}(\bar{a}, \bar{l})=\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}} \eta_{1,1}^{2}-\frac{3}{2} \frac{\bar{n}}{\bar{a} 1} \eta_{1,2} \tag{3-1:3b}\\
& N_{3}\left(\frac{1}{a}, \bar{l}\right)=-\frac{35}{16} \frac{\bar{n}}{\overline{a_{1}^{3}}} \eta_{1,1}^{3}+\frac{15}{8} \frac{\bar{n}}{a_{1}^{2}} \eta_{1,2} \eta_{1,1}-\frac{3}{2} \frac{\bar{n}}{\overline{a_{1}}} \eta_{1,3} \tag{3-130}
\end{align*}
$$

etc. Substituting Equations (3-7), (3-9), and (3-12) into Equation (3-2) completes the transformation. Equating terms with like powers of ϵ yields the expressions for the jth-order contribution to the osculating element rates, i.e.,

$$
\begin{align*}
& A_{i, j}(\overline{\bar{a}})+\bar{n} \frac{\partial \eta_{i, j}}{\partial \bar{l}}+\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p}(\overrightarrow{\bar{a}}) \frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}=f_{i, j-1}(\overline{\bar{a}}, \bar{l}) \\
& (i=1,2, \ldots, 5) \\
& A_{6, j}(\overrightarrow{\bar{a}})+\bar{n} \frac{\partial \eta_{6, j}}{\partial \bar{l}}+\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p}(\overrightarrow{\bar{a}}) \frac{\partial \eta_{6, j-p}}{\partial \bar{a}_{k}}=f_{6, j-1}(\overrightarrow{\bar{a}}, \bar{l})+N_{j} \tag{3-14b}
\end{align*}
$$

3.2.2 Elimination of the Fast Variable Dependence

In order to determine the averaged equations of motion (Equation (3-4)), the functions $A_{i, j}$, which depend only on the slowly varying mean clements, must be related to the perturbing function or its power series representation. At first glance, it appears that this is accomplished in Equations (3-14). However, the functions $\eta_{i, j}$ are as yet undetermined, except that they are constrained to be 2π periodic in the mean fast variable, $\overline{\boldsymbol{l}}$. Fortunately, this condition permits the elimination of the mean fast variable dependence. Integrating both sides of Equation (3-14) over the mean fast variable, $\overline{\boldsymbol{\ell}}$. on the interval $[0,2 \pi]$ eliminates the function $\partial \eta_{i, j} / \partial \bar{\ell}$. This procedure of definite integration is referred to as the averaging operation and is written as

$$
\begin{equation*}
\left\langle H(\bar{a}, \bar{l}) \sum_{i}=\frac{1}{2 \pi} \int_{0}^{2 \pi} H(\bar{a}, \bar{l}) d \bar{l}\right. \tag{3-15}
\end{equation*}
$$

Some properties of the averaging operation derived from the above definition are as follows. If $X(\bar{A}, \bar{\ell})$ and $\bar{i}(\overline{\bar{A}}, \bar{\ell})$ are two functions (appropriately continuous and differentiahle) which are 2π periodic in $\bar{\ell}$, then

$$
\begin{align*}
& \langle x(\dot{\bar{a}}, \bar{l}))_{\bar{l}}=C\left(\frac{\hat{a}}{a}\right) \quad \begin{array}{l}
\text { MiINNI PAGE IS } \\
\end{array} \\
& \langle x(\vec{a}, \bar{l}) y(\vec{a}, \bar{l})\rangle_{\bar{l}} \neq\langle x(\vec{a}, \bar{l})\rangle_{\bar{l}}\langle y(\vec{a}, \bar{l})\rangle / \bar{l} \\
& \langle x(\vec{a}, \bar{l})+Y(\vec{a}, \bar{l})\rangle_{\bar{l}}=\langle x(\vec{a}, \bar{l})\rangle_{\bar{l}}+\langle Y(\vec{a}, \bar{l})\rangle_{\bar{l}} \\
& \langle\rho x(\vec{a}, \bar{l})\rangle_{\bar{l}}=\rho\langle x(\overrightarrow{\vec{l}}, \bar{l})\rangle_{l} \tag{3-16~d}\\
& \frac{\partial}{\partial \bar{a}_{k}}\langle x(\vec{a}, \bar{l})\rangle_{\bar{l}}=\left\langle\frac{\partial x(\vec{a}, \bar{l})}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}
\end{align*}
$$

where ρ is any function independent of $\overline{\boldsymbol{\ell}}$. These properties will be used implicitly throughout the remainder of this section. leseause $\eta_{i, j}$ is 2π periodic in $\bar{\ell}$ (a condition of the near-identity transformation),

$$
\begin{equation*}
\left\langle\bar{n} \frac{\partial \eta_{i, j}}{\partial \bar{l}}\right\rangle_{\bar{l}}=0 \tag{3-17}
\end{equation*}
$$

In view of Equation (3-17), the averaging operation also yields

$$
\left\langle\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p}(\overline{\bar{a}}) \frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}=\sum_{k=1}^{5} \sum_{p=1}^{j-1} A_{k, p}(\overrightarrow{\bar{a}})\left\langle\frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}^{(\vec{a}-18)}
$$

As a result, the averaged equations representing the ith-order contribution to the mean element rates are

$$
\begin{align*}
A_{i, j}(\vec{a})=\left\langle f_{i, j-1}(\vec{a}, \bar{l})\right\rangle_{\bar{l}}-\sum_{p=1}^{j-1} \sum_{k=1}^{5} A_{k, p}(\bar{a})\left\langle\frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}{ }_{(3-19 a)} \tag{3-19a}\\
(i=1,2, \ldots, 5) \\
A_{6, j}(\overrightarrow{\bar{a}})=\left\langle f_{6, j-1}(\vec{a}, \bar{l})+N_{j}\right\rangle_{\bar{l}}-\sum_{p=1}^{j-1} \sum_{k=1}^{5} A_{6, p}(\vec{a})\left\langle\frac{\partial \eta_{6, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}
\end{align*}
$$

These equations can be simplified by requiring that

$$
\begin{equation*}
\left\langle\frac{\partial \eta_{i, j, p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{i}}=0 \tag{3-20}
\end{equation*}
$$

$$
\begin{aligned}
& (\mathrm{i}=1,2, \ldots, 6)(3-20) \\
& (\mathrm{k} \quad 1,2, \ldots, 5)
\end{aligned}
$$

or, equivalently,

$$
\begin{equation*}
\left\langle\frac{d a_{i}}{d t}\right\rangle_{\bar{l}}=\frac{d \bar{a}_{i}}{d t} \text { and }\left\langle\frac{d l}{d t}\right\rangle_{\bar{l}}=\frac{d \bar{l}}{d t} \tag{3-21}
\end{equation*}
$$

which follows from the application of the averaging operation to Equations (3-5). Consequently, the mean elements ($(\stackrel{\bar{a}}{\bar{a}}, \bar{l})$ represent the long-period and secular contributions to the osculating elements (\vec{a}, \mathcal{l}) to within a constant, and

$$
\begin{equation*}
\left\langle\eta_{i, j}(\vec{a}, \bar{l})\right\rangle_{\bar{l}}=c_{i, j} \tag{3-22}
\end{equation*}
$$

where $C_{i, j}$ is a constant. Equation (3-22) follows from Equations (3-20) and (3-17). A logical extension of the constraint in Equation (3-20) is to require that these constants vanish identically, ie.,

$$
\begin{equation*}
c_{i, j} \equiv 0 \tag{3-23}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\langle a_{i}\right\rangle_{\bar{l}}=\bar{a} \quad \text { and } \quad\langle\ell\rangle_{\bar{l}}=\bar{\ell} \tag{3-24}
\end{equation*}
$$

Initially, in the development of the averaged equations, the functions $\eta_{i, j}$ were quite arbitrary except for the condition of 2 periodicity in $\overline{\boldsymbol{\ell}}$. Equation (3-20) restricts these functions to contain only short-period, mixed short-period, ${ }^{1}$ and constant terms. Equation ($3-23$) further restricts these functions to pure and mixed short-period terms only. That such restricted functions can be determined is demonstrated below.

Applying the constraint expressed in Equation (3-20), Equations (3-19) reduce to

$$
A_{i, j}\left(\frac{1}{a}\right)=\left\langle f_{i, j-1}(\overrightarrow{\bar{a}}, \bar{l})\right\rangle_{\bar{l}} \quad(i=1,2, \ldots, 5) \quad(3-25 a)
$$

$1 \begin{aligned} & \therefore 1 \\ & 1\end{aligned}$ 9

$$
A_{G_{i j}}\left(\frac{a}{a}\right)=\left\langle f_{6, i-1}\left(\frac{a}{a}, \vec{l}\right)+N_{j}\right\rangle_{\bar{l}}
$$

The averaged equations of motion are now completely specified in terms of the expansion of the perturbing function and, in the case of the variable $\overline{\boldsymbol{i}}$, the expansion of the osculating mean motion. More explicitly, substituting Equations (3-25) into Equations (3-4) yields the following expressions for the areraged equations of motion:

$$
\begin{align*}
& \frac{d \bar{a}_{i}}{d \bar{t}} \cdot \sum_{j=1}^{N} e^{j}\left\langle f_{i, j-2}\left(\frac{k_{i}}{i} \bar{l}\right)\right\rangle_{\bar{l}}+O\left(\epsilon^{N / 2}\right) \quad(i=1,2, \ldots, 5) \quad(3-26 a) \\
& \frac{d \bar{l}}{d t}=n\left(\bar{a}_{1}\right)+\sum_{j=1}^{N} \epsilon^{j}\left\langle f_{6, j-1}(\hat{a}, \bar{l})+N_{j}\right\rangle_{\bar{l}}+O\left(\epsilon^{N+1}\right) \quad(3-26 b) \tag{3-26b}
\end{align*}
$$

The functions $f_{i, k}$ and N_{k} for $k \geq 1$ are formulated in terms of the as yet undetermined short-periodic functions $\boldsymbol{\eta}_{\mathrm{i}, \mathrm{j}}$. This dependence is shome explicitly in Equations (3-10) and (3-13). The averaging operation does not free the averaged equations of all contributions from the short-periodic terms. Such contributions are, in fact, the source of the higher ordor terms in the areraged equations of motion. The product of two short-period functions can yield a longperiod term; for example, in the product

$$
[h(\vec{a}) \sin \bar{I}][g(\vec{a}) \sin \bar{l}]=\frac{1}{2} h(\bar{a}) g(\vec{a})-\frac{1}{2} h(\vec{a}) g(\vec{a}) \cos 2 \bar{l}
$$

both factors are of short period, yet the product contains a long-period term (i.c., a term independent of $\overline{\mathbf{L}}$).

Inspection of Equations (3-10) and (3-13) indicates that products of the partial derivatives of the osculating force function, F_{i}, with the functions $\eta_{i, j}$ appear, as do products involving two or more of the functions $\eta_{i, j}$. Such products can produce long-period terms, as described in the above example, that will always be of second or higher order in the small parameter.
3.2.3 Determination of the Short-Period Functions, $\boldsymbol{n}_{\mathrm{i}_{2}}$ d

The general formulation of the averaged equations of motion is completed by obtraining the functions $\eta_{i, j}$ from the information contained in the method of averaging. In the following discussion, these functions are determined without the constraints expressed by Equations (3-20) and (3-23). However, the justification for these constraints is demonstrated.

A partial differential equation for the functions $\boldsymbol{\eta}_{i, j}$ is obtained by subtracting Equations (3-19) from Equation (3-14), yielding

$$
\begin{align*}
& \bar{n} \frac{\partial \eta_{i, j}}{\partial \bar{l}_{l}}+\sum_{p=1}^{j-1} \sum_{k=1}^{6} A_{k, p}\left(\frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}-\left\langle\frac{\partial \eta_{i, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}\right)_{(i=1,2, \ldots, 5) \quad(3-27 a)} \\
& =f_{i, j-1}=\left\langle f_{i, j-1}\right\rangle_{\bar{l}} \\
& \bar{n} \frac{\partial \eta_{6, j}}{\partial \bar{l}_{l}}+\sum_{p=1}^{j-1} \sum_{k=1}^{6} A_{k, p}\left(\frac{\partial \eta_{6, j-p}}{\partial \bar{a}_{k}}-\left\langle\frac{\partial \eta_{6, j-p}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}\right) \\
& =f_{6, j-1}+N_{j}-\left\langle f_{6, j-1}+N_{j}\right\rangle_{I}
\end{align*}
$$

If the superscript S denotes the short-periodic part. of a function such that

$$
f_{i, j-1}^{s}=f_{i, j-1}-\left\langle f_{i, j-1}\right\rangle
$$

then the preceding equations can be expressed as

$$
\begin{align*}
& \bar{n} \frac{\partial \eta_{i, j}}{\partial \bar{l}}=f_{i, j-1}^{s}-\sum_{p=1}^{j-1} \sum_{k=1}^{6} A_{k, p} \frac{\partial \eta_{i, j-p}^{s}}{\partial a_{k}} \quad(i=1,2, \ldots, 5)\left(3-2 \gamma_{a}\right) \\
& \bar{n} \frac{\partial \eta_{6, j}}{\partial \bar{l}}=f_{6, j-1}+N_{j}-\sum_{p=1}^{j-1} \sum_{k=1}^{6} A_{k, p} \frac{\partial \eta_{6, j-p}^{s}}{\partial \bar{a}_{k}} \tag{3-28b}
\end{align*}
$$

Inspection of Equations (3-28) indicates that the functions $\eta_{i, j}(i=1,2, \ldots, 5)$ depend only on quantities of lower order. In the case of the sixth variable $\overline{\boldsymbol{l}}$, the function $\boldsymbol{\eta}_{6, j}$ also depends on the jth-order function $\eta_{1, j}$ introduced through the term N_{j}. Hence, the function $\eta_{1, j}$ must be determined prior to the function $\boldsymbol{n}_{6, j}$ -

These functions are determined to within an arbitrary function of the slow varfables, $\bar{\lambda}$, by developing the right-hand side of Equations (3-28) into multiple Fourier series and integrating term by term. More explicitly,

$$
\begin{align*}
& \eta_{i, j}=\frac{1}{\bar{N}} \int\left[f_{i, j-1}(\bar{k}, \bar{l})-\sum_{k=1}^{t} \sum_{p=1}^{j-1} A_{k, p} \frac{\Delta \eta_{i, j-p}^{s}}{\partial \bar{a}_{k}}\right] d \bar{l} \tag{3-29a}\\
& (i=1,2, \ldots, 5)
\end{align*}
$$

The functions $\eta_{i, j}$ therefore have the form

$$
\begin{equation*}
\eta_{i, j}(\vec{a}, \bar{l})=\alpha_{i, j}(\vec{a}, \bar{l})+c_{i, j}(\vec{a}) \tag{3-30}
\end{equation*}
$$

where $\alpha_{i, j}$ is a 2π periodic function of $\overline{\boldsymbol{l}}$ with zero mean, i.e.,

$$
\begin{equation*}
\left\langle\alpha_{i, j}(\bar{a}, \bar{l})\right\rangle_{l}=0 \tag{3-31}
\end{equation*}
$$

and $C_{i, j}$ is an arbitrary function of integration depending only on the slowly varying mean elements.

It then follows from averaging Equation (3-30) that

$$
\begin{equation*}
\left\langle\eta_{i, j}\right\rangle_{\bar{l}}=c_{i, j}\left(\frac{\bar{\partial}}{\partial}\right) \tag{3-32}
\end{equation*}
$$

This equation is a generalization of the constraints expressed in Equation (3-20) and Equation (3-23). Therefore, in order specify the functions $\eta_{i, j}$ most generally, a set of arbitrary functions of the slow variables is required. Because the function $C_{i, j}(\overrightarrow{\bar{a}})$ is an arbitrary function of integration, it can be taken to be identically zero, ie.,

$$
\begin{equation*}
c_{i, j}\left(\frac{t}{a}\right) \equiv 0 \tag{3-33}
\end{equation*}
$$

thereby reproducing the constraint used to obtain the form of the averaged aquatrons of motion given in Equation (3-26). Consequently, the validity of the applecation of the constraint expressed in either Equation (3-20) or Equation (3-23)
has been demonstrated. The use of the constraint given by Equation (3-33) requires that the $\eta_{i, j}$ functions be purely short periodic and or mined short periodic, i.e.,

$$
\eta_{i, j}=\eta_{i, j}^{s}
$$

In summary, a set of functions $\eta_{i, j}$ containing only short-periodic terms can be obtained, and the near-identity transformation given by Equations (3-3) is completely specified by the expressions

$$
\begin{align*}
& a_{i}= \bar{a}_{i}+\frac{1}{\bar{n}} \sum_{j=1}^{N} \epsilon^{j} \int\left[f_{i, j-1}^{s}-\sum_{k=1}^{6} \sum_{p=1}^{j-1} A_{k, p} \frac{\partial \eta_{i, j-p}^{s}}{\partial \bar{a}_{k}}\right] d \bar{l} \\
&+O\left(\epsilon^{N+1}\right) \\
&l=1,2, \ldots, \bar{l}) \\
& l+\frac{1}{\bar{n}} \sum_{j=1}^{N} \epsilon^{i} \int\left[f_{6, j-1}^{s}+N_{j}^{s}-\sum_{k=1}^{6} \sum_{j=1}^{j-1} A_{k, p} \frac{\partial \eta_{b, j-p}^{s}}{\partial \bar{a}_{k}}\right] d \bar{l} \tag{:3-3+4b}\\
&+O\left(\epsilon^{N+1}\right)
\end{align*}
$$

3.2.4 Computational Procedure

The determination of the jth-order contribution to the mean clement rates wiquations (3-26) and the functions $\boldsymbol{\eta}_{\mathrm{i}, \mathrm{j}}$ are interdependent and must proced serially on an order-by-order basis. To illustrate this procedure, the serond-orider
equation e are presented more explicitly. Expressing Equation (3-26) to second order yields

$$
\begin{aligned}
& \frac{d \bar{a}_{1}}{d t}=\left\langle\left\langle f_{i, 0}\left(\overrightarrow{a_{i}} \bar{l}\right)\right\rangle_{\bar{l}}+\epsilon^{2}\left\langle f_{i, 1}(\hat{a}, \bar{l})\right\rangle_{\bar{l}}+O\left(e^{2}\right)(i=1,2, \ldots, 5)(3-35 a)\right. \\
& \frac{d \bar{l}}{d t}=\bar{n}+c\left\langle f_{6,0}\left(\frac{\vec{a}}{a}, \bar{l}\right)+N_{1}\right\rangle_{\bar{l}}+\epsilon^{2}\left\langle f_{6,1}(\bar{a}, \bar{l})+N_{2}\right\rangle_{\bar{l}}+O\left(e^{2}\right)(3-35 b)
\end{aligned}
$$

Using Equations (3-13) and the constraints given in Equations (3-22) and (3-23), the averaging operation yields the simplifications

$$
\begin{align*}
& \left\langle f_{i, j-1}(\vec{b}, \bar{l})+N_{j}(\vec{l}, \bar{l})\right\rangle_{\bar{l}}=\left\langle f_{i, j-1}(\hat{l}, \bar{l})\right\rangle_{\bar{l}}+\left\langle i i_{j}\left(\frac{k}{u}, \bar{l}\right)\right\rangle_{\bar{l}} \tag{3-36}\\
& \left\langle N_{1}(t, \bar{l})\right\rangle_{i}=\left\langle-\frac{1}{2} \frac{\pi}{\bar{a}_{1}} \eta_{1, L}(t, \bar{l})\right\rangle_{\bar{l}}=0 \tag{3-37}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle N_{2}(i, \bar{i})\right\rangle_{I}=\left\langle\frac{15}{c} \frac{\pi}{\bar{a}_{i}^{2}} \eta_{1,1}^{2}-\frac{3}{2} \frac{\bar{n}}{\bar{a}_{i}^{2}} \eta_{8,2}\right\rangle \bar{i} \\
& =\left\langle\frac{15}{i} \frac{\pi}{\bar{a}_{1}^{2}} \eta_{1,1}^{2}\right\rangle_{\bar{i}}-\left\langle\frac{3}{2} \frac{\pi}{\bar{a}_{1}} \eta_{1,2}\right\rangle \tag{3-38}\\
& -\left\langle\frac{15}{2} \frac{\pi}{\pi_{1}^{2}} \eta_{1,1}^{2}\right\rangle
\end{align*}
$$

In view of Equation a (3-20), (3-36), (3-37), :nd (3-34), Equation e (3-35) amplify to

$$
\begin{aligned}
& (i=1,2, \ldots, 6) \\
& \frac{d i}{d t} \cdot T+\left\langle F_{4}(8, t)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& +O\left(\varepsilon^{\prime}\right)
\end{aligned}
$$

mopection of this equation indicates that the first-ur.ter contributions to the mean clement rates, $A_{i, 1}$, are independent of the functions $\boldsymbol{\eta}_{i_{1} j}$. However, the mecond-order contributions to the mean element rates. $A_{i, 2}$, require knowledge W he functions $\eta_{i_{*} j}$. Hence, the computation must proceed as follows:

$$
\begin{align*}
& A_{i, 1} \cdot\left\langle F_{i}(t, t)\right\rangle \\
& \text { (i. } 1,2, \ldots, 6)(1-40 a) \\
& \eta_{i, 1} \cdot \frac{1}{n} \int F_{i}^{2}\left(\frac{2}{4}\right) d i \\
& (i=1,2, \ldots .5)(3-40 b) \\
& \eta_{a, 1}=\frac{1}{\frac{1}{h}} \int\left[F_{i}^{\prime}\left(Z_{i}()-\frac{3}{2} \frac{h_{1}}{a_{1}} \eta_{1, i}\right] d L\right. \tag{3-40k}
\end{align*}
$$

This procedure is followed in extending to higher order the averaged equations of motion.

$$
\begin{align*}
& A_{i, 2}=\left\langle\sum_{k=1}^{6} \eta_{k, 1} \frac{\partial F_{i}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}} \quad \\
& A_{6,2}=\left\langle\sum_{k=1}^{6} \eta_{k, 1} \frac{\partial F_{6}}{\partial \bar{a}_{k}}+\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}} \eta_{1,1}^{2}\right\rangle_{\bar{l}} \tag{3-40e}
\end{align*}
$$

$$
(i=1,2, \ldots, 5) \quad(3-40 d)
$$

3.3 AVERAGED EQUA'IIONS OF MOTION FOR MULTIPLE PERTURBING FUNCTIONS

The preceding analysis can be extended in a straightforward manner to the casc of multiple perturbations contributing to each element rate. Examples of such cases are: inclusion of more than one spherical harmonic from the nonspherical gravitational potential field, multiple third-body perturbations, and oombinations of these effects with atmospheric drag and/or solar radiation pressure. To first order in the small parameters, this formulation is identical to summing the firstorder averaged equations of motion (Equations (3-26)) for each perturbation. However, at higher orders, mixed (coupled) terms appear in the averaged ec; ${ }^{\circ}$. tions of mction. To illustrate this phenomenon, the case of two perturbing functions is considered. The corresponding set of differential equations is given by

$$
\begin{align*}
& \frac{d a_{i}}{d t}=\epsilon F_{i}(\vec{a}, \ell)+\nu G_{i}(\vec{a}, l) \quad(i=1,2, \ldots, 5)(3-41 a) \\
& \frac{d \ell}{d t}=n+\epsilon F_{6}(\vec{a}, \ell)+\nu G_{6}(\vec{a}, l) \tag{3-41b}
\end{align*}
$$

The near-identity transformation (Equation (3-3)) is generalized to

$$
\begin{align*}
& a_{i}=\bar{a}_{i}+\sum_{\substack{j=0 \\
(1 \leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k} \psi_{i, j, k}+O\left(\epsilon^{N+1}\right) \quad(i=1,2, \ldots, 5) \quad(3-42 a) \\
& \ell=\bar{\ell}+\sum_{\substack{j=0 \\
(1 \leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k} \Psi_{6, j, k}+O\left(\epsilon^{N+1}\right) \tag{3-42b}
\end{align*}
$$

where the functions $\psi_{i, j, k}=\psi_{i, j, k}\left({ }^{\overline{\bar{a}}, \bar{\ell})}\right.$ and are 2π periodic in the mean fast variable $\overline{\boldsymbol{\ell}}$.

The transform of the original system (Equations (3-41)) is assumed to be of the form

$$
\begin{align*}
& \frac{d \bar{a}_{i}}{d t}=\sum_{\substack{j=0 \\
(1 \leq j \leq k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k} B_{i, j, k}+O\left(\epsilon^{N+1}\right) \quad(i=1,2, \ldots, 5) \quad(3-43 a) \\
& \frac{d \bar{l}}{d t}=\bar{n}+\sum_{\substack{j=0 \\
(1 \leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k} B_{6, j, k}+O\left(\epsilon^{N+1}\right) \tag{3-43~b}
\end{align*}
$$

where the functions $B_{i, j, k}=B_{i, j, k}\left(\frac{\vec{a}}{}\right)$ depend only on the slowly varying elements. Equations (3-43) are a generalization of Equations (3-4) given previously. The constraint $1 \leq \mathbf{j}+\mathbf{k}$ is imposed on the lower limits of the double summation in Equations (3-42) by the assumption that the difference between the osculating and mean elements is, at most, of first order in one the the small parameters, i.e.,

$$
\begin{equation*}
\left|a_{i}-\bar{a}_{i}\right| \approx \max [O(\epsilon), O(\nu)] \tag{3-44}
\end{equation*}
$$

Similarly, the same constraint is imposed on the lower limits of the double summation in Equations (3-43) by the assumption that the magnitude of the mean eiement rates is, at most, of first order in one of the small parameters.

In Equations (3-42) and (3-43), the upper limit on the summation over \mathfrak{i}, N, is chosen such that all contributions through order $\mathrm{O}\left(\epsilon^{\mathrm{N}}\right)$ are retained. Terms with increasing powers of ν obviously require decreasing powers of ϵ in order to meet the
criterion that only terms of order less than or equal to $O\left(\epsilon^{N}\right)$ be retained, i.e., $\mathrm{O}\left(\epsilon^{\mathrm{j}} \nu^{\mathrm{k}} ; \leq \mathrm{O}\left(\epsilon^{\mathrm{N}}\right)\right.$. Specifically, for a given value of j, the maximum value of $\mathrm{k}, \mathrm{M}(\mathrm{j})$, is given by the integer part of the expression

$$
\begin{equation*}
M(j)=(N-j) \frac{\log \epsilon}{\log v} \tag{3-45}
\end{equation*}
$$

and the range of $M(j)$ is $0 \leq M(j) \leq I=\left[N \frac{\log \epsilon}{\log \nu}\right] \quad$ for $N \leq j \leq 0$.
Differentiating Equations (3-42) and substituting Equations (3-43) for the mean element rates into the result yields

$$
\begin{aligned}
\frac{d a_{i}}{d t}= & \sum_{j=0}^{N} \sum_{\substack{k=0 \\
(1 \leq j+k)}}^{M(j)} \epsilon^{j} \nu^{k}\left(B_{i, j, k}+\bar{n} \frac{\partial \psi_{i, j, k}}{\partial \bar{l}}\right. \\
& +\sum_{q^{2}=1}^{6} \frac{\partial \psi_{i, j, k}}{\partial \bar{a}_{q}} \sum_{\substack{j^{\prime}=0 \\
\left(1 \leq j^{\prime}+k^{\prime}\right)}}^{\left.N-j \sum_{k^{\prime}}^{M(j)-k} \epsilon^{j^{\prime}} v^{k^{\prime}} B_{q, j^{\prime}, k^{\prime}}\right)+O\left(\epsilon^{N+1}\right)}
\end{aligned}
$$

$$
\begin{equation*}
\frac{d l}{d t}=\bar{n}+\sum_{\substack{j=0 \\(1}}^{N} \sum_{\substack{k=0 \\ j+k)}}^{M(j)} \epsilon^{i} v^{k}\left(B_{6, j, k}+\bar{n} \frac{\partial \psi_{6, j, k}}{\partial \bar{l}}\right. \tag{3-46b}
\end{equation*}
$$

which is a generalization of Equations (3-6). Rearranging Equations (3-46) yields the following generalization of Equations (3-7):

$$
\begin{align*}
\frac{d a_{i}}{d t}= & \sum_{\substack{j=0 \\
(1 s, j+k)}}^{N} \sum_{\substack{M(j)}}^{M} \epsilon^{j} v^{k}\left(B_{i, j, k}+\bar{n} \frac{\partial \psi_{i, j, k}}{\partial \bar{l}}\right. \\
& \left.+\sum_{\substack{q=1 \\
[1 \leq(r+s)<(j+k)]}}^{b} \sum_{r=0}^{j} \sum_{s=0}^{k} B_{q, r, s} \frac{\partial \Psi_{i, j-r, k-s}}{\partial \bar{a} q}\right)+O\left(\epsilon^{N+1} ;\right. \\
\frac{d l}{d t}= & \bar{n}+\sum_{j=0} \sum_{k=0}^{N} \epsilon^{j} v^{k}\left(B_{6, j, k}+\bar{n} \frac{\partial \Psi_{6, j, k}}{\partial \bar{l}}\right. \\
& \left.+\sum_{\substack{q=1}}^{\infty} \sum_{r=0}^{j} \sum_{s=0}^{j} B_{q, r, s}^{k} \frac{\partial \psi_{b, j-r, k-s}}{\partial \bar{a} q}\right)+O\left(\epsilon^{N+1}\right) \tag{3-47~b}
\end{align*}
$$

It is advantageous to decompose the above double summation as follows:

$$
\begin{align*}
& \sum_{\substack{j=0 \\
(1 \leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k}\left(B_{i, j, k}+\bar{n} \frac{\partial \psi_{i, j, k}}{\partial \bar{l}}+\sum_{\substack{q=1 \\
(1 \leq 1}}^{6} \sum_{r=0}^{j} \sum_{\substack{s=0 \\
1}}^{k} B_{\left.\left.q_{,}, s\right)<(j+k)\right]} \frac{\partial \psi_{i, j-r, k-s}}{\partial \bar{a}_{q}}\right) \\
& =\sum_{j=1}^{N} \epsilon^{j}\left(B_{i, j, 0}+\bar{n} \frac{\partial \Psi_{i, j, 0}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{r=1}^{j-1} B_{q, r, 0} \frac{\partial \Psi_{i, j, r, 0}}{\partial \bar{a}_{q}}\right) \\
& +\sum_{k=1}^{M(j=0)} v^{k}\left(B_{i, 0, k}+\bar{n} \frac{\partial \psi_{i, 0, k}}{\partial \bar{R}}+\sum_{q=1}^{6} \sum_{s=1}^{k-1} B_{q_{i}, s, s} \frac{\partial \psi_{i, 0, k-s}}{\partial \bar{a}_{q}}\right) \tag{3-48}\\
& +\sum_{j=1}^{N-1} \sum_{k=1}^{m(j)} \epsilon^{j} \nu^{k}\left(B_{i, j, k}+\bar{n} \frac{\partial \varphi_{i, j, k}}{\partial \bar{l}}+\sum_{\substack{q=1 \\
[1 \leq(r+s)<(j+k)]}}^{\infty} \sum_{r=0}^{j} \sum_{\substack{j \\
1 \leq 2}}^{k} B_{q, r, s} \frac{\partial \psi_{i, j-r, k-s}}{\partial \overline{a_{q}}}\right)
\end{align*}
$$

for $i=1,2, \ldots, 6$.

Expanding the perturbing functions F_{i} and G_{i} in Equation (3-41) as a Taylor series and then arranging as a power series in the small parameter yields

$$
\begin{align*}
& \epsilon F_{i}(\vec{a}, l)+\nu G_{i}(\vec{a}, l) \\
&=\sum_{j=0}^{N-1} \sum_{k=0}^{M(j+1)} \epsilon^{j} v^{k}\left(\epsilon f_{i, j, k}+v g_{i, j, k}\right)+O\left(\epsilon^{N+1}\right) \\
&= \sum_{j=1}^{N} \epsilon^{j} f_{i, j-1,0}+\sum_{k=1}^{M(j, 0)} v^{k} g_{i, 0, k-1} \tag{3-49}\\
&+\sum_{j=1}^{N-1} \sum_{k=1}^{M(j)} \epsilon^{j} v^{k}\left(f_{i, j-1, k}+g_{i, j, k-1}\right)+O\left(\epsilon^{N+1}\right)
\end{align*}
$$

where

$$
f_{i, 0,0}=F(\overrightarrow{\bar{a}}, \bar{l})
$$

OBETNAL g acer LS om LOOK GuAdVY
(3-50a)

$$
\begin{equation*}
f_{i, 1,0}=\sum_{q=1}^{6} \psi_{q, 1,0} \frac{\partial F_{i}}{\partial \bar{a}_{q}} \tag{3-50b}
\end{equation*}
$$ L L

18

$$
f_{i, 0,1}=\sum_{q=1}^{6} \psi_{q, 0,1} \frac{\partial F_{i}}{\partial \sigma_{q}}
$$

U

$$
f_{i, 2,0}=\sum_{q=1}^{6}\left(\psi_{q, 2,0} \frac{\partial F_{i}}{\partial \bar{a}_{q}}+\frac{1}{2} \sum_{t=1}^{6} \psi_{q, 1,0} \psi_{t, 1,0} \frac{\partial^{2} F_{i}}{\partial \bar{a}_{g} \partial \bar{a}_{t}}\right)
$$

$(3-50 c)$
(3-50d)

$$
\begin{align*}
f_{i, 0,2} & =\sum_{q=1}^{6}\left(\Psi_{q, 0,2} \frac{\partial F_{i}}{\partial \bar{a}_{q}}+\frac{1}{2} \sum_{t=1}^{6} \psi_{q, 0,1} \Psi_{t, 0,1} \frac{\partial^{2} F_{i}}{\partial \bar{a}_{q} \bar{a}_{t}}\right) \tag{3-50e}\\
f_{i, 1,1} & =\sum_{q=1}^{6}\left[\psi_{q, 1,1} \frac{\partial F_{i}}{\partial \bar{a}_{q}}\right. \tag{3-50f}\\
& \left.+\frac{1}{2} \sum_{t=1}^{6}\left(\psi_{q, 1,0} \psi_{t, 0,1}+\Psi_{q, 0,1} \Psi_{t, 1,0}\right) \frac{\partial^{2} F_{i}}{\partial \bar{a}_{q} \partial \bar{a}_{t}}\right]
\end{align*}
$$

etc. The functions $g_{i, j}, k$ are identical to the above, with the exception that the function $F_{i}(\vec{a}, \ell)$ and its partial derivatives are replaced by the function $G_{i}(\vec{a}, \ell)$ and its partial derivatives evaluated at $\overrightarrow{\mathrm{a}}=\overrightarrow{\bar{a}}, \quad \ell=\bar{\ell}$.

Expanding the mean motion, n, as a power series in the small parameter yields

$$
\begin{align*}
n & =\bar{n}+\sum_{\substack{j=0 \\
(1 \leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} v^{k} N_{j, k}+O\left(\epsilon^{N+1}\right) \\
& =\bar{n}+\sum_{j=1}^{N} \epsilon^{j} N_{j, 0}+\sum_{k=1}^{M(j=0)} v^{k} N_{0, k} \tag{3-51}\\
& +\sum_{j=1}^{N-1} \sum_{k=1}^{M(1)} \epsilon^{j} v^{k} N_{j, k}+O\left(\epsilon^{N+1}\right)
\end{align*}
$$

where

$$
N_{1,0}=-\frac{3}{2} \frac{\bar{n}}{\bar{a}_{1}} \psi_{1,1,0}
$$

(oRIGINAL PAGE IS

$$
\begin{equation*}
N_{0,1}=-\frac{3}{2} \frac{\pi}{\bar{a}_{1}} \psi_{1,0,1} \tag{3-52b}
\end{equation*}
$$

$$
\begin{equation*}
N_{2,0}=\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}} \psi_{1,1,0}^{2}-\frac{3}{2} \frac{\bar{n}}{\bar{a}_{1}} \psi_{i, 2,0} \tag{3-52c}
\end{equation*}
$$

1

$$
\begin{equation*}
N_{0,2}=\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}} \psi_{1,0,1}^{2}-\frac{3}{2} \frac{\bar{n}}{\bar{a}_{1}} \psi_{i, 0,2} \tag{3-52d}
\end{equation*}
$$

$$
\begin{equation*}
N_{1,1}=\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}} \psi_{1,1,0} \Psi_{1,0,1}-\frac{3}{2} \frac{\bar{n}}{\bar{a}_{1}} \psi_{1,1} \tag{3-52e}
\end{equation*}
$$

and so forth.
Equations (3-47), (3-49), and (3-51) are substituted into Equations (3-41) and terms with like powers of the small parameters are set equal, thus obtaining

$$
\begin{align*}
& B_{i, j, 0}+\bar{n} \frac{\partial \Psi_{i, j, 0}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{r=1}^{j-1} B_{q, r, 0} \frac{\partial \Psi_{i, j \cdot r, 0}}{\partial \bar{a}_{q}}=f_{i, j-1,0} \quad(i=1,2, \ldots, 5) \quad(i-5,5 a) \\
& B_{b, j, 0}+\pi \frac{\partial \Psi_{6, j, 0}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{r=1}^{j-1} B_{q, r, 0} \frac{\partial \Psi_{b, j-r, 0}}{\partial \bar{a}_{q}}=f_{6, j-1,0}+N_{j, 0} \quad(3-53 b) \tag{3-53b}
\end{align*}
$$

where $1 \leq \mathrm{J} \leq \mathrm{N}$.

$$
\begin{align*}
& B_{i, 0, k}+\hbar \frac{\partial \psi_{i, 0, k}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{s=1}^{k-1} B_{8,0, s} \frac{\partial \psi_{i, 0, k-s}}{\partial \bar{a}_{q}}=g_{i, 0, k-1} \quad(i=1,2, \ldots, 5) \quad(3-5+a) \\
& B_{6,0, k}+\bar{n} \frac{\partial \psi_{6,0, k}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{s=1}^{k-1} B_{q, 0, s} \frac{\partial \psi_{6,0, k-s}}{\partial \bar{q}_{q}}=g_{6,0, k-1}+N_{0, k}
\end{align*}
$$

where $1 \leq \mathrm{k} \leq \mathrm{M}_{(\mathrm{j}=0)}$

$$
\begin{align*}
& B_{i, j, k}+\bar{n} \frac{\partial \psi_{i, j, k}}{\partial \bar{l}}+\sum_{\substack{i=1 \\
[i \leq(r+s)<(j+k)]}} \sum_{r=0}^{j} \sum_{s=0}^{k} B_{q, r, s} \frac{\partial \psi_{i, j-r, k \cdot s}}{\partial \bar{a}_{q}} \\
&= f_{i, j-1, k}+g_{i, j, k-1} \quad(i=1,2, \ldots, 5) \quad(3-j, j, a) \\
& B_{6, j, k}+\bar{n} \frac{\partial \Psi_{6, j, k}}{\partial \bar{l}}+\sum_{q=1}^{6} \sum_{r=0}^{j} \sum_{s=0}^{k} B_{q, r, s} \frac{\partial \psi_{b, j-r, k-s}}{\partial \bar{a}_{q}} \\
& {[1 \leq(r+s)<(j+k)] }
\end{align*}
$$

where $1 \leq j \leq(N-1)$ and $1 \leq k \leq M_{(j)}$.

Equations (3-53) and (3-54) are easentially identical in form to the corresponding equations for a single perturbing function given by Equations (3-14). Consequently, to obtain the complete higher order contributions for the case of two perturbing forces, Equations (3-55) representing the coupled terms must be adde \mathcal{i} to the equations for each perturbation given by Equations (3-14). Equations (3-53), (3-54), and (3-55) are then averaged jessentially as before), yielding the averaged equations of motion; the remainder of the solution then proceeds as before. The final results are as follows:

$$
\begin{align*}
& B_{i, j, 0}=\left\langle f_{i, j-1,0}\right\rangle_{l} \\
& B_{6, j, 0}=\left\langle f_{6, j-1,0}+N_{j, 0}\right\rangle_{i} \tag{3-56b}
\end{align*}
$$

$$
(i=1,2, \ldots, 5) \quad(3-56 a)
$$

where $1 \leq \mathrm{j} \leq \mathrm{N}$

$$
B_{i, 0, k}=\left\langle g_{i, 0, k-1}\right\rangle_{\varepsilon}
$$

$$
(i=1,2, \ldots, 5) \quad(3-56 c)
$$

$$
\begin{equation*}
B_{6,0, k}=\left\langle 96,0, k-1+N_{0, k}\right\rangle_{\bar{l}} \tag{3-56d}
\end{equation*}
$$

where $1 \leq k \leq M(j=0)$

$$
\begin{equation*}
B_{6, j, k}=\left\langle f_{6, j-1, k}+g_{6, j, k-1}+N_{j, k}\right\rangle_{k} \tag{3-56f}
\end{equation*}
$$

where $1 \leq \mathrm{j} \leq \mathrm{N}-1$ and $1 \leq \mathrm{k} \leq \mathrm{M}(\mathrm{j})$

$$
\begin{align*}
& \psi_{i, j, 0}=\frac{1}{\bar{n}} \int\left[f_{i, j-1,0}^{s}-\sum_{q=1}^{b} \sum_{r=1}^{j-1} B_{q, r, 0} \frac{\partial \psi_{i, j-r, 0}^{s}}{\partial \bar{a}_{q}}\right] d \bar{l} \tag{3-57a}\\
& \text { (} \mathrm{i}=1,2, \ldots, 5 ; 1 \leq \mathrm{j} \leq \mathrm{N} \text {) } \\
& \Psi_{6, j, 0}=\frac{1}{\bar{n}} \int\left[f_{6, j-1,0}^{s}+N_{j, 0}^{s}-\sum_{q=1}^{6} \sum_{r=1}^{j-1} B_{g, r, 0} \frac{\partial \psi_{6, j-r, 0}^{s}}{\partial \bar{q}_{q}}\right] d \bar{l} \tag{3-57~b}\\
& (1 \leq \mathrm{j} \leq \mathrm{N}) \\
& \psi_{i, c, k}=\frac{1}{\bar{n}} \int\left[g_{i, 0, k-1}^{s}-\sum_{q=1}^{6} \sum_{s=1}^{k-1} B_{q, 0, j} \frac{\partial \psi_{i, 0, k-s}^{s}}{\partial \bar{a}_{q}}\right] d \bar{l} \tag{3-57c}\\
& \text { (i } 1,2, \ldots, 5 ; 1<k \leq M(j=0) \text {) } \\
& \Psi_{6,0, k}=\frac{1}{\bar{n}} \int\left[g_{6,0, k-1}^{s}+N_{0, k}^{s}-\sum_{q=1}^{6} \sum_{s=1}^{k \cdot 1} B_{g, 0, s} \frac{\partial \varphi_{6,0, k-i}^{s}}{\partial \bar{a} q}\right] d \bar{l} \tag{3-57d}\\
& (1 \leq k \leq M(j=0))
\end{align*}
$$

The explicit averaged equations of motion to second order in both small parampeters reduce to

$$
\begin{aligned}
& \frac{d \bar{L}_{i}}{d t} \cdot \in\left\langle F_{i}(\bar{\sigma}, \bar{l})\right\rangle_{i}+v\left\langle G_{i}(\bar{a}, \bar{l})\right\rangle_{\bar{l}} \\
& +\sum_{q=1}^{\omega}\left[\epsilon^{2}\left\langle\psi_{q, 1,0} \frac{\partial F_{i}}{\partial \bar{a}_{q}}\right\rangle_{\bar{l}}+\epsilon v\left\langle\psi_{8,0,1} \frac{\partial F_{i}}{\partial \dot{a}_{q}}+\psi_{q, 1,0} \frac{\partial G_{i}}{\partial \bar{a}_{q}}\right\rangle_{\bar{l}} \quad(3-58 \mathrm{a})\right. \\
& \left.* v^{2}\left\langle\psi_{g, 0,1} \frac{\partial G_{i}}{\partial \bar{a}_{g}}\right\rangle_{2}\right]
\end{aligned}
$$

$$
(i-1,2, \ldots, 5)
$$

.

$$
\begin{align*}
\frac{d \bar{L}}{d t} & =\bar{n}+\epsilon\left\langle F_{6}\left(\frac{\partial}{a}, \bar{l}\right)\right\rangle_{\bar{l}}+v\left\langle F_{6}(\vec{a}, \bar{l})\right\rangle_{\bar{l}} \\
& +\sum_{q=1}^{\infty}\left[\epsilon^{2}\left\langle\psi_{q, 1,0} \frac{\partial F_{6}}{\partial \bar{a}_{q}}+\frac{15}{B} \frac{\bar{n}}{\bar{a}_{1}^{2}} \psi_{1,1,0}^{2}\right\rangle_{\bar{l}}^{1}\right. \tag{i}\\
& +\epsilon v\left\langle\psi_{q, 0,1} \frac{\partial F_{6}}{\partial \bar{a}_{q}}+\psi_{q, 1,0} \frac{\partial G_{6}}{\partial \bar{a}_{q}}+\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}}{ }_{1,1,8,0} \psi_{1,0,1}\right\rangle_{1}
\end{align*}
$$

$$
\left.+v^{2}\left\langle\psi_{8,0,1} \frac{\partial G_{i}}{\partial \bar{a}_{q}}+\frac{15}{8} \frac{\bar{n}}{\bar{a}_{5}^{2}} \psi_{1,0,1}^{2}\right\rangle_{\bar{l}}\right]
$$

and the andes of computation follows as in the single prepurbiag function cane.

Extension of the discussion to an arbitrary number of perturbing functions is a straightforward but tedious exercise. The differential equations take the form

$$
\begin{align*}
& \frac{d a_{i}}{d t}=\sum_{k=1}^{k} \gamma_{k} H_{i, k}(t, \ell) \quad(i=1,2, \ldots, 5) \quad(3--9 a) \\
& \frac{d l}{d t}=n+\sum_{k=1}^{k} \gamma_{k} H_{6, k}(t, l) \tag{3-59!}
\end{align*}
$$

where $\gamma_{k}(k=1.2, \ldots, K)$ are K distinct smail parameters (i.e., $\gamma_{1} \equiv \epsilon$, $\gamma_{2} \equiv \nu$, etc.) and $H_{i, k}$ is the k th perturbing function acting on the ith element (i.e., $H_{i, 1}=F_{i}(\overrightarrow{\bar{a}}, \ell), H_{i, 2}=G_{i}(\overrightarrow{\bar{a}}, \vec{\ell})$, etc.). The near-identity transformation and the transform of the above differential equations become

$$
\begin{aligned}
& \left.\quad i_{1} \cdot \bar{a}_{i}+\sum_{j_{1}} \sum_{j_{2}} \cdots \sum_{j k} \gamma_{1}^{j_{1}} \gamma_{2}^{j_{2}} \ldots \gamma_{k}^{j_{k}} \Psi_{i_{2} j_{1}} j_{2} \ldots, j_{k}(\vec{n}, \bar{l})(3)-60\right) \\
& \\
& \text { and }(i-1,2, \ldots, 6)
\end{aligned}
$$

$$
\begin{equation*}
\frac{d \bar{a}_{i}}{d t}=\sum_{j_{1}} \sum_{j_{2}} \cdots \sum_{j_{k}} \gamma_{1}^{j_{1}} \gamma_{2}^{j_{2}} \cdots \gamma_{k}^{j_{k}} B_{1, j_{1}, j_{2}, \ldots, j_{k}}(\overrightarrow{\bar{a}}) \tag{3-61}
\end{equation*}
$$

rospectirely.

The perturbing functions are expanded in the form

etc. Further pursuit of this procedure adds little additional insight excent for an appreciation of the cumbersome expressions obtained for the final results.

A less involved approach is presented next, based on the fact that the practical application of such theories is almost always limited to at most second order in the small parameters (see Section 3.5). As previously shown in the case of two perturbing functions, the second-order averaged equations of motion for a single pe: 'urbation are summed and the coupled term is then added. For K perturbing functions, the same procedure holds to second order, i.e., K equations of the same form as in the single perturbing function case are summed. The coupled terms are then evaluated to complete the second-order contributions. The number of coupled terms is simply the distinct number of pairs obtained fiom K objects taken two at c. time, i.e.,

$$
\frac{k!}{(k-2)!2!}=\frac{k(k-1)}{2}
$$

This procedure provides for all contributions from the K perturbing functions to the averaged equations of motion through second order in all K small parameters, γ_{K}.

3.4 MODIFICATION OF THE AVERAGING OPERATION FOR RESONANT PHENOMENA

A commensurability of two mean mocions appearing in the dynamical system, e.g., the satellite and third-hody mean motions or the satellite mean motion and the central body rotation rate, can contribute significantly to the long-period motion of the satellite. The generalized method of averaging presented in Sections 3.2 and 3.3 is directly applicable to cases involving such resonance phenomena.

The basic objective in applying the method of averaging to the orbital equations of motion is the removal of short-period terms. The averaging procedure defined by Equation (3-15) removes the high-frequency components of the motion for the majority of problems but is not suitable for the treatment of all resonance phenomena. In those cases for which resonance phenomena are significant, the averaging operation given in Equation (3-15) may have to be modified. The necessity of this modification depends on the criteria used for selecting short-period terms and the characteristics of the perturbing functions.

3.4.1 Frequency Characteristics Specific to Resonant Phenomena

The existence of a resonance condition, i.e., a commensurability in the mean motions of the fast variables of the perturbed and perturbing bodies, dictates that these fast variables cannot be considered mutually independent. An arbitrary term in the Fourier series expansion for the perturbing function takes the general furm

$$
\begin{equation*}
A_{j, k} \cos \left(j l-k l^{\prime}+\theta_{1}\right)+B_{j, k} \sin \left(j l-k \ell^{\prime}+\theta_{2}\right) \tag{3-63}
\end{equation*}
$$

where $\boldsymbol{\ell}$ and \boldsymbol{l}^{\prime} are the fast variables of the perturl $2 d$ and perturbing bodies and θ_{1} and θ_{2} are linear combinations of slowly varying angles.

The fast variables $\boldsymbol{\ell}$ and \boldsymbol{l}^{\prime} are assumed to have the mean motions n and n^{\prime}, respectively. If the ratio of the mean motions is approximately equal to the ratio of two integers, i.e.,

$$
\begin{equation*}
\frac{n}{n^{\prime}} \approx \frac{N}{N^{\prime}} \tag{3~64}
\end{equation*}
$$

then

$$
\begin{equation*}
N^{\prime} n-N n^{\prime} \approx 0 \tag{3-65}
\end{equation*}
$$

The fast variables thus obey the relationship

$$
\begin{equation*}
N^{\prime} \ell-N \ell^{\prime}=\mu \tag{3-66}
\end{equation*}
$$

where the function $\mu=\mu(t)$ is a slowly varying angle which produces only longperiod effects.

One of the fast variables can be eliminated from the perturbing function using Equation (3-66), resulting in a formulation dependent on only one fast variable and an additional slow variable $\mu^{\prime}(t)$. Eliminating the fast variable l^{\prime} from terms of the form given in Equation (3-63) yields arguments of the form

$$
\left\{\begin{array}{l}
\sin \tag{3-67}\\
\cos
\end{array}\right\}\left\{\left(j N-k N^{\prime}\right) \frac{\ell}{N}+\theta_{i}^{\prime}\right\}
$$

where

$$
\theta_{1}^{\prime}=\theta_{i}-\frac{k}{N} \mu \quad(1=1,2)
$$

Elimination of the fast variable ℓ in favor of ℓ^{\prime} yields trigonometric arguments of the same lvim. More specifically, the quantities N and N^{\prime} are interchanged, $\boldsymbol{\ell}$ is replaced by ℓ^{\prime}, and $\theta_{\mathrm{j}}^{\prime}$ is defined by the sum rather than the difference. In general, arguments of the form given in Equation (3-67) produce fractional as well as integral multiples of the fast variable ℓ. This is specifically the case when $k N^{\prime}$ is not a multiple of N. An arbitrary decision to consider only integral multiples of the fast variable as short period is not practical in this case, particularly in view of the desire to maximize the integration step size. For example, the case of a close-Earth satellite in a $12: 1$ resonance with the Earth's rotation is considered. From Equations (3-64), $\mathrm{N}=12$ and $\mathrm{N}^{\prime}=1$, and the argument in Equation (3-67) can be expressed as

$$
j l+\frac{k}{12} \ell+\theta_{i}^{\prime}
$$

This argument will contribute terms containing the fractional arguments

$$
\begin{aligned}
& 1 / 12 \ell, 1 / 6 \ell, 1 / 4 \ell, 1 / 3 \ell, 5 / 12 \ell, 1 / 2 \ell, 7 / 12 \ell, 23 \ell, 3+\ell, \\
& \text { and } 11 / 12 \ell
\end{aligned}
$$

for those values of k which are not multiples of 12. The averaging operation defined by Equation (3-15) will not remove terms with these arguments. Defining terms containing the arguments 2ℓ and ℓ as short period and terms containing $1 / 2 \ell, 11 / 12 \ell$, etc., as long period would restrict the integration step size to approximately one-eighth of the satellite revolution period. To maximize the integration step size (hopefully to the order of several orbital periods), while retaining the basic long-period behavior of the dynamical system, all dependence on the fast variable should be eliminated. This requirement is identical in philosophy to that imposed in the selection of the averaging operation for nonresonant phenomena (Equation (3-15)).

3.4.2 The Averaging Operation for Resonant Phenomena

When resonant phenomena are included in the equations of motion, the selection of an optimal averaging operation is dependent on the form of the perturbing function. The resonant contribution is embedded in this function and is isolated by the application of the averaging operation to the function. For this discussion, the resonant perturbing functions are separated into two categories: embedded resonant terms and quasi-isolated rescnant terms. These categories are distinguished according to whether or not the perturbing functions contribute terms with fractional multiples of the fast variable.
An embedded resonant term contributes fractional multiples of the fast variable. Such formulations of the perturbing function are frequently encountered in numerical averaging applications where the perturbing function is formulated in terms of the complete perturbing acceleration (Equation (2-15)).
The second category of perturbing functions (i.e., quasi-isolated resonant terms) contributes only integral multiples of the fast variable. The resonant contribution has been partly isolated from the complete perturbing function such that only integral multiples of the fast variable appear. More specifically, the perturbing function is restricted such that the integer k in Equation (3-67) takes on only values which are multiples of N, i.e.,
$k=P N$
$(p=1,2, \ldots)$
It is important to note that no restriction has been placed on the integer j in Equation (3-67). Since only particular values of j produce the resonant contribution, the quasi-isolated resonant term contributes both short-period (integral multiples of the fast variable only) and resonant contributions to the motion. If the values of $;$ are restricted appropriately, the resonant term is comp'etely isolated from the perturbation function.

As an example of a quasi-isolated resonant term, the 12:1 resonance example cited previously is again considered. If k is restricted to multiples of N, i.e., multiples of 12 , then all fractional multiples of the fast variable are eliminated. These terms correspond to the tesseral harmonic te:ms in the geopotential of order 12. In this case, any geopotential term of order 12 would be a quasiisolated resonant term. The specific resonant term, which will be isolated by the application of the averaging operation, corresponds in this case to the value of j where $j=1$.
3.4.2.1 The averaging Operation for Embedded Resonant Terms

In the case of embedded resonant terms, fractional multiples of the fast variable appear in the perturbing function. In view of the form of the argument given in Equation (3-67), all dependence on the fast variable ℓ can be removed by defining the averaging operation to be the definite integral over the angle $\sigma=\ell / \mathrm{N}$ on the interval $0 \leq \sigma \leq 2 \pi$. Expressing a function of two fast variables denoted by H in terms of the fast variable σ and the slow variable μ yields

$$
H\left(\vec{a}, \ell, \ell^{\prime}\right)=H^{\prime}(\vec{a}, \ell, \mu)=H^{*}(\vec{a}, \sigma, \mu)
$$

The average of the function $H^{*}(\vec{n}, \sigma, \mu)$ is defined as

$$
\begin{equation*}
\left.\left\langle H^{*}(\vec{a}, \sigma, \mu)\right\rangle_{\sigma}=\frac{1}{2 \pi} \int_{0}^{2 \pi} H^{*},, \sigma, \mu\right) d \sigma \tag{3-68}
\end{equation*}
$$

The averaging definition can be expressed explicitly in terms of the fast variable ℓ. If $0 \leq \sigma \leq 2 \pi$, then $0 \leq \ell \leq 2 \pi \mathrm{~N}$ and

$$
\begin{align*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} H^{*}(\vec{a}, \sigma, \mu) d \sigma & =\frac{1}{2 \pi N} \int_{0}^{2 \pi N} H^{\prime}(\vec{a}, l, \mu) d l \\
& =\frac{1}{2 \pi N} \int_{0}^{2 \pi N} H\left(\vec{a}, l, l^{\prime}\right) d l \tag{3-69}
\end{align*}
$$

Therefore, in the case of an embedded 1 ionant term, the definition of the averaging operation should be specified as

$$
\begin{equation*}
\left\langle H\left(\vec{a}, l, l^{\prime}\right)\right\rangle_{\sigma}=\frac{1}{2 \pi N} \int_{0}^{2 \pi N} H\left(\vec{a}, l, l^{\prime}\right) d l \tag{3-70}
\end{equation*}
$$

This definition has been used by Schubart (Reference 43) for performing a numerical investigation of the Hilda group of munor planets which exhibit a $3: 2$ commensurability with Jupiter. Also, Benson and Williams (Reference 4t) used the same definition in their numerical investigation of resonances in the Neptune-Pluto system.

It should be noted that the above averaging operation removes only those terms with periods of $2 \pi \mathrm{~N}$ or less. It does not remove any contributions to the motion caused by the resonance, since the fundamental period in the motion caused by the resonance is contributed by the angular variable μ and is given be:

$$
\frac{2 \pi}{N^{\prime} n-N n^{\prime}}
$$

Clearly, if Equation (3-65 holds,

$$
\frac{2 \pi}{N^{\prime} n-N n^{\prime}} \gg 2 \pi N
$$

3.4.2.2 The Averaging Operation for Quasi-Isolated Resonant Terms

Since only integral multiples of the fast variable, ℓ, appear in the case of quasiisolated resonant terms, the averaging operation given in Equation (3-15) is applicable. It is repeated here for convenience:

$$
\begin{equation*}
\left\langle H^{*}\left(\stackrel{\rightharpoonup}{a}, \ell, \ell^{\prime}\right)\right\rangle_{l}=\frac{1}{2 \pi} \int_{0}^{2 \pi} H^{*}\left(\stackrel{\rightharpoonup}{a}, l, l^{\prime}\right) d l \tag{3-71}
\end{equation*}
$$

where H^{*} denotes a quasi-isolated resonant term.
The distinction in the averaging operations given in Equations (3-70) and (3-71) has an important implication for numerical averaging theories where the averaging is performed using a numerical quadrature. The perturbation model must be evaluated at each auscissa in the quadrature interval (usually between 12 and .36 points per interval). Numerically averaging an embedded resonant term requires N times as many force evaluations as the numerical averaging of a quasi-isolated resonant term for a total of between 12 N and 96 N force evaluations. Therefore, in the application of the numerical averaging methods, the perturbation models should be restricted to the quasi-i solated resonant terms whenever possible.

The spherieal harmonic expansion representing the nonspherical gravitational potential is well suited for obtaining by inspection the quasi-isolated resonant terms. The commensurability is directly related to the order of those terms which contribute to the resonance. Such is not the case for the elosed-form, third-body perturbing acceleration or even for the standard expansion in

$i \quad i \quad 1$
$\begin{array}{ll}1 & ! \\ 1 & ! \\ 1 & !\end{array}$
Legendre polynomials for the third-body disturbing function. The resonance contributions remain ernbedded in these particular forms. However, the thirdbody disturbing furction can be expanded in spherical harmonics using the associated Legende polynomials (Reference 18). The quasi-isolated resonant terms are then immediately obvious as in the case of the nonspherical gravitational potertial.

In cases where a second-order theory is needed, it should be applied selectively to those terms producing the largest short-period perturbations, e.g., the oblateness (J_{2}) term in the zonal harmonic expansion or the first few terms in the expansion of the third-body disturbing function. Such restrictions are usually justified on physical grounds and by the practical considerations of implementing a higher order theory. For those cases where such restrictions cannot be justified on physical grounds, an alternate formulation of a problem, e.g., a restricted three-body problem, should be considered.

3.5.1 The Significance of Second-Order Terms

Two questions are of particular interest concerning the possible significance of second-order terms in the averaged equations of motion:

- How do the solutions of the first-order equations and second-order equations differ with time?
- What are sufficient conditions such that second-order terms can be neglected over the time interval $0 \leq \mathrm{t} \leq \mathrm{T}$?

A precise answer to the first question is impossible without generating the actual solutions; however, a qualitative estimate of this behavior is possible. The answer to the second question is provided by inspection of the second-order averag ad equations of motion.

3.5.1.1 A Qualitative Comparison of the First- and Second-Order Theories ${ }^{1}$

The quantity $\left[\overline{\bar{a}}^{\prime}(t), \bar{\ell}^{\prime}(t)\right]$ is defined to be the solution of the following system of second-order averaged equations:

$$
\begin{aligned}
& \frac{d \bar{a}_{i}^{\prime}}{d t}=\epsilon A_{i, 1}\left(\overrightarrow{\bar{a}}^{\prime}\right)+\epsilon^{2} A_{i, 2}\left(\overrightarrow{\bar{a}}^{\prime}\right) \quad(i=1,2, \ldots, 5) \quad(3-72 a) \\
& \frac{d \bar{l}^{\prime}}{d t}=n\left(\bar{a}_{1}^{\prime}\right)+\epsilon A_{b}\left(\overrightarrow{\bar{a}}^{\prime}\right)+\epsilon^{2} A_{6,2}\left(\bar{b}^{\prime}\right)
\end{aligned}
$$

Similarly, $\left[\overrightarrow{\vec{a}}^{*}(t), \overrightarrow{\boldsymbol{l}}^{*}(t)\right]$ designates the solution of the system of first-order averaged cquations

$$
\begin{align*}
& \frac{d \bar{a}_{i}^{*}}{d t}=\epsilon A_{i, 1}\left(\dot{\bar{a}}^{*}\right) \tag{3-73a}\\
& \frac{d \bar{l}^{*}}{d t}=n\left(\bar{a}_{1}^{*}\right)+\epsilon A_{6,1}\left(\vec{a}^{*}\right) \tag{3-73b}
\end{align*}
$$

The difference of the solutions is designited a.s

$$
\begin{aligned}
& r_{i}(t)=\bar{a}_{i}^{\prime}(t)-\bar{a}_{i}^{*}(t) \\
& r_{6}(t)=\bar{l}^{\prime}(t)-\bar{l}^{*}(t)
\end{aligned}
$$

$$
(3-7 \cdot 4 b)
$$

[^8]A set of differential equations representing these differences is given by

$$
\begin{aligned}
& \frac{d r_{i}}{d t}=\epsilon\left[A_{i, 1}\left(\vec{a}^{\prime}\right)-A_{i, 1}\left(\vec{a}^{*}\right)\right]+\epsilon^{2} A_{i, 2}\left(\vec{a}^{\prime}\right) \quad(i=1,2, \ldots, 5)(3-75 a) \\
& \frac{d r_{6}}{d t}=n\left(\bar{a}_{1}^{\prime}\right)-n\left(\bar{a}_{1}^{\prime \prime}\right)+\epsilon\left[A_{6,1}\left(\vec{a}^{\prime}\right)-A_{6,2}\left(\vec{a}^{\prime \prime}\right)\right]+\epsilon^{2} A_{6,2}\left(\vec{a}^{\prime}\right) \quad(3-75 b)
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left|r_{1}(t)\right| & =\epsilon\left|\int_{0}^{t}\left[A_{i, 1}\left(\vec{a}^{\prime}\right)-A_{i, 2}\left(\vec{a}^{+}\right)\right] d t^{\prime}+\epsilon^{2} \int_{0}^{t} A_{i, 2}\left(\vec{a}^{\prime}\right) d t^{\prime}\right| \\
& \leq \epsilon \int_{0}^{t}\left|A_{i, 1}\left(\vec{a}^{\prime}\right)-A_{i, 1}\left(\bar{a}^{+}\right)\right| d t^{\prime}+\epsilon^{2} \int_{0}^{t}\left|A_{i, 2}\left(\vec{a}^{\prime}\right)\right| d t^{\prime} \tag{3-76a}
\end{align*}
$$

and, similarly,

The functions $A_{i, 1}$ and n are assumed to satisfy the Lipschitz condition

$$
\begin{aligned}
\left|r_{6}(t)\right| & \leq \int_{0}^{t}\left|n\left(\vec{a}_{1}^{\prime}\right)-n\left(\bar{a}_{1}^{*}\right)\right| d t^{\prime} \\
& +\epsilon \int_{0}^{t}\left|A_{6,1}\left(\vec{a}^{\prime}\right)-A_{6,1}\left(\vec{a}^{\prime \prime}\right)\right| d t^{\prime}+\epsilon^{2} \int_{0}^{t}\left|A_{6,2}\left(\vec{a}^{\prime}\right)\right| d t^{\prime}
\end{aligned}
$$

$$
\left|n\left(\bar{a}_{1}^{\prime}\right)-n\left(\bar{a}_{1}^{*}\right)\right| \leq L^{\prime}\left|\bar{a}_{1}^{\prime}-\bar{a}_{1}^{*}\right| \leq L^{\prime}\left|\overrightarrow{\bar{a}}^{\prime}-\vec{a} \cdot\right| \equiv L^{\prime}|\vec{r}(t)| \quad(3-77 b)
$$

on i interval $0 \leq t \leq T$, where L_{i} and L^{\prime} are positive constants and where the vector \vec{r} consists of the components r_{i} (where $\left.i=1,2, \ldots, 5\right)$. It is sufficient that the partial derivatives of the functions $A_{i, 1}$ and n exist and are bounded on the interval $0 \leq t \leq T$ for Equations (3-77) to be satisfied. It is: also arsumed that the absolute value of the second-order function $A_{i, 2}$ is bon. 'ann atore on the interval $0 \leq t \leq T$, i.e.,

$$
\left|A_{i, 2}\right| \leq M_{i} \quad \text { for } 0 \leq t \leq T
$$

Substituting Equations (3-77) into Equations (3-76) yields the inequalities

$$
\begin{aligned}
& \left|r_{i}(t)\right| \leq \epsilon L_{i} \int_{0}^{t}\left|\vec{r}\left(t^{\prime}\right)\right| a t^{\prime}+\epsilon^{2} M_{i} t \quad \quad 11,2, \ldots, ., \quad\left(3-7{ }^{+} a\right) \\
& \left|r_{6}(r)\right| \leq \epsilon L_{6} \int_{0}^{t}\left|\vec{r}\left(t^{\prime}\right)\right| d t^{\prime}+\left.L^{\prime}\right|_{-1} ^{t}\left|\vec{r}\left(t^{\prime}\right)\right| d t^{\prime}+\epsilon^{2} M_{0} t
\end{aligned}
$$

To simplify the discussion, the poosthe const:m 1 fr hesen suth that

$$
\begin{aligned}
& L \geq \sum_{i=1}^{6} L_{i} \\
& L \geq 1^{\prime}
\end{aligned}
$$

and

$$
\begin{gathered}
L \geq \sum_{i=1}^{6} M_{i} \\
3--.36
\end{gathered}
$$

Then, summing Equations (3-78a) over i yields the inequality

$$
\begin{equation*}
|\vec{r}(t)| \leq \sum_{i=1}^{5}\left|r_{i}(t)\right| \leq \epsilon L \int_{0}^{t}\left|\stackrel{\rightharpoonup}{r}\left(t^{\prime}\right)\right| d t^{\prime}+\epsilon^{2} L t \tag{3-79a}
\end{equation*}
$$

It also follows that

$$
\begin{equation*}
\left|r_{6}(t)\right| \leqslant(1+\epsilon) L \int_{0}^{t}\left|\vec{r}\left(t^{\prime}\right)\right| d t^{\prime}+\epsilon^{2} L t \tag{3-79b}
\end{equation*}
$$

Using the generalized Gronwall inequality, ${ }^{1}$ it is easily shown that

$$
\begin{align*}
|\vec{r}(t)| & \leq \int_{0}^{t} \exp \left(\epsilon L \int_{\tau}^{t} d \theta\right) \epsilon^{2} L d \tau \\
& =\int_{0}^{t} \epsilon^{2} L \exp [\epsilon L(t-\tau)] d \tau \tag{3-80}\\
& =\epsilon[\exp (\epsilon L t)-1] \leq \epsilon^{2} L t \exp (\epsilon L t)
\end{align*}
$$

${ }^{1}$ The Generalized Gronwall Inequality (Reference 45)
If the following four conditions are met:
(1) $\lambda(t), \phi(t)$, and $u(t)$ are defined on the interval $t_{0} \leq t \leq T$
(2) $\lambda(t)$ is greater than or equal to zero and is summable
(3) $\phi(t)$ and $u(t)$ are absolutely continuous
(4) the following inequality is satisfied

$$
u(t) \leq \int_{t_{0}}^{t} \lambda(\tau) u(\tau) d \tau+\phi(t) \quad\left(t_{0} \leq \imath \leq t_{1}\right)
$$

then

$$
u(t) \leq \phi\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \lambda(\tau) d \tau\right)+\int_{t_{0}}^{t} \exp \left(\int_{\tau}^{t} \lambda(\theta) d \theta\right) \frac{d \phi}{d \tau} d \tau
$$

Substituting the minimum of the upper bounds for $|\overrightarrow{\mathrm{r}}(\mathrm{t})|$, i.e.,

$$
\begin{equation*}
|\vec{r}(t)| \leq \epsilon[\exp (\epsilon L t)-1] \tag{3-81}
\end{equation*}
$$

into the inequality for $\left|r_{6}(t)\right|$ yields

$$
\begin{align*}
\left|r_{6}(t)\right| & \leq(1+\epsilon) \epsilon L \int_{0}^{t}\left[\exp \left(\epsilon L t^{\prime}\right)-1\right] d t^{\prime}+\epsilon^{2} L t \\
& =(1+\epsilon)[\exp (\epsilon L t)-1-\epsilon L t]+\epsilon^{2} L t \tag{3-82}\\
& \leq \epsilon L t(\epsilon+\epsilon L t) \exp (\epsilon L t)
\end{align*}
$$

It is noted that this last result is not in agreement with that obtained by Kyner, i.e.,

$$
\begin{equation*}
\left|r_{6}(t)\right| \leq \epsilon L t[2 \exp (\epsilon L t)+\epsilon-t] \tag{3-83}
\end{equation*}
$$

In summary, the difference of the first- and second-order solutions is bounded by the functions

$$
\begin{align*}
& \left|\overline{\bar{a}}^{\prime}-\overrightarrow{a^{*}}\right| \leq \epsilon^{2} L t \exp (\epsilon L t) \tag{3-84a}\\
& \left|\bar{l}^{\prime}-\bar{l}^{*}\right| \leq\left(\epsilon^{2} L t+\epsilon^{2} L^{2} t^{2}\right) \exp (\epsilon L t) \tag{3-84b}
\end{align*}
$$

If the time t is restricted such that $\epsilon \mathrm{Lt} \ll 1$ (i.e., $0 \leq \mathrm{t} \leq \mathrm{T} \ll(\epsilon \mathrm{L})^{-1}$), then generally the order of magnitude estimate of the divergence between the firstand second-order theories is given by

$$
\begin{equation*}
\left|\overrightarrow{\bar{a}}^{\prime}-\overrightarrow{\vec{a}} *\right| \sim O\left(\epsilon^{2} t\right) \quad\left(\text { for } 0 \leq t \leq T \ll(\epsilon L)^{-1}\right) \tag{3-85a}
\end{equation*}
$$

and

$$
\left|\bar{l}^{\prime}-\bar{l}^{*}\right| \sim O\left(\epsilon^{2} t\right)^{\begin{array}{c}
\text { ORIGINAL PAGE IS } \tag{3-85b}\\
\text { OF POOR QUALIT } \\
\text { (for } 0 \leq t<L^{-1}
\end{array}}
$$

$$
\left|\bar{l}^{\prime}-\bar{l}^{*}\right| \sim O\left(\epsilon^{2} t^{2}\right) \quad\left(\text { for } L^{-1}<t \leq T \ll(\epsilon L)^{-1}\right)
$$

The above error estimates can be mapped back into the osculating elements using the near-identity transformation. Only first-order terms are assumed, since only first-order terms are required for the second-order averaged equations of motion. Evaluating the near-identity transformation

$$
\begin{aligned}
& \vec{a}=\vec{a}+\epsilon \vec{\eta}(\vec{a}, \bar{l})+O\left(\epsilon^{a}\right) \\
& l=\bar{l}+\epsilon \eta_{b}(\vec{a}, \bar{l})+O\left(\epsilon^{a}\right)
\end{aligned}
$$

with the elements obtained from the first- and second-order solutions and taking the absolute value of the difference yields the inequalities

$$
\begin{align*}
& \left|\vec{a}^{\prime}-\vec{a}^{*}\right| \leq\left|\overrightarrow{\vec{a}^{\prime}}-\overrightarrow{\vec{a}}+|+\epsilon| \vec{\eta}\left(\overrightarrow{\vec{a}}, \bar{l}^{\prime}\right)-\vec{\eta}\left(\overrightarrow{\vec{a}} ; \bar{l}^{*}\right)\right| \tag{3-86a}\\
& \left|l^{\prime}-l^{*}\right| \leq\left|\vec{l}^{\prime}-\bar{l}^{*}\right|+\epsilon\left|\eta_{6}\left(\overrightarrow{a^{\prime}} ; \bar{l}^{\prime}\right)-\eta_{6}\left(\bar{a}^{*} ; \bar{l}^{*}\right)\right| \tag{3-86b}
\end{align*}
$$

where $\vec{\eta}$ is a vector with the components $\eta_{i, 1}(i=1,2, \ldots, 5)$. Since the constant L can be chosen to satisfy the Lipschitz conditions

$$
\begin{align*}
& \left|\vec{\eta}\left(\overrightarrow{\bar{a}}^{\prime}, \bar{l}^{\prime}\right)-\vec{\eta}\left(\overrightarrow{\bar{a}}^{*}, \bar{l}^{*}\right)\right| \leq L|\vec{r}(t)|+L\left|r_{6}(t)\right| \tag{3-87a}\\
& \left|\eta_{G}\left(\overrightarrow{\bar{a}}^{\prime}, \bar{l}^{\prime}\right)-\eta_{6,1}\left(\vec{a}^{*} ; \bar{l}^{*}\right)\right| \leq L|\vec{r}(t)|+L\left|r_{6}(t)\right| \tag{3-87b}
\end{align*}
$$

Equations (3-86) can be simplified to give

$$
\begin{align*}
& \left|\vec{a}^{\prime}-\vec{a}^{*}\right| \leq(1+\epsilon L)|\vec{r}(t)|+\epsilon L\left|r_{6}(t)\right| \tag{3-88a}\\
& \left|l^{\prime}-l^{*}\right| \leq \epsilon L|\vec{r}(t)|+(1+\epsilon L)\left|r_{6}(t)\right| \tag{3-88b}
\end{align*}
$$

Substituting the upper bounds for $|r(t)|$ and $\left|r_{6}(t)\right|$ into Equations (3-88) yields the inequalities

$$
\begin{align*}
& \left|\vec{a}^{\prime}-\vec{a}^{*}\right| \leq \epsilon^{2} L t\left(1+2 \epsilon L+\epsilon L^{2} t\right) \exp (\epsilon L t) \tag{3-89a}\\
& \left|\ell^{\prime}-\ell^{4}\right| \leq \epsilon^{2} L t\left(1+2 \epsilon L+\epsilon L^{2} t+L t\right) \exp (\epsilon L t) \tag{3-89b}
\end{align*}
$$

which yields the following qualitative estimates for the osculating elements:

$$
\begin{equation*}
\left|\vec{a}^{\prime}-\vec{a}^{*}\right| \sim O\left(\epsilon^{2} t\right) \quad\left(\text { for } 0 \leq t \leq T \ll(\epsilon L)^{-1}\right) \tag{3-90a}
\end{equation*}
$$

Inspection of tha: second-order averaged equations of motion indicates that, for the limiting case in which the first-order short-period variations of the osculating elements are identically equal to zero, the second-order contributions to the mean element rates vanish identically. Similarly, if the amplit. 'ss of the firstorder short-period variations are small in magnitude, the second-order contribution to the mean element rates will be small, provided that the short-periodic part of the function $\partial \mathrm{F}_{\mathrm{i}} / \partial \vec{a}_{k}$ is not large. Finally, inspection of the secondorder equations indicates that the effect of nonzero second-order termss will be most significanl when the first-order contribution to the mean element rates is very small or zero. Consequently, the inadequacy of a first-order theory will be most apparent when the element history approaches a local maximum or minimum value.

Before further discussion, the following relation will be demonstrated:

$$
\begin{equation*}
\frac{\partial F_{i}(\vec{a}, \bar{l})}{\partial \bar{a}_{k}}=\frac{\partial A_{i, 1}(\overrightarrow{\bar{a}})}{\partial \bar{a}_{k}}-\frac{\partial \dot{\eta}_{i, 1}(\vec{a}, \bar{l})}{\partial \bar{a}_{k}} \tag{3-93}
\end{equation*}
$$

where (${ }^{\bullet}$) indicates $d() / d t$. (Since extension of the following discussion to the case $i=6$ is straightforward, it is not presented.)

Substituting the relation

$$
F_{i}(\vec{a}, l)=F_{i}(\vec{a}, \bar{l})+O(\epsilon) \quad(i=1,2, \ldots, 5) \quad(3-94)
$$

into the high-precision equation (from Equation (3-2))

$$
\frac{d a_{i}}{d t}=\epsilon F_{i}(\stackrel{\rightharpoonup}{a}, \ell)
$$

$$
(i=1,2, \ldots, 5) \quad(3-95)
$$

yields the result

$$
\frac{d a_{i}}{d t}=\epsilon F_{i}(\vec{a}, \bar{l})+O\left(\epsilon^{2}\right) \quad(i=1,2, \ldots, 5) \quad(3-96)
$$

Differentiating with respect to time the near-identity transformation from Equalion (3-3)

$$
\begin{equation*}
\frac{d a_{i}}{d t}=\frac{d \bar{a}_{i}}{d t}+\epsilon \frac{d \eta_{i, l}}{d t}\left(\overline{\bar{a}}_{,}, \bar{l}\right)+O\left(\epsilon^{2}\right) \tag{3-97}
\end{equation*}
$$

and substituting into the result the expansion of the mean element rate from Equalion (3-4), ie.,

$$
\begin{equation*}
\frac{d \bar{a}_{i}}{d t}=\epsilon A_{i, 1}(\vec{a})+O\left(\epsilon^{2}\right) \tag{3-98}
\end{equation*}
$$

yields the relation

$$
\begin{equation*}
\frac{d a_{i}}{d t}=\epsilon\left[A_{i, 1}(\stackrel{\bar{a}}{a})+\frac{d}{d t} \eta_{i, 1}(\overline{\hat{a}}, \bar{l})\right]+O\left(\epsilon^{\alpha}\right) \tag{3-99}
\end{equation*}
$$

Comparison of Equations (3-96) and (3-99) yields the result

$$
F_{i}(\overrightarrow{\vec{a}}, \bar{l})=A_{i, 1}(\hat{\vec{a}})+\frac{d \eta_{i, 1}(\overrightarrow{\bar{a}}, \bar{l})}{d t} \quad(i=1,2, \ldots, 5) \quad(3-100)
$$

and Equation (3-93) follows immediately. As a result, the second-order contribution to the mean element rates reduces to

$$
\begin{aligned}
A_{i, 2}(\overline{\bar{a}}) & =\sum_{k=1}^{6}\left\langle\eta_{k, 1}\left(\frac{\partial A_{i, 1}}{\partial a_{k}}+\frac{\partial \dot{\eta}_{i, 1}}{\partial \bar{a}_{k}}\right)\right\rangle_{\bar{l}} \\
& =\sum_{(i=1,2, \ldots, 5)(3-101)}^{6}\left\langle\eta_{k, 1} \frac{\partial \dot{\eta}_{i, 1}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}
\end{aligned}
$$

since, by Equations (3-22) and (3-23),

$$
\begin{equation*}
\left\langle\eta_{k, 1} \frac{\partial A_{i, 1}}{\partial \bar{a}_{k}}\right\rangle_{\bar{I}}=\frac{\partial A_{i, 1}}{\partial \bar{a}_{k}}\left\langle\eta_{k, 1}\right\rangle_{\bar{I}} \equiv 0 \tag{3-102}
\end{equation*}
$$

The requirement that the magnitude of the short-period part of the function $\partial F_{i} \partial \overline{\mathrm{a}}_{\mathrm{k}}$ is not large then reduces to the requirement that the magnitude of the function $\partial \dot{\eta}_{i, 1} \partial \bar{a}_{k}$ is not large. It seems reasonable to expect that, if the function $\dot{\eta}_{i, 1}$ has a small absolute variation and the re are few local extrema over the interval corresponding to one satellite period, then the first time derivative of the function should not be large. This assumption should also extend to the partial derivatives.

A somewhat more formal criterion for neglecting second-order terms requires simply that the integrated effect of the second-order term over the interval $0 \leq t \leq T$ be less than some specified tolerance δ, i.e.,

$$
\begin{equation*}
\epsilon^{2} \int_{0}^{t} A_{i, 2}(t) d t<\delta \tag{3-103}
\end{equation*}
$$

or, more specifically (in view of Equation (3-101)),

$$
\begin{equation*}
\epsilon^{2} \int_{0}^{t} \sum_{k=1}^{6}\left\langle\eta_{k, 1} \frac{\partial \dot{\eta}_{i, 1}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}} d t<\delta \tag{3-104}
\end{equation*}
$$

Clearly, the integral of the second-order contribution can be bounded as follows:

$$
\begin{equation*}
\epsilon^{2} \int_{0}^{t} A_{i, 2}\left(\frac{\bar{a}}{a}\right) d t \leq \epsilon^{2} \int_{0}^{t}\left|A_{i, 2}\left(\frac{t}{a}\right)\right| d t \tag{3-105}
\end{equation*}
$$

and it follows from Equation (3-101) that

$$
\begin{aligned}
\left|A_{i, 2}(\stackrel{\rightharpoonup}{a})\right| & \leq \sum_{k=1}^{6}\left|\left\langle\eta_{k, 1} \frac{\partial \dot{\eta}_{i, 1}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}\right|_{(i=1,2, \ldots, 5) \quad(3-106)} \\
& \leq \sum_{k=1}^{6} p_{k} \gamma_{i, k}=M_{i}
\end{aligned}
$$

where ρ_{k} and $\gamma_{i, k}$ designate the maximum variations of the functions $\eta_{k, 1}$ and $\partial \eta_{i, k} / \partial \bar{a}_{k}$, respectively, i.c.,

$$
\begin{align*}
& \left|\eta_{k, 1}\right| \leq \rho_{k} \tag{3-107a}\\
& \left|\frac{\partial \dot{\eta}_{i, 1}}{\partial \bar{a}_{k}}\right| \leq \gamma_{i, k} \quad(i-107 a)
\end{align*}
$$

For the case of the fast variable (ie., where i-6),

$$
\begin{equation*}
A_{6,2}=\sum_{k=1}^{6}\left\langle\eta_{k, 1} \frac{\partial \dot{\eta}_{6,1}}{\partial \bar{a}_{k}}\right\rangle_{\bar{l}}+\frac{15}{8} \frac{\bar{n}}{\bar{a}_{1}^{2}}\left\langle\eta_{1,1}^{2}\right\rangle_{\bar{l}} \tag{3-108}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
\left|A_{6,2}\right| \leq \sum_{k=1}^{6} \rho_{k} \gamma_{6, k}+k \rho_{1}^{2}=M_{6} \tag{3-109}
\end{equation*}
$$

where

$$
\frac{15}{8}\left|\frac{\pi}{\overline{a_{i}^{2}}}\right| \leq k
$$

It follows that

$$
\epsilon^{2} \int_{0}^{t} A_{i, 2}\left(\frac{\bar{a}}{a}\right) d t \leq \epsilon^{2} \int_{0}^{t} M_{i} d t=\epsilon^{2} M_{i} t \quad(i=1,2, \ldots, 6)(3-110)
$$

Thus, the second-order term may be neglected when $\epsilon^{2} M_{i} t<\delta(i=1,2, \ldots, 6)$, that is, over the interval $0 \leq t \leq T$, where $T=\delta /\left(\epsilon^{2} M_{i}\right)$. Therefore, the time interval over which a first-order theory is valid depends inversely on the magni-. tude of the first-order short-period variations in the osculating elem. 5 .

A relative criterion for neglecting the second-order terms provides, is a . the more insight in practical applications. Essentially, it is required that the integrated second-order contribution be negligible when compared with the integrated first-order contrihution over the interval $0 \leq t \leq T$. Specifically, the condition

$$
\begin{equation*}
\left|\epsilon^{2} \int_{0}^{t} A_{i, 2} d t\right| \ll \max \left|\epsilon \int_{0}^{t} A_{i, 1} d t\right|(0<t \leq T) \tag{3-111}
\end{equation*}
$$

is to be satisfied. ${ }^{1}$ As before, the integral of the second-order term is easily bounded by

$$
\begin{equation*}
\left|\epsilon^{2} \int_{0}^{t} A_{i, 2} d t\right| \leq \epsilon^{2} M_{i} t \tag{3-112}
\end{equation*}
$$

Also, if the following definition is made
original page is n P POR QUAITY

$$
\Delta \bar{a}_{i}=\max \left|\in \int_{0}^{t} A_{i, 1} d t\right| \quad(i=1,2, \ldots, 6)(3-113)
$$

[^9]then the inequality in Equation (3-111) will be satisfied when
$$
\epsilon^{2} M_{i} t \ll \Delta \bar{a}_{i} \quad(i=1,2, \ldots, 5)(3-114)
$$
or
\[

$$
\begin{equation*}
\epsilon^{2} \frac{M_{i}}{\Delta \bar{a}_{i}} t \ll 1 \tag{3-115}
\end{equation*}
$$

\]

If $\gamma_{i, k}$ (Equation ($\left.3-107 \mathrm{~b}\right)$) is replaced by the order of magnitude estimate

$$
\begin{equation*}
r_{i, k} \approx \frac{\Delta \dot{\eta}_{i, 1}}{\Delta \bar{a}_{k}} \approx \frac{\rho_{i}^{\prime}}{\Delta \bar{a}_{k}} \tag{3-116}
\end{equation*}
$$

where Δ denotes the maximum variation of the element \bar{a}_{k} over the interval $0 \leq t^{\prime} \leq t$ and ρ_{i}^{\prime} is defined to be an upper bound of the time derivative of the short-period variation $\eta_{i, 1}$, i.e.,

$$
\left|\dot{\eta}_{i, 1}\right| \leq \rho_{i}^{\prime}
$$

Then it follows that

$$
\begin{equation*}
\frac{M_{i}}{\Delta \bar{a}_{i}}=\sum_{k=1}^{6} \frac{\rho_{k}}{\Delta \bar{a}_{i}} \gamma_{i, k} \approx \sum_{k=1}^{6} \frac{\rho_{k}}{\Delta \bar{a}_{k}}-\frac{\rho_{i}^{\prime}}{\Delta \bar{a}_{i}} \tag{3-117}
\end{equation*}
$$

and the second-order terms can be neglected when

$$
\begin{equation*}
\epsilon^{2} t \sum_{k=1}^{6} \frac{p_{k}}{\Delta \bar{a}_{k}} \frac{\rho_{i}^{\prime}}{\Delta \bar{a}_{i}} \ll 1 \tag{3-118}
\end{equation*}
$$

Thus, the second-order terms can be neglected over the interval $0<t \leq T$, where

The smaller the ratio of the short-period variation to the first-order long-period variation, the greater the interval over which a first-order theory is valid. How small these ratios must be depends on the time interval over which the firstorder theory is to be valid. The answer to this question can be provided only by a thorough investigation for each dynamical system. However, an upper brund of at most a few percent would be a likely guess for retaining a period of validity of a few years.

On the other hand, a first-order theory is clearly inadequate when the amplitude of the short-period variations is 20 to 30 percent of the long-period variations. The author has investigated the case of a near-circular satellite (IMP-J) in 2:1 resonance with the Moon. The amplitude of the stort-period variations was approximately 30 percent of the magnitude of the long-period variation caused by the resonance. The first-order averaging theory produced poor results in the neighborhood of a local extremum of the semimajor axis history, an indication of significant second-order contributions to the motion.

3.5.2 Application of a Restricted Second-Order Theory of Averaging

The application of a second-order averaging theory to all perturbations would compromise the advantage of the low computational cost, which is characteristic of the first-order theory. However, the application of a second-order averaging theory, restricted to selected perturbations, may yield more accurate results where the application of a first-order theory is marginal, or it may extend the time interval over which the first-order theory is valid with a minimal increase in cost.

3.5.2.1 Nonspherical Gravitational Perturbation

The spherical harmonic expansion representing the potential of the nonspherical gravitational field of the central body (Earth, Moon) contains the small parameters

$$
c_{n, m}\left(\frac{a_{e}}{a}\right)^{n} ; \quad S_{n, m}\left(\frac{a_{e}}{a}\right)^{n}
$$

where a_{e} designates the equatorial radius of the central body, the quantity a designates the semimajor axis of the satellite orbit, and the cocfficients $C_{n, m}$ and $S_{n, m}$ are observed quantities.

The zonal harmonic coefficients J_{n} are defined by

$$
J_{n}=-C_{n, 0}
$$

These small parameters are obviously bounded above by the numerical ccefficients $C_{n, m}$ and $S_{n, m}$. Since $J_{2} \approx O\left(10^{-3}\right)$ and since all other cocfficients are of the order of J_{2}^{n} for $n \geq 2$, the oblateness term, J_{2}, in the geopotential might seem to be a logical candidate for the application of a second-order averaging procedure. In fact, a consistency argument is often made that secondorder oblateness contributions should be included if any other terms in the spherical harmonic expansion for the geopotential model are also included. According to the previous discussion, this is not necessarily the case since the second-order contributions depend on the first-order short-period variations of the osculating elements and their time derivatives and not on the first-order contribution to the long-period motion. However, it is reasonable to expect that if second-order terms are necessary, the J_{2} contribution would strongly dominate over the other harmonics. Consequently, any second-order theory for the nonspherical gravitational field could be limited, in most cases, to the J_{2} oblateness contribution.

3.5.2.2 'Ihird-Body Perturbation

The case for the third-body perturbation is not generally as simple. The relevant small parameters are the nth power of the parallax factor, i.e.,

$$
\epsilon_{n}=\left(\frac{a}{a^{\prime}}\right)^{n} \quad(n=2,3, \ldots)
$$

where a and a^{\prime} are the semimajor axes of the satellite orbit and third-body orbit, respectively. (It is tacitly assumed that the disturbing thira body is an exterior perturbation, i.e., $a<a^{\prime}$. If, however, $a>a^{\prime}$, the expassion proceeds in powers of the inverse of the above parameter.)

The upper bound of this set of small parameters is unity in contrast to the upper bound for the small parameters in the nonspherical gravitational model which is of the order $\mathrm{O}\left(10^{-3}\right)$. Clearly, for high-altitude sat-llites, the small parameters are not really very small except for the large values of n. Physically, as the parallax factor grows towrad unity, the third body produces stronger disturbances (both short- and long-period) in the satellite motion. These larger disturbances require a more complex model which is manifested by a greater number of terms in the disturbing function expansion.

The recursive formulation of the disturbing function presented in Volume II of this report can, in principle, be used to produce expansions to any arbitrary order. However, high-order expansions can nroduce increased eomputational cost, unavoidable numerical round-off and truncation errors, and, possibly, errors due to unstable recursion formulas. Also, the first-order averaged equations of motion can be formulated in terms of the perturbing acceleration using the Gaussian formulation (Equation (2-15)) to avoid entirely the problem of slow convergence of the disturbing function expansion.

The slow convergence of the disturbing function is of far greater significance to ti:e application of the method of averaging itself. The strong short-period disturbances can no longer be noglected in formulating the averaged equations

[^10]For many plications, the solution to Equations (3-2) (the true instantancous or osculating elements) is desired. Several techniques have been developed for tine solution of these equations (e.g., Cowell, Encke, etc. --see Reference 29); however, these high-precision techniques share the characteristic of high computational cost. To reduce this cost, the averaged equations of motion were developed, which provide mean elements for the dynamical system.

In addition to the mean trajectory, the method of averaging pruvides (in principle) a way to compute a jth-order approximation to the osculating elements from the mean elements. First-order, and possibly second-order, approximations to the osculating elements are sufficiently accurate for most applications. The computational complexity of these approximations increases tremendously with the order of the small parameter.

The effectiveness of representing osculating elements by applying a first-order short-period variation to mean elements has been demonstrated by Lutaky and Uphoff (Reference 5). It might appear that such a procedure would vitiate the computational advantages associated with the method of averaging, and it has already been demonstrated that mean elements are sufficiently accurate for many applications (References 4 and 9). Howevor, for some applications, e.g., definitive orbit determination procedures, the additional accuracy provided by the first-order short-period variations might be necessary.

Based on the following discussion, it appears that the cost of evaluating the firstorder short-period variations using an analytical formulation ${ }^{1}$ would be no more costly than a single averaged derivative evaluation. This estimate is basod on the assumption that the evaluation of first-order short-period variations is porformed independently of the derivative ovaluation.

[^11]As will be shown in Volume II, the mathematical formalism for the mean element rates is also common to the first-order short-period variations. Consequently, it is estimated that, if proper advantage is taken of this enmmonality, the cost of evaluating the analytical formulation of the first-order short-period variations could be reduced to possibly 20 percent (or even less) of the cost of a derivative evaluation. For those environments where the utmost computational efficiency is required, these variations should be applied only at judiciously selected points along and/or at the end of the trajectory for applications with high-accuracy requirements.

An equally important application for such approximations to the osculating elements is the conversion of osculating elements to mean elements. An osculating-to-mean element conversion can be developed by inverting the equations which specify the mean-to-usculating element transformation.

The mean elements describing the long-period variations in the trajectory are only as accurate as the initial mean elements and, hence, only as accurate as the osculating-to-mean conversion. Existing conversion procedures are strictly numerical (except for the Brouwer theory, which is limited to the low-order zonal perturbations) and are based on quadratures or costly differential correction procedures which require a high-precision orbit generator. Therefore, either the initia! conditions must be predetermined or the software system must have access to a high-precision orbit generator as well as to the averaged orbit generator. ${ }^{1}$ In addition, implementation of the short-period corrections appears to require no additional theory beyond that necessary for the averaged equations of motion.

This section presents a discussion of the first-order short-period variations of the osculating elements and their application to both osculating-to-mean and mean-to-osculating element conversions. This discussion is developed in the context of

[^12]

4.1 MEAN-TO-OSCULATING ELEMENT CONVERSION

The near-identity transformation (Equation (3-3)) establishes the relation between mean elements and osculating elements. A general expression for the jth-order term in this transformation is given in Equation (3-29). Evaluation of this expression for higher orders is quite complicated if not prohibitive. However, evaluation of the first-order term is manageable. (This term also appears in the formulation of the second-order averaged equations of motion (Equations (3-39).)

Expressing the near-identity transformation to first order in the small parameter yields

$$
\begin{align*}
& a_{i}=\bar{a}_{i}+\epsilon \eta_{i, 1}(\overline{\bar{a}}, \bar{l}) \quad(i=1,2, \ldots, 5) \quad(4-1 a) \\
& l=\bar{l}+\epsilon \eta_{6,1}(\bar{a}, \bar{l}) \tag{4-1b}
\end{align*}
$$

where

$$
\begin{align*}
& \epsilon \eta_{i, 1}(\bar{a}, \bar{l})=\frac{1}{\bar{n}} \int \in F_{i}^{S}(\overline{\bar{a}}, \bar{l}) d \bar{l} \quad(i=1,2, \ldots, 5) \quad(4-2 a) \\
& \epsilon \eta_{6,1}(\overline{\bar{a}}, \bar{l})=\frac{1}{\bar{n}} \int \epsilon\left[F_{6}^{S}(\overline{\bar{a}}, \bar{l})-\frac{3}{2} \frac{\bar{n}}{\bar{a}} \eta_{1,1}(\overrightarrow{\bar{a}}, \bar{l})\right] d \bar{l} \quad(4-2 b) \tag{4-2b}
\end{align*}
$$

and F_{i} denotes the short-periodic part of the perturbing function, i.e.,

$$
\begin{equation*}
F_{i}^{s}=F_{i}-\left\langle F_{i}\right\rangle_{\bar{\ell}} \tag{4-3}
\end{equation*}
$$

If the functions $\eta_{i, 1}$ (where $i=1$ through 6) can be evaluated, then Equations (4-1) provide a first-order mean-to-osculating element conversion.

Using the Lagrange Planetary Equations (Equation (2-31)), it follows from Equation (4-3) that

$$
\begin{equation*}
\epsilon F_{i}^{\prime}(u, \bar{l})=-\sum_{j=1}^{6}\left[\left(a_{i}, a_{j}\right) \frac{\partial R\left(a_{,}, \bar{l}\right)}{\partial a_{j}}-\left\langle\left(a_{i}, \bar{a}_{j}\right) \frac{\partial R\left(a_{,}, \bar{l}\right)}{\partial a_{j}}\right\rangle_{l}\right] \tag{4-4}
\end{equation*}
$$

Because the nonzero Poisson Brackets are independent of the fast variable (see Appendix A),

$$
\begin{equation*}
\left\langle\left(\bar{a}_{i}, \bar{a}_{j}\right) \frac{\partial R\left(\bar{a}_{i}, \bar{l}\right)}{\partial \bar{a}_{j}}\right\rangle_{\bar{l}}=\left(\bar{a}_{i}, \bar{a}_{j}\right)\left\langle\frac{\partial R\left(\overline{\bar{a}}_{i} \bar{l}\right)}{\partial \bar{a}_{j}}\right\rangle_{\bar{l}} \tag{4-5}
\end{equation*}
$$

Consequently, Equation (4-4) can be expressed as

$$
\begin{equation*}
\in F_{i}^{S}\left(\frac{t}{a_{i}}, \bar{l}\right)=-\sum_{j=1}^{6}\left(\bar{a}_{i}, \bar{a}_{j}\right)\left[\frac{\partial R(\bar{a}, \bar{l})}{\partial \bar{a}_{j}}-\left\langle\frac{\partial R\left(\overline{a_{i}} \bar{l}\right)}{\partial \bar{a}_{j}}\right\rangle_{\bar{l}}\right] \tag{4-6}
\end{equation*}
$$

Since
 1) POOR QUAGIIY

$$
4-5
$$

Equation (4-6) can be simplified to read

$$
\begin{align*}
& \epsilon F_{i}^{S}\left(\hat{a}_{,} \bar{l}\right)=-\sum_{j=1}^{6}\left(\bar{a}_{i}, \bar{a}_{j}\right) \frac{\partial R^{S}}{\partial \bar{a}_{j}} \tag{4-8}\\
& \text { where } \\
& R^{S}=R-\langle R\rangle_{I} \tag{4-9}
\end{align*}
$$

Substituting Equations (4-8) into Equations (4-2) and simplifying yields
and

$$
\begin{aligned}
\epsilon \eta_{6, l}(\bar{a}, \bar{l})= & -\frac{1}{\bar{n}}\left[\sum_{j=1}^{6}\left(\bar{l}, \bar{a}_{j}\right) \int \frac{\partial R^{s}\left(\overline{a_{i}}, \bar{l}\right)}{\partial \bar{a}_{j}} d \bar{l}\right. \\
& \left.+\frac{3}{2} \frac{\bar{n} \epsilon}{\bar{a}} \int \eta_{1,1}(\overline{\bar{a}}, \bar{l}) d \bar{l}\right]
\end{aligned}
$$

$$
(t-10 b)
$$

Okiginal Page OF POOR QUALITY

Since the disturbing function R is assumed to be appropriately continuous and differentiable,

$$
\begin{equation*}
\int \frac{\partial R^{S}\left(\vec{a}_{\bar{l}} \bar{l}\right)}{\partial \bar{a}_{j}} d \bar{l}=\frac{\partial}{\partial \bar{a}_{j}} \int R^{S}\left(\hat{\bar{a}}_{1} l\right) d \bar{l} \tag{4-11}
\end{equation*}
$$

If the short-periodic function $S(\overrightarrow{\bar{a}}, \bar{\ell})$ is defined as
;

$$
\begin{equation*}
S(\overrightarrow{\vec{a}}, \bar{l})=\int R^{S}(\overrightarrow{\vec{a}}, \bar{l}) d \bar{l} \tag{4-12}
\end{equation*}
$$

then Equations (4-10) take the form

$$
\begin{align*}
& \epsilon \eta_{i, 1}=-\frac{1}{\bar{n}} \sum_{j, 1}^{6}\left(a_{i}, \bar{a}_{j}\right) \frac{\partial S}{\partial \bar{a}_{j}} \quad(i=1,2, \ldots, 5) \quad(4-13 a) \\
& \epsilon \eta_{6,1}=-\frac{1}{\bar{n}}\left[\sum_{j=1}^{6}\left(\bar{l}_{1} \bar{a}_{j}\right) \frac{\partial S}{\partial \bar{a}_{j}}+\frac{3}{2} \frac{\bar{n}_{\epsilon}}{\bar{a}} \int \eta_{1,1}(\overline{\bar{a}}, \bar{l}) d \bar{l}\right] \quad(t-13 \mathrm{~b})
\end{align*}
$$

Equations ((-13) are almost identical in form to the general form of the lagrange Planetary Equations (Equations (2-28)), with the exception of the reciprocal average mean motion factor and the second term in the equation for the short-period

variation of the fast variable, $\epsilon \bigcap_{6,1}$. Expressir.; Equations (4-13) explicitly in equinoctial elements (a, h, k, p, q, λ) results in the following:

$$
\begin{equation*}
\epsilon \eta_{1,1}=\Delta a^{S}=\frac{2 \bar{a}}{\bar{n} A} \frac{\partial S}{\partial \bar{\lambda}} \tag{4-14a}
\end{equation*}
$$

$$
\begin{aligned}
\epsilon \eta_{2,1}=\Delta h^{S}= & \frac{B}{\bar{n} A}\left(\frac{\partial S}{\partial \bar{k}}-\frac{\bar{h}}{1+B} \frac{\partial S}{\partial \bar{\lambda}}\right) \\
& +\frac{\bar{k}}{2 \bar{n} A B}\left(\bar{p} \frac{\partial S}{\partial \bar{p}}+\bar{q} \frac{\partial S}{\partial \bar{q}}\right) \\
\epsilon \eta_{3,1}=\Delta k^{S}= & -\frac{B}{\bar{n} A}\left(\frac{\partial S}{\partial \bar{h}}+\frac{\bar{k}}{1+B} \frac{\partial S}{\partial \bar{\lambda}}\right) \\
& -\frac{\bar{h} C}{2 \bar{n} A B}\left(\bar{p} \frac{\partial S}{\partial \bar{p}}+\bar{q} \frac{\partial S}{\partial \bar{q}}\right)
\end{aligned}
$$

$$
\begin{align*}
\epsilon \eta_{4, L}=\Delta p^{s}= & -\frac{\bar{p} C}{2 \bar{n} A B}\left(\bar{k} \frac{\partial S}{\partial \bar{h}}-\bar{h} \frac{\partial S}{\partial \bar{k}}+\frac{\partial S}{\partial \bar{\lambda}}\right) \tag{t-14d}\\
& +\frac{I C^{2}}{4 \bar{n} A B} \frac{\partial S}{\partial \bar{q}}
\end{align*}
$$

$$
\begin{align*}
\epsilon \eta_{5,1}=\Delta q^{s}= & -\frac{\bar{q} C}{2 \bar{n} A B}\left(\bar{k} \frac{\partial S}{\partial \bar{h}}-\bar{h} \frac{\partial S}{\partial \bar{k}}+\frac{\partial S}{\partial \bar{\lambda}}\right) \\
& -\frac{I C^{2}}{4 \bar{n} A B} \frac{\partial S}{\partial \bar{p}} \tag{4-14e}
\end{align*}
$$

$$
\begin{align*}
\epsilon \eta_{6,2}=\Delta \lambda^{S}= & -\frac{2 \bar{a}}{\bar{n} A} \frac{\partial S}{\partial \bar{a}}+\frac{B}{\bar{n} A(i+B)}\left(\bar{n} \frac{\partial S}{\partial \bar{h}}+i \frac{\partial S}{\partial \bar{k}}\right) \tag{4-14f}\\
& +\frac{C}{2 \bar{n} A B}\left(\bar{\rho} \frac{\partial S}{\partial \bar{p}}+\bar{q} \frac{\partial S}{\partial \bar{q}} ;-\frac{3}{\bar{n} A} S\right.
\end{align*}
$$

where

$$
\begin{aligned}
& S=S(\bar{a}, \bar{\lambda}) \\
& A=\bar{n} \bar{a}^{2} \\
& B=\sqrt{1-\bar{h}^{2}-\overline{\bar{n}}^{2}} \\
& C=1+\bar{p}^{2}+\bar{q}^{2} \\
& I=\text { the retrograde factor }
\end{aligned}
$$

The indefinite integral of Equation ($4-1+\mathrm{a}$) yields the last term in Equation ($4-14 \mathrm{f}$). These equations can also be expressed in terms of the direction cosines ($\bar{\alpha}, \bar{\beta}, \bar{\gamma}$) through Equations $(2-35)$ and $(2-36)$.

Explicit computation of S for the nonspherical gravitational perturbing fuctetion and for the third-body perturbing function is discussed in Volume II of this report.
4.2 OSCULATING-TO-MEAN ELEMENT CONVERSION

An osculating-to-mean element conversion is immediately obtained by inverting Equatiors (4-1). These equations are identical in form to Kepler's equation and can be numerically inverted, i.e., solved for the mean elements, by the same techniques. These techniques require an iterative scheme, since these Keplertype equations are transcendental.

Expressions for the mean elements are obtained by writing Equations (4-1) in the form

$$
\begin{equation*}
\bar{a}_{i}=a_{i}-\epsilon \eta_{i, 1}\left(\frac{\left.a_{1}, \bar{l}\right)}{}\right. \tag{4-15a}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{l}=\ell-\epsilon \eta_{6, i}(\overline{\bar{a}}, \bar{l}) \tag{4-15b}
\end{equation*}
$$

An a priori estimate of the mean elements will permit evaluation of the right-hand sides of Equations (4-15). This, in turn, permits a computed approximation to the mean elements. These approximate mean elements are used to reevaluate the right-hand sides of the equations and to compute a new approximation to the mean elements. The kth approximation to the mean elements is expressed simply as

$$
\left.\bar{a}_{i, k}=a_{i}-\epsilon \eta_{i, 1}\left(\bar{a}_{k-1}, \bar{l}_{k-1}\right) \quad(i=1,2, \ldots, 5) \quad \text { (} \varsigma_{a}\right)
$$

$$
\begin{equation*}
\bar{\ell}_{k}=\ell-\epsilon \eta_{6,1}\left(\bar{a}_{k-1}, \bar{l}_{k-1}\right) \tag{4-16b}
\end{equation*}
$$

Such a procedure should converge within two or three iterations, provicied a good a priori estimate is used.

A good estimate of the initial mean elements is provided by the osculating elements. The osculating elements differ from the true mean elements by order ϵ and, hence, introduce an error of only second order (i.e., $O\left(\epsilon^{2}\right)$) when used to evaluate the right-hand sides of Equations (4-16).

It should be noted tha' Equations (4-15) are of the same form as those given by Brouwer (Reference 44) and for transforming from the Brouwer primed element set (containing the long-period and secular motion) to the Brouwer unprimed element set (a first-order appraximation to the osculating elements). Fquations (4-15) take on the more familiar form of Brouwer's formulas when the expression for the functions $\Gamma_{i, j}$, given in Equations (4-14), are introduced.

APPENDIX A - THE EQUINOCTIAL ELEMENT SET AND REFERENCE SYSTEM

A. 1 DEFINITION OF THE EQUINOCTIAL ELEMENT SET

The equinoctial elements defined in terms of the Keplerian or classical elements are given by

$$
\begin{align*}
& a=a \\
& h=e \sin (\omega+I \Omega) \\
& k=e \cos (\omega+I \Omega) \tag{A-1}\\
& p=\tan ^{I}(i / 2) \sin \Omega \\
& q=\tan ^{I}(i / 2) \cos \Omega \\
& \lambda=l+\omega+I \Omega
\end{align*}
$$

where I is the retrograde factor and assumes the values

$$
\begin{array}{ll}
I=1 & \text { fri } 0 \leq i \leq \pi / 2 \\
I=-1 & \text { for } \pi / 2<i \leq \pi
\end{array}
$$

If $\mathrm{I}=1$, the resulting element set is referred to as the direct equinoctial elements and for $I=-1$ the retrograde equinoctial elements are obtained. The direct equinoctial element set produces a singularity in the Variation of Parameters (VOP) equations for the inclination value $i=\pi$ and the retrograde element set produces a singularity for the inclination value $i=0$. Hence, both element sets are required if the possibility of a singularity in the VOP equations is to be avoided. Since the inclination value $i=\pi$ is seldom encountered, the direct elements will suffice for the vast majority of applications.

Defining the value of the retrograde factor based on the cut-off value $i=\pi / 2$ is quite arbitrary, and there is no compelling reason to change from direct to
retrograde elements (or vice versa) in the middle of a numerical integration simply because the value of the inclination passed through this arbitrary cutoff value. On the contrary, this cut-off value is intended only as a guideline for choosing, at the initiation of the integration procedure, the element set to be used.

In Equations ($\mathrm{A}-1$), the elements h and k are the components in the appropriate (direct or retrograde) orbital frame of the eccentric vector, with magnitude e, directed toward the periapse. The elements p and q can be considered as the components of a vector with magnitude tan (is) directed toward the ascending node. The element λ is the mean longitude.

Equations (A-1) are easily inverted to provide the transformation from the equinoctial to the classical elements, ie.,

$$
\begin{align*}
& a=a \\
& e=\sqrt{h^{2}+k^{2}} \\
& i=\operatorname{arcos}\left[\frac{\left(1-p^{2}-q^{2}\right) I}{1+p^{2}+q^{2}}\right] \tag{A-2}\\
& \omega=\arctan \left(\frac{h}{k}\right)-I \arctan \left(\frac{p}{q}\right) \\
& \Omega=\arctan \left(\frac{p}{q}\right) \\
& \ell=\lambda-\omega-I \Omega
\end{align*}
$$

A. 2 THE EQUINOCTIAL REFERENCE SYSTEMS

The equinoctial reference frames (direct and retrograde), designated by the orthogonal triad ($\hat{f}, \hat{g}, \hat{w}$), are right-hand systems and use the satellite orbit plane as the fundamental plane of reference. The unit vector \hat{f} is directed toward a point in the satellite orbit displaced from the ascending node through the angle $-\Omega$ for the direct system and through the angle Ω for the retrograde system. The unit vector \widehat{w} points toward the north equinoctial pole and is identically the unit angular momentum vector. The vector \hat{g} is directed toward a point in the orbital plane 90 degrees in advance of the unit vector \hat{f} and can be expressed as

$$
\hat{g}=\hat{w} \times \hat{f}
$$

The relationship between the equinoctial reference systems and an arbitrary right-hand reference system, e.g., the equatorial system, is shown in Figures A-1 and A-2. Clearly, in both the direct and retrograde cases, a series of three rotations is required to make the arbitrary reference system coincide with each of the equinoctial reference systems. More specifically, a positive rotation about the z axis through the angle Ω points the x axis toward the ascending node. A positive rotation about this new x axis through the inclination angle, 1 , rotates the x, y plane into the f, g plane. Finally, for the direct case, a rolation about the current 2 axis (coincident with the \hat{w} vector) through the angle $-\Omega$ points the x axis along the \hat{f} vector. For the retrograde case, this last roatation about the z axis is performed through the angle Ω to align the x axis with the \hat{f} vector of the retrograde system. This series of rotations provides the transformation of the coordinates of any point (e.g., satellite position) in the arbitrary system to the appropriate coordinates in the equanoctial system.

Figure A-1. Direct Equinoctial Coordinate Frame

Figure A-2. Retrograde Equinoctial Coordinate Frame

[^13]
(In the discussion that follows, the definitions
\[

$$
\begin{aligned}
& C_{\theta} \equiv \cos \theta \\
& S_{\theta} \equiv \sin \theta
\end{aligned}
$$
\]

are made, and it follows that

$$
\begin{aligned}
& c_{-I \Omega}=c_{\Omega} \\
& S_{-I \Omega}=-I S_{\Omega}
\end{aligned}
$$

Multiplication of the three rotation matrices in Equation (A-4) yields the transformation matrix

$$
T=\left[\begin{array}{ccc}
C_{\Omega}^{2}+I S_{\Omega}^{2} C_{i} & C_{\Omega} s_{\Omega}\left(1-I C_{i}\right) & -I S_{\Omega} s_{i} \\
I C_{\Omega} s_{\Omega}\left(1-I C_{i}\right) & I\left(S_{\Omega}^{2}+I C_{\Omega}^{2} c_{i}\right) & c_{\Omega} S_{i} \\
s_{\Omega} s_{i} & -C_{\Omega} s_{i} & c_{i}
\end{array}\right]
$$

It can be easily verified from Equations ($A-1$) that

$$
\begin{align*}
& S_{\Omega}=\frac{p}{\sqrt{p^{2}+q^{2}}} \tag{A-8a}\\
& C_{\Omega}=\frac{q}{\sqrt{p^{2}+q^{2}}}
\end{align*}
$$

$$
\begin{align*}
& S_{i}=\frac{2 \sqrt{p^{2}+q^{2}}}{1+p^{2}+q^{2}} \tag{A-8c}\\
& c_{i}=\frac{\left(1-p^{2}-q^{2}\right) I}{1+p^{2}+q^{2}} \tag{A-8d}
\end{align*}
$$

ORIGINAI PAGE LS (HP BMOR QUALITY
and the transformation matrix is expressed in the equinoctial elements ${ }^{1} p$ and q as

$$
T=\frac{1}{1+p^{2}+q^{2}}\left[\begin{array}{ccc}
1-p^{2}+q^{2} & 2 p q & -2 p I \tag{A-9}\\
2 p q I & \left(1+p^{2}-q^{2}\right) I & 2 q \\
2 p & -2 q & \left(1-p^{2}-q^{2}\right) I
\end{array}\right]
$$

The rows of this transformation matrix are the components (direction cosines) of the $\hat{f}, \hat{g}, \hat{w}$ vectors, respectively, in the arbitrary reference system, i.e.,

$$
\hat{f}=\frac{1}{1+p^{2}+q^{2}}\left[\begin{array}{c}
1-p^{2}+q^{2} \tag{A-10a}\\
2 p q \\
-2 p I
\end{array}\right]
$$

[^14]\[

\hat{g}=\frac{1}{1+p^{2}+q^{2}}\left[$$
\begin{array}{c}
2 p q I \\
\left(1+p^{2}-q^{2}\right) I \\
2 q
\end{array}
$$\right]
\]

$$
\hat{w}=\frac{1}{1+p^{2}+q^{2}}\left[\begin{array}{c}
2 p \\
-2 q \\
\left(1-p^{2}-q^{2}\right) I
\end{array}\right]
$$

This is easily demonstrated since

$$
\vec{r}_{e}=x^{\prime} \hat{f}+y^{\prime} \hat{g}+z^{\prime} \hat{w}
$$

and

$$
\begin{aligned}
& x^{\prime}=\vec{r}_{a} \cdot \hat{f} \\
& y^{\prime}=\vec{r}_{a} \cdot \hat{g} \\
& z^{\prime}=\vec{r}_{a} \cdot \hat{w}
\end{aligned}
$$

A. 3 TRANSFORMATION FROM EQCINOCTIAL ELEMENTS TO POSITION and velocity

The key to this transformation is the transformation from equinoctial elements to position and velocity in the equinoctial reference system. The position and velocity in any right-hand orthogonal reference system is then obtained by inverting the transformation matrix given in Equation (A-7), i.e.,

$$
\begin{align*}
& \vec{r}_{a}=T^{-1} \vec{r}_{e} \tag{A-11}\\
& \dot{\vec{r}}_{a}=T^{-1} \dot{\vec{r}}_{r} \tag{A-12}
\end{align*}
$$

The transformation from equinoctial elements to the position and velocity in the equinoctial reference system makes use of the mean, eceentric, and true longitudes, respectively, which are defined by

$$
\begin{equation*}
\lambda=\ell+\omega+I \Omega \tag{A-1:3}
\end{equation*}
$$

$$
\begin{equation*}
F=u+\omega+I \Omega \tag{A-1+1}
\end{equation*}
$$

$$
L=f+\omega+I \Omega
$$

where ℓ, u, and f are the mean, ecoentric, and true anomaties.

The position and velocity vectors can be expressed as

$$
\begin{equation*}
\vec{r}_{e}=X \hat{f}+Y \hat{g} \tag{A-16}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\vec{r}}_{e}=\dot{x} \hat{f}+\dot{\gamma} \hat{g} \tag{A-17}
\end{equation*}
$$

since there is no motion out of the orbital plane.
Expressions for the coordinates of the position (a, Y) in terms of the true longitude follow directly from analytical geometry and are given by

$$
\begin{align*}
& X=r \cos L \tag{A-18}\\
& Y=r \sin L
\end{align*}
$$

(A-19)
where

$$
\begin{equation*}
r=\frac{a\left(1-h^{2}-k^{2}\right)}{1+k \cos L+h \sin L} \tag{A-20}
\end{equation*}
$$

The coordinates of the velocity vector are easily obtained by differentiating the expressions for the position coordinates and substituting the following two-body relation into the result:

$$
\begin{equation*}
i=\frac{a^{2} \sqrt{1-h^{2}-k^{2}} \dot{r^{2}}}{r^{2}}=\frac{n a^{2} \sqrt{1-h^{2}-k^{2}}}{r^{2}} \tag{A-21}
\end{equation*}
$$

The final results are

$$
\dot{x}=\frac{-n a(h+\sin L)}{\sqrt{1-h^{2}-k^{2}}}
$$

and

$$
\begin{equation*}
\dot{Y}=\frac{n a(k+\cos L)}{\sqrt{1-h^{2}-k^{2}}} \tag{A-23}
\end{equation*}
$$

The position coordinates can be expressed in terms of the eccentric longitude, F, using the two-body relations

$$
\begin{equation*}
r \cos (L-\phi)=a \cos (F-\phi)-a \cdot e \tag{A-24}
\end{equation*}
$$

and

$$
\begin{equation*}
r \sin (L-\phi)=a \frac{(L-\beta)}{\beta} \sin (F-\phi) \tag{A-25}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta=\frac{1}{1+\frac{1}{1-h^{2}-k^{2}}} \tag{A-26a}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\omega+I \Omega \tag{A-26b}
\end{equation*}
$$

The final results are

$$
\begin{equation*}
x=a\left[\left(1-h^{2} \beta\right) \cos F+h k \beta \sin F-k\right] \tag{A-27}
\end{equation*}
$$

and

$$
Y=a\left[\left(1-k^{2} \beta\right) \sin F+h k \beta \cos F-h\right]
$$

The velocity coordinates follow by differentiating Equations (A-27) and (A-2s) and substituting the two-body relation

$$
\begin{equation*}
\dot{F}=\frac{a \dot{\lambda}}{r}-\frac{n a}{r} \tag{.1-29}
\end{equation*}
$$

yielding

$$
\dot{x}=\frac{n a^{2}}{r}\left[h k \beta \cos F-\left(1-h^{2} \beta\right) \sin F\right]
$$

(A-30)

and

$$
\begin{equation*}
\dot{Y}=\frac{n Q^{2}}{r}\left[\left(1-k^{2} \beta\right) \cos F-h k \beta \sin F\right] \tag{A-31}
\end{equation*}
$$

where the radial distance is expressed as

$$
r=a(1-k \cos F-h \sin F)
$$

Equations (A-30) and (A-31) can also be obtained by combining Equations (A-18) and (A-19) with Equations (A-27) and (A-28) to yield expressions for $\cos L$ and $\sin L$. These expressions are substituted into Equations (A-22) and (A-23) to yield the final result.

A. 4 TRANSFORMA'TION FROM POSITION AND VELOCITY TO EQUINOCTIAL ELEMENTS

The transformation from position and velocity in an arbitrary reference system to the equinoctial elements could be obtained by inverting the proper equations in Section A. 3. However, appealing directly to the classical two-body problem permits a more concise derivation. The semimajor axis is immediately obtained by inverting the well known energy integral for the two-body problem which yields

$$
\begin{equation*}
a=\left(\frac{2}{|\vec{r}|}-\frac{|\dot{\vec{r}}|^{2}}{\mu}\right)^{-1} \tag{A-32}
\end{equation*}
$$

where \vec{r} is the position vector of the satellite in the $(\hat{x}, \hat{y}, \hat{z})$ reference system. The eccentricity vector is given by

$$
\begin{equation*}
\stackrel{\rightharpoonup}{e}=-\frac{\stackrel{\rightharpoonup}{r}}{|\stackrel{\rightharpoonup}{r}|}-\frac{(\stackrel{\rightharpoonup}{r} \times \dot{\vec{r}}) \times \dot{\vec{r}}}{\mu} \tag{A-33}
\end{equation*}
$$

and the unit vector normal to the orbital plane is the normalized angular momentum vector given by

$$
\begin{equation*}
\hat{w}=\frac{\stackrel{\rightharpoonup}{r} \times \dot{\vec{r}}}{|\stackrel{\rightharpoonup}{r} \times \dot{\vec{r}}|} \tag{A-34}
\end{equation*}
$$

In view of Equation $(\mathrm{A}-10 \mathrm{c})$ relating the elements p and q to the vector \hat{w}, it follows that

$$
\begin{equation*}
p=\frac{w_{x}}{1+\hat{w}_{x} I} \tag{A-35}
\end{equation*}
$$

ORIGINAL PAGE IS OF POOR QUALITY
and

$$
\begin{equation*}
q=\frac{-\hat{w}_{y}}{1+\hat{w}_{z} I} \tag{A-36}
\end{equation*}
$$

The elements p and q determined from Equations (A-35) and (A-36) are consistent with the value of the retrograde factor 1 .

The unit vectors f and g may now be computed using Equations (A-10a) and (A-10b). The equinoctial orbital clements h and k are computed using the formulas

$$
\begin{equation*}
h=\vec{e} \cdot \hat{g} \tag{A-37}
\end{equation*}
$$

and

$$
\begin{equation*}
k=\vec{e} \cdot \hat{f} \tag{A-38}
\end{equation*}
$$

The elements h and k are consistent with the vectors \hat{f} and \hat{g} with regard to the direct and retrograde definitions.

The remaining element to be computed is the mean longitude, λ. First, the position coordinates X and Y of the satellite relative to the orbital frame \hat{f}, \hat{g}, and \hat{w} are computed from the expressions

$$
\begin{align*}
& X=r \cos L=\vec{r} \cdot \hat{f} \tag{A-39}\\
& Y=r \sin L=\vec{r} \cdot \hat{g} \tag{A-40}
\end{align*}
$$

Inverting Equations (A-27) and (A-28) yields the expressions

$$
\begin{align*}
& \cos F=k+\frac{\left(1+k^{2} \beta\right) x-h k \beta Y}{a \sqrt{1-h^{2}-k^{2}}} \tag{A-41}\\
& \sin F=h+\frac{\left(1-h^{2} \beta\right) Y-h k \beta x}{a \sqrt{1-h^{2}-k^{2}}} \tag{A-42}
\end{align*}
$$

which, when substituted into Kepler's equation

$$
\begin{equation*}
\lambda=F-k \sin F+h \cos F \tag{A-43}
\end{equation*}
$$

yields the desired result.

A. 5 POISSON BRACKETS

In the present application, the Poisson Brackets must be given in terms of the equinoctial elements. The results are obtained by direct substitution into the previously obtained results of Broucke and Cefola (Reference 33) and are listed in Table A-1.

Table A-1. Poisson Brackets of Equinoctial Elements ${ }^{1,2}$

$$
\begin{array}{ll}
\left(a, \lambda_{0}\right)=-2 a s_{1} & (h, k)=-s_{1} s_{3} \\
\left(\lambda_{0}, h\right)=-h s_{4} & (h, p)=-k p s_{5} \\
\left(\lambda_{0}, k\right)=-k s_{4} & (h, q)=-k q s_{5} \\
\left(\lambda_{0}, p\right)=-p s_{5} & (k, p)=h p s_{5} \\
\left(\lambda_{0}, q\right)=-q s_{5} & (k, q)=h q s_{5} \\
& (p, q)=-(1 / 2) s_{2} s_{5} I
\end{array}
$$

${ }^{1}$ Auxiliary Variables:

$$
\begin{aligned}
& s_{1}=1 / n a^{2} \\
& s_{2}=1+p^{2}+q^{2} \\
& s_{3}=\sqrt{1-n^{2}-k^{2}} \\
& s_{4}=s_{1} s_{3} /\left(1+s_{3}\right) \\
& s_{5}=s_{1} s_{2} /\left(2 s_{3}\right)
\end{aligned}
$$

${ }^{2}$ These expressions are valid for both the direct and retrograde element sets.

A. 6 PARTIAL DERIVATIVES OF THE EQUINOCTIAL ELEMENTS WITH RESPECT TO VELOCITY

The partial derivatives $\partial a / \partial \dot{\vec{r}}, \partial \mathrm{p} / \partial \dot{\overrightarrow{\mathrm{r}}}$, and $\partial \mathrm{q} / \partial \dot{\overrightarrow{\mathrm{r}}}$ are obtained directly as functions of the equinoctial elements by using the results of Broucke and Cefola (Reference 33). However, the expressions for $\partial \mathrm{h} / \partial \dot{\vec{r}}$, $\partial \mathrm{k} / \partial \dot{\vec{r}}$, and $\partial \lambda_{0} / \partial \dot{\vec{r}}$ in terms of the classical orbital elements are not as easily translated into the equinoctial elements. To compute these quantities, the following relationship (obtained by Broucke (Reference 30)) is used:

$$
\begin{equation*}
\frac{\partial a_{\alpha}}{\partial \dot{\vec{r}}}=-\sum_{\beta=1}^{6}\left(a_{\alpha}, a_{\beta}\right) \frac{\partial \vec{r}}{\partial a_{\beta}} \tag{A-44}
\end{equation*}
$$

which requires the Poisson Brackets from Table A-1 and the partial derivatives of the position vector. To obtain $\partial \vec{r} / \partial h$ and $\partial \vec{r} / \partial k$, the following partial derivatives of X and Y are needed:

$$
\begin{align*}
& \frac{\partial X}{\partial h}=-\frac{k \beta \dot{x}}{n}+\frac{a}{G} Y \dot{Y} \\
& \frac{\partial x}{\partial k}=\frac{h \beta \dot{X}}{n}+\frac{a}{G}(\dot{x} Y-G) \\
& \frac{\partial Y}{\partial h}=-\frac{k \beta \dot{Y}}{n}-\frac{a}{G}(X \dot{Y}+G) \\
& \frac{\partial Y}{\partial k}=-\frac{a}{G} X \dot{X}+\frac{h \beta \dot{Y}}{n} \tag{A-45~d}
\end{align*}
$$

$$
\begin{array}{ll}
\text { Un }
\end{array}
$$

Table A-3. Partial Derivatives of the Equinoctial Elements With Respect to Velocity

$$
\begin{aligned}
& \frac{\partial a}{\partial \dot{\vec{r}}}=\frac{2 \dot{\vec{r}}}{n^{2} a} \\
& \frac{\partial h}{\partial \dot{\hat{r}}}=-\frac{1}{\mu}[G \hat{f}+r \dot{x} \hat{y}]+\frac{k}{G}(q Y I-p X) \hat{w} \\
& \frac{\partial k}{\partial \dot{\dot{r}}}=\frac{1}{\mu}[G \hat{g}+r \dot{Y} \hat{y}]-\frac{h}{G}(q Y I-p X) \hat{w} \\
& \frac{\partial p}{\partial \dot{\vec{r}}}=\frac{\left(1+p^{2}+q^{2}\right) Y \hat{w}}{2 G} \\
& \frac{\partial q}{\partial \dot{\vec{r}}} \frac{\left(1+p^{2}+q^{2}\right) \times \hat{w}}{2 G} \\
& \frac{\partial \lambda}{\partial \dot{\vec{r}}}=\frac{-2}{n a^{2}} \vec{r}+\beta\left(k \frac{\partial h}{\partial \dot{\vec{r}}}-h \frac{\partial k}{\partial \dot{\dot{r}}}\right)+\frac{1}{n a^{2}}(q I Y-p X) \hat{w} \\
& \hat{y}=\frac{\hat{w} \times \vec{r}}{r} \\
& G=n a^{2} \sqrt{1-h^{2}-k^{2}}
\end{aligned}
$$

REFERENCES

1. Hagihara, Y., Celestial Mechanics, Vol. 1. Cambridge, Massachusetts: MIT Press, 1970
2. Hagihara, Y., Celestial Mechanics, Vol. II, Part 1. Cambridge, Massachusetts: MIT Press, 1970
3. Barbieri, R. W., et al., "Atmospheric Explorer (AE-C') Maptive Mission Design and Trajectory Performance," Paper No AAS-75-052, presented at the AAS/AIAA Astrodynamics Speciaiist conference, Nassau, Bahamas, July 28-30, 1975
4. Computer Sciences Corporation, CSC/TM-75/6039, Status Report on Numerical Averaging Methods, A. C. Long, September 1975
5. Lutsky, D., and Uphoff, C., "Short-Periodic Variations and SecondOrder Numerical Averaging," presented at the 13th AIAA Aerospace Sciences Meeting, Pasadena, California, January 20-22, 1975
6. Bogoliubov, N., and Mitropolski, Y., Asymptotic Methods in the Theory of Nonlinear Oscillations. New York: Gordon \& Breach, 1961
7. Musen, P., "A Discussion of Hill's Method of Secular Perturbations and Its Application to the Determination of the Zero-Rank Effects in Nonsingular Vectorial Elements of a Planetary Motion," Celestial Mechanics, Vol. 2, No. 1, May 1970, pp. 41-59
8. Velez, C. E., and Fuchs, A. J., "A Review of Averaging Techniques and Their Application to Orbit Determination Systems," presented at the 12th AIAA Aerospace Sciences Meeting, Washington, D. C., January 30 - February 1, 1974
9. Long, A. C., and McClain, W. D. , "Optimal Perturbation Models for Averaged Orbit Generation," presented at the AIAA/AAS Astrodynamics Conference, San Diego, Califormia, August 18-20, 1976
10. Computer Sciences Corporation, CSC/TM-75/6038, Evaluation of Numerical Quadratures for Use in Numerically Averaged Orbit Generators, L. W. Early, July 1975
11. --, CSC/SD-75/6025, Mathematical Specifications of the Earth Satellite Mission Analysis Program (ESMAP), A. C. Long, W. D. MrClain, and P. J. Cefola, June 1975

REFERENCES (Cont'd)

12. Kaufman, H., and Dasenbrock, R. "Semianalytic Theory of Long-Term Behavior of Earth and Lunar Orbiters," Journal of Spacecraft and Rockets, Vol. 10, No. 6, June 1973, pp. 377-383
13. Goddard Space Flight Ceuter, The ROAD Program, (GSFC computer software), C. A. Wagner, January 1973
14. Dallas, S. And Khan, I., "The Singly Averaged Differential Equations of Motion for $0 \leq e<1$," presented at the AIAA/AAS Astrodynamics Conference, San Diego, California, August 18-20, 1976
15. Jet Propulsion Laboratory, Technical Report 32-1513, Method of Averages Expansions for Artificial Satellite Applications, J. Lorell and A. Liu, April 1971
16. Cook, G. E., "Basic Theory for PROD, a Program for Computing the Development of Satellite Orbits," Celestial Mechanic3, Vol. 7, 1972, pp. 301-314
17. Kaula, W. M., "Analysis of Grasitational and Geometric Aspects of Geodetic Utilization of Satellites," Geophysical Journal (Royal Astronomical Society), Vol. 5, 1961, pp. 104-133
18. Kaula, W. M., "Development of Luna" and Solar Disturbing Functions for a Close Satellite,' Astronomical Journal, Vol. 67, No.5, June 1962
19. Sridharan, R., and Renard, M., "Nonnumeric Computation for High Eccentricity Orbits," Celestial Mechanics, Vol. 11, 1972, pp. 179-194
20. Colhns, S., Computationally efficient Modeling for Long-Term Prediction of Global Positioning System Orbits, Master's Thesis, Massarbusetts Institute of Terhnology, February 1977
21. Cefola, P. J., and Broucke, R., "On the Formulation of the Gravitational Potential in Terms of Equinoctial Variables," presented at the NAA 13th Aerospace Sciences Meeting, Pasadnna, California, January 20-22, 1975
22. Cefola, P., "Formulation of an Arbitrary Geopotential Term (Tesseral) in Equinoctial Variables," paper presented at the Flight Mechanics, Estimation Theory Symposium, Goddard Space Fiight Center, Greenbelt, Maryland, April 15-16, 1975

REFERENCES (Cont'd)

23. Cefola, P., "A Recursive Formulation for the Tesseral Disturbing Function in Equinoctial Variables," Paper 76-839, presented at the AIAA/AAS Astrodynamics Conference, San Diego, California, August 18-20, 1976
24. Giacaglia, G. E. O., "The Equations of Motion of an Artificial Satellite in Nonsingular Variables," Celestial Mechanics, Vol. 15, No. 2, March 1977, pp. 191-215
25. Nacozy, P. E., and Dallas, S. S., "The Geopotential in Nonsingular Elements," Celestial Mechanics, Vol. 15, No. 4, August 1077, pp. 453-466
26. Moulton, F. R., An Introduction to Celestial Mechanics. New York: Dover Publications, Inc., 1970
27. Fitzpatrick, P. M., Principles of Celestial Mechanics. New York: Academic Press, 1970
28. Danby, J. M. A., Fundamentals of Celestial Mechanics. New York: The MacMillan Company, 1962
29. Brouwer, D., and Clemence, G. M. , Methods of Celestial Mechanics. New York: Academic Press, 1961
30. Broucke, R., "On the Matrizant of the Two-Body Problem," Astronomy and Astrophysics, Vol. 6, pp. 173-182
31. Dziobek, O., Mathematical Theories of Planetary Motions. New York: Dover Publications, Inc., 1962
32. Plummer, H. C., An Introductory Treatise on Dynamical Astronomy. New York: Dover Publications, Inc., 1960
33. Broucke, R., and Cefola, P., "On the Equinoctial Orbit Elements," Celestial Mechanics, Vol. 5, No. 3, pp. 303-310
34. Poincare, H., Les Méthods Nouvelles de la Mécanique Céleste, Three Volumes. Paris: Gauthier-Villars, 1899 (epuisée). English Translation: New Methods of Celestial Mechanics, NASA TTF-450, 1967
35. Mitropolskii, Yu. A., Problenis of the Asymptotic Theory of Nonstationary Vibrations (translated from the Russian by the Israel Program for Scientific Translations, Jerusalem, 1965). New York: Daniel Davey and Company, Inc., 1965
36. Kruskal, M., "Asymptotic Theory of Hamiltonian and Other Systems With All Solutions Nearly Periodic," Journal of Mathematical Physics, Vol. 3, No. 4, July-August, 1962
37. Stern, D. P., "Kruskal's Perturbation Method," Iournal of Mathematical Physics, Vol. 11, No. 9, September 1970
38. Kyner, W. T., "Averaging Methods in Celestial Mechaiiics," The Theory of Orbits in the Sular System and in Stellar Systems (from IAU Symposium No. 25, Salonika, Greece, August 17-22, 1064; edited by G. Contopoulos). New York: Academic Press, 1966
39. Morrison, J. A., "Generalized Method of Averaging and the Von Zeipel Method," Progress in Astronautics and Acronautics, Volume 17: Methods in Astrodynamics and Celestial Mechanics (R. L. Duncombe and V. G. Szebeheley, editors). New York: Academic Press, 1966, pp. 117-138
40. Morrison, F., "A Novel Method for Averaging Equations of Motion," Journal of the Astronautical Sciences, Vol. NX, No. 2, SentemberOctober, 1972
41. Nayfeh, A., Perturbation Methods. New York: John Wiley and Sons, 1973
42. Brouwer, D., "Artificial Satellite Theory Without Drag," Astronomical Juurnal, Vol. 64, 1959, pp. 378-397
43. Schubart, J., "Long-Period Effects in the Motion of Hilda-Typ: Planets" Astronomical Journal, Vol. 73, March 1968, p. 99
44. Williams, J. G., and Bonson, G. S., "Resouares in the Neptune-Pluto System," Astronomical Journal, Vol. 76, No. 2, March 1971, pp. 167177
45. Sansone, G., and Conti, R., Nonlinear lifferential Equations. New York: Pergamon Press, 1952

[^0]: ${ }^{1}$ Y. Hagihara (Reference 2) gives an extensive list of references to the work in artificial satellite theory.

[^1]: ${ }^{1}$ For cortain applications where one particular type of satellite is encountered, e.g., circular geosynchronous satellites, a restricted theory is not only acceptable but advisable. If, however, a single theory is to be used for several different types of satellites, a general theory is required.

[^2]: ${ }^{1}$ This is, of course, not peculiar to the averaging method but rather to the form of the high-piecision equations of motion.

[^3]: ${ }^{1}$ Cefola has considered the question of the effilecient implementation of his theory (Refurence 21).

[^4]: ${ }^{1}$ The capability to automatically select the resonant terms was mplemented in the GTIDR RED version. However, no special relationship among them is assumed.

[^5]: ${ }^{1}$ The moan elements are defined operationally as the solution to the averaged equations of motion. Consequently, the exact definition of a particular set of mean elements depends on the interval over which the equations of motion are averaged. This is discussed in more depth in Section 3.1.5.

[^6]: ${ }^{1}$ This recursive algorithm is a gencral expression relating the jth-order term in the near-ide tity transformation to various combinations of the lower order terms in the transformation with lower order contributions to the mean element rates. This recursive algorithm is quite distinet from the recursively formulated first-order theory presented in Volume 11 of this report.
 ${ }^{2}$ An analytical satellite theory can be developed using suecessive applications of the mothod of avoraging to remove first the short-period terms and then the long-period terms.

[^7]: ${ }^{1}$ The analytical formulation of the medium-period contributions has not been implemented in the GTDS R\&D version.

[^8]: ${ }^{1}$ This discussion follows closely that given by W. T. Kiber in a sermes of lectures on the topic of nonliterat resoname see Reforence st.

[^9]: ${ }^{1}$ The coupling between the second-order and first-order contributions is assumed to be negligible. This argument is valid only for the bounded periodic elements or very slowly growing secular elements, since the rapid first-order secular growth of the fast variable would satisfy the inequality even for large secondorder contributions. This criteris. is really useful as a negative criterion specifying when second-order terms ar lefinitely neces ary rather than when they can be neglected.

[^10]: ${ }^{1}$ This situation is not peculiar to the averaged orbit generator but also affects the high-precision generator, since the only reference is provided by observations.

[^11]: ${ }^{1}$ The cost of evaluating the first-order short-period variations by a numerical technique can be ostimated by reviowing the method prosented in Reference 5.

[^12]: ${ }^{1}$ If nonconservative perturbing forces, e.g., drag, etc., are present, there is no recourse (at present) to the numerical osculating-to-mean conversions.

[^13]: (okIGINAL PAGE IS OF POOR QUALITY

[^14]: ${ }^{1}$ The definition of the elements p and q must, of course, be consistent with the value of the retricgrade factor.

