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ABSTRACT

The p_nc_p_ objective of thi_ 'work on modelling and

analysis of switcJ_ng de-to-de convert_ and regulators is to obtain

a linear modal (_Lt_L_ _ ough state-space or linear circuit des_rip-

tLon), _ubject to appropriate restrictions, fo_ the inherently

nLnlinear power stage in wl_ch the dc _nve_ion is accomplished.

A gen_al unified approach to mod@_in_ and analysis of switching

de-to-de conv_rs is developed w_ch is directly applicable to any

de-to-de mnverter operating in either of two conduction mod_

(continuo_ or discontinuous inductor current), and which resu_ in

a _inal dynamic linear model either in tcr_ of state-space equation_

or in terms of their _orr_ponding _inear eiro_it mode. In

pa_c_, in Pa_t I this analysis technique, _alled _tate-s_

averaging, is applied to the con_o_ condue_on mode of conue_t_

op_on, wh//e /n PaT_t II appropriate ex_n_ion of the m_od to

the discon_in_ou_ _onduction mode is made. In ea_h _a_e, the

_ation of the modelling and analysi_ is a_hieved in the develop-

ment of canonical circuit mod_l_ which represent any such convair

rega_dl_s of _ d_ailed configuration.

The i_igh_s _t emerge from the general s_ate-space modellin_

approach [Par_ I and If) lead in Parts Ill and IV to _he design of

n_" conv_er topologies through the study of generic properties

_;_ tl_e c_c_de connection of basic buck and boost converters. Th_

s_udy paves _e way in Part IV to ._Jae discovery of a n_ switching

aonv_rter ba_ed upon _apa_i_iue ra_ than the u_ual .:_duc_ive

en_gy transl,. The new converter is shown to have substantial

advantages over the conventional conv_r_r_ in its cla_s in

efficiency, performance, and al_o in size and w_ight.

Both the state-space averaged models _d their corresponding

circuit realizations provide _e ci_oai_ d_signer with a powerful

tool for analys._ of existing conv_t_rs as well a_ for s_nthesis

of new ccnverter topologies.
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The ever increasing demand of society for new and more abundant

sources of energy, as well as for means of better and more efficient

conversion to a medium suitable for widespread use such as electr,cal

energy, has provided a healthy environment for the recent growth of the

new, interdisciplinary field of Power Electronics. Functions to be

performed by electronic power processing systems include a wide

range, from efficient conversion of dc source voltage from one voltage

to another, to inversion of dc to singlephase or multiple-phase ac,

and controlled conversion of ac to dc. The applications also cover

a wide spectrum, from a power supply in a hand-held calculator,

through a variety of spacecraft systems including solar array and

battery power conditioning, to industrial process control and electric

utility bulk power inversion.

However, it comes as no surprise that this new field has.

offered some unmatched challenges owing to its unique combination of

the three major disciplines of electrical engineering: electronics,

owp___, and control. Classical signal processing electronics, coupled

with the advent of semiconductor devices capable of handling substantial

amounts of power, is used to control the power (or electrical energy)

flow from some raw source of electrical energy (such as solar cells,

for example), to the user (load). But in distinction with signal-

processing electronics, where the power efficiency is of minor concern,

here, as in classical power systems, it becomes the major issue,

owing to the relatively large amounts of power involved. Power
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efficiency makes mandatory the use of control devices, such as

transistors and SCR's (silicon controlled rectifiers) in a repeti-

tive switching _de, thus further increasing the problems of modelling

the dynamic behavior of power switching circuits because of their

inherent nonlinear nature. In addition, in many instances, the

power conversion or "nversion function is coupled with a requirement

for regulation, and stability problems naturally arise because the

self-correcting feature is usually obtained by employing electronic

f_eedbac___kkin a closed-loop system. It is in this context particularly

that a fusion of viewpoints of the power, control, and electronics

disciplines is most necessary and also potentially fruitful.

However, the bringing together of these disciplines in order to

achieve the general understanding and consequent innovation in power

processing electronics systems is not merely their accumulation, but

rather requires a revised look at their specific interrelations from

the compcnent to the system level. For example, a signal-processing

electronics engineer usually thinks in terms of active devices used

in either linear or switching mode together with resistors and

capacitors; he avoids inductors and transformers. On the other hand,

a power-processing electronics engineer must think in terms of active

devices used in the switching mode together with capacitors, inductors,

and transformers; he must avoid resistors in the interest of maintain-

ing high effic!ency in the power path. This important distinction

requires a different way of thinking about circuit function realiza-

tion. From the system point of view, one has only to recognize, for

example, a dc-to-dc switching regulator as a dc, wide-band, nonlinear



sampled-data control system (with the ever-present high-efficiency

constraint), to appreciate the challenge of bringing together these

various disciplines.

Hence, the area of modelling and analysis uf power processing

systems, owing to their inherent nonlinear nature, becomes af} even

more challenging task, particularly in view of the lack of adequate

analysis tools at the disposal of the circuit designer working in this

field. In connection with that, the choice of parameter values i'_

already existing circuit topologies, as we|] as the design of new

circuit topologies is likewise a very difficult one.

The major thrust an_ purpose of this work is to provide the

circuit designer with analytical tools which are accurate enough for

practical purposes, yet simple enough to apply to give him powerful

tools for design-oriented analysis in one of the major areas of

electronic power processing: switchin_ dc-to-dc converters and/or

regulators. In addition, this analysis through appropriate linear

circuit models provides the necessary insight which may lead to inno-

vative converter topologies, offering better and aear optimum

performance.

The structure of this work has been divided into two distinct

yet firmly i}_terconnected major divisions: _eneral unified approach

to modelling and .analysis of switching dc-to-dc converters, presented

in Parts I and II, and design of new converter tgpologies, presented

in Parts Ill and IV, which has been directly made possible by the

insights gained from the analysis methods of Parts I and II. Chapter

l, which is placed outside and in front of these four parts, is
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intended to familiarize the reader with the basic switching conversion

concepts and at the sametime to introduce both the analysis diffi-

culties as _il as to designate the possible areas of performance

improvements in switching converter design.

The principal objective of the work on modelling and analysis

of dc-to-dc converters and regulators (Parts I and II) is to obtain a

linear model (either through state-space or linear circuit description),

subject to appropraite restrictions, for the inherently nonlinear

power stage in which the dc conversion is accomplished. Such conver_

ters operate in one of two modes: a two-state mode referred to as the

"continuous conduction mode," in which inductor currents do not fall*

to zero (as modelled in Part I), and a three-state mode, "_iscontinuous

conduction," in which an inductor current falls to zero (Part II).

The culmination of this work is a canonical circuit m_del for

a dc-to-dc converter in the continuous conduction mode which properly

represents both the line and duty ratio transfer functions and also,

for the first time, cor,-ectly represents the converter input

impedance. The principal advantage of the canonical model is that

it represents any such converter regardless of its detailed configura-

tion.

The corresponding canonical circuit model for a dc-to-dc

converter in the discontinuous conduction mode is obtained in Part II,

which not only confirms that the line and duty ratio transfer func-

tions become first-order, in contrast to the second-order functions

of the continuous conduction case, but also for the first time

correctly represents the input impedance.

mm



moth canonical models are made possible by a powerfu] technique

c_lled state-space averagin9 developed in both Parts I and If,

which unifies and place= in perspective what had previously been

considered distinct ana]ytic methods.

The insights gained by the state-space averaging approach of

Part i and Part 11 leads in Part Ill to the study of the generic

properties of a new class of buck-boost converters obtained by cas-

cade connection of basic buck and boost converters.

Fina]ly, this study culminates in Part IV in the discovery of

a new switching converter based upon capacitive rather than the usuai

inductive ene)_y transfer, The new converter is shown to have sub..

stantial advantages over conventional converters in efficiency,

performance and also in size and weight.

I

|

I

|



CHAPTER 1

SWITCHING DC-TO-DC CONVERTERS

AND REGULATORS

In this introductory chapter several common switching dc-to-dc

converters are introduced and their physical operation briefly

explained. The basic property, dc-to-dc voltage and current level

conversion, is arrived at following so_ simplified arguments based

on fundamental physical laws in order te familiarize the reader with

some of the basic quantitative relationships.

Upon this initial exposure to the nature of the problem

associated with the anal)'sis of these essentially nonlinear circuits,

the .aenera], unified, and coB_p]ete mthod of modelling and ana]ysls of

any switching dc-to-dc converters (even those yet to be invented)

developed and presented in chapters to follow will be more easily

grasped.

1.1 Physical operation and basic properties of switchin 9 converters

We begin with the three common switching converters (also

called power stages because of their power handling capability)

depicted in Fig. l.l. While in Fig. l.la the topological structure

of these converters independent of any particular switch realization

is shown, in Fig. 1.Ib a bipolar transistor, commutating diode

realization of the single-pole double-throw switch S is used. It is

also evident from Fig. l.lb that transistors are used in their

switching mode: either fully turned on (corresponding to the position

6



a}
buck power stage"

k V

b)

R

L V

boost power

L

stage"

V L V

i I
buck- boost

tin _.S_ i_u+

power stage:

V lin _iou+
V

iP,R

!

i

I

Fig. 1.1 Three common switching tic-to-de conve_:

a) topological configuration independent of switch rea//za-
tian _ b) bipolar t_a_sistar implementation of _he switch S.

of switch S in Fig. l.la) or fully off (the other position of switch

S). This is obtained by bringing a periodic switch drive signal as

shown in Fig. 1.2 to the base of the transistor. The frequency of

repetition of this signal is defined as the switching frequency

fs = I/Ts' and for discussion purposes will be considered constant.

The fraction of the complete period Tsfor which the transistor is on

is defined as the steady state duty ratio D =TN/T s. The diode in



each converter acts as a switch automatically synchronous with the

transistor. That is, when the transistor is on, the diode is reverse

biased and effectively off; as soon as the transistor becomes off, the

diode is forced to conduct by the continuous inductor current, and

stays on as long as there is a positive inductor current.

switch drive

I time

Fig. 1. g Pe__n o_ the pe,,_Lodic ,smE_teh d_/ve.

Consider now more closely the simplest of these converters,

the buck power stage (sometimes called the step-down or chopper

converter because of its property of reducing the input dc voltage).

With assumption of ideal transistor and diode switches, the b -.kpower

stage can be equivalently represented as in Fig. 1.3.

dc voltage

fDTs C R

O _v

input low pass filter higher

voli_je network order harmonics

Fig. 1.3 Basic dc conversion function of buck pawer stage ui_ed

tJ_rough harmonic decomposition and principle of 6u_er-

position.
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Fourier harmonic decomposition of the periodic input voltage

and the principle of superposition show that the output voltage con-

sists of a dc voltage V = DV and ac harmonics with fundamental at
g

the switching frequency fs" If the low-pass filter elements are

chosen such that its corner frequency fc = I/(2_'Yt-C-)is much smaller

than the switching frequency fs (fc << fc),. all harmonics are sub-

stantially attenuated leading to very small output voltage ripple.

Hence, even though present, the output voltage ripple can be reduced

to an arbitrarily small value by proper choice of filter elements.

A significant feature of the switching converter is that a

degree of control over the output dc voltage has been introduced

through its dependence on the duty ratio D. Therefore, simply by

varying the switch drive duty ratio one is able to change the output

dc voltage. Also, since by definition 0 < D < l, it is apparent that

the buck power stage is capable only of reducing the dc input

voltage level.

Another very important property of the converter is immediately

apparent. For a properly designed filter, the ripple voltage is

negligible, and the output current is dc current only Iout = V/R.

However, input current flows only during the interval when the tran-

sistor is on, and hence lin = DIou t. Therefore, the efficiency of

the converter in this ideal case is 100% since

Pout _ Vlout

Pin VgIin
=Dl=l

The key to this ideal 100% efficiency is in the fact that the control

device, the transistor, is used in the switching mode, unlike its
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use in a linear regulator as a linear dissipative element or variable

r_sistance. However, in reality the voltage across a real transistor

when it is turned on is not zero as for ideal switch S, but its

saturation voltage VCEsa t is usually O.3V-IV. Likewise, the diode

has some forward voltage drop of the same order which also slightly

degrades the efficiency of a real converter. Nevertheless these

losses are negligible in comparison with losse_ present in a linear

regulator.

1.2 Two operating modes and their dc relations in the stead_,-state

regime

So far two important characteristics of switching converters

have been established: a degree of control through duty ratio drive

D, and high efficiency of operation. There are, however, some other

features peculiar to these converters which, even though pre_ent, are

not so clearly displayed in the buck power stage example. Let us

therefore consider the buck-boost converter, in which these additional

features are most visible.

For the two positions of the switch S in the buck-boost converter

of Fig. l.l, the two switched network configurations shown in Fig. 1.4

are obtained, from which it is clear that a topological structural

change occurs within each period and the circuit configuration is

changed periodically from that of Fig. 1.4a to that of Fig. 1.4b.

Both switched networks in Fig. 1.4 are linear by themselves, but it

i_ due to this periodic structural change that the converter itself is

a nonlinear circuit. It is exactly here where the difficulty in

modelling and analysis of these converters arises.



c_) interval DTs " b} interval O'Ts -(I-D}Ts

IAvLI v
Vg Li R Vg-T L R

Fig. I. 4 Two _tched neX_orks for the buck-boost converter operating
_n the col_t__nuou.6condu_ion mode.

Another interesting observation about the role of the induc-

tance can be made: it acts as an energy transferring device between

input source voltage Vg and output load R, by accumulating the energy

in the fore of a magnetic field during the first interval TsD and

then releasing it to the load during the subsequent interval TsD',

thus charging the output capacitor negatively as shown in Fig. 1.4b.

With assunlption of LC filter values properly chosen for low (negligible)

output voltage ripple, the inductor voltage and current waveforms in

this steady state, so called "continuous conduction mode", are as shown

in Fig. 1.5.

c3) inductor voltage VL 6) nductor current ilt)

VglL slope V/L

/ I

Fig. 1.5 En_gy atorage inductor steady-state wavefor_ in the
continuou_ conduction _de.

11



The continuous conduction mode refers to operating

conditions and converter parameter values for which the instantaneous

ir_uctor current does not fall to zero at any time during the switching

cycle, as shown in Fig. 1.5b. This is direct:y connected with the

existence of only two switched networks during each cycle, as was

shown in Fig. 1.4.

Let us now find for this operating mode the static conditions,

that is, the dc voltage and current level conversion relations in the

steady state regime, tlere "steady state regime" signifies the fact

that the duty ratio D is held constant over a sequence of switching

cycles, thus leading to the current and voltage periodicity requirements:

stead), i(0) = i(Ts)

state v(O) = v(Ts)

for inductor current

for capacitor vol ta,-e

12

Then, from Faraday's law

T i(T)

I vL(t)dt = L I di = L[i(Ts)-i(O)] = 0
o i()

(I.I)

in steady state. Evaluation of the integral on left with help of

Fig. 5a gives

VgDTs+ V(l-D)Ts= 0

or V D

Vg l-D

which is the ideal dc voltage gain for the buck-boost converter.

(1.2)

It is now obvious that the buck-boost power stage is capable

of producing a dc output voltage which is either smaller (for D < 0.5)

or larger (for D > 0.5) than the input voltage, and hence realizes



a general dc conversion function. Since none of the lossy elements

hds been accounted for, the dc current gain in this ideal 100%

efficient case would be lout/fin = D'/D.

Consider now the case in which the energy stored in the inductor

during the first intervaITsD l -TsD is completely released to the output

load before the switching cycle Tshas ended, causing the inauctor

current to become zero for the last portion of the period T_ This

could happen if the switching period has been sufficiently increased,

or if the inductance has been substantially reduced and hence it has shortened

the time interval necessary to release energy to the output. Even

if neither change has occurred, but instead the load resistance R is

increased sufficiently to cause lowering of the average inductor

current I shown on Fig. 1.5b to the point where i(O) = i(Ts)= O, the

instantaneous inductor current becomes as shown in Fig. 1.6b. The

converter is thus operating in the so-called "discontinuous conduction

mode," in which the name clearly originates from the discontinuous

inductor current waveform in Fig. 1.6b.

I

I

I

I

I

a)

I

_ig. I.6

inductor voltage VL

®

b)

induclor current illJ

Ts

D,Ts _Ts DsTs

Steady-slate inductor wavefor_ in the cL66corut_uou_ cond._e-

tion mode.

13
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The immediate consequence of operation in the discontinuous

conduction mode is that there are three different switched network

configurations inside each switching period Ts as shown in Fig. I./.

c3) interval DTs: b) interval DaTs: c) interval D3Ts:

F/g. 1.7 Three awitched n_t_orks for the buck-booat converter
opew_uting in the discontin_ou_ conduction mode.:
a) ,transistor 0% diode off, b) transistor of_, diode on,

c) __tor of_, diode od_.

At the end of the second interval TsD 2 ,the energy Jtored on the

inductor has been completely released to the load and inductor current

vanishes. Hence, the inductor voltage becomes zero which causes the

diode to become reverse biased and hence nonconducting for the last

interval TsD3 for which interval the third sw tched network, , topo,ogy

shown in Fig. 1.7c is formed. As for the continuous conduction mode

topological structural changes take place within each period, but for

the discontinuous conduction mode the changes are among three different

switched network topologies as displayed in Fig. 1.7.

It is important to emphasize that the two properties described

above for the buck-boost converter example -- inductive energy transfer

principle and two modes of operation -- are not restricted to this

particular example but are general in nature. They are applicable

not only to the other two converters shown in Fig. l.l but also to

any switching converter so far known.

14



Let us now, however, complete the comparison between the two

modes of operation for the buck-boost converter example. The steady

state dc voltage conversion ratio might be found as before by use of

Far,day's law and Fig. 1.6a as:

or
vgDTs+vD2T=o

V D- (1.3)
Vg D2

However, the interval D2Ts, which determines how deep in the discon-

tinuous conduction mode the converter is operating, is yet to be

determined. This can be accomplished by finding an alternative

relation for the dc voltage ratio, based upon the 100% efficiency

property of the ideal converter. From Fig. 1.6b, Iin = DI = D"Vgls/2L

and so Pin = Vglin = D2Vg2Ts_2L;then, Pout = V2/Rs° from Pin = Pout

V 2 V2

which leads to

or

where

-V2C D

°,,g
K =2Lf

R s

Comparison between (1.3) and (1.4) gives immediately

(I .4)

O2 : vi_ (1.5)

so that the dimensionless parameter K determines then the length of
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the second interval D2Ts. It is interesting to note that the second

interval D2 is determined solely by K so that, for a given converter

the second interval is a corJstant affected only by the load resistance

R. This is not true for the buck or the boost converter, in which the

second interval is dependent not only upon K but also upon the duty

ratio D.

For the buck-boost converter, comparison between (I.2) and (I.4)

shows that in the continuous conduction mode the dc gain is a highly

nonlinear function of duty ratio D only (1.2), while in the discon-

tinuous conduction _de it is a linear function of duty ratio J but

also dependent on the dimensionless parameter K (I.4).

The boundary between the two modes of operation is easily found

from Fig. 1.6b as:

D3 = 0 :>D 2 = 1 - D _D' = VIT (1.6)

Furthermore, a criterion to determine in which of the two

modes the converter is operating can be established in the fcrm of

an inequality relationship among circuit parameter values L,R

switching frequency fs' and duty ratio D of the switching drive as

fol lows:

continuous conduction mode

D' < vi(
(I7)

discontinuous conduction mode

D' >V_

where K = 2L/RTsis a dimensionless parameter.

For instance, when K >- l the converter will aljay__sbe operating

in the continuous conduction mode regardless of the control--d_ity



ratio D, while for K < l it will operate in the discontinuous conduc-

tion mode for D < 1 - V_.

To illustrate this with a numerical example, let L = lml4,

fs = lOkHz, and R = ]0_I. Then, K = 2 and the converter will always

operate in the continuous conduction mode. However, if the load

resistance is increased to R = I00_i, K = 0,2 and the converter will

operate in the discontinuous conduction mode for D < 0.553. ._his

example also justifies why the continuous conduction mode is sometimes

also called "heavy mode" (low resistance R and heavy loading) while

the discontinuous conduction mode is referred to as "light mode"

(higher resistance R and therefore light loading).

1.3 Switching. ripple and pulsation of input and output currents

Now that the two distinct modes of operation of switching dc-to-

dc converters have been clearly distinguished, the physical origin of

their appearance understood and the quantitative measure describing

the transition between two modes of conduction correlated with circuit

physical parameters, we can proceed to expose some of the undesirable

features inherent in the switching converters of Fig. ].] in both

conducti on modes.

Consider now both input and output currents (designated iin and

iou t in Fig. l.l) for the buck-boost converter in the continuo'Js

conduction mode. Even though the converter is operating in the

continuous conduction mode, owing to the switching action of the

transistor and diode,both currents are as illustrated in Fig. 1.8.

17



b)
nput currel_t out purr current

DTs

Frg. I . _ Input and o(_tp_C current of the buck-boost conv_er
operaJ_cng in the continuous conducT_iOn _de.

It can easily be verified that the buck converter has the same

pulsating input current as shown in Fig. l.8a. This invariably requires

that an input filter (usually a single-section low-pass L,C filter)

be put in front of these two converters to smooth out the substantial

current ripple component at the switching frequency drawn from the

line supply. That way, electromagnetic interference (EMI) problems

getlerated by the abrupt variation in energy flow (pul_ating current)

are reduced, and contamination of the environment by the undesired

electromagnetic disturbances alleviated.

On the other hand, the boost converter of Fig. l.! has the same

pulsating output current, as the buck-boost converter in Fig. 1.8b,

which is primarily responsible for the much higher output voltage

ripple of these two converters compared to the buck power stage with

the same storage element values and operating conditions (switching

frequency fs' duty ratio D, and continuous conduction mode). The

smaller voltage ripple in the buck power stage is a consequence of the

r

nonpulsating output current (similar to that shown in Fig. l.Sa) with

very small current ripple _iou t which can easily be found as

18



V
Aiout = L D'T

Consequently, the output v_Itage ripple _v is obtained from

,%i VD'

Av(peak-to-peak) - out _

Bfs C 8L Cf s

and the relative output voltage ripple Av/V is:

v 2 \?-_s]
where

I
f -
c 2_T_

(I._)

(1.9)

(1.10)

Here fc is the corner frequency of the low-pass filter formed by L and

C. Since the ultimate requirement of the dc-to-dc converter is to

provide dc level change and output dc voltage only, this poses a

restriction on the choice of filter elements. Namely, from (l.!O)

output voltage ripple will be negligible if the following require-

ments are satisfied:

fc << fs fc = 112:rVt-C

where (I.11)

<< f m = I/2RC
S

i

I

I

I

The second inequality condition in (1.11) comes from requirement

of negligible output voltage change during the interval TsD (see

Fig. 1.4a) when capacitance C discharges into load R.

As a numerical illustration for the typical parameter values,

in continuous conduction mode, L = 6mH, C = 40_F, fs = 20kHz,
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R = 60 , we obtain fc 330Iiz, (,J = 21ilz and inequalitites (1.11)C_

are well satisfied. Hence from (l.lO) Av/V % (fc/fs)2 _ lO-4 or

the output voltage ripple is of the order of 0.0]% for the buck

converter.

For the same element values but for the buck-boost converter,

since the output current ripple is now from Fig. 1.8b, Aiou t = lload =

V/R, the output voltage ripple becomes load current dependent and is:

Av I/RC
ll°ad z_ - D--- (1.12)

Av = D fsC V fs

or of the order of several percents for the given numerical example.

A similar result is obtained for the boost converter.

Hence for the two converters with pulsating output current,

almost two order of magnitudes higher voltage ripple is obtained.

It could be reduced to an acceptable level by increase of capacitance

C or by increase of the switching frequency fs; in that case, however,

the fundamental requirement (l.ll) for low output voltage ripple

would be even better satisfied than for the buck converter example.

It is now no surprise that both EMI and output voltage ripple

would be further degraded "n the discontinuous conduction mode,

since then both input and output current become even more pulsating,

as illustrated for the buck-boost converter in Fig. 1.9.

Suppose that the transition to the discontinuous conduction mode

is made by significantly lowering the inductance from that used in the

continuous conduction mode. Highly impulsive current in Fig. l.gb

would then cause an intolerable output voltage ripple, unless either



cl) input current b) oufpuf

J"
DTs DzTs DsTs DTs

current

D2Ts D3Ts

Fig. 1.9 Input and output c_rrcnt of _h_ buck-boost conv_t_
op_g in the discontinuous conduction mode.

the output capacitance C or switching frequency is increased, or both.

In any case this has the consequence that the fundamental "small-

ripple" restrictions for the "natural frequenci'es," fc << fs and

_ << fs' would be even better satisfied. As an example, for the

typical set of values in the discontinuous conduction mode L = 60pH,

C = 400_F, fs = lOOkHz, R = 60_ we get fc = 1.02kHz and_ = 21Hz,

thus satisfying inequalities (l.ll) to a high degree. In essence, one

recognizes that the burden of filtering out the switching ripple has

been shifted from an equal share among inductance and capacitance in

the continuous conduction mode completely to the capacitance in the

discontinuous conduction mode. The inductance has retained only its

energy transferring property but has lost its filtering property.

We therefore emphasize at this point the importance of the

simple inequality requirements (l.ll) placed as restrictions on the

choice of parameter values in order to reduce the switching ripple

inherent in all these converters to an acceptable level. When these

relationships are properly recognized and incorporated in the model-
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ling procedure a tremendous simplification of the analysis is

obtained, and yet the derived results are accurate enough for a11

practical purposes. They are also the underlying basis of the general

unified approach to modelling and analysis of switching converters

which will be presented in Part I and Part II.

Besides having its importance and implication on the

theoretical modelling procedure devised later, the relation (1.11) in

conjunction with, for example, (l.lO) exposes yet another interesting

feature of switching dc-to-dc converters -- reduction of size and

weight. Simple increase of switching frequency fs would a11ow propor-

tional increase of corner frequency fc while still retaining the same

switching ripple. Hence, the inductance and capacitance could be

chosen smaller in value and size. However, this would not be

achieved without a cost; increase in switching frequency would degrade

the efficiency of the converter owing to increase in "switching losses,"

which become pronounced when the switching transistor rise and fall

times become a substantial part of the switching period. The

effioiency of conversion and quality of the switching transistor would

pose the upper bound on the switching frequency.

1.4 Dynamic response of a switching converter; switchin 9 regulators

So far we have demonstrated only the steady state or static

characteristics of switching converters. They would, of course, be

sufficient to characterize the converter if it were used in an open_

loop _ashion, namely, if the converter were used alone for voltage
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level conversion by setting the transistor steddy state duty ratio

externally at some predetermined value. However, quite often the

primary source of energy is unregulated and could have a wide range of

vo]tage variation; on the other hand, a typical requirement is that

the voltage (or sometimes current) supplied at the output to a user

(some other electronic or electrical equipme,it) be maintained

constant over a wide range of loading conditions. This is natura]ly

achieved by the application of negative feedback in _ closed-loop
.

configuration, such as that shown in Fig. l.lO depicting a typical

switching regulator.

recjulafed output

f unregulated input
input switching mode outpu+
filter c onve rter fi l_er -]

V

I

Fig. I. I0 Swit_ng regulator: closed-loop impZ_menlation of the
"_witahing dc-to-dc converter.
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For concreteness, the switching mode converter is represented

by a buck-boost power stage, and the input and possible additional

output filter are incorporated to smooth out the pulsating input and

output currents as discussed before. Also a particular type of pulse

width modulator (PWM) is used in which the on-off signal to the switch

is produced by comparison of a sawtooth clocked waveform with the

feedback signal as illustrated in Fig. 1.10 and sometimes referred

to as a single-edge clocked pulse-width modulator.

As seen from Fig. 1.10 the error c between the regulator

output v and reference vr is an_lified (and possibly conl)ensated) to

produce an analog control signal vc which further changes the duty

ratio of the digital on-off signal d(t) as necessary to maintain a

constant output voltage regardless of any source and load variations.

However, as in all feedback systems, careful investigation of the

closed loop is required to determine stability and dynamic response.

For sma11-signal analysis, the problem of loop gain determination can

be broken down into two parts: first, find how small-signal variations

Vg and d superimposed upon the steady state, or dc, inputs Vg and D
A

to the converter alone determine a small-signal converter output v

superin_)osed on its steady state value V; and second, determine how

this perturbation v is propagated through the feedback network to

A

form a sel_-correcting modulation drive d. The first problem of

establishing the dynamic response of the power processing part, the

24



switching mode converter itself, is a very challenging problem owing

to inherently nonlinear behavior of the converter, and will be

thoroughly dealt with in remaining chapters. The second problem of

modelling the dynamic behavior of the signal processing part, con-

taining the modulator stage, will also be touched upon later, and

hence the small-signal linear model of the complete closed loop

switching regulator obtained.

Finally let us make the following simplifying observation.

Even though a switching converter is nonlinear, and hence a sinusoidal
A

test signal (such as Vg) would produce a number of harmonics, all

higher order harmonics may be neglected since the nonlinearity is

fol]owed by a very effective low-pass filter which attenuates them

substantially with respect to the fundamental. This is the so-called

describing function (DF) approximation, which can also be used

experin_ntally to deternline this linearized frequency response by

observation of the output disturbance at the same frequency as the

injected test sinusoidal signal.

1.5 Generalized switching tic-to-ticconverter

It is now not hard on the basis of the previous discussion to

visualize a general switching dc-to-dc coaverter, as shown in

Fig. 1.11, where elements are purposely shown not interconnected in

order to emphasize relative freedom of the choice of topology.
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A generalized switching converter could consist of a number of

energy storage elements (not necessarily a single inductor and

capacitor as in the converters of Fig. 1.1), transfomers and

synchronous switches (again not restricted to the single switch as

in Fig. 1.1) which are arranged in a topology such that the periodic

opening and closing of the switches would guide the input power through

the switching network in such a way that dc level conversion is

obtained at the output.

There are, however, two general restrictions which have

to be placed on the choice of interconnection of elements and their

values:

26

1. Topology of the converter is not quite random, but the

storage elements (inductors and capacitors) have to be

arranged in such a way as to form effectively a low-pa,ss

filter if the prime d__cinput power is to be allowed to

propagate to the converter output.



2. If the switching ripple caused by periodic action of the

switches is to be negligible, the natural filter frequencies

fc and _ must be significantly smaller than the switching

frequency fs"

As seen from Fig. 1.II the two independent inputs for the

steady state (dc) static operation of the converter are line dc

voltage Vg and steady state duty ratio D, while for the dynamic (ac)

response, they are line voltage variation v and duty ratio
g

A

modulation d.

This generalized converter also has two modes of operation as

previously illustrated on the buck-boost exa_!e. In the continuous

conduction mode the topology of the converter is periodically changed

between tw__oswitched networks (analogous to that in Fig. 1.4) while

in the discontinuous conduction mode three switched network structure s

are clearly distinguished (compare with Fig. 1.7).

_ote,however,that this generalized switching converter can have

multistructural change (more than two switched networks) even in the

continuous conduction mode (see Appendix D,for example). Likewise, the

discontinuous conduction mode is not restricted to just three structural

changes, though that is the minimum necessary to exhibit such behavior.

Nevertheless, we will in Part I analyse the continuous conduction mode

with only two structural changes, and in Part II the discontinuous

conduction mode with only three structural changes because all the

essential features of the two modelling methods are present in these
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cases. The extension to the multistructural change is quite simple as

demonstrated in Appendix D for the converters with three or four st_'uc-

tural changes (also referred to as "three-state" and "four-state"

converters, respectively) operating in the continuous conduction mode,

and in Chapter 6 (Section 6.2) for the discontinuous conduction modewith

more than three structural changes per switching period.
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i .6 Review

It is for the generalized switching converter with the features

described in Section 1.5 for which a general, unified method of

modelling and analysis in both conduction modes will be developed.

In particular, in Part I this general modelling technique is developed

in detail for the continuous conduction mode of converter operation.

In Part If, these techniques are extended with suitable modifications

to include modelling of the converters operating in the discontinuous

conduction mode. In both cases, a novel general and unified state space

averaging technique is used to arrive at the general equations des-

cribing both static and dynamic properties of any switching dc-to-dc

converter (pictorially represented in Fig. l.ll). Besides enabling

some general results not previously attainable, the method lends

itself easily to extraction of very useful circuit model realizations

for any particular converter. Commonly used converters, shown in Fig.

l.l, are repeatedly used to demonstrate various models.

The ultimate goal and objective, however, of the modelling
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I

I

procedure was not only to provide the tool for both static and dynamic

analysis of existing converters, but through the circuit models

and general conclusions to give additional insight and incentive to

the circuit designer to devise new, better and possibly optimum

converters.

In fact, it will be shown in Parts Ill and IV that this goal has

been achieved. Indeed, Part III is a result of the search for such

converter topologies which would confirm the general predictions

made by the canonical circuit model of Part I, since the known existing

structures failed to exhibit this generality. This has led naturally,

first, to the idea of interconnecting existing converter structures

into useful topologies, and cascade connection of switching converters

as described in Part Ill turned out to be a very powerful one, from

both theoretical and practical points of view. On the side of theory,

it has finally cor.firmed the general modelling results of Part I.

In addition, it has suggested a renewed look at the three "basic"

converters of Fig. l.l, through recognition that the buck-boost power

stage may be considered as a buck converter cascaded with a boost

converter, and thus leavinn only the first two converters of Fig. l.l

to be considered truly basic. This crucial observation paved the way

for the discovery of a new switching converter which employs a novel

and optimum circuit topology, and which is shown in Part IV to out-

perform any switching converter in its class.

Finally,after the foundations for modelling and analysis are

firmly laid down in Parts I and II, and then used subsequently in
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Parts Ill and IV to show in a rather natural and ]ogical order how

some new converter topologies could be devised, the thesis concludes

with a number of research areas wide open fo_ future investigation:

discontinuous conduction mode in new converters, possible new modes

of operation, and various t__chnological implementations of synchronous

switches are just a few examples.
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CHAPTER 2

REVIEW OF THE NEW

STATE-SPACE MODELLING TECHNIQUE

The purpose of this chapter is to present a short, concise

review of the Inost in_ortant interrelationships among various

building blocks in the complete structure of the new modelling tech-

nique. Through this exposition of the various interconnections and

procedural steps summarized in the Flowchart of Fig. 2.1 a twofold

purpose will be achieved. First, the details of the modelling proce-

dures which are presented in the remaining chapters of this Part I will

be easier to grasp once it is understood how and where they fit into

the complete modelling picture. Second, after the details of

modelling are thoroughly explained in Chapters 3, 4 and 5, illustrated

on numerous examples and fully comprehended, it will serve as a quick

and easy reference guide and reminder containing all the essential

information about the modelling in the continuous conduction mode.

However, because of its overview feature, this chapter will be

relatively narrower in scope than,for example,Chapters 3 and 4 where

the detailed development of the new modelling technique is given and

the results discussed in depth.
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2.1 Brief review of existing nedelling techniques

In modelling of switching converters in general, and power

stages in particular, two main approaches - one based on state-space

modelling and the other using an averaging technique - have been

developed extensively, but there has been little correlation between

them. The first approach remains strictly in the domain of equation

manipulations, and hence relies heavily on numerical methods and

computerized implementations. Its primary advantage is in the unified

description of all power stages regardless of the type (buck, boost,

buck-boost or any other variatim;) through utilization of the exact

stats-space equations of the two switched models. On the other hand,

the approach u_ing an averaging technique is based on equivalent

circuit manipulations, resulting in a single equivalent linear circuit

model of the power stage. This has the distinct advantage of

providing the circuit designer with physical insight into the

behavior of the original switched circuit, and of allowing the

powerful tools of linear circuit analysis and synthesis to be used to

the fullest extent in design of regulators incorporating switching

con ver ters.

2.2 Proposed new state-space averaging approach

The method proposed in this work bridges the gap earlier

considered to exist between the state-space technique and the

averaging technique of modelling power stages by introduction of

state-sp_c_e averaged modelling. At the same time it offers the
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advantages of both existing methods--the general unified treatment

of the state-space approach, as well as an equivalent linear circuit

nw_del as its final result. Furthermore, it makes certain generaliza-

tions possible, which otherwise could not be achieved.

The proposed state-space averaging method, outlined in the

Flowchart of Fig. 2.l, allows a unified treatment of a large variety

of power stages currently used, since the averaging step in the state-

space domain is very sin_)le and clearly defined (compare blocks la

and 2a). It merely consists of averaging the two exact state-sp_ce

descriptions of the switched models over a single cycle T_ where

fs = I/T5 is the switching frequency (block 2a). Hence there is no

need for special "know-how" in massaging the two switched circuit

models into topologically equivalent forms in order to apply circuit-

oriented procedure directly, as required in [l] (block Ic). Never-

theless, through a hybrid modelling technique (block 2c), the circuit

structure of the averaged circuit model (block 2b) can be readily

recognized from the averaged state-space model (block 2a). Hence all

the benefits of the previous averaging technique are retained. Even

though this outlined process might be preferred, one can proceed from

block._ 2a and 2b in two parallel but completely equivalent directions:

one following path a strictly in terms of state-space equations, and

the other along path b in terms of circuit models. In either case,

a perturbation and linearization process required to include the duty

ratio modulation effect proceeds in a very straightforward and formal

manner, thus emphasizing the corner-stone character of blocks 2a and

2b. At this stage (block 2a or 2b) the steady state (dc) and line to
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output transfer functions are already available, as indicated by

blocks 6a and 6b respectively, while the duty ratio to output transfer

function is available at the fina]-state model (4a or 4b) as indicated

by blocks 7a and 7b. The two final state models 4a and 4b then give

the complete description of the switching converter by inclusion of

both independent controls, the line voltage variation and the duty

ratio modulation.

Even though the circuit transformation path b might De

preferred from the practical design standpoint, the state-space

averaging path a is invaluable _n reaching some general conclusions

about the small-signal low-frequency models of any dc-to-dc switching

converter (even those yet to be invented). Whereas, for path b, one

has to be presented with the particular circuit in order to proceed

with modelling, for path a the final state-space averaged equations

(block 4a) give the complete model description through general

matrices A l, A2 and vectors bl, b2, clT, and c2T of the two starting

switched models (block la). This is also why along path b in the

Flowchart a particular example of a boost power stage with parasitic

effects was chosen, while along path a general equations have been

retained. Specifically, for the boost power stage bI = b2 = b. This

example will be later pursued in detail along both paths.

In addition, the state-space averaging approach offers a

clear insight int_ the quantitative nature of the oasic averaging

approximation, which becomes better the further the effective low-

pass filter corner frequency fc is below the switching frequency fs'
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that is, fc/fs << I. This is, however, shown to be equivalent to

the requirement for small output voltage ripple, and hence does not

pose any serious restriction or limitation on modelling of practical

dc-to-dc converters.

Finally, the state-space averaging approach serves as a basis

for derivation of a useful general circuit model that describes the

input-output and control properties of any dc-to-dc converter.

2.3 New canonical circuit model

The culmination of any of these derivations along either path a

or path b in the Flowchart of Fig. 2.1 is an equivalent circuit (block

5), valid for sma11-signal low-frequency variations superimposed upon

a dc operating point, that represents the two transfer functions of

interest for a switching converter. These are the line voltage to

output and duty ratio to output transfer functions.

The equivalent circuit is a canonical model that contains the

essential properties of any dc-to-dc switching converter, regardless

of the detailed configuration. As seen in block 5 for the general

case, the model includes an ideal transformer that describes the

basic dc-to-dc transformation ratio from line to output; a low-pass

filter whose element values depend upon the dc duty ratio; and a

voltage and a current generator proportional to the duty ratio

modulation input.

The canonical model in block 5 of the Flowchart can be obtained

following either path a or path b, namely from block 4a or 4b, as

3?



will be shown later. However, following the general description

of the final averaged model in block 4a, certain generalizations

about the canonical model are made possible, which are otherwise not

achievable. Namely, even though for all currently known switching

dc-to-dc converters (such as the buck, boost, buck-boost, Venable [3],

_Jeinberg [4] and a number of others) the frequency dependence

appears only in the duty-ratio dependent voltage generator but not

in the current generator, and then only as a first-order (sing]e-

zero) po]ynomial in complex frequency s; however, neither circumstance

will necessarily occur in some converter yet to be conceived. In

general, switchin 9 action introduces both zeros and pol_es into the

duty ratio to output transfer function, in addition to the zeros and

poles of the effective filter network which essentially constitute

the line voltage to output transfer function. Moreover, in general,

both duty-ratio dependent generators, voltage and current, are fre-

quency dependent (additional zeros and poles). That in the particular

cases of the boost or buck-boost converters this dependence reduces

to a first order polynomial results from the fact that the order

of the system which is involved in the switching action is only two.

Ilence from the general result, the order of the polynomial is at most

one, though it could reduce to a pure constant as in the buck or the

Venable converter [3].

The significance of the new circuit model is that any

switching dc-to-dc converter can be reduced to this canonical fixed

topology form, at least as far as its input-output and control

properties are concerned, and hence it is valuable for comparison of
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various performance characteristics of different dc-to-dc converters.

For example, the effective filter networks could be compared as to

their effectiveness throughout the range of dc duty cycle D (in

general, the effective filter elements depend on duty ratio D),

and the configuration chosen which optimizes the size and weight.

Also, comparison of the frequency dependence of the two duty-ratio

dependent generators provides insight into the question of stability

once a regulator feedback loop is closed.

2.4 Extension to complete regulator treatment

Finally, all the results obtained in modelling the converter

or, more accurately, the network which effectively takes part in

switching action, can easily be incorporated into more complicated

systems containing dc-to-dc converters such as the switching regulator

in Fig. 1.10. For example, by modelling the modulator stage along the

same lines, one can obtain a linear circuit model of a closed-loop

switching regulator. Standard linear feedback theory can then be used

for both analysis and synthesis, stability considerations, and proper

design of feedback compensating networks for multiple-loop as well as

s_ngl e- loop regulator confi gurati ons.

In summary, the review in this chapter has shown that the new

general state-space averaging method is directly applicable to any

switching dc-to-dc converter, even those whose topologies have not

yet been conceived, namely to the generalized switching converter of

Fig. 1.1 1. By simply following path a in the Flowchart of Fig. 2.1

both static (dc) and dynamic (ac) characteristics of the converter
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are easily obtained. The only assumption made is that the converter

operates in the continuous conduction mode, hence there exist only

two switched circuit mode'Is (or their equivalent linear state-space

description through triples (Al, bl, ClT) and (A2, b2, c2T) as shown

in block la of the Flowchart in Fig. 2.]).

tn addition, for any particular converter, the circuit

averaged model results from following path b in the Flowchart.

Finally, as a culmination of both approaches, a new canonical

circuit model exhibiting fixed topology is obtained (block 5 in the

Flowchart) which makes certain general conclusions possible.

After being so general in this chapter, we proceed with the

specific derivations and illustrative examples in Chapters 3 and 4.
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CHAPTER 3

STATE-SPACE AVERAGING, HYBRID MODELLING

AND CIRCUIT AVERAGING

Several paths in the Flowchart of Fig. 2.1 are explored in

detail in this chapter and are illustrated by appropriate examples.

Since the justification of the basic state-space averaging step

(going from block la to 2a in the Flowchart of Fig. 2.1) is lengthy and

involved, the corresponding derivations are shown separately in

Appendices A, B and C. This way they will not hide or interfere with

the simple sequence of steps explained in this chapter, which are to

be followed in order to arrive at the final static and dynamic model

of the converter.

3.1 State-space averaging

In this section the state-space averaging method is developed

first in general for any dc-to-dc switching converter, and then

demonstrated in detail for the particu|ar case of the boost power stage

in which parasitic effects (esr of the capacitor and series resistance

of the inductor) are included. General equations for both steady-

state (dc) and dynamic performance (ac) are obtained, from which

important transfer functions are derived and also applied to the

special case of the boost power stage.

B_/c _%_tc-_pacc auem_gedrnode_f.

The basic dc-to-dc level conversion function of switching

converters is achieved by repetitive switching between two linear
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networks consisting of ideally Iossless storage elements, inductances

and capacitances. In practice, this function may be obtained by use

of transistors and diodes which operate as synchronous switches. On

the assumption that the circuit operates in the continuous conduction

mode in which the instantaneous inductor current does not fall to zero

at any point in the cycle, there are only two different "states" of

the circuit. Each state, however, can be represented by a linear

circuit model (as shown in block lb of Fig. 2.1) or by a corresponding

set of state-space equations (block la). Even though any set of

linearly independent variables can be chosen as the state variables,

it is customary and convenient in electrical networks to adopt the

inductor currents and capacitor voltages. The total number of storage

elements thus determines the order of the system. Let us denote such

a choice of a vector of state-variables by x.

It then follows that any switching dc-to-dc converter

operating in the continuous conduction mode can be described by the

state-space equations for the two switched models:

(i) interval Tsd:

= AlX + blVg

yl= ciTx

(ii) interval Tsd':

_c= A2x + bzVg

Y2 = c/x

().I)

where Tsd denotes the interval when the switch is in the on state and

Ts(l-d ) z Tsd' is the interval for which it is in the off state, as

shown in Fig. 1.2. The static equations Yl = ClTx and Y2 = c2Tx

are necessary in order to account for the case when the output

quantity does not coincide with any of the state variables, but is
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rather a certain linear combination of the state variables.

Our objective now is to replace the state-space description

of the two linear circuits emanating from the two successive phases

of the switching cycle TsbY a single state-space description which

represents approximately the behavior of the circuit across the

whole period Ts. We therefore propose the following simple

averaging step: take the average of both dynamic and static equations

for the two switched intervals (3.1), by summing the equations _'or

interval Tsd multiplied by d and the equations for interval Tsd'

multiplied by d' The following linear continuous system results;

x = d(AlX+blVg ) + d'(A2x+b2Vg )

y = dyI + d'y 2 = (dcIT+d'c2T)x

(3.2)

After rearranging (3.2) into the standard linear continuous

system state-space description, we obtain the basic averaged state-

space description (over a single period T ):
s

x = (dA,+d'A2)x, + (dbl+d'b2)Vg

y = (dciT+d'c2T)x

(3.3)

This model is the basic averaged model which is the starting

model for all other derivations (both state-space and circuit

oriented).

Note that in the above equations the duty ratio d is considered

constant; it is not a time dependent variable (yet), and particularly

not a switched discontinuous variable which changes between 0 and l as
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in [l] and [2], but is merely a fixed p,umber for each cycle. This

is evident from the model derivation in Appendix B. In particular,

when d = l (switch constantly on) the averaged model (3.3) reduces

to a switched model (3.1i), and when d = 0 (switch off) it reduces

to switched model (3.|ii).

In essence, comparison between (3.3) and (3.1) shows that the

system matrix of the averaged model is obtained by taking the average

of two switched model matrices A] and A2, its control is the average

of two control vectors bI and b2, and its output is the average of

two outputs Yl and Y2 over a period Ts .

The justification and the nature of the approximation in

substitution for the two switched r,mde!s of (3.1) by state-space

averaged model (3.3) is indicated in the Appendices. It has already

been shown in Chapter I that the requirement of low output switching

ripple places the natural frequencies m = I/2RC and fc = I/2_v_--Ca

significantly lower than the switching frequency fs = I/Ts(see for

example (l.ll))- These two restrictions on the choice of elements,

namely _cz/fs << l and fc/fs << l are shown in Appendix A to lead to a

very accurate approximation of the fundamental matrix eAt by its

first-order linear ten,, or eAt_ I + At. This linear approximation

of the fundamental matrix is shown in Appendix B to lead directly to

the state-space averaging step, namely replacement of the two linear

continuous models (3.1) by a single continuous model of (3.3). In

addition, in Appendix C it is shown that in the steady state regime,

the exact dc conditions could be found which under the same linear

approximation of fundamental matrices reduce to the dc conditions
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obtained from basic averaged state-space mode] (3.3).

The model represented by (3.3) is an averaged model over a

single period T s. If we nowas,;tmle that the duly ratio d is constant

from cycle to cycle, namely, d - D (steady state dc duty ratio), we

get:

where

x = Ax + bVg (3.4)
y = cTx

A = DA1 + D'A 2

b = DbI + D'b 2

cT : DcIT + D'c2 T

(3.5)

Since (3.4) is a linear system, superposition holds and it

can be perturbed by introduction of line voltage variations Vg as
A @'

= Vg + Vg, where Vg is the dc line input voltage, causing a_g

corresponding perturbation in the state vector x = X + x, where again

p,

X is the dc value of the state vector and x_the superimposed ac

A

perturbation. Similarly, y = Y + y, and

x = AX + bVg ÷ Ax + bVg (3.6)

^ Tx TxY+y=c +c

Separation of the steady-state (dc) part from the dynamic

(ac) part then results in the steady state (dc) model

AX + bVg = O; Y = cTx

and the dynamic (ac) model

- ^

x = Ax + bVg

^ cTxy=

y = _cTA-IbVg (3.7)

(3.8)
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It is interesting to note that in (3.7) the steady state (dc)

vector X in general depends only on the dc duty ratio D and

resistances in the original nw)de], but not on the storage element

values (L'_ and C's). This is so because X is the solution of the

linear system of equations

AX + bVg = 0 (3.g)

in which L's and C's are proportionality constants. This is in

complete agreement with the first-order approximation of the exact

dc conditions shown in Appendix C_ Which coincides with expression

, (3.7).

From the dynamic (ac) model, the line voltage to state-vector

transfer functions can be easily derived as:

i(s) = (si_A)-Ib

Vg(S) (3.10)

y(s) = cT(si.A)-Ib

Vg(S)

Hence at this stage both steady state (dc) and line transfer

functions are available, as shown by block 6a in the Flowchart of

Fig. 2.1. We now undertake to include the duty ratio modulation effect

into the basi_ averaged model (3.3).

Pe_u_on ,,

Suppose now that the duty ratio changes from cycle to cycle,

A

that is, d(t) = D + d where D is the steady state (dc) duty ratio as

before and d is a superimposed (ac) variation. With the corresponding
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perturbation definition x = X + x, y = Y + y, and v =
g Vg + Vg the

basic model (3.3) becomes:

J

w-_ A A A A

x = AX+bVg + Ax+bvg + [(AI-A2)X 4 (bl_b2)Vg]d + [(AI_A2)x + (bl_b2)Vg]d

dc term line duty ratio variation nonlinear second-

vari ation order term

^ T T)X _ + (clT_c2Y + y : cTx + cTx + (cI -c2 T)xd

dc ac ac term nonlinear term
term term

(3.11)

The perturbed state-space description is nonlinear ow|ng to

the presence of the product of the two time-dependent quantities

x and .

Linea_ization and final state-spac_ avenged mode_

Let us now make the small-signal approximation, namely that

departures from the steady state values are small compared to the

steady state values themselves:

v d x

--_ << I, _<< I, _<< 1
g

Then, using approximations (3.12) we neglect all nonlinear terms

(3.12)

such as the second-order terms in (3.11) and obtain once again a

linear system, but including duty-ratio .modulation d. After

separating steady state (dc) and dynamic (ac) parts of this linearized

system we arrive at the following results for the final state-space

averaged model,
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Steady state (de) model:

X = -A-IbVg, y = cTx = _cTA-IbVg (3.13)

Dynamic (ac s_na11-signal) model:

A A

= + [(A I-A2)X (bl-b 2)vg]d (3.14)x Ax + bVg +

A

y^ X c;= + ( _zT)X

In these results, A, b and cT are given as before by (3.5).

Equation s (3.13) and (3.14) represent the small-signal low-

frequency model of any two-state switching dc-to-dc converter

working in the continuous conduction mode.

A

From (3.14), the duty ratio modulation d to state-variable

A A

x or to output y transfer functions are directly obtained as:

= (sI-A)-I[(AI-A2) l + (bl-b2)Vg]
d(s) (3.1S)

= cT(sI-A)-I[(AI-F2)X + (bl-b2)Vg] +(clT-czT)X
d(s)

It is important to note that by neglect of the nonlinear term

in (3.11) the source of harmonics is effectively removed. Therefore,

the linear description (3.14) is actually a linearized describing

function result that is the limit of the describing function as the
A A

amplitude of the input signals Vg and/or d becomes vanishingly sinai1.

The significance of this is that the theoretical frequency

response obtained from (3.14) for line to output and duty ratio te

output transfer functions can be compared with experimental describing

function measurements as explained in [I], [2], or [8], in which
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small-signal assumption (3.12) is preserved. Very good agreement up

to close to half the switching frequency has been demonstrated

repeatedly [I], [2], [3], [7].

Example: boost power _tage w_h parasitic6

We now illustrate the method for the boost power stage shown

in Fig. 3.1.

?_G_ IS

_F-L/
dTs dTs

< Rc

v C

R

Fig. 3. I Ex_'plc for state-space averaged _d_n9: boost power

staje wi_ para_itics inc_ded.

a) b)

!

-_ k _R ¢ ,

) +l--I : R

Fig. 3.2 Two switched circuit model_ of the c_rcuit in Fig. 3. I
with assumption of ideal switches. All el_m_ in the

final state-space av_aged model (3.13) and (3.14) are

obtained: AI, b l, ciT from a) for interval dTs, and

A2, b2, c21 _rom b) for i_erual d'T s.
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With assumption of ideal switched, the two switched models

are as shown in Fig. 3.2. For choice of state-space vector xT = (i v),

the state-space equations beck:

whePe

A 1 =

(i) interval Tsd: (ii) interval Tsd':

x = A Ix + bVg x = A2x + bVg

Y = clTX Y2 = c2Tx

0
I

R_+RclIR
L

AZ =
R

(R÷Rc)C

R

- L(R+Rc )

1

- (R+Rc) c

(3.16)

= o R+Rc CzT = IIRc R+R---_

Note that (3.16) is the special case of (3.1) in which bI = b2 = b =

[I/L O]T.

Using (3.17) and (3.5) in the general result (3.13) and (3.14),

we obtain the following final state-space averaged model.

Steady-state (dc) model:

: : , y : - (3.]8)
R' (I-D)R R'

in which I is the dc inductor current, V is the dc capacitor voltage,

and Y is the dc output voltage.
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Dynamic (ac small signal) model:

^. R +(I-DXRclIR)

1 - L'---

d

dt

,r+rc}C

(I-D)R 1

-

I

- (R+Rc) C

l

L
A

Vg +

R (D' R+R c)

L R+R c

R

0 - (R+Rc) C

" _ - Vg --ff_y = il-I_)(RcllR) R+R---c v

in which R' _ (I-D)2R + R£ + D(I-d)(RclIR).

(3.19)

We now look more closely at the dc voltage transformation ratio

in (3.18):

V Y 1

Vg Vg ]-D

ideal

dc gain

(I-D)2R

(I-D)2R + R£ + D(I-D)(RclIR)

correction factor

(3.20)

I
I
I

This shows that the ideal dc voltage gain is I/D' when all parasitics

are zero (R£ = O, Rc = O) and that in their presence it is slightly

reduced by a correction factor less than I. Also we observe that

nonzero esr of the capacitance (Rc # O) (with consequent discontin-

uity of the output voltage) affects the dc gain and appears

effectively as a resistance DD'(RclIR) in series with the inductor

resistance R_. T;]is effect due to the discontinuity of output

voltage wzs not included in [2], but was correctly accounted for in

[I].
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This is also a good example to show how even tiny parasitic

resistances could significantly alter dc gain characteristics and

efficiency of the converter. Just for simplicity of presentation,

take R = 0 in (3.20) and consider voltage gain V/V as a function of
c g

duty ratio D. It is easy to see that in this more realistic case

(RJ_)l O) it will have a maximum (V/Vg)ma x = O.5VI_7R_- at Dm =

l - _/R, while in the ideal case it increases without the limit,

as shown in Fig. 3.3. As a numerical example, for R = 20_, Rg. = 0.2_

the maximum dc gain is (V/Vg)ma x = 5 at Dm = o.g.

dc gain _ l

voltage gain
also real I
current gain _ D

0.0 0.5 Drn 1.0

Fig. 3.3 Voltage dc gain with ind_etor paro_itic r_tance included.

It is interesting to note, however, that the dc current

conversion is not affected by inclusion of parasitics and stays at

lin/Iou t = I/D', or the same as the ideal dc voltage gain shown in

Fig. 3.3. Therefore, the efficiency n(D) of the converter as a func-

tion of duty ratio D could be simply obtained by dividing the two

curves in Fig. 3.3 to produce Fig. 3.4. For the same numerical

example R_/R = O.Ol, the efficiency would drop to only 50% at the
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Fig. 3.4

5oZ

I
I m

o.o Dm LO
=-D

E_ieien_ o_ the boost converter _ _ fu_c_on o_ d_tft

r_tio _or RjLfO.

where

maximum dc voltage gain of 5. This illustrates in a rather dramatic

fashion how even the small resistance inevitably associated with any

inductor could drastically reduce efficiency and alter dc voltage

conversion. One can now properly appreciate the importance of

inclusion of various parasitic effects which distinguish the ideal

lossless circuits from the real lossy ones.

From the dynamic model (3.19) one can find the line voltage

to output and duty ratio to output transfer functions by applying

(3.10) and (3.15). If we take for simplicity Rc = O, :he following

transfer functions, which now again include the effects of nonzero

R_ are obtained:

=VS_= 1

s__.2
Gvg Vg(S) G°g 1 +_oo + (_o)

l__--
=a

Gvd = _ s (s)2d(s)--G°d1+ +
(3.21)
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Wa = (D' 2R-R_, )/L

D' _/ R£ 1 D'2R+R2,

_o - Vl + .---_" Q ....R 6)'2 , _o(CRR_.+L)

1 I V D'2R - R_ ,

Re l ; God '2"R+ R£
G°g D' I +--.D---_-

R

These results agree exactly with those obtained in [l] by following a

different method of averaged nw)del derivation based on the equivalence

of circuit topologies of two switched networks.

The fundamental result of this section is the development

of the general state-space averaged model represented by (3.13) and

(3.14), which can be easily used to find the small-signal low-frequency

model of any switching dc-to-dc converter This was demonstrated for

a boost power stage with parasitics resulting in the averaged model

(3.18) and (3.19). It is important to emphasize that, unlike the

transfer function description, the state-space description (3.13) and

(3.14) gives the complete system behavior. This is very useful in

implementing two-loop and multi-loop feedback when two or more states

are used in a feedback path to modulate the duty ratio d. For example,

both output voltage and inductor current may be returned in a feedback

loop.
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3.2 Hybrid modelling

in this section it will be shmvn that for any specific

converter a useful circuit realization of the basic averaged model

given by (3.3) can always be found. Then, in the following section,

the perturbation and linearization steps will be carried out on the

circuit model finally to arrive at the circuit model equivalent of

(3.13) and (3.14).

The circuit realization will be demonstrated for the same

boost power stage example, for which the basic state-space averaged

model (3.3) becomes:

i m

di

dt

dv

dt

i m

i

RR.+d' (RclIR) d'R

L - L'(R+Rc)

d'R l

(R+RclC - (R+Rc')C

Ey = '(RclIR) RYRc

m

1

L

+ Vg

(3.22)

In order to "connect" the circuit, we express the capacitor

voltage v in terms of the desired output quantity y as:

|

or, in matrix form

R+R
C

v- R Y- "'ll'd;Rci
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vj

] 0

R+R
C

"d'Rc R Y

(3.23)

Substitution of (3.23) into (3.22) gives

di I
La-_- I -(R£+dd' (Rc[IR)

addi tional

resi stance

l

!

idea/l

transformer

!i

+

Y 0

Vg

(3.24)

From (3.24) one can easily reconstruct the circuit representation

shown in Fig. 3.5.

Rt L dd'lRcllR)

I

d'y

":J E
d'i

] R

Fig, 3,5 Circu_ realization of the basic state-space averaged
model (3.24) through kybrid modelling.

5O

The basic model (3.24) is valid for the dc regime, and the

two dependent generators can be modeled as an ideal d':] transformer

whose range extends down to dc, as shown in Fig. 3.6.



d': I

._ Rc

Fig. 3.6 Basic circuit averaged model for the boost circuit ex_Ze
in Fig. 3. I. Both de-to-de conv_sion and _ine variation
are mod_Zled when d(t) = D.

A word about the new transformer symbol introduced in Fig. 3.6

is appropriate here. In the modelling of dc-to-dc converters a need

naturally arises to have as a convenient modelling tool special types

of transformers: a transformer which operates for both ac and dc

signals, as for example the one in Fig. 3.6, and also a transformer

which only works at dc (for which the need will arise in Part II).

Even though these transformers are not physically realizable they are,

nevertheless, very useful in modelling the basic converter function:

dc-to-dc conversion. Hence, as an indicator of their speGtfic

functions, the symbols of Fig. 3.7 are introduced. For consistency,

the conventional, physically realizable, ac transformer only, is

pictorially represented as in Fig. 3.7c. Later, for similar purposes,

the same overprint glyphs will be used with resistance symbols.

ci) dc and ac transformer b)dc transformer cJac Iransformer

Fig. 3.7 Defi_Gtion of va_Lous _ransformer s_o_.
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As before, we find that the circuit mode] in Fig. 3.6 reduces

for d = I to the switched mode] in Fig. 3.2a, and for d = 0 to the

switched model in Fig. 3.2b. In both cases the additional _esistance

dd'(Rc! IR) disappears, as it should.

If the duty ratio is constant so d = D, the dc regime can be

found easily by considering induct_nce L to be short and capacitance

C to be open for dc, and the transformer to have a d"l ratio. Hence

the dc voltage gail (3.20) can be directly seen from Fig. 3.6

Similarly, all line transfer functions corresponding to (3.10) can

be easily found from Fig. 3.6.

It is interesting now to compare this ideal d':l transformer

with the usual ac transformer. While in the latter tile turns ratio

is fixed, the one employed in our model has a dynamic turns ratio

d':l which changes when the duty ratio is a function of time, d(t).

It is through thi_ ideal transformer that the actual controlling

function is achieved when the feedback loop is closed. In addition

the ideal transformer has a dc transformation ratio d':l, while a

real transformer works for ac signals only. Nevertheless, the concept

of the ideal transformer in Fig. 3.6 with such properties is a very

useful one, since after all,the switching converter has the overall

property of a dc-to-dc transformer whose turns ratio can be

dyr.amically adjusted by duty ratio modulation to achieve the control-

ling function. We will, however, see in the next section how this can be

more explicitly modelled in terms of duty-ratio dependent generators

only.
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Following the procedure outlined in this section one can

easily obtain the basic.averaged circuit n_dels of three common

converter power stages, as shown in the summary of Fig.3.8 .

a) buck power stage ;

S
R,:.
R:

C

b) boost power stage : buck

Rt R_ d.tRt L _ L ',

T "l CTi
boosf

buck boost power stage:
I:d R[ L R, d':l

-
R) buck boos_

c}

R,= dd'(,Rcl

:R

Fig. 3. it Sus_na_ od basic circuit aven, zgcd mode_ _or £1_e¢ gemmon
po_e_ _t_3ca: buclz, booat, and buctz-booat,

The two switched circuit state-space models for the power

stages in Fig.3.8 are such that the general equations (3,l) reduce

to the special cases Al = A2 = A, bI _ b2 = 0 (zero vector) for the

buck power stage, and A l ) A2, bI = b2 = b for the boost power stage,
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whereas for the buck boost power stage A l _ A2 andb I # b2 = 0 _;o

that the general ca_e is retained.

3.3 Circuit averaging

As indicated at the beginning of this chapter, in this

section the alternative path b in the Flowchart of Fig. 2.1 will be

followed, _nd equivalence with the previously developed path a firmly

established. The final circuit averaged model for the same example

of the boost power stage will be arrived at, which is equivalent

to its corresponding state-space description given by (3.18) and (3.19),

The averaged circuit nw_dels shown in Fig. 3.B could have

been obtained as in [21 by directly averaging the corresponding

components of the two switched models. However, even for some

simple cases such a_ the buck-boost or tapped-inductor boost Ill

this presents some difficulty owing to the requirement of having two

switched circuit models topologically equivalent, while there is no

such requirement in the outlined procedure.

In this section we proceed with the perturbation and

linearization steps applied to the circuit model, continuing with

the boost power stage as an example in order to include explicitly

the duty ratio modulation effect.
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t' ; _t.u,tbat_con

If the averaged model in Fig. 3.8 is perturbed according to
A A A A

Vg = Vg+Vg, i = l+i, d = D+d, d' = D'-d, v = V_v, y = Y+y the

nonlinear model in Fig. 3.9 results.

R L e,,_(D.a)(D-ci}(RcIIR){IG}

1, _ (Dr _)(I,7} ',

V+ C

Y-t-_

:R

Fig. 3.9 P_rtu_bation of the basic av__agcd circuit mod_ in Fig.
3.6 includes _e duty _aJcio modulation effect d, b_t resu_
in t_s non.near circuit mode.

Lineanizat_on

Under the small-signal approximation (3.12), the following

linear approximationsareobtained:

en % DD'(RclIR)(I+i) + d(D'-D)(RclIR)I

A A

(D'-d)(Y_y) % D'(Y_y) - dY

A _

(D'-d)(T+il. ., _ D'(I+i) - dl

and tile final averaged circuit model of Fig. 3.10 results. In this

circuit model we have finally obtained the controlling function
A

separated in terms of duty ratio d dependent generators e I and Jl'

while the transformer turns ratio is dependent on the dc duty ratio

D only. The circu;t model obtained in Fig. 3.10 is equivalent to

the state-space description given by (3.18) and (3.19).
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D':l

-L)')(t-_II R)I

1 ,,2
Rc

R

:C

_,_g. 3.70 Undc_ _ma('(-_(g_u_(' _zs_uJ_rpC(on (3.12), the mode@, in Fig. 3.9
(-S ('()',c,<l'c(-:cd <uzd tills ft_aZ avcragt'd e_.J_c_it i)i,.,de_£ of
tile bc,cslz stage in _Lg. 3. I ls ub.taZ_ed.

This now completes the detailed investigation of all paths

in the Flowchart of Fig. 2.1 except for the culminating block--the

canonical circuit model, which is dealt with in the next chapter.

However, before going into this final step of modelling, let us first

review some of the more fundamental results obtained in this chapter.

A general method for modelling power stages of any switching

dc-to-dc converter has been developed through the state-space

approdch. The fundamental ,tep is in replacement of the state-space

descriptions _ *_-_. _,,_ two switched networks by their dverage over the

single switching period Ts, which results in a single continuous

state-space equation description (3.3) designated the basic averaged

state-space model. Fhe essential approximations made are indicated

in Chapter I and the Appendices, and are shown to be justified for

any practical dc-to-dc switching converter. Their essence can be

quickly summarized in the following sequence of implications:

switching natural <<
ripple smalICZ_ frequencies

linear _z_>
approximation

switching
f req uen cy

fundamental
matrix

state-space
av,:raging step
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The subsequent perturbation and linearization step under the

small-signal assumption (3.12) leads to the final state-space averaged

model given by (3.13) and (3.14). These equations then serve as the

basis for development of the most important qualitative result of this

work, the canonical circuit nw)del _block 5 in the Flowchart of Fig.

2.1).

Ill contrast with the state-space modelling approach, for any

particular converter an alterr_tive path via hybrid modelling and

circuit transformation could be followed, which also arrives first at

the final circuit averaged model equivalent of (3.13) and (3.14) and

finally, after equivalent circuit transformations, again arrives at

the canonical circuit model.

Although the state-space modelling approach has been

developed in this chapter for two-state switching converters, the

method can be extended to _;Jultiple-state converters. Examples of

three-state converters are the familiar buck, boost anG buck-boost

power stages (shown in Fig. l.l) operated in the discontinuous

conduction mode (compare Chapter l, Fig. 1.7), while dc-to-ac switch-

ing inverters in which a specific output waveform is "assembled"

from discrete segments are examples of multiple-state converters.

In particular, Part II will demonstrate in detail how the

extension of this state-space modelling approach can be accomplished

for converters operating in the discontinuous conduction mode, where

structural change takes place among three different switched network

topologies as opposed to two we have treated so far in this chapter.
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CHAPTER 4

CANONICAL CIRCUIT MODEL

This chapter is entirely devoted to the new canonical circuit

model (see block 5 in the Flowchart of Fig. 2.|). The derivations

via a general state-space model (3 13) and (3.14) are subsequently

illustrated on a buck-boost example, while the results for a number

of other converters are conveniently represented in the form of a

table, thanks to the fixed circuit topology of the new canonical

model. Finally, the significance of the new circuit model and general

conclusions not othe_ise available are thoroughly discussed.

Even though the general final state-space averaged model

in (3.13) and (3.14) gives the con@lete description of the system

behavior, one might still wish to derive a circuit model describing

its input-output and control properties as illustrated in F_g. 4.1.

al b)

V(j+ averaged model
via I:_

A,_ A_b,, b_c,,inpu_ I "_obrtpu, input[

Fig. 4.1

0 D+d

control

/

circuit model Iv._
on _n

i npu_ output

bas is i °utPut

{} O+a
conlrol

Definition of the modelling objective: _Lrc_t averaged
mod_ describing 2npu_-outp_t and control prop_t_.

In going from the model of Fig. 4.1a to that of Fig. 4.1b

some infon,_ation about the internal behavior of some of the states

will certainly be lost but, on the other han_, important advantages

will be gained as were briefly outlined in Chapter 2, and as this

section will illustrate.
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We propose the following fixed topology circuit n_del, shown

in Fig. 4.2 as a realization of the "black box" in Fig. 4.1b.

control function basic dc-to-dc
¢ia _I irons formation

"' eis a '

I E f,(sld

J&lSla

effective low-pass
filter _etwork

Zei

K>

Fig. 4.2 Canonical circuit model reag_zation of the "6Zack box"

in Fig. 4. Ib, modeAg/ng _ie three _se_tial fttnc_io_ o_
any de-to-de converter: control, basic dc conue_c6ion, and

low-p_s __g.

I

I

I
ir

We call this n_del the canonical circuit model, because any switching

converter input-output model, regardless of its detailed configura-

tion, could be represented in this form as long as the converter

operates in the continuous conduction mode. Different converters

are represented simply by appropriate sets of formulas for the four

elements e(s), j(s), _, He(S) in the general equivalent circuit. The

polarity of the ideal _:l transforn_r is determined by whether or not

the power stage is polarity inverting. Its turns ratio _ is dependent

on the dc duty ratio D, and since for modelling purposes the trans-

former is assumed to operate down to dc, it provides the basic dc-to-

65



dc level conversion. The single-section low-pass LeC filter is shown

in Fig. 4.2 only for illustration purposes, because the actual number

and configuration of the L's and C's in the effective filter transfer

function realization depends on the number of storage elements in the

original converter.

The resistance Re is included in the model of Fig. 4.2 to

represent the damping properties of the effective low-pass filter.

It is an "effective" resistance that accounts for various series ohmic

resistances in the actual circuit (such as R_ in the boost circuit

example), the additional "switching" resistances due to discontinuity

of the output voltage (such as DD'(RJIR) in the boost circuit example),

and also a "modulation" resistance that arises from a modulation of

the switching transistor storage time [I].
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4.1 Derivation of tile canonical model throuqh state-space

From the general state-space averaged model (3.13) and (3.14),

we obtain directly using the Laplace transform:

x(s) : (sI-A)-Ibvg(S) + (sI-A)-I[(AI-A2)X + (bl-b2)Vg]d(s)

^ cIT_c2T)xy(s): cTx(s)+ ( d(s)
(4.1)

Now, from the above complete set of transfer functions we

single out those which describe the converter input-output properties,

namely

y(s) : Gvg Vg(S) + Gvd d(s)

_(s) : Gig Vg(S) + Gid d(s)

(4.2)

in which the G's are known explicitly in terms of the matrix and

vector elements in (4.1).

Equations (4.2) are analogous to the two-port network

representation of the terminal properties of the network (output

A A

voltage y(s) and input current i(s)). The subscripts designate the

corresponding transfer functions. For exa,nple G is the source
vg

A A

voltage Vg to output voltage y transfer function, Gid is the duty ratio
A

d to input current i(s) transfer function, and so on.

For the proposed canonical circuit model in Fig. 4.2, we

directly get:

^ 1 He(S )y(s) : (Vg+ed)

A _ A

(s) = j d + (ed+vg) I
Ij2Zei(s)

or, after rearrangement into the form of (4.2):.

(4.3)
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= 1 Vg( 1 He(S)_(s )y(s) _ He(S) s) + e_-

(4.4)

p2Zei(S) p (s)

Direct comparison of (4.2) and (4.4) provides the solutions for He(S),

e(s), and j(s) in terms of the known transfer functions Gvg, Gvd,

Gig and Gid as:

Gvd(S)

e(s) - Gvg(. - , j(s) = Gid(S) - e(s)Gig(S)

(4.5)

He(S ) = pGvg(S )

Note that in (4.5) the parameter I/p represents the ideal dc voltage

gain when all the parasitics are zero. For the previous boost

power stage example, from (3.20) we get p = l-D and the correction

factor in (3.20) is then associated with the effective filter net-

work He(S). However, p could be found from

Y _ cTA-Ib _-1 x (correction factor) (4.6)

Vg p

by setting all parasitics to zero and reducing the correction factor

to I.

The physical significance of the ideal dc gain p is that it

arises as a consequence of the switch.ing action, so it cannot be

associated with the effective filter network which at dc has a gain

(actually attenuation) equal to the correction factor.

The procedure for finding the four elements in the canonical

model of Fig. 4.2 is now briefly reviewed. First, from (4.6) the
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basic dc-to-dc conversion factor _ is found as a function of dc duty

ratio D. Next, from the set of all transfer functions (4.1) only

those defined by (4.2) are actually calculated. Then, by use of these

four transfer functions Gvd, Gvg, Gid, Gig in (4.5) the frequency

dependent generators e(s) and j(s) as well as the low-pass filter

transfer function He(S) are obtained.

The two generators could be further put into the form

e(s) = Ell(S)

(4.7)

j(s) = Jf2(s)

where fl(O) = f2(O) = I, such that the parameters E and J could be

identified as dc gains of the frequency dependent functions e(s) and

j(s).

Finally, a general synthesis procedure [lO] for realization

of L, C transfer functions tenr,inated in a single load R could be

used to obtai,, a low-pass ladder-network circuit realization of the

effective low-pass network He(S). Though for the second-order example

of He(S) this step is trivial and could be done by inspection, for

higher-order transfer functions the orderly procedure of the

synthesis [lO] is almost mandatory.

Example.: ideal buck-boost _r st_g_

For the buck-boost circuit shown in Fig. 3.10c with R_ = 0

Rc = O, the final state-space averaged model is:
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0
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1

RC

P'A°

1

V
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A

V +
g

V-V
_.q____

L

V

A

d

A

in which the output voltage y coincides with_ the state-variable

capacitance voltage v.

(4.8)

From (4.6) and (4.8) one obtains _ = D'/D. With use of (4.8)

to derive transfer functions, and upon substitution into (4.5), there

results

-v {1 DL'_
e(s) = _ \ - s _ ,D'l R ,I

= -V

(4.9)

I-o
He_;;) = I " u = D

1 + s/RC + S2Le C

in which V is the dc output voltage.

The effective filter transfer function is easily seen as a

low-pass LC filter with Le = L/D '2 and with load R. The two

generaLors in the canonical nodel of Fig. 4.2 are identified by

-V DE

E -_ , f1(s)- I - sD,2---_

j _ -V

(l_O)2 R , _s) - I

We now derive the same model but this time using the

equivalent circuit transformations and path b in the Flowchart of

Fig. 2.1.
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After perturbation and linearization of the circuit averaged

model in Fig. 3.8c (with R_ = O, Rc - O),the series of equivalent

circuits of Fig. 4.3 is obtained.

a) I: _ Vg,_ L Vu_ ..,,_,,_. )._ D':I

Vg._ Ta • Id C7

V÷C,

I

V,-;

J-c!
T I

R

ci I sDL .,,
- _,"_T';_)d , .ir_,Z ..

Fig. 4.3 Eq_va_Qnt _c_ _ fo_tio_ o.f the. fi_ _t
avcraged model a) leading to /t_ canon/ca/ c/rc_/_ reo_/za-
•_Lon c}, do_onatt_CQd on t1_¢ buck-boost example of Fig. 3.8(_

(_h R_=O, Re=O).

The objective of the transformations is to reduce the original

four duty-ratio dependent generators in Fig. 4.3a to just two

generators (voltage and current) in Fig. 4.3c which are at the input

port of the model. As these circuit transformations unfold, one sees
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how the frequency dependence in the generators arises naturally, as

in Fig. 4.3b. Also, by transfer of the two generators in Fig. 4.3b

from the secondary to the primary of the l-D transformer, and the

inductance L to the secondary of the D °'l transformer, the cascade of

two ideal transformers is reduced to the single transformer with

equivalent turns ratio D"D. At the same time the effective filter

network Le, C, R is generated.

Expressions for the elements in the canonical equivalent

circuit can b_ found in a similar way for any converter configuration.

Results for the three familiar converters, the buck, boost, and buck-

boost power stages are summarIIed in Table I.
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buck

boost

buck-

boost

J

D

I-D

I-D

D

E

V

D2

V

-V

D2

f,(s} J

V

R

V

-V

f2(s}

(i-D)2

L

(I-D) 2

L

TABLE I Definition of _e _Zemcnt_ in the canonical circuit m.)d_

of Fig. 4.2 for the three common power s_ag_ of Fig. l.l.

It may be noted in Table I that, for the buck-boost power

stage, parameters E and J have negative signs, namely E = -V/D 2 and

J = -V/(D'2R). However, as seen from the polarity of the ideal D':D

transformer in Fig. 4.3c this stage is an inverting one. Hence, for

positive input dc voltage V , the output dc voltage V is negative
g
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(V < 0) since V/Vg = -D/D' Therefore E > 0, J > 0 and consequently

the polarity of the voltage and current duty-ratio dependent generators

is not changed but is as shewn in Fig. 4,3c. Moreover, this is true

in general: regardless of any inversion property of the power stage,

the polarity of the two generators stays the same as in Fig. 4.2.

If some parasitics have been included in the original converter model

(such as R_, parasitic resistance of the inductance) Table I would haw

had another column for Re (effective series resistance) as seen in

Fig. 4.2 with appropriate expressions.

Table I,together with the canonical circuit model of Fig. 4.2,

could then conveniently be used to obtain all the important static

(dc) and dynamic (ac) transfer properties of the converters listed

in Table I. For example, ?able II summarizing voltage gain and

efficiency of three common converters could be generated in such a

way. In Table II the effects of parasitics have also been included .

type
i

buck

boost

,-I.

buck -
boost

, , ii _, J,

vlV9 (de ga,n}

D
R

R+R t

i D'2R

-_' D'ZR+ Rc+D D'RcliR
II 111

D D:_R

D_ D,2R tR.I_tDD_I_.clIP,

,., _ _

(efriciencU)
i

R

R+R t

D'2R+ RF DD'RcllR
-_-- |

D'2R

D_R + Rt + D D'Rdi R

TABLE II Pc transf_ properties _,d efficiency o_ the _ee common
p_ s_ages of Fig. I. I in the continuou_ conduction mode.



Similarly the dynamic (ac) transfer properties, that is,

]ine voltage variation to output voltage and duty ratio modulation

output voltage, can _e summarized for three co,wnon power stages of

Fig. l.l in the form of Tab|e Ill.

to

Go9

God

%

Q

D

buck

R

R+R_

boosl

I D'2R

EF D_F_+R[

buck -boost

D D'2R

D' D'P-R+R I_

R

v9 R+R[

I R_R t

a_o L + CIR4RI_

CxD

V9( D'2R - Rl)R
( D'2R+ RI_)2

I D'eR -t-Rr

/X#o L+CRR t

L

vg

I D'2R +Rf.

_o L +CRRI:

D'2 R-(D-_R_
DL

,A

,.v

Gv9: Tg= G_ I + s/Qzao+(Sl'_oF_Gvd:a =G°d I +S/Q'_o* (Silo)2

?4

TABLE Ill S_I_xry of .the ac .,t_L6fe._ properties of .the three common

pow_% stages of Fig. I. I in the continuous conduction _de.

After filing the information on these converters in Tables

I, If: an_l Ill we can proceed to discuss the significance of the new

canonical circu4t model of Fig. 4.2 and related generalizations.



4.2 Sig,i_ficance of the canonical circuit n_del and related

_enera Iizations

The canonical circuit model of Fij. 4.2 incorporates all

three basic properties of a dc-to-dc converter: the dc-to-dc

conversion function (represented by the ideal _:l transformer);
A

control (via duty ratio d dependent generators); and low-pass

filtering (represented by the effectiv,_, low-pass filter network

A

He(S)). Note also that the current generator j(s) d in the canonical

circuit model, even though superfluous when the source voltage

Vg(S) is ideal, is necessary to reflect the influence of a nonideal

source generator (with some internal impedance) or of an input filter

[7] upon the behavior of the converter. Its presence enables one

easily to include tk_ linearized circuit model of a switching converter

power stage in other linear ci.-cuits, as the next chapter will

iIIustrate.

Another significant feature of the canonical circuit model

is that any switching dc-to-dc converter can be reduced by use of

(4.1), (4.2), (4.5) and (4.6) to this fixed topology form, at least

as far as its input-output and control properties are concerned.

Hence the possibility arises for use of this model to compare in an

easy and unique way various performance characteristics of different

conver.ters. Some examples of such comparisons are given below.

I. The filter networks can be compared with respect to their

effectiveness throughout the dynamic duty cycle range D,

because in general the effective filter elements depend on

the steady state duty ratio D. Thus, one has the
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opportunity to choose "he configuration and to optimize the

size and weight.

2. Basic dc-to-dc conversion factors Pl(D) and I_2(D) can be

comparedas to their effective range. For someconverters,

traversa I. of the range of duty ratio D from 0 to l generates

any conversion ratio (as in the ideal buck-boost converter),

while in others the conversion ratio might be restricted (as

in the Weinberg converter [4], for which I/2 < _ < I).

3. In the control section of the canonica_ model one can

compare the frequency dependences of the generators e(s) and

j(s) for different converters and select th.• configuration

that best facilitates stabilization of a feedback regulator.

For example, in the buck-boost converter e(s) is a polynomial,

containing actually a real zero in the right half-p|ane,

which undoubtedly causes some stability problems and need

for proper ce,nlpensation.

4. Finally, the canonical model affords a very convenient

means to store and file information on various tic-to-tic

converters in a computer memory in a form comparable to

Table I. Then, thanks to the fixed topology of tile canonical

circuit model, a single computer program can be used to cal-

culate and plot various quantities as functions of frequency

(input and output impedance, audio susceptibility, duty

ratio to output transfer response, and so on). Also,

various input filters and/or additional output filter net-

works can easily be added if desired.



We now discuss an important issue which has been intentionally

skipped so far. From (4.5) it is (oncluded that in general the duty

ratio dependent generators e(s) and j(s) are rational Functions of

complex frequency s. Hence, in__general,both some new zeros and poles

are introduced into the duty ratio to output transfer function owi_in9-

to the switching action, in addition to the poles and zeros of the

effective filter network (or line to output transfer function).

However, in special cases, as in all those shown in Table I, the

frequency dependence might reduce simply to polynomials, and even

further it might show up only in the voltage-dependent generators

(as in the boost, or buck-boost) and reduce to a constant (f2(s) z I)

for the _urrent generator. Nevertheless, this does not prevent us

from modifying any of these circuits in a way that would exhibit the

general result -- introduction of both additional zeros as well as

poles.

Let us now illustrate this general result on a simple

modification of the familiar boost circuit, with a resonant Ll, Cl

circuit in series with the input inductance L, as shown in Fig. 4.4.

L, A L

C, II

I
I
I

Fig. 4.4

C

V

<R

Me,dolLed boost cz_cui_ _ _ Ll_._sC_atLon of 9Choral fre-
quency behavior of tlzc gcn_atc,_ in tlze c_zoJ_LcaZ _Lr_Lit

modeZ of Fig. 4.2.
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By introduction of the canonical circuit :}_del for the boost

power stage (for the circuit to the right of cross-section AA') and

use of data from Table I. the equivalent averaged circuit model of

Fig. 4.5a is obtained. Then, by a,_[)lication of the equivalent cir-

cuit transformation as outlined previously, the averaged model in the

cancnical circuit form is obtained in Fig. 4.5b. As can be seen from

Fig. 4.5b= the voltage generator has a double pole at the resonant

frequency wr = I/V[-lC] of the parallel Ll ,C] network. However, the

effective filter transfer function has a deuble zero (null in

magnitude) at precisely the same location such that the two pairs

effectively cancel. Hence, the resonant null in the maenitude

response, while present in the line voltage to output transfer func-

tion, is not seen in the duty ratio to output transfer function.

a] v(_-
I--i

I
I

I
I

sL

_-"_-_D"R'dD': I LID ''

v_"

A'I

s L s L,ID'2_. ^
b) V(I D"R I+'s2L, C, }d D':I L,/D'2

G

()va

V,$

J-c! 
T

LID"

D'2C, 1

T

A

V+v

R

Fig. 4.5 Equiuale_t c_cu_t tran_fo_t_tion £¢ading 4o the cano_Acal
, J!

circuLt model b) c,,'_ ._e cc_cu_ct in Fig. 4.4.

?8

.......... i i f ,i,i, ...........................

IIII IIIIII I I I I



Therefore, the positive effect of rejecti_ of certain input

frequencies around the resonant frequency _r is not accompanied by a

detrimental effect on the loop gain, which will not contain a null in

the magnitude response.

The example den_onstrates yet another important aspect of

model_inq with use of the averagit,g technique. Instead of applying

it directly to the whole circuit in Fig. 4.4, we have instead imple-

mented it only with respect to the storage element network which

effectively takes part in the switching action, namely L, C, and R.

Upon substitution of the switched part of the network by the averaged

circuit model, all other linear circuits of the complete model are

retained as they appear in the original circuit (such as Ll, Cl in

Fig. 4.5a). Again, the current generator _n Fig. 4.5a is the one

which reflects the effect of the input resonant circuit.

After the detailed exposition we are now ready to briefly

review the salient features of this new canonical circuit model

(Fig. 4.2). Thanks to its fixed toDology structure, different

converters are represented simply by an appropriate set of formulas

((4.5) and (4.6)) for four elements in this gene'al equivalent circuit.

Besides its unified description, of which several examples are given

in Table I, one of the advantages of *he canonical circuit model is

that various performance uharacteristics of different switching

converters can be compared in a quick end easy manner.
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Perhaps the most important consequenceof the canonical

circuit model derivation via the general state-sp_ce averaged mode]

(3.13), (3.11), (4.1) and (4.2) is its predictlo,q through (4.5) of

additional zeros as well as poles in the duty ratio to output trdnsfer

fu_.ction. In addition, frequency dependenceis anticipated in the

duty ratio dependent current generator of Fig. 4.2, even though for

particular converters considered in Table I it reduces merely to a

constant. Furthermore, for someswitching networks which would

effectively involve more than two storage elements, higher order

polynomials should be expected in fl(s) and/or f2(s) of Fig. 4.2.

In fact, Part III has resulted as a consequence of the search

for such switching networks which would demonstrate the predictions

anticipated by this general canonical model. There, a new class of

switching converters generated by the various cascade combinations

of the two fundamental converters, buck and boost of Fig. I.I, not

only shows yet another topological realization of the generalized

switching converter in Fig. l.ll but also demonstrates how powerful

the general equations (4.5) and (4.6) are in arriving at the canonical

circuit model of Fig. 4.2. In addition, this circuit model exhibits

a single zero (first-order) polynemial in complex frequency s for the

duty ratio dependent current generator and a second-order polynomial

for the duty ratio dependent voltage generator, besides its low-

pass effective filter of fourth order (four storage elements L's

and C's). Therefore, general predictions made avai fable by the

deriwtion of the canonical circuit model in this chapter will be

confirmed by the new class of switching converters in Part Ill and a
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new switching converter of Part IV which employs an optimum

topology.

As was demonstrated in Cha;_ter l, the main difficulty in analyzing

a switching-mode regulator (Fig. l.lO) lies in the modelling of its

nor,linear part, the switching-mode converter. However, we have

succeeded in previous chapters in obtaining the small-signal low-

frequency circuit model of any "two-state" switching dc-to-dc

converter, operating in the continuous conduction mode, in the

canonical circuit form. In the next chapter it will be demonstrated

how this converter circuit model can easily be incorporated in the

complete regulator, and the general switching mode regulator circuit

model obtained.
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CIIAPTER 5

SWITCHING MODE REGULATOR MODELLING

This chapter represents the culInination of the modelling

procedures developed in Part I in that it demonstrates the ease with

which the different converter circuit models, and the canonical cir-

cuit model in particluar, can be incorporated into more complicated

systems such as a switching-mode regulator.

First a brief discussion of modelling of modulator stages

(such as, for example, the single-edge clocked pulse width modulator

of Fig. I.I0) in general is presented, which leads to a complete

general switching-mode regulator circuit model.

This then serves as a basis for establishn_nt of analytic

quantitative expressions for the important regulator properties loop

gain T, input and output impedances Z i and Zo, and line transmission

characteristic F of the resulting linear negative feedback circuit

model of a complete regulator. Knowledge of these quantitative

relations and the well-known body of linear feedback theory will not

only permit one to design a regulator according to the performance

requirements (line and load regulation etc) but also, by proper

design of the frequency shaping compensation network, to ensure

stability of operation under all operating conditions.

For the same reason, an in depth discussion of the input

properties, both open-loop and especially closed-loop input impedance,

is included to reveal the source of potential instability when a

switching regulator is a part of a larger system (for example, preceded
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by an input filter or some other linear network or converter). This

comes as a consequence of a unique behavior of a switching regulator,

which at _ow frequencies exhibits a nejative increi_ental input

resistance Ri as will be confirmed both qualitatively and quantita-

tively. It is, perhaps, interesting to mention that none of the

other techniques of modelling switching regulators ([Ill through

[17]) is able to describe such behavior, owing to the lack of an

input model of the converter and/or regulator.

Consider now a switching mode regulator as shown in Fig. 5.1.

unregulafed inpul regulated ovIpu i

L I n in

swi,chlncj mode conver,er

I
T

Iboosf power sfage
L I

du?y rafio D I
I

modulafor

V

i

b
4

I
i
I
I

confrol ,/ J

voltage V__-ampl ifie

reference

Fig. 5. I Switchlng-mode regulator of Fi 9. I. I0 with input and output
fi_.tcrs omcttq.d Ln order to expose .Ul_ prop_ut_e_ o_ the

conv_- reg_a tor alone.

For concreteness and in order to have the convenient illustrative

example throughout derivation, the switching-mode converter is

represented by a boost power stage, but the discussion applies to

any converter.
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5.I Modulator stags_ modelli_ !j_ and cure;fete r_-_jJl,_,:_," c1_,:u!t _,_,del

So far, we have obtained the canonic,t1 clr_:_it _d_: f_:,- t,_,e

switching-mode converter. The next step in d_'veL ,_:,_,t ,._r _.he

regulator equivalent circuit is to obtain _ _,ock:.1 ,_:- the _.:o,'_u!ar.,_r.

This is easily done by writing an expr_ssio_, for _hu e_c-_ti._,i _,,ct'.,_m

of the modulator, which is to convert an (analog) c_z!troi _',_ "_,.,<j__ V
C

to the switch duty ratio D. This expression can be wJittei_ D V /VC m

in which, by definition, Vm is the range of control siynal Yequired to

sweep the duty ratio over its full range from 0 to ]. A small varia.

tion v c superimposed upon Vc therefore produces a corresponding

variation d = Vc/V m in D, which can be generalized to account for a

nonuniform frequency response as

(s)
d- m ^ (5.1)

V Vc
m

in which fm(0) = I. Thus,the control voltage to duty ratio s,la|]-

signal transmission characteristic of the modulator can te _,p_e%ented

in general by the two parameters Vm and fm(S), regardles_ of the

detailed mechanism by which the modulation is achieved. !!_:_.e, by

substitution for d from (5.1) the two generators in the canonical

circuit model of the switching converter can be exl_ess_J i_ i.erms
A

of the ac control voltage v c, and the resulting model i', then a

linear ac equivalent circuit that represents t_e small-signal transfer

properties of the nonlinear processes in the modulator a_,d converter.

11; remains, simply to add a linear amplifier to obtain the

equivalent circuit of the closed-loop regulator as sho_ it, Fig. 5.2.
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eclSl - E f, ts)f_(sl IV,.

jc(s) -j f_is)f.ls) I V,_

I.

Y+_

V+v

reference

Fig. 5.2 Gcn_al ac small-signal equiualent circuit for the
6wi_ching-mode regulator of Fig. 5. I.

The modulator transfer function has been incorporated in the

generator designations ec(S), Jc(S), and the generator symbol has

been changed from a circle to a square to emphasize the fact that, in

the closed-loop regulator_ the generators no longer are independent

but are dependent on another signal in the same system. The connection

from point Y to the error amplifier, via the reference voltage summing

node, represents the basic voltage feedback necessary to establish

the system as a voltage regulator. The dashed connection from point Z

indicates a possible additional feedback sensing; this second feedback

signal may be derived, for example, from the inductor flux, inductor

current, or capacitor current, as in various "two-loop" configurations

that are in use [9].
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The current generator Jc(S)Vc in Fig. 5.2 may seem superfluous

because it is shorted by the zero source impedance. However, its

presence is necessary not only to reflect the influence of an input

filter or nonzero source impedance, as was previously illustrated (see

Fig. 4.5 for example) but, more importantly, properly to reprpsent

the switching regulator itself, namely its negative input impedance

at low frequencies, as the _:nalysis in Sections 5.2 and 5.3 will

con firm.

5.2 Ana.lysis of switching-mode regulator

A number of quantities of interest are shown explicitly in the

regulator model of Fig. 5.2. The averaging filter is defined to have

a voltage transfer function He(S ) in the presence of the external

load R; this represents the basic low-pass filter characteristic.

Also, the effective filter has an input impedance Zei and output

impedance Zeo at the ports indicated; these are defined for the o_pen___-

loop condition of the regulator, and hence are properties of the

effective low-pass filter and load resistance only, and are dnaffected

by any other regulator parameter. Explicitly, Zei is the impedance

of Re and Le in series with C and R in parallel, and Zeo is the

impedance of C in parallel with Re and Le. The subscript e is employed

in He , Zei, Zeo because these are all properties of the averaging

filter in terms of the "effective" inductance Le and resistance R .

The remaining quantities identified in Fig. 5.2 represent

properties of principal interest in the design and analysis of the

regulator. The loop gain T is a fundamental parameter upon which

important properties of the regulator depend; it must be designed to
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have adc value sufficient to provide the required dc regulation

specification, a_id it must be frequency shaped to ensure stability.

The closed-loop regulator output impedance Zo is an important system

specification that determines the transient respons_ and _oad regula-

A

tion, and the line transmission characteristic F V/Vg (sometimes

also called eudiosusceptibility characteristic) specifies the ability

of the closed-loop regulator to prevent line voltaoe variations from

appearing in the regulated output. Finally, the closed-loop regu]ator

input impedance Zi is important when the regulator is preceded by an

input filter or some other network. Both the dc value and frequency

response of each of the terminal parameters Zo, F and Zi are important,

and are strongly influenced by the dc value and frequency response of

the loop gain T.

Analysis of the equivalent circuit in Fig. 5.2 leads to the

fol]owing results:

T = E fl(S)fm(S)He(S)A(s ) = GvdA(s)fm(s)/V m (5.2)
Vm

Z

eo
Zo-l+ T

l He Gvg (5.4)
F _ I+T-- I+T

1 = T l + 1 1 (5.5)

Zi l + T _2Rfl(s) I + T u2Zei

The first three expressions are a direct consequence of the

general resu]ts of linear feedback theery. Namely, the expression

for loop gain T is obtained simply from Fig. 5.2 as the product of

the voltage Benerator ec(S)=_m fl(S)fm(S), effective filter transfer
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function He(S), and amplifier gain A(s), while t e current gener,_Jtor

Jc(S) does not enter into the result since it is effectively

shorted.

The expression for Zo shows thdt the closed-loop output

impedance is equal to the open-loop output impedance Zeo diviJe,i by

the feedback factor I _"T, and likewise, the expression For F shows

that the closed-loop line transmission function is equal to the

corresponding open-loop function He/_ divided by 1 + T, both of which

results are in accordance with the elenw_ntary properties of feedback°

The general m_)del in Fig. 5.2 and expressions (5.2) through

(5..5) constitute the basic representation of the switching-mode

regulator operat'ng in the continuous conduction mode and can be

successfully used for both analytical or computer aided design of

switching regulators.

Let us now discuss input properties represented by (5.5) in

more detai Is.

5.3 Input properties of switching regulators

The closed-loop input admittance IIZ i consists of two

components as seen from (5.5). At dc and low frequencies where the

loop gain T is large, the first component dominates and Zi _ -_2Rfl_$),

hence it is a negative impedance. However, above loop gain crossover

where the loop gain T falls substantially below unity, the second

dominates and Zi _ _2Zei. Ho_.ver, from Fig. 5.2 this is thecomponent

santo as the open-loop input impedance, the result which should be

expected when the loop gain is negligibly small. The complete
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expression (5.5) shows then how the input impedance changes from

negative at low frequencies to positive at high frequencies as the

loop gain falls below unity.

The result that the input impedance at low frequencies is

negative may seem at first surprising. Nevertheless it is inherent

in switching regulators, as the following simplified analysis will

demonstrate.

At low frequencies where the loop gain T is high, the feedback

action maintains constant output voltage, and hence constant output

power by varying duty ratio D (consequently gain p(D)), even if

the input voltage Vg varies. It follows that if Vg increases, Ig

must decrease since the input power also remains constant (under

simplifying lO0_; efficiency assumption), r _. _I,,_onse_uen _,j, the regulator

exhibits a negative increment,l input resistance Ri given by

dV d P P V 2 V
Ri = ___9_= = .... _= - p - p2R (5.6)

dlg Ig Ig2 Ig Idlg

This is the low frequency value of the regulator input impedance Zi

given in (5.5). For example, for the boost converter example of Fig.

5.1 the closed-loop incremental resistarce becomes:

while the open-loop low frequency input resistance Rin is:

Rin = R

(s.7)

(s.8)

89



It will be interesting later, in Part II, to ;,)Jnparethese

particular results (5.7) and (5.8) as well as the above general result

(5.5) wiLh correspoi_ding expressions for the switchir_g-_:_od(;regulator

operating in the discontinuous conduction n_de.

Another interesting interpretation of the negative input

impedance at low frequency will perhaps even more illuminate

the need for the presence .,f _hp current generator in the model of

A

Fig. 5.2. When the regulator is driven by an ac voltage Vg, the high

loop gain at low frequencies will force the ac voltage v at Lhe output

to be vanishingly sma|l by appropriate adjustment of the ac duty ratio

d; since v is the output of the filter, the voltage at the filter

input and also the voltage across the current generator, is therefore

vanishing]y small; hencethe impedance Zi seen by the driving source

_g is simply the ratio of the voltage and current generators

ec(S) fl(s)

zi: - = - (5.9)

which is the same at low frequencies as expression (5.6) since

f1(0 ) e f2(O ) - 1.

AS a conclusion, th_ regulator negative input resis_.ance Ri

in combination with the input filter can under certain conditions

constitute a negative resistance oscillator, and is the origin of the

system potential instability. The problem of how pro'_ly to design

the input filter and to avoid performance degradation and/or stability

problems is treated and solved in detail in [7]. It has been

discussed here merely to demonstrate the completeness of the canonical

circuit model developed in previous chapters.
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PART I I

DISCONTINUOUS CONIIX:TIONMDDE
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CHAPTER 6

REVIEW OF THE NEW STATE-SPACE MODELLING TECHNIQUE

IN THE DISCONTINUOUS CONDUCFION MODE

The development in Part II to a large extent resembles the

same procedural order of exposition followed in Part I. This is

justified for two very good reasons. First, since the procedure for

modelling in discontinuous conduction mode is viewed as a special

case of that applied in Part I for continuous conduction mode

(provided the state-space averaging step of Part I is properly

generalized to include three or more structural changes within each

switching period as shown in Appendix D), the additional requirements

imposed here will be immediately recognized and easy to follow in the

exposition consistent with that of Part I. Second, this parallelism

facilitates a direct comparison between the two modelling procedures

at a nun_)er of points. While, for example, the steps conm_on to both

_thods will be immediately accepted and understood on the basis of

the previous in-depth explanation in Part I, those that are different

will be clearly distinguished and their significance vividly

displayed. This emphasizes the fact that Part II is essentially a

consistent extension of the technique in Part I specially designed

to model the discontinuous conduction mode of operation of switching

dc-to-dc converters.

In analogy to Chapter 2 of Part I, this chapter has also

a twofold purpose: to provide an extensive overview of the complete

structure of the modelling of switching converters and regulators in
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the discontinuous conduction mode and yet to serve post facto, after

detailed exposition in later chapters, as a quick reference and

reminder. In that sense, similarly to the Flowchart of Fig. 2.1 for

the continuous conduction mode, the Flowchart of Fig. 6.1 summarizes

all the essential information for modelling in the discontinuous

conduction mode. Again, owing to the overview feature of this

chapter, it will be relatively shorter than, for example, Chapters

7 and 8 where the various paths of the modelling technique are

discussed at length and illustrated on several examples correspond-

ing to those presented in Part I.

6.1 Brief review of existin_ model.ling techniques

Owing to the relatively more complicated nature of the con-

verter operation in the discontinuous conduction mode, dynamic (ac

small signal)models have been lacking (even though valid models for

continuous conduction mode have already been obtained) until recently

several approaches ([Ill-[17]) have been proposed. However, while

all these techniques ([II]-[17]) provide through various lineariza-

tion procedures the proper linearized transfer functions (duty

A A A

ratio modulation d to output voltage v and line voltage Vg to
A

output voltage v transfer functions), they are incapable of

representing the input propertiesof the converter, and hence fail to

arrive at the complete linearized converter model, This is an

entirely analogous situation to that of Part I, where these methods

could not model the input properties (open-and closed-loop input

impedance, for example) of the converters and regulators in
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continuous conduction mode of operation, as was suggested in the

previous chapter. In addition, they stay throughout modelling

in the domain of e__Ruation manipulations only, and thus the useful

insight which can be gained from linear circuit models (as demonstrated

in Part I) is lost. Hence the primary objective of the development

in Part II is to overcome all these difficulties by extending the

powerful state-space averaging technique of Part I, together with

its circuit model realizations, to the discontinuous conduction mode

of converter operation and finally to arrive at the complete linear

circuit model of various converters (like, for example, those of

Fig. 1.1).

6.2 New state-space and circuit avera_in 9 methods for switching

converters in the discontinuous conduction mode

The state-space and circuit averaging methods presented in

Part I are now to be suitably modified to account for the dis-

continuous conduction mode of operation, and the results are

summarized in the Flowchart of Fig. 6.1. As before for the contin-

uous conduction mode (Flowchart of Fig. 2.1), the starting model for

the switching converter (block l in the Flowchart of Fig. 6.1)

is either in terms of the state-space description of the switched

networks (as in block la), or in terms of linear circuit models

of the switched networks (as in block lb).

The difference, however, from the previous description

(compare with the Flowchart of Fig. 2.1) is not only that now there

are three different structural configurations within each switching
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period, but also in the fact that instantaneous inductor current

is restricted in its behavior: it starts at zero at the beginning of

a switching period and falls to zero current again even before the

switching period has expired (see the instantaneous inductor current

waveform in block l of Fig. 6.1).

It is actually this second difference which clearly dis-

tinguishes the discontinuous conduction mode of operation (as also

demonstrated in Chapter l for the buck-boost converter), while the

first difference, that of having three different structural configura-

tions, appears in a way to be merely incidental. That is, in

Appendix D it is shown that the state-space averaging step of Part I

can be directly extended to include "three-sLate" converters

(converters with three structural changes within each switching

period), provided such converters are operated in the continuous

conduction mode, and any restrictions on state-space variables

(inductor currents and capacitor voltages) are avoided. Therefore,

our objective in modelling converters operating in the discontinuous

conduction mode (and exhibiting "three state" configuration behavior)

becomes that of supplementing this generalized state-space averaging

step for "three state" converters by additional constraints which

reflect the special behavior of one of the state variables, the

inductor current. Hence the switching-mode converter operating in

the discontinuous conduction mode (and having three structural

cilanges) may be viewed as a special case of the ordinary "three-

state" converters which are free from any Festrictions on state-
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variables. ThJs the primary goal of this chapter (and for the whol_

of Part II) is properly to determine these additional constraints

and to find how they propagate through various paths of the model-

]ing (such as paths a and b on the Flowchart of Fig. 6.]).

From the Flowchart of Fig. 6.1 it is inmediately clear that

path a follows a development strictly in terms of state-space

equations, the state-space averacjed modelling technique,while the

other path b proceeds in terms of circuit models, circuit averaged

modelling. Moreover, as before for the continuous conduction mode,

along path_ the general equations (through general _trices A|,

A2, A3 and vectors bl, b2 and b3) are retained to emphasize the

fact that the outlined procedure is applicable to any "three-state"

converter operating in the discontinuous conduction mode, while along

path b a particular example of the boost converter is followed,

owing to the requirement for the specific converter topology along

that path. Specifically, for the boost power stage,A l = A3 # A2

are 2 x 2 matrices, and bI = b2 # O, b3 = 0 are vectors. This

example will be later pursued in detail along both paths.

We now follow path a more closely. The crucial step is made
N

in going from block la to 2a in that the original description through

three state-space equations (block la) is substituted by a single

state-space averaged model (block 2a). This is justified as follows.

In Chapter l it was demonstrated that the fundamental performance

requirement of switching converters (negligible switching ripple)

results in natural frequencies _ and fc much lower than the

switching frequency fs" This, in turn, leads in Appendices A

through D to the generalized state-space averaging step. So far
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this would be the same averaging step as appl_ed to any ordinary

"three state" switching converter. However, as indicated before,

the inductor current i does not behave as a true state-space variable

in the discontinuous conduction mode since it does not have free

boundary conditions (but fixed at zero) which is shown to lead to

the following constraint:

di __0 (6.1)
dt

This immediately reduces by one the order of the basic state-space

averaged model (block 2a), since one of the dynamic equations (that

for inductor current) reduces to a static equation. In addition to

this, an expression desc_-ibing the average inductor current i can

be found directly from the converter itself (block l) and becomes

the second constraint, termed perturbation equation I, which is

i = i(Vg,V,d,L,Ts)

Thus, the two _dditional constraints (6.1) and (6.2) ,

(6.2)

together with the generalized state-space averaging step, completely

determine the converter model in the discontinuous conduction mode.

It remains only to apply the standard perturbation techniques (block

3a) and (on the basis of the small-signal assumption) the

linearization techniques to both state-space averaged equations and

the perturbation equation of block 2a in order to arrive at the final

state-space averaged model (block 4a). This model gives separately

both dc and ac small-signal descriptions through general matrices

Al, A2, A3 and vectors bl, b2, b3 of the starting switched models

(block la) and constraints corresponding to those of (6.1) and (6.2).
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t_aturally, as was done before for the continuous conduction

mode (compare Flowchart of Fig. 2._ for exanlple), we can now proceed

from the basic state-space averaged model (block 2a) via hybrid

modelling and circuit recognition (block 2c) to arrive at the very

useful circuit realizatior_ Lbiock 2b). Note, however, that now the

constraint (6.]) effectively leads to shorting the inductance L

in the circuit model since vL = L di/dt = 0. This, for the particular

boost circuit example, reduces the circuit to first order. The

other constraint (6.2) is also easily specified (see additional

constraint in block 2b) with the help of the inductor current wave-

form (block I). The same circuit model (block 2b) coula, however,

be obtained directly from the switched circuit models (block Ib),

by following the circuit averaging path, provided the circuit

averaging step for "three-state" converters is supplemented by the

3forementioned equivalents of the constraints (6.1) and (6.2).

Again, the remaining circuit perturbation (block 3b) and circuit

Iinearization steps are straightforward and result in the final

circuit averaged n_dels (block 4b) separately for dc and ac small-

signal. As seen from block 4b, the dc part of the perturbation

equation, current I, together with the dc circuit model, completely

determines the dc conditions, while its ac part i contributes

to the final ac circuit averaged model.

Finally, both models (block 4a or 4b) can be used to deter-

mine the transfer functions of interest: line voltage variation

A A

v and duty ratio modulation d to output voltage v (blocks 6a
g

and 6b respectively).

g_
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6,3 New canonical circuit model for discontinuous conduction mode

• c 1_:n_tion ofAS for the continuous conduction mode the _u_,,,/

the modelling is again a canonical circuit model (block 5 of Fig.

6.1), whose fixed topology (though different from the one for

continuous conduction mode) has all the features necessary to

present a complete circuit model. However, this fixed topology of

the model for discontinuous conduction mode came merely as a by-

product, since for the three converters of Fig, l.l (buck, boost_and

buck-boost) the ac small-signal models all resulted in the fixed

topological structure of the model in block 4b of Fig. 6.1 without

any need for equivalent circuit or other transformations. It does

not appear that this canonical circuit topology could be directly

extended to some arbitrary converter. Even though this canonical

circuit model is not so general as that for two-state converters

(Part I), a useful comparison between the two canonical circuit

topologies can be made (at least for the common converters of Fig.

l.l in both operating modes).

While in the continuous conduction mode the effect of duty

A

ratio modulation d was represented by voltage and current duty

ratio mpendent generators at the input port (hence properly

representing negative closed-loop input impedance at low frequencies

as shown in Chapter 5), here in discontinuous conduction mode there

are two duty ratio dependent current generators, one in the input

circuit (again,properly to model converter input properties as

shown later in Chapter g) p and the other in the output circuit to

generate the duty ratio d to oulput transfer function.
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The salient feature of the canonical circuit model in block 5

of the Flowchart in Fig. 6.1 is that both transfer fUFICt_ons are

obtained using only the output port of the complete canorlical circuit

model, unlike the situation for continuous conduction mode (Part I),

where the complete circuit model was necessary to dete_-mine them.

This is also why other methods which properly represent the transfer

functions in discontinuous conduction mode ([]l]-[17]) have completely

omitted modelling of the converter input properties.

6.4 Extension to complete regulator treatment

It has already been shown in Part I how the linear model of

the modulator stage can be obtained. It remains simply to incor-

porate the canonical circuit model (block 5 in the Flowchart of

Fig. 6.'I) to arrive at the linear circuit model of a closed-loop

switching regulator operating in the discontinuous conduction mode.

A word of caution, however, is appropriate here. Namely,

since the very nature of the operation in the discontinuous conduc-

tion mnde is that the order of the system is reduced at least by

one, this would definitely change the dynamics and possible

compensation networks nezessary for stable operation of the closed-

loop regulator. Furthermore, if both conduction modes are expected

to take place for the particular application, the compensation

network should be designed to ensure stability of the closed-loop

and acceptable transient performance for either of the two modes.

Hence canonical circuit models for both continuous and discontinuous

conduction mode become an invaluable tool in the proper design of
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switching regulators. In addition, the comparison of the advantages

and/or disadvantages between the two modes of operation become

feasible and possible trade-offs between regulator performance and

choice of parameters and operating conditions is clearly displayed.

In summary, the method presented in this chapter is generally

applicable to _ "three state" converter operating in the discon-

tinuous conduction mode (block 4a), even though for an arbitrary

converter the final circuit model (block 4b) may have different

(more complicated) topology than the canonical circuit model for

the three common converters (block 5). We also emphasize the fact

that the methods for finding dc and ac small-signal models are

consistent with each other. Namely, for both models we need only the

standard state-space or circuit averaging step (depending on

whether path a or_b is chosen) applicable to any converter with three

switched network configurations. Then to distinguish that the

converter is operating in the discontinuous conduction mode, addi-

tional restrictions (6.1) and (6.2) are imposed. Now, the dc

part of perturbation equation (6.2) together with the dc state-space

or circuit averaged model completely determines the final dc model,

while the ac part i of (6.2) helps in complete definition of the final

ac small-signal state-space or circuit averaged model.

It may seem that the method outlined in this chapter holds

only for the "three-state" con, rters in discontinuous conduction

mode. This is not so, since it can be easily generalized to include

more complicated schemes of discontinuous conduction mode of opera-

tion. As an illustration of this generality, consider the new class
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of switching conveTters of Part III, the cascade connection of

ordinary buck ahd boost converters, which could also be classified

as two-inductor converters (as opposed, for example, to the

converters of Fig. l.l which _re one-inductor converters). Suppose

also that the two switches are driven synchronously with the same

switch duty ratio D, thus resulting in a two-state converter for

continuous conduction operation. If, however, one of the two

inductor currents becomes discontinuous, a three-state converter

operating in the discontinuous conduction mode is obtained. But

new the matrices Al, A2, A3 and A would be of 4-th order (as

opposed to 2-rid order for the converters of Fig. 1.1) and the final

state-space or circuit averaged model would be of the 3-rd order

(reduction of order by one due to discontinuity of one of the two

inductor currents). Moreover, there is also the possibility that

both inductor currents could become discontinuous under certain

operating conditions in which case four-state converters are generated.

Th__refore, the generalized state-space averaging step (Appendix D)

applicable to four-state converters is supplemented with additional

constraints: for each discontinuous current there will be two

constraints imposed analogous to (6.1) and (6.2). The immediate

consequence of these constraints is that the fourth order original

converter model becomes only a second-order final state-space or

circuit averaged model (with two inductances effectively disappearing

from the final circuit averaged rood(1).

Despite this demonstration of the generality of the method,

we will restrict ourselves in the remaining chapters uf Part II tu

the "three-state" converters in the discontinuous conduction mode

103



since all the essential features of the method are present there.

Likewise, in Part Ill and also Part IV we will ccnsider the cascade

connection of converters only in the two-state continuous conduction

mode, since the emphasis of these two parts is on the intelligent

choice of converter topologies rather than on the particular mode of

their operation.
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CItAPTER 7

STATE-SPACE AVERAGING, HYBRID MODELLING AND

CIRCUIT AVERAGI_|G IN DISCONTINUOUS CONDUCTION MODE

In this chapter various paths on the Flowchart of Fig. 6.]

are followed in detail, first with general derivation and then

illustrated by examples corresponding to those of Chapter 3. The

detailed exposition will follow that of Chatper 3 as much as possible

in order to make direct comparison easier and also to emphasize the

significant differences. But, in order to obtain clear insight into

the first-order effects, and to avoid cu_J)ersome algebraic expres-

sions, this time throughout the presentation it is assumed that the

output quantity (voltage) coincides with one of the state variables,

the capacitor voltage (esr of the capacitance neglected). The same

assumption was also used throughout the Flowchart oF Fig. 6.I.

Hmvever, if desired, this effect can be incorporated along lines

similar to those already presented in Part I.

7.I State-space averaging

In this section, the final state-space averaged model (block

4a of Fig. 6.1) is derived, first in general for any three-state

switching converter in discontinuous conduction mode, and then

demonstrated on the idealized boost circuit example (parasitic

effects not included). Steady state (dc) conditions are obtained

for this particular example and discussed in depth_including

determination of the boundary be_.seen the two modes of converter

operation. From the dynamic (ac small-signal) model, the two trans-

fer functions of interest (v(s)/Vg(S) and v(s)/d(s)) are also
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determined to enable comparison with the corresponding transfer

functions derived from the final circuit averaged model for the

boost converter presented in Section 7.3.

Basic _ta_e-space aue,e.afled modeZ

We _irst define the time-domain description of an arbitrary

three-state switching converter operating in the discontinuous

conduction mode with the help of Fig. 7.1, which displays the switch

drive (Fig. 7.1a) and instantaneous inductor current (Fig. 7.]b)

which becomes discontinuous. The definition of the three

intervals Tsd l, Tsd 2, and Tsd 3 (or corresponding steady-state

quantities TsD l, TsD2,and TsD 3) is also clearly visible on Fig. 7.1.

a)

b)

dltl

L' dk _k dtTs _, d_Ts F

t_ t 2 Ts t

_}/L slope

imax I //[',,

i.r.! ._z ! "__ ._-- T.

_L .) L._ Ts - t
DTs D2Ts

Fig. 7.1 Definition of t_e_ t_c intervals and perturbation

quo_vtie_: a) _/s_or switch dr/ue ;b)instantaneous
indu,e_or cuatrent.

106



,, D
As seen from Fig. 7.1, the "on interval Tsd I z Tsd _ Ts

coincides with the previous "on" interval TN in Fig. 1.2, while the

. ' D' of Fig. 7.1a is now
"off" interval TF of Fig. l 2 or Tsd = Ts

subdivided into two intervals Tsd 2 and Tsd 3 (or TsD 2 and TsD3).

While the first "on" interval TsD is dictated by the switch drive

and is a known quantity (at least in open-loop converter usage),

the second interval Tsd 2 (or TsD 2) is as yet unknown and depends in

general on both the length of the first interval and some circuit

parameters, and describes how deep in the discontinuous conduction

mode the converter is operating (see, for example, the simplified

analysis of the buck-boost converter in discontinuous conduction mode

as shown in Chapter I). Nevertheless we assume that the interval

TsD 2 exists (hence discontinuous conduction follows) and leave it to

the modelling procedure itself to reveal how it is actually

detemined.

For each of the three intervals in Fig. 7.1, there exists

in general a different switched network (compare with Fig. 1.7

for the buck-boost converter example), which can be described by a

corresponding state-space equation as follows:

x = A1x + blVg

x = A2x + b2Vg

x = A3x + b3Vg

for interval diT s,

for interval d2T s,

for interval d3T s,

(0 -<t-<tl)

(tI < t -<tz)

(t2 < t < Ts)

(7.1)

While the similar expression (3.1) for continuous conduction

mode was sufficient to describe the converter, here in discontinuous
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conduction mode, (7.]) does not describe the switching converter

completely. Namely, the instantaneous inductor current is restricted

in its evolution since from Fig. 7.1:

i(O) = i[(d]+d2)Ts] : 0 and i(t) _ 0 for t _[t2,T s] (7.2)

Therefore (7.1) together with (7.2) comp]etely determine the

behavior o: the switching converter. However, directly from this

description, even the determination of the steady-state (dc)

conditions on an exact basis might be a very difficult (if not

insurmountable) task, as was demonstrated for the simpler continuous

conduction mode description (3.1) in Appendix C. Moreover, the

tremendous complexity of the result may be unnecessary (compare

(C.4), (C.5), (C.7) and (C.8) with the much simpler result (C.I0)).

In addition, the direct perturbation of (7.1) and (7.2) to obtain

the dynamic response of the converter would become by an order of

magnitude more difficult if not virtually impossible. Our objective

then becomes, as it was in Part I for the continuous conduction mode,

to replace the original converter description through three state-

space equations (7.1) by a single state-space description which will

very accurately represent the evolution of the state-vector at the

switching instants. It is also desirable that the additional

constraint (7.2) is appropriately accounted for to modify this

averaging equivalent, but in such a way as to interfere the least

possible with its orderly procedure.
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The first task is accomplished by application of the

generalized state-space averaging step for three-state converters

(Appendix D) to (7.1), which results in a single state-space

description

x = (dlAl+d2A2+d3A3)x + (dlbl+d2b2÷d3b3)Vg (7.3)

Note, however, that this continuous description ((7.3) and previously

(3.3) for two-state converters) is a continuous equivalent to the

originally derived approximate discrete system (see (B.8) in Appendix

B). Hence the definition of derivative (B.9) from Appendix B

transforms the constraint (7.2) into

i(T s) - i(O)
di (nTs) = = 0 (7.4)
dt Ts

It follows that the inductor current in the equivalent

continuous system (7.3) ceases to be a true state-space variable,

since according to (7.4) it has lost its dynamic properties.

Nevertheless, despite the zero constraints i(nTs) = 0 and

di/dt(nT s) = 0 for n = O,l,..., a line voltage perturbation Vg

(as seen in Fig. 7.1b) does cause a perturbation of the instantaneou_

inductor current (shown in dotted lines on Fig. 7.1b) from its

steady-state waveform (heavy line in Fig. 7.1b), which in turn

results in a correspbnding perturbation v of the output steady-state

voltage. Note that there is also perturbation of the average

inductor current i (defined in Fig. 7.1b for interval (dl+d2)T s

when instantaneous inductor current i(t) is different from zero)
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from its steady-state average current I. This is in sharp contrast

to the situation in the continuous conduction mode where the average

inductor current does not change under any small-signal perturbation,

but rather initial and final conditions i(O) and i(T s) change

accordingly to accommodate perturbation. Here, i(O) and i(T s) are

fixed at zero, and the average inductor current is the quantity

which reflects the effect of introduced perturbation.

Since the objective in modelling the dynamic performance

of the converter is faithfully to represent departure from the

steady-state, we introduce the average inductor current as a sub-

stitute for the "lost" state-variable (the instantaneous inductor

current). But, rather than change the symbol, we assign to the

same designation i this new meaning. Then from Fig. 7.1b we obtain

1max
i = _= i(Vg,V,d,L,T s) (7.5)

and designate it perturbation equation I, for reasons which will

become apparent later. Naturally, the other constraint (7.4) for

this average inductor current i is maintained (as seer also from

Fig. 7.lb) and we finally obtain the basic state-space averaged model

for discontinuous conduction mode:

x = (dIAl+d2A2+d3A3)x + (dlbl+d2b2+d3b3)Vg
(7.6)

with additional constraints

di o
dt

i = i(Vg,V,d 1,L,T s)

(;_.7)

(7.8)
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The two additional constraints (7.7) and (7.8) modify the ordinary

averaged model (7.6) to account for the discontinuity of the inductor

current. This model (block 2a in the Flowchart of Fig. 6.l) is

the starting point for all other derivations (both state space and

circuit oriented) and represents an averaged model over a single

period Ts .

Note,also from (7.5) that the calculation of the average inductor

current i is actually based on the assumption of the linearity of the

inductor current waveform (triangular waveshape in Fig. 7.1). However,

this does not pose any limitations at all, since the linearity of the

inductor waveform is again a consequence of the small switching ripple

requirement and therefore consistent with the same basic assumption made

in the continuous conduction mode.

We now consider first the simplest possible case, determina-

tion of the basic dc conditions in the steady state regime. In the

steady state all quantities become dc quantities and are denoted by

capital letters, that is, dI = Dl = D, d2 = D2, d3 = D3, Vg = Vg,

x = X. The average inductor current i becomes the steady state

average inductor current I (see Fig. 7.1b, for example) and the

steady-state vector X = (I V ...). Since then dX/dt z O, the state-

space equation (7.6) reduces to the linear algebraic system

AX + bVg = 0 (7.9)

where

A = DIAl + D2A 2 + D3A 3
(7.10)

b = Dlb I + D2b2 + D3b 3
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while the first constraint (7.7) is automatically satisfied and the

second constraint becomes

I = i(Vg,V,DI,L,T s) (7.11)

It is now interesting to compare these results for dc

conditions ((7.9) and (7.11)) with those of Part I (3.9). For

easier correlation of these results, the notation dI = d and Dl = D

henceforth will be used interchangeably. The steady state vector

X is the solution of the linear system (7.9) as it was before in

(3.9). Hence storage elements (L's and C's) are proportionality

constants in the linear system (7.9) and it appears as though solution

X of (7.9) is independent of them and dependent on dc duty ratios

and resistances in the original model. However, since

DI + D2 + D3 - I or D3 = I - (D+DZ) from (7.9) and (7.10) it

follows that steady state vector X is now dependent on two duty

ratios D (given) and D2 (as yet undetermined) as opposed to only D

in (3.9). The additional constraint (7.11) which expresses the

average steady state inductor current I in terms of circuit parameter

values can now be used together with (7.9) to solve for the

unknown duty ratio D2, and hence to determine the length of the

second interval D2T s. In general, then, D2 is dependent on circuit

parameters (such as L and T s, for example) and hence dc conditions

are also substantially dependent on switching frequency fs and

inductance L (compare with (1.4) and (1.5)). This is in sharp

contrast to the continuous conduction mode (see Fig. C.2), where dc

conditions were dependent on duty ratio D and resistances only.

i i '" '' "" ..... " .......... I III I II-_ _i| - - il ..................
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In sunlnary, expressions (7.9) and (7.11) com_np_)e_tee]j_deter-

mine the dc conditions in the discontinuous conduction mode, and

at the same time help to determine the length of the second interval

D2T s, which was unknown at the beginning of this analysis.

We now undertake to _btain the dynamic model for the line

A

voltage variation Vg only, in order to compare it with the

corresponding result (3.8) in Part I and to emphasize the significant

differences. From Fig. 7.1b it becomes obvious that the super-

imposed variation Vg causes the perturbation of the instantaneous

inductor current (dotted lines) and hence modulation of the second

interval d2T s and the third interval d3T s as well. Therefore only

the switch drive duty ratio d is constant (d = D) as it was also

in Part I, while the other two duty ratios are modulated. After the

perturbation equations

d = D, d2 = D2+ 2" = D3- "

A A A

Vg = Vg+Vg, x = X+x and i = I+i

(7.12)

are introduced, the basic state-space averaged model given by (7.6),

(7.7) and (7.8) beconw)s

A

x = [DAI+(D2+d2)A 2+ (D3-_2)A3](X+R) + [Db1+(D2+_2)b 2+ (D3_a2)b3](Vg+Gg)

(7.13)

with additional constraints

d{
_IT=0

A

I + i"= i(Vg+Vg, V+v, D, L, Ts) (7.1s)
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Note that the perturbations (7.12) are now applied not only to the

state-space equations (7.6) but to the constraints (7.7) and (7.8)

as well. Upon the Lisual small-signal assumption, the second-order

terms are neglected and linear state-space equations with

linearized constraints (7.15) are obtained. The separation

of the dc and ac models then results in the steady-state dc model

as given before by (7.9) and (7.11) and the dynamic (ac

A

small-signal) model for line variations Vg only, given by

x = Ax + bVg + d2[(A2"A3)X + (b2-b3)Yg]

subject to constraints

di
=0

where A and b are as given before in (7.10).

From (7.18) it also becomes obvious why (7.5) was originally

IP
called perturbation equation I_. In addition, since

= [di/dt dr/dr ...IT the introduction of constraint (7.17) into

(7.16) reduces the first dynamic equation to a static one, from which

the unknown modulation can be determined in terms of Vg and

modulations and circuit parameters.

The dynamic state-space equation which, because of (7.17),

became a static one, can now he'designated perturbation equation II_,

since it helps to determine the other unknown perturbation quantity

d2" Together with (7.18) this uniquely defines the line transfer

(7.16)

(7.17)

(7.18)
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function, v(s)/v_(s). However, owing to the presence of constraints

(7.17) and (7.18) we cannot give the closed-form expression for this

transfer function as we could in (3.10) for continuous conduction

mode.

We turn next to the most general case and allow both

modulations (line voltage variation Vg and duty ratio modulation d)

to occur concurrently.

Pey_u_o.tXo n

tie now suppose that the switch drive duty ratio d changes

from cycle to cycle, in addition to the line voltage variation.

Hence, the general perturbation equations

d = D+d, d2 = D2+ 2' = 3'

x ^x = X+ , and i = l+i
Vg = Vg+Vg,

(7.19)

introduced into the basic-state space averaged model given by (7.6),

C7.7) and (7.8) result in

#_ A A A

x = [(D+d)A 1 + (D2+d2)A 2 + (O3-d-d2)A3](X+x) +

+ [(D+d)b I * (O2+d)b 2 + (D3-d-d2)b3](Vg+Vg)

(7.2o)

with additional constraints

A

di
d-t = 0 (7.21)

I + i = i(Vg+ g, V+v, D+d, L, Ts)
(7.22)

115



From d ÷ d2 + d3 ---I, raven perturbed by (7.1g), we got
A A A

D + d + D2 + d2 + D3 + d3 - l or, since also D + D2 + D3 ---1, we

finally arrive at

d3: -(d+d2) (7.23)

which was then used in (7.20).

The perturbed model given by (7.20), (7.21) and (7.22)

is nonlinear owing to the presence of at least second-order terms.

LLnec,d.zctY,.onand _no_,_Xe-_po.ee av¢,,uzgedmode_ _o_

d_eontbt_ _onc_c_t_on_de

We now make the small-signal approximation, namely that the

departures from the steady-state values are small compared to the

steady-state values themselves:

Vg << l, _ << l, D2 << l, X << 1

Using approximations (7.24) we neglect all second (or

hi]her) order terms, and obtain once again a linear system but

including duty-ratio modulation d. After separatlng the steady-state

(dc) and dynamic (ac) parts of both state-space equations (7,20) and

constraints (7.21) and (7.22) we arrive at the following results for

the final state-space averaged model.

(7.24)
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Steady state (dc) model:

X = -A-IbVg

subject to constraint

I = i(Vg,V,D,L,T s)

(7.25)

(7.26)



Dynamic (ac small-signal) model:

x = Ax+bvg+d[ (AI-A3)X+ (bI-b3)Vg]+d2[ (A2-A3)X+ (b2-b3)Vg]

subject to constraints

di
d--t= 0

^ @i
I -

_Vg

- -- v + _i ^ @i ^
g _v+_d

(7.27)

(7.28)

(7.29)

where A and b are as given before by (7.10). Note how duty ratio

modulation d is now included in constraint (7.29).

We conclude this section with illustration of these general

results on the boost converter. Both dc and ac small-signal models

are then analyzed in detail and some unique insights into the

operation of the boost converter in the discontinuous conduction

mode are obtaiL_ed. Dc conditions and the determination of the

boundary of the two modes of operation are particularly thoroughly

analyzed.
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Example: idcal boost power _tage in 4_continuo_s conduction

mode

For the ideal boost power stage of Fig. 1.1 (or Fig. 3.1

with R£ = O, Rc = O) the three switched networks in the discontinuous

conduction mode of operation are shown in Fig. 7.2.

4) interval d'_: b) interval c_Ts: c) interval d3T s "

L v L v L v

T T? I TT
Fig. 7.2 Three awitched ne_or_ of the ideal boost converter o_

Fig. I. I operating in the ciL_co_t,,Ln_ou_conduction rnocI¢.

For the choice of state-space vector x = (i v)T, the state-

space equations of the three linear switched networks in Fig. 7.2

become:

e

x = AlX + blVg

x = A2x + b2Vg

x = A3x + b3Vg

for interval dTs

for interval d2T 2

for interval d3T s

(7.30)
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where

0 -L-

A1 : A2 =
1 ,

- _ - RC---]

A3= O

L° (7.31)

o] [oo]'
In addition to this, perturbation equation I (7.5) is needed. How-

ever, it can easily be found from Fig. 7.2a as

tmax __q.dT s i(vg,d,L,Ts) (7.321i = _ - 2L =

The same result could have been concluded also from Fig. 7.1b, which

actually represented instantaneous inductor current for the boost

converter (or buck-boost converter since both have the same slope

during interval dTs).

Equations (7.3l) and (7.32) contain now all that is needed

to determine both dc and ac small-signal models by application of the

general result, equations (7.25) through (7.29}.

in greater depth the steady-state (dc) model.

We first analyze

Steady state (dc) model analysis

By use of (7.31) in (7.25) the following linear algebraic

system results

I
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A X b

0
D2

L

D2 l

C RC

÷

V

D+D 2-

L

Vg = 0 (7.33)

in which the quantities A, X and b are clearly identified and obtained

by use of their definition (7.]0). The genera] remark made previously

about the solution of this linear algebraic system (7.33) becomes

clearly visible. Storage elements (L's and C's) are indeed

proportionality constants, and the solution of (7.33) is

V : D (7.34)
1 + D2

I = V..V. (7.35)
D2R

Hence, the dc conditions depend only on duty ratios D and D2 and

resistance R. From (7.34) we conclude also that the boost converter

has even in the discontinuous conduction mode the boosting property

>

(dc gain V/Vg - l), since D, D2 are by definition positive quantities.

However, the dc conditions are not quite determined since D2 is as yet

unknown. But, by use of the additional constraint (7.26), as

further specified in (7.32) as

VgDT s
I= 2L (7.36)

together with (7.34) and (7.35), dc conditions (and also D2) are

completely determined. For example, substitution of (7.36) into

(7.35) results in
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V V 2L V K

D2 - RI - R DTsVg - Vg D - D

MK
(7.37)

where the very il_Iportantdimensionless quantity K is defined as

K -_2L a 2L
RT - R fs (7.38)

S

This dimensionless parameter K plays a key role in the discontinuous

conduction mode since it combines uniquely all the parameters respon_

sible for such behavior. Another quantity which will frequently appear

is the dc voltage gain V/Vg, so we define also another dimensionless

parameter M as
V (7.39)

Finally, by use of (7.37) and (7.39) in yet unused dc relation (7.34),

the quadratic eo_lation for dc gain M is obtained

M2 - M - D2/K = 0 (7.40)

Since from (7.34) the dc gain M is positive, only the positive solution

of (7.40) is meaningful and we obtain

M - l +'_1 + 4D2/K (7.41)
2

Finally, the substitution of (7.41) in (7.37) determines the pre-

viously unknown duty ratio D2 as

l+Vi +4o21K
D2 = 5 2 (7.42)

o

i,

Hence, we have succeeded in expressing, through (7.41) and

(7.42), two important quantities, the dc gain M and duty ratio D2, in

terms of the driving condition (duty ratio D of the transistor switch),

and the single dimensionless quantity K which solely reflects the
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effect of circuit parameter values (L and R) and the other operating

condition, the switching frequency fs' upon the dc conditions in the

discontinuous conduction mode. If desired, the remaining dc quantity,

the steady-state average inductor current I, may be found in terms of

13 and K by use of (7.42) in (7.35).

All these expressions (7.41), (7.42)_and (7.35) are very use-

ful in predicting the dc conditions when the switching converter is

used alone, that is in an open-loop fashion, since then the duty ratio

D is given (independently generated) and the constant K may be

calculated from element values with use of (7.38). However, if tlle

converter is used in a closed-loop switching regulator (such as, for

example, those of Fig. l.lO or Fig. 5.1), the output dc voltage V is

predetermined by the choice of the reference voltage and kept constant

regardless of any variation of input dc voltage Vg, by appropriate

self-adjustment of the dc duty ratio D (internally generated) in a

negative feedback manner. Hence in closed-loop operation t D and D2

become dependent on the external dc gain M and the dimensionless

parameter K. These dependences can easily be found from (7.41) and

(7.42) to get, for closed-loop consideration:

D = V_(M'i) (7.43)

D2 =/_M-_ (7.44)

Hence, (7.41) and (7.42) conveniently determine dc quantities for

open-loop considerations, while (7.43) and (7.44) are likewise use-

ful for closed-loop considerations.
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It is now very interesting to compare the open-loop dc

gain in the discontinuous conduction mode given by (7.41) with

the corresponding dc gain in the continuous conduction mode, which,

for ideal boost converter (see for example (3.20)), is

] (7.45)
M-1 -D

Hence, the ideal dc gain (7.45) is dependent on duty ratio D only

and not on circuit parameters (such as L, R) or switching frequency

fs" Even the exact dc analysis of Appendix C (with parasitics

R_ # O, Rc _ 0 also included) demonstrated in a very convincing

manner (see, for example, Fig. C.2) that for all practical purposes

(small switching ripple) dc gain is independent of switching fre-

quency fs (and L, C, R as well) in the continuous conduction mode.

In sharp contrast to this, the dc gain M in the discontinuous conduc-

tion mode (7.41) is dependent also on K in addition to D and hence is

a strong function of switching frequency fs' inductance L_a_d load R.

:ievertheless, when the converter is used in th_s mode in a closed-

loop regulator, the self-correcting feature of the duty ratio D

would compensate any possible changes of load R or switching

frequency fs and still keep output voltage relatively constant.

Another question naturally arises in comparison of the two dc

gains: when do we calculate dc gain from one (7.41) or the other

formula (7.45) or, what is the criterion to determine in which of the

two modes (continuous or discontinuous) the converter is operating?

The answer is provided easily with reference to Fig. 7.1. When the

second interval D2T s is smaller than interval (I-D)T s, the converter is
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operating in the discontinuous conduction mode, and in continuous

otherwise, so the criterion becon_s

continuous conduction mode

D2 > 1 - D (7.46)

discontinuous conduction mode

D2 < 1 - D (7.47)

To obtain a convenient quantitative measure we find, first,

what happens exactly on the boundary between the two modes of

converter operation, or

boundary between two conduction modes

D2=I-D

By use of (7.42) in (7.48), the equation to determine the critical

value of parameter K, that is, Kcrit for which this happens, is

K2_crit + 4KcritD2 = 2DD' - Kcrit

from which

(7.48)

(7.49)

= DD ,2
Kcri t

The solution (7.50) is the proper solution of (7.49) since

2DD' = 2DD' - DD 2
- Kcrit ' = 2DD'(2-D') = 2DD'(I+D) is always posi-

tive regardless of D_resulting in a proper positive right hand side

of (7.49). With this, the criteria (7.46) and (7.47) for determina-

tion of the operating mode become

(7,50)
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continuous conduction mode K > Kcrit

discontinuous conduction mode K < Kcrit

boundary between two conduction modes

K = Kcr it

(7.51)

(7.52)

(7.53)

where K, as given before by (7.38), is a function of parameters L,

R,and fs" wbile Kcrit is a function of the duty ratio D only.

We now investigate how these criteria, (7.51) through (7.53),

behave throughout the duty ratio range D ¢[0, I]. To facilitate this

insight, Kcrit is plotted as a function of duty ratio D in Fig. 7.3a.

a) open-loop consideration b) closed--loop consideralion

Kcrit(D) Kcrit(M)

_ discon_i nuous

i co nduct i o n 2 /
M-I

I/ ! "%P"

/! "<C
Drain I13 Dmax I.O-D Mmin 1.5 Mmax M

F/g. 7.3 __n of _e op_ing mode (co_nuo_ or

d_con_r_ou_) for the. ide_£ boost conue_t_ of Fig. I.I.

As seen in Fig. 7.3a, Kcrit(D) has a maximum of 4/27 at D = I/3. This

now enables a very important conclusion about operating mode to be

made. Namely, if the parameters L, Rpand fs are such that the computed

parameter K is greater than 4/27, expression (7.51) is satisfied
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regardless of duty ratio D. Hence for K > 4/27 the converter

always operates in the continuous conduction mode, no matter what the

operating condition (duty ratio D) is. However, if parameters L,

R_and fs are such that K < 4/27 _ 0.15 the situation becomes as shown

in Fig. 7.3a, where the particular example of K = 0.08 < 0.15 was

< D <
chosen. For a certain range of duty ratio D, that is Dmi n Dma x

(as shown by the shaded area in Fig. 7.3a), the condition (7.52) is

satisfied and the converter operates in the discontinuous conduction

mode, while for the remaining portions of the operating range

(0 < D < Dmi n and Dma x < D < l.O) it again operates in the continuous

conduction mode, since then inequality (7.51) holds.

This discussion has been in terms of open-loop considerations,

_hen duty ratio D is given and externally controlled. However, as

before for dc conditions, it is desirable to have the boundary condi-

tion (7.50) in terms of the dc gain M, which is a more suitable

quantity for the closed-loop considerations. This can easily be done

since the dc gain M is continuous across the boundary (as seen by

use of (7.48) in (7.34) resulting in (7.45)), and thus substitution

D = (M-I)/M in (7.50) gives

= M-I (7.54)
Kcrit MT

This function Kcrit(M) is plotted in Fig. 7.3b, and a similar discus-

sion applies. However, now the maximum of Kcrit(M) of 4/27 is obtained

for gain M = 1.5. As before, for K < 4/27, the converter is in the
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discontinuous conduction mode, but now for dc gain M in the

range Mmi n < M < Mma x as shown by the shaded area in Fig. 7.3b. This

reveals a potentially serious problem if the boost regulator were

designed (and compensated) to operate in the discontinuous conduc-

tion mode on]y. Namely, during the initial turn-onprocess, the out-

put voltage starts from zero, and the converter would have to pass

through the continuous conduction region first (for l < M < Mmin),

before coming to the discontinuous conduction region (shaded area in

Fig. 7.3b). This would suggest possible stability problems, if the

closed-loop was not compensated to assure stable operation in the

continuous conduction mode as well.

From the standpoint of the dc gains (as a function of duty

ratio D), the situation corresponding to that of Fig. 7.3 is shown in

Fig. 7.4 for some K < 4/27.

dc gain M=VIV 9

Mnnax

Mmin
I.O

!

I-D

41_/K
2

,.I I

0.0 Drain Dm,_ I. o D

K < 4127

Fig. 7.4 Boo._t converter dc voltage g_ns in continuou_ and d,EJ_-
co_tJ.nuou_ conduction modes a_ a fwze_ion of duty ratio P.
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From the dc gains for both conduction modes shown in Fig. 7.4,

it becomes obvious that the actual dc gain will follow the larger

of the two gains, thus the mode of operation will change accordingly

as the duty ratio changes from 0 to 1. Also in the close vicinity

of gain M = 1 (1 -< M < Hmin), the converter is always operating in

the continuous conduction mode. Thus, the problem of having, for

example)D 2 infinite when V_l from (7.44) is only a fictitious one,

since (7.44) is for the discontinuous conduction mode and hence not

applicable in the vicinity of gain 14--1.

We conclude this dc analysis with some numerical examples and

related quantitative and qualitative significance of the dimension-

less parameter K. For exa_ple, for t),e set of parameters L = 8801aH,

R" 220_ and fs = 20kHz, we coni)ute K - ZLfs/R = 0.16. Therefore,

since K = 0.16 > 4/27, the converter will with this set of parameters

always operate in the continuous conduction mode. However if, for

example, the switching frequency is reduced to fs = lO kHz, this results

in K 0.08 < 4/27 and some range of discontinuous conduction

operation should be expected (see Figs. 7.3 and 7.4). Therefore, the

reduction of parameter K below 4/27 causes this transition. From

the definition of K in (7.38) this reduction and change to the dis-

continuous conduction mode is qualitatively achieved by three means:

increase of load R, decrease of the inductance L or switching fre-

quency fs" There is also a fourth way to enter the discontinuous

conduction mode, and that is to change the operating condition, the

duty ratio D, as illustrated in Fig. 7.3 and Fig: 7.4, but only if

the condition K < 4/27 is met.
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Very often, however, out of all these four possibilities,

one is mostly interested in how the change of load R affects the

operating mode. Namely, the parameters L and fs are usually design

parameters whose choice may depend on the size and efficiency require-

ments of the converter or regulator. On the other hand, the range of

variation of duty ratio Dpor equivalently gain M, is a design require-

ment in a closed-loop implementation since the output voltage V is

maintained constant against the range of variation of input voltage Vg

(hence range of M = V/Vg) by the action of negative feedback. The

load R also can have a wide range of change depending on the user of

the regulator, and is often out of the designer's control. Hence,

determination of the converter operating mode with respect to changes

of load R becomes important. This can be easily accomp]ished by

finding an equivalent of (7.50) and (7.54) respective]y, as

_ l (7
Rcri t DD' 2 Rnom

M3

Rcrit = M_--TTRnom (7.56)

where Rno m is a design parameter defined by

Rno m 2Lf s (7.57)

The criteria for determination of the operating mode, (7.51), (7.52),

and (7.53),then become

continuous conduction mode

R <Rcrit (7.58)
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discontinuous conduction mode

R > Rcrit (7.59)

boundary between two modes

R =Rcrit (7.60)

Let us now illustrate this on a numerical example. For L = 880_F,

fs = 20kHz we calculate Rno m = 35.2_. By the same argument as before

(see Figs. 7.3 and 7.4, for example), the converter will alwaxs

operate in the continuous conduction mode if

R <--Rno m (7.61)

or for the given numerical example for R < 238_. When R > 23811
@

there will be a range of gain M (see Fig. 7.4) for which the converter

operates in the discontinuous conduction mode.

This coQcludes the extensive dc analysis and we now turn to

the dynamic (ac small-signal) model 'analysis of this ideal boost

converter example.

Dynamic (ac small-signal) model analysis

Before we apply the general result to this ide31 boost converter

example, let us first put the constraint (7.32) into a more suitable

form by using the steady-state average inductor current I of (7.36)

to get ___v_dTs v d
i = VJ_D I (7.62)2L

g

By use of perturbation equation (7.62), model description (7.31) and
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definition (7.10) in the general resultgiven by (7.27) through (7.29),

we obtain

dynamic (ac small-signal) model

D2-
0

L

V

A

d2 (7.63)

with additional constraints

A

di _ 0
dt

(7.64)

As opposed to the general result, we can now for this specific

example enter the constraints (7.64) and (7.65) into dynamic model

description (7.63). The introduction of (7.64) reduces the first

dynamic equation in (7.63) to a static one, and after proportionality

constant L is removed the dynamic model becomes

_ A A

0 = -D2v + (D+D2)Vg + Vgd + (Vg-V)d 2
(7.66)

A

dv ^ ^ ^
C dt - D2i - v/R + Id2 (7.67)

with additional constraint (7.65). Note, however, that now the

first static equation (7.66) actually determines the unknown

modulation quantity d2 (modulation of the second interval d2T s as

shown in Fig. 7.1, for example) in terms of the other dc and ac

quantitites. In the remaining dynamic equation (7.67), besides this

A

modulation d 2 which we can now express from (7.66), current modula-
A

tion I also appears. But, from the perturbation equation I (7.65)
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it is also determined in terms of the known ac quantities (forced

modulations Vg and d). In general, both equatio,s (7.65) and (7.66)
A

could have both modulation quantities i and d2 for so_le arbitrary

converter. But, they are linear algebraic equations and could be

A

sol_ed for i and d2 in terms of other ac quantities and then

substituted in the remaining dynamic description (which could be, for

son_ converter with more than two storage elements, higher than the

first order model given by (7.67)).

Another general feature, which is in this model hidden, is that

(7.66) can be considered as a consequence of the equation

(d+d2)Vg = d2v (7.68)

which after usual perturbation and linearization steps and subtraction

of dc terms reduces to (7.56). Hence, in analogy to (7.62), equation

(7.68) can now be designated perturbation equation II. The appearance

of (7.68) in the modelling will become more apparent later in the

hybrid modelling and circuit averaging techniques. But in any case,

A A

the unknown modulation quantities i and d2 come as the solution of

two linear algebraic equations, which are essentially linearized

versions of perturbation equations I and I!, (7.62) and (7.68)

respectively.

To complete the dynamic model description we simply substitute

(7.65) and the solution of d2 from (7.66) in (7.67) to get

A

c + + + + +v_v
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Since this dynamic model has significance only for the closed-loop

regulator, it is convenient to express all dc quantities in terms of

M, K, R and output voltage V, as was explained before in the dc

analysis. Hence by use of (7.43), (7.44) and (7.35) we obtain

A

C dv (7.69)
dt

_ 2M-] I ^ M 2M-l ^ 2V 1 ^
M-I R v+ Vg+ d

M-I R R _KM(M-I)

In (7.69) all proportionality constants would become infinite and

meaningless when M = I. However, it was explained in the dc analysis

that in the vicinity and at gain M = I, the boost converter always

operates in the continuous conduction mode, hence a different dynamic

model (that of (3.1g) with R_ = Rc = 0 in Part I) applies.

It is now easy to obtain from (7.69) two transfer functions

of interest

where

and

Gvg = Vg(S) = G°g l + S/Up

A

l
Gvd d(s) = God l + S/Up

(7.70)

2M-I l (7.71)
Up = M-l RC

Gog = M, God = 2_-I _ (7.72)

As seen from (7.70) both transfer functions have a single pole

Up and no zeros. This is qualitatively completely different dynamic

behavior than in the continuous conduction mode (compare with the

corresponding transfer functions in (3.2l)) where two poles and even

a right half-plane zero are obtained (for the Gvd transfer function

1.",3



only). This in turn suggests easier compensation (even no compensation

at all) and reduced stabi]ity problems if the converter as a part of

switching regulator is operating consistently in the discontinuous

conduction mode. But, a potential danger exists there: any signifi-

cant transient changes (such as sudden change of input voltage or

temporary substantial change of load R) could move the operating point

to the continuous conduction region (see Fig. 7.4) and cause insta-

bility. Another problem is inherent to the discontinuous conduction

mode. In addition to the output current, now the input current

becomes pulsating as well (as shown in Fig. 7.1) which increases

electromagnetic interference problems. Hence, a decision on the

choice of operating mode becomes a complex one, depending on the

particular design requirements. To facilitate that decision, we now

undertake the task of developing useful circuit models of ti_e switch-

ing converter operating in the discontinuous conduction mode.

7.2 Hybrid modelling in the discontinuous conduction mode

In analogy to Section 3.2, we demonstrate in this section how

for any specific converter a useful circuit model of the basic

state-space averaged model (7.6) can be found, appropriately modified

by inclusion of the constraint (7.7), and supplemented by the addi-

tional constraint (7.8). In terms of the Flowchart of Fig. 6.1 we

will proceed from block 2a through 2c to arrive at the circuit model

in block 2b. Again this is illustrated on the same ideal boost

converter example as in the previous section.
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When the boost converter description (7.31) and (7.32) is

applied to (7.6), (7.7) and (7.8) the following basic state-space

averaged model results:

0 L

_L
RC

+
Vg

with additional constraints

(7.73)

di = 0 (7.74)
dt

i (7.75)
21.

It now becomes clear that introduction of (7.74) into (7.73) reduces

the first dynamic equation to perturbation equation II as given before

by (7.68). But, instead of introducing this substitution, let us

first find the circuit realization of the state-space equations

(7.73) as shown in Fig. 7.5.

%= Ldildt -0

dpv E

V

tel!
T lR

Fig. 7.5 C_cu_t re_z_Lon of the _X_ute-ap_cc mode_ (7.73),
co_Xpt_d_ (7.74) _o inc_d.

The constraint (7.74) leads, in the circuit model of Fig. 7.5,

to effective disappearance of the inductance L, since vL = Ldi/dt = O.

The resulting equality of the two voltage generators produces again
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the perturbation equation II given before by (7.68). At the same

time shorting of the inductance causes reduction of system order by

one, and effectively a single pole transfer function result (7.70)

becomes apparent.

Let us nowput the circuit of Fig. 7.5 into more elegant form,

by introducing a dc and ac transformer in place of the two dependent

generators in Fig. 7.5. Also, it is desirable to have source voltage

v effectively at the input of the converter, rather than as some
g

modified quantity as (d+d2)Vg in Fig. 7.5. However, this is easily

accomplished by introduction of another dc and ac transformer at the

input of the converter. In addition, the true input current into

the converter becomes properly exposed as seen in the basic circuit-

averaged model of Fig. 7.6. In addition to the circuit model in

Fig. 7.6 we need the remaining constraint (7.75) to complete the

description of the converter in discontir_uous conduction mode (as

also displayed in Fig. 7.6). As before, the circuit model and the

additional perturbation equation are valid for both dc and ac

conditions. Hence the two transformers in Fig. 7.6 are operating both

at ac and dc and the appropriate symbol introduced in Part I to

expose that fact is also used.

ii_ i

1
I ;(d+d z) dz ".

Fig. 7.6

Jout V

c R

Basic circuit averaged model fo_ the idea_ boost conve_t_r
in the d_conlinuous conduction mode.



Following the procedure outlined in this section one can

easily obtain the basic averaged circuit models of three common

power stages of Fig. ].l. These models for discontinuous conduction

mode are summarized in Fig. 7.7.

a] buck power stage:

L v

b) boost power stage :

L

T

V

:R

>

i:Ivg-v)dTsl2L

I : d (d*dz):l

V

:R

i =vgdTs/2L
V

I:(d*dz) dz:l

R

c) buck-boost power stage:
i =vgdTs/2L

V V

tC R R

='d d_:l

T

! Fig. 1.1 Su_na_y of the basic c_cuit averaged model_ for three
conmon power stage_ in di_co_nuou_ conduction mode.

137



An interesting comparison with the corresponding summary of

Fig. 3.8 can be made. While the topologies of circuit models in

Fig. 3.8 are different from each other owing to the presence of

inductance L, the converter models of Fig. 7.7 already_h aye the same

topology. This suggests that the circuit averaging procedure (circuit

perturbation and linearization steps) presented in the next section

will directly result in the fixed circuit topology of the final

linearized model, without a need for any circuit equi'_alent trans-

formations that were necessary in Part I in order to arrive at the

canonical circuit model. This conjecture will be confirmed in the

next chapter in which the canonical circuit model for discontinuous

conduction mode for the three converters of Fig. 7.7 is arrived at.

Another distinction between the two circuit models is that

the circuit models in Fig. 3.8 are already in a topological form

which directly accounts for line voltage variation Vg, while those

in Fig. 7.7 are no__t_t,because of the additional constraint, the

perturbaticn equation I,which should be also incorporated into the

dynamic model as the next section will illustrate. However, Fig. 7.7

does represent dc circuit models directly (as Fig. 3.8 also did) as

the next section will also verify.
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7.3 Circuit averaqing in the discontinuous conduction mode

In this section the alternative path b in the Flowchart of

Fig. 6.1 is followed and the perturbation and linearization steps

corresponding to those in state-space averaging path a are applied to

the circuit model to arrive at the final circuit averaged models,

separately for steady-state (dc) and dynamic (ac) response.

We continue with the same ideal boost converter exampie and

hence use as a starting model the circuit model of Fig. 7.6. Even

though that circuit model was obtained by following hybrid modelling,

we emphasize also the other possibility. Namely, it could have been

obtained directly by averaging the three switched circuit models of

Fig. 7.2 using the standard circuit averaging technique and supple-

menting it by the appropriate constraints (7.74) and (7.75).

Pe,ctu_ctZoR

If the averaged circuit model of Fig. 7.6 is perturbed together

with its perturbation equation I according to

A _ A A

= Vg+Vg, = = = =Vg i I+i, d D+d, d2 D2+d 2 , v V+v (7.76)

the nonlinear model of Fig. 7.8 results.

( D.D2.(_.d"aX I.'_

\
t,?

I(D.D2-d,^daXVg._^

0 E] E

[,i= (Vg.Gg)(D._ )Ts12 L

{o2,C XI. 

'L

F._. 7.8 PeJt.tJJptbavl:J..ono_ ¢hc ba3Zc cueJuzgcd e._Jtcu_)tmodeZ 4_ FZg. 7.6
ne_agt_ Ln _ ,_o_ttZncancincu_ modal.
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Linearizction

With the small-signal assumption on perturbation, that is

^ d2 D2 ^ ^ ^ Vgd << D, << , i << I, v << V, Vg <<
(7.77)

the second order terms in Fig. 7.8 can be neglected and the

linearized model of Fig. 7.9 obtained.

{._,._ ,,,,.. __. ,._ (D,[)a}_9÷(d,dz]V_ D2CI-daV ^ ^

I+,= VgDTsI21- + aid +I%IVg

Fig. 7.9 Model of Fig. 7.8 _ine_tzed to include dc and ac small-
signal mode.

The circuit model in Fig. 7.9 together with the dc and ac

part of the perturbation equation I (also shown in Fig. 7.9)

completely determines both models. At this point, we continue to

develop separately the two circuit models -- the steady-state (dc)

circuit model and the dynamic (ac small-signal) model.

Steads-state. (dc) circuit model

With all ac quantities set to zero, the dc circuit model is

obtained directly from Fig. 7.9, and upon substitution of dc depen-

dent generators by the dc transformer symbols, the circuit model in

Fig. 7.10 results.
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I =VgD TsI2L

l
I V

I : (D+I_z) De: ;

R

Fig. 1.10 Final dc circuit _del for the boost converter in the
_continao_ conduction _de.

This circuit model is also supplemented by the dc part of the

perturbation equation I, which is, of course, the same as (7.36).

From the circuit model in Fig. 7.10 the other two dc relations (7.34)

and (7.35) are obtained. Hence the dc circuit mode] ]eads to the same

dc conditions and resu]ts discussedat ]ength in Section 7.1 on

state-space averaging.

We now turn to the development of the dynamic (ac) circuit

model.

Dynamic (ac) circuit model

After the steady-state (dc) quantities are subtracted from the

circuit model in Fig. 7.9 (and perturbation equation as well) the ac

circuit model in Fig. 7.11 is obtained.
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From Fig. 7.ll it is obvious that the two dependent current

generators are functions of two yet undetermined modulation quantities

d2 and _ , since the other quantities are either already determined

from the dc circuit model (such as D2, I) or are known driving

quantities (as D and d). While the current modulation is already

available through the ]inearized perturbation equation I (see Fig.

7.11), the other modulation quan_ty d2 can easily be obtained from

the inside loop of Fig. 7.11. Namely, since the two voltage

generators in Fig. 7.11 must be equal, we get

^ ^ ^ _2V(D+D2)Vo + (d+d2)Vg = D2v +
(7.78)

Note that this is the same equation as the first (static) equation

(7.66) of the state-space averaged model. Now it is easy to see that

(7.78) and (7.66) came out actually as a consequence of the perturba-

tion and linearization steps applied to the perturbation equation !I

(7.68), since the voltage generators in Fig. 7.11 resulted from the

perturbation and ]inearization of the voltage generators in Fig. 7.5,

which have been shown to be equal for discontinuous conduction mode
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(awing to di/dt = 0 constraint).

The equation (7.78) can now be solved for the unknown modula-

tion d2 and, together with the perturbation equation defining _,

determines the two current generators in terms of the known modulation

quantities as follows:

.... 2VI

Ji = (d+d2)I + (D+D2)i -
V-Vg

^ ^ ^ 2V I ^ V

Jo = d21 + D2i = _ d +
g Vg

^ V (D+D2)I ^ D21 ^
d+

Vg V-Vg Vg V-Vg v

2V-V I ^ V 1 ^

3- Vg v
V-Vg _ V-Vg R

(7.79)

(7.so)

Since the converter dynamic mode] is so]ely used in closed-]oop

regulator applications, we conveniently #xpress all dc quantities in

terms of M, K, R and output regulated voltage V (as explained before)

to arrive at

Ji = R'- M3 I Vg M I ; (7.m)M-I R - M---ZTR

Jo - 2V 1 d + M(2M-I) I_ v H I v (7.82)
R CKM(M-I} M-I R g M-I R

By use of (7.81) and (7.82) in the circuit model of Fig. 7.11.

the circuit model in Fig. 7.12 is generated.

2VV_ d IV_GaRVK(M-I) (M-I)R-

!

M(2M-I)Oa 2\/a -M___...__¢
(M-I)R" RVEM(M-I)(M-I)R ,,

t ,, V

F' \lq I,! /
r 1 _ rJL 1h,'-, clh (P fih &c :a

JL.,.J "T" LwJ _ _ / <"
/ _, ^,,, VolT I l l /

__-l--_J--_ ! _,,/ / r

Fig. 7.12 DVncm_Lc (ac 6mail-s/grittY) circuit _del of the boost
converter with pehvttutbavLionequ_ution ] (for modula;tLon _L)

and pertu_b_tion e£uation II (equality of #_e uoZtag¢
generators u. _id v ) included in _'_¢ circu_ mod_Z.

4_ 0
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A

The two voltage generators vi and v° in Fig. 7.i2 are purposely

shown in dotted lines to emphasize the fact that they are no Ion ecle_c

essential, since the information provided by them !7.78) has already

been used to find modulation d2 and substituted elsewhere in the cir-

cuit model. Therefore they can now be omitted from the circuit model.

Finally, by modelling the current generators in Fig. 7.12 which are

proportional to voltages across them as ac resistors only, the final

circuit model of Fig. 7.13 is obtained.

[

t
I "

i.,I
I
I

1

!

J

A

V

>Ft
lD

Fig. 7.13 Final ac sm_ll-signal circuit mod_ for boost converter in
the di_ continuous conduction mode.

The element values in Fig. 7.13 are defined as

2v "'
J 1 : R-- " rl M3

M l
- _ R , gl = M---L-TR (7.83)

J2 : 21/ 1 , r2 _ M-l M(2M-I) l
R _KM(M-I) - T R , g2 = M-I R (7.84)
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Also since rI and r2 are ac resistances only, the appropriate symbol

consistent with that adopted for the ideal transformer designation

(see Fig. 3.7, for example) is used in Fig. 7.13. The two current

generators inside the dotted-line box in Fig. 7.13 are used with square

symbols to emphasize the fact that they are dependent current generators

(on some other quantities in the circuit).

From the circuit model in Fig. 7.13 and by use of element

definitions (7.83) and (7.84), the two transfer functions Gvd and Gvg

can be derived. It can easily be verified that they agree exactly

with those obtained before,((7.70), (7.71) and (7.72)), using the

state-space averaging. An interesting observation with regard to

the topology of the circuit model in Fig. 7.13 can be made. Namely,

to arrive at these two transfer functions, only the elements in the

output port J2' r2 and g2 have been used, without any need for input

port description. However, the input port description becomes

mandatory if the determination of the complete circuit model is

desired, since it properly models the important input properties (both

open- and closed-loop input impedances, for example), as will be

illustrated in Chapter 9. Moreover, the output port model now does

affect the input properties through the dependent current generator

A

gl v in Fig, 7.13.

An interesting comparison with the circuit model topologies

for the continuous conduction mode (Fig. 3.10 or Fig. 4.2) seems

appropriate here. While in the continuous conduction mode the effect

of duty ratio modulation d was expressed through duty ratio

dependent voltage and current generators, here two duty ratio
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dependent current generators (one at the input and the other at the

output port) appropriately account for both input and transfer

properties (and output properties, as we]l). Another distinction and

unique feature of the circuit model of Fiu. 7.13 is the presence of

ac resistances only (which are in general dependent on an operating

condition, the gain M), a characteristic not present in the continuous

conduction mode. But despite these topological and qualitative

differences, the circuit models for continuous conduction mode (Fig.

4.2) and discontinuous conduction mode (Fig. 7.13) have something

very important in common: they both represent a _complete linearized

circuit model which accurately represents not only transfer properties

but input and output properties as well.

In summary, this chapter has provided detailed insight into

the various paths in the Flowchart of Fig. 6.1. A general method

for modelling any three-state switching converter operating in the

discontinuous conduction mode has been presented first. The

fundamental step is in replacement of the state-space descriptions of

the three switched networks (7.!) by their average (7.6) over the

single period Ts, the same step as taken for any ordinary three-state

converter. This is then supplemented by additional constraints (7.7)

and (7.8) which properly account for the discontinuous conduction

mode of operation.

The subsequent perturbation and linearization steps are

applied not only to the state-space or circuit averaged models but

_lso to the constraints, which then provide the additional information

needed to define completely both dc and ac small-sional models.
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An extensive analysis of the dc conditions in the discontinuous

conduction mode has been given, which then enabled the definition of

the boundary between the two operating modes for specific boost

converter example. An easily interpretable formula ((7.50) or (7.54))

led to simple criteria ((7.51), (7.52) and (7.53)) for determination

of the converter mode of operation.

Analysis of the dynamic (ac small-signal) model confirmed

the general modelling prediction-reduction of the system order by

one. Thus, common converters of Fig. l.l showed a single-pole frequency

response in the discontinuous conduction mode, as opposed to their

two po]e response in the continuous conduction mode.

Finally, a new circuit model (Fig. 7.13) with a rather unusual

topological structure is obtained, which provides a complete model for

dynamic (ac sma]l-signal) behavior.

The method outlined in this section, and illustrated for the

boost converter, is applied to the other two converters of Fig. l.l

and results are presented in various tabular forms (including the

boost circuit example) in the next chapter on a canonical circuit

model.

I
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CHAPTER 8

CANONICAL CIRCUIT MODEL FOR

DISCONTINUOUS CONDUCTION MODE

In this chapter th_ c_nonical circuit model for discontinuous

conduction mode (block 5 in the Flowchart of Fig. 6.1 or Fig. 7.13)

is obtained for the three common switching converters of Fig. 1.I

and, thanks to its fixed circuit topology, the results are conveniently

summarized in the form of various tables, separately for dc and for

ac sma11-signal circuit models.

From the dc conditions and by following the derivations

presented in Section 7.1, the simple formulas for determination of

the boundary between the two conduction modes may also be found for

the buck and buck-boost converters. These results, analogous to

(7.50) and (7.54) through (7.56) for the boost converter, are again

tabulated for all three common converters of Fig. 1.1. This then

ultimately determines which of the circuit models (those of Part !

or those of Part II) should be chosen for given parameter values and

operating conditions of a closed-loop switching regulator. An

interesting pictorial interpretation facilitating this decision is

given in terms of the frequency scale and position of another

"inherent" frequency _B (frequency defined by converter element values,

like _ and f before) with respect to switching frequency f .
C S

Finally, both dc and ac transfer properties are experimentally

verified on a particular buck-boost converter breadboard and

excellent agreement with the predictions is observed, thus confirming
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the high accuracy of the circuit models for the discontinuous

conduction mode.

8.1 Derivation of the canonical circuit models for discontinuous

conduction mode

In this section the canonical circuit models (both dc and ac

small-signal circuit models) for the two remaining converters of

Fig. 1.I are derived from the basic circuit averaged models in Fig. l.l.

B_ck convep_te_,_i.ndL_e.o_J.n_ou_ condue_.ion mode

With regard to the dc circuit model derivation, a general

observation seems appropriate here. Namely, the dc circuit model of

the boost converter (Fig. 7.7) could have been obtained directly from

the unperturbed circuit model in Fig. 7.7b by simply taking all

quantities to be dc quantities and as usual considering the capacitance

C to be open for dc signals. Hence, as should have been expected,

the circuit models in Fig. 7.7 together with the additional expres-

sions for the average inductor current i are valid dc models. But

this is exactly why it was previously emphasized that the presented

methods for finding dc and ac models are consistent with each other.

After all, ac small-signal models really represent the linearized

perturbation around some steady-state (dc) conditions. Hence, by

perturbation and linearization of the circuit models in Fig. 7.7,

the ac circuit models consistent with the superimposed dc circuit

models result. Therefore, the dc circuit model for the buck

converter is as in Fig. 7.7a with dc quantities d = D, d2= D2,
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: Vg,i = I, Vg v = V and dc transformers only.

After usual perturbation and linearization steps are applied

to circuit model of Fig. 7.7a, the dynamic (ac) circuit model in

Fig. 8.1 is obtained.

D_+(_ ! ^ ^ ^ _ ^DC_*dV 9 (D+D2)v,(d+d2)V (D+D2)_+(d+dz) ^

vo c a

Fi 9. 8.1 Dynamic (ac small-signal) circuit model for the buck

conv_t_ in discontinuous conduction mode w._tIz corresponding
p_rtu_ba_ion _qua_ion I for modulation _.

The perturbation equation I is different from

that for the boost converter and is

(Vg-V)dT s (vg-v)d
i = I

2L - ..(Vg-V)D (8.I)

After perturbation and linearization of (8.1) we get

_. I ^ I ^ I ^

I - V-Vg Vg + _ d Vg-V v (8.2)

^

When the unknown modulation quantity d2 is found from equality of the

two voltage generators in Fig. 8.1 , and by use of (8.2), the two

current generators in Fig. 8.1 , after expression of dc quantities in

terms of closed-loop parameters M, K, R and V, become
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•_ _ ^ ^ ? j2 _ 92 ^ ^Vg gl JoJi = Jl + /r I - v; = + Vg v/r 2

where

_ 2V _ = _]-M M2 1
J] R ' rI M2 R, gl - I-M R

_ 2V l _M--[MJ2 R M '

(8.3)

(8.4)

1 (8.s)
r2 = (I-M)R, g2 = I-M IT

Hence the same topology of the dynamic (ac) model for the boost con-

verter shown in Fig. 7.13 is also obtained for the buck converter in

the discontinuous conduction mode, but with the model element values

defined by (8.4) and (8.5).

B,c_-booat convc_ter 2n the dY_con_uou_ conducY_on mode

The dc circuit model for the buck-boost converter is

obtained directly from the circuit model in Fig. 7.7c. After

perturbation and linearization of the model, the dynamic (ac) circuit

model, in Fig. 8.2 is obtained.

Fig. 8.2

A

Di+d

,] Vi Vo :R

Dynamic (ac small-signal) circuit model for dz_ buck-boost

converter in d_entinuou_ conduction mode with perturbation
cqua_Lon I (for i} ,_hown explicitly.

151



The perturbation equation I is now the sable as for the boost

converter (7.75) and the two current generators Ji and Jo in Fig. 8.2

are as defined in (8.3) but with the following element values for the

buck-boost converter:

_ 2V_2_ rl _ R
Jl _-KR ' M2 ' gl = 0 (8.6)

= 2M (8.7)J2 2 V]_L l_ , r2 = R, g2 - R
V_R M

Again the same circuit topology of Fig. 7.]3 results, but with element

values (8.6) and (8.7). However, there is a small distinction from

the previous two models since now, as seen in (8.6), gl = O. There-

fore there is no feedback effect from the output port to the input

circuit model as in the other two converters, and the open-loop input

impedance is just rI. But, this is reasonable to expect for the buck-

boost converter, since it is the only converter in which the energy

transferring inductance is present either solely in the input circuit

(interval DTs) or solely in the output circuit (interval D2Ts).

In the other two converters (buck and boost), on the other hand, the

output circuit (including C and R) is at least for a portion of period

Ts connected to the input and represents a loading effect on it.

A

Hence the feedback action through current generator glv is to be

expected in these two converters.

The results for all three converters (buck, boost and buck-

boost) are summarized in the next section.
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8.2 S_m!ary of the canonical circuit model results for three common

converters

Tn this section the results for both dc and dynamic (ac)

canonical circuit models for buck, boost and buck-boost cenverter

are summarized and, owing to the fixed circuit model topology,

conveniently listed in several tables.

STEADY STATE (DC) CIRCUIT MODEL

Iin ]

l:k4 l'kA 2

R

Fig. _.3 Steady-_tate (de) circ_ model for the conue_ter_ of
Fig. I. I _ the d_scont_uo_ conduction mode.

In Fig. 8.3 the polarity of

the second transformer I:M 2 is inverting for the buck-boost

converter and otherwise as shown. The parameters in the dc circuit

model of Fig. 8.3 are defined in the first three columns of Table IV,

while the remaining two columns tabulate the dc relations derived

from this circuit model. Note, however, that this circuit model can

be used to determine other dc quantities as well, such as the dc

input current lin in terms of the defining paran_ters.
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converler

_Ljpe

buck

boos?

buck -
boost

definition of dc model

I (____-V)D ,_D
2L

D+D 2

D

D+D 2

I
De

%

derived qu_tnt i t iQ.s

i --Ue',.//fl td .-;,,I, M,,

V

( D+L)2)R

V

D2R

V

D

D+ D2

D +D?

De

D

De

TABLE I V Definition of tlte dc circuit model in Fig. 8.3 for the

three con_non converters of Fig. I. I operating in _le
discontinuous conduction mode.

With use ncw of the last three columns of Table IV and the

procedures outlined in Chapter 7 in Section 7.1, the very useful

Table V can be generated, in which the dimensionless parameter K is

defined as before with K = 2L/RT s = 2Lfs/R.

converter

t',,.3 pe

buck

boost

buck -
boost

closed-loop con_.sicterd-t ion

9

I+_ +4KID 2

I+_/I+4 D21K

open-loop consideration

M(D,K) De(D,K)

K 2

5 I+Vli4t_iD 2

K l+Vl+4E_IK

2 D 2

D

D(M,K)

IM-I)

D2(>,K)

-if<]-l:T,Q

TABLE V
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Su_ary of dc t.acu_ ;_c.'_ p.",opm_.t.Les of .tire th,tee cc,,_ort..
conv_Cers of F.L,_. I. I .(n the dLsc(,,_t,Hu,.(_ con.fuct,..,: ,,::.,de

cxp.te.sscd for aport-Coop as wet.g_ as {ur cZ,_,scJ-/,.,#p ,:c,._<d,u':a-
.t.ions.
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DYNAMIC (AC SMALL-SIGNAL} CIRCUIT MODEL

[ "1

'LZA_

L l

,,&

V

R

Fig. 8.4 Final ae small-signal circuit _d_£ for converte_ of Fig.
I. I in the discontinuous conduction mode.

The element values of the dynamic (ac) circuit model in Fig.

8.4 for the three converters are shown in Table VI.

buck

boost

buck-

boost

Jl

2__VV M
R

21VI

q gl

I-MR

M-I R M I
M3 M-I R

0

J2

K

2V

RVKM(M-I

21Vi

RVEM

r2

(I-M)R

M-I R
M

R

_2

M(2-M) I

I-M R

M(2M-I) L
M-I R

2M
R

,z
t

TABLE UI Pefi_tion of the elements in the canonical circuit model

(,f Fig. 8.4 for the three co_._n converters of Fig. 1. I
operating in the discorJcinuo_, conductron mode.
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Again, as Table V was generated from Table IV and only input-

output dc transfer properties obtained, we can si;;_ilarly generate

from Table VI another Table VII in which only input-output ac

transfer properties (transfer functions Gvg and Gvd ) are listed for

the three converters. _ ;D:j .

type

buck

boost

buck-

boost

Go 9

M

M

M

God

2V(I-M_/2

_K- M (2-M )

V

2 -_4 I

2M-I

M - I

2

RC

RC

RC

I v I

Ovg- v9 O°9 l+S/Wpp ) Gvd a - God l+sl_,_

IABLE VI i

All the results presented in this section are applicable only_

to the discontinuous conduction mode of operation of these three

switching converters. To determine when these results ought to be

applied and when those presented in Chapter 4 for continuous conduction

mode, the boundary between the two modes of operation is dete'mined

for these three converters and tabulated in the next section.
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8.3 Determination of the boundarj, between two conduction modes

As explained in detail in Section 7.1 the criteria for

determination of the converter conduction mode are

boundary between the two conduction modes

K = Kcr it

continuous conduction mode

or R = Rcrit (8.8)

K > Kcrit or R <Rcrit (8.9)

discontinuous conduction mode

K < Kcrit or R > Rcrit (8.]0)

where K is as defined before K = 2L/RT s = 2Lfs/R. Following the same

procedure outlined in Section 7.1 for the boost converter example,

the parameters Kcrit and Rcrit can easily be found for the cther two

c_nverters and all results are shown tabulated in Table VIII_

converter

tgpe

buck

boos¢

buck -
boosf

open-loop considerat ion

Kcrit (D) Rcrit( D,Rnorr

I -D

I-D

closed -loop considerafion

Kcrit'(M)

I-M

Rcr iI!M,R nora)

F{ nora

I-M

D(I-D)2
M 3

M3 R nora
M-I

(M +i)2Rnom

TABLE VIII Detcm_ina_ion of the boundary be_een the two conducCion

modes, expressed for open-loop as well as for closed-
loop considera_on_.
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In Table Vlll nominal resistance R
nom

Rno m = 2Lf s

is a design parJ._ter defined by

(8.11)

It has already _een demopstrated in Section 7.] for the boost

converter that parameter K can be chosen (K > 4/27), such that the

converter is always operating in the continuous conduction mode

regardless of the operating point, that is dc duty ratio D, while the

discontinuous conduction mode can occur only for K < 4/27, and then

only for a portion of the dynamic range of duty ratio D. The same

holds true for the other two converters, and the following criteria

can be set:

a) when K > KM converter is always in continuous conduction

mode regarC_ess of D.

b) when K < KM discontinuous conduction mode can occur, but

only for limited range of duty ratio D.

Parameter KM is actually the maximum of the duty ratio D

dependent function of first column in Table VIII, and is for compari-

son purposes listed in Table IX.

KM

buck boost

4
27

buck-

boost

TABLE IX Sunm_ of the parame_erK_ det_Lng the region of
unce:_d_Cional cont_nuo_ conduc_on for three co_J_on
convc_tc_ of Fig. I.I.
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From Table IX it is obvious that when K _ 1 any of the three

converters listed will always operate in the continuous conduction

mode, and when K < 4/27 each of them will operate in the discontinuous

conduction mode for a portion of the duty ratio range. With this,

and the first column in Table V, the dc vcltage gain as a function of

duty ratio can be shown as in Fig. 8.5b for K < 4/27, while the

corresponding result for continuous conduction mode is illustrated

for comparison purposes in Fig. 8.5a for K > 1.

a) continuous conduction b) discontinuous conduction

/ 77 _- buck-b°os*.ooy/ _ I .oo,,./"

o.o o., ,.o o oo o._ ,.o _

Fig. 8.5 Co_arison of the de uoltage gain characteristics in the

_o conduction mod_ _or the common converters of Fig. I.I.

In Fig. 8.5b heavy Tines designate the region of actual dis-

continuous conduction operation, whereas dotted lines signify that

the continuous conduction mode takes over and the dc gain

characteristics begin to follow those for the continuous conduction mode

(see for comparison Fig. 7.4). From Fig, 8.5b it is also evident that in

the buck and the buck-boost converter, the transition between the two

conduction modes occurs only once at higher duty ratio D, and not
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also at the lower end as it does in the boo,st converter. Therefore,

dur'ing initial sfart-up of the converter, when the duty ratio

changes from zero to the value required by the steady-state gain M,

the two conve"ters (buck and buck-boost) can be desi_Incd(" to stay in

the discontinuous conduction mode only, even in this tr_nsitional

period.

We now present another viewpoint, which in an interesting

pictorial way and a unique frequency interpretation, illuT_inat.__sthe

determination of the converter operatfng mode and the basic sma11-

switching-ripple requirement. Namely, from Fig. l.l it is apparent

that the three common converters essentially consist of the single

switch S positioned differently among the source voltage Vg and three

elements, inductance L, capacitance C, and load R. With only these

three elements three different "inherent" frequencies can be defined

• and f termedregardless of the converter type Two of them, _ c'

natural frequencies, have previously

repeated here for completeness:

been defined (I.II) and are

l I
- f - (8.12)

2RC ' c 2_

However, yet another "inherent" frequency _B can be defined by these

three elements as

R (8.13)
: 2--C

The dimensionsless parameter K, which plays a cruci_l role in the

determination of the conduction mode, can now be expressed as

f

K =s (8.14)
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I R £_I__
 4 =2R c •, 2L ' S-Ts

AI I

small ripple

-, 21/w,c =

high switching ripple

l l _ ! I I I I I fs frequencLj scaleI I I i 1_

I k Hz I 0 kHz IOO kHz
discontinuous

_/J co nduct ion
I ___

conf i nuous
conduction

Fig. 8.6 F_uaqaeecy gn;te_p_eXatAo, o_ .the conclue_o, mode ¢4pe wad
6n_A_ _wi.tchZng _vLpp_ requ_eme_.

[
E',
/

Therefore, the position of this new frequency =B with respect to the

switching frequency fs determines the conduction mode. Hence for K > 1

or =13 < is" each of the three converters will always be in continuous

conduction mode regardless of D. Also it was shown before (I.11)

that _ << fs and fc << fs are requirements for small switching ripple.

The information contained in the position of these three "inherent"

frequencies _ , _B and fc with respect to the switching frequency fs

is concisely summarized in Fig. 8.6. The diagram in Fig. 8.6, with

the help of definitions (8.12) and (8.13), displays in a convincing

manner the interplay between conduction mode types, switching ripple

requirement and choice of parameter values L, C, R and is" For example,

increase of load R can cause change to discontinuous conduction mode

without deterioration in switching ripple. However, if inductance L

or switching frequency is reduced, change to discontinuous conduction

mode can occur, but at the price of higher switching ripple since

separation between fc and fs is also reduced. One would have to
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increase capacitance C to remain at an acceptable switching ripple

level. Thus the frequency diagram of Fig. 8.6 gives valuable insight,

both qualitative and quantitative, into the basic relationships

inherent to switching converters. It is interesting that frown (8.12)

and (8.]3) a very simple relationship follows

_c = 2_v_B (_.15)

which may further facilitate q_Jantitative analysis.

8.4 Experimental verification of the transfer properties

Both dc and ac transfer properties have been experimentally

verified on a circuit breadboard of the buck-boost converter shown

in Fig. 7.7c.

The buck-boost converter was chosen because of several unique

features which clearly distinguish it from the other two converters,

and which are easy to check. A quick look at Table V, for example,

reveals that it is the only converter whose second interval D2T s

is independent of the operating conditions (duty ratio D or gain M),

but rather is fixed determined by the parameter K only.

Likewise, a look at Table VI shows _,_t the ac resistance r2

is also independent of steady-state operating condition (gain M).

Therefore, the single pole of the two transfer functions Gvg and Gvd

does not move with change of operating condi_i n (_in M) a_ it does

in the other two converters.

Finally, the open-loop input impedance of the buck-boost

converter is Ri = R/M 2 since there is no inteFnal feedback

(gl = 0). Hence the input impedance is purely resistive, which is noi_

the case for the other two converters.
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The transfer propertigs have been verified on the test buck-

boost converter with the following switching components: transistor

2N2BSO and diode TRW7342.

Dc gain measurements

For the choice of element values L = 890uH, C = 12HF, R = 22_%,

fs = lOkHz and Vg = 6V we compute K = 2Lfs/R = 0.81 and D2 = V_= 0.28.

Therefore, the buck-boost converter operates in the discontinuous

conduction mode from D : 0 until D = l-D2 = 0.72, and the experimental

dc gain characteristic is shown in this duty ratio range on Fig. 8.7.

2

I

• • measuremeni

, I I I

O.0 O. Z 0.4 0.6

duty ralio D

v

0.8 1.0

Fig. 8.7 Oc voltage gain measuremcn_ for the buck-boost convert_
in the d_s continuou_ conduction mode.

As seen in Fig. 8.7, experimental points follow very closely

the theoretical straight line characteristic. The experimental

data, however, are slightly lower than the theoretical curve since

16 ._



the transistor saturation voltage and diode drop have not been account_'

for in the theoretical model, although this can easily be accomplished.

The inductor current waveform was monitored, and confirmed discon-

tinuous conduction operation for D c[0,0.72] while D2 measured was

constant as predicted at D2 = 0.28.

Ac transfer function measurements

A A

The duty ratio modulation d to output voltage v transfer

function Gvd is now measured using the describing function measurement

technique [20].

0 f'

- IO fs= jokHz

- - - measuremenl-20

-3O

' I , i I , * II , , i , , 1 ,,i I I I i ' m._._

IoOHz I kHz f requenckj

Fi9. 8.8
A

Experimental magnitude-frcqu_cy _'_po_e of Gud = v/d
/transfer fwtctZon for buck-boost convc_utcr in t]_e d_-
conX:inuou_ conduction mode.
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The element values used are the same as for the dc

measurements, except that the inductance was increased four times to

L = 3.5mH to reduce the superimposed switching ripple and to reduce

the ringing, effect in the D3T s interval. Hence for L = 3.5mH,

C = 12_F, R = 220_, fs = lOkHz, Vg = 6V we calculate K = 1.62 and

D2 = 0.56. The range of discontinuous conduction operation is then

reduced to D _ [0,0.44]. The single pole of the transfer functions

Gvg and Gvd (see Table VII) becomes fp = I/_RC = 120Hz, which is in

excellent agreement with the experimental data shown in Fig. 8.8.

The measurements were repeated for several operating points in

the discontinuous conduction region, namely, for D = O.l, 0.2, 0.3,

and 0.4 but the single pole at fp, as predicted, did not move.

The experimental measurements therefore have confirmed the high

degree of accuracy of the canonical circuit model (Fig. 8.4) for the

discontinuous conduction mode of operation.

In sjmmary, the canonical circuit model for discontinuous

conduction lnode (Fig. 8.4) retains all the advantages of the fixed

topology structure, previously mentioned in Section 4.2 in connectio,:

with the canonical circuit model for continuous conduction mode. The

culmination of the modelling in discontinuous conduction mode is given

by Section 8.2, where the results for several converters are con-

veniently summarized in various tables for later quick reference

and use. This further enables an easy method of determination of the

conduction mode type through Section 8.3, where the results for

several converters have been sur,lnarized. Con_non features of the three
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standard converters (buck, boost, and buck-boost) h_ve been extracted

via an interesting frequency interpretation. Finally, in Section 8.4,

the transfer properties predicted by the canonical circuit model have

been experimentally confirmed for the buck-boost converter. The

single-pole frequency response (Fig. 8.8) for discontinuous conduction

mode is in sharp contrast with the two pole, right ha!f-plane zero

frequency response (Table Ill) for continuous conduction mode, and

verifies the general prediction of different converter dynamics in

the two conduction modes.

Only o;_e issue has not been covered in this chapter. It is

the question of converter input properties, and particularly of open-

and closed-loop input impedances, which are left to the next chapter

on modelling of a switching mode regulator in discontinuous

conducti on mode.
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CHAPTER 9

MODELLING OF SWITCHING REGULATOR IN

DISCONTINUOUS CONDUCTION MODE

This chapter, in an analogous way to Chapter 5, demonstrates

how the canonical circuit model for a switching converter operating

in the discontinuous conduction mode can easily be incorporated into

the complete switching-mode regulator model. The modelling of the

modulator stage has already been given in Section 5.1, so it will be

directly included here and a complete linear negative feedback circuit

model of the regulator will be obtained. This model is subsequently

used to derive the important regulator properties loop gain T, input

and output impedances Zi and Zo, and line transmission characteristic

F, but this time for discontinuous conduction mode. The obtained

general expressions are then compared with the corresponding results

((5.2) through (5.5)) for the continuous conduction mode.

Again, the input properties, both open-loop and especially

closed-loop input impedance, are of special importance when the

regulator is a part of a more complex network. Owing to the very

nature of the switching regulator operation, its closed-loop

incremental input recistance Ri is negative at low frequencies, even

in the discontinuous conduction mode, since the simplified reasoning

(5.6) of Section 5.3 applies equally well. It is then demonstrated

that the duty ratio dependent current generator J1(s)d at the input

of the canonical circuit model (Fig. 8.4) is the one whose presence

properly models such behavior in much the same way as the j(s)d

current generator did for the continu3us conduction mo_ canonical

167



circuit model (see Fig. 5.2, for example).

Again as before, the modelling techniques ([II] through [17])

are not capable of describing such behavior, because of the total

absence of the input model of the converter and/or regulator. This

the11 once more stresses the completeness of the canonical circuit

mo_e]s of Part I and Part II _or either conduction mode of opt,ration.
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9.1 Anal_vsis of switching regulator in discontinuous conduction mode

The inclusion of the canonical circuit model (Fig. 8.4) and an

appropriate mode] for the modulator stage (5.1) into the switching

regulator (Fig. 5.1) results in a complete circuit model of a switching

regulator in the discontinuous conduction mode, as shown in Fig. 9.1.

r I

' I

Lw

Fig. 9.1 Gene_ ac sma_l-sign_ _irc_it mod_ for the switching
r#gulator of Fig. 5. I operating in the dis cont_nuo_s conduc-
tion mode.

A

The generator symbol for the current generators J1(s)d and

J2(s)d at the input and output ports, respectively, has been changed

from a circle to a square to emphasize that in the closed-loop

regulator they have become dependent generators (on output voltage

A

modulation v in particular). A closer look at the circuit model in

Fig. 9.1 reveals some unique properties of this negative feedback

circuit. Namely, it has been previously shown in Section 7.3 that

i

only the output port network (consisting of current generators

g2Vg, j2d, resistances r2 and R and capacitance C) effectively takes

part in determination of the open-loop transfer functions Gvg and

Gvd. The immediate implication of this is that for ideal source

voltage Vg, the loop gain T is defined only with respect to the

output port as shown in Fig. 9.1. Likewise, the output impedance Z
O
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and line transmission characteristic F (audio-susceptibility) become

solely defined in terms of the output port elements, wi}ile the

input port takes part only in determination of the input impedance

Zi. This is easily confirmed by analysis of the equivalent circuit

in Fig. 9.l, which leads to

T : Gvd(S)A(s)fm(s)/V m (9.1)

Zeo(S)

Zo - ]+T (9.2)

F : Gvg(S)
I+T (9.3)

Zi i_-t-kGvd Jl - + _ - giGv (9.4)

The first three expressions are rather obvious and are a

consequence of the general results of linear feedback theory. They

also confirm that T, Zo, and F are functions of the output port

elements only, since the open-loop transfer functions Gvg and Gvd

are independent of input port elements. These results are actually

the same analytical expressions as the corresponding expressions for

the continuous conduction mode ((5.2), (5.3) and (5.4)), except that

the open-loop quantities Gvg, Gvd and Zeo in discontinuous conduction

mode are different from those in continuous mnduction mode as, for

example, the analysis of transfer functions Gvg and Gvd in previous

sections clearly demonstrated.

The fourth expression (9.4) for closed-loop input impedance is

rather complicated and will be derived in the next section. However,

it does clearly demonstrate that the input impedance is dependent
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also on the input quantities Jl' r] and gl"

It should be noted, however, that this peculiar dependence

of some feedback quantities T, Zo, and F on output port elements only,

is a quite special case, which is a c_nsequence of the i_deal source

voltage Vg. If the source voltage had an internal impedance, or an

input filter were included in front of the converter, even the open-

loop transfer functions Gvg and Gvd would become dependent on all

circuit elements,the feedback quantities even more so, and this special

feature would disappear. This once again demonstrates how powerful

these converter equivalent circuit models are, since any of such

additional effects can be directl}, included in the circuit model of

Fig. 9.1, owing to its con_)lete circuit representation of the converter

properties.

We now investigate in more detail the important input properties

of the clrcuit model in Fig. 9.1, and make appropriate comparisons

with the corresponding result (5.5) for continuous conduction mode.

9.2 Input properties of switching regulators in discontinuous

conduction mode

Let us first derive the input impedance formula (9.4) by use

of the circuit model in Fig. 9.1. The input current i can be
g

expressed as ^

ig = _ = jl_ + Vg/r I - gl v (9.5)

The objective is now to express d and v modulation quantities in

A

terms of v . From the feedback network description
g
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fm ^
d^- (s) A(s)v ,9.6)

Vm

Note that the negative sign in (9.6) expresses thL negative feedback

effect: increase of output voltage is corrected by decrease of dc

c_uty ratio, hence d is negative. 8y use of (9.1) in (9.6) we get

^ T v
d - Gv d

(9.7)

From (9.3) we obtain directly

^ Gvg (9.8)
v = l+T Vg

Finally, substitution of (9.7) and (9.8) in (9.5) results in the

input impedance for discontinuous conduction mode:

zTi = - T+T\Gvd Jl- + - giGvg (9.9)

It is interesting that the corresponding result (5.5) for

continuous conduction mode can be put in a very similar form, as

l T G l l

_ vgj +

Zi l+T Gvd I+T _2Zei

(9.1o)

where Gvg and Gvd are open-loop transfer functions for the continuous

conduction mode.

Comparison of (9.9) and (9.10) clearly shows that, for both

canonical circuit models, the input duty ratio dependent current

generators jld (in Fig. 9.1) and J4 (in Fig. 4.2) are responsible

for the negative input impedance at low frequencies. If they were not

present in the model, Jl = 0 and j = O,and since at low frequencies
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T-_o, the input resistance Ri would appear to be positive, in obvious

conflict with the actual physical requirement (5.6).

Let us now verify this for the discontinuous conduction mode,

and consider first the limiting case of (9.9) for high loop gain

T-_o (at low frequencies)

i

(

I

i

Ri \Gvd J1 -

(9.11)

From the circuit model in Fig. 9.] the converter open-loop transfer

functions Gvg and Gvd are easily found as

I

Gvg = g2(rz]IR)"1 + sC(rzIIR)

1

Gvd = J2(r211R)1 + sC(r211R)

(9.12)

By use of (9.]2) in (9.11) we finally obtain the closed-loop

incremental resistance Ri as

Ri = - g2 -
(9.13)

Using now the definitions of element values jl,J2, g2' and rl

from Table VI in (9.13), we obtain for all three converters (buck,

boost and buck-boost) that

However, this is the sa,,_ as the closed-loop incremental resistance

Ri for contir,uous conduction mode given previously in (5.7).

From (9.13) it is also evident that despite the presence of

the positive term, the negative term has prevailed, correctly
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predicting the negative closed-loop input resistance.

Let us n_w consider the other extreme when the loop uain is

very small, that is T*O (or equivalently at high Frequencies). Then,

the input impedance approaches the open-loop input iml_edance Zin

obtained from (9.9) as

I _ I (9 15)
Zin r] glGvg

The same result could be obtained directly from the open-loop

converter model in Fig. 8.4. From (9.15) it seems as though Zin

could be negaZive owing to this negative internal effect of the

current generator glv in the model of Fig. 8.4. However, this is not

true, since the low-Frequency value of the open-loop input impedance

Rin becomes from (9.15)

ri

Rin = 1 - glrlg2(r211R) (9.16)

Again by using element definitions from Table VI in (9.16) we

get for all three converters

R (vV.._)2RRin = M--_=

:vhich correctly predicts open-loop low-frequency input resistance

to be positive. This is actually also the same result as the one

obtained previously for the continuous conduction mode in (5.8).

From these derivations and the corresponding one in Chapter 5,

it follows that the closed-loop low-frequency input resistance Ri

is given by (9.14) regardless of the conduction mode type and

switching converter type (buck, boost or buck-boost). The sa,ne is

also true for the open-loop low-frequency input resistance R.In

given by (9.17).

(9.17)



In summary, this chapter has conf_nned that the canonical

circuit model for discontinuous conduction mode (Fig. 9.1) properly

models the regulator input properties (closed-loop input impedance)

in much the same way as the canonical circuit model for continuous

conduction mode (Fig. 5.2) did, through the presence of duty ratio

dependent current generators at the input of the converter model.

The immediate consequence of this is that the regulator circuit model

(Fig. 9.1) is a complete circuit model which correctly represents

all essential properties; input, output and transfer properties.



GENERAL THEORY AND DES IGN

BUCK-BOOST CONVERTERS
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CHAPTER I0

GENERIC PROPERTIES OF CASCADE CONNECTIONS

OF POWER STAGES

A twofold purpose is intended for this Part III. First, a

new c]ass of switching converters generated by the cascade connection

of common power stages is introduced. It demonstrates the feasi-

bility of various realizations of the generalized switching converter

(Fig. l.ll) but at the same time provides verification of some of

the general modelling predictions made through the canonical circuit

model of Part I, which could not have been illustrated there owing

to the lack of the appropriate converter topology (converters with

more than two storage elements and a single switch). Second, a

closer look at these converters and some of their unique features

paves the way for the discovery of a new optimum topology switching

converter superior to existing converters in its class, which will

be presented in Part IV. The new converter will at the same time

fill the gap previously existing in the conkplete theory of buck-boost

converters by establishing the remaining missing link.

Since the emphasis in the remaining parts is on the

converter topology and no_._t_ton its particular mode of operation, it

will be assumed throughout, unless otherwise specified, that all

converters operate as two-state converters, hence also in a continuous

conducti on mode.

In this chapter, a valuable insight into the generic properties

of the cascade connection of buck and boost power stages is gained,
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which allows a renewed look at the con_on converters of Fig. I.].

In particular, it is demonstrated that the buck-boost converter of

Fig. l.l (or conventional buck-boost converter as it will be referred

to in the future) may be viewed as a special case derived from one

kind of cascade connection between buck and boost converters (buck

converter followed by a boost converter) rather than a completely

independent circuit. The other two converters (buck and boost) are

then regarded as truly basic converters. In connection with that an

important conclusion is arrived at: the reduction of number of

switches in this cascade connection from two to one (and therefore

reduction of both dc and switching losses) can be achieved by sacri-

fice of the original noninverting property (both input and output dc

voltage of the same polarity) for the inverting one (as in the

conventional buck-boost converter of Fig. l.l).

However, this does not exhaust all the possibilities of inter-

connecting buck and boost converters in drder to achieve a general dc

transfer function (both increase or decrease of input dc voltage),

since a boost converter cascaded by a buck converter is proven to be

a much superior topology. It is shown to have all the good properties

of buck and boost power stages alone, without acquiring any of their

bad properties. It is this connection from which a new optimum

topology switching converter is developed in Part IV.

Let us, however, before actually going into the various detailed

aspects of the cascade connections, review first the three common

converters (buck, boost and conventional buck-boost) to provide

proper motivation for this investigation.
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lO.l Three common converters revisited

A closer look at the topological structure of the three common

converters (buck, boost, and buck-boost) shown in Fig. l.la reveals

that al___].lof them cou]d he generated from the circuit model in Fig.

10.1.

2 A

i Tc
w

w

V

R

Fig. I0. I Gen_gu_ion of the buck, boost, and buck-boost converters
by cyclic rotw_ion of the ser_es connection of inductance L
and _ch S.

As seen in Fig. I0.1 a cyclic counterclockwise rotation of the

series connection of inductance L and switch S between the input

port (source voltage Vg) and the output port (parallel combination of

C and R) generates respectively the three converters of Fig. 1.1a.

Namely, when inductance node A coincides with node l and the switch

S operates between the other two nodes (2 and 3), the buck power

stage is generated. However, if the series connection of L and S

is rotated such that A now coincides with node 2, while switch S

operates between other two nodes (l and 3), the boost converter
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results. The only remaining possibility is that A coincides with

node 3 which is, of course, the conventional buck-boost converter.

This then exhausts all the possibilities of placing the series

connection of L and S between input and output nodes (three terminal

network, hence only three nodes).

This at the same time exhausts all the ways in which inductance

is used as an energy transferring device between the input and output

ports: either solely in the input circuit, solely in the output

circuit, or conrecting them. It is then no surprise that the basic

dc conversion functions for these three converters are different

from each other, both qualitatively and quantitatively as was

demonstrated in previous chapters. For example, one only reduces

the input voltage (buck), the other increases (boost), while only

buck-boost is capable of the general conversion function (increase

or decrease of input voltage).

These dc conversion properties and the method of generation

of these converters depicted in Fig. lO.l tend to suggest that all

three converters are completely independent of each other, and

are nonlinear circuits in their m_n right. This is probably why

they are often referred to as "basic" power stages, meaning they

cannot be derived from each other by some sequence of wel|-defined

steps.

However, they are not so unrelated and independent as it may

seem at first sight, since a strong correlation_exists among their
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basic dc conversion relatiens. Namely, the ideal dc gain for

the buck-boost converter V/Vg = D/D' is just the product of the dc

gains for the buck (V/Vg = D) and boost converter (V/Vg = I/D').

The same fact can also be observed in the basic circuit models of

Fig. 3.8 (with R_ = Rc = O) which are also valid at dc. For the

buck-boost converter, the first idea] l:d transformer effectively

reduces the input dc voltage (buck), while the second d':l trans-

former increases (boost) the resulting voltage and leads to d/d',

or D/D' for the overa]l dc _ain. From the other two converter models

in Fig. 3.8 it appears as though the buck-boost converter model is

just their simple merger. In fact, it becomes obvious that the same

dc" gain would be achieved by cascading the buck power stage with

the boostpower stage. Let us therefore investigate in more

detail this particular connection.

1.2 Buck converter cascaded bX a boost converter

When the buck power stage is cascaded by the boost power stage

the converter in Fig. 10.2 is obtained. In Fig. 10.2 switching action

is represented by the ideal switches Sl and S2, which can be replaced

by the bipolar transistors and diodes by use of Fig. l.lb. Here

ideal switches are used to facilitate discussion and enhance the

converter topology. For the same reason we assume that the two
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switches Sl and S2 operate synchronously, such that only two switched

networks are distinguished: one for interval DT when both switches
S

are at position ] and the other for interva: D'T when they are
S

at position 2. In other words, the circuit operates as a two-state

converter (hence also in the continuous conduction mode). Note that

even though the first buck power stage does not contain explicitly

the load R, it is effectively loaded by the dc input resistance

Ri = R/M 2 to the second, boost power stage.

I L,

I l

V_ L2 2 V

Cj / C2T T
I 1 I

buck boost

R

Fig. 10.2 Buck power stage cascaded by the boost pu+.u+m stage.

An interesting observation about the energy transferring

mechanism of the converter in Fig. I0.2 can now be made. The T

shaped network consisting of storage elements Ll, L2 and Cl is,

through the switching action, first completely switched into the input

network (to source voltage Vg), and then during the subsequent interval

D'T s completely transferred to the output network thus feeding the

load R with the energy stored in the previous interval. }lence in
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this converter the energy transferring role is assigned to the com#lete

T network (LI,CI,L2) while in the conventional buck-boost this role

belonged to the single inductor. We have here, therefore, the case

of mixed energy transferring mechanism consisting of both inductive

and capacitive energy storage.

By use of the technique described in Part I, the basic circuit

averaged model of the converter in Fig. 10.2 is obtained as shown

in Fig. I0.3.

L, L 2
v

I'd d':l

Fig. lO. 3 B_ic circuit av_aged model for cascade connection of
b_ and boost convert_ shown _n Fig. 10.2.

From the circuit n_del in Fig. I0.3 the dc conditior.s are

obtained as usual by considering the inductances short and capa_.i-

tances open, and hence the converter dc gain D/D' and noninverting

property are easily established.

Since the capacitance Cl does not affect the dc conditions let

us mow simplify the converter in Fig. 10.2 by simply taking it out

of the circuit (or C1 = O) to obtain the converter in Fig. lO.4a.

184



a)
S

L V _ I_

noninvert ing buck-boost b) inverting buck-boost

V

Fig. 10.4 Reduction of the t_o swishes S I and S 2 in the noninuerting
converter in a) to a single switch S rn the c_._ponding
inv_ting converter (conventional b_ck-boost) in b).

A significant simplification has been achieved, since the

original converter of Fig. I0.2 with four storage elements has been

transformed to the converter of Fig. lO.4a with only two storage

elements, and yet the basic dc conversion relations are preserved.

The mixed energy transferring network (Ll,C I,L 2) has been reduced tc_

a single inductance with L = LI+L 2. This then stresses the importance

of the way in which the energy storage network is switched between

input and output circuits in determining the dc conversion relation,

and diminishes the importance of the particular storage element

content. In essence, we have achieved the same basic dc conversion

function but with a smaller number of storage components (only two)

and simpler dynamics, when this special choice (C]=O) is used in the

general cascade connection of the buck ant' boost power stages. With

this specific choice, the circuit model in Fig. I0.3 becomes tne same

as that in Fig. 3.8c (with R_ = Rc = O) for the conventional buck-

boost converter except for the difference in polarity of the seco_Id

d':l ideal transformer.
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Even though the obtained converter in Fig. 10.4 is already

greatly simplified, let us see if it can be still further reduced.

Namely, the converter in Fig.lO.4a still has two switches which in

terms of hardware realizations with transistor and diodes means higher

switching and dc losses, hence lower efficiency. The important

question then becomes how these two switches could be reduced to a

single one, and yet the dc conversion properties preserved.

As seen in Fig. lO.4a, inductor L appears to be "Floating" and

switching action (through S1 and S2) periodically grounds one and then

the other inductor lead, thus producing an output v_Itage of positive

polarity. If one of the inductor leads is grounded as in Fig. lO.4b,

then single switch S perfoms the same action as previously Sl and

S2, except that now inversion of the output voltage is obtained.

Therefore, if one is willing to sacrifice the n_ninverting property

of the converter in Fig. lO.4a, the reduction of two switches S1 and

S2 to a single switch S can be achieved as illustrated in Fig. lO.4b.

In fact, the converter in Fig. lO.4b is the conventional buck-boost

con verter.

This has now brought us to an important conclusion: the con-

ventional buck-boost converter is not an independent circuit, but

rather may be considered as a special case of the cascade co,_bination

of the buck and boost power stage (special case with C1 = O) in

which the inversion of output vo]tage allowed reduction of the number

of switches to one. This then leaves the other two converters, the

buck and boost power stages, to be considered as the only really basic

power stages, since the buck-boost converter could be derlved from
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them by following the aforementioned sequence of steps.

Note, however, that this sequence of steps is not to be under-
I

stood in the usual linear circuits and linear dependence sense. Namely,

even though the cascade combination in itself is a linear combination

(provided the elementary circuits themselves are linear}, the circuit

elements here (buck and boost converter) are extremely nonlinear as

also is their cascade connection. However, this difference is

a11eviated since we are using linear circuit modeis for both dc and

ac small-signal models of the converters, as presented in the previous

two parts. It is therefore the last step, that of r_placing a

number of switches for the inverting property of the converter which

is highly nonlinear (and, of course, cannot be linearized!), which

distinguished this process from the conventional linear equivalent

circuit transformation steps, for example. However, despite that,

the linear circuit models (both dc and ac small-signal) of the two

converters in Fig. 10.4 are the same (compare the model in Fig. 10.3

for C1 = O, with that of Fig. 3.8c with R_ = Rc O) except one is

inverting while the other (Fig. 10.3) is not. This may even appear

to be a generel result (of course assuming that all the switches

are ideal, zero on resistance and infinite off resistance).

This view of the cnnventional buck-boost converter being

just a special case of one kind of cascade connection of buck and

boost converters, as opposed to the conventional view of Section I0.I,

might seem artificial at present. Nevertheless, this view is later

shown to be a very fruitful one, since it led naturally to the dis-

covery of the new optimum topology switching converter und completion
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of the general theory of buck-boost converters.

As seen in Fig. 10.2, the cascade connection of buck and boost

converters provided a variety of converters (for different values of

energy storage elements LI,L2,Cl), not just one for the s:mcial choice

CI=O, and each of them realized a general buck-boost dc conversion

function. However, the particular choice CI=O had the desirable

feature that it could be reduced to the single-switch circuit by

sacrifice of its originally noninverting property for the inverting

one, which still further simplifies the complexity of the converter.

It may seem now that with this conventional buck-boost con-

verter, the ultimate goal of optimum topology (minimum complexity

with maximum performance) has been achieved. This is, however, not so

since the conventional buck-boost converter has two very important

drawbacks. It has been demonstrated in Chapter I that the conven-

tional buck-boost converter has both input and output currents

pulsating (see Fig. 1.8, for example), which further cause severe EM[

(electromagnetic interference) problem and significantly large

output voltage ripple compared to the buck power stage (which has

continuous, nonpulsating output current). But, this was to be expected.

Namely, at the very beginning, the cascade connection of the buck power

stage first, followed by the boost power stage (Fig. I0.2) combined

only the bad properties of the two original converters: the pulsating

current of the buck converter and the pulsating output current

of the boost converter. To alleviate these problems, one usually

resorts to a one-two-section input filter to smooth out the input

t

1

I

I

t
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current ripple, and larger output capacitance to reduce Lhe incr(ased

output voltage ripple.

But there is a much better and more elegant method to resolve

these performance degradation problems. Note that all the possi-

bilities of producing the general dc-to-dc conversion funcLion (both

increase or decrease of dc input voltage) have not been exhausted

by combination of the buck and boost converters. Namely, we can put

the boost power stage first and then cascade it by the buck power

stage, and still produce the same dc conversion function. In this way,

the good properties of both of the two elementary converters are

combined: the continuous input current of the boost converter and the

continuous output current of the buck converter. Let us investigate

Lhis possibility.



10.3 Boost converter cascaded bX buck converter

By cascading the boost power stage with buck power stage, the

converter in Fig. I0.5 is obtained.

L_ 2 I L2 V

boosf- buck

R

Fig. 10.5 Boost po_¢_,at_ge co_e_ded by a bue._pow_ _;t_e .

Again, as before, the two switches SI and S2 operate as for the

two-state converter: one switched network is generated with switches

in position I (for interval DTs) and the other in position 2 (for

interval D'T ). This converter will be referred to as a boost-buck
s

noninverting converter, in distinction to the converter of Fig. 10.4

which will be termed the buck-boost noninverting converter.

Let us now see how the energy transferring mechanism is affected

by this particular choice of cascade connection, As seen in Fig. I0.5

the switches $1 and S2 are now embedded inside the T-shaped network

consisting of Ll, L2, and Cl, while in the buck-boost configuration

(Fig. I0.2) they are outside of this T network of storage elements.

It now becomes obvious that the capacitance Cl is the on]_ energy
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transferring device. Namely, during the interval D'T s the capacitance

Cl enters the input circuit (series connection of source voltage and

inductanceL l) and accumulates energy in the form of stored charge.

For the subsequent interval DT s, capacitance Cl is completely trans-

ferred to the output circuit to which it then releases the energy

stored in the previous interval. Therefore, in distinction with the

previous two cases, we have now a purely capacitive energy transfer,

since a single capacitance has taken the role of the energy transFer-

ring network, as did the single inductance in the conventional buck-

boost converter employing purely inductive energy transfer.

It is n_ clear that we cannot simplify the energy transferring

network in this case, (as we did for buck converter cascaded by the

boost converter (Fig. I0.2)), since it is already in the simplest

possible form, consisting of a single storage element, capacitance CI.

Therefore we cannot reduce the number of storage elements as we could

before and all four storage elements are necessary.

However, in order to make a fair comparison, we compare this

converter with the buck-boost converter of Fig. lO.4a to which an input

LC f11ter has been added. Then, both converters have the same number

of storage elements (four) and the same number of switches. From the

performance standpoint, both possess a continuous input current (because

an input filter was added to the converter in Fiq. lO_a) similar to

that shown in Fig. 1.5b. However, the boost-buck converter of Flg.

I0.5 also has continuous output current, and thus significantly lower

switching ripple voltage for the same storage e)ements, than does the

converter of Fig. lO.4a with added input filter (see comparison in

Section 1.3).
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In conclusion, the boost-buck converter of Fig. 10.5 retains

the 9ood input properties of the boost converter and the 9ood output

property of the buck converter, which to a large extent offset its

higher complexity in having four storage elements. In addition, in

the next chapter'on modelling and experimental verification of this

converter, it will be shown that even its frequency response resembles

the desirable characteristic of the buck converter, and not the quite

undesirable frequency response of the boost power stage (which has a

right half-plane zero).

Let us now review the various forms the energy transferring

network, consisting of storage elements only (inductors and capacitors),

can take in order to realize the general buck-boost dc conversion func-

tion.
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10.4 Energy transfer__r_nciples for general dc conversion

The general dc conversion function (both increase and decrease

of input dc voltage) can be achieved by switching the storage element

network (consisting of inductances and capacitances only) between the

input and output circuit as illustrated in Fig. ]0.6.

dc voltage
source

slorage elemenfs
network

L, I L2

--- ?C, "-"

xLitchincj ac'tion/

circuit_L

.%

load

V

Fig. 10.6 Encrgy transferrin 9 ne_ork_ and mechanism for general
(buck-boost} dc conversion.

It was demonstrated in previous sections that for achieving

the general dc conversion function, the particular storage-element

content of the energy transferring network is not so important as the

way the complete network is switched between input and output circuits:

being completely in the input circuit during one interval (DTs), and

then completely in the output circuit during the subsequent interval.

Hence, ideally at no time is it connecting the input and output

circuits. This is in clear distinction with the ordinary buck and
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boost power stages in which the energy transferring network connects

the input and output circuits for a portion of the switching period.

In Fig. I0.6 the energy transferring network employs both

inductive and capacitive energy storage, en example of which is the

buck-boost converter of Fig. I0.2. However, if Cl=O, purely inductive

storage and energy transfer takes place as in.the converters of Fig.

I0.4. Finally, when Ll = L2 = O, purely capacitive energy transfer

is employed as in boost-buck converter of Fig. I0.5.

It seems now appropriate to compare the inductive energy

transfer principle which is used in al| so far known converters (such

as the Weinberg, Venable, and a number of others), with the capacitive

energy transfer principle first encountered in the boost-buck converter

of Fig. I0.5. While in the first kind the energy is accumulated in the

inductor in the form of a magnetic field, in the second the energy is

stored on the capacitor in the form of an electric field. We can now

compare easily their storage capabilities. Electrostatic energy

stored in capacitance C with voltage V is E = CV2/2, while the electro-
C

magnetic energy stored in inductor L with current i is EL = L12/2.

For example, for C = l_F and V = 50V, Ec 1.25mJ, while for L = 2.5mH

and I = ]A, EL is also EL = ].25 mJ. However, the physical size and

weight of a l_F, 50V capacitor is negligible compared to those of a

2.5mH, IA inductor. Therefore, capacitive energy storage has much

better storage capability per unit size or weight than does inductive

energy storage. This becomes of prime importance for switching

converters, since their weight and size reduction is sometimes the

primary goal (aerospace applications, for example).
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Let us now summarize the main results of this chapter. First,

it has provided a different and unconventional view of the three

"basic" converters (Fig. lO.l). Then, the useful generic properties

of the cascade connection of buck and boost power stages led to a

better understanding of the energy transferring n_chanism through

various storage element networks. At the same time, the conventional

buck-boost converter was viewed as me_ely a special case of the par-

ticular cascade connection by observing an important fact: the number

of switches of the noninverting converter (Fig. lO.4a) can be reduced

to one, if output voltage inversion is allowed (Fig. lO.4b), without

even changing the dynamics (ac small-signal model),

While in this chapter the cascade connection was assumed to

operate as a two-state converter, this is by no means a requirement.

For example, it is illustrated in Appendix D (Figs. D.I and D.2) that

the boost-buck converter (Fig. I0.5) can under appropriate driving

conditions (switches Sl and S2 out of synchronism) act as a three-state

or even a four-state converter. In addition, while we have considered

only the cascade combinations which would produce the general buck-

boost dc conversion function (from nongeneral buck and boost functions),

one might study the other combinations as well (buck-buck, boost-boost,

buck-conventional buck-boost and so on). However, for all the other

con_inations to become useful, they hav_ to be related to a rather

specialized problem. Just recently and concurrently with this work,

such cascade connections have been studied for the first time ([21]

and [22]) but in a quite different context, in connection with one

specialized problem-reduction of the surge current in switching regula-

tors for color television applications.
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Since the boost-buck converter of Fig. 10.5 was judged to haw

more promising performance than the buck-boost converter of Fig. ]0.2,

we pursue in the next chapter the modelling of that particular

converter, following the modelling procedures of Part I, and verify

some of the general predictions made earlier in Part I.
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CHAPTER II

MODELLING AND EXPERIMENTAL V[RIFICATION OF

CASCADED BOOST-BUCK CONVERTER

In this chapter, the general predictions made available by

the derivation of the canonical circuit model in Part I (Chapter 4)

are confirmed on the model of the boost-buck noninverting converter

(Fig. I0.5). It is demonstrated that the current generator j(s)d

in the canonical circuit model (Fig. 4.2) of this converter contains a

single right-half plane zero, while the voltage generator e(s)d has

two complex zeros (second order frequency dependent polynomial) in

complete agreement with the general predictions. In addition, the

effective low-pass filter network _s now of fourth order, with the

effective filter elements being again dependent on the steady-state

duty ratio O.

This boost-buck noninverting converter is also a very good

example of the generalized switching converter (Section 1.5) with more

storage elements (four) and more switches (two) than the common

converters of Fig. l.l. Its model derived in this chapter for contin-

uous conduction mode by use of both circuit and state-space averaging

technique, illustrates the general applicability of the modelling

techniques p_sented in Part I. Even its model in the discontinuous

conduction mode could be easily obtained, as was suggested at the end

of Chapter 6.

This chapter concludgs with the experimental verifications

of the dc and ac small-signal models of this converter, which once

again confirm the high accuracy of the presented modelling techniques.
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II. _ . I_odellin 9 of the boost-buck noninverting converter

Since we assume that the converter in Fig. 10.5 is operating

as a two-state converLer (continuous conduction mode), the two switched

networks of Fig. II.I are obtained.

a} interval dTs • b) interval d'Ts :

Fig. II I Two swiZched cireu_ models of th_ _ ......• ..,vvo,u-o_C.RCO_.V@F_._tP_J_
FZg. 70.5.

By use of the converter description in Fig. ll.l and the hybrid

modelling or the circuit averaging technique of Part I, the basic

circuit averaged model of this converter results as shown in Fig. 11.2.

L2L, v, v2

/,-
v9 _. C, C_ RJl T T

d':l I:d

Fig. 11.2 Basic circuit averaged modd of the boost-buck conv_rt_r
in Fig. 10.5.

The usual perturbation and linearization steps lead to the linear

circuit model (both dc and ac small-signal) of this converter in Fig,ll 3.

O':l I:D

:2q. _I.3 I/ne_ ..:eL,it mod_ (beth dc and ac small-slgnal) of the
br, ost-bu_ L,_Y,_?_ter in Fig. 10.5.
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From the circuit model in r;g. II.3 one can easily obtain the

complete _c relations as

V2 : O V2 12 D' V2

Vg _i- , VT= D, 11 - D ' 12 - R
(11.1)

By use of the equivalent circuit transformations and with ,help

of dc relations (II.I), the circuit model of Fig. 11.3 can be trans-

forme.d into the canonical circuit form shown in Fig. 11.4.

A

els)d Le

! I F1
D':D

L2 VZ+CIz

I2+;2 _li t
:C_ _:.- R

I

1

Fig. 11.4 Canonical circuit model of the boost-buck convert_r in
Fig. I0.5 w_th none of the parasitic elcment_ included.

The element values in Fig. II.4 are defined as

(_T,) ci2LILe = ; Ce =

V2 _ Le S2LeCeD, /e(s) = _ S -- +R

V2

j(s) = D_ R (I - SCeRD' )

(11.2)

(ll.3)

(ll.4)

Let us now discuss the significance of this result. First,

the effective filter network consists of two low-pass LC filter sec-

tions, whose element values are now duty ratio dependent as seen in
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(11.2). Second, for the first time in the configuratiors considered

in this work, frequency dependence appears in the current generator

jd (11.4), while the voltage generator (ll.3) exhibits a second order

frequency dependence in contrast to the first-order dependence in some

of the previous converter examples. Both of these results,(ll.3) and

(ll.4),directly confirm modelling predictions made possible by the

canonical circuit model formulas (4.5).

As a matter of fact, the canonical circuit model of Fig. II.4

could have been obtained directly by use of these formulas in a way

analogous to that for the buck-boost example of Chapter 4. The only

difference is that now the matrices Al and A2 are of the fourth

order, and are obtained from the switched networks in Fig. ll.l as

Al=

m

0 0 0 0

1

0 0 -_ll 0

l l

0 L2 0 L2

l l
0 0

C2 C2R
m

A_ "_

1
0 -FT. 0 0

-I
l

0 0 0

l

0 0 0 -_22

0 0 C2 " C-_

(l1.5)

T vI iwith the corresponding vector definition x = (iI 2 v2)" Therefore,

by use of (If.5) in (3.14) to find the transfer functions required by

(4.5), the two generators are directly determined, while the trans-

former turns ratio }a= D'/D is obtained from (4.6). Note, however,

that from (4.5) we will actually obtain the transfer function He(S)

of the effective filter network, rather than the network itself.

Synthesis procedure [lO] for realization of a ladder type n_twork
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structure from its transfer function description could then be used to

obtain the effective low-pass filter network as in Fig. I_.4.

However, if frequency response is desired, He(S ) and e(s) are

needed to find the open-loop transfer functions Gvg and Gvd. By

applying either this general procedure, or from the circuit model

in Fig. II.4, we obtain

where

Le+L 2
P(s) = I+

1

He(S) = _ (11.6)

CeLeL2 s3 + LeCeL2C2s4 (11.7)--s + (LeCe+L2C2+LeC2)s 2 + R

It is now of some practical interest (as will be demonstrated

on the experimental test circuit) to find what conditions should be

satisfied that this 4th order polynomial can be anal_ticall_ separated

in terms of two second-order polynomials.

Suppose now that P(s) is approximated by the product of two

second order polynomials as

Le LeCeS2 L2 L2C2s 2)P(s) = (I + _-s + )(I + R-s + (II.8)

Comparison of (II.7) and (If.8) reveals that (ll.7) is well

approximated by (II.8) if the following inequality conditions are

satisfied

Ce >> C2

(ll.9)

Ce >> L2/R2

If, in addition, the inductances Le and L2 are of the same order of

magnitude, _e two pairs of complex poles of He(S) resulting from

(II.8) are well separated, with their respective corner frequencies and

Q factors given by
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1
fcl - ' QI -

2_V_-eCe

1

fc2 2_ ,_2C2 Q2

_clLe

R

_c2L2

(II.I0)

Therefore, if the conditions (11.9) are met, the frequency response of

the open-loop trallsfer functions Gvg and Gvd c_n be easily sketched by

inspection with the help of (II.I0), since the two pairs of complex

poles of (11.6) are well separated.

Note that the switching action now introduces into the duty

ratio to output transfer function Gvd a pair of complex zeros given

by (11.3), in addition to the poles of the effective filter network

He(S) given by (11.8), since Gvd(S) = e(s) Gvg(S). Moreover, the

complex zeros are in the right half-plane, owing to the negative linear

term in s in e(s) given by (ll.3). This should be compared with the

single real right half-plane zero for the conventional buck-boost

converter (see _4.9) for example).

As discussed in Part I, even only a single right half-plane

zero (nonminimum phase network) poses significant problems in stabi-

lizing the loop gain T, which directly depends on this open-loop

transfer function Gvd(S) as seen in (5.2). Then, the complex pair in

the right half-plane would even more enhance this problem.

Nevertheless, for practical applications the situation is not

so unfavorable as it may look at first sight. Namely, in the model

of Fig. II.4 the inductances have been considered ideal, and their

parasitic resistances R_l and R_2 which are always associated with them

have not been included. These parasitic resistances, however, being
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the onl X dissipative elements besides load R, can significantly affect

converter properties. It has been demonstrated earlier (Fig. 3.3)

that they can have a profound effect upon the dc properties; here,

besides confirmation of the same effect for dc properties, their

positive (stabilizing)effect upon the ac properties will be demon-

strated.

The inclusion of the parasitic resistances R_I and R_2 is

easily incorporated in the previously outlined modelling procedure,

and leads to the canonical circuit model of Fig. 11.5.

19^ e,ls)_ _ -- - L " "
÷_ _-_ F<e _e _ih z Vz+V 2

I r3 I 1
O':D

Fig. 11.5 Canonical circuit _del of the boost-buck converter in

Fig. 10.5 _ the series parasitic resistances R£1 and
R_2 of t_e two ind_ors included.

The element values in Fig. ll.5 are defined as

Re = R£I, Le = LI, Ce =

Cl

V2 { R_2"Reel(s):_ 1+ R s[_'_e" ReCeD' (1+ R_-R_2/I

/
+ ,._, _. Dt i1

" w

Jl(S) D,2R l - s CeRD' +

(11.11)

,:)}
(]i.lZ)

(Ii.13)
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From the circuit model in Fig. 11.5 and by use of (II.II) the

dc voltage gain, which now includes the effect of parasitics, is

obtained as

V2 _ O 1

Vg D' 1 + -- + T

while similarly as before,

(11.14)

the dc current gain is not affected and

remains I D'
2_

[g D

(If.15)

thus leading to the efficiency n defined by

l

1+ +T

(11.16)

The dc voltage and current gain dependence on duty ratio D

is shown in Fig. II.7.

Let us now examine more closely what consequences the inclu-

sion of parasitics has upon the frequency response. Since the para-

sitic resistances R_I and R_2 are in reality small compared to load

R, that is

R_I << R, R_2 << R (If.17)

their effect upon the position of the two corner frequencies fcl

and fc2 is negligible and they are still very accurately predicted by

(ll.lO). However, their Q factors will be appreciably affected. The

same is true for the numerator polynomial el(s) which is under

(11.17) approximated by

.= V2[l- sC--_e-ReCeD _ + S2LeCe o']el(s) _-_
(11.18)
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As seen from (ll.18) two complex zeros of el(s) can now become

left half-plane zeros if the following condition is met:

L

eR - ReCeD' < 0 (11.19)

Therefore, owing to the corrective term ReCeD'originating from the

parasitic resistance R_I, the frequency response may be qualitative_

changed to a minimum phase frequency response and stabilization

problems substantially reduced. This is, however, what should have

been expected_ since the input series resistance R_I effectively

adds more damping to the converter.

As before, the corner frequency remains virtually unaffected

and the same as in (II.3), that is

I

fzl - 2_JLeCeD,

Comparison of (If.20) and (II.I0) now shows that complex zeros

at fzl almost completely cancel the influence of complex poles at fcl'

since they are very little separated (fzl = fcl/v_-F)' thus giving a

second-order response with effective complex poles at fc2 for the Gvd

transfer function (see computer generated graph in Fig. II.9). Note

also that the first pole at fcl is dependent on duty ratio D, since

LeC e = LiCl/D '2, whil_ the pole at fc2 is not.

Therefore, once again it is confirmed that this converter

(Fig, I0.5) has acquired the desirable dynamic properties of the buck

converter in having second-order behavior with corner frequency

fc2 = I/2_V_-2C2 independent of duty ratio D, and in not having any

(ll .20)
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right half-plane zeros as do the boost and buck-boost converters.

Nevertheless, the line to output transfer function is still of the

fourth order (Fig. II.8) giving an excellent audio-susceptibility

characteristic. Thus, this converter has a very desirable frequency

response, which is easy to stabilize once the feedback loop is closed

in switching regulator applications.

Let us now confirm these theoretical analytical predictions

with exact computer generated dc gain and frequency plots, and with

experimental data obtained from the test circuit.
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ii.2 Experimental verification of the modelling predictions

A boost-buck noninverting switching converter (Fig. 10.5)

was constructed as shown in Fig. I].6 with the following switching

elements: transistors 2N2880 and diodes TRW 7342. Since series

parasitic resistances have been shown to have a profound effect upon

the converter characteristics, they are measured and included in the

model (and circuit description in Fig. II.6 as well).

Rt, L, Vi_

t -J

V2

R

Fig. 11.6 Expe_imcnta_ te_t circuit for the boost-buck conver_e_ o_
Fig. 10.5.

Two separate "floating" switch drive circuits are used to

drive the two transistors in synchronism with the same duty ratio D

(and switching frequency fs as well), as indicated in Fig. 11.6 by

dotted lines.

For purpose of experimental verification the following values

were used:

Vg = 5V,

Cl = 100wF,

L2 = 6.SmH,

R¢I = 1.0_,

fs = 40kHz,

C2 = 0.47_F

L1 : 3.5,*I,

R£2 = 0.4n,

R = 75n

(li.21)
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Note that for these experimental values, the converter operates in the

continuous conduction mode (for the range of duty ratios D involved),

as can easily be checked using the results of Part II (Section 8.3).

Hence it will behave as a two-state converter, and the modelling

results of Part I and Section ll.l apply.

DC gain measurements

First, the dc conditions are verified. By use of experimental

values (If.21) in (]1.14) and (]l.15), both dc voltage and current

gain are plotted as a function of duty ratio D via a computer program

DCGAIN, as shown in Fig. 11.7.

:I
3 -

2 -

I -

O0

dc gain

ideal volt'age ga// '_

// \
• • * measurement //"

0.5 1.0

Fig. 11.7 Theore_ca£ _d exp_Lme_t_ dc ga_n ch_ct_Lc_ o_

_ booat-back conv_ o_ F£9. 77.6.
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As seen in Fig. ll.7, the experimental data for the dc voltage

gain measured on the circuit of Fig. ll.6 are in good agreement with

the theoretical predictions.



F_requency response measurements

For ac small-signal frequency measurements, the steady-state

operating point was chosen to be at D = 0.5. With this and definitions

(ll.l),inequality conditions (ll.g) become 400_F >> 0.47_F and

400_F >> 1.15_F respectively, and are well satisfied. Hence the two

pairs of complex poles are well-separated and can be calculated from

(11.10) as

fcl = 133Hz, fc2 = 2.8kHz (11.22)

The condition (11.19) for complex zeros * be in the left

hal.f-plane is also satisfied since Le/R - ReCeD' = -154_sec is negative,

and its corner frequency fzl given by (11.20) becomes

fzl = 190Hz (11.23)

The computer program NEW was used to generate the exact

frequency response for line transfer function Gvg obtained from Fig.

If.5, and is plotted in Fig. ll.8 by use of experimental values in

(If.21). As seen in Fig. 1!.8, the two pairs of complex poles are

well-separated (more than a decade apart) and the corner frequencies

obtained from the plot agree very well with their computed estimates

(11.22).

The same computer program was then used to plot the duty ratio

modulation transfer function Gvd = e](s)Gvg as shown in Fig. ll.9.
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gai n (db} phase l"

ifc _=133Hz

-zo- " _ _ __ phase --9(_

_ _ fs= 40 kHz

- "-_...... _ _ - -180-40 ---.. \ _:,=_.skHz

-oo- -\ -1-=
, , I ,,=HI . . i , ,,hi t j., i%.*,II

IOHZ lO01"Iz IkHz IOkXz

FX_3. I I. 8 Theore_J.c_ r.ag.i_tu_e a.d ph_e^_zq_e_cy re_po_e o_ the
£_e t,_u_e_ fu.ne.t_n G ,-, = v/v _or ,the boost-buZz
com, eJLt_J_ o_ Fig. 11.6. ua =

I 9ainidb) _,=133 Hz phasel'l!

o_ ,..___ fc,=_.skHz_ o"

- 40 _-180"

IOHz IOOHZ I kHz IOkHZ

Fig. 11.9 Thecretie_Z c_d exp_mental frequency r_po_e of the

duty raIio modu._.tAon t.ra_ for func.tlon Gvd -- u/d _or the
boo_t-b_ck conueJuter o_ F/g. 11.6.
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As seen from the phase plot, the complexzeros are indeed i_i the

left half-plane (minimum phase response) as was predicted by the

satisfaction of inequality condition (11_19). In addition, the corner

frequency fzl' whose position is accurately predicted by (II.23), is

indeed very close to fcl and causes almost complete cancellation of

their effects on both magnitude and phase characteristics. Note,

however, that when the parasitic resistance R_I is reduced from 1.0_

to 0.2_, the inequality condition (11.19) is violated and the complex

zeros become right half-plane zeros. This fact has also been confirmed

on the phase response of Gvd by use of the same computer program NEW,

but with RZl = 0.2_.

Finally, the duty ratio modulation transfer function Gvd was

measured using the f_miliar describing function _asurements [20],

and excellent agreement with the theoretical frequency response is

observed (see Fig. I].9).

In conclusion, this chapter has for the first time verified

the prediction made by the general modelling method of Part I, that the

current generator j(s)d in the canonical circuit model may also be

frequency dependent, while the voltage generator e(s)d could have

frequency dependence higher than the first order. None of the two

events has occurred in modelling any of the previously known

converters. Also it was demonstrated that the effective filter network

is of low-pass nature (as postulated in Section 1.5 on generalized

switching converters) and that it could be of higher order, four in

this particular example.

Even though it seems that this fourth-order model is much

more difficult to analyze Lhan the corresponding second-order models
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of converters in Fig. I.I, it has been shown how, under the a_!:,_'_D_'_._te

choice of circuit element values, the analytical analysis is con-

siderably simplified and the favorable frequency respons_ of the

converter obtained.

Both dc transfer properties and ac small-signal frequency

response for this particular design have been shown to be in very good

agreement with experimental measurements made on the copverter test

circuit, thus verifying the high accuracy of the converter circuit

model in Fig. ll.5 and the subsequent analysis results.

It is now appropriate to mention that the same procedure,

outlined in this chapter, can be used to obtain the canonical circuit

model of Fig. If.4 or Fig. 11.5 for the buck converter cascaded by a

boost converter (Fig. 10.2). Then the results for these two types of

converters _Fig. I0.2 and Fig. I0.5) can be tabulated and u_ed to

supplement TABLE I (Chapter 4) with some more converter model examples.

The cascade connection of buck and boost converters becomes

then fruitful for two very good reasons:

i) for modelling and analysis, it offered a converter topology

more representative of the generalized switching converter (Fig. l.ll)

and consequently resulted in converter models more general in nature .

2) in the study of converter topologies (how to interconnect

the components of the generalized switching converter in order to form

a useful dc conversion function), the generic properties of the

cascade connection le_d naturally to the discovery of the new optimum

topology switching converter presented in Part IV, and to the comple-

tion of the general theory of buck-boost converters.
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PART IV

NEW OPTIMUMTOPOLOGY

SW: TCHING CONVERT -_
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CHAPTER 12

DISCOVERY OF A NEW OPTIMUM

TOPOLOGY SWITCI_ING CONVERTER

This Part IV represents a culmination of the investigations

made in the previous three parts. Through the exceptiona_ insights

gained by the modelling techniques of Part I and II, and the

canonical circuit models in particular, the outstanding generic

properties of the cascade combination of power stages have been recog-

nized in Part Ill and they all lead in a genuine way in this Part IV

to the achievement of the ultimate goal -- the optimum topology switch-

ing dc-to-dc converter. Part IV is thus entirely devoted to the

discovery of the new switching converter and consists of several major

topics covered in three chapters.

First, the novel converter topology based upon capacitive

rather than inductive energy transfer is conceived by reduction of

the number of switches in the only other so-far known converter

based upon the capacitive energy transfer (Fig. I0.5). The practical

bipolar transistor-diode realization of the single switch leads to

experimental verification of the converter operation.

Then, the new converter is extensively compared with a number

of other known converters, and especially with the conventional buck-

boost converter to which an input filter has been added. Both

theoretical and experimental comparisons show the superior performance,

higher efficiency, smaller size, lighter weight, and reduced

switching ripple of the new capacitive energy transfer dc-to-dc

converter. However, this is no surprise, since the new converter is
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recognized to have the optimum topology, which realizes the maximum

performance with minimum number of components.

Finally, several areas of investigation ar clearly designated.

On the practical side oF the technological implementation, they include

various technological realizations of the switching action besides the

conventional bipolar transistor and d_ode, and closed-loop regulator

implementation using the recent state-of-the art integrated circuits

with feedback control circuitry on a single chip. On the theoretical

and modelling sides they include modelling of the new converter in the

discontinuous conduction mode and, for closed-loop regulator applica-

tions, multiloop feedback control with several additional loops (three)

to choose from besides the usual one involving the output voltage.

Suitable modifications of the new converter are being sought to include

the desirable isolation property and its corollary, the multi-output

possibility.

This chapter, however, in addition to introduction of the novel

converter topology, gives the exposition of the complete structure of

all converters performing the buck-boost function, in which the new

converter has filled in the missing element. An interesting method of

generating the buck, boost and the new converter analogous, and in fact

dual, to the one in Fig. lO.l is also given. The chapter then concludes

with the experimental verification of the canonical circuit model of

the new converter.
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12.1 To]Dolo_ical reduction of number of switches

We now recall that in a cascade connection where a buck power

stage is followed by a boost po_er stage (Fig. I0.2), red_ction of the

nunW)er of storage elements to two is possible _nd results in the non-

inverting converter of Fig. iO.4a. Moreover, it was demonstrated that

further reductlon of the number of switches from two in the converter

of Fig. lO.4a to a single one in that of Fig. lO.4b (conventional

buck-boost converter) is possible if inversion of the output dc

voltage is allowed.

Then, it was concluded that the other cascade connection, a

boost converter followed by a buck converter (Fig. 10.5), combines the

good properties of both converters alone, unlike the first cascade

connection. However , it was also determined that reduction of the

number of s_orage elements is not possible in _his otherwisp favorable

cascade connection, since the single capacitance performs the energy

transferring role (Fig. I0.5). However, one funBamental question

remained unanswered for this favorable cascade connection, and it is:

Is it possible to reduce th_ number of switches

in the conve_t_r of Fig. 10.5 from _wo to one,

and a_ the s_ t_e achieve inversion of the

ou.tp_t dc vo_,.age?

The answer to this question may be surprising, since it is

affirmative as will now be demonstrated. The same question, when

slightly rephrased, leads easily to the answer: we ask what actually

should be done in the converter of Fig. I0.5 to cause inversion
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of output dc voltage. Both boost and buck power stages are by them-

selves inherently noninverting and therefore the only way the output

voltage could be inverted is that the switching action causes the

polarity of the energy transferring capacitance Cl to be inverted

when presented to the output (buck) circuit, and then inverted back

to positive polarity when in the input (boost) circuit. Therefore,

if we concentrate only on the capacitance Cl and the two switches Sl

and S2 in the converter of Fig. I0.5, we quickly realize that the

stated goal can easily be obtained as shown in Fig. 12.1.

a) b) C,

Fig. 12.1 Topological reaction of th_ number of _witeh_:
a) two switeh_ and noninv_ion of capacitance voltage.

b) single _wi_ch and inversion of capa_ce voltage

Hence, at the same time that the voltage polarity

inversion of the capacitance Cl is obtained, the reduction of the two

switches Sl and S2 in Fig. 12.1a to a single switch S in Fig. 12.1b has

been achieved.

In this capacitive energy transfer, the originally grounded

capacitance Cl and the two switches (Fig. 12.1a) have been transformed

into the "floating" capccitance Cl and single switch S (Fig. 12.1b),

which periodically grounds one and then the other end of the capaci-

tance. Note, however, that the opposite is true for the inductive
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energy transfer configuration in Fig. 10.4. There, the originaiiy

"floating" inductance with two switches (Fig. lO.4a) is transformed

into a grounded inductance with a si,_gle switch (Fig. 10.4b). This

comparison can be carried even further. For inductive energy transfer,

inversion of the inductor current (but not the polarity of the inductor)

is necessary to achieve output voltage inversion (Fig. I0.4), while for

capacitive energy transfer, inversion of the capacitor voltage is

necessary to realize the same goal. Furthermore the capacitance Cl

and switch S in Fig. 12.1b can be considered to be in parallel, while

in Fig. 10.4b the inductanceL and switch S are in series. A general

principle, the dual nature of the two storage elements, capacitors and

inductors, and even the duality of the accompanying switching network,

has been once again confirmed on the example of Fig. 10.4 and Fig.

12.l.

Let us now introduce the topological transformation of Fig. 12.1

into the converter of Fig. I0.5 to obtain finally, the new switching

converter shown in Fig. ]2.2.

NEW CONVERTER TOPOLOGY

vg T+c 

Fig. 12.2

V

R

Novel conu_er topology employing capacitive energy

trans f_r and indep_nd_ of any p_rti_Zar _dwa_e
realizalion o_ the switch S.
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The novel converter topology of Fig. 12.2 has never previously

been reported, so a patent disclosure on this new converter has been

made [23], in which the outstandina features, presented in Lhis

Part IV in detai], havp been concisely summarized.

A closer look at the interconnection of the storage elements

in this new converter (Fig. 12.2) might for a moment cause a concern

that the low-pass nature of the storage element interconnections

postulated for the generalized switching converter in Section 1.5 is

being violated here. However, this is not so, even though the

capacitance Cl appears in a series branch (in series with inductances

LI and L2) because it effectiye1_ acts as a parallel branch either in

_)e input circuit (for interval D'T s) or in the output circuit (for

interval DTs). T'is is further confirmed later, by the canonical circuit

model (Fig. 12.8) of this new converter, which clearly exhibits low-

pass nature, or by the experimental converter which does perform the

basic dc conversion function.

Another interesting property of the converter becomes

immediately apparent. Note that the output capacitance C2 is not

essential for proper converter operation (dc-to-dc conversion), but

is merely included further to reduce the switching ripple. Then, the

remaining part, which effectively realizes the dc conversion function

(consisting of Ll, Cl, L2 and switch S) is completely symmetrical

from the input-output viewpoint. Hence,the input source Vg and
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output load R (or load R and capacitance C2 if present) could be

interchanged without effect upon the proper eperation of the converter.

Very often the input dc source voltage has capacitarice across it (to

reduce undesired fluctuations, or if it comes from rect_fieci ac soJrce),

such that complete symmetry including the output capacitance C2 is

obtained. While the same holds true for the other buck-boost con-

verters (Fig. I0.2 or Fig. I0.4), this is not so for the basic power

stages, buck and boost converters (Fig. l.l). However, this symmetry

is not necessarily preserved when the particular hardware realization

of the switching action is made by use of various semiconductor devices,

as will be shown later.

Another observation about the polarity of the output voltage

can be made: it is not restricted to be negative with respect to ground.

)4amely if the input source voltage is of Aegative polarity (opposite

to that shown in Fig. l 2.2), the output voltage becomes positive owing

to the inverting property of the power stage. Note, however, that _his

is also possible because the ideal switch S is a representation of the

true bipolar switch -- it allows current to be drawn through it in

either direction. In a particular implementation this may require

appropriate choice of semiconductor devices, as will be illustrated

in Chapter 14.

The representation of the new converter topology in Fig. 12.2

with the ideal switch S isessential, since it is independent of any

particular realization of switch S. However, for practical implementa-

tion, nonideal hardware realization of th_ switch is used. Let us now

investigate one such practical converter rea|ization.
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12.2 Physical realization and basic operation of the new converter

We now pose the task of implementing the switch S in Fig,

12.2 by a bipolar transistor, diode combination in a way analogous

to that used in Fig. l.l for the three common power stages. The

transistor is once again used in the switching mode, and the diode is

used to supplement its switching action and in turn works in synchro-

nism with it: when the transistor is on, the diode is off, and vice

versa. It is, then, now not difficult to see that the switch S in

Fig. 12.2 can be substituted by the bipolar transistor, diode con_}ina-

tion as shown in Fig. 12.3.

NEW SWITCHING DC-TO-DC CONVERTER

L, C, L2 V

Vg- - DF, _-F _ _C2 :R

dc voltage gain

V D

Vg D'

switch drive

input current i_

la_0-
output curre'nt 12 Ii D

dc current gain

Fig. 12.3 Hardware _¢alization of the new switching canvert_ using

bipolar tran_tor and diode to replace switch S in Fig.
12.2,
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Let us now describe the operation of the circuit in Fig. 12.3.

During the interval D'T s _ (I-D)T s when the transistor is off, the

diode is forward biased ,._ndcapacitance Cl is charging in the positive

direction as seen in Fig. 12.4b (switched network For interval D'T
s

assuming negligible diode drop). The collector-[o-emitter voltage

of the transistor is therefore positive, and it c_n be turned on for

the subsequent interval DTs. However, as soon-as it turns on,

capacitance Cl becomes connected across the diode, thus reverse-

biasing and effectively disconnecting it from the circuit as in

Fig. 12.4a (switched network for interval DT s assuming negligible

saturation voltage of the transistor). During this interval DTs,

the capacitance Cl discharges through the load R and inductance L2,

thus charging the output capacitance to a negative voltage as shown

in Fig. 12.4a. Finally, to close the complete cycle, when the

transistor again turns off, the diode conducts again, thus providing

the path for current i2 to charge the output capacitor C2, using

stored energy in the inductance L2 as the energy source. This is the

reason why this converter, owing to its continuous output current

(Fig. 12.3), has inherently much smaller switching ripple than the

converters with pulsating output current (such as the boost or buck-

boost converter_ of Fig. ].l).

a) interval tiTs: b) interval d'Ts:

L, L2 V2 L, r_ 2

C, CI
vg R R

FL9. 12.4 Two .switdzed circuJ_t modc_s of the n_c converX_.



The synchronous action of the transistor and diode can be

compared with a see-saw. Namely, when the transistor is turning on,

it is pulling down the capacitor end (potential) on its side, while

at the same tlme pulling up (in magnitude) the other capacitor end

(on the diode side). The opposite is true when the transistor is

turning off. Thus, owing to this automatic see-saw action, the danger

in having both transistor and diode on at the same time is eliminated.

Note a]so that the symmetry does not hold any more, and that inter-

change of the diode and transistor in Fig. 12.3 would not function in

the required see-saw manner.

Even though the new converter in Fig. 12.3 contains only one

transistor switch, Figs. 12.3 and 12.4 revea] how it effectively behaves

as a cascade combination of a boost stage followed by a buck power

stage, in which output voltage inversion is obtained at the same time.

The energy transferring capacitance Cl plays a double role: it is

the output capacitance of the input boost-like circuit (consisting of

transistor, Vg, LI, Cl and diode) and also the negative voltage supply

to the second stage (consisting of diode, Cl, L2, C2, and R) which

acts as a buck power stage. The same is true for the diode D, which

performs the function of the diode in both power stages.

It looks as though during the interval DTs, the second

nonexistent transistor switch of the buck power stage (see Fig. II.6 for
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comparison) connected the voltage source (here capacitance Cl) to

its L2, C2 filter and load R, while at the same time the real tran-

sistor switch connected inductance L, to ground as is usual in a boost
I

converter. Then, during the next interval, it looks as though the

nonexistent transistor switch of buck power stage turned off, thus

disconnecting voltage source (capacitance Ci) fro_ i_ L2_ , Cz

filter and connecting L2 through the diode to ground as is always the

case in a buck power stage. It appears as though the two switches

are functioning, even though in reality only a single transistor and

diode are used. This is probably why, owing to this merging of

functions, it is not easy to recognize directly from Fig. 12.3 that

the new converter is effectively working as a cascade of boost and

buck converters. As a matter of fact, the canonical circuit model

in Section 12.6 will confirm that the new converter has, except for the

inversion, the same dc and dynamic (ac small-signal) properties as

the converter in Fig. ll.6 (assuming of course ideal transistors and

diodes).

Let us now, before the extensive theoretical and experimental

comparison with other converters in the next chapter, review first

some of the outstanding features and advantages of the new converter,

which are immediately apparent.

12.3 Advantages of the new optimum topology converter

As seen in Fig. 12.3, this converter employs a new circuit

tp_ology which enables it to have both input and output current

continuous. Hence, none of the problems present in the conventional
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converters (buck, boost, buck-boost) due to discontinuity -_f either

input or output current (or both) are present in the new converter.

The new converter actually combines the desirable input properties

of the boost power stage and the desirable output properties of the

buck power stage (without acquiring any of their undesirable proper-

ties), and yet performs the general conversion function (increase or

decrease of input voltage) of a conventional buck-boost power stage

with considerably higher efficiency, as will be proven in the next

chapter.

Even though there is no such thing as a do-to-do transformer

(not physically realizable) the new converter can be functionally

considered as a true do-to-do transformer, since both ".:ts input

and output voltages and currents are very close to true dc quanti-

ties, owing to the negligible switching ripple.

The new converter uses ca_pacitive energy transfer, which was

shown earlier to have much better energy storage and transfer

capabilities than the conventional inductive energy transfer.

So far these were the same advantages brought by the favorable

cascade connection of a boost followed by a buck discussed in the

previous chapter (see Fig. II.6 also). However, the new converter of

Fig. ]2.3 has a number of additional advantages over it. First, the

number of switching components has been cut in half (one transistor

and diode less). This immediately eliminates the need for the

additional "floating" drive circuitry for the buck part of the con-

verter in Fig. ll.6, and leaves only the transistor referred to ground

in Fig. 12.3 which does not need any special "floatinu" drive circuitry.

Moreover, the switching losses, which represent an important
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part of the overall losses, are cut in half in the new converter,

hence boosting the efficiency of the convcrt¢r operation

significantly. Hence the switching _osses in the new converter become

even equal to (or lower than, as demonstrated in the _ext chapter)

the losses in the single-switch converters of Fig, l.l.

Once again, the new converter of Fig. 12.3 has acquired a

good property of the boost converter in not requiring special drive

circuitry , since its transistor is with grounded emitter, and not the

unfavorable one of buck and conventional buck-boost converters in

requiring "floating" drive circuitry.

From the analysis in Chapter I, it follows that the continuous

input and output currents are the most _esirable characteristics, and

lead alone to the outstanding converter performance. Thus, the follow-

ing conclusion can be made.

The new dc-t_-dc converter [Fig. 12.2 or 12.3) has an .optimum

topology (maximu_ performance for the minim_,_ n_ber of co_.poncn_ ).

Name_, to have both input and ou_pu_ c_rrent continuous, one need_

_o inductances, one in series with the input source, _e othe_ in

series with _te load. To obtain adc level conversion, _ energy

tm_nsf_ring n_ork _ith _torage capabilities must be used. H_e it

is a _in_le capacitance. To enablz it to _ue as an energy _ns-

fcrring device, at least one switch is necessary. He_ t it i_ the

single switch S in Fig. 12.2 or bipo _la_ t_a_isto_ diode combination

in Fig, 12.3. Finally, an output capacitance, even ._hough not essential

for prop¢_ ope#_z_ion of _e conu_r_, _ p_t across U_c load fu_h_r

to red, ce o_pu_ vol_g¢ rip_.
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It is rather surprising that just this new optimum topology

switching converter (Fig. 12.2 or Fig. 12.3) was the only one missing

in the complete structure of the buck-boost converters. Let us

therefore now review the structure of all converters performing the

buck-boost function and generated by two different cascade connec..

tions of basic buck and boost power stages, and include the new

converter in it.

12.4 General theory of buck-boost converters

With the invention of the new converter, the previously in-

complete picture of buck-boost and boost-buck switching converters

can be completed as shown in Fig. 12.5.

a) L b)

Fig. 12.5 ComplcCc topological st_uct_re ef buck-boost and boost-
buck conue_.tepts: a) buck-boost noninvcrLLn_ b) buck-boost

inve_n 9 c) boost-buck no_ive_uLing d} booat-buck inver-

ting (new converter),
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Fig. 12.5 shows all four possible different topologies to

realize the buck-boost function, either in noninverting or in the

inverting form. The new converter in Fig. 12.5d has filled in the gap

previously existing, and has completed the topological view of these

con verters.

A good summary of the three possible energy transferring

mechanisms is also transparent in Fig. 12.5, which shows mixed energy

transfer employing both inductive and capacitive energy transfer

(Fig. 12.5a with CI_0), purely inductive (Fig. 12.5a with C1=0 and

Fig. 12.5b) or purely capacitive (Fig. 12.5c and d).

Comparison of the complexity of these converters shows those

with inductive energy transfer to be of second-order (two storage

elements), while those based on capacitive energy transfer are of the

fourth order (four storage elements). Nevertheless, their higher

complexity is outweighed by their superior performance, since

converters in Fig. 12.5a and b require at least one section o_ input

L,C filter and still have a much worse output characteristic because

of pulsating output current (as discussed in Chapter I and in exten-

sive comparison of next chapter).

Since the resulting dc and ac small-signal circuit models of

all converters in Fig. 12.5 are linear models, a very good ahalogy

with linear vector fields can be made as sho_m in Fig. 12.6, which

also emphasizes the generic properties of the cascade connection of

buck and boost converters.
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SECOND
STAGE

+- buck-I I

b°°st I non fnver_ing

n°° _Ol l region
.... J[ ......

-/- I boost-buck

_o FIRST
st --_STAGE

 onv, /

-_/_.
inver_incj I m/

region I
iconven
I tional
I

Fig. 12.6 Linea_ vector analogy of the gcnera_ion of convert_r_ in
Fig. 12.5 by cascadin 9 the basic b_ and boost conue_te__.

As seen in Fig. 12.6, the basic buck and boost converters are

considered as abstract entities: the elementary vectors are defined

along coordinates representing the first and second stage of the

cascade connection. Then, the noninverting converters (buck-boost

and boost-buck) of Fig. 12.5a and Fig. 12.5c are obtained as their

linear combination, while the corresponding inverting converters

(Fig. 12.5b and Fig. 12.5d) are defined as the vectors of same

magnitude but opposite s_gn (direction), thus in the third quadrant

on Fig. 12.6. In particular, a previously missing link establishing

new converters of Fig. 12.5d is shown in Fig. 12.6 by a dotted line

vector, which generates a whole new field of converters (for variety

of storage element values in its configuration).

Note, however, that this analogy even becomes an accurate

one, if the converter models, instead of the converters themselves,

are considered as abstract vectors in Fig. 12.5. Namely, both

inverting converters (Fig. 12.5b and d) have the same dc and dynamic

(ac small-signal) models as their noninverting counterparts, except
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for the inversion property. The same fact is clearly marked on

Fig. 12.6 in having the same magnitude but o_p_positt si_, for

their abstract representations. The fact that the new converter

(Fig. 12.5d) has the same dc and dynamic properties as its counter-

part (Fig. 12.5c) except for the inversion property is demonstrated

later in Section 12.6.

The region defining the general buck-boost function in Fig.

12.6 was shown shaded. The remaining unshaded region in the first

quadrant defines specialized functions: buck (obtained by buck-buck

cascade connection) and boo_L (obtained by boost-boost cascade connec-

tion). Besides their special function, they also do not have their

corresponding inverting counterparts as does the buck-boost connection.

The position of the new converter topology within buck-boost

converters has now been firmly established, and we can turn to a very

interesting correlation between the new converter topology and that of

its building blocks, buck and boost converters.

12.5 Correlation amop9 buck_ bopst, and new converter topologies

We now recall that the three common converters (buck, boost

and buck-boost) of Fig. l.l may be considered as generated by cyclic

rotation of the series connection of the energy transferring induc-

tance L and a single-pole double-throw switch S, between input

(source) and output (load) circuit, as was explained in Section lO.l

and shown in Fig. lO.l.

Let us now find a similar interpretation for the generation of

the new converter topology, along with that for the two basic
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converters, the buck and boost. But in distinction with the previous

method, and in order to enhance common features of the ]atter three

converters, we now look at: the buck converter with input filter,

the boost converter with output filter, and the new converter as

shown in Fig. 12.7.

a) buck converter with input filter:

V

I noninvertincJ

V__-D

b) boosi converter with output filter:

R
noni nverting

V I

'_-D'

c) new converter:

L_ V

vg c2T

i nvert i ncj

V D

Fig. 12.7 Generation of the three converte_: buck with input.

fJ_ter, boost with output filter, and new converter b(t
cyc3._Lc rotation of _he panel connection of

capacitance C _Id switch S.
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It now becomes apparent that all three converters in Fig. 12.7

may be generated by cyclic rotation (counterclockwise) of the parallel

connection of capacitance Cl and single-pole double-throw switch S

between the input circuit (now consisting of a voltage source in series

with inductance Ll) and the output circuit (now consisting of induc-

tance L2 in series with load R). Once again the striking dual nature

of the two generating procedures becomes transparent: the cyclic

rotation of the series co_ination of inductance and switch is

substituted here by the parallel combination of the capacitance Cl

and switch S.

When co_aring the new converter with the buck or boost

converter, it seems appropriate to make the comparison with their

versions in Fig. 12.7a and 12.7b. This way, all three converters in

Fig. 12.7 have the same nu_er of storage elements (four) and similar

performance characteristics, both input and output currents continuous.

However, the new converter is still superior in that it is capable

of both increasing and decreasing the input dc voltage, while the

other two converter,s are not. In a practical realization with a

transistor and diode, there could be some additional advantages. For

example, the buck converter, unlike the new converter, needs special

drive circuitry, and the boost converter may have less favorable

frequency response than the new converter.

After this in-depth theoretical explanation of the new

converter, the development and the experimental confirmation

of its linearized circuit model predictions seem now appropriate.
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12.6 Modelling and experimental verification of the new converter

By application of the same procedure outlined in Chapter 11,

the canonical circuit model of the new converter (Fig. 12.3) can be

obtained as in Fig. 12.8. Again, the series parasitic resistances

of the two inductors have been included, because of their significant

effect on converter performance, and the transistor and diode are

assumed ideal.

Fig. 12.8 C_oaico.,t e,_cu,_ modeZ o_ ,the nev_ co_ve,,,utea ,;,.a F4q. 10.2

The element values in Fig. 12.8 are defined as

V2{R 2Resbel(s) - D2 I+ -R C D'{l
R ee \

Jl(S) = - 1 - SCeRD' +

Ce = (12.1)

(12.2)

(12.3)

Comparison of this model and the canonical circuit model in Fig. II.5

for the boost-buck noninverting converter, shows that they are

identical except for the polarity of the D':D transformer: in the

new converter it is inverting, while in Fig. II.5 it is noninverting.

Because of this inverting property, the output dc voltage V2 is

negative in the new converter and equations (12.2) and (12.3) are
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identical to (If.12) and (If.13) for the other converter.

An important conclusion can now be drawn: except for the

inversion, the new converter has the same dc and dynamic properties as

the boest-buck noninverting converter of Fig. I0.5. Hence, the

complete analysis of Chapter II is equally valid for the new converter.

For the purpose of experimental verification, the new converter

of Fig. 12.3 was built with the following switching elements:

transistor General Electric D44HlO and diode TRW PD9050.

For easier comparison, the same components and operating

conditions as for experimental verification of the boost-buck non-

inverting converter (Section II.2) were used, that is as in (11.21).

It is not surprising that dc voltage gain measurement followed

very closely that in Fig. II.7, thus confirming the equality of the

dc conditions. Another verification, of the dc voltage Vl

of the energy transferring capacitance Cl, confirmed that it does

change according to Vl/Vg = I/D', or the same as the gain of the boost

converter. This confirms that capacitance Cl is indeed to be

considered as the output capacitance of the boost converter, the

fact which may not be so obvious from the converter circuit in Fig.

12.3.

For the same operating condition as before in Chapter II

(D = 0.5, fs = 40kHz), the duty ratio modulation to output voltage

frequency response measurements agreed very well with those of Fig.

II.9, thus confirming the equality of their dynamic models. Hence

all the benefits of the favorable frequency response discussed in

Chapter II apply equally well to this new converter.
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We now summarize the major results accomplished in this

chapter. First, it has been demonstrated how the topologica] reduc-

tion of the number of switche_ and the recognition of the duality

nature of the storage element networks with switches, led to the

discovery of the new converter topology (Fig. 12.2) based upon

capacitive rather than inductive energy transfer. The new converter

topology in Fig. 12.2 is independent of any particular hardware

realization of the single switch S.

Then, it was shown how a single bipolar transistor and diode

can be used in practical implementation of the switching action

(Fig. 12.3), and an in-depth explanation of the physical operation

of that circuit is given. A number of advantages of the new converter

over the other known converters, emerged as a consequence of its

optimum topology (maximum performance for minimum number of components).

It has also been demonstrated that the new converter topology

was the only one previously missing in the complete structure of all

buck-boost and boost-buck converters (Fig. 12.5). In connection with

that, an interesting abstract analogy with linear vectors was given

(Fig. 12.6).

Another view of the generation of the new converter, dual to

that in Fig. I0.I, arrived at the new converter topology by cyclic

rotation of the parallel combination of the capacitance and switch S

between the input and the output circuit, with buck and boost con-

verters obtained alongside.

Finally, the canonical circuit model of the new converter was

obtained (Fig. 12.8) which, except for inversion, is identical with
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that for the boost-buck noninvertin 9 converter (Fig. 11.5). The

subsequent experimental measurements confirmed these modelling

predictions.

Several of the outstanding features of the new converter are

further exposed when it is compared in the next chapter with the only

other converter having the general dc conversion function and the

simplest possible structure, the conventional buck-boost converte'_.
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CHAPTER 13

COMPARISON OF THE _EW CONVERTER A_ID

CONVENTIONAL BUCK-BOOST CONVERTER

In this chapter an extensive theoretical as well as experi-

mental comparison is made between the new converter and the conven-

tional buck-boost converter to which an input filter has been added.

This, and the same component element values as well as operating

conditions for the two converters, enable a convenient common ground

for comparison. The two converters are then compared with respect

to the most important performance parameters, namely: switching

ripple, efficiency (with separate analysis of tr__.".si3torswltching

and dc lo_=e _.as well as parasitic resistance losses), electromagnetic

interference (EMI) problems, complexity of the transistor drive

circuitry, effect of the effective series resistance (ESR) of the

output capacitor, and converter size and weight reductions resulting

from potential increase of the switching frequency fs" At all these

comparison points, the new converter is shown to be superior.

After the detailed theoretical and experimental comparisons,

the important advantages of the new converter are concisely

summarized at the end of the chapter.
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13.1 Experimental test circuits of the two converters

Two experimental test circuits have been built, one employing

the new converter topology and the other the conventional buck-boost

converter with an input filter as shown in Fig. 13.1.

_) new converter

L, C,

id_ '_ _+
-- f_L_,_ 3Z c2

b} conventional

IR{, L,

VT 002

buck-boost with input filter

it id

-

.I

FZ9. 13.1 Two conue._tcr_ u_¢d for cxperimEF_al and theoretical
compar_on cmpZoy _te same componc_ but different

topologies.
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The addition of the input LI,C 1 filter to the conventional

buck-boost converter is invariably required to smooth out the

input current switching ripple. This then provides a convenient

comparison ground for the two converters in Fig. 13.1. Now both

converters have continuous input c1_rrent in addition to performing

the same general dc conversion function with output dc voitage

inversion. Moreover, both now consist of the same components.

however, differ in the way these components are interconnected.

fore the effect of two different converter topologies upon the perfor-

mance characteristics can now be extracted.

For comparison purposes, the same component element values are

used for both converters, and are

They,

There-

R_I = 1.0_, LI = 3.5mH, C1 = IO01_F, R = 75_

R_2 = O.4n, L2 = 6.5mH, C2 = O.47pF

The same operating conditions are a]so used:

Vg = 5V, D = 0.6, fs = 40kHz (13.2)

With the two converters now completely defined, we turn to detailed

experimental and theoretical comparison.

13.2 Switching ripple comparison

Since the output stage of the new converter in Fig. 13.1a

represents essentially a buck power stage, the output current ripple

ai 2 can be computed as for the buck converter in Chapter l from

equation (I.8), that is Ai2 = V2D'Ts/L, or for values given in (13.1)

239



and (13.2), as Ai 2 = 14.5mA. The output voltage ripple /_v2 is

similarly obtained as in (1.9), that is

V2D' 1

&v 2 - 8L2C 2 fs _-
(lB.3)

Numerically, Av 2 = 95.5mV in a close agreement with the actua] output

voltage ripple shown in Fig. ]3.2a displaying the actual oscilloscope

waveforms of the new converter. Again, the new converter has

retained the good ripple properties of the buck converter: output

voltage ripple is independent of the load current, and decreases

sharply with increase in switching frequency (as l/fs2). This is a

consequence of the continuous output current i 2, also shown in Fig.

13.2a.

However, the buck-boost converter still has discontinuous

output current i d (diode current) as shown in Fig. 13.2b. T},e imme-

diate consequence is that the output voltage ripple &w is load-current

dependent and obtained as before in (1.12) as

V2 l
= (13.4)

Av 2 D RC2 fs

For the same element values (13.1) and (13.2) as in the new converter,

the output voltage ripple from (13.4) becomes Av 2 = 3V (here v2(O +) =

7.6V from Fig. 13.2b is used instead of V2 = 6.3V since ripple is

large and (13.4) is strictly applicable for small ripple). This is

quite close to the actual measured ripple of Av 2 = 2.8V from the

output voltage waveform in Fig. 13.2b.

Therefore, with use of the same element values in both
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converters, the output voltage ripple was reduced from a totally

unacceptable 44_ in the conventional buck-boost converter (Fig. 13.2b)

to less than 1.5% in the new c_nw_rter (13.2a). Hence a 30:1 ripple

reduction has been achieved just by use of the new converter topology.

Moreover, this ratiu becomes even proportionally much bigger with

increased switching frequency fs' duty ratio D and increased loads

(R < 75 ).

Since the voltage ripple in Fig. 13.2 is completely unaccep-

table, one would have to resort to some means of reducing it. As

seen in (13.4) the ripple would be reduced by substantial increase of

capacitance C2, but at the same time size and weight would be pro-

portionally increased. The other possibility, the increase of

switching frequency fs'w°uld' because of increased switching losses,

degrade further the efficiency of the conventional buck-boost

converter in Fig. 13.1b. Moreover, by increase of switching frequency,

the output voltage ripple Av2 in the new converter would decrease at

a much higher rate, owing to the I/fs 2 dependence in (13.3) as compared

to the I/f s dependence in (13.4).

As a conclusion, the new converter (Fig. 13.1a) outperforms

in every respect the conventional buck-boost converter (Fig. i3.1b)

as far as the output switching ripple is concerned.
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13.3 Comparison of the transiitor and diode dc losses and

transistor switchin 9 losses for the idealized case (R_l___2=O)

A substantial part of the total converter losses is due to the

dc losses in the transistor and diode, which come from their non-

ideal nature. Namely, when the transistor is on, the collector-

emitter voltage VCE is not zero (as it is for an ideal switch S),

but some saturation voltage VCEsa t on the order of O.3V-IV. Like-

wise, the diode has some forward voltage drop VF of the same order.

Since VCEsa t and VF increase very little with increase of dc current,

the dc losses are approximately proportional to the dc currents.

Hence we compare the dc transistor and diode losses of the two con-

verters by comparing their respective dc currents (when they are on,

since their dc losses are negligible in the off state).

Let us for the moment assume that the inductors in the two

converters of Fig. 13.1 are ideal (R_I=R_2=O) because we will return

to the real case (R_I_R_2#O) in Section 13.5.

At first sight, it seems that the transistor and diode dc

losses are higher in the new converter (Fig. 13.1a), since the sum

of the input and output currents (il+i 2) passes through its tran-

sistor when it is on, while in the conventional buck-boost converter

(Fig. 13.lb) only the input current passes through its transistor.

Likewise, when the transistor is off, both input and output currents

(il+i2) pass through the diode in the new converter, while only

output current passes through the diode in the conventional buck-

boost converter. However, this is only an illusion as clearly

illustrated on the actual oscilloscope waveforms of the four currents
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il, i2, it, and id shown in Fig. 13.3 for the new converter, and in

Fig. 13.4 for the conventional buck-boost converter. As a matter

of fact the actual comparison of Figs. 13.3 and 13.4 shows that the

transistor and diode currents are higher for the conventional buck-

boost converter than for the new converter. This is, however, not a

mere coincidence, but a consequence of the parasitic resistances

R_l and R_.2 (which, of course, cannot be excluded from the actual

measurements as they can from the analysis) as will be explained in

Section 13.5. Let us, now, go back to the ideal case R_I=R_2=O,

to c] ari fy this result.

Consider first the conventional buck-boost converter of Fig.

13.1b. Its transistor current during the interval when the transistor

is on must be proportionally higher than the fnput current _l (and

its dc value I1) in order to have the same dc averaqe value Il over

thr whole period Ts (see Fig. 13.4a). Also, through the action of the

inductance L2, transistor dc current It (when it is on) is equa] to

the diode dc current Id (when the diode is on) since they are both

equal to the dc current of inductance L2. Hence

It = Id = II/D (13.5)

where Il is the dc input current. Note that for the conventional buck-

boost converter, 12 is defined as the dc load current (dotted line in

Fig. 13.4b) and not as the dc current of inductance L2, in order to

conform with the dc input and output current notation for the new

converter.
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For the new converter in Fig. 13. la, transistor and diode dc

currents It and Id are equal to the sum of input and output dc

currents, that is

It = Id = I1 + 12 (13.6)

However, upon substitution of the dc current relations 12/I I = D.'/D

for this converter, in (13.6) the same result as (13.5) is obtained.

Hence, the dc transistor and diode currents It and Id are the same

for both converters in this ideal case (R_I=R_2=O), and consequently

their respective dc losses are also eu__.

Since the on currents It of the switching transistors are the

same for the two converters, so are the corresponding saturation

voltages VCEsa t. From Fig. 13.1 the collector-emitter voltages of

the transistors when they are off (VCEof f) are also the same and equal

to VCEof f = Vg/D'. Hence, during switching the transistor operating

point traverses the region between the same points (VCEsat,I t) and

(VCEoff,O). Therefore the transistor switching losses are also the

same for two converters of Fig. 13.1 in the ideal case R_I=R_2=O.

I

I

I

13.4 Comparison r" the resistive dc losses only.

We now make the opposite assumption from the one in the

previous section, that is, the transistor and diode are ideal with

no dc losses, and instead include the effect of the parasitic

resistances only by considering R_I,R_2#O.

From the canonical circuit models for the two converters (or

by solving for the dc conditions using state-space averaging), the

efficiency and dc conversion relations are obtained as
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new converter:

nl = D 2 +
R + R_,1 R_,2

V2 _ D I1 D

_gl =_nl 12-_T

conventional buck-boost with input fi]ter:

n2=

(13.7)

R V21 D I1 D

R_2 ; Vgg[= _Tn 2 12 - b-r (13.8)

R +__2R_fill_ + D-_

Comparison of (13.7) and (13.8) now reveals that both the dc

voltage gain and efficiency are higher in the new converter than in

the conventional buck-boost throughout the duty ratio D range because

of the difference in terms dependent on R_2, the parasitic resistance

of inductance L2.

In order to enhance this difference, the inductances in the

experimental models of Fig. 13 1 have been interchanged such that

now R£1 = 0.4_ and Rj_2 = l.O_, but R = 75C_ as before. With these

element values and by use of (13.7) and (13.8), the dc gain

characteristics for the two converters are as shown in Fig. 13.5,

while efficiency is plotted in Fig. 13.6.

Let us now with the help of these graphs illustrate the

comparison of the efficiencies between the two converters. Suppose that

it is required that the nominal input voltage Vg = 5V is boosted 3

times. This would result in the establishment of the steady-state

(tic) duty ratio D = 0.82, or operation at point A in Fig. 13.5, if

the conventional buck-boost converter of Fig. 13.1b was used. However,

the same gain of 3 can be achieved with the new converter by operation

at point B, with substantially smaller duty ratio D = 0.76 as seen

248



dc gai n

_

5 -

4 -

3--

2--

-- real dc voltage gain
of new converter

---- real dc voltage gain
of buck-boosf with input filter D

real dc current gain and

ideal dc voltage g_inof I
two converters C

D

249



in Fig. 13.5. From Fig. 13.6 we find that operation at point A

(D = 0.82) would mean only 65.5% efficiency (point E) while

operating at point B would give an excellent 93.5% efficiency

(point F). Hence, use of the same storage element values (inductors)

in the novel circuit topology of the new converter (Fig. 13.1a)

would boost the efficiency by 28% over the conventional solution

(Fig. 13.1b). But as surprising as it may seem, this is only a

conservative estimate, as the following section verifies.

13.5 Real transistor and diode dc losses and transistor switching
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losses (R_I__E_2#O)

We now consider what effect inclusion of the parasitic

resistances R_I and R¢2 has upon the real transistor end diode

losses. For the same numerical example as in the previous section,

the output dc voltage IV21 = 15V (dc gain of 3) and the outp_it dc

current 12 = IV21/R : 200_A are the same for both converters

(operating points A andB in Fig. 13.5). However, the input dc

currents corresponding to these operating points are substantially

different, owing to the significant difference in their efficiencies.

For the conventional buck-boost converter we find from Fig.

13.5 for D = 0.82 the dc current gain of ll/I2 = 4.55 or Il = 910mA.

By use of the expression (13.5) for the dc transistor and diode

current, that is, It = Id = II/D we finally obtain It = Id = lllOmA.

For the new converter, however, operating at D = 0.76 (point C

on the dc current gain characteristic in Fig. 13.5) gives only

ll/I2 = 3.15 or Il = 630mA. Then, by use of (13.6) to find the

transistor and diode dc losses for this converter, we get



I t = I d = I l + 12 = 830mA.

Consequently, when the parasitic resistances R_I and R_2 are

taken into account, the transistor and diode dc currents are not

the same but, for the particular example, are about 34% larger in the

conventional topology compared to the new converter topology. This

now explains very well why the actual measured transistor and diode

dc currents for the conventional buck-boost converter (Fig. 13.4)

are higher than those for the new converter (Fig. 13.3). Hence, in

reality (R_I, R_2 }_ O) the new converter has lower transistor and

diode dc losses than has the conventional solution.

In addition to the higher dc losses, the switching losses

now become higher for the conventional buck-boost converter, since

its transistor is operating at a higher (VCEsat,lt) point and tra-

verses, during switching, a region of hi_her dissipation.

In conclusion, both transistor and diode dc losses and

transistor switching losses are substantially higher in the conven-

tional solution, in addition to already higher resistive losses.

Hence, for the same element values and output requirements (constant

dc voltage) as in the conventional topo;ogy, the new converter

topology offers unmatched increase in efficiency.

13.6 Comparison of ESR losses of the output capacitance

So far we have considered only the inductors as the nonidea]

elements, with their corresponding modelling representation which

includes their series parasitic resistances. The real capacitors

are, likewise, better modelled by inclusion of their effectives series

resistance (ESR), which signifies the ac losses present in the real

251



capacitor. Let us, therefore, now find out what consequences its

inclusion in the model would have upon the two converters in

Fig. 13.l.

The effect of ESR is particularly pronounced at the output

capacitor C2, so for purpose of numerical comparison we assume that

it has ESR = l_. As shown before (Fig. 13.3b) output current ripple

(ac) of the new converter is small, at Ai2 = 14.5mA, hence the

capacitance ac losses Pc are Pc = (Ai2)2/12 ESR = 17.5_W = 17.5xlO-6W.

For the conventional buck-boost, however, the output current is

pulsating with Ai2 = 210_ (Fi_. 13.4b), hence the ac losses are

P = 3.68_, which amounts to a 210:l increase in power loss in the
C

conventional solution. This becomes even the dominant power loss

in the conventional buck-boost at higher load currents. For example

when Ai2 = lOA (much higher l_ad current) losses in the conventional

converter become P = 8.3W, while in the new converter, owing to its
c

ac ripple independence of the load current, they stay the same as

before at P = 17.5_W. Not only would this still further degrade
C

the efficiency of the conventional solution at higher load currents,

but on_ would have difficulty in finding a capacitor which can dis-

sipate so much power. Moreover, in order to obtain acceptable output

voltage ripple, larger capacitances have to be used in the conventional

solution and hence ESR problems would be further enhanced. None of

these preblems is present in the new converter of Fig. 13.1a.
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13.7 Size and weight reduction in the new converter

It has been demonstrated both theoretically and experimentally

that the value of the output capacitance C2 can be very small in

the new converter of Fig. 13.1a (C2 = 0.47_F) and still achieve

reasonably small switching ripple. A small value of output capaci-

tance thus eliminates the need for bulky, electrolytic capacitors of

high capacitance value. Moreover, it is very significant that the

value of the energy transferring capacitance Cl does not enter the

ripple calculations in (13.3). Hence it is no surprise that the

output voltage ripple remains essentially unaffected (as observed

on the scope waveform) even when the capacitance CI is reduced I000

times from C1 = IO0_F to CI = O.I_F, while all other conditions remain

unchanged as in (13.1) and (13.2). This once again confirms the

very significant energy transferring capabilities per unit size and

weight of the capacitive storage.

However, the voltage across the capacitance C1 is no longer

constant (dc) as for Cl =lO0_F, but has a triangular waveform (as

observed on the scope) with substantial magnitude. But, according

to the duality principle, this is to be compared with the triangular

current waveform of the energy transferring inductance in the conven-

tional buck-boost converter.

In conclusion, for all practical purposes, the physical size

and weight of the two capacitors Cl and C2 in this new converter

(Fig. 13.1a) can be c_,pletely neglected. In addition, the two

inductors, which independently control input and output current
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ripple, can be significan_ly reduced in size (and weight) by further

increase of the switching frequency.

The important advantages of the new converter topology,

covered extensivelyin Chapters 12 and 13, are now conci__ely su_nmarized

in the next section.
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13.8 Summary of the advantages of the nevJ switchinq_converter

A novel switching dc-to-dc converter (Fig. 12.3) is developed

which offers higher efficiency, lower output voltage ripple, reduced

EMI, smaller size, and yet at the same time achieves the general

conversion function: it is capable of both increasing or decreasing

the input dc voltage depending on the duty ratio of the switchim9

transistor. This converter e_ploys a new topology (Fi_. 12.3) which

enables it to have both input and output current continuous. The

converter uses capacitive energy transfer rather than the inductive

energy transfer en_ployed in the other converters. In addition, when

it is incorporated into a switching regulator, stabilization problems

are reduced owing to the favorable frequency response of the new

converter (Figs. II.8 and II.9).

Some of the _portant advantages of the new converter over the

other existing converters "are:

l) Provides true general (increase or decrease) dc level

conversion of both dc voltage and current

2) Offers much higher efficiency.

3) Both output voltage and current ripple are much smaller

4) No dissipation problems in the ESR of the output

capacitance



5) Substantial weight and size reduction due to smaller output

filter and smaller,_ energy transferring device (capacitance CI)

6) Electromagnetic interference (EMI) problems are substantially

reduced, thanks to the small ac input current ripple, without

need for additional input fi Iters

7) Excellent dynamic response enables simple ccm@ens_tioh

in a switching regulator implementation

8) Can be used as a constant-current as well as a constant-

vol rage source

g) Much simpler transistor drive circuitry, since the switch-

ing transistor is referenced to ground (grounded emitter)

10) Various technological implementations of the switching

action are possible (see Chapter 14).

In conclusion, the new switching dc-to-dc converter i_ scperlor

to any of the currently known dc-to-dc converters in its category,

outperforming them in every respect.
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CHAPTER 14

IMPLEMENTATION OF THE NEW SWITCHING CONVERTER

AND FUTURE AREAS OF INVESTIGATIONS

The investigation_ made so far have opened up several new

avenues for future research. The primary intention of this chapter is

to outline briefly some of the leads which may be followed. For that

reason, this chapter will be relatively short in scope, but neverthe-

less quite important in setting up the major thrust of future efforts.

These efforts may be classified in two main categories:

theoretical and practical. From the practical viewpoint, various

possibilities exist for the actual hardware implementation of the

new converter topology (Fig. 12.2) besides the one already presented

using a bipolar transistu." and diode for the realization oC the

switch. The recent advent of switching power devices (tra_'sistors)

in the metal-oxide-semiconductor (MOS) technology gives an alterna-

tive hardware realization, which looks very promising. Further study

is necessary, however, to investigate the various trade-offs between

the two technological implementations. The recent availability of

the complete, signal processing (feedback control) part of the

switching regulator (see Fig. l.lO or Fig. 14.2), in a single integrated

circuit makes the closed-loop regulator implementation of the new

converter extremely convenient and further reduces the total size

and weight of the regulator.

From the theoretical viewpoint, several areas are now

immediately open fo} _.tailed analysis. The basic foundations are

already flrmly laid out for modelling of the new converter in the
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discontinuous conduction mode and only the detailed work remains.

Then, analysis and design of switching regulators incorporating the

new converter and also several feedback loops becomes feasible for

both conduction modes.

Finally, the search for new, innovative converter topologies

can be continued. Possible modifications of the new converter or

some other converter topologies are being sought which could include

some desirable properties, such as input-output isolation and its

corollary, the multi-output feature.

14.1 implementation of the new converter with VMOS power transistors

Metal-oxide-semiconductor technology was considered until

recently only applicable to small-signal, low-power devices, but it

is now making inroads into the high-power field through the family of

vMOS (vertical MOS) power field-effect transistors. While bipolar

transistors are current-controlled minority-carrier devices, the VMOS

power field-effect transistors are voltage-controlled majority-

carrier devices, which has many advantages. They have much higher

input impedance, fast switching speed because of absence of minority

carrier storage, and no secondary breakdown because of the negative

temperature coefficient. Their switching speed (4 nsec typical) is

one or two orders of magnitude faster than in comparable bipolar

(200 nsec), hence the switching losses are significantly reduced.

Therefore, the circuit hardware realization of the new converter

topology (Fig. 12.2) using VMOS power transistor as shown in Fig. 14.1a
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may have some advantages over the bipolar transistor implementation

in Fig. 12.3.

L,

Fi 9. 14.1

b}
C, L2 L,

vM R T

C, L2

Implementa_n of the new conu_rt_r in Fig. 10.2 by

different technoZogical realization of _e _witch S _ing
VMOSFET power Irans_tor_.

As seen in Fig. 14.1b there is also the possibility of

rep]acing the diode by another VMOS power transistor. The t_o

transistors are then voltage driven oppositely, when one transistor

is on, the other is off and vice versa. The converters in Fig. 14.1

can be implemented by use of the state-of-the-art VMOS power

transistor VMPI (25 watts) from Siliconix, Inc.

14.2 Closed-loop switchinq regulator implementinq the new converter

In Fig. 14.2 it is shown how this new converter can be incor-

porated in the complete closed-loop switching regulator. For a further

reduction in size, the integrated circuit incorporating a pulse-width-

modulator (PWM), feedback circuitry, power transistor and diode on

a single integrated circuit (Texas Instruments TL 497C) is used.
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The output dc voltage V2 is then determined by

Rl)V2 = ÷ _22 VREF
(14.1)

where VRE F is the internal reference voltage of VRE F = 1.2V. By

use of the modelling technique of Part I and Part If, the converter

canonical circuit model can be obtained and the proper feedback

compensation designed with the help of feedL._ck analysis in Chapters

5 and 9. Two or more feedback loops may be considered also.
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14.3 Discontinuous conduction mode in the new converter

The new converter (Fig. 12.3) may be considered as consisting

of a boost power stage followed by a buck power stage, as was

explained in Chapter 12. Then, we can define the dimensionless

parameter K2 for the output (buck) power stage as

2L 2
K2 R fs (14.?)

which will determine with the help of Table VIII (Chapter 8)

whether or not the output buck power stage is in discontinuous conduc-"

tion mode, If it is, Table VI is instructive in defining the model

of the output (buck) power stage.

It has been shown (Chapters 5 and 9) that the open-loop low-

frequency input impedance Rin of a buck converter is

R. = R (14.2)
in M2

where M is the dc gain of buck power stage. Since Rin is now the

dc load for the input boost converter, we can define another dimen-

sionless parameter K1 for the boost power stage as

2L 1
- -- f (14.3)

KI - Rin s

which will now determine when the input boost power stage is

ope"ating in discontinuous conduction mode and will define its model,

by use of Table VIII and TableVI respectively.

This now illustrates how the analysis of complex problems can

be broken down into analysis of simpler ones, and at the same time
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demonstrates the power of the complete_ model representation, which

also includes the converter input properties.

14.4 Search toward new, innovative converter topologies

There are some desirable converter properties, which have not

yet been discussed. Namely, all the converters considered so far,

including the new converter, have common ground for both input

(source voltage) and output (load) circuit. However, there are some

converters having the so-called isolation property, which allows the

unregulated source voltage ground to be isolated from the load ground.

For example, a simple modification of the conventional buck-boost

converter in Fig. l.lb can be made to include this isolation property

between the input and output, and is shown in Fig. 14.3.

V

11 i!R
l:n

Fig. 14.3 Conventional buck-boost _di_ied 4o in_l,_de the i_ola_on
p,'wpe,,'_y.

Comparison of Fig. 14.3 with Fig. l.lb shows that the modifica-

tion consists only in replacing the original energy transferring

inductance by a transformer with l:n turns ratio. Moreover this turns

ratio now proportionally affects the dc gain and appears as another

controlling factor besides duty ratio D. Hence, by adding another
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secondary circuit, two converter outputs at different dc level could

be obtained. Then, this multi-output feature comes almost as a by-

product of the isolation property of the converter. Both of these

properties are very desirable for some applications.

The natural question now arises: is it possible to build this

desirable isolation property into the new converter of Fig. 12.3 by

some appropriate modification of (or addition to) its topology? If

it is not possible, could some other converter topology based also

on the capacitive energy transfer (for basic dc conversion realization)

be devised which includes the isolation property? Perhaps, the less

ambitious goal of achieving only the multi-output feature without

the isolation property in the new converter is feasible.

The search for new innovative switching converter

topologies continues...
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CONCLUSION

A general unified approach to modelling switching converters

has been developed which is directly applicable to any dc-to-dc

converter operating in either of the two conduction modes. Despite

its remarkable simplicity, the method is shown to be accurate enough

for all practical purposes, since its primary assumption of small

swiCching ripple is also the main requirement for acceptable converter

performance. Both state-space averaged models and their corresponding

circuit realizations provide the circuit designer with a powerful tool

for both analysis (as demonstrated in Parts I and II) and synthesis

(as demonstrated in Parts III and IV) of existing as well as new

converter topologies.

The importance of the completeness of the circuit model realiza-

tion, versus its representation through transfer functions only,

cannot be overemphasized _ince it may be compared, for example, with

complete linear circuit model of a transistor (which besides transfer

properties, properly represents both input and output properties as

well),versus its gain-frequency response only.

The benefits of the state-space averaging technique can now be

applied in several areas:

(1) development of compara;:ive criteria and design tools based

t;pon the canonical models;

(2) extensino and development towards modelling and analysis

of dc-to-ac and ac-to-dc inverters;

(3) search For innovations in power processing techniques.
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By use of canonical circuit models to represent the input and

the transfer properties of a general class of dc-to-dc converters in

both continuous and discontinuous conduction modes, the way is now

clear to apply these models in development of design optimization

tools and comparative criteria for a wide range of switching

regulators.

In particular, it is now possible to make an informed selection

of the optimal conduction mode for a given application. It is some-

times suggested that the discontinuous conduction mode has a number

of advantages with respect to frequency response; however, the new

canonical models indicate that this is only part of the story in that

the benefits might be outweighed by other disadvantages.

Again as a consequence of the canonical models, it is now

possible to make a comparative classification of all known dc-to-dc

converters, regardless of their apparent complexity. Sin_. some

configurations have undesirable factors in their duty ratio frequency

response (right half-plane zeros), it is important to know whether

the resulting much more severe regulator stability conditions are

outweighed by other performance advantages.

Finally, in direct application of the canonical models, system

optimization of switching regulators can be investigated, in that

the relative merits of fixed and variable frequency operation,

and one- or two-loop feedback, can be also evaluated.

In the area of dc-to-ac and ac-to-dc inverters, much work remains

to be done, but there is a strong expectation that the present state-

space averaging techniques can be extended to include their analysis
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and design.

In Parts ill and IV it has been demonstrated how these modelling

techniques can effectively be used in the search for new, innovative

converter topologies.

The insights that have emerged from the general state-space

modelling approach suggest (as illustrated in Chapter 14, for example)

that there are still some features yet to be desired in switching

converters not realized by the new optimum topology converter. Hence,

there is a whole field of new switching dc-to-dc converters yet to

be discovered. This encourages a renewed search for innovative

circuit designs (or modification of existing ones) in a field which

is yet young, and promises to yield a significant number of inventions

in the stream of its full development. This progress will naturally

be fully supported by new technologies coming at an ever-increaslng

pace. However, even though the efficiency and performance of

currently existing converters will increase through better, faster

transistors, more ideal capacitors (with low ESR) and so on, it will

be primarily the responsibility of the circuit designer and inventor

to put these components to best use in a topology which is optimal

with respect to the given performance requirements. Search for new

converters, and how best to use present and future technologies, will

be of prime importance in achieving the ultimate goal of near-ideal

general s_dtching dc-to-dc converters.
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APPENDICES

In the sequence of Appendices A, B and C several of the

questions related to substitution of the two switched models (3.1)

by the state-space a_'eraged description (3.3) for the continuous

conduction operation in which two structural changes occur within each

period are thoroughly discussed. Then, in Appendix D the state-

space averaging step is naturally extended to include the multi-

structural change (three or more different topological configurations)

within each period. This also serves as a basis for development in

Part II of modelling procedures for switching converters operating

in the discontinuous conduction mode.

It has already been shown in Chapter l that the requirement

on negligible switching ripple imposes inequality restrictions (l.ll)

• << fs" Inon the choice of parameter values namely fc << fs and _

Ap)endix A it is demonstrated that under the same inequality conditions

(l.ll) the fundamental matrix eATs can be approximated to a very high

degree of accuracy by its first-order linear term I + AT s. This is

confirmed both analytically and quantitatively (numerically), for

a typical set of parameter values and operating conditic_s for a

boost converter, though it is readily applicable to any other converter

configuration,

These linear approximations of the fundamental matrices
T_

eAl'Sand eA2TSlead naturally in Appendix B to the state-space averaging

step (3.2) or (3.3). The evolution of the state-variables during

each period Ts, originally governed by two linear system descriptions

(3.1) is with the help of these linear approximations substituted by
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a single linear description (3.2) which very accurately models thr

overall dynamics (with switching ripple being neglected and

"smoothed out").

Appendix C provides an excellent theoretical tonfirmation

of the validity of the state-space averaging step and the high

accu, acy of the derived results. Namely, through a rather elaborate

procedure and quite cumbersome expressions, the steady-state (dc)

conditions can be found exactly by proper matching of the boundary

conditions as shown in Appendix C. In general, besides depending

on steady-state duty ratio D, load R and parasitic resistances, the

exact dc conditions also depend on the storage element values and

switching frequency fs in a rather complicated fashion. However,

under the linear approximation of the exponential matrices, these

additional aependencies disappear, the dc conditions become dependent

on duty ratio D, load R and parasitic resistances only, and reduce

analytically to the same expressions as those predicted by the state-

space averaged model. In addition, the exact dc conditions serve as a

good quantitative measure of the high accuracy of the results obtained

via state-space averaging and offer a quantitative insight into its

basic underlying requirement, inequalities ,l.ll).

In Appendix D the state-space averaging step is generalized

to multistructural converter configurations. In particular, the

state-space averaged model for converters with three structural

changes within each period is derived analogously as in Appendix B.

As an example, the cascade connection of boost and buck converters

(both operating in continuous conduction mode) is shown to generate,
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under special driving conditions of the two switches, either three

or four different topological configurations. Finally, the state-

space averaging step is demonstrated for the generalized switching

converter ,Jith n topological structural changes within each switching

period.
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APPENDIX A

On the linear approximation of the fundamental matrix

From the well-known body of linear system theory the exponen-
AT

tial (fundamental) matrix e s can be expressed in terms of an infinite

convergent series as:

AT
P 3

ALTs-/2! + A3Ts /3! + .., (A.I)e s = I + AT s +

which in form very much resembles its scalar counterpart (expansion of

est in an infinite series). The fundamental question we now ask is:

when can this exponential matrix be satisfactorily approximated by

its first-order term (linear in Ts)? Note that it is not enough

merely to specify Ts being very small, but rather small in comparison

with some other quantities dependent on matrix A (compare with the

simple scalar case). In addition, the question of how good the linear

approximation will be for a given Ts and A ought to be answered

quantitatively.

We now demonstrate the answer to these questions on a boost

circuit example (see Fig. 3.1 and Fig. 3.2), in which for simplicity

of presentation R£ = 0 and Rc

and A2 of (3.]7) then beco,m:

Al = I:°!
= 0 is assumed.

A2--

AT s
The exponential matrix e

The two matrices Al

! _
C

can be found in a closed form

using an alternative definition to (A.l), that is

(A.2)
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eATs c-I -1]-- [(s[-A) (A.3)

where operator G_ -I denotes inverse Laplace transformation, while

s is complex frequency. By applying (A.3) to (A.2) we obtain closed

AIDT s A2D'T s
for____mexpressions for the exponential matrices e and e

as shown in (A.4).

= -2wotDTe 0 e

AsD'T s -_D'T s
e =e

• w sin,_oO'Ts

c°sw°D'Ts + -_Qmosinw°D'Ts _oL

_-_ sinst n_ol)'T s cOS_ol_, Ts -w oD'Ts

%c o

(A.4)

v,here

ws 2R-'-C' _o = - (A. 5)

Suppose now that the switching frequency fs = I/Ts is

sufficiently g)'eater than the natural frequencies _ and _o of the

converter, such that

_oD'Ts<< I and _D'Ts<< 1

Then, by introduction of the linear approximations

-2_DT s
' De _l-2_DTs, cOS_oD'Ts_l , sin_oD Ts_ ° 'Ts

matrices in (A.4) reduce to:

(A.6)

(A.7)
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[ + A1DTs = [1
0

DTs
1-ej

I + A2D'T s =

l

D'T s

C

D'T s

L

D'T
l s

RC

(A.8)

Let us now calculate the exact exponential matrices (A.4)

and the approximate ones (A.8) for the typical numerical values used

in a practical boost converter

L = 6mH, C = 45uF, R = 30_, D = 0.25, V = 37.5V
g

(A.9)

and with constant switching frequency fs = lOkHz.

resu]ts are obtained:

AIDT s
e

r] .o o21
:!

Lo .98

eA I 0.99

2D'Ts =

1.616

I+AIDT s r 1I,io o0.982
I+A_D'Ts_ = I 1.0

.667_

The following

-1.21xi0-20.9361

(A.IO)

-1"25x10-2 ]
0.944

while natural frequencies f and f computed from (A.5) are
0

f = 370/2_Hz and f = 306Hz. Note also that f = I/2_/['C_ 306Hz
0 C

is very closely approximated by fo"

From (A.lO) it becomes obvious that the linear approximations

for the fundan_ntal matrices

A1DTs_,
e I + AIDTs,

A20' _
e _ I + A2D'T s (A.]l)
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will introduce insignificant error (less than 2%) since the following

inequality conditions are well satisfied:

fc
- 0 037 << l and - 0.0306 << l (A 12)

f f •
S S

and f slightlyHence, even for the natural frequencies _a c

more than a decade apart from the switching frequency fs' satisfactory

results are obtained using linear approximations for the exponential

matrices.
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APPENDIX B

The Fundamental approximation in the

sta.te-space averaging approach

Consider now that a switching dc-to-dc converter operating

in the continuous conduction mode is described by the following

state-space equations for the two switched models-

xI = A1x I + blVg for interval Tsd , (0 < t < tl)

x2 = A2x 2 + b2Vg for interval Tsd' , (t] < t < T s)

(B.I)

Here the state-variable vector x is denoted by xI for interval Tsd

(0 _ t _ tl), and by x2 for interval Tsd'(t I _ t _ Ts) to distinguish

clearly the solutions in the two regions and to make their connection

by matching boundary conditions at t : tI more visible.

The solutions of (B.I) can easily be found in terms of

exponential matrices and convolution integrals as
t

Alt I (t--)xl(t) = e Xl(0) ÷ eA1 blVgd_ for (0 _ t _ tI)

o (B.2)

A2(t-tl) It Az(t-T)x2(t) = e x2(t l) + e b2VgdT for (tI _ t C Ts)

tl

With the assumption that Vg is almost constant (small signal assump-
A A

tion on Vg = Vg + Vg where Vg <<,Vg) so that it can be taken outside

the integrals, and by introduction of the substitutions

Bi(t ) = IteAi_dT = Ail(eAi__i)
O

for i = 1,2 (B.3)

into (B.2), the solutions become"
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A1t

xl(t) = e Xl(O) + VgBl(t)b I

A2 (t-t I)

x2(t) = e x2(t l) + VgB2(t-tl)b2

for t _ [O,tl]

for t c Itl,Ts]

(B.4)

This is pictorially represented in Fig. B.l, which shows how the

first equation in (B.4) carries initial state-vector x](O) across

interval Tsd into the xl(t l) state-vector and how the second equation

carries it further into x2(Ts) during the subsequent interval Tsd'

Xltl

t xilt'l_ x21t_ t eAet_l

×,(oll ffx, _1_ .l}

0 tl

Fig. B. I Pictorial representation of the evolution of the state
vector x(t) from the origin_sw_t_ed n_twork description
(heavy line) and _ state-space averaged modeZ d_cription
(dotted l_ne).

By definition, state variables cannot change instantaneously

(like inductor currents and capacitor voltages), hence the vector of

state-variables is continuous across the switching instant tl, or

x1(t I) = x2(tl)

which has also been displayed in Fig. B.I.

(B.4), the state-vector x2(T s) is determined as:

A2d'T s AldT s A2d'T s

x2(T s) = e e Xl(O) + Vg[e Bl(dTs)b l
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+ B2(d'Ts)b2]
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Introduction of linear approximations (A.ll) and retention

of only the first-order terms transforms (B.6) into:

x2(Ts) _ (I + dAITs + d'AzTs)Xl(O) + Vg[dbiTs + d'b2TsJ (B.7)

However, the same equation could be obtained for any switching

period, say n-th by slmle substitutions Xl(O) - x(nTs),

xz(Ts) - x[(n+l)Ts] which, after suitable rearrangement of (B.7),

produce:

x[(n+l)Ts] -x(nTs)

" (dAl+d'A2)x(nT s) + Vg(dbl+d'b 2) (S.S)

Wlth the definition of the derivative

• x[(n+l)Ts]- x(nTs)

x(nTs) - _ (B.g)

we define a continuous system corresponding to (B.8):

• Ix = Ax+ bVg where (B.10)

• b dbI + d'b2

We have, finally, succeeded in substituting the original two

state-space models (B.l) by a single continuous state-space averaged

model (B.10) using only linear approximations of the exponential

matrices {A.ll) which are shown in Appendix A to be very accurate.

The meaning of the state-space averaged model (B.lO) should

be understood in the following way. Even though its instantaneous

state-vector x(t) (shown by dotted lines in Fig. B.l) may differ

from the evolution of the state vector in the original system (B.I)

{shown in heavy lines in Fig. B.l) inside the switching period T@
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it very accurately carries the starting state x(nT) into final state

xF(n+I)T]. In essence it effectively "smooths out" the switching

ripple superimposed on its dynamic motion, as clea,'ly displayed in

an exaggerated fashion in Fig. B.l. The actual switching r_pple,

however, is much smaller than that shown in Fig. B.I since it is

dictated by tight performance requirements in practical converters

(switching ripple usually on the order of 0.01%). This negligible.

switching ripple is in fact what justifies the state-space averaged

model (B.10) (shown in dotted lines in Fig. B.I) which assumes zero

switching ripple.

It is interesting to point out that in going from (B.6) to

sonm second order terms (proportional to Ts2) could have been(B.7)

retained. However, the very. marginal added accuracy would not justify

the tremendous complexity introduced into the model. All tl_e

desirable properties of the model (B.lO) (equivalent circuit inter-

pretations, general state-space averaged model, canonical circuit

model) as well as simplicity of the pro*edure would have been lost --

sacrificed merely for the sake of a tiny correction term which is

negligible anyway (its effect being much smaller than even component

tolerances effect).

Another property of model (B.lO) quickly arises. If we had

considered first the "off" interval and then the "on" interval in

matching boundary conditions, the following equation corresponding to

(B.6) would have been obtained:

A l A] dTs
x(T s) : e dTseA2d'Tsx(o) + Vg[e B2(d'Ts)b 2 ÷ Bl(dTs)bl] (B.ll)
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However, use of ]inear approximations (A.ll) and retention of only

the first-order terms again results in (B.7). Hence, the state-space

averaged model (B.lO) is indistinguishable with respect to which

interval was considered to be first, whether interval (dT) was
s

followed by interval (d'Ts), or vice versa. However, if the second-

order terms are retained, a distinction betweer, models derived from

(B.6) and (B.ll) would exist.

From comparison of the solution of (B.IO)

= iSeA(Ts -_)X(Ts) eATsx(o) + bVgd_

0

with (B.6) or (B.II), the problem of modelling can be partly stated

in the following way: can a matrix A be found such that

eATs = eA2d'TseA1dTs (B.IZ)

The general result is provided by the Baker-Campbell-Hausdorff series

[5] for the matrix A:

AT s = (dA l+d'A2)T__ + dd'(A]A2-A2AI)Ts 2_.-- (B.13)

For switching converter applications, the second-order term is

negligible, resulting in

A = dA l + d'A 2 (B.14)

as obtained before using linear approximations (A.ll). The result

(B.14) everi becon_s exact when the matrices involved are commutative,

that is when AIA 2 = A2A I. This is the case, for example, for the buck

converter in which A l = A2 = A.
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It remains, finally, to incorporate into model (B.IO) the

cases when the output quantity does not coincide with any of the

state variables (as in, for example, the boost converter of Fig. 3.]).

T
Since, during the interval Tsd the output quantity becomes Yl = c| x

T
while during the interval Tsd' it is Y2 = c2 x, the output quantity

y over the whole period Ts is taken to be their average, or

y = dy I + d'y 2 = (dclT+d'c2T)x (B.15)

and with (B.lO) completes the state-space averaging step (3.2) or

(3.3).

1
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APPENDIX C

Derivation of the exact dc conditions and their

simplification under linear approximation of the

exponential matrices

We now derive the exact steady-state (dc) conditions from

the general state-space description (B.l) of the two switched circuit

models. Since for steady-state Vg = Vg (dc voltage only) and d = D,

the exact s_lutions analogous to (B.4) are obtained as

t

x1(t ) = eA1 x1(O ) + VgB1(t)b I for t c [O,t I]

xz(t ) = eA2(t-tl )

where

x2(t I) + VgBz(t-tl)b 2 for t _ [tl,T s]

t

Bi(t) = ,I eA_d_

0

Solutions (C.l) contain two yet undetermined constants,

(c.I)

Xl(O) and x2(tl). We therefore impose two boundary conditions:

(a) the vector of state variables is continuous across

Hence

the switching instant tl, since the inductor currents and

capacitor voltages cannot change instantaneously.

Xl(tl) -- x2(tl) (c.2)

(b) from the steady state requirement, all the state variables

should returr after period Ts to their initial values. Hence:

Xl(O) = x2(Ts) (C.3)
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The boundary conditions (C.2) and (C.3) are illustrated in

Fig. C.l, where v(O) = V(Ts), i(O) = i(Ts) and i(t) and v(t) are

continuous across the switching instant t|.

capacitor i nduc tor

voltage IV) currentlA)

5o1-._ _ ------_ 5
I_ _ _ "capacitor voltage 7

40_L_ \vlO) -___fs= IkHz vlTsl " 4

/ DTs /
_oI- I.__ - 3

'°I"',°, i , , , , , , _
_- time Ts0 t_ 0.5Is --_

Fig. C. I Typical state-variable ,tu_e d_pendence ov_ a single period

Ts in the steady-state, for .the boost ccrcuit n_merical

example with fs = IkHz.

Insertion of (C.2) and (C.3) into (C.l) results in solution

for the initial condition Xl(O) as well as the other constant x2(tl):

D'A2TseDAIT -l D'A2TsB
x1(O) = x2(Ts) = Vg(l-e s) (e

A1DT
x2(t l) = xl(t I) = e sXl(O) + VgB1(DTs)b I

l(DTs)b I + B2(D'Ts)b 2)

(c.4)

It was already demonstrated in Appendix A that closed-form

exp _ssions for the fundamental matrices can be found, as in (A.3).
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Moreover, the same is true for Bi(t ) since

t Ai T (eAi tBi(t) = e dT = Ail- -I),

0

provided inverse matrices A_ l (i=l,2) exist.

solution for initial conditions is obtained.

i : 1,2 (c.5)

Hence a closed form

Then, with use of (C.I)

and (C.4), the instantaneous state-vectors xl(t) and x2(t) can be

plotted via a computer program.

In particular, for the boost circuit example of Fig. 3.1,a

computer program RIPPLE (attached to the Appendices) was made. In

addition to the parameter values shown in (A.g), R_ _ 0.46_ and Rc =

0.28_ were adopted and for switching frequency fs = Ikllz the inductor

current and capacitance voltage waveforms of Fig. C.I were

generated using this program. The waveforms reveal a substantial

output voltage ripple (almost 15%) since the inequality conditions

(l.ll) or (A.6) are not very well met.

We now proceed with derivation of the dc conditions. As

seen from Fig. C.l, the average values of inductor current and

capacitor voltage could be found by integration over the period

Ts, and in general the steady-state vector X is found from:

i i
X = _SS [ Xl(T)dT + • x2(T)d_]

0 tl

Even though the integration (C.6) using (C.1) and (C.4) seems

complicated, it can actually be carried out w]th repeated use of

result (C.5) to obtain

(c.6)
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X(Ts ) = Is I(DT's)Xl (O)+B2(D'T s)x 2 (tl)*Vg _ B1 (_) bl* ;IB,Z([)dI, b2

c o

where (C. l)
t

Ait
( B (_)d_. = A-2(e -5) - tA -I for i 1,2 (C.8)
._ I I 1

0

Equal, ion (C.7) with the help of (C.4), (C.S) and (C._) now completely

determines the steady-state vector X(T) thrt_ugh the _:Jltiplication

and inversion of the known matrices A1 and AL, ,vectors b] and b2

AIDTsand the exponential matrices e and eAzL)'Ts

It is obvious from the complexity of (C.7) that X(T s)

in general depends net only on D and various resistive elements, but

also on all parameter values including storage elements L and C and

on switching frequency fs as well. Since the exact dc conditions

r_presented by r_ ,_u.7) appear to be quite complicated functions of

switching frequency fs =I/Ts'°ne has to resort to the computer to

obtain insight into that functional dependence. A computer program

PBOOST (attached to these Appendices) was used to plot the output dc

voltage obtained from (C.7) and the initial in,HL,tor current i(O)

from (C.4) as functions of switching frequency fs = I/Ts for the

boost circuit example of Fig. 3.1. For the s_._e p_ra_et_r values used

before, that is:

L = 6mH, C = 45#F, R = 30_, D = 0.25, V = 37.5_',
g

R_ = 0.46_, R = 0.28_
C

(c.9)

the computerized plot of Fig. C.2 results.
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As seen from Fig. C.2, the point where the initial inductor

current i(O) becomes zero determines the boundary between continuous

and discontinuous conduction regions. Since the exact dc conditions

(C.7) are implicitly applicable to the continuous conduction region

only, this helps to contain the functional dependence (C.7) within

region of its applicability. The actual dependence of dc conditions

on switching frequency fs in discontinuous conduction region shows

grossly different behavior, as was shown in Part II.

From Fig. C.2 it is evident thaL the output dc voltage changes

appreciably only when switching frequency f becomes close to the
S
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filter corner frequency fc = I/2n¢_-C"= 306Hz or the effective filter

corner frequency fo = D'fc = 230Hz, while for higher switching

frequencies (to the right of point A in Fig. C.2) it becomes almost

constant and for all practical purposes independent of fs" Also at

point A in Fig. C.2 (fs = IkHz) substantial ripples in the instan-

taneous output voltage and inductor current are observed, as v#as

demonstrated by Fig. C.l. However, if ali conditions (C.9) are

retained but the switching frequency is increased to fs = lOkHz

(point B on Fig. C.2), the plot of Fig. C.3 is obtained via a computer

program RIPPLE.

capacitor

vol _age (VJ

4o - DTs

30

20 r

I0-

0 i

d
w I

i r,duc'tot
current(A)

capacitor voltage

?s" lOkHz

inductor current

f

I I

4

3

m I 1 l 0

tI &sTs time Ts

Fig. C.3 Same a_ Fig. C. I but _ f, : l OkHz. St._o,,_ _.J_nea)_,Jt:y
and small ripple _.xhibitcd B_I the cu_v_ a_e con_¢qu.cn.c¢_

of cATs_ I + ATs,Sine¢ _c/f_ << I.
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From Fig. C.3 it is clear that the switching ripple is

substantially reduced and has become negligible since the inequality

requirements (A.12) or (l.ll) are well satisfied. Moreover the state

variables show very strong linearity in the two intervals TsD and

TsD' on Fig. C.3. This is by no means an accident, but a consequence

of the f_ct th;_t linear app_Y___ximafionsof the fundamental matricms

(A.11) are well satisfied at point B in Fig. C.2, as was verified in

Appendix A. Hence the introduction of these linear approximations

into (C.1) would bring a linear time-dependence of state variables

and show as straight lines in Fig. C.3. Furthermore, the same linear

approximations (A.ll) when introduced into exact dc conditions (C.7),

and upon retention of first order terms only, greatly simplify the

steady state {dc) vector X(T s) to:

A = DA I + D'AZ

X = -A-IbVg where (C.I0)
b = Db I + D'b 2

It may seem surprising that the steady state vector X came out to

be independent of period Ts or switching frequency fs" However, it

is exactly this equation (C.IO) which models very accurately the

most interesting region for practical purposes-- the flat portion of

the dc output voltage shown in Fig. C.2 to the right of point A,

where switching ripple becomes negligible and which is also practically

independent of switching frequency fs" It is interesting that (C.10)

becomes an exact result when the limit Ts -_ 0 is used on (C.7), that

is

X-- lim X(T s) (C.ll)
T_O
S
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However, one does not have to go to infinite switching Frequency,

since the separation of the switching frequency from the natural

frequencies f and f by more than a decade would lead to esseritially
C

constant steady state vector X given by (C.lO), as illustrated in

Fig. C.2.

Now a very interesting comparison with state space averaged

model (B.lO) developed in previous Appendix B can be made. Since in

the steady state x[(n+l)Ts] = x(nTs), from (B.9) we obtain x(nT s) = 0

and (B.IO) gives exactly the same result for steady state vector X

as (C.IO) (with, of course, substitutions Vg = Vg and d = D for dc

regime) and also coincides with result (3.7) in Chapter 3.

After deriving the quite cumbersome exact dc conditions (C.7),

one can t_uly appreciate the tremendous simplification achieved by

using the simple result (C.lO), which is shown to be justified for

all cases of practical interest (negligible switching ripple). More-

over one can now fully recognize how powerful is the state-space

averaged model (B.lO) ur (3.2). It not only serves to determine very

accurately the dc conditions (steady state ve tor X) in a rather

simple way, but also is the basis for development of a dynamic model

of the switching converter as demonstrated in Chapters 3 and 4.

In addition, both dc and ac small signal models are consistent with

each other since they are obtained with the _me degree of accuracy

owing to the same crucial approximation (A._l).
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The results of the sequence of Appendices A, B :_nd C ca,, now

be very briefly and concisely summarized. The basic Fe_formance

requirement for switching dc-to-dc converters of small (negligible)

switching ripple is shown to be the underlying motive for the follow-

ing sequence of cause and effect:

switching _ natural switching c==_> fundmnental
ripple small frequencies << frequency matrices

linear _ state-space {ZZ_> dc and ac small signal state-
_approximation_averaging step space averaged model

In conclusion, the recognition of this sequence of implica-

tions enabled extremely simple, powerful and very accurate scheme for

modelling and analysis of switching converters to be devised. This

scheme is now generalized in Appendix D to switching converte_with

multistructural topological change.
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APPENDIX D

§tate-space averaging step extended to converters with

multistructural (three or more I to_9_ical changes

within each period

We now derive the state-space averaging step for switching

converters characterized by three structural changes within each

switching period. Each topological structure can be described as

before by linear state-space equations, hence

x 1 = AlX 1 + blVg

x 2 = A2x 2 + b2Vg

x 3 = A3x 3 + b3Vg

for interval diT s,

for interval d2T s,

for interval d3T s,

(0 -< t<tl )

< <

(tI - t - t2)

(t2 < t < Ts)

(D.I)

In contrast to the previous derivation, two boundary condi-

t¢ons are now imposed. Since the state-space vector is continuous in

transition from first to second and from second to third regions

x2(t l) = xl(t I)

x3(t2 )= x2(_)

Solution of (D,l) under the small signal assumption for v
g

A

Vg = Vg+Vg and Vg << Vg) yields

(D.2)

(where

Alt

xl(t) = e Xl(O ) h: VgBl(t)b I

A2(t-t I)

x2(t) = e

A3(t-t 2)

x3(t ) : e

x2(t I) + VgB2(t-tl)b 2

x2(t 2) + VgB3(t-t2)b 3

for t c [O,t i]

for t c [tl,t 2]

for t c [t2,T s]

(D.3)
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where
t

Bi(t) = [ eAITd_ ' i = 1,2,3 (D.4)

0

Use of boundary conditions (D.2) in (D.3) gives

A_d_T A^d^T

x3(T s) = eA3d3TseA2d2Tse AldlTs Xl(O) + Vg[e j j Se z L SBl(dITs)bl +

A3d3T s

+ e B2(d2Ts)b2 + B3(d3Ts)b3] (D.5)

With introduction nf the linear approximations

AidiT s

e _ I + AidiT s , i = 1,2,3 (D.6)

into (D.4) and (D.5), and after retention of only first-order terms

(linear in Ts), (D.5) reduces to

x3(Ts) = (l=dIAl+dzA2+d3A3)Xl(O) + (dlbl+d2bz+d3b3)Vg
(D.7)

This, as explained before in Appendix B, lead_ to a single continuous

linear system

. A = diAl + d2A 2 + d3A3

x = Ax + by where (D.8)

g b = dlb I + d2b 2 + d3b3

which, within the accuracy of approximations (D.6), models the

dynamic and static behavior of the system originally described by

periodic change among the three linear systems (D.l).

As an illustration of a switching converter with such multi-

structural change, consider the converter shown in Fig. D.la whose

two switches Sl and S2 are driven as specified in Fig. D.Ib. The

two switches Sl and S2 are shown in their "on" position in Fig. D.la.
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Fig. D. 7 &_ching aonvert_ exhibiting m,_truct_ change:
a) boost converter cascaded by a buck converter b) switch

drive for "three state" behavior c} switch drive for
"four state" behavior.

It can easily be recognized that this converter is actually a boost

converter cascaded by a buck converter whose switches are driven

synchronously but with different duty ratios, dI and dl+d 2

respectively. This is in contrast to the case discussed at length

in Part Ill, where both switches have the sage duty ratio and for

which only two switched networks need be distinguished.

However, if this converter is looked upon as single system,

the switching action of Fig. D.Ib would produce periodic sequential

change among three different structures (shown in Fig. D.2 b,c, and d),

while that of Fig. D.Ic 'vould produce periodic sequential change

among all four different switched netwcrks of Fig. D.2. In any case,

it demonstrates the feasibility of realization of the generalized
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switching converter of Fig. I.II having three or more switched neF

work configuration_ even in the continuous conduction mode of opera-

tion. Haturally, result (D.8) is then directly applicable to the

situation in Fig. D.Ib provided the converter is operating as a whole

in the continuous conduction mode of operation (ensuring that only

those switched networks of Fig. D.2 b,c and d actually exist).

al S, on,S-z off" b) S, on,S2 on:

L, L2 L, L2

-_' R V, R

-@

Fig. P.2 Va_cous switched networks for the conve_r in Fig. D. la.

On the other hand if the converter is looked upon as consisting

of cascaded boost and buck converters and each of them has been

modelled separately as a "two-state" converter following Part I, and

their models put together, the same result would have been obtained.

Other examples of "three-state" switching converters are the

familiar common power stages (buck, boost and buck-boost of Fig. l.])

operating in the discontinuous conduction mode as demonstrated in

Chapter I. However, even though the three different switched
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networks are also clearly distinguished (compare with Fig. 1.7 for

example) the discontinuous conduction mode represents a rather §pecial

case of the "three-state" converter. While in ordinary "three-state"

corlverters (like that demonstrated by Fig. D.la, b and Fig. D.2b, c and

d) all the state variables (inductor currents and capacitor voltages}

retain their essential properties which characterize them as state-

space quantities (free, independent initial and final conditions)

this is not so for discontinuous conduction operation. Namely, the

inductor current is forced to have zero initial and final condition

(compare Fig. 1.6 for example). Hence, inductor current which becomes

discontinuous ceases to be a true state-variable. Therefore, in

addition to the state-space averaging step (D.8) for "three-state"

converters, some other restrictions are imposed to reflect this limited

behavior of inductor current with fixed (zero) boundary values.

What these additional requirements are is shown in Part II, where they

naturally lead to the reduction of system order (discontinuous

inductor current becoming a removed state-variable) and transform the

basic averaged model (D.8) into a linear circuit model of such

converters.

In Chapter l it has already been demonstrated that the

inequality requirements (l.ll)(natural frequencies << switching

frequency) are well satisfied even for the discontinuous conduction

operation. Hence, because of the results in Appendix A, the linear

approximations (D.6) are excellent and the basic averaged model (D.8)

is a very accurate starting model for modelling converters in the

discontinuous conduction mode.
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We have therefore established that the state-space averagirg

stcj (D.8) is generally applicable to "three-state" switching

converters: directly to the converters operating in continuous

conduction mode (alon3 procedures outlined in Part I), and with some

additional restrictions to converters operating ic discontinuous

conduction mode (as specified in detail in Part If).

It remains, finally, to characterize the state-space averaging

step for the generalized switching converter with n structural

changes within each switching period, namely, one described by

• diTs: ti-ti_ 1

x = Aix + biVg, i = 1,2,...,n (D.g)

t E [ti_ l,ti]

for which the corresponding basic state-space averaged model is
n

A = _ diA i
• i=]
x = Ax + bvg ; n (D.IO)

b = Z dib i
i=l

The average of possible output equatic-s can be taken as well in

analogy with (B.15).
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297

m



Short description of computer programs

DROGRA_I RIPPLE is used to calculate and plot exact instantaneous

waveforms (iF,ductor current and capacitor

voltage) for the boost converter example of

Fig. 3.1 operating in the continuous conduction

mode.

PROGRAM PBOOST is used to calculate and plot the frequency

dependence of the exact dc conditions for the

boost converter example of Fig. 3.1 operating in

the continuous conduction mode.

PROGRAM DCGAIN is used to calculate and plot dc gain dependence

on duty ratio D for the boost-buck converter in

Fig. If.6 and converters in Fi9. 13.1 ,_perating

in the continuous conduction mode.

PROGRAM NEW is used to calculate and plot frequency response

of the new converter of Fig 12.3 operating in

the conzinuous conduction mode.
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PROGRAM R I PPT.,l-"

_.I_llqAJ_ PAGE IS

TYPE RIPPle.Y4
COM_H_I /HPPLOT/ttPPLOT

DTHFNSTON VOI.RTP(510),CURRIP(510)pUTIME(510)

DIHC_S/ON [_OC(3),XTIME(2)
BiM_tSIOt] XF'(2),X(2),L(2),M(2),_2(4),XfEHP(2)_XDT(2)

DIMENSION AIlNV(4),A21NU(4),U(4)

_IMEhSION AI(4),A2(4),F1(4),F2(4),TEMP(4),81(4)

tlPPI_OT=-I -.

WRITE(SAg?)
FORMAT(1X_'INPUT N a) -.

REA_(5,100) N
YORMhT(_I)

WRITE(5,19?)

FORMAT(1X,'INPUT UG,DeRL,RCpR_I-,C #)

READ(5,210) V6,DtRLPRCtRPOeC

FORHAT(7F)
WRITE(5,400) UO,D_RLPRCwR_OPC

FORHAr(1X,'PARAMETAR UALUES ARE ,,/,1Xe'UO=',F&.2e4Xe*D=',F4*2,

4X, ORL=,,Fb.2,4X,,RC=,,F6.2,4X,,R=*,F&.2,4Xw,L=,pEIO,4 w °

99

I00

199

210

400

1

2 4Xe'C='eElO.4w4X*///)
NN=NSN

XP(1)=UO/O

XP(2)=OoO

AI(2)=O.O

AI(1)=-RL/g

AI(3)=O.O

AI(4)=-I./((RTRC)=C)

A2(!)=-(RL4.RC_R/(R÷RC))/O

A2(2)=R/((R÷RC)_C)

A2(3)=-R/((R÷RC)*O)

_2(4)=-I./((R÷RC)=C)

DO 16 I=I,NN

16 U(I)=-_.O
DO 17 I=I,N

ZI=(N÷l)$(I-1)÷t

17 U(II)=I°O

DO 5& I=I,NN

56 AIINV(1)=AI(I)

DO 57 I=I,NN

57 A2IHU(1)=A2(1)

CALL MLNV(AII_/VeNe_ETItLBH)

IF(_ET1) 59P53e59

58 _RITE(5. 01)

401 FORMAT(IX,'DETI IS ZERO*)

GO TO 3

59 CALL MINV(A21NUBNeDET2tLeM)

IF(DET2) 91,92_91

72 WRITE(5,402)

402 FORMAT(1X,'_ET2 IS ZERO') .

GO TO 3"

91 WRITE(5,304)

304 FORMAT(1X,'READ NF'OINT NUMBER OF POINT5 PER PLOT*)

RE_(5,350) NPOINT

350 FORMAT(1)

1 WRITE(5,&O0)

&O0 FORMAf(IX,'gHAT IS THE SWITC '_ Ig FREO'JENCY?*)

READ(5e&OI) FS

&Ol FORMAT(F)

IF(FS) 2,3e2

2 T=I,/F5

DT=D_T

CALL OHN(FI,N,DT,R,RC,RL,O_C)

_NT=(1-D)¢T
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CALL OFF(F2FN,DNT,R,RCtRL,OeC)

DO 71 I=IPHN

71 TEMP(1)=FI(I)-U¢I)

CALL G_PRbcAIINV,TEMP,_I,NeNeN)
DO 72 I=I,NN

72 TEMP(I_=F_(Z)-U(1)

CALL GMF_I,(A2INV,TEMP,D2,N,N,N)

CALL GMF'I_b(F2,DI,TEMP,NeNPN)

DO 73 I=I,NN

73 TKMP(I)=FCrlP(1),tB2(1)

CALL G_F'_D(TCHI",,(P,XPNeN,1)

CALL GMF'R[I(F2,F1,TEMP_NrNeN)

DO 74 I=I,NN

74 TEMP(I)=U(I)-TEMP(I)

CALL SI_O(TE_IP,X,NeKS)

IF(KS-l) 76,77,76

77 WRITE(5,10&)

106 FORMAT(IX,'SINGULAR SET OF EQUATIONS')

GO TO 3

76 CALL GHPRD(FI,X,XDTPN,Nel)

CALL GMF'RD(bl,XP,XTEHP_NeNel)

DO 78 I=I,N

78 XDT(1)=XDT(I)÷XTEMP(1)

PEL TA=T/NPO [HT
DO 50 K=I,HF'OINT+I

T IHE= DELTA* ( K-1 }

IF(TIME-DT) 41,42,42

41 CALL ONN(F1,NpTI_,R,RCpRLeQwC)

DO 79 I=I,NN

79 TEMP(1)=FI(I)-U(I)

CALL GISPRII(AIINV*TEMPpDtpNeNpN)

CALL GMF'RD(FI,X,XTINE,N,Nel}

CALL GMPRD(DI,XPtXTEMP,NPNtl)

DO 31 I=IrN

31 XTIME(1)=XFTrlE(Z)÷XTEMP(1)

VOLRIP(K)=XTIME(2)

CURRIP(K)=XFINE(1)

VTI_IE(K)=TIME

GO TO 50

42 TIMEN=TIME-DT

CALL OFF(F2,N,TIMEN,R,RC,RL_O,C)

DO 81 I=I,NN

81 TE_IP(1)=F2(I}-U(1)

CALL GMF'_h(A2INVtTrHP,D2,N,N,N)

CALL GMF'_D(F2,XDT,XTIME,N,Nel)

CALL G_PI_LI(_f2,XP_XTEMP,NeN,I)

DO 32 I=I,N

32 XTI_E(I)=XTIHE(I)÷XTENP(1)

VGLRIP(K)=XTI_E(2)

CURRIF'(K)=XFIHE(1)

VTI_C(K)=rIME

50 CONTINUE

WRITE(5,500)

500 FORMhT(IX,'_EhI, PLOTTING SCALE5 UOLMIN,VOLMAX,CUR_IIN,CURNAX*)

READ(5,200) VOLHIN,VOL_AX,CURMIN_CURHAX

200 FORMAT(4F) ,

LAB=-1

DOC(1)='_OOST"

DOC(2)=" CASE*

DOC(3)=1.0

CALL XYF'LOF(NPOINTFI,VTIME_VOLRIP_O*,TeVOLMIN,VOLMAXeDOCeLAB)

IiOC(t)=O.O

CALL XYF'LOF(NPOINT)I,UTIME,CURRIPeO.,T,CURtlIN,CURMAX,DOC,LAB)

GO TO I

CALL EXIT

END

3OO



PROGRAMPUOOST

TYPE PI, OO£T.F4
CUr_Mt)N /flPPLOT/HPPLOT

DIMENglON F_EO(3OO),DCCUR(5OO),DCUOL(5OO),CURIN(5OO),VOLIN(500)

DIMENglOtl DOC{3}

DIMENSIOn ×P(2),XD(2),XF(2),X(_),XDC(2),L(2),M(2),D2(_)

.DIMEt_;IDH AIINU(4),A21NV(4),U(4)

DIHENS!ON AI(4),A2(4),FI(4),F2(4),]EMP(4),SAUE(4)eDI(4)

HPPLOT=-I

WRITE(5,?9)

99 FORH,_T(I×,'INPUT N _)

READ(5,1' J) N

100 FORMAT(I )

WRITE(5,i99)

199 FORMAT(1X,'INF'UT UG,D,RL,RC').

READ(5,200) UG,D,RLpRC

200 FORH_T(dF)
1 WRITE(5,2?9) ""

299 FORHAT(tX,'INPUT R,L,C,FH_NeFMAX*)

REAP(5,300) R,O,C,FtlIN,FH_

300 FURMAT(SF)
WRIT_(5,304)

304 FORHAT(1X,'READ NPOINT NUMBER OF POINTS PER PLOT')

RE_D(5,350) NPOINT

350 FORMAT(I)

IF(R) 2e3,2

2 WRITE(5,400) UG,D,RLPRC,ReOeC

400 FORMAT_IX,'PA_AHETAR UALUES AR_ ",/,IX,'UG=',F6.2,4Xw'D=*,_4o2e

.1 4X,'RL=',F6.2,4X,'RC='eF6.2,4X;'R='PF6o2e4Xe'L='_EIO,4e

2 4X,'C=';EIO.d,4X;///)

Nf/=N_N

XP(J)=UG/O

XP(2)=O,O

AI(2)=O.C

AI(1)=-RL/Q

A1(3)=0,0

AI(4)=-I./((R_RC)_C)

A2(1)=-(RL+KC_R/(R_RC))/O

A2(2)=R/((R_RC)tC)

A2(3)=-R/((RtRC)_O)

A2(d)=-I./¢(R+RC)_C)"

DO l& I=I,NN

16 U(I)=O.O

DO 17 I=lfN

II=(NTI)_(Z-1)_I

17 U(II)=I.0

DO 56 I=leNN

56 AIINV(I)=AI(I)

DO 57 I=I,NH

57 A2INV(1)=A2(1)

CALL HINV(AIINV,N,DETIwLeN)

IF(DETI) 59,58;59

58 WRITE(SP401)

401 FO_T(1X,'DET1 IS _ERO')

GO _0 3
59 CALL MINV(J_2INV,N,DET2eLeN)

IF(DET2) 91,V2,91

92 WRITE(3,402)

402 FOI<MA/(IX,*DET2 IS ZERO e)

GO TO 3

91 DO 61 I=l,NN

61 TEttP(I)=-i,*AIINV(I)-(I-_)_A2INV(I)

CALL GHP_[:(TEtIP,XP,XB,tleH_|)
WRITE(5,301) X_(1),XB(2)

301 FO_HAT(IX,'I, EGIHtJING COtt_ITIOttS ARE',/,1X,'DC ItIDUCTOR CURR_N _
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94

4O3

93

3O2

1

DO 6_'2 I:,I ,NN

62 TE_;P( I ) =-D*,_ 1 ( I )- (I-D)*A2(1)

CALL MINV (TC_IP, N, DET3 eLPM)

IF(DET3_ 93,94,93

WRITE(.5,403)

FORtb_T(IX,'DET3 IS ZERO')

GO TO 3

CALL G_!PRD (TEMP, XP, XF,N,Ns 1)

IJRITE(5,302) XF(I),XF(2)
FOR;I_T(iX,'FIN,M_ COHDITIONS ARE'e/,'DC INDUCTOR CURRENT IS'p

FS.4,_X,'DC OUTPUT VOLFAGE IS',FB,4t///)

XHIH=ALOGIO (FMIN) .

X_IAX--ALOO I 0 (FHhX)

XDELT = ( XM,_X-XH IN )/NPOINT

DO 50 I<=I,NFOINT@I

XORD=XMIN F (I<-I)_XDELT

rcEg (K)=XORD

FS:(IO.O);_XORD

T=I •O/FS

DT=D:IIT

CALL ONN(F1, NeDTeR, FCC,RL,QeC)

bNT--(1-D)*T

CALL OFF (F2, N, DNT,R, RC,RLwOeC)

DO 71 I=I,NN

71 TEMP( I )=FI(I)-ll(I)

CALL GMPRD(AIlNV,TEMP,B1,N,N,N)

DO 72 I=I,NN

72 TEMF'(I)=F2(I)-U(1)

CALL GMF'RD(ADI_JVeTEMPeD2eNeNe'N)

CALL GMF'RD(F_,L_I,TEI'IP,NrN_N)

• DO 73 I=t,NN

73 TEMI_'( I )=TEHF'( I )÷D2(I)

CALL GMF'R[' ( TEHP, XP, X, N ,;';, 1)

• CALL GMF'RD(F2,FI,TEMPe.NeNeN)

DO 74 I-'t,NN '"

74 TEMP(I) =U(I)-TEHP(I) "

CALL SIMQ(TEMP,X,N,Kg)

IF(KS-I) 76,77e76

77 WRITE(5,106)

106 FORMAT(IX,'SINGULAR SET OF Ei]UATIONS n)

GO TO 3

76 CALL GHF'RD (B2,F1, TEHPeNeNeN)

DO 78 I=I,NH

78 TE_IP (I) =TFMP( I )÷DI (I)

CALL GMF'RD (TEHF', X, XF, Nt Ne 1)

CALL GHFFcL,(AIIHV,Z_I,TEHF',NeHJ, N)

CALL (3MF'RD (A21NV, D2, SAVE, Ne tleN)

DO 79 I=leNN

79 SAVE ( I )=SAVE ( I )÷TE_IP (I)

CALL GMFRD(B2eDIeTEMPeN,NpN)

DO B1 I=I,NN

B1 SAVE ( I ) =SAVE ( I ) _TEtiP(I)

CALL GMPR[! (SAVE, XP eXDC PNeN4' 1} "

DO 82 I=I ,N

B2 XDC( I ) = (XDC(I) ÷XF( I ) )/T÷XI)(I)

DCCUR(K)=XDC(1)

DCUOL (K)=XDC(2)

CURIN(K)=X(1)

VOI. IN (K)_'X(2)

50 CONTINUE

WRITE (5,500)

500 FORIIAT(IX,'READ PLOTTING SCAt.E5 VOLMIN,VOLMAX,CIJRMINeCURMAX'e/)

READ(5,200) VOL_t I N, VOLMAX, CIJRN IN, curctI.AX

LAD=.-t
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I

I

.3

VoC(3)=l,v

CALL XYF'LOT(NPOINT+I,FREO,DCVOL,XMIN,XMAX,VOLMIN,VOLHAXFDOCeI.AD)

DOC(I )=0.0

CALL XYPLOT(NF'()I'NT÷X,FREOrVOLIN,XIIIN,XIIAX,VOLI'|IN,VOI._'IAX,DOCpLAD)

CALL XYi-'LOT(N/"_INTI. InFF<EL},[oCCUF<,XMIN,Xb_X,CUI<LIIN,','I.ri,H,_X,DIJC,LAI))
CALL XYF_LO T (_F'OI _lT_ I, FF,EQ, CUI_ Itl,XMIN, X_IAX pCUktl IN, CURb'IX, DO_, LAB)

GO TO I

CALL EXIT

ENO

TYPE OHH.F4
SUBROUTINE O_IN(F,NeTeReRCeRLeOeC)

DIMENSIOn! F_I) ".

F(1)=EXP(-RLST/Q)

F(2)=O,O

F(3)=OoO

F(4)=EXP(-T/((RfRC)_C))

RETURN

EHD

TYPEOFF.Fa
SUBROUTINE OFF(F,N,T,R,RC_RLeOIC)

DIMENSION F(I)
TC=I.O/{(P_RC)_C)

TL=(RL+RC_R/(RH_C))/O

A=O.5_(TC÷TL)
W=SO_T((R÷RL)/((R_RC)_O_C)-A$_)

B=O.5_(TC-TL)/W "

AL=EXP(-A:'F)_COS(_I_T)

BE=EXP(-A_T)_SI_I(WIT)

F(JJ=AL+BE_B

F(2)=R_BE/((RFRC)*W_C)

F(3)=-R_E/((R+RC)_W_Q)

F(4):AL-DE*D

RETURN

END

i
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PROGRAM DCGAI N

Yf'E

1 O0

200

5O

ltC f:¢_ T N. F,1
CI,Jti_'i' _11 11 ir'l 'I_U I / I II"F'l_or
11 itil N'.; llh\l Idti ";'('.;0( _ ) -I:(;[_ [_li f.-O0) g I)l._.& [11('.300) p(.;,_[l'l(l;O0)

D1111 tl!:;ID_l II!ik [I'(','OO),IT'_rC(',,OO) :b()C(-])
|IF't 'L.(11"_-- I
I.I17l" IV. f :5 P ! OO )

l-l_ld.i,'_r ( 1x, • lHl.llr r_l; Sl_.,yl_Nci..-..£ 171.1 _RI.2,1} _i, Ii) NF'I.ItNr" }

F_[-_[ll.f(U_'_oc)) Id_.l ,l¢l...?rl:_PttF'|.lli'tT
IOl¢i, hqT ( 31v t I >

×l:ff::hl'_' i , OIi.!F'OIi.fr

Lffl _;0 I(-:1 _I',fF'OINT

XflR1).= ( I(--J. ) :_(X|.tE'l.r
DUTY ( K ) .--:X OR D
[I=Xi][_D/( t . O -XOR[_)

[_b:O'l':" t • / ( t • "'XORD )
F t'_CT 1 _:R/( R I-I;'L 2 I D:F:f._'F¢l. 1l )

FfiCI"_--'" " "j ,t ....J-'14" ,-r. ,_ *",

GALN ( K ) =:[_:F:FACT 1
OGi. I N'( K )=_[_:rFACT2

El:" I C ( K ) -"-:F/',c'r 14':100.

OEI: :[ C ( t( ) ":.F'f_,C'I':_,_ 1 O0 •
COt. ]"?1(K ) =13

CONTINUE
DOC (3 >"=1,0

DOC( I )'-"0.0

Lh_=l

CAI.L

f'¢_LL
L;AI. L

CAI.L
CALl_

CALL

END

XYF"I f)T (1",!I"flY HT rDIITY, 13'.('JIH, 0,0, I ,0, O. 0 _ 7 •0, Dill"_ I.AB )

k (F'I. i3T (HF'{) )"DI _ ))l.ll"( _ fl!:./( "[ 1), 0, O, ] * O, 0 • 0,3_. 0, _)i]! _., l.h _) )

XYF'L/:;T (i,!F'I)] ]_'f; j:ll.)1"Y,C C.,')IH, 0 • 0, [ •0,0 •0 •7.0, I)DC, LAD )

:_3 I:'l_.r.'T ( t',_F'Ui i'.! :r _.:t.I._ Y ; EF'I C.- 0 .O, 1 o O_, 30,. , 3 O0. , DIIC, LAD)

X'I;:'I.I3 f (I.!l-'u1?_ f, IJUTY _,OIZFIC,O, Os _ ,O_30. , _00, , T_OC _'I..Ai))
EXIT
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T_¢! 'E

l

99

JO0

199

20O

2?9

300

400

1

2

3

10

• 600

9

700

11
BOO

ft3=CF: ¢I)F. :_1",-_/I;'.l- ( tIE ._Ri .2 + (J :t T t't..E) :_CE$C2

BO=I..l. ( '"L 2 - I;.'E )/R

1_1 =-r_E:;. £'[-_:; ( 1, -- D ) .; ( 1. I RL2/R) -DE/R

D2::(-IE_CE: ( 1. -U ) .'_( 11, "FRL2/R ) *

IF(I_I ) ?egelO

WRITE (::;, 6OO)

FOIdhY[(1X, "LEFT tb'_LF Pt'AHE COHPLEX ZEROS')

GO TO 11

IJl¢l Tt- ( _, 700 )
F[ll_lhhr(l._, '/_'ZE;II'[ Ih'iLF PLI_tNE ZEROS')

f..IR_r I1_ ( '.], CO0 ) [(1

F Ol_H(',l ( 1.<, " [:1.:" =[-."JO,4 e/)

XH ] N :-_.I.OG 10 ( [:11 :{ tl )
Xl'iFiX:-¢_l (}L; 10 (I:l'l_X)

XDEI.T'-" ( ._;H,_X-X;; [ _! )/NPO INT .

[_D :;0 K =1 ,NPO.IH'II'!

XE*F,:D-:X/'i [ iv, I ( I_.--1 ) _XbELT

F'RI_(* ( K ) ::XO_D

F=( 10, 0 ) _/_XO[_O

W=6 • _[J31 _F

(j=(..t|l "t.,_ ( 0 • 0 _14)

F'=P.O ) b I ; :; I 1%'.:_'(-;:_

(,'_'t;O': 41 ;:, I._:J;:b_ :; ]h331;¢,_ _._ 14.1¢$_:;.?,S$S

G='F"/_ .. , •
I1:: I •/('/
GA I/l:-C;_[,_ (G)

(;I}lJ I "f ( I(). :;:O, O _.PII.fJG tO (GAIN)

t;i.ltll. ( t, ) -:;0, U_|'ll.()(;JO (G|_[tl)

t',l,.-.IJ., ,I. ( I, )

l_lI _l _, [ |l,_lU (I})
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I_p._GlN/i_ PAGE !

860

hld;_,A (/Ale

r.;.:_|l - ,'ll p=l.J( _l;;i; )

IF (¢,h:f;) ",/,,'._7,27'

27 I;- (r,N) IU, 1'/, 1'/

19 F'l,:r', Lr .I 'h_J'd.o- 2.¢P I

f;a) "fgl 21

10 F'I< ,'_to.- I "l_',",[_- [" ]_

_lJ It) 21

23 IF (Af,') :_:.' P2t e21

22 I'R/',|o ; I "I_,'_0-P][

21 I'l _U IY ( F: ) -, 1 _:0, _Pr_,%D/PI

AR = RF t",t. ( I! )

_]1' --':#'_) Ht%f; (111

rff_G=AI/AR

I [- ((,F'[;) 36,37,37

37 IF (AP,.) 3_, 39,39

39 PI;_AD---F'RAD-2=PI

60 TO 41

38 PI_AD-'PR,%U-P][

60 TO 41

"36 IF (¢JR) 32141s41

312 PR_D=PRf',r.t-P ]{

41 F'LIt_E(K)=ICO,ttPRAO/PI

50 COHI" 1 tlUl"

t.q_lI E (5,500)

500 F'O_b_TfIX, " _HPUT SCALES

Rt'h_o<_,20t ) GI_IN,GHAX,PitINrPN_(

201 FORH¢oT (4F)

I.i_BiI

. IF'(DI) 12,1;3,13

13 " [,OC(t)='LtlP "

DOC (2) =" ZE:_0..R"

GO 10 14

12 DOC ( 1 )'-= ' I':tlP "

DOC (2)--="/r:r<os"

z4 DC)C(3)=J .0

850

J6

17

FOR DUTY TR FUt_ Gtl Jrt;, GtIAX, PJ_ X tl, PIIAX" )

CALL XYPL 0 r (tlr.oz N'f'+1, FRE[J P GBUTY.e XM llJ, XtiAX, GH I N, GHAX, DOC eLAB )

DOC(1)=O.O

CALL XYPL.Or(NPOINrFleF:'eEO,PDUTY,XMII_i,XIIAV ,I"HIt;,PtI,_IX,DOC,LAD)

WRITE (._$, _&O)

FO;dl,_lr(1x,'ir,r.ul CCAL.ES FOR LINE fR FUNC OtiIH, Gi'IAX,F'/tIH,PtlAX')

rd-:tt]) ( 5, .':0;. ) _l'z; i], C,It(_X, Ptll N ePMAX

I:}OC( 1 )= 'LIHE "
DOC ( 2 ) : ' ! I'_AH.5"

(:/*iLL XYI"LOI'{I._I-'0I,'ITI 1 ,Fr(EO,GLINE_MIN,XMAX,GHlr;,(_Ii¢_X,POI',LAD)

DOC(Z ;-:0.0

CAI_I_ X'r:.!_rll(l,'F't}Xt;ffl ,FRF_Q_F'LINEeXI4INeXtlAX,r'IIIP_,r'HAX_DQCfLAB)

lr¢C_b ( :;, C_,O ) I(rCAJ

FORIIAl (F)

I I-"( KR_',J ) 17,16,17

GO ro I
Ct_I.L Exlr

END
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