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ABSTRACT

The principal objective of this work on modelling and
analysis of switching de-to-dc conventens and hegulatons 48 to oblain
a Linean model (either 4 .ough state-space on Linear circuit descrip-
tion), subject to appropriate nestrictions, for the inherently
nenlinean powen stage 4in which the dc conversion &s accomplished.

A general unifdied approach to modefling and analysis cf switching
dc-to-dc_converters 4 developed which is directly applicable to any
de-to-de converter operating in eithern cof two conduction modes
lcontinuous on discontinuous inducton cwuient), and which results in
a §inal dynamic Linean model eithen in tenms of state-space equations
on in tenms of their comresponding Linear cireuit models. 1In
particular, in Pant 1 this analysis technique, called Atate-space
averaging, 44 applied to the continuous conduction mode of converter
operation, while in Pant 11 appropriate extension of the method %o
the discontinuous conduction mode is made. In cach case, the
cwtmination of the modelling and analysis is achieved in the develop-
ment 0§ canonical circwit models which represent any such converter
negandless of its detailed congigwration.

The insights that emerge from the general state-space modelling
approach (Pants 1 and 11) Lead 4in Parts 111 and IV to the desdign of
noe cenverten topologies through the study of generdic properties
2§ *he cascade connection of basic buck and boost convertens. This
study paves the way in Part 1V to zhe discovery of a new switching
converten based upon capacitive nather than the usual ‘inductive
enengy thansfern. The new converter is shown to have Aubstantiak
advantages over the conventional converters Ain its class in
efficiency, pernformance, and also in size and weight.

Both the state-space averaged modefs and their conresponding
cincuit nealizations provide the cirncudlt designen with a powergul
ool fon analysis of existing converterns as well as for synthesds

0§ new cunverten topologies.
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INTRODUCTiON

The ever increasing demand of society for new and more abundant
sources of energy, as well as for means of better and more efficient
conversion to a medium suitable for widespread use such as electrical
energy, has provided a healthy environment for the recent growth of the

new, interdisciplinary field of Power Electronics. Functions to be

performed by electronic power processing systems include a wide
range, from efficient conversion of dc source voltage from one voltage
to another, to inversion of dc to single -phase or multiple-phase ac,
and controiled conversion of ac to dc. The applications also cover
a wide spectrum, from a power supply in a hand-held calculator,
through a variety of spacecraft systems jncluding solar array and
battery power conditioning, to industrial process control and electric
utility bulk power inversion.

However, it comes as no surprise that this new field has.
offered some unmatched challenges owing to its unique combination of
the three major disciplines of electrical engineering: electronics,

power, and control. Classical signal processing electronics, coupled

with the advent of semiconductor devices capable of handling substantial

amounts of power, is used to control the power (or electrical energy)

flow from some raw source of electrical energy (such as solar cells,
for example). to the user (load). But in distinction with signal-
processing electronics, where the power efficiency is of minor concern,
here, as in classical power systems, it becomes the major issue,

owing to the relatively large amounts of power involved. Power




efficiency makes mandatory the use of control devices, such as
transistors and SCR's (silicon controlled rectifiers) in & repeti-
tive switching mode, thus further increasing the problems of modelling
the dynamic behavior of pcwer switching circuits because of their
inherent nonlinear nature. In addition, in many instances, the

power conversion or .nversion function is coupled with a requirement
for regulation, and stability problems naturally arise because the
self-correcting feature is usuaily obtained by empioying electronic
feedbeck in a closed-loop system. It is in this context particularly
that a fusion of viewpoints cf the power, cortrol, and electronics
discipiines is most necessary and also potentially fruitfu?.

However, the bringing together of these disciplines in order to
achizve the general understanding and consequent innovation in power
processing electronics systems is not merely their accumulation, but
rather requires a revised look at their specific interrelations from
the compcnent to the system level. For example, a signal-processing
electronics engineer usually thinks in terms of active devices used
in either linear or switching mode together with resistors and
capacitors; he avoids inductors and transformers. On the other hand,
a8 power-processing electronics engineer must think in terms of active
devices used in the switching mode together with capacitors, inductors,
and transformers; he must avoid resistors in the interest of maintain-
ing high efficiency in the power path. This important distinction
requires a different way of thinking about circuit function realiza-
tion. From the system point of view, one has only to recognize, for

example, a dc-to-dc switching regulator as a dc, wide-band, nonlinear




sampled-data control system (with the ever-present high-efficiency
constraint), to appreciate the challenge of bringing together these
various disciplines.

Hence, the area of modelling and analysis of power processing

systems, owing to their inherent nonlinear nature, becomes an even
more challenging task, particularly in view of the lack of adequate
analysis tools at the disposal of the circuit designer working in this
field. In connection with that, the choice of parameter values in
already existing circuit topologies, as well as the design of new
circuit topologies is likewise a very difficult one.

The major thrust and purpose of this work is to provide the
circuit designer with analytical tools which are accurate enough for
practical purposes, yet simple enough to apply to give him powerful
tools for design-oriented analysis in one of the major areas of

electronic power processing: switching dc-to-dc converters and/or

regulators. In addition, this analysis through appropriate linear
circuit models provides the necessary insight which may lead to inno-
vative converter topologies, offering better and near optimum
per formance.

The structure of this work has been divided into two distinct

yet firmly interconnected major divisions: general unified approach

to modelling and analysis of switching dc-to-dc converters, presented

in Parts I and 1I, and design of new converter topologies presented

in Parts III and IV, which has been directly made possible by the
insights gained from the analysis methods of Parts I and II. Chapter

1, which is placed outside and in front of these four parts, is




intended to famiiiarize the reader with the basic switching conversion
concepts and at the same time to introduce both the analysis diffi-
culties as w2il as to designate the possible areas of perforaance
improvements in switching converter design.

The principal objective of the work on modelling and analysis
of dc-te-dc converters and regulators (Parts I and II) is to obtain a

linear model (either through state-space or linear circuit description),

subject to appropraite restrictions, for the inherently nonlinear

power stage in which the dc conversion is accomplished. Such conver-
ters operate in one of two modes: a two-state mode referred to as the
"continuous conduction mode," in which inductor currents do not fall

to zero (as modelled in Part I), and a three-state mode, "discontinuous
conduction,” in which an inductor current falls to zero (Part II).

The culmination of this work is a canonical circuit mndel for
a dc-to-dc converter in the continuous conduction mode which properly
represents both the line and duty ratio transfer functions and also,
for the first time, coriectly represents the converter input
impedance. The principal advantage of the canonical model is that
it represents any such converter regardless of its detailed configura-
tion.

The corresponding canonical circuit model for a dc-to-dc
converter in the discontinuous conduction mode is obtained in Part II,
which not only confirms that the line and duty ratio transfer func-
tions become first-order, in contrast to the second-order functions

of the continuous conduction case, but also for the first time

correctly represents the input impedance.
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Both canonical models are made possible by a powerful technique

called state-space averaging developed in both Parts I and II,

which wunifies and place: in perspective what had previously been
considered distinct analytic methods.

The insights gained by the state-space averaging approach of

Part I and Part I1 Jeads in Part III to the study of the generic
properties of a new class of buck-boost converters obtained by cas-
cade connection of basic buck and boost converters.

Finally, this study culminates in Part IV in the discovery of
a new switching converter based upon capacitive rather than the usuai
inductive eneigy transfer. The new converter is shown to have sub-
stantial advantages over conventional converters in efficiency,

performance and also in size and weight.



CHAPTER 1
SWITCHING DC-TO-DC CONVERTERS
AND REGULATORS

In this introductory chapter several common switching dc-to-dc
converters are introduced and their physical operation briefly
explained. The basic property, dc-to-dc voltage and current level
conversion, is arrived at following some simplified arguments based
on fundamental physical laws in order tc familiarize the reader with
some of the basic quantitative relationships.

Upon this initial exposure to the nature of the problems
associated with the analysis of these essentially nonlinear circuits,
the general, unified, and complete method of mode1ling and analysis cf
any switching dc-to-dc converters (even those yet to be invented)
developed and presented in chapters to follow will be more easily

grasped.

1.1 Physical operation and basic properties of switching converters

We begin with the three common switching converters (also
called power stages because of their power handling capability)
depicted in Fig. 1.1. While in Fig. 1.1a the topological structure
of these converters independent of any particular switch realization
is shown, in Fig. 1.1b a bipolar transistor, commutating diode
realization of the single-pole double-throw switch S is used. It is
also evident from Fig. 1.1b that transistors are used in their

switching mode: either fully turned on (corresponding to the position

C e ]
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Fig. 1.1 Three common switching de-to-dc convertenrs:
a) topological configuration independent of switch realiza-
tion ; b) bipolar thansiston impLementation of the switch S.

of switch S in Fig. 1.1a) or fully off (the other position of switch
S). This is obtained by bringing a periodic switch drive signal as
shown in Fig. 1.2 to the base of the transistor. The frequency of
repetition'of this signal is defined as the switching frequency

fs = ]/Ts,and for discussion purposes will be considered constant.
The fraction of the complete period Tsfor which the transistor is on

js defined as the steady state duty ratio D =TN/TS. The diode in



each converter acts as a switch automatically synchronous with the
transistor. That is, when the transistor is on, the diode is reverse
biased and effectively off; as soon as the transistor becomes of ¥, the
diode is forced to conduct by the continuous inductor current, and
stays on as long as there is a positive inductor current,

switch drive

'\
-— Ts =
- T -le Tr >
>
| t ime

Fig. 1.2 Definition of the periodic switch drive.

Consider now more closely the simplest of these converters,
the buck power stage (sometimes called the step-down or chopper
converter because of its property of reducing the input dc voltage).
With assumption of ideal transistor and diode switches, the b ~k power
stage can be equivalently represented as in Fig. 1.3.

dcfvoh‘age
s ) T g it

first harmonic

DTs C‘[- R
O
input low pass filter -« - higher
voltage network order harmonics

Fig. 1.3 Basic dc conversion gunction of buck power siage viewed
through hawmonic decomposition and principle 0§ super-
position.
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Fourier harmonic decomposition of the periodic input voltage
and the principle of superposition show that the output voltage con-
sists of a dc voltage V = DVg and ac harmonics with fundamental at
the switching frequency fs' If the low-pass filter elements are
chosen such that its corner frequency fc = 1/(2n/LC) is much smaller
than the switching frequency fS (fc << fs)’ all harmonics are sub-
stantially attenuated leading to very small output voltage ripple.
Hence, even though present, the output voltage ripple can be reduced

to an arbitrarily small value by proper choice of filter elements.

A significant feature of the switching converter is that a

degree of control over the output dc voltage has been introduced

through its dependence on the duty ratio D. Therefore, simply by
varying the switch drive duty ratio one is able to change the output
dc voltage. Also, since by definition 03D N 1, it is apparent that
the buck power stage is capable only of reducing the dc input
voltage level.

Another very important property of the converter is immediately
apparent. For a properly designed filter, the ripple voltage is
negligible, and the output current is dc current only Iout = V/R.
However, input current flows only during the interval when the tran-
sistor is on, and hence Iin = DIout’ Therefore, the efficiency of

the converter in this ideal case is 100% since

Pout = VIout -
Pin Vglin

=1

1
Dp

The key to this ideal 100% efficiency is in the fact that the control

device, the transistor, is used in the switching mode, unlike its
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use in a linear regulator as a linear dissipative element or variable
resistance. However, in reality the voltage across a real transistor
when it is turned on is not zero as for ideal switch S, but its
saturation voltage vCEsat is usually 0.3V-1V. Likewise, the diode
has some forward voltage drop of the same order which also slightly
degrades the efficiency of a real converter. Nevertheless these
losses are negligible in comparison with losses present in a linear

regulator.

1.2 Two operating modes and their dc relations in the steady-state
regime

So far two important characteristics of switching converters

have been established: a degree of control through duty ratio drive
D, and high efficiency of operation. There are, however, some other
features peculiar to these converters which, even though present, are
not so clearly displayed in the buck power stage example. Let us
therefore consider the buck-boost converter, in which these additional
features are most visible.

For the two positions of the switch S in the buck-boost converter
of Fig. 1.1, the two switched network configurations shown in Fig. 1.4

are obtained, from which it is clear that a topological structural

change occurs within each period and the circuit configuration is
thange

changed periodically from that of Fig. 1.4a to that of Fig. 1.4b.

Both switched networks in Fig. 1.4 are linear by themselves, but it

is due to this periodic structural change that the converter itself is
a nonlinear circuit. It is exactly here where the difficulty in

modelling and analysis of these converters arises.



Q) interval DTs: b) interval DTs =(1-D)Ts

i

Fig. 1.4 Two Awitched networks fon the buck-boost converter operating
An the continuous conduction mode.

Another interesting observation about the role of the induc-
tance can be made: it acts as an energy transferring device between
input source. voltage Vg and output load R, by accumulating the energy
in the form of a magnetic field during the first interval 1D and
then releasing it to the load during the subsequent interval TSD'.
thus charging the output capacitor negatively as shown in Fig. 1.4b.
With assumption of LC filter values properly chosen for low (negligible)
output voltage ripple, the inductor voltage and current waveforms in

this steady state so called "continuous conduction mode', are as shown

in Fig. 1.5.

8) inductor voltage V¢ b} inductor current i(t)

[} 4 Vg/L stope V/L
Ai
Vg @ N . \{
o1
@
Ivi

Fig. 1.5 Energy stonage inducton steady-state waveforms in the
coniinuous conduction mode.
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The continuous conduction mode refers to operating
conditions and converter parameter values for which the instantaneous
irtuctor current does not fall to zero at any time during the switching
cycle, as shown in Fig. i.5b. This is directly connected with the
existence of only two switched networks during each cycle, as was
shown in Fig. 1.4.

Let us now find for this operating mode the static conditions,
that is, the dc voltage and current level conversion relations in the
steady state regime. Here “steady state regime" signifies the fact
that the duty ratio D is held constant over a sequence of switching

cycles, thus leading to the current and voltage periodicity requirements;

steady i(0)
state v(0)

1(1;) for inductor current

v(T;) for capacitor voltara

Then, from Faraday's law
T i
f (Bt =L [ di= L) - 1(0)] = 0 (1.1)
0 i(0)

in steady state. Evaluation of the integral on left with help of
Fig. 5a gives

V DTg+ V(1-D)T = 0

or
y._.0 (1.2)
V.~ " 71D ’
9
which is the ideal dc voltage gain for the buck-boost converter.
It is now obvious that the buck-boost power stage is capable
of producing a dc output voltage which is either smaller (for D < 0.5)

or larger (for D > 0.5) than the input voltage, and hence realizes
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a general dc ccnversion function. Since none of the lossy elements
has been accounted for, the dc current gain in this ideal 100%
efficient case would be Iout/lin = D'/D.

Consider now the case in which the energy stored in the inductor
during the first interva]TsD] ETSD is completely released to the output
load before the switching cycle T has ended, causing the inauctor

current to become zero for the last portion of the period T This

could happen if the switching period has been sufficiently increased,

or if the inductance has been substantially reduced and hence it has shortened

the time interval necessary to release energy to the output. Even
if neither change has occurred, but instead the load resistance R is
increased sufficiently to cause lowering of the average inductor
current 1 shown on Fig. 1.5b to the point where i(0) = i(Ts)= 0, the
instantaneous inductor current becomes as shown in Fig. 1.6b. The
converter is thus operating in the so-called "discontinuous conduction
mode," in which the name clearly originates from the discontinuous
inductor current waveform in Fig. 1.6b.

al b)

inductor voltage VL
% inductor current it}

VI

Vg

®

DiTs  D;Ts Daks

"ig. 1.6 Steady-state inducton wavegorms in the discontinuous conduc-
tion mode.

13
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The immediate consequence of operation in the discontinuous
conduction mode is that there are three different switched network

configurations inside each switching period TS as shown in Fig. 1.7.

a) interval DTs: b) interval D;ls: c) interval Dils:
V o vV vV

v
g9
= =C %R L ==C 3R
i T i=0

Fig. 1.7 Three switched netwonks gon the buck-boost converter
operating in the discontinuous conduction mode:
a) thansiston on, diode 04§, b) transiston off, diode on,
c) transistorn ogf, diode off.

'
I
.l

~C SR

At the end of the second interva]TsD2 »the energy stored on the
inductor has been completely released to the load and inductor current
vanishes. Hence, the inductor voltage becomes zero which causes the
diode to become reverse biased and hence nonconducting for the last
interva]TSD , for which interval the third sw.tched network topology
shown in Fig. 1.7c is formed. As for the continuous conduction mode

topological structural changes take place within each period, but for

the discontinuous conduction mode the changes are among three different
switched network topologies as displayed in Fig. 1.7.

It is important to emphasize that the two properties described
above for the buck-boost converter example -- inductive energy transfer
principle and two modes of operation -- are not restricted to this
particular example but are general in nature. They are applicable
not only to the other two converters shown in Fig. 1.1 but also to

any switching converter so far known.




Let us now, however, complete the comparison between the two
modes of operation for the buck-boost converter example. The steady
state dc voltage conversion ratio might be found as before by use of
Faraday's law and Fig. 1.6a as:

VDI + VD, T =0
or g s 2's

2 -—g— (1.3)
g 2

ol o which determines how deep 1a the discon-
9

tinuous conduction mode the converter is operating, is yet to be

<l<

However, the interval D

determined. This can be accomplished by finding an alternative
relation for the dc voltage ratio, based upon the 100% efficiency

property of the ideal converter. From Fig. 1.6b, Iin =Dl = D‘VdE/ZL
2., 2

= = . =2 »
and so Pin = ngin D Vg T42L; then, POut VE/R so from Pin .Pout
y 2
v v
2 9 1.
ol
which leads to
V |1/TR :
v—l-ﬁn (1.4)
9
or
v |- D
where vg X
_ 2
K T fS
Comparison between (1.3) and (1.4) gives immediately
D, = X (1.5)

so that the dimensionless parameter K determines then the length of

15
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the second interval DZTs' It is interesting to note that the second
interval 02 is determined solely by K so that, for a given converter
the second interval is a constant affected only by the load resistance
R. This is not true for the buck or the boost converter, in which the
second interval is dependent not only upon K but also upon the duty
ratio D.

For the buck-boost converter, comparison between (1.2) and (1.4)
shows that in the continuous conduction mode the dc gain is a highly
nonlinear function of duty ratio D only (1.2), while in the discon-
tinuous conduction mode it is a linear function of duty ratio v but
also dependent on the dimensionless parameter K (1.4).

The boundary between the two modes of operation is easily found
from Fig. 1.6b as:

D3=0$02=1-D$D'=ﬂ( (1.6)

Furthermore, a criterion to determine in which of the two
modes the converter is operating can be established in the fcrm of
an ineguality relationship among circuit parameter values L R
switching frequency fs’ and duty ratio D of the switching drive as
follows:

continuous conduction mode

D' < /X
(1.7)
discontinuous conduction mode
D' > VK

where K = 2L/RTgis a dimensionless parameter.
For instance, when K 2 1 the converter will always be operating

in the continuous conduction mode regardless of the control--duty




ratio D, while for K <1 it will operate in the discontinuous conduc-
tion mode for D < 1 - /K.

To illustrate this with a numerical example, let L = InH,
fs = 10kHz, and R = 10&}‘. Then, K = 2 and the converter will always
operate in the continuous conductjon mode. However, if the load
resistance is increased to R = 100G, K = 0.2 and the converter will
operate in the discontinuous conduction mode for D < 0.553. ’his
example also justifies why the continuous conduction mode is sometimes
also called "heavy mode" (low resistance R and heavy loading) while
the discontinuous conduction mode is referred to as "light mode*

(higher resistance R.and therefore light loading).

1.3 Switching ripple and pulsation of input and output currents

Now that the two distinct modes of operation of switching dc-to-

dc converters have been clearly distinguished, the physical origin of

their appearance understood and the quantitative measure describing

the transition between two modes of conduction correlated with circuit

physical parameters, we can proceed to expose some of the undesirable
features inherent in the switching converters of Fig. 1.1 in both

conduction modes.

Consider now both input and output currents (designated iin and

i

out in Fig. 1.1) for the buck-boost converter in the continuous

conduction mode. Even though the converter is operating in the
continuous conduction mode, owing to the switching action of the

transistor and diode,both currents are as illustrated in Fig. 1.8.
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Fig. 1.8 Input and output current of the buck-boost converter
operating an the continuous conduction mode.

It can easily be verified that the buck converter has the same

pulsating input current as shown in Fig.1.8a. This invariably requires

that an input filter (usually a single-section low-pass L ,C filter)

be put in front of these two converters to smooth out the substantial
current ripple component at the switching frequency drawn from the
line supply. That way, electromagnetic interference (EMI) problems
generated by the abrupt variation in energy flow (pulsating current)
are reduced, and contamination of the environment by the undesired
electromagnetic disturbances alleviated.

On the other hand, the boost converter of Fig. 1.1 has the same

pulsating output current, as the buck-boost converter in Fig. 1.8b, i

which is primarily responsible for the much higher output voltage

ripple of these two converters compared to the buck power stage with

18

the same storage element values and operating conditions (switching
frequency fs’ duty ratio D, and continuous conduction mode). The
smaller voltage ripple in the buck rower stage is a consequence of the

nonpulsating cutput current (similar to that shown in Fig. 1.5a) with

]

very small current ripple Aiout which can easily be found as




-

X Vo
Alout =7 D"l (1.8)
Consequently, the output voltage ripple Av is obtained fron

Al vD'
Av(peak-to-peak) = = — (1.9)
B%C 8LC%
and the relative output voltage ripple Av/V is:

2
2 [f
AY -7 ' C
v =30 (-f-s—> (1.10)
where
fo= L
2m/LC

Here fc is the corner frequency of the low-pass filter formed by L and
C. Since the ultimate requirement of the dc-to-dc converter is to
provide dc level change and output dc voltage only, this poses a
rastriction on the choice of filter elements. Namely, from (1.10)
output voltage ripple will be negligible if the followirg require-

ments are satisfied:

fc << fs f. = 1/72w/LC

where (1.11)
w << f w = 1/2RC
a s a

The second inequality condition in (1.11) comes from requirement
of negllg1b]e output voltage change during the interval T D (see

Fig. 1.4a) when capacitance C discharges into load R.

As a numerical illustration for the typical parameter values,

in continuous conduction mode, L = 6mH, C = 40uF, fs = 20kHz,

19



20

R = 60 , we obtain fc = 330Hz, = 211z and inequalitites (1.11)
are well satisfied. Hence from (1.10) Av/V v (fc/fs)2 " 10'4 or
the output voltage ripple is of the order of 0.01% for the buck
converter.

For the same element values but for the buck-boost converter,

since the output current ripple is now from Fig. 1.8b, Alout = Iload =
V/R, the output voltage ripple becomes load current dependent and is:

Av 1/RC

Av=Dh—°—a—d:>—=D—— (1.12)
fC ¥ T :

or of the order of several percents for the given numerical example.

A similar result is obtained for the boost converter,

Hence for the two converters with pulsating output current,

almost two nrder of magnitudes higher voltage ripple is obtained.
It could be reduced to an acceptable level by increase of capacitance
C or by increase of the switching frequency fS; in that case, however,
the fundamental requirement (1.11) for low output voltage ripple
would be even better satisfied than for the buck converter example.

It is now no surprise that both EMI and output voltage ripple

would be further degraded in the discontinuous conduction mode,

since then both input and output current become even more pulsating,
as illustrated for the buck-boost converter in Fig. 1.9.

Suppose that the transition to the discontinuous conduction mode
is made by significantly lowering the inductance from that used in the
continuous conduction mode. Highly impulsive current in Fig. 1.9b

would then cause an intolerable output voltage ripple, unless either



a) input current b)output current

! )
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Fig. 1.9 Input and output cuwwrent of the buck-boost converter
operating in the discontinuous conduction mode.

the output capacitance C or switching freauency is increased, or both.
In any case this has the consequence that the fundamental “small-
ripple" restrictions for the "natural frequencies," fC << fs and

w, << 'fs, would be even better satisfied. As an example, for the
typical set of values in the discontinuous conduction mode L = 60uH,
C = 400uF, fs = 100kHz, R = 602 we get f_ = 1.02kHz andcua = 21Hz,
thus satisfying inequalities (1.11) to a high degree. In essence, one
recognizes that the burden of filtering out the switching ripple has
been shifted from an egual share among inductance and capacitance in
the continuous conduction mode completely to the capacitance in the
discontinuous conduction mode. The inductance has retained only its
energy transferring property but has lost its filtering property.

We therefore emphasize at this point the importance of the
simple inequality requirements (1.11) placed as restrictions on the
choice of parameter values in order to reduce the switching ripple
jnherent in all these converters to an acceptable level. Uhen these

relationships are properly recognized and incorporated in the model-
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ling procedure a tremendous simplification of the analysis is
obtained, and yet the derived results are accurate enough for all
practical purposes. They are also the underlying basis of the general
unified approach to modelling and analysis of switching converters
which will be presented in Part I and Part II.

Besides having its importance and implication on the
theoretical modelling procedure devised later, the relation (1.11) in

conjunction with, for example, (1.10) expeses yet another interesting

feature of switching dc-to-dc converters -- reduction of size and

weight. Simple increase of switching frequency f, would allow propor-
tional increase of cormer frequency fC while still retaining the same
switching ripple. Hence, the inductance and capacitance could be
Chosen smaller in value and size. However, this would not be
achieved without a cost; increase in switching frequency would degrade
the efficiency of the converter owing to increase in "switching losses,”
which become proriounced when the switching transistor rise and fall
times become a substantial part of the switching period. The
effigiency of conversion and quality of the switching transistor would

pose the upper bound on the switching frequency.

1.4 Dynamic response of a switching converter; switching requlators

So far we have demonstrated only the steady state or static
characteristics of switching converters. They would, of course, be
sufficient to characterize the converter if it were used in an open

loop Fashion, namely, if the converter were used alone for voltage




level conversion by setting the transistor steady state duty ratio

externally at some predetermined value. However, quite often the
primary source of energy is unregulated and could have a wide range of
voitage variation; on the other hand, a typical requirement is that
the voltage (or sometimes current) supplied at the output to a user
(some other electronic or electrical equipment) be maintained
constant over a wide range of loading conditions. This is naturaily

achieved by the application of negative feedback in a closed-Toop

configuration, such as that shown in'-Fig. 1.10 depicting a typical

switching regulator.
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Fig. 1.10 Switching regulaton: closed-Loop AmpLementation of the
switehing de-to-de converten.
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For concreteness, the switching mode converter is represented
by a buck-boost power stage, and the input and possible additional
output filter are incorporated to smooth out the pulsating input and
output currents as discussed before. Also a particular type of pulse
width modulator (PWM) is used in which the on-off signal to the switch
is produced by comparison of a sawtooth clocked waveform with the
feedback signal as illustrated in Fig. 1.10 and sometimes referred

to as a single-edge clocked pulse-width modulator.

As seen from Fig. 1.10 the error ¢ between the regulator
output v and reference Ve is amplified (and possibly compensated) to
produce an analog control signal Ve which further changes the duty
ratio of the digita: on-off signal d(t) as necessary to maintain a
constant output voltage regardless of any source and load variations.
However, as in all feedback systems, careful investigation of the

closed loop is required to determine stability and dynamic response.

For small-signal analysis, the problem of loop gain determination can
be broken down into two parts: first, find how small-signal variations
;g and 3 superimposed upon the steady state, or dc, inputs Vg and D
to the converter alone determine a small-signal converter output ;
superimposed on its steady state value V; and second, determine how
this pertqrbation ; is propagated through the feedback network to

form a sel’-correcting modulation drive d. The first problem of

establishing the dynamic response of the power processing part, the



switching mode converter itself, is a very challenging problem owing
to inherently nonlinear behavior of the converter, and will be
thoroughly dealt with in remaining chapters. The second prcblem of
modelling the dynamic behavior of the signal processing part, con-
taining the modulator stage, will also be touched upon later, and
hence the small-sianal linear model of the complete closed loop
switching regulator obtained.

Finally Tet us make the following simplifying observation.
Even though a switching converter is nonlinear, and hence a sinusoidal
test signal (such as ;g) would produce a number of harmonics, all
higher order harmonics may be neglected since the nonlinearity is
fcllowed by a very effective low-pass filter which attenuates them
substantially with respect to the fundamental. This is the so-called
describing function (DF) approximation, which can also be used
experimentally to determine this linearized frequency response by
observation of the output disturbance at the same frequency as the

injected test sinusoidal signal.

1.5 Generalized switching dc-to-dc converter

It is now not hard on the basis of the previous discussion to
visualize a general switching dc-to-dc coaverter, as shown in
Fig. 1.11, where elements are purposely shown not interconnected in

order to emphasize relative freedom of the choice of topology.
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Fig. 1.11 Generalized switching de-to-de conventen.

A generalized switching converter could consist of a number of i?

T N

energy storage elements (not necessarily a single inductor and
capacitor as in the converters of Fig. 1.1), transformers and
synchronous switches (again not restricted to the single switch as
in Fig. 1.1) which are arranged in a topology such that the periodic
opening and closing of the switches would guide the input power through
the switching network in such a way that dc level conversion is
obtained at the output.

There are, however, two general restrictions which have

to be placed on the choice of interconnection of elements and their

values:

1. Topology of the converter is not quite random, but the
storage elements (inductors and capacitors) have to be
arranged in such a way as to form effectivel& a low-pass
filter if the prime dc input power is to be allowed to

propagate to the converter output.
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2. If the switching ripple caused by periodic action of the

A AP ap s W

switches is to be negligible, the natural filter frequencies

fC and W must be significantly smaller than the switching

frequency fs'

As seen from Fig. 1.11 the two independent inputs for the
steady state (dc) static operation of the converter are line dc
voltage Vg and steady state duty ratio D, while for the dynamic (ac)

response, they are line voltage variation vg and duty ratio

modulation 8.

This generalized converter also has two modes of operation as
previously illustrated on the buck-boost example. In the continuous
conduction mode the topology of the converter is periodically changed
between two switched networks (analogous to that in Fig. 1.4) while
in the discontinuous conduction mode three switched network structureg

are clearly distinguished (compare with Fig. 1.7).

Note,however,that this generalized switching converter can have
multistructural change (more than two switched networks) even in the
continuous conduction mode (see Appendix D,for example). Likewise, the
discontinuous conduction mode is not restricted to just three structural
changes, though that is the minimum necessary to exhibit such behavior.
Neverthe]éss, we will in Part I analyse the continuous conduction mode
with only two structural changes, and in Part II the discontinuous

conduction mode with only three structural changes because all the

essential features of the two modelling methods are present in these
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cases. The extension to the multistructural change is quite simple as
demonstrated in Appendix D for the converters with three or four stiuc-
tural changes (also referred to as "three-state" and "four-state"
converters, respectively) operating in the continuous conduction mode,

and in Chapter 6 (Section 6.2) for the discontinuous conduction mode with

more than three structural changes per switching period.

1.6 Review

It is for the generalized switching converter with the features
described in Section 1.5 for which a general, unified method of
modelling and analysis in both conduction modes will be developed.
In particular, in Part I this general modelling technique is developed

in detail for the continuous conduction mode of converter operation.

In Part II, these techniques are extended with suitable modifications

to include modelling of the converters operating in the discontinuous

conduction mode. In both cases, a novel general and unified state space

averaging technique is used to arrive at the general equations des-

cribing both static and dynamic properties of any switching dc-to-dc

converter (pictorially represented in Fig. 1.11). Besides enabling
some general results not previously attainable, the method lends

itself easily to extraction of very useful circuit medel realizations

for any particular converter. Commonly used converters, shown in Fig.
1.1, are repeatedly used to demonstrate various models.

The ultimate goal and objective, however, of the modelling
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procedure was not only to provide the tool for both static and dynamic
analysis of existing converters, but through the circuit models

and general conclusions to give additional insight and incentive to
the circuit designer to devise new, better and possibly optimum
converters.

In fact, it will be shown in Parts III and IV that this goal has
been achieved. Indeed, Part III is a result of the search for such
converter topologies which would confirm the general predictions
made by the canonical circuit model of Part I, since the known existing
structures failed to exhibit this generality. This has led naturally,
first, to the idea of interconnecting existing converter structures
into useful topologies, and cascade connection of switching converters
as described in Part III turned out to be a very powerful one, from
both theoretical and practical points of view. On the side of theory,
it has finally confirmed the general modelling results of Part I.

In addition, it has suggested a renewed look at the three “basic"
converters of Fig. 1.1, through recognition that the buck-boost power
stage may be considered as a buck converter cascaded with a boost
converter, and thus leavina only the first two converters of Fig. 1.1
to be considered truly basic. This crucial observation paved the way
for the discovery of a new switching converter which employs a novel
and optimum circuit topology, and which is shown in Part IV to out-
perform any switching converter in its class.

Finally, after the foundations for modelling and analysis are

firmly laid down in Parts [ and II, and then used subsequently in

29




Parts III and IV to show in a rather natural and logical order how
some new converter topologies could be devised, the thesis concludes
with a number of research areas wide open for future investigation:
discontinuous conduction mode in new converters, possible new modes

of operations and various technological implementations of synchronous

switches are just a few examples.




GENERAL UNIFIED APPROACH TO
MODELLING SWITCHING CONVERTERS

PART 1

ConTinwous ConpucTion Mope
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CHAPTER 2
REVIEW OF THE NEW

STATE-SPACE MODELLING TECHNIQUE

The purpose of this chapter is to present a short, concise
review of the most important interrelationships among various
building blocks in the complete structure of the new modelling tech-
nique. Through this exposition of the various interconnections and i
procedural steps summarized in the Flowchart of Fig. 2.1 a twofold
purpose will be achieved. First, the details of the modelling proce-
dures which are presented in the remaining chapters of this Part [ will
be easier to grasp once it is understood how and where they fit into
the complete modelling picture. Second, after the details of
modelling are thoroughly explained in Chapters 3, 4 and 5, 11lustrated
on numerous examples and fully comprehended, it will serve as a quick
and easy reference guide and reminder containing all the essential
information about the modelling in the continuous conduction mode.

However, because of its overview feature, this chapter will be
relatively narrower in scope than, for example,Chapters 3 and 4 where
the detailed development of the new modelling technique is given and

the results discussed in depth.
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2.1 Brief review of existing modelling techniques

In modelling of switching converters in general, and power
stages in particular, two main approaches - one based on state-space
modelling and the other using an avéraging technique - have been
developed extensively, but there has been little correlation batween
them. The first approach remains strictly in the domain of equation
manipulations, and hence relies heavily on numerical methods and
computerized implementations. Its primary advantage is in the unified
description of all power stages regardless of the type (buck, boost,
buck-boost or any other variation) through utilization of the exact
state-space equations of the two switched models. On the other hand,
the approach using an averaging technique is based on equivalent
circuit manipulations, resulting in a single aquivalent linear circuit
model of the power stage. This has the distinct advantage of
providing the circuit designer with physical insight into the
behavior of the original switched circuit, and of allowing the
poverful tools of linear circuit analysis and synthesis to be used to
the fuliest extent in design of regulators incorporating switching

converters.

2.2 Proposed new state-space averaging approach

The method proposed in this work bridges the gap earlier
considered to exist between the state-space technique and the
averaging technique of modelling power stages by introduction of

state-space averaged modelling. At the same time it offers the
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advantages of both existing methods - - the general unified treatment
of the state-space approach, as well as an equivalent linear circuit
model as its final result. Furthermore, it makes certain gencraliza-
tions possible, which otherwise could not be achieved.

The proposed state-space averaging method, outlined in the
Flowchart of Fig. 2.1, allows a unified treatment of a large variety
of power stages currently used, since the averaging step in the state-
space domain is very simple and clearly defined (compare blocks la
and 2a). It merely consists of averaging the two exact state-space
descriptions of the switched models over a single cycle T;, where
f. = 1/T, is the switching frequency (block 2a). Hence there is no
need for special "know-how" in massaging the two switched circuit
models into topologically equivalent forms in order to apply circuit-
oriented procedure directly, as required in [1] (block 1c). Never-

theless, through a hybrid modelling technique (block 2c), the circuit

structure of the averaged circuit model (block 2b) can be readily

recognized from the averaged state-space model (block 2a). Hence all
the benefits of the previous averaging technique are retained. Even
though this outlined process might be preferred, one can proceed from
blocks Z2a and 2b in two parallel but completely equivalent directions:
one following path a strictly in terms of state-space equations, and
the other along path b in terms of circuit models. In either case,

a perturbation and linearization process required to include the duty
ratio modulation effect proceeds in a very straightforward and formal
manner, thus emphasizing the corner-stone character of blocks 2a and

2b. At this stage (block 2a or 2b) the steady state (dc) and line to
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output transfer functions are already available, as indicated by
blocks 6a and 6b respectively, while the duty ratio to output transfer
function is available at the final-state model (4a or 4b) as indicated
by blocks 7a and 7b. The two final state models 4a and 4b then give
the complete description of the switching converter by inclusion of
both independent controls, the line voltage variation and the duty
ratio modulation.

Even though the circuit transformation path b might pe
preferred from the practical design standpoint, the state-space
averaging path a is invaluable in reaching some general conclusions
about the small-signal low-frequency models of any dc-to-dc switching
converter (even those yet to be invented). Whereas, for path b, one
has to be presénted with the particular circuit in order to proceed
with modelling, for path a the final state-space averaged equations
(block 4a) give the complete model description through general

matrices A], A2 and vectors b], b2, c]T, and c2T

of the two starting
switched models (block la). This is also why along path b in the
Flowchart a particular example of a boost power stage with parasitic .
effects was chosen, while along path a general equations have been

retained. Specifically, for the boost power stage b, = b, = b. This

1 2

example will be later pursued in detail along both paths.

In addition, the state-space averaging approach of fers a
clear insight intn the quantitative nature of the oasic averaging
approximation, which becomes better the further the effective low-

pass filter corner frequency fc is below the switching frequency fs’

36



that is, fc/fS << 1. This is, however, shown to be equivalent to
the requirement for small output voltage ripple, and hence does not
pose any serious restriction or limitation on modelling of practical
dc-to-dc converters.

Finally, the state-space averaging approach serves as a basis
for derivation of a useful general circuit model that describes the

input-output and control properties of any dc-to-dc converter.

2.3 New canonical circuit model

The culmination of any of these derivations along either path a
or path b in the Flowchart of Fig. 2.1 is an equivalent circuit (block
5), valid for small-signal low-frequency variations superimposed upon
a dc operating point, that represents the two transfer functions of
‘interest for a switching converter. These are the line voltage to
output and duty ratio to output transfer functions.

The equivalent circuit is a canonical model that contains the
essential properties of any dc-to-dc switching converter, regardless
of the detailed configuration. As seen in block 5 for the general
case, the model includes an ideal transformer that describes the
basic dc-to-dc transformation ratio from line to output; a low-pass
filter whose element values depend upon the dc duty ratio; and a
voltage. and.-a current generacor proportioral to the duty ratio
modulation input.

The canonical model in block 5 of the Flowchart can be obtained

following either path a or path b, namely from block 4a or 4b, as
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will be shown later. However, following the general description
of the final averaged model in block 4a, certain generalizations
about the canonical model are made possible, which are otherwise not
achievable. HNamely, even though for all currently known switching
dc-to-dc converters (such as the buck, boost, buck-boost, Venable [31,
Weinberg [4] and a number of others) the frequency dependence
appears only in the duty-ratio dependent voltage generator but not
in the current generator, and then only as a first-order (single-
| zero) polynomial in complex frequency s; however, neither circumstance
will necessarily occur in some converter yet to be conceived. In
|

general, switching action introduces both zeros and poles into the

duty ratio to output transfer function, in_addition to the zeros and
poles of the effective filter network which essentially constitute

the line voltage to output transfer function. Moreover, in general,
both duty-ratio dependent generators, voltage and current, are fre-
quency dependent (additional zeros and poles). That in the particular
cases of the boost or buck-boost converters this dependence reduces

to a first order polynomial results from the fact that the order

of the system which is involved in the switching action is only two.
Hence from the general result, the order of the polynomial is at most
one, though it could reduce to a pure constant as in the buck or the
Venable converter [3].

The significance of the new circuit model is that any
switching dc-to-dc converter can be reduced to this canonical fixed

topology form, at least as far as its input-output and control

properties are concerned, and hence it is valuable for comparison of
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various performance charactaristics of different dc-to-dc converters.
For example, the effcctive filter networks could be compared as to
their effectiveness throughout the range of dc duty cycle D (in
general, the effective filter elements depend on duty ratio D),

and the configuration chosen which optimizes the size and weight.
Also, comparison of the frequency dependence of the two duty-ratio
dependent generators provides insight into the question of stability

once a regulator feedback loop is closed.

2.4 Extension to complete regulator treatment

Finally, all the results obtained in modelling the converter
or, more accurately, the network which effectively takes part in

switching action, can easily be incorporated into more complicated

systems containing dc-to-dc converters such as the switching regulator

in Fig. 1.10. For example, by modelling the modulator stage along the

same lines, one can obtain a linear circuit model of a closed-1o0p

switching regulator. Standard linear feedback theory can then be used

for both analysis and synthesis, stability considerations, and proper
design of feedback compensating networks for multiple-loop as well as
single-loop regulator configurations.

In summary, the review in this chapter has shown that the new
general state-space averaging method is directly applicable to any
switching dc-to-dc converter, even those whose topologies have not
yet been conceived, namely to the generalized switching converter of
Fig. 1.11 By simply following path a in the Flowchart of Fig. 2.1

both static (dc) and dynamic (ac) characteristics of the converter
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are easily obtained. The only assumption made is that the converter
operates in the continuous conduction mode, hence there exist only
two switched circuit modeis (or their equivalent linear state-space
description through triples (A], b], c]T) and (AZ’ b2, czT) as shown
in block la of the Flowchart in Fig. 2.1).

in addition, for any particular converter, the circuit
averaged model results from following path b in the Flowchart.
Finally, as a culmination of both approaches, a new canonical
circuit model exhibiting fixed topology is obtained (block 5 in the
Flowchart) which makes certain general conclusions possible.

After being so general in this chapter, we proceed with the

specific derivations and illustrative examples in Chapters 3 and 4.



CHAPTER 3
STATE-SPACE AVERAGING, HYBRID MODELLING
AND CIRCUIT AVERAGING

Several paths in the Flowchart of Fig. 2.1 are explored in
detail in this chapter and are illustrated by appropriate examples.
Since the justification of the basic state-space averaging step
(going from block la to 2a in the Flowchart of Fig. 2.1) is lengthy and
involved, the corresponding derivations are shown separately in
Apperdices A, B and C. This way they will not hide or interfere with
the simple sequence of steps explained in this chapter, which are to
be followed in order to arrive at the final static and dynamic model

of the converter.

3.1 State-space averaging

In this section the state-space averaging method is developed
first in génera] for any dc-to-dc switching converter, and then
demonstrated in detail for the particular case of the boost power stage
in which parasitic effects (esr of the capacitor and series resistance
of the inductor) are included. General equations for both steady-
state (dc) and dynamic performance (ac) are obtained, from which
important transfer functions are derived and also applied to the

special case of the boost power stage.

Basic state-space averaged model
The basic dc-to-dc level conversion function of switching

- converters is achieved by repetitive switching between two linear
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networks consisting of ideally lossless storage elements, inductances
and capacitances. In practice, this function may be obtained by use
of transistors and diodes which operate as synchronous switches. On
the assumption that the circuijt operates in the continuous conduction
mode in which the instantaneous inductor current does not fall to zero
at any point in the cycle, there are only two different "states" of
the circuit. Each state, however, can be represented by a linear
circuit model (as shown in block b of Fig. 2.1) or by a corresponding
set of state-space equations (block la). Even though any set of
linearly independent variables can be chosen as the state variables,
it is customary and convenient in electrical networks to adopt the
inductor currents and capacitor voltages. The total number of storage
elements thus determines the order of the system. Let us denote such
a choice of a vector of state-variables by x.

It then follows that any switching dc-to-dc converter
operating in the continuous conduction mode can be described by the

state-space equations for the two switched models:

(i) interval Tsd: (ii) interval Tsd':
X = A.lx + b]vg X = AZX + b2vg (3.1)

where Tsd denotes the interval when the switch is in the on state and
Ts(l-d) z Tsd' is the interval for which it is in the off state, as
shown in Fig. 1.2. The static aquations Yy = c]Tx and Yp = csz

are necessary in order to account for the case when the output

quantity does not coincide with any of the state variables, but is
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rather a certain linear combination of the state variables.

Our objective now is to replace the state-space description
of the two linear circuits emanating from the two successive phases
of the switching cycle Tgby a single state-space description which
represents approximately the behavior of the circuit across the
whole period Ts‘ We therefore propose the following simple
averaging step: take the average of both dynamic and static equations
for the two switched intervals (3.1), by summing the equations for
interval Tsd multiplied by d and the equations for interval Tsd'

multiplied by d'. The following linear continuous system results;

X

d(A]x+b]vg) + d'(A2x+b2vg)
(3.2)
y = dy] + d'y2 = (dc]T+d'czT)x

After rearranging (3.2) into the standard linear continuous
system state-space description, we obtain the basic averaged state-

space description (over a single period TS):

X

(dA}+d'A2)x + (db]+d'b2)vg
(3.3)

T, ..
(dc] +d CZT)X

<
n

This model is the basic averaged model which is the starting
model for all other derivations (both state-space and circuit
oriented).

Note that in the above equations the duty ratio d is considered
constant; it is not a time dependent variable (yet), and particularly

not a switched discontinuous variable which changes between 0 and 1 as
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in [1] and [2], but is merely a fixed number for each cycle. This
is evident from the model derivation in Appendix B. In particular,
when d = 1 (switch constantly on) the averaged model (3.3) reduces
to a switched model (3.1i), and when d = 0 (switch off) it reduces
to switched model (3.1ii).

In essence,combarison between (3.3) and (3.1) shows that the
system matrix of the averaged model is obtained by taking the average
of two switched model matrices A] and AZ’ its control is the average
of two control vectors bl and b2, and its output is the average of
two outputs Y3 and yp over a period Ts'

The justification and the nature of the approximation in
substitution for the two switched models of (3.1) by state-space
averaged model (3.3) is indicated in the Appendices. It has already
been shown in Chapter 1 that the requirement of low output switching
ripple places the natural frequencies » = 1/2RC and f_ = 1/2nAC
significantly lower than the switching frequency fS = 1/T5(see for
example (1.11)). These two restrictions on the choice of elements,
namely “h/fs << 1 and fC/fS << 1 are shown in Appendix A to lead to a
very accurate approximation of the fundamental matrix eAt by its

first-order linear term, or eAt

~ I + At. This linear approximation
of the fundamental matrix is shown in Appendix B to lead directly to
the state-space averaging step, namely replacement of the two linear
continuous models (3.1) by a single continuous model of (3.3). In

addition, in Appendix C it is shown that in the steady ctate regime,

the exact dc conditions could be found which under the same linear

approximation of fundamental matrices reduce to the dc conditions
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obtained from basic averaged state-space model (3.3).
The model represented by (3.3) is an averaged model over a
single period TS. [f we now assume that the duty ratio d is constant

from cycle to cycle, namely, d - D (steady state dc duty ratio), we

get:
X=A_)F+bvg (3.4)
Yy =c¢cx

where
A= DA] + D'A2
b = Db] + D'b2 (3.5)
T._ T T
c = Dc] +D Cy

Since (3.4) is a Vinear system, superposition holds and it

can be perturbed by introduction of line voltage variations v_ as

4

vg = Vg + vg, where Vg is the dc line input voltage, causing a
corresponcing perturbation in the state vector x = X + X, where again
X is the dc value of the state vector and x- the superimposed ac

perturbation. Similarly, y = Y + y, and

AX + bvg + Ax + bvg (3.6)

cTX + ¢ x

& > XD

il

Y +

Separation of the steady-state (dc) part from the dynamic

(ac) part then results in the steady state (dc) model

AX + bV = 0; Y - T Y- -cTA"bvg (3.7)
®
and the dynamic (ac) model
X = Ax + by
A e 9 (3.8)
Yy=c¢Ccx
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It is interesting to note that in (3.7) the steady state (dc)
vector X in general depends only on the dc ddty ratio D and
resistances in the original model, but not on the storage element
values (L's and C's). This is so because X is the solution of the
Jinear system of equations

AX + ng =0 (3.9)

in which L's and C's are proportionality constants. This is in
complete agreement with the first-order approximation of the exact
dc conditions shown in Appendix C, which coincides with expression
(3.7). |
From the dynamic (ac) model, tﬁe line voltage to state-vector

transfer functions can be easily derived as:

A

x(s) - (s1-a)"Tp

vg(S) : (3.10)

—¥i§)—-= cT(sI-A)'lb

vg(S)
Hence at this stage both steady stete (pc) and line transfer
functions are available, as shown by block 6a in the Flowchart of
Fig. 2.1. We now undertake to include the duty ratio modulation effect
into the basic averaged model (3.3).
Perturbation
Suppose now that the duty ratio changes from cycle to cycle,

that is, d(t) = D + d where D is the steady state (de¢) duty ratic as

before and d is a superimposed (ac) variation. With the corresponding

46




T T IR T AT AT MR S A N ® L g e

perturbation definition X=X+ ;, y=Y+ ;, and vg = Vg + ;g the

basic model (3.3) becomes:

X = AX+ng + Ax+bvg + [(A]—AZ)X + (b]-bz)Vg]d + [(A]-Az)x + (b]'bZ)vg]d

dc term 1ine. duty ratio variation noniinear second-
variation order term
(3.11)
Y+y-= cTX + ch + (c T-c T)Xd + (¢ T-c T)xd
1 -2 1T =2
dc ac ac term nonlinear term
term term

Linearnization and f<nal state-space averaged mode?
Let us now make the small-signal approximation, namely that
departures from the steady state values are small compared to the

steady state values themselves:

~ -~

d X

v
Vi <1, g1, ¥ << 1 (3.12)

Then, using approximations (3.12) we neglect all nonlinear terms

such as the second-order terms in (3.11) and obtain once again a
Tinear system, but including duty-ratio .modulation 8. After
separating steady state (dc) and dynamic (ac) parts of this linearized
system we arrive at the following results for the final state-space

averaged model .
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Steady state (dc) model:

1 T 1

X=-A"bV, Y=cx=-ca Ty (3.13)
9 9
Dynamic (ac small-signal) model:
X = Ax + bvg + [(A]-Az)x + (b]-bz)vg]d (3.14)
y=cx+ (¢)-c, )xd

In these results, A, b and cT are given as before by (3.5).
Equations (3.13) and (3.14) represent the small-signal low-
frequency model of any two-state switching dc-to-dc converter
working in the continuous conduction mode.
From (3.14), the duty ratio modulation 3 to state-variable

X or to output y transfer functions are directly obtained as:

~

x(s)

d(s)

y(s)
d(s)

-1
(ST-R)T'L(AY-AY)X + (by-by)V,] (3.15)

ér(sI-A)'l[(A]-Az)x + (b]-bz)vg] +(c]T-c2T)X

It is important to note that by neglect of the nonlinear term
in (3.11) the source of harmonics is effectively removed. Therefore,
the linear description (3.14) is actually a linearized describing
function result that is the limit of the dezcribing function as the

amplitude of the input signals ; and/or d becomes vanishingly small.

g
The significance of this is that the theoretical frequency

response obtained from (3.14) for line to output and duty ratio te
output transfer functions can be compared with experimental describing

function measurements as explained in [1], [2], or [8], in which
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small-signal assumption (3.12) is preserved. Very good agreement up
to close to half the switching frequency has been demonstrated

repeatedly [1], [2], [3], [7].

Example: boost powen stage with parasitics

We now illustrate the method for the boost power stage shown

in Fig. 3.1. M

@<
®
L

_J

1
+
&
0 AA
Py

_.‘del‘d-#s .\i T

Fig. 3.1 Example forn state-space averaged modelling: boost powen
stage with parasitics included.

O v w(® lr' L
C v TC

T _

Fig. 3.2 Two switched circuit models of the corcuit in Fig. 3.1
with assumption of ideal switches. ALL eLements in the
ganal state-space averaged model (3.13) and (3.14) are
obtacned: A;, by, c,T from a) forn intenval dr,, and
Az, bz, cgT §rom b) fon interval d'T,.
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With assumption of ideal switched, the two switched models
are as shown in Fig. 3.2. For choice of state-space vector xT = (1 v),

the state-space equations become:

(i) interval Tsd: (i1) interval Tsd':
X = A]x + bvg X = Azx + bvg
T I (3.16)
y=epx ¥2 = & X
where _ - - -
R, R +R_IIR R
- 0 - L -
| L L(R+Rc,
A = . 2 B 1
N 0 [ | TRRJC RFRIC]
eT= 1o —R ¢, = ,.RIIR R (3.17)
1 l R+Rc 2 c R+Rc '

Note that (3.16) is the special case of (3.1) in which by = b2 =b =
1L o',
Using (3.17) and (3.5) in the general result (3.13) and (3.14),

we obtain the following final state-space averaged model.

Steady-state (dc) model:

1-
X = [1] = !9. [ ! ] . Y = .v_g(__-P_)—R. (3.18)
v R' |(1-D)R R'

in which I is the dc inductor current, V is the dc capacitor voltage,

and Y is the dc output voltage.
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— — u.

Dynamic (ac small signal) model:

) R +(1-DXR_[IR) (1-00R ] T -
! - L " LIRWR) !
d_ =
s DR o -
| | TReR_C wRoe | LY
BR "R (D'R+Rc)1
L L R+R ~
~ c v
+ v, + -
’ R : 3.19)
0 - !R+chc (3.

. . i RJR .
y = (]'D)(Rc” R) ‘ﬁ‘@: ; - Vg L d

(1-0)%R + R, + D(1-d)(R || R).

1

in which R'

We now look more closely at the dc voltage transformation ratio

in (3.18):
vy _ 1 > (1-D)%R (3.20)
vg vg 1-D (1-D)°R + R, + D(l-D)(RCHR)
jdeal correction factor
dc gain

This shows that the ideal dc voltage gain is 1/D' when all parasitics
are zero (Rz = 0, Rc = 0) and that in their presence it is slightly
reduced by a correction factor less than 1. Also we observe that
nonzero esr of the capacitance (Rc # 0) (with consequent discontin-
uity of the output voltage) affects the dc gain and appears
effectively as a resistance DD'(RCHR) in series with the inductor
resistance Rﬁ‘ Tnis effect due to the discontinuity of output

voltage wzs not included in [2], but was correctly accounted for in

[1].
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This is also a good example to show how even tiny parasitic
resistances could significantly alter dc gain characteristics and
efficiency of the converter. Just for simplicity of presentation,
take RC = 0 in (3.20) and consider voltage gain V/Vg as a function of
duty ratio D. It is easy to see that in this more realistic case
(Re # 0) it will have a maximum (V/V o)y, = 0.5/R7RZ_ at D =
1 - /RIJR, while in the ideal case it increases without the limit,

as shown in Fig. 3.3. As a numerical example, for R = 209, Ry = 0.2Q

the maximum dc gain is (v/vg)max =5atl = 0.9.

dec gain D /

D'y

— real /
voltage gain Sf———————"=TT T T 7~ 7

— = ideal
voltage gain
also real 5
current gain 1 —
S 0.0 0.5 Dm 1.0

Fig. 3.3 Vottage dc gain with inducton parasitic nesdisitance included.

It is interesting to note, however, that the dc current
conversion is not affected by inclusion of parasitics and stays at
/1

I = 1/D', or the same as the ideal dc voltage gain shown in

in” "out
Fig. 3.3. Therefore, the efficiency 7(D) of the converter as a func-
tion of duty ratio D could be simply obtained by dividing the two
curves in Fig. 3.3 to produce Fig. 3.4. For the same numerical

example Re/R = 0.01, the efficiency would drop to only 50% at the
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Fig. 3.4 Efficiency of the boost converter as a function of duty
ratio for Ry70.

maximum dc voltage gain of 5. This illustrates in a rather dramatic
fashion how even the small resistance'inevitany associated with any
inductor could drastically reduce eff%ciency and alter dc voltage
conversion. One can now properly appreciate the importance of
inclusion of various parasitic effects which distinguish the ideal
lossless circuits from the real lossy ones.

From the dynamic model (3.19) one can find the line voltage

to output and duty ratio to output transfer functions by applying

(3.10) and (3.15). If we take for simplicity Rc = 0, cthe following

transfer functions, which now again include the effects of nonzero

Rz are obtained:

6 = ; s) _ ] ”
vg og s S
- 1 -5
(V)
Byg = Rl =g, L (3.21)
| dis) %91+ S+ ()
Quw w
where (o} 0
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These results agree exactly with those obtained in [1] by following a

different method of averaged model derivation based on the equivalence

of circuit topologies of two switched networks.

The fundamental result of this section is the development
of the general state-sbace averaged model represented by (3.13) and
(3.14), which can be easily used to find the small-signal low-frequency
model of any switching dc-to-dc converter. This was demonstrated for
a boost power stage with parasitics resulting in the averaged model
(3.18) and (3.19). It is important to emphasize that, unlike the
transfer function description, the state-space description (3.13) and
(3.14) gives the complete system behavior. This is very useful in
implementing two-loop and multi-loop feedback when two or more states
are used in a feedback path to modulate the duty ratio 3. For example,

both output voltage and inductor current may be returned in a feedback

loop.
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3.2 Hybrid modelling

In this section it will be shown that for any specific

converter a useful circuit realization of the basic averaged model

given by (3.3) can always be found. Then, in the foilowing section,
the perturbation and linearization steps will be carried out on the
circuit model finally to arrive at the circuit model equivalent of
(3.13) and (3.14).

The circuit realization will be demonstrated for the same
boost power stage example, for which the basic state-space averaged

model (3.3) becomes:

- - _ - -
gi|l [ Ry +d' (R [IR) d'R i [ 1
dt B L - LZR+RC) ! L
= +
Vg
dv d'R 1 0
dtJ (R+Rc)c - T‘ngc CJ VJ ]
N - - (3.22)
d'(R_|IR) R !
y = |d'
c R+RC v

In order to "connect" the circuit, we express the capacitor

voltage v in terms of the desired output quantity y as:

R+RC
V=Y - (]-d)Rcl

or, in matrix form
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(3.23)
R+Rc
v -d'R y
S L ¢ R 7
Substitution of (3.23) into (3.22) gives
1 I 107
1 [] I ] .
L & -(R +dd' (R_{|R) d i 1
additional ideal
B resistance transformer + v
) g
¢ dat d' - % y 0
L - J0 J L
(3.24)

From (3.24) one can easily reconstruct the circuit representation

shown in Fig. 3.5.

Re L ddiRIR)

’

w @ "

i+
-—
+
M
Pl

Fig. 3.5 Curewit nealization of the basic slate-space averaged
model (3.24) through hybrid modelling.

The basic model (3.24) is valid for the dc regime, and the
two dependent generators can be modeled as an ideal d':1 transformer

whose range extends down to dc, as shown in Fig. 3.6,
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R{ L dd'(Rc”R, y

v

i
( [ ] Rc S

d}:l

Fig. 3.6 Basic cincuit averaged model fon the Soost circuit example
An Fig. 3.1. Both de-to-de convernsion and Line varuiation

are modelled when d(2) = D.

A word about the new transformer symbol introduced in Fig. 3.6
is appropriate here. In the modelling of dc-to-dc converters a need

naturally arises to have as a convenient modelling tocl special types

of transformers: a transformer which operétes for both ac and dc
signals, as for example the one in Fig. 3.6, and also a transformer
which only works at dc (for which the need will arise in Part II).
Lven though these transformers are not physically realizable they are,
nevertheless, very useful in modeliing the basic converter function:
dc-to-dc conversion. Hence, as an indicator of their specific
functions, the symbols of Fig. 3.7 are introduced. For consistency,
the conventional, physically realizable, ac transformer only, is
pictorially represented as in Fig. 3.7c. Later, for similar purposes,

the same overprint glyphs will be used with resistance symbols.

d) de and ac transformer b)dc transformer c)ac transformer

o— o o | —© —o
® ® o ® ® o
O- —0 o 4 O ——0

Fig. 3.7 Definition of various Luans gormen symbols.
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As before, we find that the circuit model in Fig. 3.6 reduces
for d = 1 to the switched model in Fig. 3.2a, and for d = 0 to the
switched model in Fig. 3.2b. In both cases the additional resistance
dd‘(RC!IR) disappears, as it should.

If the duty ratio is constant so d = D, the dc regime can be
found easily by considering inductance L to be short and capacitance

C to be open for dc, and the transformer to have a d':1 ratio. Hence

the dc voltage gain (3.20) can be directly seen from Fig. 3.6
Similarly, all line transfer functions corresponding to (3.10) can

S be easily found from Fig. 3.6.
&« ¢ N

It is interesting now to compare this ideal d':1 transformer
with the usual ac transformer. While in the 1atter the turns ratio
is fixed, the one employed in our model has a dyn;;ic turns ratio
d':1 which changes when the duty ratio is a function of time, d(t).
It is through this ideal transformer that the actual controlling
function is achieved when the feedback loop is closed. In addition
the ideal transformer has a dc transformation ratio d':1, while a
real transformer works for ac signals only. Nevertheless, the concept
of the ideal transformer in Fig. 3.6 with such properties is a very
useful one, since after all,the switching converter has the overall
property of a dc-to-dc transformer whose turns ratio can be
dynamica]]yAadjusted by duty ratio modulation to zchieve fhe control -
ling function. We will, however, see in the next saction how this can be

more explicitly modelled in terms of duty-ratio dependent generators ;

only.

58




Following the procedure cutlined in this section one can
easily obtain the basic -averaged circuit models of three common

converter power stages, as shown in the summary of Fig.3.8 .

a) buck power stage ;
Ry L 1:d Ry L

—MA~ IO
B w| o e
V<L, | Rl V9 Rel
®° & HOE = SR
T
b} boost power stage : buck
Re L Ry L Ri d’:1

Ri=dd'(R JR) buck boost

Fig. 3.8 Summany of basic cincuit averaged models fon three gemmon
power stages: buck, boost, and buck-boost.

The two switched circuit state-space models for the power

stages in Fig.3.8 are such that the general equations (3.1) reduce

to the special cases Ay = A, = A, b, # b, = 0 (zero vector) for the

buck power stage, and A] # A2, b] = b2 = b for the beost power stage,
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F
whereas for the buck- boost power stage A] # A2 and b] 7 b2 =0 s0 ?{
that the general case is retained. ;

3

3.3 Circuit averaging

As indicated at the beginning of this chapter, in this
section the alternative path b in the Flowchart of Fig. 2.1 will be
followed, and equivalence with the previously developed path a firmly
established. The final circuit averaged model for the same example
of the boost power_stage will be arrived at, which is equivalent
to its corresponding state-space description given by (3.18) and (3.19).
The averaged circuit models shown in Fig. 3.8 could have

been obtained as in [2] by directly averaging the corresponding

components of the two switched models. However, even for some
simple cases such as the buck-boost or tapped-inductor boost [1]
this presents some difficulty owing to the requirement of having two ;

23

switched eircuit models topologically equivalent, while there is no 3¢

such requirement in the out?ihed procedure.
In this section we proceed with the perturbation and ;35

linearization steps applied to the circuit model, continuing with

the boost power stage as an example in order to include expligitly

the duty ratio modulation effect.
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Pertutbation
If the averaged model in Fig. 3.8 is perturbed according to

vg = Vg+vg, i = I+i, d = D¥d, d' = D'-d, v = Vtv, y = Y+y the

nonlinear model in Fig. 3.9 results.

A

Ry L e (D+d)(D-dAR | RNT+1) g

—

1+

|
(D-d)1+7) S Re
Vg+09<_t> (N-3)(Y+q) 4 + §R
v C
_r

V+V

1+

Fig. 3.9 Perturbation of the basic averaged circudt mod§£ in Fig.
3.6 4ncludes the duty natio medulation effect da,
in this nonlinearn cincuit model.

Linearnization

Under the small-signal approximation (3.12), the following

linear approximations are obtained:

e # DD (R_IR}(I+1) + d(D*-D)(R_|IR)I

~

1y

Q

(D'-d)(Y+y) n D' (Y+y) -

~

(D*-a){1+1) » D'(1+1) - dI

and the final averaged circuit model of Fig. 3.10 results. In this
circuit model we have finally obtained the controlling function
separated in terms of duty ratio 8 dependent generators e and jl’
while the transformer turns ratio is dependent on the dc duty ratio
D only. The circu.t model obtained in Fig. 3.10 is equivalent to

the state-space description given by (3.18) and (3.19).

but nresults
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R L DD'(H\LER) e.f[mefl(fkl'Fi)I]a Y+§
l+1 L ji=1a S Re
V9+‘79<1> QDA R
V+V —[C

'

D:1
Feg. 3010 Undern smaft-scanal asswnption (3.12), the model 4in Fig. 3.9

8 Cowanceed and thes foal averaged conewd € model of
the boest stage 4n Fog. 5.1 48 obtadned.

This now completes the detailed investigation of all paths
in the Flowchart of Fig. 2.1 except for the culminating block- - the
canonical circuit model, which is dealt with in the next chapter.
However, before going into this final step of modelling, let us first
review some of the more fundamental results obtained in this chapter.

A general method for medelling power stages of any switching
dc-to-dc converter has been developed through the state-space
approach. The fundamental step is in replacement of the state-space
descriptions of the two switched networks by their average over the
single switching period TS, which results in a single continuous
state-space equation description {3.3) designated the basic averaged
state-space model. The essential approximations made are indicated
in Chapter 1 and the Appendices, and are shown to be justified for
any practical dc-to-dc switching cenverter. Their essence can be
quickly summarized in the following sequence of implications:

switching natural <~ switching — fundamental
ripple small > frequencies S frequency matrix

linear - state-space

v s
approximation — ¥ averaqging step



The subsequent perturbation and linearization step under the
small-signal assumption (3.12) leads to the final state-space averaged
model given by (3.13) and (3.14). These equations then serve as the
basic for development of the most important qualitative result of this
work, the canonical circuit model ‘bLiock 5 in the Flowchart of Fig.
2.1).

In contrast with the state-space modelling approach, for any
particular converter an alterrative path via hybrid modelling and
circuit transformation could be followed, which also arrives first at
the final circuit averaged model equivalent of (3.13) and (3.14) and
finally, after equivalent circuit transformations, again arrives at

the canonical circuit model.

Although the state-space modelling approach has been
developed in this chapter for two-state switching converters, the
method can be externded to nultiple-state converters. Examples of
three-state converters are the familiar buck, boost and buck-boost
power stages (shown in Fig. 1.1) operated in the discontinuous
conduction mode (compare Chapter 1, Fig. 1.7), while dc-to-ac switch-
ing inverters in which a specific output waveform is "assembled"
from discrete segments are examples of multiple-state converters.

In particular, Part Il will demonstrate in detail how the
extension of this state-space modelling approach can be accomplished
for converters operating in the discontinuous conduction mode, where
structural change takes place among three different switched network

topologies as opposed to two we have treated so far in this chapter.
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CHAPTER 4
CANONICAL CIRCUIT MODEL

This chapter is entirely devoted to the new canonical circuit
model (see block 5 in the Flowchart of Fig. 2.1). The derivations
via a general state-space model (3.13) and (3.14) are subsequently
illustrated on a buck-boost example, while the results for a number
of other converters are conveniently represented in the form of a
table, thanks to the fixed circuit topology of the new canonical
model. Finally, the significance of the new circuit model and general
conclusions not otherwise available are thoroughly discussed.

Even though the general final state-space averaged model
in (3.13) and (3.14) gives the complete description of the system
behavior, one might still wish to derive a circuit model describing

its input-output and control properties as illustrated in Fig. 4.1.

a) b)

Vg n state - space il Vel circuit model Vel
+ averaged model | T+Y g+Vg on an Y

) \b via > C> > input oquuf:?

input | A Az,bl,bz,c,;,c; output  input basis output

GD+3 75 D+d

control control

Fig. 4.1 Definition of the modelling objective: cieudlt averaged
model describing input-output and control properties.

In going from the model of Fig. 4.1a to that of Fig. 4.1b
some information about the internal behavior of some of the states
will certainly be lost but, on the other han”, important advantages
will be gained as were briefly outlined in Chapter 2, and as this

section will illustrate.
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We propose the following fixed topology circuit model, shown

in Fig. 4.2 as a realization of the "black box" in Fig. 4.1b.

control function basic dc-to-dc effective low-pass

vida d transformation filter network
| “‘Z’i‘x (D): | Re Le |yeo
-\
E fis)d Ze j
S+ Jis)d c L > R
Vg“gC—P sl = ik

— “Hemi I

Fig. 4.2 Canonical circuit model nealization 0f the "black box”
An Fig. 4.1b, modelling the three essenteal functions of
any dec-to-de converten: conthol, basic dc conversion, and
Low-pass filtering.

We call this model the canonical circuit model, because any switching

converter input-output model, regardless of its detailed configura-
tion, could be represented in this form as Tong as the converter
operates in the continuous conduction mode. Different converters

are represented simply by appropriate sets of formulas for the four
elements e(s), j(s), p, He(s) in the general equivalent circuit. The
polarity of the ideal u:l transformer is determined by whether or not
the power stage is polarity inverting. Its turns ratio u is dependent
on the dc duty ratio D, and since for mcdelling purposes the trans-

former is assumed to operate down to dc, it provides the basic dc-to-
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dc level conversion. The single-section low-pass LeC filter is shown
in Fig. 4.2 only for illustration purposes, because the actual number
and configuration of the L's and C's in the effective filter transfer
function realization depends on the number of storage elements in the
original converter.

The resistance Re is included in the mode]_of Fig. 4.2 to
represent the damping properties of the effective low-pass filter.
It is an "effective" resistance that accounts for various series ohmic
resistances in the actual circuit (such as Rl in the boost circuit
example), the additional "switching" resistances due to discontinuity
of the output voltage (such as DD'(RCHR) in the boost circuit example),
and also a "modulation” resistance that arises from a modulation of

the switching transistor storage time [1].



From the general state-space averaged model (3.13) and (3.14),

we obtain directly using the Laplace transform:

x(s) = (sI-A)']bvg(s) + (s1-A)T[(A;-A,)X + (by-b, )V, 1d(s)
(4.1)
y(s) = ch(s) + (c]T-czT)Xd(s)
Now, from the above complete set of transfer functions we
single out those which describe the converter input-output properties,

namely

9(5) = Gyg vg(s) + Gyq d(s)

R ) (4.2)
Gig vg(s) + Gid d(s)

i(s)
in which the G's are known explicitly in terms of the matrix and
vector elements in (4.1).

Equations (4.2) are analogous to the two-port network
representation of the terminal properties of the network (output
voltage ;(s) and input current ?(s)). The subscripts designate the
corresponding transfer functions. For example Gvg is the source
vol tage ;g to output voltage ; transfer function, Gid is the duty ratio
E to input current ;(s) transfer function, and so on.

For the proposed canonical circuit model in Fig. 4.2, we
directly ggt:

AT e y(S) (l\;g+e’d\) ‘;-lI He(S) (4-3)

i(s) = d+ (edrv )y

or, after rearrangement into the form of (4.2):.
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y(s) = L H(s) V(s) + e L H(s)d(s)
(4.4)
i(s) = v (s) *+ |3 + —2—]d(s)
Uzzei(s) g H Zei(s)

Direct comparison of (4.2) and (4.4) provides the solutions for He(s),

e(s), and j(s) in terms of the known transfer functions Gvg’ Gvd’
Gig and Gid as:
Gvd(s) .
e(s) = ’q‘g-cq' ’ i(s) = Gid(s) - e(S)Gig(s)

(4.5)
He(s) = uGyq(s)

Note that in (4.5) the parameter 1/u represents the ideal dc voltage

gain when all the parasitics are zero. For the previous boost

power stage example, from (3.20) we get u = 1-D and the correction

factor in (3.20) is then associated with the effective filter net-

work He(s). However, u could be found from

%—-= -c'A7'b = %-x (correction factor) (4.6)

by setting all parasitics to zero and reducing the correction factor
to 1.
The physical significance of the ideal dc gain uis that it

arises as a consequence of the switching action, so it cannot be

associated with the effective filter network which at dc has a gain
(actually attenuation) equal to the correction factor.
The procedure for finding the four elements in the canonical

model of Fig. 4.2 is now briefly reviewed. First, from (4.6) the
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basic dc-to-dc conversion factor u is found as a function of dc duty
ratio D. Next, from the set of all transfer functions (4.1) only
those defined by (4.2) are actually calculated. Then, by use of these
four transfer functions Gvd’ Gvg’ Gid’ G].g in (4.5) the frequency
dependent generators e(s) and j(s) as well as the low-pass filter
transfer function He(s) are obtained.

The two generators could be further put into the form

e(s) = Ef](s)

(4.7)
is) = 3y(s)

where f](O) = f2(0) = 1, such that the parameters E and J could be
identified as dc gains of the frequency dependent functions e(s) and
i(s).

Finally, a general synthesis procedure [10] for realization
of L, C transfer functions *erminated in a single load R could be
used to obtain a Tow-pass ladder-network circuit realization of the
effective low-pass network He(s). Though for the second-order example
of He(s) this step is trivial and could be done by inspection, for
higher-order transfer functions the orderly procedure of the

synthesis [10] is almost mandatory.

Example: ideal buck-boost powen s4Lage
For the buck-boost circuit shown in Fig. 3.10c with Rz =0

RC = 0, the final state-space averaged model is:
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ail [ 01137 [ T VY T
al |0 | r L

= " v+ d 1.8
) g (4.8)
av | {0 _ 1 v 0 .y
L_dt C RC L D'RC

- b - - - - . -

in which the output voltage y coincides with the state-variable
capacitance voltage v.
From (4.6) and (4.8) one obtains p = D'/D. With use of (4.8)

to derive transfer functions, and upon substitution into (4.5), there

results
-V DL . -V
e(s)=—-(1-s——— s i(s) = ———
p? D'ZR) (1-D)°R (8.9)
He\‘-‘) = L 2 ’ H= ’1;[-)'9'
1+ s/RC+ s LeC

in which V is the dc output voltage.
The effective filter transfer function is easily seen as a
low-pass LC filter with Le = L/D'2 and with load R. The two

generators in the canonical model of Fig. 4,2 are jdentified by

_ =y - DL
-V
(1-D)°R 2

We now derive the same model but this time using the
equivalent circuit transformations and path b in the Flowchart of

Fig. 2.1.

70




After perturbation and linearization of the circuit averaged
model in Fig. 3. 8¢ (with R, =0, R, = 0), the series of equivalent

circuits of Fig. 4.3 is obtained.

V+v

:F:C R

|
L ~

b, IZD(\é_V'S—')d L D':| V+$

vg»?g@ ‘1& OI% #é FC 3R
c) _V , _sDL,~

DZ(I W)dD'D L.ID‘z V-}O

~ V A ° >
V9+V9ép CFE-TRC' r - —-c R

Fig. 4.3 Equivalent circuit transformations of the finat cirneuit
averaged model a) Leading to its canonical circuit realiza-
Lion c), demonstrated on the buck-boost example of Fig. 3.8c
(with R0, Rc=0).

The objective of the transformations is to reduce the original
four duty-ratio dependent generators in Fig. 4.3a to just two
generators (voltage and current) in Fig. 4.3c which are at the input

port of the model. As these circuit transformations unfold, one sees
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how the frequency dependence in the generators arises naturally, as
in Fig. 4.3b. Also, by transfer of the two generators in Fig. 4.3b
from the secondary to the primary of the 1:D transformer, and the
inductance L to the secondary of the D':1 transformer, the cascade of
two ideal transformers is reduced to the single transformer with
equivalent turns ratio D':D. At the same time the effective filter
network Le’ C, R is generated.

Expressions for the elements in the canonical equivalent
circuit can be found in a similar way for any converter configuration.
Results for the three familiar converters, the buck, boost, and buck-

boost power stages are summarized in Table I.

type | (D) E . f(s) J fz(S) Le
J Vv V

k = — — L

buc D 02 | R |
LQ V L

t — Vv l-s5 | —= N
poes| 17D R -0 ' | -0
buck-{ |-D -V l—SDL@ -V l L
boost| ™ D2 R | (1-0fR (1-D)? ’

TABLE 1 Degindtion of the elements in the canonical ctreuit mydel
0f Fig. 4.2 for the three common powen &tages of Fig. 1.1.

[t may be noted in Table I that, for the buck-boost power
stage, parameters E and J have negative signs, namely E = -V/D2 and
J = -V/(D‘ZR). However, as seen from the polarity of the ideal D':D
transformer in Fig. 4.3c this stage is an inverting one. Hence, for

positive input dc voltage Vg, the output dc voltage V is negative

72




(V < 0) since V/Vg = -D/D'. Therefore E > 0, J > 0 and consequently
the polarity of the voltage and current duty-ratio dependent generators
is not changed but is as shewn in Fig. 4.3c. Moreover, this is true
in general: regardless of any inversion property of the power stage,
the polarity of the two generators stays the same as in Fig. 4.2.
[f some parasitics have been included in the original converter model
(such as RQ, parasitic resistance of the inductance) Table I would have
had another column for Re (effective series resistance) as seen in
Fig. 4.2 with appropriate expressions.

Table I, together with the canonical circuit model of Fig. 4.2,
could then conveniently be used to obtain all the important static
(dc) and dynamic (ac) transfer properties of the converters listed
in Table I. For example, Tabie I1 summarizing voltage gain and
efficiency of three common converters could be geneﬁéted in such a

way. In Table II the effects of parasitics have also been included .

a

type V/V9(dc gain) N (efficiency)
buck D R _R__
R+Ry F“*FR:
"2 92
boost I 0" R D" R

D' DR*Ri*DURAR |  D?R+RpDORJR

buck -
boost

D'2R D'2R
D’2R+R;fDD’RCHR D®?R+Ry+DD'RJ|R

D
D’

TABLE 11 Dc transfer properties and efgiciency of the three common
power stages of Fig. 1.1 in the continuous conduction mode.
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Similarly the dynamic (ac) transfer properties, that is,

line voltage variation to output voltage and duty ratio modulation to

output voltage, can be summarized for three common pover stages of

Fig. 1.1 in the form of Table III.

buck boost buck —boosgt
o 5 _R 1 _D*R D _D”R
°g R+Re D DPR+Ry D’ D*R+Ry
R (D2R-R¢)R D*R-{D-CIR¢
God Vg =——— - R
9 R+Ry \@(DZR+R,)2 5 (DR +Rg)?
I Ry I 2, Ry | 2 Ry
—— + —— — —
“% | tR e VP 'R |76 P TR
q | _ReR 1 D?R+R; | I D®R+Ry
J» L+CRR; |uh L+CRR; |us L+CRRy
- D'’R-R D'*R-(D-DIR
— - {
Wa oo —T = DU ”
-‘_:g_z(“ | v eV _ | - S|Wa
Cvg Y 299 |+s/Qw°+(s/wa)27GVd d G°d|+s/Qwo+(slw,)2
TABLE 111

Summarny of the ac thansfer properties of the three common

power stages of Fig. 1.1 4in the continuous conduction mode.

After filing the information on these converters in Tables

I, IT and III we can proceed to discuss the significance of the new

canonical circyit model of Fig. 4.2 and related generalizations.

-
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4.2 Sigiificance of the canonical circuit model and related

generalizations

The canonical circuit model of Fij. 4.2 incorporates all
three basic properties of a dc-to-dc converter: the dc-to-dc
conversion function (represented by the ideal u:1 transformer);

control (via duty ratio d dependent genr:rators); and low-pass

filtering (represented by the effective low-pass filter network
He(s)). Note also that the current generator j(s) d in the canonical
circuit model, even though superfluous when the source voltage

vg(s) is ideal, is necessary to reflect the influence of a nonideal

source generator (with some internal impedance) or of an input filter
(7] upon the behavior of the converter. Its presence enables one
easily to include tke linearized circuit model of a switching converter
power stage in-other linear circuits, as the next chapter will
illustrate.

Another significant feature of the canonical circuit model
is that any switching dc-to-dc converter can be reduced by use of
(4.1), (4.2), (4.5) and (4.6) to this fixed topology form, at least
as far as its input-output and control properties are concerned.
Hence the possibility arises for use of this model to compare in an
easy and unique way varicus performance characteristics of different

converters. Some examples of such comparisons are given below.

1. The filter networks can be compared with respect to their
effectiveness throughout the dynamic duty cycle range D,
because in general the effective filter elements depend on

the steady state duty ratio D. Thus, one has the
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opportunity to choose :he configuration and to optimize the

size and weight.

2. Basic dc-to-dc conversion factors u](D) and “Z(D) can be
compared as to their effective range. For some converters,

traversal of the range of duty ratio D from O to 1 generates
any conversion ratio (as in the ideal buck-boost converter),
while in others the conversion ratio might be restricted (as

in the Weinberg converter [4], for which 1/2 < 4 < 1).

3. In the control section of the canonica) model one can
compare the frequency dependences of the generators e(s) and
j(s) for different converters and select th: configuration
that best facilitates stabilization of a feedback regulator.
For example, in the buck-boost converter e(s) is a polynomial,
containing actually a real zero in the right half-plane,

which uncoubtedly causes some stability problems and need

for proper ccmpensation.

4. Finally, the canonical model affords a very convenient
means to store and file information on various dc-to-dc
converters in a computer memory in a form comparable to
Table I. Then, thanks to the fixed topology of the canonical
circuit mocel, a single computer program can be used to cal-
culate and plot various quantities as functions of frequency
(input and output impedance, audio susceptibility, duty

ratio to output transfer response, and so on). Also,

various input filters and/or additional output filter net-

works can easily be added if desired.




We now discuss an important issue which has been intentionally
skipped so far. From (4.5) it is concluded that in general the duty
ratio dependent generators e(s) and j(s) are rational functions of

complex frequency s. Hence, in general,both some new zeros and poles

are introduced into the duty ratio to output transfer function owing

to the switching action, in addition to the poles and zeros of the

effective filter network (or line to output transfer function).
However, in special cases, as in all those shown in Table I, the
frequency dependence might reduce simply to polynomials, and even
further it might show up only in the voltage-dependent generators
(as in the boost, or buck-boost) and reduce to a constant (fz(s) =1)
for the current generator. WNevertheless, this does not prevent us
from modifying any of these circuits in a way that would exhibit the
general result -- introduction of both additional zeros as well as
poles.

Let us now illustrate this general result on a simple

modification of the familiar boost circuit, with a resonant L C

1
circuit in series with the input inductance L, as shown in Fig. 4.4.

L 'A L v
LA S 1 ——

|
|
Vg (t) Ci i =C R
|
|
|

Al
Fig. 4.4 Mcdified beost corcuct as an (Lfustration of general gre-
quency behaveon of the genenatons in the canondical cincudlt
model of Fig. 4.2.




By introducticn of the canonical circuit model for the boost
power stage (for the circuit to the right of cross-section AA') and
use of data from Table [. the equivalent averaged circuit model of
Fig. 4.5a is obtained. Then, by anolication of the equivalent cir-
cuit transformation as outlined previously, the averaged model in the
cancnical circuit form is obtained in Fig. 4.5b. As can be seen from
Fig. 4.5b, the voltage generator has a double pole at the resonant
frequency w. = 1//(}?? of the parallel L,,C; network. However, the
effective filter transfer function has a deuble zero (null in
magnitude) at precisely the same location such that the two pairs
effectively cancel. Hence, the resonant null in the macnitude
response, while present in the line voltage to output transfer func-

tion, is not seen in the duty ratio to output transfer function.

a) _ sl
L, X(" Gﬂﬁ)dD':| L/D" V4o
<O 1y ~ 0 -
|
A i 1
V§+vg C, } 7—-0 ? R
I
|
Al
b) sL sLJDR A

V(|_ A
V+v

A oL .
A Vd ’

Fig. 4.5 Equivalent circudt thans formation feading to the canonical
cinouwit meded t) of the curcuct 4n Fig. 4.4.

{
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Therefore, the positiye effect of rejection of certain input
frequencies around the resonant frequency w. is not accompanied by a
detrimental effect on the loop gain, which Will not contain j null in

the magnityde response.

The example denons trates yet another important aspect of

modelling with use of the averagirng technique. Instead of applying

it directly to the whole circuit in Fig. 4.4, we have instead imple-

circuit model, all other Tinear circuits of the complete model are
retained as they appear in the original circuit (such as L], C] in
Fig. 4.5a), Again, the current generator *n Fig. 4,53 is the one

which reflects the effect of the input resonant circuit.

After the detaileq exposition we are now ready to briefly
review the salient featyres of this new canonical circuit mode1

(Fig. 4.2), Thanks to jts fixed tonology Structure, different

Besides itg unified description, of which severa] examples are given
in Table I, ore of the advantages of the canonical circuit model is
that varioys Performance characteristics of different switching

converters can be compared in a quick end easy manner,
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Perhaps the most important consequence of the canonical
circuit model derivation via the general state-space averaged model
(3.13), (3.14), (4.1) and (8.2) is its prediction through (4.5) of
additional zeros as well as poles in the duty ratio to ovutput transfer
function. In addition, frequency dependence is anticipated in the
duty ratio dependent cﬁrrent generator of Fig. 4.2, even though for
particular converters considered in Table I it reduces merely to a
constant. Furthermore, for some switching networks which would
effectively involve more than two storage elements, higher order
polynomials should be expected in f](s) and/or fz(s) of Fig. 4.2.

In fact, Part III has resulted as a consequence of the search
for such switching networks which would demonstrate the predictions
anticipated by this general canonical model. There, a new class of
switching converters generated by the various cascade combinations
of the two fundamental converters, buck and boost cf Fig. 1.1, not
only shows yet another topological realization of the generalized
switching converter in Fig. 1.11 but also demonstrates how powerful
the general equations (4.5) and (4.6) are in arriving at the canonical
circuit model of Fig. 4.2. In addition, this circuit model exhibits
a single zero (first-order) polyncmial in complex frequency s for the
duty ratio dependent current generator and a second-order polynomial
for the duty ratio dependent voltage generator, besides its low-
pass effectfve filter of fourth order (four storage elements L's
and C's). Therefore, general predictions made available by the
derivation of %he canonical circuit model in this chapter will be

confirmed by the new class of switching converters in Part III and a




new switching converter of Part IV which employs an optimum
topology.

As was demonstrated in Chapter 1, the main difficulty in analyzing
a switching-mode regulator (Fig. 1.10) lies in the modelling of its
nonlinear part, the switching-mode converter. However, we have
succeeded in previous chapters in obtaining the small-signal low-
frequency circuit model of any "two-state" switching dc-to-dc
converter, operating in the continuous conduction mode, in the
canonical circuit form. In the next chapter it will be demonstrated
how this converter circuit model can easily be incorporated in the
complete regulator, and the general switching mode regulator circuit

model obtained.
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CHAPTER 5

SWITCHING MODE REGULATOR MODELLING

This chapter represents the culwmination of the modelling
procedures developed in Part [ in that it demonstrates the ease with
which the different converter circuit models, and the canonical cir-
cuit model in particluar, can be incorporated into more complicated
systems such as a switching-mode regulator.

First a brief discussion of modelling of modulator stages
(such as, for example, the single-edge clocked pulse width modulator
of Fig. 1.10) in general is presented, which leads to a complete
general switching-mode regulator circuit model.

This then serves as a basis for establishment of cnalytic
quantitative expressions for the important requlator properties loop
gain T, input and output impedances Zi and Z , and line transmission
characteristic F of the resulting linear negative feedback circuit
model of a complete regulator. Knowledge of these quantitative
relations and the well-known body of linear feedback theory wiil not
only permit one to design a regulator according to the performance
requirements (line and load regulation etc) but also, by proper
design of the frequency shaping compensation network, to ensure
stability of operation under all operating conditions.

For the same reason, an in_depth discussion of the input
properties, both open-loop and especially closed-loop input impedance,
is included to reveal the source of potential instability when a

switching reqgulator is a part of a larger system (for example, preceded

82




by an input filter or some other linear network or converter). This
comes as a consequence of a unique behavior of a switching regulator,
which at iow frequencies exhibits a ncgative incremental input
resistance Ri as will be confirmed both qualitatively and quantita-
tively. It is, perhaps, interesting to mention that none of the
other techniques of modelling switching requlators ([11] through
[17]) is able to describe such behavior, owing to the lack of an
input model of the converter and/or regulator.

Consider now a switching mode regulator as shown in Fig. 5.1.

unregulated input regulated output
Switching mode converter vV
o0 — N
L
4 — SE R
Vg T ?—K [
| ot
4 l
}boosf power stage i
' |
duty ratio D} |
. control J

modulator| Voltage

amplifier

reference
Fig. 5.1 Switching-mode negulaton of FLg. 1.10 with input and output
f<Ltens omitted <n onden to expose the propernties of the
converntern-regulaton alone.
For concreteness and in order to have the convenient illustrative
exanple throughout derivation, the switching-mode converter is

represented by a boost power stage, but the discussion applies to

any converter,
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5.1 Modulator stage modelling and complete requlatar cireurt wodel

So far, we have obtained the canonical circuit woded for the
switching-mode converter. The next step in develsuont ot the
requlator equivalent circuit is to obtain a wodel tor the muoutator,
This is easily done by writing an expression for the cssential tunilion
of the modulator, which is to convert an (analog) control vo'tuge VC

to the switch duty ratio D. This expression can be written 5 vifvm
in which, by definition, Vm is the range of centrol signal requived to
sweep the duty ratio over its full range from O to 1. A small varia-
tion Cc superimposed upon Vc therefore produces a corresponding

variation d = vc/Vm in D, which can be generalized to account for a

nonuniform frequency response as

g=-n"" (5.1)

in which fm(O) = 1. Thus, the control voltage to duty ratioc small-

signal transmission characteristic of the modulator can te represented

in general by the two parameters Vm and fm(s), regardless ot the

detailed mechanism by whichk the modulation is achieved. Hence, by

substitution for 8 from (5.1) the two generators in the canonical

circuit model of the switching converter can be expressed in terms

of the ac control voltage ;c’ and the resulting model i< then a

linear ac equivalent circuit that represents tae small-signal traasfer

properties of the nonlinear processes in the modulator and converter.
It remains simply to add a linear amplifier to obtain the

equivalent circuit of the closed-loop requlator as shown in Fig. 5.¢.
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Fig. 5.2 Genenat ac Small-signal equivalent clreuit fon the
swetching-mode regulaton of Fig. 5.1,

The modulator transfer function has been incorporated in the
generator designations ec(s), jc(s), and the generator symbol has
been changed from a circle to a Square to emphasize the fact that, in
the closed-1oop regulator, the generators no longer are independent
but are dependent on another signal in the same system. The connection
from point Y tg the error amplifier, via the reference voltage summing
node, represents the basic voltage feedback necessary to establish
the system as a voltage regulator. The dashed connection from point 2
indicates a Possible additional feedback sensing; this second feedback
signal may be derived, for example, from the inductor flux, inductcr
current, or capacitor current, as in various "two-Toop" configurations

that are in yce [9].
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The current generator jc(s)cc in Fig. 5.2 may seem superfluous
because it is shorted by the zero source impedance. However, its
presence is necessary not only to reflect the influence of an input
filter or nonzero source impedance, as was previously illustrated (see
Fig. 4.5 for example) but, more importantly, properly to represent
the switching regulator itself, namely its negative input impcdance
at low frequencies, as the znalysis in Sections 5.2 and 5.3 will

confirm.

5.2 Analysis of switching-mode regulator

A number of quantities of interest are shown explicitly in the
regulator model of Fig. 5.2. The averaging filter is defined to have
a voltage transfer function He(s) in the presence of the external
load R; this represents the basic low-pass filter characteristic.
Also, the effective filter has an input impedance Zei and output
impedance Z,, at the ports indicated; these are defined for the open-
loop condition of the regulator, and hence are properties of the
effective low-pass filter and load resistance only, and are unaffected
by any other regulator parameter. Explicitly, zei is the impedance
of Re and Le in series with C and R in parallel, and Zeo is the
impedance of C in parallel with Re and Le' The subscript e is employed
in He’ Zei’ Zeo because these are all properties of the averaging
filter in terms of the "effective" inductance Le and resistance Rc.
The remaining quantities identified in Fig. 5.2 represent
properties of principal interest in the design and analysis of the

requlator. The loop gain T is a fundamental parameter upon which

inportant properties of the regulator depend; it must be designed to
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have a dc value sufficient to provide the required dc regulation
specification, and it must be frequency shaped to ensure stability.
The closed-Toop regulator output impedance Zo 1s an importani system
specification that determines the iransient response and lnad requla-
tion, and the line transmission characteristic F - ;/;g (sometinmes
also called audicsusceptibility characteristic) specifies the ability
of the closed-loop regulator to prevent line voltage variations from
appearing in the regulated output. Finally, the closed-lcop regulator
input impedance Ziis important when the reguilator is preceded by an
input filter or some other network. Both the dc value and frequency
response of e@ach of the terminal parameters Zo’ F and Zi are important,
and are strongly influenced by the dc value and frequency response of
the loop gain T.

Analysis of the equivalent circuit in Fig. 5.2 leads to the

following results:

._E ; = -
T = V; f](s)fm(s)He(s)A(s) GvdA(°)fm(s)/vm (5.2)
Zeo
T+ (5.3)
1 H G
- e - _vg X
T o bl we (5.4)
l—:- T 7 ] + ] 2] (5.5)
z | 1+T y Rf,(s) 1 f,T u zei

The first three expressions are a direct consequence of the
general results of linear feedback theory. Namely, the expression
for loop gain T is obtained simply from Fig. 5.2 as the product of

the voltage generator ec(s)=%~ f](s)fm(s), effective filter transfer
m
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function He(s), and amplifier gain A(s), while t e current generator
jc(s) does not enter into the result since it is effectively
shorted.

The expression for Zo shows that the closed-loop output
impedance is equal to the open-loop output impedance Zeo divided by
the feedback factor | + T, and likewise, the expression for F shows
that the closed-loop line transmission function is equal to the
corrasponding cpen-loop function He/u divided by 1 + T, both of which
results are in accordance with the elementary properties of feedback.

The general model in Fig. 5.2 and expressions (5.2) through
(5.5) constitute the basic representation of the switching-mode

regulator operating in the continuous conduction mode and can be

successfully used for both analytical or computer aided design of
switching regulators. :
Let us now discuss input properties represented by (5.5) in

more details.

5.3 Input properties of switching requlators

The closed-loop input admittance T/Zi consists of two
components as seen from (5.5). At dc and low frequencies where the
loop gain T is large, the first component dominates and Z. —szf](s),
hence it is a negative impedance. However, above loop gain crossover
where the loop gain T falls substantially below unity, the second
component dominates and Zi % “zzei' How2ver, from Fig. 5.2 this is the

same as the open-loup input impedance, the result which should be

expected when the loop gain is negligibly small. The complete
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expression (5.5) shows then how the input impedance changes from
negative at low frequencies to positive at high frequencies as the
Toop gain falls below unity.

The result that the input impedance at low frequencies is
negative may seem at first surprising. Nevertheless it is inherent
in switching regulators, as the following simplified analysis will
demonstrate.

At low frequencies where the loop gain T is high, the feedback
action maintains constant output voltage, and hence constant output
power by varying duty ratio D {consequently gain u(D)), even if
the input voltage Vg varies. It follows that if Vg increases, Ig

must decrease since the input power also remains constant (under

simplifying 100% efficiency assumption). Consequently, the reguiator

exhibits a negative incrementsal input recistance Ri given by

v d P P '}
R. = =———-——=_—§.:-—9.=_u2-l—=-uR (5‘6)
I I

1
dI dI
9 9 g9 I9 9

L

This is the low frequency value of the regulator input impedance Zi
given in (5.5). For example, for the boost converter example of Fig.

5.1 the closed-loop incremental resistarce becomes:

v

R, = -D'2R = - (—9)2 R (5.7)
i )

while the{ogen-]oog low frequency input resistance Rin is:
A
= p'°R =| 4
Rin D'™R (v )R (5.8)
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It will be interesting later, in Part II, to sompare these
particular results (5.7) and (5.8) as well as the above gencral result
(5.5) with corresponding expressions for the switching-mode regulator
operating in the discontinuous conduction mode.

Another interesting interpretation of the negative input
impedance at low frequency will perhaps even more i 1TTuminate
the need for the presence «f the current generator in the model of
Fig. 5.2. V¥hen the regulator is driven by an ac voltage ;g, the high
loop gain at low frequencies will force the ac voltage ; at the output
to be vanlsh1ngly small by appropriate adjustment of the ac duty ratio
d since v is the output of the filter, the voltage at the filter
input and also the voltage across the current generator, is therefore
vanishingly small; hence the impedance Zi seen by the driving source

A

vg is simply the ratio of the voltage and current generators

e (s) 2 f(s)
Ziz-j“::;(;)- = —UR?Z“('S'T (5.9)

which is the same at low frequencies as expression (5.6) since
fl(O) 3 f2(0) =

As a conclusion, the regulator negative input resistance Ri
in combination with the inpht filter can under certain conditions
constitute a negative resistance oscillator, and is the origin of the
system potential instability. The problem of how pro-<-ly to design
the input filter and to avoid performance degradation and/or stébi]ity
problems is treated and solved in detail in [7]. It has been

discussed here merely to demonstrate the completeness of the canonical

circuit model developed in previous chapters,
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CHAPTER 6
REVIEW OF THE NEW STATE-SPACE MODELLING TECHNIQUE
IN THE DISCONTINUOUS CONDUCTION MODE

The development in Part II to a large extent resembles the
same procedural order of exposition followed in Part I. This is
Justified for two very good reasons. First, since the procedure for
modelling in discontinuous conduction mode is viewed as a special
case of that applied in Part I for continuous conduction mode
(provided the state-space averaging step of Part I is properly
generalized to include three or more structural changes within each
switching period as shown in Appendix D), the additional requirements
imposed here will be immediately recognized and easy to follow in the
exposition consistent with that of Part I. Second, this parallelism
facilitates a direct comparison between the two modelling procedures
at a number of points. While, for example, the steps common to both
methods will be immediately accepted and understood on the basis of
the previous in-depth explanation in Part I, those that are different
will be clearly distinguished and their significance vividly
displayed. This emphasizes the fact that Part II is essentially a
consistent extension of the technique in Part I specially designed
to model the discontinuous conduction mode of operation of switching
dc-to-dc converters.

In analogy to Chapter 2 of Part I, this chapter has also
a twofold purpose: to provide an extensive overview of the complete

structure of the modelling of switching converters and regulators in
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the discontinuous conduction mode and yet to serve post facto, after
detailed exposition in later chapters, as a quick reference and
reminder. In that sense, similarly to the Flowchart of Fig. 2.1 for
the continuous conduction mode, the Flowchart of Fig. 6.1 summarizes
all the essential information for modelling in the discontinuous
conduction mode. Again, owing to the overview feature of this
chapter, it will be relatively shorter than, for example, Chapters

7 and 8 where the various paths of the modelling technique are
discussed at length and illustrated on several examples correspond-

ing to those presented in Part I.

6.1 Brief review of existing modelling techniques

Owing to the relatively more complicated nature of the con-
verter operation in the discontinuous conduction mode, dynamic (ac
small signal)models have been lacking (even though valid models for
continuous conduction mcde have already been obtained) until recertly
several approaches ([11]-[17]) have been proposed. However, while
all these techniques ([113-[17]) provide through various lineariza-
tion procedures the proper linearized transfer functions (duty
ratio modulation 3 to output voltage ; and line voltage ;g to
output voltage ; transfer functions), they are incapable of
representing the input properties of the converter, and hence fail to
arrive at the complete linearized converter model. This is an
entirely analogous situation to that of Part I, where these methods
could not model the input properties (open-and closed-loop input

impedance, for example) of the converters and regulators in
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Continucus conduction mode of operation, as was suggested in the
previous chapter. In addition, they stay throughout modelling

in the domain of equation manipulations only, and thus the useful

insight which can be gained from linear circuit models (as demonstrated

in Part I) is lost. Hence the primary objective of the development
in Part II is to overcome all these difficulties by extending the
powerful state-space averaqing technique of Part I, together with
its circuit model realizations, to the discontinuous conduction mode

of converter operation and finally to arrive at the complete linear

circuit model of various converters (1ike, for example, those of

Fig. 1.1).

6.2 New state-space and circuit averaging methods for switching

94

converters in the discontinuous conduction mode

The state-space and circuit averaging methods presented in
Part I are now to be suitably modified to account for the dis-
continuous conduction mode of operation, and the results are
summarized in the Flowchart of Fig. 6.1. As before for the contin-
uous conduction mode (Flowchart of Fig. 2.1), the starting model for
the switching converter (block 1 in the Flowchart of Fig. 6.1)

is either in terms of the state-space description of the switched

networks (as in block la), or in terms of linear circuit models

of the switched networks (as in block 1b).
The difference, however, from the previous description
(compare with the Flowchart of Fig. 2.1) is not only that now there

are three different structural configurations within each switching



period, but also in the fact that instantaneous inductor current

is restricted in its behavior: it starts at zero at the beginning of
a switching period and falls to zero current again even before the
switching period has expired (see the instantaneous inductor current
waveform in block 1 of Fig. 6.1).

[t is actually this second diffgrence which clearly dis-
tinguishes the discontinuous conduction mode of operation (as also
demonstrated in Chapter 1 for the buck-boost converter), while the
first difference, that of having three different structural configura-
tions, appears in a way to be merely incidental. That is, in
Appendix D it is shown that the state-space averaging step of Part I
can be directly extended to include "three-state" converters
(converters with three structural changes within each switching
period), provided such converters are operated in the continuous
conduction mode, and any restrictions on state-space variables
(in&uctor currents and capacitor voltages) are avoided. Therefore,
our objective in modelling converters operating in the discontinuous
conduction mode (and exhibiting "three state" configuration behavior)
becomes that of supplementing this generalized state-space averaging
step for "three state" converters by additional constraints which
reflect the special behavior of one of the state variables, the
inductor current. Hence the switching-mode converter operating in
the discontinuous conduction mode (and having three structural

changes) may be viewed as a special case of the ordinary "three-

state" converters which are free from any restrictions on state-
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variables. Thus the primary goal of this chapter (and for the whole
of Part I1) is properly to determine these additional constraints
and to find how they propagate through various paths of the model-
Ting (such as paths a and b on the Flowchart of Fig. 6.1).

From the Flowchart of Fig. 6.1 it is inmediately clear that
path a follows a development strictly in terms of state-space
equations, the state-space averaged modelling technique,while the
other path b proceeds in terms of circuit models, circuit averaged
model ling. Moreover, as before for the continuous conduction mode,
along path_g the general equations (through general matrices A],

AZ’ A3 and vectors b], b2 and b3) are retained to emphasize the

fact that the outlined procedure is applicable to any “three-state"
converter operating in the discontinuous conduction mode, while along
path_g a particular example of the boost converter is followed,

owing to the requirement for the specific converter topology along
that path. Specifically, for the boost power stage,A] = A3 # A2

are 2 x 2 matrices, and b] = b2 70, b3 = 0 are vectors. This
example will be later pursued in detai] along both paths.

We now follow path a more closely. The crucial step is made
in going from block la to 2a in that the original description through
three state-space equations (block la) is substituted by a single
state-space averaged model (block 2a). This is justified as follows.
In Chapter 1 it was demonstrated that the fundamental performance
requirement of switching converters (negligible switching ripple)
results in natural frequencies W, and fc much Tower than the
switching frequency fs. This, in turn, leads in Appendices A

through D to the generalized state-space averaging step. So far
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this would be the same averaging step as applied to any ordinary
"three state" switching converter. However, as indicated before,
the inductor current i does not behave as a true state-space variable
in the discontinuous conduction mode since it does not have free
boundary conditions (but fixed at zero) which is shown to lead to

the following constraint:

til

0 (6.1)

o.lo.
ﬂ w—ds

This immediately reduces by one the order of the basic state-space
averaged model (block 2a), since one of the dynamic equations (that
for inductor current) reduces to a static equation. In addition to
this, an expression describing the average inductor current i can
be found directly from the converter itself (block 1) and becomes

the second constraint, termed perturbation equation I, which is
i= i(vg,v,d,L,TS) (6.2)

Thus, the two additional constraints (6.1) and (6.2) , !
together with the generalized state-space averaging step, completely
determine the converter model in the discontinuous conduction mode.

It remains only to apply the standard perturbation techniques (block

O

3a) and (on the basis of the small-signal assumption) the
linearization techniques to both state-space averaged equations and
the perturbation equation of block 2a in order to arrive at the final

state-space averaged model (block 4a). This model gives separately

both dc and ac small-signal descriptions through general matrices -
A], Az, A3 and vectors b]. b2’ b3 of the starting switched models -
(block 1a) and constraints corresponding to those of (6.1) and (6.2). ]




Maturally, as was done before for the continuous conduction
mode (compare Flowchart of Fig. 2.7 for example), we can now proceed
from the basic state-space averaged model (block 2a) via hybrid
modelling and circuit recognition (block 2¢) to arrive at the very
useful circuit realization (block 2b). HNote, however, that now the

constraint (6.1) effectively leads to shorting the inductance L

in the circuit model since v T L di/dt = 0. This, for the particular

boost circuit example, reduces the circuit to first order. The
other constraint (6.2) is also easily specified (see additional
constraint in block 2b) with the help of the inductor current wave-
form (block 1). The same circuit model (block 2b) could, however,
be obtained directly from tﬁé switched circuit models (block b),
by follcwing the circuit averaging path, provided the circuit
averaging step for "three-state" converters is supplemented by the
aforementioned equivalents of the constraints (6.1) and (6.2).
Again, the remaining circuit perturbation (block 3b) and circuit
linearization steps are straightforward and result in the final
circuit averaged models (block 4b) separately for dc and ac small-
signal. As seen from block 4b, the dc part of the perturbation
equation, current I, together with the dc circuit model, completely
determines the dc conditions, while its ac part ; contributes
to the final ac circuit averaged model.

Finally, both models (block 4a or 4b) can be used to deter-
mine the transfer functions of interest: line voltage variation

;g and duty ratio modulation d to output voltage v (blocks 6a

and 6b respectively).
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6.3 New canonical circuit model for discontinuous conduction mode

As for the continuous conduction mode, the culmination of
the modelling is again a canonical circuit model (block 5 of Fig.
6.1), whose fixed topology (though different from the one for
continuous conduction mode) has all the features necessary Lo

present a complete circuit model. However, this fixed topology of

the model for discontinuous conduction mode came merely as a by-
product, since for the three convérters of Fig. 1.1 (buck, boost,and
buck-boost) the ac small-signal models all resulted in the fixed
topological structure of the model in block 4b of Fig. 6.1 without
any need for equivalent circuit or other transformations. It does
not appear that this canonical circuit topology could be directly
extended to some arbitrary converter. Even though this canonical
circuit model is not so general as that for two-state converters
(Part I), a useful comparison between the two canonical circuit
topologies can be made (at least for the common converters of Fig.
1.1 in both operating modes).

While in the continuous conduction mode the effect of duty
ratio modulation 8 was represented by voltage and current duty
ratio@pendent generators at the input port (hence properly
representing negative closed-loop input impedance at low frequencies
as shoan in Chapter 5), here in discontinuous conduction mode there
are two duty ratio dependent current generators, on® in the input
circuit (again,properly to model converter input. properties as
shown later in Chapter 9), and the other in the output circuit to

generate the duty ratio d to ouZput transfer function.

S m——
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The salient feature of the canonical circuit iodel in block 5
of the Flowchart in Fig. 6.1 is that both transfer functions are
obtained using only the output port of the complete canonical circuit
model, unlike the situation for continuous conduction mode (Part [),
where the complete circuit model was necessary to determine them.

This is also why other methods which properly represent the transfer
functions in discontinuous conduction mode ([11]-[17]) have completely

omitted modelling of the converter input properties.

6.4 Extension to complete regulator treatment

It has already been shown in Part I how the linear model of
the modulator stage can be obtained. It remains simply to incor-
porate the canonical circuit model (block 5 in the Flowchart of
Fig. 6.1) to arrive at the linear circuit model of a closed-loop
switching regulator operating in the discontinuous conducticn mode.

A word of caution, however, is appropriate here. Namely,
since the very nature of the operation in the discontinuous conduc-
tion mode is that the order of the system is reduced at least by
one, this would definitely change the dynamics and possible
compensation networks nezessary for stable operation of the closed-
loop regulator. Furthermore, if both conduction modes are expected
to take place for the particular application, the compensation
network should be designed to ensure stability of the closed-loop
and acceptable transient performance for either of the two modes.
Hence canonical circuit models for both continuous and discontinuous

conduction mode hecome an invaluable tool in the proper design of
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switching regulators. In addition, the comparison of the advantages

and/or disadvantages between the two modes of operation become
feasible and possible trade-offs between regulator performance and
choice of parameters and operating conditionsis clearly displayed.

In summary, the method presented in this chapter is generally
applicable to any "three state" converter operating in the discon-
tinuous conduction mode (block 4a), even though for an arbitrary
converter the final circuit model (block 4b) may have different
(more complicated) topology than the canonical circuit model for
the three common converters (block 5). We also emphasize the fact

that the methods for finding dc and ac small-signal models are

consistent with each other. Namely, for both models we need only the

standard state-space or circuit averaging step (depending on

whether path 2 or b is chosen) applicable to any converter with three
switched network configurations. Then to distinguish that the
converter is operating in the discontinuous conduction mode, addij-
“ioneT restrictions (6.1) and (6.2) are imposed. Now, the dc

part of perturbation equation (6.2) together with the dc¢ state-space
Or circuit averaged model completely determines the final dc model,
while the ac part ; of (6.2) helps in complete definition of the final
ac small-signal state-space or circuit averaged model.

It may seem that the method outlined in this chapter holds
only for the "three-state" con. rters in discontinuous conduction
mode. This is not so, since it can be easily generalized to include
more complicated schemes of discontinuous conduction mode of opera-

tion. As an illustration of this generality, considcr the new class



of switching converters of Part III, the cascade connection of
ordinary buck and boost converters, which could also be classified
as two-inductor converters (as opposed, for example, to the
converters of Fig. 1.1 which are one-inductor converters). Suppose
also that the two switches are driven synchronously with the same
switch duty ratio D, thus resulting in a two-state converter for
continuous conduction operation. If, however, one of the two
inductor currents becomes discontinuous, a three-state converter
overating in the discontinuous conduction mode is obtained. But
now the matrices A, A,, A3 and A would be of 4-th order (as
opposed to 2-nd order for the converters of Fig. 1.1) and the final
state-space or circuit averaged model would be of the 3-rd order
(reduction of order by one due to discontinuity of one of the two
inductor currents). Moreover, there is also the possibility that
both inductor currents could become discontinuous under certain
operating conditions in which case four-state converters are generated.
Therefore, the generalized state-space averaging step (Appendix D)
applicable to four-state converters is supplemented with additional
constraints: for each discontinuous current there will be two
constraints imposed analogous to (6.1) and (6.2). The immediate
consequence of these constraints is that the fourth order original
converter model becomes only a second-order final state-space or
circuit avéraged model (with two inductances effectively disappearing
from the final circuit averaged model).

Despite this demonstration of the generality of the method,
we will restrict ourselves in the remaining chapters of Part II to

the "three-state" converters in the discontinuous conduction mode
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since all the essential features of the method are present there.
Likewise, in Part III and also Part IV we will ccnsider the cascade
connection of converters only in the two-state continuous conduction
mode, since the enmphasis of these two parts is on the intelligent
choice of converter topologies rather than on the particular mode of

their operation.



CHAPTER 7
STATE-SPACE AVERAGING, HYBRID MODELLING AND
CIRCUIT AVERAGING IN DISCONTINUOUS CONDUCTION MODE

In this chapter various paths on the Flowchart of Fig. 6.1
are followed in detail, first with general derivation and then
illustrated by examples corresponding to those of Chapter 3. The
detailed exposition will follow that of Chatper 3 as much as possible
in order to make direct comparison easier and also to emphasize the
significant differences. But, in order to obtain clear insight into
the first-order effects, and to avoid cumbersome algebraic expres-
sions, this time throughout the presentation it is assumed that the
output quantity (voltage) coincides with one of the state variables,
the capacitor voltage (esr of the capacitance neglected). The same
assumption was also used throughout the Flowchart of Fig. 6.1.
However, i1f desired, this effect can be incorporated along lines

similar to those already presented in Part I.

7.1 State-space averaging

In this section, the final state-space averaged model (block
4a of Fig. 6.1) is derived, first in general for any three-state
switching converter in discontinuous conduction mode, and then
demonstrated on the idealized boost circuit example (parasitic
effects not included). Steady state (dc) conditions are obtained
for this particular example and discussed in depth,including
determination of the boundary between the two modes of converter
operation. From the dynamic (ac small-signal) model, the two trans-
fer functions of interest (;(s)/;g(s) and ;(s)/a(s)) are also

105



106

determined to enable comparison with the corresponding transfer
functions derived from the final circuit averaged model for the

boost converter presented in Section 7.3.

Basic state-space averaged model

We first define the time-domain description of an arbitrary
three-state switching converter operating in the discontinuous
conduction mode with the help of Fig. 7.1, which dispiays the switch
drive (Fig. 7.1a) and instantaneous inductor current (Fig. 7.1b)
which becomes discontinuous. The definition of the three
intervals Tsd], Tst’ and Tsd3 (or corresponding steady-state

quantities TsD]’ T.D,,and TSD3) is also clearly visible on Fig. 7.1.
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As seen from Fig. 7.1, the "on" interval Tsd] = Tsd z TSD
coincides with the previous "on" interval TN in Fig. 1.2, while the
"of f" interval TF of Fig. 1.2 or Tsd‘ = TSD' of Ffig. 7.1a is now
subdivided into two intervals Tsd2 and TSd3 (or TSD2 and TSD3).
While the first "on" interval TSD is dictated by the switch drive

and is a known quantity (at least in open-loop converter usage),

the second interval Tst (or TsDZ) is as yet unknown and depends in
general on both the length of the first interval and some circuit
parameters, and describes how deep in the discontinuous conduction
mode the converter is operating (see, for example, the simplified
analysis of the buck-boost converter in discontinuous conduction mode
as shown in Chapter 1). Nevertheless we assume that the interval

stz exists (hence discontinuous conduction f01lows) and leave it to

the modelling proéedure itself to reveal how it is actually
determingd.

For each of the three intervals in Fig. 7.1, there exists
in general a different switched network (compare with Fig. 1.7
for the buck-boost converter example), which can be described by a

corresponding state-space equation as follows:

x = Ax + by Vg for interval d,T, 0tst)

X = Azx + bzvg for interval dZTS, (t] S¢s ta) (7.1)
Y = ; <t

X A3x + b3vg for interval d3TS, (t2 Ts)

while the similar expression (3.1) for continuous conduction

mode was sufficient to describe the converter, here in discontinuous

107



108

conduction mode, (7.1) does not describe the switching converter
completely. MNamely, the instantaneous inductor current is restricted

in its evolution since from Fig. 7.1:
i(0) = i[(d]+d2)Ts] =0 and i(t) =0 for t c[tz,TS] (7.2)

Therefore (7.1) together with (7.2) completely determine the
behavior o. the switching converter. However, directly from this
description, even the determination of the steady-state (dc)
conditions on an exact basis might be a very difficult (if not
insurmountable) task, as was demonstrated for the simpler continuous
conduction mode description (3.1) in Appendix C. Moreover, the
tremendous complexity of the result may be unnecessary (compare

(c.4), (C.5), (Cc.7) and (C.8) with the much simpler result (C.10)).

In addition, the direct perturbation of (7.1) and (7.2) to obtain

the dynamic response of the converter would become by an order of
magnitude more difficult if not virtually impossible. Our objective
then becomes, as it was in Part I for the continuous conduction mode,
to replace the original converter description through three state-
space equations (7.1) by a single state-space description which will
very accurately represent the evolution of the state-vector at the
switching instants. It is also desirable that the additional
constraint (7.2) is appropriately accounted for to modify this
averaging equivalent, but in such a way as to interfere the least

possible with its orderly procedure.



The first task jis accomplished by application of the
generalized state-space averaging step for three-state converters
(Appendix D) to (7.1), which results in a single state-space

description

originally derived approximate discrete system (see (B.8) in Appendix
B). Hence the definition of derivative (B.9) from Appendix B

transforms the constraint (7.2) into

since according to (7.4) it has lost its dynamic properties.
Nevertheless, despite the zero constraints i(nTS) = 0 and

di/dt(nTs) =0 forn-=o,1,..., ] Tine voltage Perturbation ;g

(as seen in Fig. 7.1b) does cause a perturbation of the instantaneous
inductor current (shown in dotted lTines on Fig. 7.1b) from its
steady-state waveform (heavy 1ine in Fig. 7.1b), which in turn
results in a corresponding perturbation ; of the output steady-state
voltage. Note that there is also perturbation of the average
inductor current j (defined in Fig. 7.1b for interval (d]+d2)TS

when instantaneous inductor current i(t) is different from zero)
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from its steady-state average current I. This is in sharp contrast
to the situation in the continuous conduction mode where the average

inductor current does not change under any small-signal perturbation,

but rather initial and final conditions i(0) and i(TS) change
accordingly to accommodate perturbation. Here, i(0) and i(TS) are
fixed at zero, and the average inductor current is the quantity
which reflects the effect of introduced perturbation.

Since the objective in modelling the dynamic performance
of the converter is faithfully to represent departure from the
steady-state, we introduce the average inductor current as a sub-
stitute for the "lost" state-variable (the instantaneous inductor
current). But, rather than change the symbol, we assign to the
same designation i this new meaning. Then from Fig. 7.1b we obtain

i

.o o_max _ .
i= = 1(vg,v,d,L,Ts) (7.5)

and designate it perturbation equation I, for reasons which will

become apparent later. Naturally, the other constraint (7.4) for
this average inductor current i is maintained (as seen also from
Fig. 7.1b) and we finally obtain the basic state-space averaged model

for discontinuous conduction mode:

X = (d]A]+d2A2+d3A3)x + (d]b]+d2b2+d3b3)vg (7.6)

with additional constraints

di _ -
=0 (v.7)

e
1}

i(vg,v,d],L,TS) (7.8)




The two additional constraints (7.7) and (7.8) modify the ordinary
averaged mode] (7.6) to account for the discontinuity of the inductor
current. This model (block 2a in the Flowchart of Fig. 6.1) is

the starting point for all other derivations (both state space and
circuit oriented) and represents an averaged model over a single
period Ts.

Note,also from (7.5) that the calculation of the average inductor
current i is actually based on the assumption of the linearity of the
inductor current waveform (triangular waveshape in Fig. 7.1). However,
this does not pose any limitations at all, since the linearity of the
inductor waveform is again a consequence of the small switching ripple
requirement and therefore consistent with the same basic assumption made
in the continuous conduction mode.

We now consider first the simplest possible case, determina-
tion of the basic dc conditions in the steady state regime. In the
steady state al} quantities become dc quantities and are denoted by
capital letters, that is, d] = D] =D, d2 = DZ’ d3 = D3. vg = Vg,

x = X. The average inductor current i becomes the Steady state
average inductor current I (see Fig. 7.1b. for example) and the
steady-state vector X = (I V...). Since then dX/df = 0, the state-

Space equation (7.6) reduces to the linear algebraic system

AX + bvg =0 (7.9)
where
A=DA, + DA + DA
1 22 373 (7.10)
b = D]b] + 02b2 + D3b3
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while the first constraint (7.7) is automatically satisfied and the

second constraint becomes

1= i(Vg,V,D],L,TS) (7.11)

It is now interesting to compare these results for dc
conditions ((7.9) and (7.11)) with those of Part I (3.9). For
easier correlation of these results, the notation d] =dand D, = D
henceforth will be used interchangeably. The steady state vector
X is the solution of the linear system (7.9) as it was before in
(3.9). Hence storage elements (L's and C's) are proportionality
constants in the linear system (7.9) and it appears as though solution
X of (7.9) is independent of them and dependent on dc duty ratios
and resistances in the original model. However, since
Dy + D, + Dy = 1orDys= 1 - (D+Dz) from (7.9) and (7.10) it
follows that steady state vector X is now dependent on two duty
ratios D (given) and D, (as yet undetermined) as opposed to only D
in (3.9). The additional constraint (7.11) which expresses the

average steady state inductor current I in terms of circuit parameter

values can now be used together with (7.9) to solve for the

unknown duty ratio DZ’ and hence to determine the length of the
second interval DZTs' In general, then, 02 js dependent on circuit
parameters (such as L and Ts’ for example) and hence dc conditions

are also substantially dependent on switching frequency fs and

inductance L (compare with (1.4) and (1.5)). This is in sharp
contrast to the continuous conduction mode (see Fig. C.2), where dc

conditions were dependent on duty ratio D and resistances only.



In summary, expressions (7.9) and (7.11) completely deter-
mine the dc conditions in the discontinuous conduction mode, and
at the same time help to determine the length of the second interval
DZTs’ which was unknown at the beginning of this analysis.

We now undertake to obtain the dynamic model for the line
voltage variation ;g only, in order to compare it with the
corresponding result (3.8) in Part I and to emphasize the significant
differences. From Fig. 7.1b it becomes obvious that the super-
imposed variation ;g causes the perturbation of the instantaneous

inductor current (dotted lines) and hence modulation of the second

interval dZTS and the third interval d3TS as well. Therefore only
the switch drive duty ratio d is constant {d = D) as it was also
in Part I, while the other two duty ratios are modulated. After the

perturbation equations

d =D, dy = Dytd,, dj = D3-d,,

~ A

=V 4y, = X+ i
vg g vg X X and i

(7.12)
I+i

are introduced, the basic state-space averaged model given by (7.6),

(7.7) and (7.8) becomes

x = [DA+(D,*d,)A, + (D3-d,)A;J(x+X) + {Db]+(02+32)b2+ (03-82)b3](vg+09)

(7.13)
with additional constraints
g% =0 (7.14)
1+7 - i(Vg+v;. Vev, D, L, T) (7.15)
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Note that the perturbations (7.12) are now applied not only to the
state-space equations (7.6) but to the constraints (7.7) and (7.8)
as well, Upon the usual small-signal assumption, the second-order
terms are neglected and linear state-space equations with
linearized constraints (7.15) are obtained. The separation

of the dc and ac models then results in the steady-state dc model

as given before by (7.9) and (7.11) and the dynamic (ac

small-signal) model for line variations vg only, given by

X = Ax + bvy + d,[(Ay-A)X + (bz-b3)vg] (7.16)
subject to constraints
di (7.17)
rr 0
?-aia '21'/\
i= EVE'VQ + v V | (7.18)

where A and b are as given before in (7.10).

From (7.18) it also becomes obvious why (7.5) was originally
o.:aHed ’perturbation equation I7 In addition, since
X = [d;/dt d;/dt ...]T the introduction of constraint (7.17) into
(7.16) reduces the first dynamic equation to a static one, from which
the unknown modulation 32 can be determined in terms of ;g and ;
modulations and circuit parameters.

The dynamic state-space equation which, because of (7.17),
became a static one, can now be'aesignated perturbation equation II?
since it helps to determine the other unknown perturbation quantity

A

d2' Together with (7.18) this uniquely defines the line transfer

oy




function, ;(s)/;g(s). However, owing to the presence of constréints
(7.17) and (7.18) we cannot give the closed-form expression for this
transfer function as we could in (3.10) for continuous conduction
mode.

We turn next to the most general case and allow both
modulations (line voltage variation v and duty ratio modulation 8)

g
to occur concurrently.

Pertunbation
He now suppose that the switch drive duty ratio d changes

from cycle to cycle, in addition to the line voltage variation.

Hence, the general perturbation equations

d = D+d, dz = D2+d2, d3 = D3+d3' (7.]9)
= +y° = - +’:
vg Vg vg, X = X+x, and I+i

-
]

introduced into the basic-state space averaged model given by (7.6),
{7.7) and (7.8) result in

; = [(D"'a)A] + (DZ+32)A2 + (03-3-52)A3](X+;) +

(7.20)
+ [(D+d)b] + (02+d)b2 + (D3-d-d2)b3](vg+vg)
with additional constraints
i
g0 (7.21)
I +14 = i(vg+vg, V+v, D+d, L, TS) (7.22)
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From d + d2 + d3 = 1, when perturbed by (7.19), we got
D+d+ D2 + d2 + D3 + d3 21 or, since also D + D2 + D3 =1, we
finally arrive at

~

dg = -(d+d2) (7.23)
which was then used in (7.20).

The perturbed model given by (7.20), (7.21) and (7.22)

is nonlinear owing to the presence of at least second-order terms.

Linearnization and 4inal state-space aueﬁaged model gonr

discontinuous conduction mode

We now make the small-signal approximation, namely that the
departures from the steady-state values are small compared to the

steady-state values themselves:

A A

;i-<< 1, ; <« 1, %« 1, ;«] (7.28)
Using approximations (7.24) we neglect all second (or
higher) order terms, and obtain once again a linear system but
including duty-ratio modulation 3. After separating the steady-state
(dc) and dynamic (ac) parts of both state-space equations (7.20) and
constraints (7.21) and (7.22) we arrive at the following results for

the final state-space averaged model.

Steady state (dc) model:

X = -A“bvg (7.25)

subject to constraint

I = i(Vg,V,D,L,TS) (7.26)



Dynamic (ac small-signal) model:

X = Ax+bvg+d[(A]-A3)x+(b]-b3)vg]+d2[(A2-A3)X+(b2-b3)vg] (7.27)
subject to constraints
di _
EE_»O (7.28)
PR ) IO} ERGRUR: ) I
i avg vg YVt g d (7.29)

where A and b are as given before by (7.10). Note how duty ratio
modulation d is now included in constraint (7.29).

We conclude this section with illustration of these general
results on the boost converter. Both dc and ac small-signal models
are then analyzed in detail and some unique insights into the
cperation of the boost converter in the discontinuous conduction
mode are obtained. Dc conditions and the determination of the
boundary of the two modes of operation are particularly thoroughly

analyzed.
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Example: ideal boost powen stage in 4iscontinuous conduction

mode
For the ideal boost power stage of Fig. 1.1 (or Fig. 3.1

with Rl =0, Rc = 0) the three switched networks inm the discontinuous

conduction mode of operation are shown in Fig. 7.2.

a) interval dls: b)interval dyls: «¢) interval dyls:
\' ’WL v L \'s
i
i=0
= %R v9::- =C 2R l. =—C 2R

Fig. 7.2 Three switched networnks of the ideal boost converter 66
Fig. 1.1 operating in the discontinuous conduction mode.

For the choice of state-space vector x = (i v)T, the state-

space equations of the three linear switched networks in Fig. 7.2

become: |
X = Ayx + b]vg ~ for interval dTS
; = Ayx + bzvg for interval d,T, (7.30)
X = A3x + b3vg for interval d3Ts



where

(0 0 0 -L 0 0
M N A T &N 1
0 - z¢ LI 0 - ae
| “RC C " RCJ L RC (7.31)

: T
r O bs

In addition to this, perturbation equation I (7.5) is needed. How-

. :
by=ir O b

e

]
~—
o
—

—

ever, it can easily be found from Fig. 7.2a as

i= imgx B, ;SLI dTg = i(vgsdl,T) - (7.32).
The same result could have been concluded also from Fig. 7.1b, which
actually represented instantaneous inductor current for the boost
converter (or buck-boost converter since both have the same slope
during interval dTS).

Equations (7.31) and (7.32) contain now all that is needed
to determine both dc and ac small-signal models by application of the

general result, equations (7.25) through (7.29). We first analyze

in greater depth the steady-state (dc) model.

Steady state (dc) model analysis

By use of (7.31) in (7.25) the following linear algebraic

system results
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{3
|><
(-

- D, - - [D+D,,]
0o -2 [ ] 2
L L
+ V =0 (7.33)
D ) ?
= @ v 0

in which the quantities A, X and b are clearly identified and obtained
by use of their definition (7.10). The general remark made previously
about the solution of this linear algebraic system (7.33) becomes
clearly visible. Storage elements (L's and C's) are indeed

proportionality constants, and the solution of (7.33) is

v D
= ] + S— (7.34)
Yy 0,
I = b‘v‘ﬁ (7.35)
2

Hence, the dc conditions depend only on duty ratios D and 02 and
resistance R. From (7.34) we conclude also that the boost converter
has even in the discontinuous conduction mode the boosting property

(dc gain V/Vg - 1), since D, 02 are by definition positive quantities.
However, the dc conditions are not quite determined since D2 is as yet
unknown. But, by use of the additional constraint (7.26), as

further specified in (7.32) as

) v DTs

together with (7.34) and (7.35), dc conditions (and also DZ) are
completely determined. For example, substitution of (7.36) into

(7.35) results in



2L

VA JV oK MK
D " RI"ROTV._ “V.D~ D (7.37)
$g 9
where the very important dimensionless quantity K is defined as
a2l a2l
K= ﬁT;'— ﬁ—-fs (7.38)

This dimensionless parameter K plays a key role in the discontinuous
conduction mode since it combines uniquely all the parameters respon-
sible for such behavior. Another quantity which will frequently appear
is the dc voltage gain V/Vg, so we define also another dimensionless

parameter M as

M2 (7.39)

<I<

g
Finally, by use of (7.37) and (7.39) in yet unused dc relation (7.34),

the quadratic eauation for dc gain M is obtained

2

M5 - M-D2K =0 (7.40)

Since from (7.34) the dc gain M is positive, only the positive solution
of (7.40) is meaningful and we obtain

w- 1+ V1 + an®x (7.41)

2

Finally, the substitution of (7.41) in (7.37) determines the pre-
viously unknown duty ratio D2 as

. _ k1 W1+ anPs (7.42)

2 D 2

Hence, we have succeeded in expressing, through (7.41) and
(7.42), two important quantities, the dc gain M and duty ratio Dy, in
terms of the driving condition (duty ratio D of the transistor switch),

and the single dimensionless quantity K which solely reflects the
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effect of circuit parameter values (L and R) and the other operating
condition, the switching frequency fs’ upon the dc conditions in the
discontinuous conduction mode. [f desired, the remaining dc quantity,
the steady-state average inductor current I, may be found in terms of
D and K by use of (7.42) in (7.35).

A1l these expressions (7.41), (7.42),and (7.35) are very use-
ful in predicting the dc conditions when the switching converter is

used alone, that is in an open-loop fashion, since then the duty ratio

D is given (independently generated) and the constant K may be
calculated from element values with use of (7.38). However, if the
converter is used in a closed-Toop switching regulator (such as, for
example, those of Fig. 1.10 or Fig. 5.1), the output dc voltage V is
predetermined by the choice of the reference voltage and kept constant
regardiess of any variation of input dc voltage vg, by appropriate
self-adjustment of the dc duty ratio D (internally generated) in a

negative feedback manner. Hence in closed-1loop operation, D and 02

become dependent on the external dc gain M and the dimensionless
parameter K. These dependences can easily be found from (7.41) and

(7.42) to get, for closed-loop consideration:
D = VRﬁ(M-i, (7.43)

DZ =/ M-T (7.44)

Hence, (7.41) and (7.42) conveniently determine dc quantities for
open-Toop considerations, while (7.43) and (7.44) are likewise use-

ful for closed-loop considerations.
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It i3 now very interesting to compare the open-loop dc
gain in the discontinuous conduction mode given by (7.41) with
the corresponding dc gain in the continuous conduction mode, which,

for ideal boost converter (see for example (3.20)), is

M=5—% (7.45)

Hence, the ideal dc gain (7.45) is dependent on duty ratio D only
and not on circuit parameters (such as L, .R) or switching frequency
fe- Even the exact dc analysis of Appendix C (with parasitics
Rl #0, RC # 0 also included) demonstrated in a very convincing
manner (see, for example, Fig. c.2) that for all practical purposes
(small switching ripple) dc gain is independent of switching fre-
quency fS (and L, C, R as well) in the continuous conduction mode.
In sharp contrast to this, the dc gain M in the discontinuous conduc-
tion mode (7.41) is dependent also on K in addition to D and hence is
a strong function of switching frequency fs’ inductance L,and load R.
evertheless, when the converter is used in this mode in a closed-
loop regulator, the self-correcting feature of the duty ratio D
would compensate any possible changes of load R or switching
frequency fs and still keep output voltage relatively constant.
Another question naturally arises in comparison of the two dc
gains: when do we calculate dc gain from one (7.41) or the other
formula (7.45) or, what is the criterion to determine in which of the
two modes (continuous or discontinuous) the converter is operating?
The answer is provided easily with reference to Fig. 7.1. When the

second interval DZTs js smaller than interval (1—D)TS, the converter is
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operating in the discontinuous conduction mode, and in continuous

otherwise, so the criterion becomes

continuous conduction mode

D2 >T1 -D (7.46)

discontinuous conduction mode

D, <1-D (7.47)

To obtain a convenient quantitative measure we find, first,
what happens exactly on the boundary between the two modes of

converter operation, or

boundary between two conduction modes

D,=1-D (7.48)

By use of (7.42) in (7.48), the equation to determine the critical

value of parameter K, that is, Kcrit for which this happens, is

2 2 _ '
from which
- nnt2
Kcrit = DD (7.50)

The solution (7.50) is the proper solution of (7.49) since

2DD" - Ko iy = 200" - DD*2 = 2pp' (2-p') - 20D'(14D) is always posi-

crit
tive regardless of D,resulting in a proper positive right hand side
of (7.49). With this, the criteria (7.46) and (7.47) for determina-

tion of the operating mode become
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continuous conduction mode K> K (7.51)

crit
discontinuous conduction mode K < K_pig (7.52)
boundary between two conduction modes
K = Kcrit (7.53)

where K, as given before by (7.38), is a function of parameters L,

R,and fs’ while K is a function of the duty ratio D only.

crit
We now investigate how these criteria, (7.51) through (7.53),
behave throughout the duty ratio range D €[0,1]. To facilitate this

insight, K is plotted as a function of duty ratio D in Fig. 7.3a.

crit

a) open—loop consideration  b) closed—loop consideration

Kerit(D) Kerit(M)
4  discontinuous }
conduction 2
4 DiI-DI° 4 M-1
27 4 57 ’4/"§Ff
K=0.08 K=0.08
—
Dmin 13 Dmax '°D Mmin > Mmax M

Fig. 7.3 Determination of the operating mode (continuous or
discontiruous) gon the ideal boost converten of Fig. 1.1.

As seen in fig. 7.3a, Kcrit(D) has a maximum of 4/27 at D = 1/3. This

now enables a very important conclusion about operating mode to be

made. Namely, if the parameters L, R,and f¢ are such that the computed

parameter K is greater than 4/27, expression (7.51) is satisfied
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regardless of duty ratio D. Hence for K > 4/27 the converter

always operates in the continuous conduction mode, no matter what the
oberating condition (duty ratio D) is. However, if parameters L,
R,and f_ are such that K < 4/27 ~ 0.15 the situation becomes as shown
in Fig. 7.3a, where the particular example of K = 0.08 < 0.15 was
chosen. For a certain range of duty ratio D, that is Dmin< D < Dmax
(as shown by the shaded area in Fig. 7.3a), the condition (7.52) is

satisfied and the converter operates in the discontinuous conduction

mode, while for the remaining portions of the operating range
i i i e continuous
(0<D<Dy,adD <D< 1.0) it again operates in th

conduction mode, since then inequality (7.51) holds.

This discussion has been in terms of open-loop considerations,
~hen duty ratio D is given and externally controlled. However, as
before for dc conditions, it is desirable to have the boundary condi-
tion (7.50) in terms of the dc gain M, which is a more suitable
quantity for the closed-loop considerations. This can easily be done
since the dc gain M is continuous across the boundary (as seen by
use of (7.48) in (7.34) resulting in (7.45)), and thus substitution
D= (M-1)/M in (7.50) gives

K M-1

crit - gr (7.54)

This function Kcrit(M) is plotted in Fig. 7.3b,and a similar discus-

sion applies. However, now the maximum of K (M) of 4/27 is obtained

crit
for gain M = 1.5. As before, for K < 4/27, the converter is in the

126



discontinuous conduction mode, but now for dc gain M in the
range Mmin <M< Mmax as shown by the shaded area in Fig. 7.3b. This
reveals a potentially serious problem if the boost regulator were
designed (and compensated) to operate in the discontinuous conduc-
tion mode only. Namely, during the initial turn-onprocess, the out-
put voltage starts from zero, and the converter would have to pass
through the continuous conduction region first (for 1 <M< Mmin)'
before coming to the discontinuous conduction region (shaded area in
Fig. 7.3b). This would suggest possible stability problems, if the
closed-loop was not compensated to assure stable operation in the
continuous conduction mode as well.

From the standpoint of the dc gains (as a function of duty
ratio D), the situation corresponding to that of Fig. 7.3 is shown in

Fig. 7.4 for some K < 4/27.

dc gain M=VIVg /
[}

~/

o
/

Mmax

o

0.0 Dmin Dmax 1.0

Fig. 7.4 Boost converter de voltage gains in continuous and dis-
continuous conduction modes as a furction of duty ratio D.
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From the dc gains for both conduction modes shown in Fig. 7.4,
it becomes obvious that the actual dc gain will follow the larger
of the two gains, thus the mode of operation will change accordingly
as the duty ratio changes from 0 to 1. Also in the close vicinity
of gainM =1 (1 VI Mmin)’ the converter is always operating in
the continuous conductfon mode. Thus, the problem of having, for
example,D, infinite when M>1 from (7.48) is only a fictitious one,
since (7.44) is for the discontinuous conduction mode and hence not
applicable in the vicinity of gain M=1.

We conclude this dc analysis with some numerical examples and 5
related quantitative and qualitative significance of the dimension-

less parameter K. For example, for the set of parameters L = 880uH,

R = 220Q and 1’$ 20kHz, we compute K = 2Lfs/R = 0.16. Therefore,
<ince K = 0.16 > 4/27, the converter will with this set of parameters
always operate in the continuous conduction mode. However if, for
example, the switching frequency' is reduced to fs= 10 kHz, this results
in K 0.08 < 4/27 and some range of discontinuous conduction
operation should be expected (see Figs. 7.3 and 7.4). Therefore, the
reduction of parameter K below 4/27 causes this transition. From

the definition of K in (7.38) this reduction and change to the dis-
continuous conduction mode is qualitatively achieved by three means:
increase of load R, decrease of the inductance L or switching fre-
quency fs" There is also a fourth way to enter the discontinuous
conduction mode, and that is to change the operating condition, the

duty ratio D, as illustrated in Fig. 7.3 and Fig. 7.4, but only if
the condition K < 4/27 is met.
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Very often, however, out of all these four possibilities,
one is mostly interested in how the change of load R affects the
operating mode. Namely, the parameters L and fs are usually design
parameters whose choice may depend on the size and efficiency require- .
ments of the converter or regulator. On the other hand, the range of
variation of duty ratio D,or equivalently gain M, is a design require-
ment in a closed-loop implementation since the output voltage V is
maintained constant against the range of variationof input voltage Vg

(hence range of M = V/Vg) by the action of negative feedback. The

load R also can have a wide range of change depending on the user of
the regulator, and is often out of the designer's control. Hence,
determination of the converter operating mode with respect to changes

of load R becomes important. This can be easily accomplished by

e

finding an equivalent of (7.50) and (7.54) respectively, as

R .. = —— R (7.55)
crit DD‘Z nom
M3
Rcrit M Rnom (7.56)

where Rnom is a design parameter deFined by ;

a
Rnom = 2Lfs (7.57)

The criteria for determination of the operating mode, (7.51), (7.52),
and (7.53),then become

continuous conduction mode

erit (7.58)
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discontinuous conduction mode

R >R (7.59)

boundary between two modes

R = Rcrit (7.60)

Let us now illustrate this on a numerical example. For L = 880yuF,
fS = 20kHz we calculate Rnom = 35.2G. By the same argument as before

(see Figs. 7.3 and 7.4, for example), the converter will always

operate in the continuous conduction mode if

27
R <‘4-"Rnom (7.6‘)

or for the given numerical example for R < 238Q2. When R > 238Q
there will be a range of gain M (see Fig. 7.4) for which ghe converter
operates in the discontinuous conduction mode.

This concludes the extensive dc analysis and we now turn to

the dynamic (ac small-signal) model analysis of this ideal boost

converter example.

Dynamic (ac small-signal) model analysis

Before we apply the general result to this ideal boost converter
example, let us first put the constraint (7.32) into a more suitable
form by using the steady-state average inductor current 1 of (7.36)

to get

v dT vd
1 = S =
i= == (7.62)

g
By use of perturbation equation (7.62), model description (7.31) and



definition (7.10) in the general result given by (7.27) through (7.29),
we obtain

dynamic (ac small-signal) model

21T 0,7 r~1 [o+d v vV -V]
di 0 2115 ZW J.-‘ 9
dt L L ~ L ~ L ~
= + v + d+ d, (7.63)
,. g 2
D 1 ~ I
vl 122 ||V 0 0 [—
dat] | “®rc) LY. § R C .
with additional constraints
di _
- 0 (7.64)
i = vg vg + D d (7.55)

As opposed to the general result, we can now for this specific
example enter the constraints (7.64) and (7.65) into dynamic model
description (7.63). The introduction of (7.64) reduces the first
dynamic equation in (7.63) to a static one, and after proportionality

constant L is removed the dynamic model becomes

=-I\ ”~ A -l‘\ {
0 D,v + (D+Dz)vg + vgd + (vg v)d2 (7.66)
v _ .7 2 o
C it - Dzl - v/R + Id2 (7.67)
with additional constraint (7.65). Note, however, that now the

first static equation (7.66) actually determines the unknown
modulation quantity 82 (modulation of the second interval dZTs as
shown in Fig. 7.1, for example) in terms of the other dc and ac
quantitites. In the remaining dynamic equation (7.67), besides this
modulation 32 which we can now express from (7.66), current modula-

tion i also appears. But, from the perturbation equation I (7.65)
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it is also determined in terms of the known ac gquantities (forced
modulations ;g and 8). In general, both equations (7.65) and (7.66)
could have both modulation quantities ; and 82 for some arbitrary
converter. But, they are linear algebraic equations and could be
solved for ; and 32 in terms of other ac quantities and then
substituted in the remaining dynamic description (which could be, for
some converter with more than two storage elements, higher than the
first order model given by (7.67)).

Another general feature, which is in this model hidden, is that

(7.66) can be considered as a consequence of the equation

(d+d2)vg =d,v (7.68)

2
which after usual perturbation and linearization steps and subtraction
of dc terms reduces to (7.66). Hence, in analogy to (7.62), equation
(7.68) can now be designated perturbation equation II. The appearance
of (7.68) in the modelling will become more apparent later in the
hybrid modelling and circuit averaging techniques. But in any case,
the unknown modulation quantities ; and 32 come as the solution of
two linear algebraic equations, which are essentially linearized
versions of perturbation equations I and II, (7.62) and (7.68)
respectively.

To complete the dynamic model description we simply substitute
(7.65) and the solution of d, from (7.66) in (7.67) to get

dv {1 1) D, D+D D, V
C—=d2 . Jo.l2 2 \," 2.9 )a
at kv-vg AN V, * -, g*\o * V-V 1d
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Since this dynamic model has significance only for the closed-loop
regulator, it is convenient to express all dc quantities in terms of
M, K, R and output voltage V, as was explained before in the dc

analysis. Hence by use of (7.42), (7.44) and (7.35) we obtain

v+ M 2M1 0 2v 1 g (7.69)

In (7.69) all proportionality constants wdu]d become infinite and

M 2M-1

meaningless when M = 1. However, it was explained in the dc analysis
that in the vicinity and at gain M = 1, the boost converter always

operates in the continuous conduction mode, hence a different dynamic

model (that of (3.19) with Ry = Rc = 0 in Part I) applies.
It is now easy to obtain from (7.69) two transfer functions

of interest

G = Cgsz =6 1
vy vg(s) °9 1+ s/wp

(7.70)
Gvd B ¥i_l'= God ]
where d(s) 1+ s/wp
4 gﬂ;_l %f (7.71)
and
Gog = M g 2y ol (7.72)

As seen from (7.70) both transfer functions have a single pole
wp and no zeros. This is qualitatively completely different dynamic
behavior than in the continuous conduction mode (compare with the
corresponding transfer functions in (3.21)) where two poles and even

a right half-plane zero are obtained (for the Gvd transfer function



134

only). This in turn sugyests easier compensation (even no compensation
at all) and reduced stability problems if the converter as a part of

switching regulator is operating consistently in the discontinuous

conduction mode. But, a potential danger exists there: any signifi-
cant transient changes (such as sudden change of input voltage or
temporary substantial change of load R) could move the operating point
to the continuous conduction region (see Fig. 7.4) and cause insta-
bility. Another problem is inherent to the discontinuous conduction
mode. In addition to the output current, now the input current
becomes pulsating as well (as shown in Fig. 7.1) which increases
electromagnetic interference problems. Hence, a decision on the
choice of operating mode becomes a complex one, depending on the
particular design requirements. To facilitate that decision, we now
undertake the task of developing useful circuit models of the switch-

ing converter operating in the discontinuous conduction mode.

7.2 Hybrid modelling in the discontinuous conduction mode

In analogy to Section 3.2, we demonstrate in this section how
for any specific converter a useful circuit model of the basic
state-space averaged model (7.6) can be found, appropriately modified
by inclusion of the constraint (7.7), and supplemented by the addi-
tional constraint (7.8). In terms of the Flowchart of Fig. 6.1 we
will procéed from block 2a through 2c to arrive at the circuit model
in block 2b. Again this is illustrated on the same ideal boost

converter example as in the previous section.




H RS ’

g TN

1
[o— }

2 ]

>

When the boost converter description (7.31) and (7.32) is

applied to (7.6), (7.7) and (7.8) the following basic state-space

averaged model results:

- T
r!tlw 0 ) ?g_ 11 d+d,
dt L L
= + v (7.73)
dv ) 1 i
at] T “re) Y. 0 |
with additional constraints
di _
v 0 (7.74)
v dT
j =S (7.75)
2L

It now becomes clear that introduction of (7.74) into (7.73) reduces
the first dynamic equation to perturbation equation II as given before
by (7.68). But, instead of introducing this substitution, let us
first find the circuit realization of the state-space equations

(7.73) as shown in Fig. 7.5.

v.= Ldildt=0
+ -

Tl ‘

(d+d2|V9<i5 dov|? b ldpi - C %R

41

Fig. 7.5 Circuit nealization of the state-spacc model (7.73), with
constraint (7.74) also included.
The constraint (7.74) leads, in the circuit model of Fig. 7.5,
to effective disappearance of the inductance L, since v © Ldi/dt = 0.

The resulting equality of the two voltage generators produces again
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the perturbation equation II given before by (7.68). At the same
time shorting of the inductance causes reduction of system order by
one, and effectively a single pole transfer function result (7.70)
becomes apparent.

Let us now put the circuit of Fig. 7.5 into more elegant form,
by introducing a dc and ac transformer in place of the two dependent

generators in Fig. 7.5. Also, it is desirable to have source voltage

vg effectively at the input of the converter, rather than as some
modified quantity as (d+d2)vg in Fig. 7.5. However, this is easily
accomplished by introduction of another dc and ac transformer at the
input of the converter. In addition, the true input current into
the converter becomes properly exposed as seen in the basic circuit-
averaged model of Fig. 7.6. In addition to the circuit model in
Fig. 7.6 we need the remaining constraint (7.75) to complete the
description of the converter in discontiruous conduction mode (as
also displayed in Fig. 7.6). As before, the circuit model and the
additional perturbation equation are valid for both dc and ac
conditions. Hence the two transformers in Fig. 7.6 are operating both
at ac and dc and the appropriate symbol introduced in Part I to

expose that fact is also used.

|+ (d+dp) dz @ |

Fig. 7.6 Basdic circuit averaged model forn the ideak bcost convertern
in the discontinuows conduction mode.
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Following the procedure outlined in this section one can
easily obtain the basic averaged circuit models of three common

power stages of Fig. 1.1. These models for discontinuous conduction

mode are summarized in Fig. 7.7.

3) buck power stage:

L i=(Vg—-V)deI2L
v
Vi
9 >
<t> =C ER
l:d (d+d2)37|
b) boost power stage:
L i_.,\ngs/ZL v
D B
% ) 2 e
D K Len % % Lk
ll(d*dz) dp: |
c) buck-boost power Sv*age: i =vgd §/2L v
1 "*

Vg<:> éL =C §R Vg(:) é% +C %R

l:d  dp:)

Fig. 7.7 Summary of the basic cirncuit averaged models fon three
common power stages in discontinuous conduction mode.
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An interesting comparison with the corresponding summary of
Fig. 3.8 can be made. While the topologies of circuit models in
Fig. 3.8 are different from each other owing to the presence of
inductance L, the converter models of Fig. 7.7 alrcady have the same
topology. This suggests that the circuit averaging procedure (circuit
perturbation and linearization steps) presented in the next section

will directly result in the fixed circuit topology of the final

linearized model, without a need for any circuit equivalent trans-

formations that were necessary in Part I in order to arrive at the

canonical circuit model. This conjecture will be confirmed in the
next chapter in which the canonical circuit model for discontinuous
conduction mode for the three converters of Fig. 7.7 is arrived at.
Another distinction between the two circuit models is that
the circuit models in Fig. 3.8 are already in a topological form
which directly accounts for line voltage variation ;g’ while those
in Fig. 7.7 are not, because of the additional constraint, the
perturbaticn equation I,which should be also incorporated into the
dynamic model as the next section will illustrate. Howevef, Fig. 7.7
does represent dc circuit models directly (as Fig. 3.8 also did) as

the next section will also verify.
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7.3 Circuit averaqing in_ the discontinuous conduction mode

In this section the alternative path b in the Flowchart of
Fig. 6.1 is followed and the perturbation and Jinearization steps
corresponding to those in state-space averaging path a are applied to
the circuit model to arrive at the final circuit averaded models,
separately for steady-state (dc) and dynamic (ac) response.

We continue with the same jdeal boost converter exampie and
hence use as a starting model the circuit model of Fig. 7.6. Even
though that circuit model was obtained by following hybrid modelling,
we emphasize also the other possibility. Namely, it could have been

obtained directly by averaging the three switched circuit models of

Fig. 7.2 using the standard circuit averaging technique and supple-

menting it by the appropriate constraints (7.74) and (7.75).

Pertunbation
If the averaged circuit model of Fig. 7.6 is perturbed together

with its perturbation equation 1 according to

vg = vg+vg, i = I+i, d = D¥d, d2 = Dz+d2, v = Vv (7.76)

the nonlinear model of Fig. 7.8 results.
(D+DprddMI+3) 1+ (DprdlVe0) (DprdpI+il VeV

) . o0 adngyl |/

Vgrly I £] (4] =c 2R
5 | [+ =(Vg+%g)(D+d) &/ 2L

\ Fig. 7.8 Perdurbation of the basic averaged circuit model in Fig. 7.6

i nesults in this nonfinean circuct model.
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Linearnization
With the small-signal assumption on perturbation, that is

~ ~ A A

8 <D, dy << Dy, 1 <<, vV, v <<V (7.77)

the second order terms in Fig. 7.8 can be neglected and the

linearized model of Fig. 7.9 obtained.

(Bodol(DeDy)  (DDeMglddhg DpvedV (2 g

< I\ R \ |
Vgng) vl (V1= £][#] [#] =c3R

oo J0+DNg  DN] D,

V+V

+-1

Fig. 7.9 Model of Fig. 7.8 Lincarized to include dec and ac small-
sagnal modeds.

The circuit model in Fig. 7.9 together with the dc and ac
part of the perturbation equation I (also shown in Fig. 7.9)
completely determines both models. At this point, we continue to
develop separately the two circuit models -- the steady-state (dc)

circuit model and the dynamic (ac small-signal) model.

Steady-state (dc) circuit model

With all ac quantities set to zero, the dc circuit model is
obtained directly from Fig. 7.9, and upon substitution of dc depen-
dent generators by the dc transformer symbols, the circuit model in

Fig. 7.10 results.
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R

|+ (D+Dp) Da: i

Fig. 7.10 Final dc cirewit model fon the boost conventer in the
discontinuous conduction mode.

This circuit model is also supplemented by the dc part of the
perturbation equation I, which is, of course, the same as (7.30).

From the circuit model in Fig. 7.10 the other two dc relations (7.34)

and (7.35) are obtained. Hence the dc circuit model leads to the same
dc conditions and results discussed at length in Section 7.1 on
state-space averaging.

We now turn to the development of the dynamic (ac) circuit

model .

Dynamic {ac) circuii model

After the steady-state (dc) quantities are subtracted from the
circuit model in Fig. 7.9 (and perturbation equation as well) the ac

circuit model in Fig. 7.11 is obtained.
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(D+D2)?+(af32” L Dgc"'agv D2?+321
(D*DZ)}Hd'az)Vg l \

WD L0 EY W] [ o s

T=1dID + [%g/Vg
Fig. 7.11 Dynamic {ac small-signat) circuct model fon the boost

converten with the constraint on modubation 3 (perturbation
equation 1) not yet included 4n the circuct model.

From Fig. 7.11 it is obvious that the two dependent current
generators are functions of two yet undetermined modulation quantities
82 and ; , since the other quantities are either already determined
from the dc circuit model (such as D,, 1) or are known driving
quantities (as D and 3). While the current modulation is already
available through the linearized perturbation equation I (see Fig.
7.11), the other modulation quantity 82 can easily be obtained from
the inside loop of Fig. 7.11. Namely, since the two voltage

generators in Fig. 7.11 must be equal, we get

~ ~

Dyv + d2V (7.78)

(D+02)Qg + (d+212)vg =
Note that this is the same equation as the first (static) equation
(7.66) of the state-space averaged model. Now it is easy to see that
(7.78) and (7.66) came out actually as a consequence of the perturba-
tion and.linearization steps applied to the perturbation equation !1 %
(7.68), since the voltage generators in Fig. 7.11 resulted from the

perturbation and linearization of the voltage generators in Fig. 7.5,

which have been shown to be equal for discontinuous conduction mode
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(owing to di/dt = 0 constraint).

The equation (7.78) can now be solved for the unknown modula-

tion d2 and, together with the perturbation equation defining i,

determines the two current generators in terms of the known modulation

quantities as follows:

A (A ~ ) ( )A 2Vl .V (D+[)2)I N DZI ~ ( )
j: = (d+d I + (D+D,)i =—_~—-d+— - V. o~ vv- Vv 7.79
1 2 2 v Vg Vg v Vg g v Vg
~ ~ ~ 2v1 . VvV 2v-V_ 1 . v 1 A
30 = dZI + Dz'l = . d + VE ———'—g'v_vg R Vg - -v—:v‘; R v (7.80)

Since the converter dynamic model is solely used in closed-loop

regulator applications, we conveniently express all dc quantities in

o R il i e h ek

terms of M, K, R and output regulated voltage V (as explained before)

to arrive at

~ ~ 3 ~ ~
;=2 M Mi1c o M1 . ‘3
e ke TR Yy " HTRY (7.81) ?

2

a1, Meen 1] K1 (7.2)
° R VYKM(M-Y) M-1 R 9 M1 R

By use of (7.81) and (7.82) in the circuit model of Fig. 7.11.

the circuit model in Fig. 7.12 is generated.

VM d M Tg -MV MI2M-IYg 2V 4 ~MY
RVKIM-1) (M-IIR" (M-1R (M='R = RVKMIM-1) (M-1R 5

\\I:P_": \ /
DP0% £poY 1

<>ér =1
AN—
ps)

)

Fig. 7.12 Dynamic (ac smafl-signal) circuit model of the boost
converten with perturbation equation 1 (fon modulation 4)
and pentunbgtion equation 11 {equality of the voltage
genenatons v, and vc) included in the circuat model.
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The two voltage generators v; and Yo in Fiq. 7.12 are purposely
shown in dotted lines to emphasize the fact that they are no longer
essential, since the information provided by them (7.78) has already
been used to find modulation &2 and substituted clsewhere in the cir-
cuit model. Therefore they can now be omitted from the circuit model.
Finally, by modelling the current generators in Fig. 7.12 which are
proportional to voltages across them as ac resistors only, the final

circuit model of Fig. 7.13 is obtained.

<>

c 2R

a
- =
-
<>
ﬂi———ﬁ
N.’
-
0>
L
IR

Fig. 7.13 Finaﬂ‘ac small-signal cincuit medel 401 boost conventen in
the discontinuous conduction mode.

The element values in Fig. 7.13 are defined as

A ) M
NTRVEMTT . T 3R 9 TR (7.83)
_v M-1 M(2M-1

j T——— r
2 RVKM(M-1) 2



Also since " and r, are ac resistances only, the appropriate symbol
consistent with that adopted for the ideal transformer designation

(see Fig. 3.7, for example) is used in Fig. 7.13. The two current
generators inside the dotted-line box in Fig. 7.13 are used with square
symbols to emphasize the fact that they are dependent current generators
(on some other quantities in the circuit).

From the circuit model in Fig. 7.13 and by use of element
definitions (7.83) and (7.84), the two transfer functions G 4 and Gvg
can be derived. It can easily be verified that they agree exactly
with those obtained bLefore,((7.70), (7.71) and (7.72)), using the
state-space averaging. An interesting observation with regard to
the topology of the circuit model in Fig. 7.13 can be made. Namely,
to arrive at these two transfer functions, only the elements in the
output port j2, ro and 9 have been used, without any need for input
port description. However, the input port description becomes
mandatory if the determination of the complete circuit model is
desired, since it properly models the important input properties (both
open- and closed-loop input impedances, for example), as will be
illustrated in Chapter 9. Moreover, the output port model now does
affect the input properties through the dependent current generator

gqv in Fig. 7.13.

An interesting comparison with the circuit model topologies
for the continuous conduction mode (Fig. 3.10 or Fig. 4.2) seems
appropriate here. While in the continuous conduction mode the effect
of duty ratio modulation 3 was expressed through duty ratio

dependent voltage and current generators, here two duty ratio
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dependent current generators (one at the input and the other at the
output port) appropriately account for both input and transfer
properties (and output properties, as well). Another distinction and
unique feature of the circuit model of Fiy. 7.13 is the presence of
ac resistances only (which are in general dependent on an operating
condition, the gain M), a characteristic not present in the continuous
conduction mode. But despite these topological and qualitative
differences, the circuit models for continuous conduction mode (Fig.
4.2) and discontinuous conduction mode (Fig. 7.13) have something
very important in common: they both represent a complete linearized
circuit model which accurately represents not only transfer properties
but input and output properties as well.

In summary, this chapter has provided detailed insight into
the various paths in the Flowchart of Fig. 6.1. A general method
for modelling any three-state switching converter operating in the
discontinuous conduction mode has been presented first. The
fundamental step is in replacement of the state-space descriptions of
the three switched networks (7.1) by their average (7.6) over the
single period Ts’ the same step as taken for any ordinary three-state
converter. This is then supplemented by additional constraints (7.7)
and (7.8) which properly account for the discontinuous conduction

mode of operation.

The subsequent perturbation and linearization steps are
applied not only to the state-space or circuit averaged models but
z1so to the constraints, which then provide the additional information

needed to define completely both dc and ac small-signal models.



An extensive analysis of the dc conditions in the discontinuous
conduction mode has been given, which then enabled the definition of
the boundary between the two operating modes for specific boost
converter example. An easily interpretable formula ((7.50) or (7.54))
led to simple criteria ((7.51), (7.52) and (7.53)) for determination
of the converter mode of operation.

Analysis of the dynamic (ac small-signal) model confirmed
the general modelling prediction-reduction of the system order by
one. Thus, common converters of Fig. 1.1 showed a single-pole frequency
response in the discontinuous conduction mode, as opposed to their
two pole response in the continuous conduction mode.

Finally, a new circuit model (Fig. 7.13) with a rather unusual
topological structure is obtained, which provides a complete model for
dynamic (ac small-signal) behavior.

The method outlined in this section, and illustrated for the
boost converter, is applied to the other two converters of Fig. 1.1
and results are presented in various tabular forms (including the
boost circuit example) in the next chapter on a canonical circuit

mode]l.
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CHAPTER 8
CANONICAL CIRCUIT MODEL FOR
DISCONTINUOUS COWDUCTION MODE

In this chapter the cinonical circuit model for discontinuous
conduction mode (block 5 in the Flowchart of Fig. 6.1 or Fig. 7.13)
is obtained for the three common switching converters of Fig. 1.]
and, thanks to its fixed circuit topology, the results are conveniently
summarized in the form of various tables, separately for dc and for
ac small-signal circuit models.

From the dc conditions and by following the derivations
presented in Section 7.1, the simple formulas for determination of
the boundary between the two conduction modes may also be found for
the buck and buck-boost converters. These results, analogous to
(7.50) and (7.54) through (7.56) for the boost converter, are again
tabulated for all three common converters of Fig. 1.1. This then
ultimatcly determines which of the circuit models (those of Part I
or those of Part II) should be chosen for given parameter values and
operating conditions of a closed-loop switching regulator. An
interesting pictorial interpretation facilitating this decision is
given in terms of the frequency scale and position of another
"inherent" frequency wg (frequency defined by converter element values,
like W, and fC before) with respect to switching frequency fS.

Finally, both dc and ac transfer properties are experimentally
verified on a particular buck-boost converter breadboard and

excellent agreement with the predictions is observed, thus confirming




the high accuracy of the circuit models for the discontinuous

conduction mode.

8.1 Derivation of the canonical circuit models for discontinuous

conduction mode

In this section the canonical circuit models (both dc¢c and ac
small-signal circuit models) for the twc remaining converters of

Fig. 1.1 are derived from the basic circuit averaged models in Fig. 7.7.

Buck converter in discontinuous conduction mode

With regard to the dc circuit model derivation, a general
observation seems appropriate here. Namely, the dc circuit model of
the boost converter (Fig. 7.7) could have been obtained directly from
the unperturbed circuit model in Fig. 7.7b by simply taking all
quantities to be dc quantities and as usual considering the capacitance
C to be opén for dc signals. Hence, as should have been expected,
the circuit models in Fig. 7.7 together with the additional expres-
sions for the average inductor current i are valid dc models. But
this is exactly why it was previously emphasized that the presented
methods for finding dc and ac models are consistent with each other.
After all, ac small-signal models really represent the linearized
perturbation around some steady-state (dc) conditions. Hence, by
perturbation and linearization of the circuit models in Fig. 7.7,
the ac circuit models consistent with the superimposed dc circuit
models result. Therefore, the dc circuit model for the buck

converter is as in Fig. 7.7a with dc quantities d = D, d, = D

2 2’
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i=1, Vg © Vg, v =V and dc transformers only.

After usual perturbation and linearization steps are applied
to circuit model of Fig. 7.7a, the dynamic (ac) circuit model in

Fig. 8.1 is obtained.

Di+dl  Dyrdvg (DJ.'DZ)O+(8+82]V (D+D) T+ (d+dy)] :
i \ l
V9<t> Ji * Vi Co ’Jo ~C gR

I+

+

lL

=l o 1 o1
! %—va \FvV*f-ﬁa

Fig. 8.1 Dynamic lac small-signal) circwit model gon the buck
converten «n discontinuous conduction mode with cornesponding
perturbation equation 1 §on modulation %.

The perturbation equation I is different from

that for the boost converter and is

(v _-v)dT (v -v)d
i=—ﬂ—2L S'=V”1 (8.1)
=

After perturbation and linearization of (8.1) we get

A 1 - I 4 I -
1=V, tsd-g— vV (8.2)
g Vg D Vg v

When the unknown modulation quantity d2 is found from equality of the
two voltage generators in Fig. 8.1 , and by use of (8.2), the two
current generators in Fig. 8.1 , after expression of dc quantities in

terms of'closed-loop parameters M, K, R and V, become
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J] = J]d + Vg/r] - Q]V; ‘jO = sz + gzvg - v/rz (8'3)

where
2y [TW 1M M
N ryx > gk N EImMR (8.4)
. 2v 1 iTh ) _ M(2-M)
IRHVE 0 27 (MR, g, - M2 ) (8.5)

Hence the same togo]ogz of the dynamic (ac) model for the boost con-
verter shown in Fig. 7.13 is also obtained for the buck converter in
the discontinuous conduction mode, but with the model element values

defined by (8.4) and (8.5).

Buck-boost conventen in the discontinuous conduction mode
The dc circuit model for the buck-boost converter is
obtained directly from the circuit model in Fig. 7.7c. After

perturbation and linearization of the model, the dynamic (ac) circuit

model, in Fig. 8.2 is obtained.

Divdl  Dig+dVy ~(D¥+dy) ~(Di+d,l)
Vgép JiL¥ v AE 4 [, :JFC §R

A

5L L3

A
|

Fig. §.2 Dynamic (ac Small-s4ignakl) cinecuit moded forn the buck-boost
convernten in disgontinuous conduction mode with pertunbation
equation 1 (gon <) shown explicitly.,
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The perturbation equation I is now the same as for the boost
converter (7.75) and the two current generators ji and jo in Fig. 8.2
are as defined in (8.3) but with the following element values for the

buck-boost converter:

j] = 2._’..v__L_ , r] = _R._z_. , g] = 0 (8_6)
VKR M
jz = 2 J—V—L l s rz = R’ gz = %‘M' (8-7)
/KR M

Again the same circuit topology of Fig. 7.13 results, but with element
values (8.6) and (8.7). However, there is a small distinction from
the previous two models since now, as seen in (8.6), g9y = 0. There-
fore there is no feedback effect from the output port to the input
circuit model as in the other two converters, and the open-loop input
impedance is just ry But, this is reasonable to expect for the buck-
boost converter, since it is the only converter in which the energy
transferring inductance is present either solely in the input circuit
(interval DTS) or solely in the output circuit (interval DZTs)'

In the other two converters (buck and boost), on the other hand, the
output circuit {including C and R) js at least for a portion of period
TS connected to the input and represents a loading effect on it.

Hence the feedback action through current generator 9V is to be

expected in these two converters.

The results for all three converters (buck, boost and buck-

boost) are summarized in the next section.
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8.2 Summary of the canonical circuit model results for three common

converters
Tn this section the results for both dc and dynamic (ac)
canonical circuit models for buck, boost and buck-boost cenverter
are summarized and, owing to the fixed circuit model topology,

conveniently listed in several tables.

STEADY STATE (DC) CIRCUIT MODEL

Ig\ I Iou‘f
® [ ] o ®
W 38 4
I : M| l . MZ

Fig. 8.3 Steady-state (dc) cirewit model for the convertens of
Fig. 1.1 4n the discontinuous conduction mode.

In Fig. 8.3 the polarity of
the second transformer ]:M2 is invérting for the buck-boost
converter and ctherwise as shown. The parameters in the dc circuit
model of Fig. 8.3 are defined in the first three columns of Table IV,
while the remaining two columns tabulate the dc relations derived
from this circuit model. Note, however, that this circuit model can
be used to determine other dc quantities as well, such as the dc

input current Iin in terms of the defining parameters.
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converier definition of dc model derived quantities
type M, M, Haveragd [ =MVIR| MM, M,
buck D l (Vy-VIDTs v b
D*Dz 2L (D+U?}R D'%Dg
boost | D+D 1 | WD | V| DiDp
2 Dy 2L D,R D»
buck = | Vo DT Y,
2 qY s D
boost D Do 5L DR D»

TABLE 1V Definition of the de cincuit model in Fig. 8.3 for the
Zhree common convertens of Fig. 1.1 operating in the
discontinuous conduction mode.

With use ncw of the last three columns of Table IV and the

procedures outlined in Chapter 7 in Section 7.1, the very useful

Table V can be generated, in which the dimensionless parameter K 1is

defined as before with K = 2L/RTS = 2LfS/R.

open—loop

consideration

closed-loop consideration

converter
Type M(D,K) D,( D,K) DIM,K) | Dy(MK)
) 2 I
buck | ———==IK__2 \,KM VO
I+\/l+4KlD2 DI+QI+4K/D2 =M e
N 2 | M
boost I+ l+24D,K %_l_f__‘ié[}__[f_ﬁ_( KM(M_H \[%A_tl
buck - D
boost Ve VR MK Vi

"

TABLE V Swwmany of de transjer propeaties of the thnee cenmon

154

convertens of Fia. 1.1 dn the discentinucus condue Lo wade
expressced fot open-feop asy wenld as gun clused Loop conscdera-
ions.
GRIGINAL PACE T
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DYNAMIC (AC SMALL-SIGNAL) CIRCUIT MODEL

i c
T Wl b

vg <1'> Jd ¥ VL ] B CDJZS::C §R
i !
L J

Fig. 8.4 Final ac small-signal circuit model fon converters of Fig.
1.1 4n the discontinuous conduction mode.

The element values of the dynamic (ac) circuit model in Fig.

2.4 for the three converters are shown in Table VI.

Tgpe Jl rl gl Jz r‘2 92

buck &VLZM I-Mp M? 1|2V M (1-M)R (MM

R|K M2 I-M R |RMI K I-M R

MM | M-I M 1 2V IM=1 o IMem-i

boost RI M 1 R L

°o® RM(M-U M M-I R RVRMIMTI M M-I R

- buck-f 2[V] | R 0 21V] . 2M
; boost | VK M2 RVK M R

..p{

TABLE VI Degindition of the elements in the canonical circuit model
c§ Fig. §.4 fon the three common converters of Fig. 1.1
operating in the discontinuous conduction mode.
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Again, as Table V was generated from Table IV and only input-
output dc transfer properties obtained, we can siniilarly generate
from Table VI another Table VII in which only input-output ac

transfer propertices (transfer functions Gvg and Gvd) are listed for

- Ta ¢
J >

the three converters. TS Cace o
e “‘("1"’;‘ QU ' TI'X

type Gog God W

ok y ovit-M? | 2-M

o VK M(2-M) I-M RC
2V [ m-7 | 2M-1 |

b t A

0% M oM-1 | KM M-1 RC

buck-~ M \V; EL

poost VR-M RC

v | , v !
Cvg™ \'79_ Cog | +s[wp Gvd_a = God |+ Slwp

TABLE VIT Swmwiny of the ac transfern propentics of the ihuee
cemmen convertens of Fag. 1.1 operalang i o discon-
tanucus conduction mode.

A1l the results presented in this section are applicable only

to the discontinuous conduction mode of operation of these three

switching converters. To determine when these results ought to be
applied and when those presented in Chapter 4 for continuous conduction
mode, the boundary between the two modes of operation is dete-mined

for these three converters and tabulated in the next section.
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8.3 Determination of the boundary between two conduction modes

As explained in detail in Section 7.1 the criteria for

determination of the converter conduction mode are

boundary between the two conduction modes

K= Kcrit or R = Rcrit (8.8)
continuous conduction mode
K> Korit or R<R..it (8.9) é
discontinuous conduction mode ;
%
K <K it or R >R, it (8.10)

where K is as defined before K = 2L/RTs = 2LfS/R. Following the same
procedure outiined in Section 7.1 for the boost converter example,

the parameters K and R can easily be found for the cther two

crit crit
cunverters and all resuits are shown tabulated in Table VIII.

open-loop consideration cicsed - loop consideration
converter
1gpe KCF”’ ( D) Rcri‘f( D,Rnon-} KCF”( M) RCFiﬂM)Rnom)
R R
k _ nom -M nom
buc | -D -D | =1 - M
R M- 1 M
boost | D(I-pf | —rem_ M- MR
°° D(1-D)? M3 M= e
buck - 2 R I 2
boost (1-DJ (l_ng?z (a2 M1 Rnom

TABLE VII1 ©Determination of the boundary between the two conduction
modes, expressed gon open-Loop as well as for closed-
Loop considenations.
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In Table VIII nominal resistanc e Rnom is a design parameter defined by

Room = 2Lfs (8.11)

o

It has already teen demonstrated in Section 7.1 for the boost
converter that parameter K can be chosen (X > 4/27), such that the
converter is always operating in the continuous conduction mode
regardless of the operating point, that is dc duty ratio D, while the
discontinuous conduction mode can occur only for K < 4/27, and then
only for a portion of the dynamic range of duty ratio D. The same
holds true for the other two converters, and the following criteria
can be set:

a) when K > KM converter is always in continuous conduction

mode regardlass of D.
b) when K < Ky discontinuous conduction mode can occur, but
only for limited range of duty ratio D.

Parameter KM is actually the maximum of the duty ratio D

dependent function of first column in Table VIII, and is for compari-

son purposes listed in Table IX.

buck boost Eggz;
4 |
Km | 27

TABLE IX Summary of the parameterKy detenmining the negion of
uncerdiiional continuous conduction §on three common
converten, of Fig. 1.1,
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From Table IX it is obvious that when K > 1 any of the three
converters listed will always operate in the continuous conduction
mode, and when K < 4/27 each of them will operate in the discontinuous
conduction mode for a portion of the duty ratio range. ~ With this,
and the first column in Table V, the dc vcltage gain as a function of
duty ratio can be shown as in Fig. 8.5b for K < 4,27, while the
corresponding result for continuous conduction mode is i1lustrated

for comparison purposes in Fig. 8.5a for K > 1.

a) continvous conduction b) discontinuous conduction

¥(D) Y (p,K
st ng( K]
,/
K> | K< 4127 47
4
boost 7
boost Z-buck-boos?
2r 2T 1 slope
| buck-boost | - \[& P
buck
% - 1\ ver -
00 0.5 .0 D 0O 0.5 10 N

Fig. 8.5 Comparison 0f the de voltage gain chanacternistics in the
two conduction modes for the common convertens of Fig. 1.1.
In Fig. 8.5b heavy lines designate the region of actual dis-
continuous conduction operation, whereas dotted lines signify that

the continuous conduction mode takes over and the dc gain

characteristics begin to follow those for the continuous conduction mode
(see for comparison Fig. 7.4). From Fig. g8.5b it is also evident that in
the buck and the buck-boost converter, the transition between the two

conduction modes occurs only once at higher duty ratio D, and not
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also at the lower end as it does in the bocst converter. Therefore,
during initial start-up of the converter, when the duty ratio
changes from zero to the value required by the steady-state gain M,
the two conve-ters (buck and buck-boost) can be designed to stay in
the discontinuous conduction mode only, even in this transitional
period.

We now present another viewpoint, which in an interesting
pictorial way and a unique frequency interpretation, illuminat.s the
determination of the converter operating mode and the basic small-
switching-ripple requirement. Namely, from Fig. 1.1 it is apparent
that the three common converters essentially consist of the single
switch S positioned differently among the source voltage Vg and three
elements, inductance L, capacitance C, and load R. With only these
three elements three different "inherent” frequencies can be defined
regardless of the converter type. Two of them, w, and fc, termed
natural frequencies, have previously been defined (1.11) and are

repeated here for completeness:

] 1
W - I . f = (8.]2)
a 2RC c 2n/LC

However, yet another "inherent" frequency w, can be defined by these

8

three elements as
(8.13)

The dimensionsless parameter K, which plays a cruciil role in the

determination of the conduction mode, can now be expressed as

-

(8.14)

= o
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R . fs_._!_

| ]
W= == - =
<YIT o Uc=3RC 1 Wetor To
‘m}c F: | high switching rippls
small ripple
fo freque
1 1 1 1 ) L 11 F eﬁu n?glscah
IkHz ' iokHz 100kHz
discontinuous
Wy [conduction,

We ‘vaxwﬁ - :

continuous
conduction

Fig. 8.6 Frequency interpnretation of the conduction mode type and
small switching nipple nequirement.

Therefore, the position of this new frequency wg with respect to the
switching frequency fS determines the conduction mode. Hence for K > 1
or wg < fs’ each of the three converters will always be in continuous
conduction mode regardless of D. Also it was shown before (1.11)

that w, << fS and fc << fs are requirements for small switching ripple.
The information contained in the position of these three "inherent"
frequencies w,» Vg and fc with respect to the switching frequency fs

is concisely summarized in Fig. 8.6. The diagram in Fig. 8.6, with
the help of definitions (8.12) and (8.13), displays in a convincing
manner the interplay between conduction mode types, switching ripple
requirement and choice of parameter values L, C, R and fs. For example,
increase of load R can cause change to discontinuous conduction mode
without deterioration in switching ripple. However, if inductance L
or switching frequency is reduced, change to discontinuous conduction
mode can occur, but at the price of higher switching ripple since
separation between fc and fs is also reduced. One would have to
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increase capacitance C to remain at an acceptable switching ripple
level. Thus the frequency diagram of Fig. 8.6 gives valuable insight,
both qualitative and quantitative, into the basic relationships
inherent to switching converters. It is interesting that from (8.12)

and (8.13) a very simple relationship follows

wc = szawB (u. .:))

which may further facilitate quantitative analysis.

8.4 Experimental verification of the transfer properties

Both dc and ac transfer properties have been experimentally
verified on a circuit breadboard of the buck-boost converter shown
in Fig. 7.7c.

The buck-boost converter was chosen because of several unique
features which clearly distinguish it from the other two converters,
and which are easy to check. A quick look at Table V, for example,
reveals that it is the only converter whose second interval 02TS
is independent of the operating conditions (duty ratio D or gain M),
but rather is fixed determined by the parameter K only.

Likewise, a look at Table VI shows tnat the ac resistance 1,
is also independent of steady-state operating condition (gain M).
Therefore, the single pole of the two transfer functions Gvg and Gvd
does not move with change of operating conditi n (gain M) as it does
in the other two converters.

Finally, the open-loop input impedance of the buck-boost
converter is Ri = R/M2 since there is no internal feedback
(g] = 0). Hence the input impedance 1s purely resistive, which is not

the case for the other two converters.
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The transfer propertias have been verified on the test buck-
boost converter with the following switching compconents: transistor

2N2880 and diode TRW7342.

Dc gain measurements

For the choice of element values L = 890wH, C = 12uF, R = 2209,
f, = 10kHz and Vg = 6V we compute K = 2Lf /R = 0.81 and D, = /X = 0.28.

Therefore, the buck-boost converter operates in the discontinuous
conduction mode from D = 0 until D = I-Dz = 0.72, and the experimental

dc gain characteristic is shown in this duty ratio range on Fig. 8.7.

dc gain

v
V9|

> e ® measurement
data

duty ratio D

| ] i |
0.0 0.2 04 0.6 0.8 1.0

Fig. 8.7 0Dc voltage gain measurements §orn the buck-boost converter
in the discontinuous conduction mode.
As seen in Fig. 8.7, experimental points follow very closely
the theoretical straight line characteristic. The experimental
data, however, are slightly lower than the theoretical curve since
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D

transistor saturation voltage and diode drop have not been accounte”’
for in the theoretical model, although this can casily be accomplishcd.
The inductor current waveform was monitored, and confirmed discon-
tinuous conduction operation for D ¢[0,0.72] while D, measured was

constant as predicted at 02 = 0.28.

Ac transfer function measurements

The duty ratio modulation d to output voltage v transfer
function G'vd is now measured using the describing function measurement

technique [20].

ild
I%( b)
f;
O Pro—o v ® i ¢
fs=10kHz
.—lo.—-
-20 e e measurement
data
_30——
i L lllLlll L i lllllll i L lll»
I00HZz IkHz frequency

Fig. 6.8 Expenimental magnitude-grequency nresponse of G,y = v/d
thans fer function fon buck-boost converten in tﬁ‘e des -
continuous conduction mede.
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The element values used are the same as for the dc

measurements, except that the inductance was increased four times to
L = 3.5mH to reduce the superimposed switching ripple and to reduce
the ringjng effect in the D3TS interval. Hence for L = 3.5mH,
C = 12uF, R = 220Q, fs‘= 10kHz, Vg - 6V we calculate K = 1.62 and
D2 = 0.56. The range of discontinuous conduction operation is then
reduced to D ¢ [0.0.44]. The single pole of the transfer functions
GVg and Gvd (see Table VII) becomes fp = 1/7RC = 120Hz, which is in
excellent agreement with the experimental data shown in Fig. 8.8.

The measurements were repeated for several operating points in

the discontinuous conduction region, namely, for D = 0.1, 0.2,0.3,

and 0.4 but the single pole at fp, as predicted, did not move.

The experimental measurements therefore have confirmed the high
degree of accuracy of the canonical circuit model (Fig. 8.4) for the
discontinuous conduction mode of operation.

In summary, the canonical circuit model for discontinuous
conduction mode (Fig. 8.4) retains all the advantages of the fixed
topology structure, previously mentioned in Section 4.2 in connection
with the canonical circuit model for continuous conduction mode. The
culmination of the modelling in discontinuous conduction mode is given
by Section 8.2, where the results for several converters are con-
veniently summarized in various tables for later quick reference
and use. This further enables an easy method of determination of the
conduction mode type through Section 8.3, where the results for

several converters have been surmarized. Common features of the three
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standard converters (buck, boost, and buck-boost) have been extracted
via an interesting frequency interpretation. Finally, in Section 8.4,
the transfer properties predicted by the canonical circuit model have
been experimentally confirmed for the buck-boost converter. The
single-pole frequency response (Fig. 8.8) for discontinuous conduction
mode is in sharp contrast with the two pole, right half-plane zero
frequency response (Table I11) for continuous conduction mode, and
verifies the general prediction of different converter dynamics in
the two conduction modes.

Only oue issue has not been covered in this chapter. It is
the question of converter input properties, and particularly of open-
and closed-loop input impedances, which are left to the next chapter

on modelling of a switching mode regulator in discontinuous

conduction mode.
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CHAPTER 9
MODELLING OF SWITCHING REGULATOR IN
DISCONTINUQUS CONDUCTION MODE

This chapter, in an analogous way to Chapter 5, demonstrates
how the canonical circuit model for a switching converter operating
in the discontinuous conduction mode can easily be incorporated into
the complete switching-mode regulator model. The model1ing of the
modulator stage has already been given in Section 5.1, so it will be
directly included here and a complete linear negative feedback circuit
model of the regulator will be obtained. This model is subsequently
used to derive the important regulator properties loop gain T, input
and output impedances Zi'and Zo. and line transmission characteristic
F, but this time for discontinuous conduction mode. The obtained
general expressions are then compared with the corresponding results
((5.2) through (5.5)) for the continuous conduction mode.

Again, the input properties, both npen-loop and especially
closed-loop input impedance, are of special importance when the
regulator is a part of a more complex network. Owing to the very
nature of the switching regulator operation, its closed-loop
incremental input re:istance Ri is negative at low frequencies, even
in the discontinuous conduction mode, since the simplified reasoning
(5.6) of Sect1on 5.3 applies equally well. It is then demonstrated
that the duty ratio dependent current generator J](S)d at the input
of the canonical circuit model (Fig. 8.4) is the one whose presence
properly models such behavior in much the same way as the j(s)a

current generator did for the continudous conduction mode canonical

167




circuit model (see Fig. 5.2, for example).

Again as before, the modelling techniques ([11] through (71
are not capable of describing such behavior, because of the total
absence of the input model of the converter and/or regulator. This

then once more stresses the completeness of the canonical circuit

models of Part I and Part Il for either conduction mode of operation.
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9.1 Analysis of switching regulator in discontinuous conduction mode

The inclusion of the canonical circuit model (Fig. 8.4) and an
appropriate model for the modulator stage (5.1) into the switching
regulator (Fig. 5.1) results in a complete circuit model of a switching

regulator in the discontinuous conduction mode, as shown in Fig. 9.1.

r———=- a| v

N
U
g
<>
- !3%

Zo
=
N
(

Fig. 9.1 General ac small-signal cirewit modef for Zhe switching
regulaton of Fig. 5.1 operating in the discontinuous conduc-
tion mode.

The generator symbol for the current generators j](s)a and
jz(s)a at the input and output ports, respectively, has been changed
from a circle to a square to emphasize that in the closed-1loop
regulator they have become dependent generators (on output voltage
modulation ; in particular). A closer look at the circuit model in
Fig. 9.1 reveals some unique properties of this negative feedback
circuit. Namely, it has been previously shown in Section 7.3 that
only the output port network (consisting of current generators

gzvg, jzd; resistances ry and R and capacitance C) effectively takes

part in determination of the open-loop transfer functions Gvg and

Gvd’ The immediate implication of this is that for ideal <source

voltage v_, the loop gain T is defined only with respect to the

output port as shown in Fig. 9.1. Likewise, the output impedance Zo
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and line transmission characteristic F (audio-susceptibi]ity) become

solely defined in terms of the output port elements, while the
input port takes part only in determination of the input impedance
Zi' This is easily confirmed by analysis of the equivalent circuit

in Fig. 9.1, which leads to

T = Gvd(s)A(s)fm(s)/Vm (9.1)
Z (s)
_ eo
Zo BN | (9.2)
G, (s)
F= 5 (9.3)
1 T /6 1 1 1
—— = o —— _lg. 1 - e —_—
Z, T (Gvd N r])+ T+T (r] g1Gvg) (9.4)

The first three expressions are rather obvious and are a
consequence of the general results of linear feedback theory. They
also confirm that T, Zo’ and F are functions of the output port

elements only, since the open-loop transfer functions Gv and Gvd

g
are independent of input port elements. These results are actually

the same analytical expressions as the corresponding expressions for

the continuous conduction mode ((5.2), (5.3) and (5.4)), except that
the open-loop quantities Gvg’ Gvd and Zeo in discontinuous conduction

mode are different from those in continuous .onduction mode as, for

example, the analysis of transfer functions qu and GVd in previous
sections clearly demonstrated.

The fourth expression (9.4) for closed-loop input impedance is
rather complicated and will be derived in the next section. However,

it does clearly demonstrate that the input impedance is dependent
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also on the input quantities j], r and 9y

[t should be noted, however, that this peculiar dependence
of some feedback quantities T, Zo’ and F on output port eclements only,
is a quite special case, which is a consequence of the ideal source

voltage vg. If the source voltage had an internal impedance, or an

input filter were included in front of the converter, even the open-

loop transfer functions Gvg and Gvd would become dependent on all
circuit elements,the feedback quantities even more so, and this special
feature w?uld disappear. This once again demonstrates how powerful
these converter equivalent circuit models are, since any of such
additional effects can be directly included in the circuit model of

Fig. 9.1, owing to its complete circuit representation of the converter

properties.
We now investigate in more detail the important input properties
of the circuit model in Fig. 9.1, and make appropriate comparisons

with the corresponding result (5.5) for continuous conduction mode.

9.2 Input properties of switching regulators in discontinuous

conduction mode

Let us first derive the input impedance formula (9.4) by use
of the circuit model in Fig. 9.1. The input current ig can be

expressed as

~

ig = = j]d + vg/r] - gy (9.5)

NLQ< >
o

The objective is now to express d and v modulation quantities in

terms of vg. From the feedback network description
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f.(s)

d = - T~ A(S)V (96)
m

Note that the negative sign in (9.6) expresses the negative feedback
effect: increase of output voltage is corrected by decrease of dc

duty ratio, hence d is negative. By use of (9.1) in (9.6) we get

N T -

d=-+—v (9.7)
Gvd

From (9.3) we obtain directly

l'ém

v (9.8)

v = T q

o

Finally, substitution of (9.7) and (9.8) in (9.5) results in the

input impedance for discontinuous conduction mode:

1 T /6, 1) 11 )
= - 225 — )+ Tl - 96 9.9
Z, TT\Gq 917 7)) " T\ 7 9ve (9.9)

It is interesting that the corresponding result (5.5) for

continuous conduction mode can be put in a very similar form, as

] T G 1
S I (9.10)
Z 14T Gvd T u Zei

where Gvg and Gvd are open-loop transfer functions for the continuous
conduction mode.

Comparison of (9.9) and (9.10) clearly shows that, for both
canonical circuit models, the input duty ratio dependent current
generators j]a (in Fig. 9.1) and ja (in Fig. 4.2) are responsible
for the negative input impedance at low frequencies. If they were not

present in the model, j] =0 and j = 0,and since at low frequencies
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T»o, the input resistance Ri would appear to be positive, in obvious
conflict with the actual physizal requirement (5.6).

Let us now verify this for the discontinuous conduction mode,
and consiaer first the limiting case of (9.9) for high loop gain

T~ (at low frequencies)

1 G ]
==, -r) (9.11)
] vd 1

From the circuit model in Fig. 9.7 the converter open-loop transfer

functions Gvg and Gvd are easily found as

- Y. ]
6yg = % (r R vcremy IR
(9.12)
- 3 1
6yg = J2(ral Ry v<errm) r,
By use of (9.12) in (9.11) we finally obtain the closed-loop

incremental resistance Ri as

iy 1
T (9.13)

Using now the definitions of element values j],jz, 95s and "
from Table VI in (9.13), we obtain for all three converters (buck,

boost and buck-boost) that

R v \2
R = - = _<v9) R (9.14)

However, this is the sa.e as the closed-loop incremental resistance
Ri for continuous conduction mode given previously in (5.7).
From (9.13) it is also evident that despite the presence of

the positive term, the negative term has prevailed, correctly
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predicting the negative closed-loop input resistance.

Let us now consider the other extreme when the loop gain is
very small, that is T-0 (or equivalently at high frequencies). Then,
the input impedance approaches the open-loop input impedance Zin
obtained from (9.9) as

_l_:—]—_.-gG (9']5)

Zin Ty 1V
The same result could be obtained directly from the open-loop
converter model in Fig. 8.4. From (9.15) it seems as though Zin
could be negaiive owing to this negative internal effect of the
current generator g]; in the model of Fig. 8.4. However, this is not
true. since the low-frequency value of the open-loop input impedance

Rin becomes trom (9.15)

r

]
R S 9.16
R1n 1 - g]r]gziréﬂRi ( )

Again by using element definitions from Table VI in (9.16) we

get for all three converters

R /V\2
R = ;2-=<Vﬂ)n (9.17)

which correctly predicts open-loop low-frequency input resistance

to be positive. This is actually also the same result as the one

obtained previously for the continuous conduction mode in (5.8).
From these derivations and the corresponding one in Chapter 5,

it follows that the closed-loop low-frequency input resistance Ri

is given by (9.14) regardless of the conduction mode type and

switching converter type (buck, boost or buck-boost). The sane is

also true for the open-loop low-frequency input resistance Rin

given by (9.17).



&

In summary, this chapter has confirmed that the canonical
circuit model for discontinuous conduction mode (Fig. 9.1) properly
models the regulator input properties (closed-loop input impedance)
in much the same way as the canonical circuit model for continuous
conduction mode (Fig. 5.2) did, through the presence of duty ratio
dependent current generators at the input of the converter model.

The immediate consequence of this is that the regulator circuit model
(Fig. 9.1) is a complete circuit model which correctly represents

all essential properties; input, output and transfer properties.

e
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NOT%

GENERAL THEGRY AND DESIGN OF
BUCK-BOOST CONVERTERS

PART I11

CascADe CONNECTION OF Buck
AND BonsT CONVERTERS
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CHAPTER 10
GENERIC PROPERTIES OF CASCADE CONNECTIONS
OF POWER STAGES

A twofold purpose is intended for this Part IIl. First, a
new class of switching converters generated by the cascade connection
of common power stages is introduced. It demonstrates the feasi-
bility of various realizations of the generalized switching converter
(Fig. 1.11) but at the same time provides verification of some of
the general modelling predictions made through the canonical circuit
model of Part I, which could not have been illustrated there owing
to the lack of the appropriate converter topology (converters with
more than two storage elements and a single switch). Second, a
closer look at these converters and some of their unique features
paves the way for the discovery of a new optimum topology switching
converter superior to existing converters in its class, which will
be presented.in Part IV. The new converter will at the same time
fill the gap previously existing in the conplete theory of buck-boost
converters by establishing the remaining missing link.

Since the emphasis in the remaining parts is on the
converter topology and not on its particular mode of operation, it
will be assumed throughout,‘un]ess otherwise specified, that all
converters operate as two-state converters, hence also in a continuous
conduction mode.

In this chapter, a valuable insight into the generic properties

of the cascade connection of buck and boost power stages is gained,



which ailows a renewed louk at the common converters of Fig. 1.1.
In particular, it is demonstrated that the buck-boost converter of
Fig. 1.1 (or conventional buck-boost converter as it will be referred

to in the future) may be viewed as a special case derived from one

kind of cascade connection between buck and boost converters (buck
converter followed by a boost converter) rather than a completely
independent circuit. The other two converters (buck and boost) are
then regarded as truly basic converters. In connection with that an

important conclusion is arrived at: the reduction of number of

switcnes in this cascade connection from two to one (and therefore
reduction of both dc and switching losses) can be achieved by sacri-
fice of the original noninverting property (both input and output dc
voltage of the same polarity) for the inverting one (as in the
conventional buck-boost converter of Fig. 1.1).

However, this does not exhaust all the possibilities of inter-
connecting buck and boost converters in drder to achieve a general dc
transfer function (both increase or decrease of input dc voltage),
since a boost converter cascaded by a buck converter is proven to be
a much superior topology. It is shown to have all the good properties
of buck and boost power stages alone, without acquiring any of their
bad properties. It is this connection from which a new optimum
topology switching converter is developed in Part IV.

Let us, however, before actually going into the various detailed
aspects of the cascade connections, review first the three common
converters (buck, boost and conventional buck-boost) to provide

proper motivation for this investigation.

179



10.1 Three common converters revisited

A closer look at the topological structure of the three common
converters (buck, boost, and buck-boost) shown in Fig. 1.1a reveals
that all of them could he generated from the circuit model in Fig.

10.1.
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Fig. 10.1 Generation of the buck, boost, and buck-boost convertens
by cyclic rotation of the senies connection of inductance L
and switch S.

As seen in Fig. 10.1 a cyclic counterclockwise rotation of the

series connection of inductance L and switch S between the input

port (source voltage Vg) and the output port (parallel combination of
C and R) generates respectively the three converters of Fig. 1.1a.
Namely, when inductance node A coincides with node 1 and the switch

S5 operates between the other two nodes (2 and 3), the buck power
stage is generated. However, if the series connection of L and S

is rotated such that A now coincides with node 2, while switch S

operates between other two nodes (1 and 3), the boost converter
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results. The only remaining possibility is that A coincides with
node 3 which is, of course, the conventional buck-boost converter,
This then exhausts all the possibilities of placing the series
connection of L and S between input and output nodes (three terminal
network, hence only three nodes).

This at the same time exhausts all the ways in which inductance
is used as an energy transferring device between the input and output
ports: either solely in the input circuit, solely in the output
circuit, or conrecting them. It is then no surprise that the basic
dc conversion functions for these three converters are different
from each other, both qualitatively and quantitatively as was
demonstrated in previous chapters. For example, one only reduces
the input voltage (buck), the other increases (bcost), while only
buck-boost is capable of the general conversion function (increase
or decrease of input voltage).

These dc conversion properties and the method of generation
of these converters depicted in Fig. 10.71 tend to suggest that all
three converters are completely independent of each other, and

are nonlinear circuits in their own right. This is probably why

they are often referred to as "basic" power stages, meaning they
cannot be derived from each other by some sequence of well-defined
steps.

However, they are not so unrelated and independent as it may

seem at first sight, since a strong correlation exists among their
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basic dc conversion relaticns. Namely, the ideal dc gain for

the buck-boost converter V/Vg = D/D' is just the product of the dc
gains for the buck (V/Vg = D) and boost converter (V/Vg = 1/D').

The same fact can also be observed in the basic circuit models of
Fig. 3.8 (with RQ = RC = 0) which are also valid at dc. For the
buck-boost converter, the first ideal 1:d transformer effectively
reduces the input dc voltage (buck), while the second d':1 trans-
former increases (boost) the resulting voltage and leads to d/d',

or D/D' for the overall dc gain. From the other two converter models
in Fig. 3.8 it appears as though the buck-boost converter model is
Just their simple merger. In fact, it becomes obvious that the same
dc gain would be achieved by cascading the buck power stage with

the boost power stage. Let us therefore investigate in more

detail this particular connection.

1.2 Buck converter cascaded by a boost converter

When the buck power stage is cascaded by the boost power stage
the converter in Fig. 10.2 is obtained. In Fig. 10.2 switching action
is represented by the ideal switches $1 and S,, which can be replaced
by the bipolar transistors and diodes by use of Fig. 1.1b. Here
ideal switches are used to facilitate discussion and enhance the

converter topology. For the same reason we assume that the two
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switches S] and 52 operate synchronously, such that unly two switched
netwerks are distinguished: one for interval DTS when both switches
are at position 1 and the other for interva: D'TS when they are

at position 2. In other words, the circuit cperates as a twc-state
converter (hence also in the continuous conduction mode). Note that
even though the first buck power stage does not contain explicitly
the load R, it is effectively loaded by the dc input resistance

Ri = R/M2 to the second, boost power stage.

| L, V, Lo ) V
O

T .%/S
|

N

Vg 7 = C, TC2§R

-2

+ -
buck-boost

Fig. 10.2 Buck powen stage cascaded by the boovst puven stage.

An interesting observation about the energy transferrirg
mechanism of the converter in Fig. 10.2 can now be made. The T
shaped network consisting of storage elements L], L2 and Cy is,
through the switching action, first completely switched into the input
network (to source voltaye Vg), and then during the subsequent interval
D’TS completely transferred to the output network thus feeding the

load R with the energy stored in the previous interval. lence in
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this converter the energy transferring role is assigned to the complete
T network (L],C],Lz) while in the conventional buck-boost this role
belonged to the single inductor. We have here, therefore, the case

of mixed energy transferring mechanism consisting of both inductive

and capacitive energy storage.

By use of the technique described in Part I, the basic circuit
averaged model of the converter in Fig. 10.2 is obtained as snown

in Fig. 10.3.

TN T v

[ J [} ®
1@ = Ci %é :L.:CZ%R

Fig. 10.3 Basic cineudt averaged model for cascade connection of
buck and boost converter shown «n Fig. 10.2.

From the circuit model in Fig. 10.3 the dc conditiors are
obtained as usual by considering the inductances short and capa-i-
tances open, and hence the converter dc gain D/D' and noninverting

property are easily established.

Since the capacitance C] does not affect the dc conditions let
us 10w simplify the converter in Fig. 10.2 by simply taking it out

of the circuit (or C] = 0) to obtain the converter in Fig. 10.4a.
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a) noninverting buck-boost b) inverting buck-boost

L \Y LN V

Vg == C=+ §R g L C §R

Fig. 10.4 Reduction of the Bwo switches S; and S, in tne noninverting
converten in a) to a single swilch S 4n the curresponding
Anvernting converten {conventional buck-boost) in b).

A significant simplification has been achieved, since the
original converter of Fig. 10.2 with four storage elements has been
transformed to the converter of Fig. 10.4a with only two storage
elements, and yet the basic dc conversion relations are preserved.
The mixed energy transferring network (L]’CI’LZ) has been reduced tc
a single inductance with L = L]+L2. This then stresses the importance
of the way in which the energy storage network is switched between
input and output circuits in determining the dc convarsion relation,
and diminishes the importance of the particular storage element
content. In essence, we have achieved the same basic dc conversion
function but with a smaller number of storage components (only twn)
and simpler dynamics, when this special choice (C]=O) is used in the
general cascade connection of the buck anc boost power stages. With
this specific choice, the circuit model in Fig. 10.3 becomes tne same
as that in Fig. 3.8c (with R, = R. = 0) for the conventional buck-

boost converter except for the difference in polarity of the second

d':1 ideal transformer.
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Even though the obtained converter in Fig. 10.4 is already
greatly simplified, let us see if it can be still further reduced.
Namely, the converter in Fig.10.4a still has two switches whicih in
terms of hardware realizations with transistor and diodes means higher
switching and dc losses, hence lower efficiency. The important
question then becomes how these two switches could be reduced to a
single one, and yet the dc conversion preperties preserved.

As seen in Fig. 10.4a, inductor L appears to be "floating" and
switching action (through S] and 52) periodically grounds one and then
the other inductor lead, thus producing an output vn1tage of positive
polarity. If one of the inductor leads is grounded as in Fig. 10.4b,
then single switch S performs the same action as previously S] and
52’ except that now inversion of the output voltage is obtained.
Therefore, if one is willing to sacrifice the noninverting property
of the converter in Fig. 10.4a, the reduction oV two switches S] and
32 to a single switch S can be achieved as illustrated in Fig. 10.4b.
In fact, the converter in Fig. 10.4b is the conventional buck-boost
converter.

This has now brought us to an important conclusion: the con-
ventional buck-boost converter is not an independent circuit, but

rather may be considered as a special case of the cascade combination

of the buck and boost power stage (special case with Cy = 0) in

which the inversion of output voltage al'owed reduction cf the number
of switches to one. This then leaves the other twc converters, the
buck and boost power stages, to be considered as the only really basic

power stages, since the buck-boost converter cculd be derived from
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them by following the aforementioned sequence of steps.

Note, however, that this sequence of steps is not to be under-
stood in the usual 1inéar circuits and linear dependence sense. Namely,
even though the cascade combination in itself is a linear combination
(provided the elementary circuits themselves are linear), the circuit
elements here (buck and boost converter) are extremely nonlinear as
also is their cascade connection. However, this difference is

alleviated since we are using linear circuit modeis for both dc and

ac small-signal models of the converters, as presented in the previous
two parts. It is therefore the last step, that of replacing a
number of switches for the inverting property of the converter which
is highly nonlinear (and, of course, cannot be linearized!), which
distinguished this process from the conventional linear equivalent
circuit transformation steps, for example. However, despite that,
the linear circuit models (both dc and ac small-signal) of the two
converters in Fig. 10.4 are the same (compare the model in Fig. 10.3
for C; = 0, with that of Fig. 3.8c with R, =R. = 0) except one is
inverting while the other (Fig. 10.3) is not. This may even appear
to be a general result (of course assuming that all the switches
are ideal, zero on resistance and infinite off resistance).

This view of the coaventional buck-boost converter being
just a special case of one kind of cascade connection of buck and
boost converters, as opposed to the conventional view of Section 10.1,
might seem artificial at present. Nevertheless, this view is later
shown to be a very fruitful one, since it led naturally to the dis-

covery of the new optimum topology switching converter und completion
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of the general theory of buck-boost converters.

As seen in Fig. 10.2, the cascade connection of buck and boost
converters provided a variety of converters (for different values of
energy storage elements L],LZ,C]), not just one for the shecial choice
C]=0, and each of them realized a general buck-boost dc conversion
function. However, the particular choice C]=0 had the desirable
feature that it could be reduced to the single-switch circuit by
sacrifice of its originally noninverting property for the inverting
one, which still further simplifies the complexity of the converter.

It may secm now that with this conventional buck-boost con-
verter, the ultimate goal of optimum topology (minimum complexity
with maximum performance) has been achieved. This is, however, not so

since the conventional buck-boost converter has two very imnortant

drawbacks. It has been demonstrated in Chapter 1 that the conven-
tional buck-boost converter has both input and output currents
pulsating (see Fig. 1.8, for example), which further cause severe EMI
(electromagnetic interference) problem and significantly large

output voltage ripple compared to the buck power stage {which has
continuous, nonpulsating output current). But, this was to be expected.
Namely, at the vary beginning, the cascade connection of the buck power
stage first, followed by the boost power stage (Fig. 10.2) combined

only the bad properties of the two original converte-s: the pulsating

input current of the buck converter and the pulsating output current

of the boost converter. To alleviate these problems, one usually

resorts to a one-two-section input filter to smooth out the input

R
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current ripple, and larger output capacitance to reduce the increased

output voltage ripple.

But there is a much better and more eleqgant method to resolve
these performance degradation problems. Note that all the possi-
bilities of producing the general dc-to-dc conversion function (both
increase or decrease of dc input voltage) have not been exhausted
by combination of the buck and boost converters. Namely, we can put
the boost power stage first and then cascade it by the buck power
stage, and still produce the same dc conversion function. In this way,
the good properties of beth of the two elementary converters are

combined: the continuous input current of the boost converter and the

continuous output current of the buck converter. Let us investigate

wnis possibility.
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10.3 Boost converter cascaded by buck converter

By cascading the boost power stage with buck power stage, the

converter in Fig. 10.5 is obtained.

L| 2
o——0 IO
AL TS T
_J l 1 2 2
Vg 7

-—
boost - buck

Fig. 10.5 Boost power stage cascaded by a buck power stage .

Again, as before, the two switches S] and S2 operate as for the
two-state converter: one switched network is generated with switches
in position 1 (for interval DTS) and the other in position 2 (for
interval D'TS). This converter will be referred to as a boos t-buck
noninverting converter, in distinction to the converter of Fig. 10.4
which will be termed the buck-boost noninverting converter.

Let ﬁs now see how the energy transferring mechanism is affected
by this particular choice of cascade connection. As seen in Fig. 10.5
the switches S] and S2 are now embedded inside the T-shaped network
consisting of L], L2, and C], while in the buck-boost configuration
(Fig. 10.2) they are outside of this T network of storage elements.

It now becomes obvious that the capacitance C] is the only energy
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transferring device. Namely, during the interval D'TS the capacitance
C] enters the input circuit (series connecticn of source voltage and
inductance L}) and accumulates energy in the form of stored charge.
For the subsequent interval DTS, capacitance C] is completely trans-
ferred to the output circuit to which it then releases the energy
stored in the previous interval. Therefore, in distinction with the
previous two cases, we have nNow a purely capacitive energy transfer,

since a single capacitance has taken the role of the energy transfer-

ring network, as did the single inductance in the conventional buck-

boost converter employing purely inductive energy transfer.

It is now clear that we cannot simplify the energy transferring
network in this case, (as we did for buck converter cascaded by the
boost converter (Fig. 10.2)), since it is already in the simplest
possible form, consisting of a single storage element, capacitance C].
Therefore we cannot reduce the number of storage elements as we could
before and a1l four storage elements are necessary.

However, in order to make a fair comparison, we compare this
converter with the buck-boost converter of Fig. 10.4a to which an input
LC filter has been added. Then, both converters have the same number
of storage elements (four) and the same number of switches. From the
performance standpoint, both possess a continuous input current (because
an input filter was added to the converter in Figq. 104a) similar to

that shown in Fig. 1.5b. However, the boost-buck converter of Fig.

10.5 also has continuous output current, and thus significantly lower

switching ripple voltage for the same storage elements, than does the
converter of Fig. 10.4a with added input filter (see comparison in

Section 1.3),
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In conclusion, the boost-buck converter of Fig. 10.5 retains
the good input properties of the boost converter and the good output
property of the buck converter, which to a large extent offset its
higher complexity in having four storage elements. In addition, in
the next chapter'on mode11ing and experimental verification of this
converter, it will be shown that even its frequency response resembles
the desirable characteristic of the buck converter, and not the quite
undesirable frequency response of the boost power stage (which has a
right half-plane zero).

Let us now review the various forms the energy transferring
network, consisting of storage elements only (inductors and capacitors),
can take in order to realize the general buck-boost dc conversion func-

tion.



10.4 Energy transfer principles for general dc conversion

The general dc conversion function (both increase and decrease
of input dc voltage) can be achieved by switching the storage element
network (consisting of inductances and capacitances only) between the

input and output circuit as illustrated in Fig. 10.6.

dc voltage storage celements load
source ne twork
v
o+o o o o4o
Ly L2 oufppt[
input »— |Circuit R

Vg7 | circuit [« -I-Cn CZI

switching action

3
i
¢

Fig. 10.6 Enengy thans ferrning networks and mechanism gon genenal
(buck-boost) de conversion.

It was demonstrated in previous sections that for achieving
the general dc conversion function, the particular storage-element
content of the energy transferring network is not SO important as the
way the complete network is switched between input and output circuits:
being completely in the input circuit during one interval (DTS), and
then completely in the output circuit during the subsequent interval.
Hence, ideally at no time is it connecting the input and output

circuits. This is in clear distinction with the ordinary buck and
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boost power stages in which the energy transferring network connects
the input and output circuits for a portion of the switching period.
In Fig. 10.6 the energy transferring network employs both
inductive and capacitive energy storage, en example of which is the
buck-boost converter of Fig. 10.2. However, if C]=0, purely inductive
storage and energy transfer takes place as in the converters of Fig.
10.4. Finally, when L] = L2 = 0, purely capacitive energy transfer
is employed as in boost-buck converter of Fig. 10.5.
It seems now appropriate to compare the inductive energy
transfer principle which is used in all so far known converters (such
as the Weinberg, Venable, and a numter of others), with the capacitive

energy transfer principle first encountered in the boost-buck converter

of Fig. 10.5. While in the first kind the energy is accumulated in the
inductor in the form of a magnetic field, in the second the energy is
stored on the capacitor in the form of an electric field. We can now
compare easily their storage capabilities. Electrostatic energy
stored in capacitance C with voltage V is EC = CV2/2, while the electro-
magnetic energy stored in inductor L with current I is EL = LIZ/Z.

For example, for C = 1uf and V = 50V, Ec = 1.25mJ, while for L = 2.5mH
and I = 1A, EL is also EL = 1.25 mJ. However, the physical size and
weight of a 1uF, 50V capacitor is negligible compared to those of a
2.5mH, 1A inductor. Therefore, capacitive energy storage has much
better storage capability per unit size or weight than does inductive
energy storage. This becomes of prire importance fer switching
converters, since their weight and size reduction js sometimes the

primary goal (aerospace applications, for example).
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Let us now summarize the main results of this chapter. First,
it has provided a different and unconventional view of the three
"basic” converters (Fig. 10.1). Then, the useful generic properties
of the cascade connection of buck and boost power stages ied to a
better understanding of the energy transferring nmechanism through
various storage element networks. At the same time, the conventional
buck-boost converter was viewed as merely a special case of the par-
ticular cascade connection by observing an important fact: the number
of switches of the noninverting converter (Fig. 10.4a) can be reduced
Lo one, if output voltage inversion is allowed (Fig. 10.4b), without
even changing the dynamics (ac small-signal model).

While in this chapter the cascade connection was assumed to
operate as a two-state converter, this is by no means a requirement.
For example, it is illustrated in Appendix D (Figs. D.1 and D.2) that
th2 boost-buck converter (Fig. 10.5) can under appropriate driving
conditions (switches S] and S, out of synchronism) act as a three-state
or even a four-state converter. In addition, while we have considered
only the cascade combinations which would produce the general buck-
boost dc conversion function (from nongeneral buck and boost functions),
one might study the other combinations as well (buck-buck, boost-boost,
buck-conventional buck-boost and so on). However, for all the other
combinations to become useful, they have to be related to a rather
specialized problem. Just recently and concurrently with this work,
such cascade connections have been studied for the first time ([21]
and [22]) but in a quite different context, in connection with one
specialized problem-reduction of the surge current in switching regula-
tors for color television applications.
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Since the boost-buck converter of Fig. 10.5 was judged to havc
more promising performance than the buck-boost converter of Fig. 10.2,
we pursue in the next chapter the mode]lfng of that partigular
converter, following the modelling procedures of Part I, and verify

some of the general predictions made earlier in Part I.
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CHAPTER N
MODELLING AND EXPERIMENTAL VERIFICATION OF
CASCADED BOOST-BUCK CONVERTER

In this chapter, the general predictions made available by
the derivation of the canonical circuit model in Part I (Chapter 4)
are confirmed on the model of the boost-buck noninverting converter
(Fig. 10.5). It is demonstrated that the current generator j(s)a
in the canonical circuit model (Fig. 4.2) of this converter contains a
single right-half plane zero, while the voltage generator e(s)a has
two complex zeros (second order frequency dependent polynomial) in
complete agreement with the general predictions. In addition, the
effective low-pass filter network is now of fourth order, with the
effective filter elements being again dependent on the steady-state
duty ratio D.

This boost-buck noninverting coaverter is also a very good
example of the generalized switching converter (Section 1.5) with more
storage elements (four) and more switches (two) than the common
converters of Fig. 1.1. Its model derived in this chapter for contin-
uous conduction mode by use of both circuit and state-space averaging
technique, illustrates the general applicability of the modelling
techniques presented in Part I. Even its model in the discontinuous
conduction mode could be easily obtained, as was suggested at the end
of Chapter 6.

This chapter concludes with the experimental verifications
of the dc and ac small-signal models of this converter, which once

again confirm the hign accuracy of the presented modelling techniques.
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11.. Modelling of the boost-buck noninverting converter

Since we assume that the converter in Fig. 10.5 is operating
as a two-state converter (continuous conduction mode), the two switched

networks of Fig. 11.1 are obtained.

a) inferval dls - b} interval d'Ts:
V Low, Le oy

Il |2
Tc. C,F §R C,F SR

Fiag., 1101 Two switched cireudt models 04 the Soosi-buck convertenr in
Fig. iJ.5-

By use of the converter description in Fig. 11.1 and the hybrid
modelling or the circuit averaging technique of Part I, the basic

circuit averaged model of this converter results as shown in Fig. 11.2.
L2

v, Vo
i
°SNe?® R - ¢
::Cl == C2 §R b '_ cep T
H Y SO
d’:| f:d
Fig. 11.2 Basic cineuit averaged model of the boost-buck conventen

in Fig. 10.5,
The usual perturbation and linearization steps lead to the linear

circuit model (both dc and ac small-signal) of this converter in Fig.11.3.

avy Lo

VI+°I a(ls"lz) V2+62

D't | 1D

. 113 linean owwdt model (beth de and ac small-54gnat) 04 the
boacst-buck convanter in Fig. 10.5,
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From the circuit model in “:g. 11.3 one can €asily obtain the
complete uc relations as

v D v 1 D'
2 2
__v = ._l_D . .__v = D’ .._..12 = .__.D . ..__2 = R (]]-])

g 1 1 2

-<

By use of the equivalent circuit transfcrmations and with nelp
of dc relations (11.1), the circuit model of Fig. 11.3 can be trans-

formed into the canonical circuit form shown in Fig. 11.4..

ets)d Le Lo V; +v,
(D

° Iz +i2

Vg+yy t)

Fig. 11.4 Canonical circuit model of the boosl-buck converter in
Fig. 10.5 with none of the parasitic elements included.

The element values in Fig. 11.4 are defined as

D \2 C.l )
Le = (BT) L]; Ce = BZ (11. )
v L
e(s) = E% Q - s R_e + sZLeCeD') (11.3)
(s) o (1 ) (11.4)
j(s) = —— - sC _RD! .
D‘ZR e

Let us now discuss the significance of this result. First,

the effective filiter network consists of two low-pass LC filter sec-

tions, whose element values are now duty ratio dependent as seen in
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(11.2). Second, for the first time in the configuratiors considered

in this work, frequency dependence appears 1in tne current generator

jd (11.4), while the voltage generator (11.3) exhibits a second order

frequency dependence in contrast to the first-order dependence in some
of the previous converter examples. Both of these results, (11.3) and
(11.4),directly confirm modelling predictions made possible by the
canonical circuit model formulas (4.5).

As a matter of fact, the canonical circuit mode]l of Fig. 11.4
could have been obtained directiy by use of these formulas in a way
analogous to that for the buck-boost example of Chapter 4. The only
difference 1is that now the matrices A] and A2 are of the fou-th

order, and are obtained from the switched networks in Fig. 11.1 as

— —

0 0 o0 0 0 -~ 0 o
1
0 - o L 0 0 o
1 ]
A, = Ay = (11.5)
L 1 1 1
0 — 0 - 0 0 0o -
2 Lo 2
1 ] ] 1
R g
L - | —

with the corresponding vector definition QT = (i] i 12 vz). Therefore,

by use of (11.5) ir (3.14) to find the transfer functions required by
(4.5), the two generators are directly determined, while the trans-
former turns ratio u = D'/D is obtained from (4.6). Note, however,

that from (4.5) we will actually obtain the transfer function He(s)

of the effective filter network, rather than the network itself.

Synthesis procedure [10] for realization of a ladder type natwork
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structure from its transfer function description could then be used to
obtain the effective low-pass filter network as in Fig. 1i.4.

However, if frequency response is desired, He(s) and e(s) are
needed to find the open-loop transfer functions Gvg and Gvd' By
applying either this general procedure, or from the circuit model

in Fig. 11.4, we obtain

Hy(s) = 'P‘](?)' (11.6)

where

L +L cLL
= e 2 2 ee?2 3 4
P(s) = 1+ xSt (Lece+L2C2+LeC2)s * R 57+ LCLlCos (11.7)

It is now of some practical interest (as will be demonstrated
on the experimental test circuit) to find what conditions should be

satisfied that this 4th order polynomial can be analytically separated

in terms of two second-order polynomials.

Suppose now that P(s) is approximated by the product of two
second order polynomials as
P(')-(1+Le +|.c2)(1+|'—2 + L,C,82) (11.8)
. R S e'e’ R S 272 .
Comparison of (11.7) and (11.8) reveals that (11.7) is well
approximated by {11.8) if the following inequality conditions are
satisfied

ce >> c2

(11.9)
2
Ce >> LZ/R
If, in addition, the inductances Le and L2 are of the same order of

magnitude, the two pairs of complex poles of He(s) resulting from

(11.8) are well separated, with their respective corner frequencies and

Q factors given by
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1 . _R

oL w L
e’e cl e (11.10)
1 R
f , = — Q, =
c2 N ’ 2

Therefore, if the conditions (11.9) are met, the frequency response of
the open-loop transfer functions Gvg and Gvd ccn be easily sketched by
inspection with the help of (11.10), since the two pairs of complex
poles of (11.6) are well separated.

Note that the switching action now introduces into the duty
ratio to output transfer function Gvd a pair of complex zeros given
by (11.3), in addition to the poles of the effective filter network

He(s) given by (11.8), since Gvd(s) = e(s) Gvg(s). Moreover, the

complex zeros are in the right half-plane, owing to the negative linear
term in s in e(s) given by (11.3). This should be compared with the

single real right haif-plane zero for the conventional buck-boost

converter (see (4.9) for example).

As discussed in Part I, even only a single right half-plane
zero (nonminimum phase network) poses significant problems in stabi-
lizing the loop gain T, which directly depends on this open-1o0p
transfer function Gvd(s) as seen in (5.2). Then, the complex pair in
the right half-plane would even more enhance this problem.

Nevertheless, for practical applications the situatior is not
so unfavorable as it may look at first sight. Namely, in the model
of Fig. 11.4 the inductances have been considered ideal, and their
parasitic resistances R£1 and R22 which are always associated with them

have not been included. These parasitic resistances, however, being



the only dissipative elements besides load R, can significantly affect

converter properties. It has been demonstrated earlier (Fig. 3.3)
that they can have a profound effect upon the dc properties; here,
besides confirmation of the same effect for dc properties, their
positive (stabilizing) effect upon the ac properties will be demon -
strated.

The inclusion of the parasitic resistances Rl] and RQ‘2 is
easily incorporated in the previously outlined modelling procedure,

and leads to the canonical circuit model of Fig. 11.5.

Fig. 11.5 Canonical circwit model of the boost-buck convertern in

Fig. 10.5 with the senies parasitic nesistances Roq and
Ryq of the two inductons incfuded.

The element values in Fig. 11.5 are defined as

b \ b \2 4
v R .-R L R R
e (s) = 5 {1+ 12 e g|-&. RO w2 )|+ sh e b’ 1+ 22
D R R R R
(11.12)
j (s)=-—v—2-— ] -sCRD'(’I+Eg'—g-> (11.13)
1 D‘2R e R
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From the circuit model in Fig. 11.5 and by use of (11.11) the
dc voltage gain, which now includes the effect of parasitics, is
obtained as
D 1
0 i1 (D>2+ Rz
R \D7 R

while similarly as before, the dc current gain is not affected and

(11.14)

a
-
+

remains 12 D'
= 5 (11.15)
g
thus leading to the efficiency n defined by
N = 1 (11.16)
R .

RISk
R \D LY

The dc voltage and current gain dependence on duty ratio D
is shown in Fig. 11.7.

Let us now examine more closely what consequences the inclu-
sion of parasitics has upon the frequency response. Since the para-
sitic resistances Rz] and R12 are in reality small compared to load
R, that is

Ru << R, RQZ << R (11.17)

their effect upon the position of the two corner frequencies fc1

and fc2 is negligible and they are still very accurately predicted by
(11.10). However, their Q factors will be appreciably affected. The
same is true for the numerator polynomial e](s) which is under

(11.17) approximated by

v
. -2 _e _ ' 2
e](s) = DZ [] - s(: Receo\) +s LeCeD"\ (11.18)
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As seen from (11.18) two complex zeros of e](s) can now become

left half-plane zeros if the following condition is met:

Le
F- - R < 0 (11.19)

Therefore, owing to the corrective term ReCeD ‘originating from the

parasitic resistance Rll’ the frequency response may be qualitatively

changed to a minimum phase frequency response and stabilization

problems substantially reduced. This is, however, what should have

been expected, since the input series resistance Rzl effectively
adds more damping to the converter.
As before, the corner frequency remains virtually unaffected

and the same as in (11.3), that is

f =1 (11.20)

zl Zanzﬁzﬁr

Comparison of (11.20) and (11.10) now shows that complex zeros
at fz] almost completely cancel the influence of complex poles at fc]’
since they are very little separated (le = fc]//ﬁf); thus giving a
second-order response with effective complex poles at fc2 for the Gvd
transfer function (see computer generated graph in Fig. 11.9). Note
also that the first pole at fcl is dependent on duty ratio D, since
Lece = L]C]/D'Z. while the pole at fcz is not.

Therefore, once again it is confirmed that this converter
(Fig. 10.5) has acquired the desirable dynamic properties of the buck
converter in having second-order behavior with corner frequency

fc2 = 1/2n/[2C2 independent of duty ratio D, and in not having any
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right half-plane zeros as do the boost and buck-boost converters.
Nevertheless, the line to output trarnsfer function is still of the
fourth order (Fig. 11.8) giving an excellent audio-susceptibility
characteristic. Thus, this converter has a very desirable frequency
response, which is easy to stabilize cnce the feedback loop is closed
in switching regulator applications.

Let us now confirm these theoretical analytical predictions
with exact computer generated dc gain and frequency plots, and with

experimental data obtained from the test circuit.



11.2 Experimental verification of the modelling predictions

A boost-buck noninverting switching converter (Fig. 10.5)
was constructed as shown in Fig. 11.6 with the following switching
elements: transistors 2N2880 and diodes TRW 7342. Since series
parasitic resistances have been shown to have a profound effect upon
the converter characteristics, they are measured and included in the

model (and circuit description in Fig. 11.6 as well).

Fig. 11.6 Experimental test circuit for the boost-buck corverten of
Fig. 10.5.
Two separate "floating" switch drive circuits are used to
drive the two transistors in synchronism with the same duty ratio D
(and switching frequency fs as well), as indicated in Fig. 11.6 by

dotted lines.

For purpose of experimental verification the following values

were used:.
vg = &V, Rl1 = 1.04, L] = 3.5mH,
('..l = 100uF, fs = 4QkHz, va2 = 0.4Q, (11.21)
L2 = 6.5mH, C2 = 0,47uF R = 75Q
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Note that for these experimental values, the converter operates in the
continuous conduction mode (for the range of duty ratios D involved),
as can easily be checked using the results of Part II (Section 8.3).
Hence it will behave as a two-state converter, and the modelling

results of Part I and Section 11.1 apply.

DC gain measurements

First, the dc conditions are verified. By use of experimental
values (11.21) in (11.14) and (11.15), both dc voltage and current
gain are plotted as a function of duty ratio D via a computer program

DCGAIN, as shown in Fig. 11.7.

dc gain
K3
.//
ar ideal voltage gain
3 -
e e ¢ measurement
data
T /
N o real voltdage gain
I L 1 D
00 0.5 1.0

Fig. 11.7 Theoretical and expenimental dc gain characteristics of
the boost-buck converten of Fig. 11.6.

As seen in Fig. 11.7, the experimental data for the dc voltage
gain measured on the circuit of Fig. 11.6 are in good agreement with

the theoretical predictions.
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Frequency rcsponse measurements

For ac small-signal frequency measurements, the steady-state
operating point was cHosen to be at D = 0.5. MWith this and definitions
(11.1),inequality conditions (11.9) become 400uF >> 0.47uF and
400uF >> 1.154F respectively, and are well satisfied. Hence the two

pairs of complex poles are well-separated and can be calculated from

(11.10) as |

fc] = 1334z, fc2 = 2.8kHz (11.22)

The condition (11.19) for complex zeros + be in the left
half-plane is also satisfied since Le/R - ReCeD' = -154psec is negative,

ond its corner frequency f_, given by (11.20) becomes

2l

f,1 = 190Hz (11.23)

The computer program NEW was used to generate the exact
frequency response for line transfer function Gvg obtained from Fig.
11.5, and is plotted in Fig. 11.8 by use of experimental values in
(11.21). As seen in Fig. 11.8, the two pairs of complex poles are

well-separated (more than a decade apart) and the corner frequencies

obtained from the plot agree very well with their computed estimates

(11.22).

The same computer program was then used to plot the duty ratio

modulation transfer function Gvd = e](S)Gvg as shown in Fig. 11.9.
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As seen from the phase plot, the comp]ex'zeros are indeed in the

left half-plane (minimum phase response) as was predicted by the

satisfaction of inequality condition (11.19). In additicn, the corner
frequency fz]’ whose position is accurately predicted by (11.23), is
indeed very close to fc] and causes aimost complete cancellation of
their effects on both magnitude and phase characteristics. Note,
however, that when the parasitic resistance RR] is reduced from 1.0Q
to 0.2Q, the inequality condition (11.19) is violated and the complex

zeros become right half-plane zeros. This fact has also been confirmed

on the phase response of Gvd by use of the same computer program NEW,

but with R2 = 0.29.

1
Finally, the duty ratio modulation transfer function Gvd was
measured using the fumiliar describing function measurements [20],
and excellznt agreement with the theoretical frequency response is
observed (see Fig. 11.9).
In conclusion, this chapter has for the first time verified
the prediction made by the general modelling method of Part I, that the
current generator j(s)a in the canonical circuit model may also be
frequency dependent, while the voltage generator e(s)a could have
frequency dependence higher than the first order. None of the two
events has occurred in modelling any of the previously known
converters. Also it was demonstrated that the effective filter network
is of low-pass nature (as postulated in Section 1.5 on generalized
switching converters) and that it could be of higher order, four in
this particular example.

Even though it seems that this fourth-order model is much

more difficult to analyze than the corresponding second-order models
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of converters in th. 1.1, it has been shown how, under the ai’+opriate
choice of circuit element values, the analytical analysis is con-
siderably simplified and the favorable frequency responsz of the
converter obtained.

Both dc transfer properties and ac small-signal frequency
response for this particular design have been shown to be in very good
agreemerit with experimental measurements made on the corverter test
circuit, thus verifying the high accuracy of the converter circuit
model in Fig. 11.5 and the subsequent analysis results.

It is now approhriate to mention that the same procedure,
outlined in this chapter, can be used to obtain the canonical circuit
model of Fig. 11.4 or Fig. 11.5 for the buck converter cascaded by a
boost converter (Fig. 10.2). Then the results for these two Lypes of
converters (Fig. 10.2 and Fig. 10.5) can be tabulated and used to
supplement TABLE I (Chapter 4) with some more converter model examples.

The cascade connection of buck and boost converters becomes
then fruitful fo. two very good reasons:

1) for modelling and analysis, it offered a converter topology
more representative of the generalized switching converter (Fig. 1.11)
and consequently resulted in converter models more gerieral in nature .

2) in the study of converter topologies (how to interconnect
the conponents of the generalized switching converter in order to form
a useful dc conversion function), the generic properties of the
cascade connection lead naturally to the discovery of the new optimum
topology switching converter presented in Part IV, and to the comple-

tion of the general theory of buck-boost converters.
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PART IV

tlew OeTiMuM TopoLoGy

Svi: THING CONVERTER
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CHAPTER 12
DISCOVERY OF A NEW OPTIMUM

TOPOLOGY SWITCHING CONVERTER

This Part 1V represents a culmination of the investigations
made in the previous three parts. Through the exceptionai insights
gained by the modelling techniques of Part [ and II, and the
canonical circuit models in particular, the outstanding generic
properties of the cascade combination of power stages have been recog-
nized in Part III and they all lead in a genuine way in this Part IV
to the achievement of the ultimate goal -- the optimum topology switch-
ing dc-to-dc converter. Part IV is thus entirely devoted to the
discovery of the new switching converter and consists of several major
topics covered in three chapters.

First, the novel converter topology based upon capacitive
rather than inductive energy transfer is conceived by reduction of
the number of switches in the only other so-far known converter
based upon the capacitive energy transfer (Fig. 10.5). The practical
bipolar transistor-diode realization of the single switch leads to
experimental verification of the converter operation.

Then, the new converter is extensively compared with a number
of other known converters, and especially with the conventional buck-
boost converter to wnich an input filter has been added. Both
theoretical and experimental comparisons show the superior performance,
higher efficiency, smaller size, lighter weight, and reduced
switching ripple of the new capacitive energy transfer dc-to-dc

converter. However, this is no surprise, since the new converter is



recognized to have the optimum topology, which realizes the maximum
performance with minimum number of components.

Finally, several areas of investigation ar clearly designated.
On the practical side of the technological implementation, they include
various technological realizations of the switching action besides the
conventional bipolar transistor and diode, and closed-loop regulator
implementation using the recent state-of-the art integrated circuits
with feedback control circuitry on a single chip. On the theoretical
and modelling side, they include modelling of the new converter in the
discontinuous conduction mode and, for closed-loop regulator applica-
tions, multiloop feedback control with several additional loops (three)
to choose from besides the usual one involving the output voltage.
Suitable modifications of the new converter are being sought to include
the desirable isolation property and its corollary, the multi-output
possibility.

This chapter, however, in addition to introduction of the novel
converter topology, gives the exposition of the complete structure of
all converters performing the buck-boost function, in which the new
converter has filled in the missing element. An interesting method of
generating the buck, boost and the new converter analogous, and in fact
dual, to the one in Fig. 10.1 is also given. The chapter then concludes
with the experimenta] verification of the canonical circuit model of

the new converter.
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12.1 _Topological reduction of number of switches

We now recall that in a cascade connection where a buck pewer
stage is followed by a boost power stage (Fig. 10.2), reduction of the
numb~r of storage elements to two is possible and results in the non-
inverting converter of Fig. 10.4a. Moreover, it was demonstrated that
further reduction of the number of switches from two in the converter
of Fig. 10.4a to a single one in that of Fig. 10.4b (conventional
buck-boost converter) is possible if inversion of the output dc
voltage is allowed.

Then, it was concluded that the other cascade connection, a
boost converter followed by a buck converter (Fig. 10.5), combines the
good properties of both converters alone, unlike the first cascade
connection. However , it was also determined tha* reduction of the
number of s:orage elements is not possible in this otherwise favorable
cascade connection, since the single capacitance performs the energy

transferring role (Fig. 10.5). However, one fundamental question

remained unanswered for this favorable cascade connection, and it is:

18 4t possible to neduce the numben G4 switches
An the converten of Fig. 10.5 grnom two to one,
and at the same time achieve invernsion 0§ the

output de voltage?

The answer to this question may be surprising, since it is
affirmative as will now be demonstrated. The same question, when
slightly rephrased, leads easily to the answer: we ask what actually

should be done in the converter of Fig. 10.5 to cause inversion
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of output dc voltage. Both boost and buck power stages are by them-

selves inherently noninverting and therefore the only way the output

voltage could be inverted is that the switching action causes the
polarity of the energy transferring capacitance C] to be inverted
when presented to the output (buck) circuit, and then inverted back
to positive polarity when in the input (boost) circuit. Therefore,
if we concentrate only on the capacitance C] and the two switches S]
and S

2 in the converter of Fig. 10.5, we quickly realize that the

stated goal can easily be obtained as shown in Fig. 12.1.
a) b) C,
+ -
+ ‘k
X Sl SZ S
[ e

o ‘ —O0 o~ "

Fig. 12.1 Topological reduction of the number of switches:
a) two switches and noninversion v§ capacitance voltage
b) single switch and inversion of capacitance voltage

Hence, at the same time that the voltage polarity
inversion of the capacitance C] is obtained, the reduction of the two
switches S] and 52 in Fig. 12.1a to a single switch S in Fig. 12.1b has
been achieved.

In this capacitive energy transfer, the originally grounded
capacitanée C] and the two switches (Fig. 12.1a) have been transformed
into the "floating" capacitance o and single switch S (Fig. 12.1b),
which periodically grounds one and then the other end of the capaci-

tance. Note, however, that the opposite is true for the inductive
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energy transfer configuration in Fig. 10.4. There, the originaiiy
"floating" inductance with two switches (Fig. 10.4a) is transformed
into a grounded inductance with a single switch (Fig. 10.4b). This
comparison can be carried even further. For inductive enerqy transfer,

inversion of the inductor current (but not the pelarity of the inductor)

iS necessary to achieve output voltage inversion (Fig. 10.4), while for

capacitive energy transfer, inversion of the capacitor voltage is

necessary to realize the same goal. Furthermore the capacitance C]

and switch S in Fig. 12.1b can be considered to be in parallel, while
in Fig. 10.4b the inductance L and switch S are in series. A general
principle, the dual nature of the two storage elements, capacitors and
inductors, and even the duality of the accompanyinag switching network,
has been once again confirmed on the example of Fig. 10.4 and Figq.
12.1.

Let us now introduce the topological transformation of Fig. 12.1

into the converter of Fig. 10.5 to obtain finally, the new switching

converter shown in Fig. 12.2.

NEW CONVERTER TOPOLOGY

L| + Cl _ L2 V
—i—fU‘o" 1 {— l ’?)"O’\T —
1 2
S
Vg-:-L A B ::Cz §R
+

Fig. 12.2 Novel convenrten topology employing capacitive energy
hans fer and andependent of any particdlan hardware
nealization of the switch S.
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The novel converter topology of Fig. 12.2 has never previously
been reported, so a patent disclosure on this new converter has been
made [23], in which the outstandina features, presented in this

Part IV in detail, have been concisely summarized.

A closer look at the interconnection of the storage elements
in this new converter (Fig. 12.2) might for a moment cause 3a concern
that the low-pass nature of the storage element interconnections
postulated for the generalized switching converter in Section 1.5 is
being violated here. However, this is not so, even though the

capacitance C1 appears in a series branch (in series with inductances

L] and L2) because it effectively acts as a parallel branch either in
tne input circuit (for interval D'TS) or in the output circuit (for
interval DTS}. T js is further confirmed later, by the canonical circuit
model (Fig. 12.8) of this new converter, which clearly exhibits low-
pass nature, or by the experimental converter which does perform the

basic dc conversion function.

Another interesting property of the converter becomes
immediately apparent. Note that the output capacitance C2 is not
essential for proper converter operation (dc-to-dc conversion), but

is merely included further to reduce the switching ripple. Then, the

remaining part, which effectively realizes the dc conversion function

(consisting of L, Cys Ly and switch S) is completely symmetrical

from the input-output viewpoint. Hence,the input source Vg and



output load R (or load R and capacitance C, if present) could be
interchanged without effect upon the proper creration of the converter.
Very often the input dc source voltage has capacitance across it (to
reduce undesired fluctuations, or if it comes from rectified ac source),
such that complete symmetry including the output capacitance C2 is
obtained. While the same holds true for the other buck-boost con-
verters (Fig. 10.2 or Fig. 10.4), this is not so for the basic power
stages, buck and boost converters (Fig. 1.1). However, this symmetry

is not necessarily nreserved when the particular hardware realization
of the switching action is made by use of various semiconductor devices,
as will be shown later.

Another observation about the polarity of the output voltage
can be made: it is not restricted to be negative with respect to ground.
Namely if the input source voltage is of negative polarity (opposite
to that shown in Fig. 1 2.2), the output voltage becomes positive owing
to the inverting property of the power stage. Note, however, that this
is also possible because the ideal switch S is a representation of the
true bipolar switch -- it allows current to be drawn through it in
either direction. In a particular implementation this may require
appropriate choice of semiconductor devices, as will be i]]ustraled
in Chapter 14.

The representation of the new converter topology in Fig. 12.2
with the ideal switch S is essential, since it is independent of any
particular realization of switch S. However, for practical implementa-
tion, nonideal hardware realization of the switch is used. Let us now

investigate one such practical converter realization.
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12.2 Physical realization and basic operation of the new converter

We now pose the task of implementing the switch S in Fig.
12.2 by a bipolar transistor, diode combination in a way analogous
to that used in Fig. 1.1 for the three common power stages. The
transistor is once again used in the switching mode, and the diode is
used to supplement its switching action and in turn works in synchro-
nism with it: when the transistor is on, the diode is off, and vice
versa. It is, then, now not difficult to see that the switch S in

Fig. 12.2 can be substituted by the bipolar transistor, diode combina-

tion as shown in Fig. 12.3.

NEW SWITCHING DC-TO-DC CONVERTER
C, Lo \Y)

L,
1 2
Vi
Vg DT % | =C2 3R

T

switch drive

4 —
t
dc voltage gain ‘inpuf current i, - dec current gain
;W
v_b all L L D
n’ tput current | TN
Vg D su'P 2 I, D
b -h—w
2 t
\

Fig. 12.3 Hardware nealization 04 the new switching converter using
bipolan transiston and diode to neplace switch S in Fig.
12,2,
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Let us now describe the operation of the circuit in Fig.'12.3.
During the interval D‘TS e (‘.-D)TS when the transistor is off, the
diode is forward biased and capacitance C] is charging in the positive
direction as seen in Fig. 12.4b (switched network for interval D'TS
assuming negligible diode drop). The collector-to-emitter voltage
of the transistor is therefore positive, and it can be turned on for
the subsequent interval DTS. However, as soon- as it turns on,
capacitance C] becomes connected across the diode, thus reverse-
biasing and effectively disconnecting it from the circuit as in
Fig. 12.4a (switched network for interval DTS assuming negligible
saturation voltage of the transistor). During this interval DTS,
the capacitance C] discharges through the load R and inductance L2,
thus charging the output capacitance to a negative voltage as shown
in Fig. 12.4a. Finally, to close the complete cycle, when the
transistor again turns off, the diode conducts again, thus providing

the path for current 12 to charge the output capacitor CZ’ using

stored energy in the inductance L2 as the energy source. This is the
reason why this converter, owing to its continuous ocutput current
(Fig. 12.3), has inherently much smaller switching ripple than the

converters with pulsating output current (such as the boost or buck-

boost converters of Fig. 1.1).

a) interval dTs: b) interval d'Ts:
Ly Lo A Ly

Fig. 12.4 Two switched cireuit medefs of the new converten.
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VThe synchronous action of the transistor and diode can be
compared with a see-saw. Namely, when the transistor is turning on,

it is pulling down the capacitor end (potential) on its side, while

at the same time pulling up (in magnitude) the other capacitor end

(on the diode side). The opposite is true when the transistor is
turning off. Thus, owing to this automatic see-saw action, the danger
in having both transistor and diode on at the same time is eliminated.
Note also that the symmetry does not hold any more, and that inter-
change of the diode and transistor in Fig. 12.3 would not function in

the required see-saw manner.

I B I S T

Even though the new converter in Fig. 12.3 contains only one

D

transistor switch, Figs. 12.2 and 12.4 reveal how it effectively behaves
as a cascade combination of a boost stage followed by a buck power
stage, in which output voltage inversion is obtained at the same time.
The energy transferring capacitance C] plays a double role: it is

the output capacitance of the input boost-like circuit (consisting of
transistor, Vg, L], C] and diode) and also the negative voltage supply
to the second stage (consisting of diode, Cis Loy Cys and R) which ;
acts as a buck power stage. The same is true for the diode D, which

performs the function of the diode in both power stages.

It looks as though during the interval DTS, the second

nonexistent transistor switch of the buck power stage (see Fig. 11.6 for
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comparison) connected the voltage source (here capacitance C]) to
its Lz, C2 filter and load R, while at the same time the real tran-
sistor switch connected inductance L1l to ground as i1s usual in a bOost
converter. Then, during the next interval, it looks as though the
nonexistent transistor switch of buck power stage turned off, thus
disconnecting voltage source (capacitance C]) from itg Lz, Cz
filter and connecting L2 through the diode to ground as is always the
case in a buck power stage. It appears as though the two switches
are functioning, even though in reality only a single transistor and
diode are used. This is probably why, owing to this merging of
functions, it is not easy to recognize directly from Fig. 12.3 that
the new converter is effectively working as a cascade of boost and
buck converters. As a matter of fact, the canonical circuit model
in Section 12.6 will confirm that the new converter has, except for the
inversion, the same dc and dynamic (ac small-signal) properties as
the converter in Fig. 11.6 (assuming of course ideal transistors and
diodes).

Let us now, before the extensive theoretical and experimental
comparison with other converters in the next chapter, review first
some of the outstanding features and advantages of the new converter,

which are immediately apparent.

12.3 Advantages of the new optimum topology converter

As seen in Fig. 12.3, this converter employs a new circuit
topology which enables it to have both input and output current

continuous. Hence, none of the problems present in the conventional
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converters (buck, boost, buck-boost) due to discontinuity »f either
input or output current (or both) are present in the new converter.
The new converter actually combines the desirable input properties
of the boost power stage and the desirable cutput sroperties of the
buck power stage (without acquiring any of their undesirable proper-
ties), and yet performs the general conversion function (increase or
decrease of input voltage) of a conventional buck-boost power stage
with considerably higher efficiency, as will be proven in the next
chapter.

Even thougn fhere is no such thing as a dc-to-dc transformer

(not physically realizable) the new converter can be functionally

considered as a true dc-to-dc transformer, since both s input
and output voltages and currents are very close to true dc quanti-
ties, owing to the negligible switching ripple.

The new converter uses capacitive energy transfer, which was

shown earlier to have much better energy storage and transfer
capabilities than the conventional inductive energy transfer.

So far these were the same advantages brought by the favorable
cascade connection of a boost followed by a buck discussed in the
previous chapter (see Fig. 11.6 also). However, the new coiavertier of
Fig. 12.3 has a number of additional advantages over it. First, the
number of switching comporents has been cut in half (one transistor
and diode 1less). This immediately eliminates the need for the
additional "floating" drive circuitry for the buck part of the con-

verter in Fig. 11.6, and leaves only the transistor referred to ground

in Fig. 12.3 which does not neced ény special "floating" drive circuitry.

Moreover, the switching losses, which represent an important
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part of the overall losses, are cut in half in the new converter,
hence boosting the efficiency of the converter operation
significantly. Hence the switching losses in the new converter become
even equal to (or lower than, as demonstrated in the next chapter)
the losses in the single-switch converters of Fig. 1.1.

Once again, the new converter of Fig. 12.3 has-acquired a
good property of the boost converter in not requiring special drive
circuitry , since its transistor is with grounded emitter, and not the
unfavorable one of buck and conventional buck-boost converters in
requiring "floating" drive circuitry.

From the analysis in Chapter 1, it follows that the continuous
input and output currents are the most uesirable characteristics, and
lead alone to the outstanding converter performance. Thus, the follow-

ing conclusion can be made.

The new dc-to-de converten (Fig. 12.2 on 12.3) has an optimum
Lepology (maximum penfommance for the minimw: nwnber of components).
Namely, to have both input and output cwuent continuous, one needs

Bwo_4inductances, one in senies with the npul scunce, the othen in

dendes with the Load. To obtain a dec Level convension, an energy
Lans ferning network with stonage capabilities must be used. Hene 4t

48 a single capacitance. To enabl- At to serve as an energy trans-

ferrning device, at fLeast one switch is necessany. Herne Lt s the

s4ingle switch S in Fig. 12.2 on bipolan transiston; dicde combination

4n Fig. 12,3. Finally, an output capacitance, even thcugh not essential
§or proper operation of the converten, s put acrhoss the Lead furthenr

1o neduce output voltage nipple.,




It is rather surprising that just this new optimum topology
switching converter (Fig. 12.2 or Fig. 12.3) was the only one missirg
in the complete structure of the buck-boost converters. Let us
therefore now review the structure of all converters performing the
buck-boost function and generated by two different cascade connec-
tions of basic buck and boost power stages, and include the new

converter in it.

12.4 General theory of buck-boost converters

With the invention of the new converter, the previously in-
complete picture of buck-boost and boost-buck switching converters

can be completed as shown in Fig. 12.5.
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d} L, C, Lo
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Fig. 12,5 Complete topological structure of buck-bocst and boost-
buck converters: a) buck-boost noninverting b) buck-boosz
anvernting c) boosi-buck noninveriung di boost-buck <inver-
ting (new convertenr),

1
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1
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Fig. 12.5 shows all four possible different topolcgies to
realize the buck-boost function, either in noninverting or in the
inverting form. The new converter in Fig. 12.5d has filled in the gap
previously existing, and has completed the topological view of these
converters.

A good summary of the three possible energy transferring
mechanisms is also transparent in Fig. 12.5, which shows mixed energy
transfer employing both inductive and capacitive energy transfer
(Fig. 12.5a with C]fo), purely inductive (Fig. 12.5a with ;=0 and
Fig. 12.5b) or purely capacitive (Fig. 12.5¢ and d).

Comparison of the complexity of these converters shows those
with inductive energy transfer to be of second-order (two storage
elements), while those based on capacitive energy transfer are of the
fourth order (four storage elemants). Nevertheless, their higher

complexity is outweighed by their superior performance, since

converters in Fig. 12.5a and b require at least one section of input
L,C filter and still have a much worse output characteristic because
of pulsating output current (as discussed in Chapter 1 and in exten-
sive comparison ¢f next chapter).

Since the resulting dc and ac small-signal circuit models of
all converters in Fig. 12.5 are dinear models, a very good analogy
with linear vector fields can be made as shown in Fig. 12.6, which

also emphasizes the generic properties of the cascade connection of

buck and boost converters.



SECOND

STAGE
Tbuck-'
-
a boos(;l noninverting
S : region
-—-1&— —‘-L.- —————————
> : boost - buck
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$ ]
new |~/ buck | boost STAGE
converferg/|’
e
——————— +— —
inverting |
reg:on |
jconven
{ tional
i

Fig. 12.6 Linear vecton analogy of the generation of conventers in
Fig. 12.5 by cascading the basic buck and boost conventers.

As seen in Fig. 12.6, the basic buck and boost converters are
considered as abstract entities: the elementary vectors are defined
along coordinates representing the first and second stage of the
cascade connection. Then, the noninverting converters (buck-boost
and boost-buck) of Fig. 12.5a and Fig. 12.5c are obtained as their
linear combination, while the corresponding inverting converters
(Fig. 12.5b and Fig. 12.5d) are defined as the vectors of same
magnitude but opposite stgn (direction), thus in the third quadrant
on Fig. 12.6. In particular, a previously missing link establishing
new converters of Fig. 12.5d is shown in Fig. 12.6 by a dotted line
vector, which generates a whole new field of converters (for variety
of storage element values in its configuration).

Note, however, that this analogy even becomes an accurate

one, if the converter models, instead of the converters themselves,

are considered as abstract vectors in Fig. 12.5. Hamely, both

inverting converters (Fig. 12.5b and d) have the same dc and dynamic

(ac_small-signal) models as their noninverting counterparts, except
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for the inversion property. The same fact is clearly marked on

Fig. 12.6 in having the same magnitude but opposit- sign, for

their abstract representations. The fact that the new converter
(Fig. 12.5d) has the same dc and dynamic properties as its counter-
part (Fig. 12.5c) except for the inversion property is demonstrated
later in Section 12.6.

The region defining the general buck-boost function in Fig.
12.6 was shown shaded. The remaining unshaded region in the first
quadrant defines specialized functions: buck (obtained by buck-buck
cascade connection) and boosi {obtained by boost-boost cascade connec-
tion). Besides their special function, they also do not have their
corresponding inverting counterparts as does the buck-boost connection.

The position of the new converter topology within buck-boost
converters has now been firmly established, and we can turn to a very
interesting correlation between the new converter topology and that of

its building blocks, buck and boost converters.

12.5 Correlation among buck, boost and new converter topologies

We now recall that the three common converters (buck, boost
and buck-boost) of Fig. 1.1 may be considered as generated by cyclic
rotation of the series connection of the energy transferring induc-
tance L and a single-pole double-throw switch S, between input
(source) and output (load) circuit, as was explained in Section 10.1
and shown in Fig. 10.1.

Let us now find a similar interpretation for the generation of

the new converter topology, along with that for the two basic
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converters, the buck and boost. But in distinction with the previous

method, and in order to enhance common features of the latter three
converters, we now look at: the buck converter with input filter,
the boost converter with output filter, and the new converter as

shown in Fig. 12.7.

a) buck converter with input filter:

L2 V
rUYr\i]j"] noninverting

R v .

Cz-[ G

b) boost converter with output filter:

c) new converter:

V
inverting
- v _D

Fig. 12.7 Generation of the three converters: buck with 4nput
§ilten, bocst with output §ilten, and new convertern by
cyclic notation of the parallel connection 04
capacitance C and switch S.
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It now becomes apparent that all three converters in Fig. 12.7

may be generated by cyclic rotation (counterclockwise) of the parallel

connection of capacitance C] and single-pole double-throw switch S
between the input circuit (now consisting of a voltage source in series
with inductance L]) and the output circuit (now consisting of induc-
tance L2 in series with load R). Once again the striking dual nature
of the two generating procedures becomes transparent: the cyclic
rotation of the series combination of inductance and switch is
substituted here by the parallel combination of the capacitance C]

and switch S.

When comparing the new converter with the buck or boost
converter, it seems appropriate to make the comparison with their
versions in Fig. ]2.7a and 12.7b. This way, all three converters in
Fig. 12.7 have tne same number of storage elements (four) and similar
performance characteristics, both input and output currents continuous.
However, the new converter is still superior in that it is capable
of both increasing and decreasing the input dc voltage, while the
other two convertews are not. In a practical realization with a
transistor and diode, there could be some additional advantages. For
example, the buck converter, unlike the new converter, needs special
drive circuitry, and the boost converter may have less favorable

frequency response than the new converter.

After this in-depth theoretical explanation of the new
converter, the development and the experimental confirmation

of its Tinearized circuit model predictions seem now appropriate.
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12.6 Modelling and experimental verification of the new converter

By application of the same procedure outlined in Chapter 11,
the canonical circuit model of the new converter (Fig. 12.3) can be
obtained as in Fig. 12.8. Again, the series parasitic resistances
of the two inductors have been included, because of their significant

effect on converter performance, and the transistor and dicde are

assumed ideal.

¢, 3R

<

|

Fig. 12.8 Canonical cireudit model of the new converter in Fig. 10.2

The element values in Fig. 12.8 are defined as

p % 0 \2 C,
Re --D—" Rl]’ Le = -I-)T L], Ce = -[-)'2' (]2.])
v R .-R L R R
e,(s) = - —g— 1+ L2_e -s[—e R 1422 )+l c D'(1 + ﬁ)
D R R ¢©¢€ R ee R

(12.2)

') R
j](s) = - E'%'_R- 1 - sCeRD'<1 + —:2—> (12.3)

Comparison of this model and the canonical circuit model in Fig. 11.5
for the boost-buck noninverting converter, shows that they are
identical except for the polarity of the D':D transformer: in the

new converter it is inverting, while in Fig. 11.5 it is noninverting.

Because of this inverting property, the output dc voltage V2 is

negative in the new converter and equations (12.2) and (12.3) are
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identical to (11.12) and (11.13) for the other converter.

An important conclusion can now be drawn: except for the
inversion, the new converter has the same dc and dynamic properties as
the boost-buck noninverting converter of Fig. 10.5. Hence, the
complete analysis of Chapter 11 is equally valid for the new converter.

For the purpose of experimental verification, the new converter
of Fig. 12.3 was built with the following switching elements:
transistor General Electric D44H10 and diode TRW PD9050.

For easier comparison, the same components and operating
conditions as for experimental verification of the boost-buck non-
inverting converter (Section 11.2) were used, that is as in (11.21).

It is not surprising that dc voltage gain measurement followed
very closely that in Fig. 11.7, thus confirming the equality of the
dc conditions. Another verification, of the dc voltage V]
of the energy transferring capacitance C], confirmed that it does
change according to V]/Vg = 1/D', or the same as the gain of the boost
converter. This confirms that capacitance C] is indeed to be
considered as the output capacitance of the boost converter, the
fact which may not be so obvious from the converter circuit in Fig.
12.3. |

For the same operating condition as before in Chapter 11
(D = 0.5, f = 40kHz), the duty ratio modulation to output voltage
frequency response measurements agreed very well with those of Fig.
11.9, thus confirming the equality of their dynainic models. Hence
all the benefits of the favorable freguency response discussed in

Chapter 11 apply equally well to this new converter.




We now summarize the major results accomplished in this
chapter. First, it has been demonstrated how the topological reduc-
tion of the number of switches and the recognition of the duality
nature of the storage element networks with switches, led to the
discovery of the new converter topology (Fig. 12.2) based upon
capacitive rather than inductive energy transfer. The new converter
topology in Fig. 12.2 is independent of any particular hardware
realization of the single switch S.

Then, it was shown how a single bipolar transistor and diode
can be used in practical implementation of the switching action
(Fig. 12.3), and an in-depth explanation of the physical operation
of that circuit is given. A number of advantages of the new converter
over the other known converters, emerged as a consequence of its
optimum topology (maximum performance for minimum number of components).

It has also been demonstrated that the new converter topology
was the only one previously missing in the complete structure of all
buck-boost and boost-buck converters (Fig. 12.5). In connection with
that, an interesting abstract analogy with linear vectors was given
(Fig. 12.6).

Another view of the generation of the new converter, dual to
that in Fig. 10.1, arrived at the new converter topology by cyclic
rotation of the parallel combination of the capacitance and switch S
between the input and the outpuf circuit, with buck and boost con-
verters obtained alongside.

Finally, the canonical circuit model of the new converter was

obtained (Fig. 12.8) which, except for inversion, is identical with
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that for the boost-buck noninverting converter (Fig. 11.5). The

subsequent experimental measurements confirmed these modelling
predictions.

Several of the outstanding features of the new converter are
further exposed when it is compared in the next chapter with the only
other converter having the general dc conversion function and the

simplest possible structure, the conventional buck-boost converter.
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CHAPTER 13
COMPARISON OF THE NEW CONVERTER AND
CONVENTIONAL BUCK-BOOST CONVERTER i

In this chapter an extensive theoretical as well as experi-
mental comparison is made between the new converter and the conven-
tional buck-boost converter to which an input filter has been added.

This, and the same component element values as well as operating

conditions for the two converters, enable a convenient common ground

for comparison. The two converters are then compared with respect

to the most important performance parameters, namely: switching
ripple, efficiency (with separate analysis of trancisztor switching

and dc losses a5 well as parasitic resistance losses), electromagnetic
jnterference (EMI) problems, complexity of the transistor drive
circuitry, effect of the effective series resistance (ESR) of the
output capacitor, and converter size and weight reductions resulting

from potential increase of the switching frequency fs‘ At all these

|
|
'§
;
if

comparison points, the new converter is shown to be superior.
After the detailed theoretical and experimental comparisons,
the important advantages of the new corverter are concisely

sunmarized at the end of the chapter.
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13.1 Experimental test circuits of the two converters

Two experimental tost circuits have been built, one employing
the new converter topology and the other the conventional buck-boost

converter with an input filter as shown in Fig. 13.1.

3) new converter

<
I
5

A

b] conventional buck-boost with input filter

2V,
%2

Fig. 13.1 Two converters used for expernimertal and thecreticak
comparison employ the same components but difgerent
Lopologies.
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The addition of the input L],C} filter to the conventional
buck-boost converter is invariably required to smooth out the
input current switching ripple. This then provides a convenient
comparison ground for the two converters in Fig. 13.1. Now both
converters have continuous input current in addition to performing
the same general dc cénversion function with output dc voitage

inversion. Moreover, both now consist of the same components. They,

however, differ in the way these components are interconnected. There-

fore the effect of two different converter topologies upon the perfor-

mance characteristics can now be extracted.

For comparison purposes. the same component element values are

used for both converters, and are

Rz] = 1.0Q, L] = 3.5mH, C] = 100uF, R = 75Q
(13.1)
R22 = 0.4q, L2 = 6.5mH, C2 = 0.47uF
The same operating conditions are also used:
Vg = 5V, D=0.6, fs = 40kHz (13.2)

With the two converters now completely defined, we turn to detailed

experimental and theoretical comparison.

13.2 Switching ripple comparison

Since the output stage of the new converter in Fig. 13.1a
represents essentially a buck power stage, the output current ripple
Ai2 can be computed as for the buck converter in Chapter 1 from

equation (1.8), that is Aiy = VZD'TS/L. or for values given in (13.1)

239




and (13.2), as i, = 14.5mA. The output voltage ripple vy is
similarly obtained as in (1.9), that is

V.D' (
AV, = (13.3)
2 gL ;?

Numerically, sz = 95.5mV in a close agreement with the actual output
voltage ripple shown in Fig. 13.2a displaying the actual oscilloscope
waveforms of the new converter. Again, the new converter has

retained the good ripple properties of the buck converter: output
voltage ripple is independent of the load current, and decreases
sharply with increase in switching frequency (as ]/fsz). This is a
consequence of the continuous output current 12, also shown in Fig.

13.2a.

However, the buck-boost converter still has discontinuous

output current 1d (diode current) as shown in Fig. 13.2b. Tie imme-

diate consequence is that the output voltage ripple V. is load-current

dependent and obtained as before in (1.12) as

v, 1

2
OV, = D g (13.4)
2 RC2 fs

For the same element values (13.1) and (13.2) as in the new converter,
the output voltage ripple from (13.4) becomes Av, = 3V (here v2(0+) =
7.6V frem Fig. 13.2b is used instead of V2 = 6.3V since ripple is
large and (13.4) is strictly applicable for small ripple). This is
quite close to the actual measured ripple of Av, = 2.8V from the
ocutput voltage waveform in Fig. 13.2b.

Therefore, with use of the same element values in both

240




a) new converter
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b; conventional buck-boost with input filter
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ig~ 50 mAldiv

Fig. 13.2 Comparison of the output voltage and cwuvient switching
npple of the two converntens of Fig. 13.1.

T
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converters, the output voltage ripple was reduted from a totally
unacceptable 44% in the conventional buck-boost converter (Fig. 13.2b)
to less than 1.5% in the new counverter (13.2a). Hence a 30:1 ripple
reduction has been achieved just by use of the new converter topology.
Moreover, this ratiu becomes even proportionally much bigger with
increased switching frequency fs, duty ratio D and increased loads
(R < 75Q).

Since the voltage rippie in Fig. 13.2 is completely unaccep-
table, one would have to resort to some means of reducing it. As
seen in (13.4) the ripple would be reduced by substantial increase of
capaci tance CZ’ but at the same time size and weight would be pro-
portionally increased. The other possibility, the increase of
switching frequency fs,would, because of increased switching losses,
degrade further the efficiency of the conventional buck-boost
converter in Fig. 13.1b. Moreover, by increase of switching frequency.
the output voltage ripple Av, in the new converter would decrease at
a much higher rate, owing to the ]/fs2 dependence in (13.3) as compared
to the l/fS dependence in (13.4).

As a conclusion, the new converter (Fig. 13.12) outperforms
in every respect the conventional buck-boost converter (Fig. :3.1p)

as far as the output switching ripple is concerned.



13.3 Comparison of the transigtor and diode dc losses and

transistcr switching losses for the idealized case (Rn]jgazig)

A substantial part of the total converter losses is due to the
dc losses in the transistor and diode, which come from their non-
idea) nature. Namely, when the transistor is on, the collector-
emitter voltage V.. is not zero (as it is for an ideal switch S),
but some saturation voltage VCEsat on the order of 0.3V-1V. Like-
wise, the diode has some forward voltage drop VF of the same order.
Since VCEsat and VF increase very little with increase of dc current,
the dc losses are approximately proportional to the dc currents.
Hence we compare the dc transistor and diode losses of the two con-
verters by comparing their respective dc currents (when they are on,
since their dc losses are negligible in the off state).

Let us for the moment zssume that the inductors in the two
converters of Fig. 13.1 are ideal (R£]=R22=0) because we will return
to the real case (RllfRzzfo) in Section 13.5.

At first sight, it seems that the transistor and diode dc
losses are higher in the new converter (Fig. 13.1a), since the sum
of the input and output currents (i]+12) passes through its tran-
sistor when it is on, while in the conventional buck-boost converter
(Fig. 13.1b) only the input current passes through its transistor.
Likewise, when the transistor is off, both input and output currents
(11+i2) pass through the diode in the new converter, while only
output current passes through the diode in the conventional buck-
boost converter. However, this is only an illusion as clearly

illustrated on the actual oscilloscope waveforms of the four currents
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i], iz, it’ and id shown in Fig. 13.3 for the new converter, and in
Fig. 13.4 for the conventional buck-boost converter. As a matter

of fact the actual comparison of Figs. 13.3 and 13.4 shows that the
transistor and diode currents are higher for the conventional buck-
boost converter than for the new converter. This is, however, not a
mere coincidence, but a consequence of the parasitic resistances

Rzl and RLZ (which, of course, cannot be excluded from the actual
measurements as they can from the analysis) as will be explained in
Section 13.5. Let us, now, go back to the ideal case R21=R12=0,

to clarify this result.

Consider first the conventional buck-boost converter of Fig.
13.1b. Its transistor current during the interval when the transistor i
is on must be proportionally higher than the input current 1] (and
its dc value I]) in order to have the same dc average value I1 over
the whole period T, (see Fig. 13.4a). Also, through the action of the
inductance LZ’ transistor dc current It (when it is on) is equal to
the diode dc current Id (when the diode is on) since they are both

equal to the dc current of inductance LZ. Hence

It = Id = I]/D (13.5) -

PO

where I] is the dc input current. Note that for the conventional buck-

boost converter, 12 js defined as the dc load current (dotted line in

Fig. 13.4b) and not as the dc current of inductance L2’ in order to
conform with the dc input and output current notation for the new

converter.
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cunrent.
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Fig. 13.4 Comparison of input and outputl currents with thanssston
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For the new converter in Fig. 13.1a, transistor and diode dc
currents It and Id are equal to the sum of input and output dc
currents, that is

,=Ig=h+1, (13.6)

However, upon substitution of the dc current relations IZ/I] = D'/D
for this converter, ih (13.6) the same result as (13.5) is obtained.
Hence, the dc transistor and diode currents I, and 1 are the same
for both converters in this ideal case (R2]=R22=0), and consequently
their respective dc_losses are also equal.

Since the on currents It of the switching transistors are the
same for the two converters, so are the corresponding saturation
voltages vCEsat‘ From Fig. 13.1 the collector-emitter voltages of
the transistors when they are off (VCEoff) are also the same and equal
to VCEoff = Vg/D'. Hence, during switching the transistor operating
point traverses the region between the same points (VCEsat’It) and
(VCEoff’O)' Therefore the transistor switching losses are also the

same for two converters of Fig. 13.1 in the ideal case R£]=R£2=O.

13.4 Comparison r  the resistive dc losses only

We now make the opposite assumption from the one in the
previous section, that is, the transistor and diode are ideal with
no dc losses, and instead include the effect of the parasitic
resistancés only by considering Rll.Rlsz.

From the canonical circuit models for the two converters (or
by solving for the dc conditions using state-space averaging), the

efficiency and dc conversion relations are obtained as
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new converter:

R \V D I] D

n, = > v |=/rn T = §T (13.7)
1 D \2 v D" 1 I D

R +(‘ﬁa Ro1*Re2 9 2
conventional buck-boost with input filter:

R V2 D I] D

n2 ~ MY R, ° |V o "2 T, " (13.8)

R +(_T> RL, + —< 9
D 1 D.2

Comparison of (13.7) and (13.8) now reveals that both the dc
voltage gain and efficiency are higher in the new converter than in
the conventional buck-boost throughout the duty ratio D range because
of the difference in terms dependent on RzZ’ the parasitic resistance
of inductance L,.

In order to enhance this difference, the inductances in the
experimental models of Fig. 13 1 have been interchanged such that
now RQ] = 0.4Q and R]L2 = 1.0Q, but R = 750 as before. With these
element values and by use of (13.7) and (13.8), the dc gain
characteristics for the two converters are as shown in Fig. 13.5,
while efficiency is plotted in Fig. 13.6.

Let us now with the help of these graphs illustrate the
comparison of the efficiencies between the two converters. Suppose that
it is required that the nominal input voltage Vg = 5V is boosted 3
times. This would result in the establishmeni of the steady-state
(dc) duty ratio D = 0.82, or operation at point A in Fig. 13.5, if
the conventional buck-boost converter of Fig. 13.1b was used. However,
the same gain of 3 can be achieved with the new converter by operation

at point B, with substantially smaller duty ratio D = 0.76 as seen

248

B R s DT i aymvvpriey



dc gain

6 —— real dc voltage gain
of new converter

5 --— real dc voltage gain
of buck-boost with input filter o
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Fig. 13.5 Steady-state {dc) characteristics for the fwo converters
0§ Fig. 13.1.

n(D)-efficiencyl}

S0 -
80H

70 —— new converter
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- — buck-boost with
input filter

501

\
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Fig. 13.6 Ef§giciency characteristics fon the o converters which
include effect of parasitic resistances only (RM#O, wao).
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in Fig. 13.5. From Fig. 13.6 we find that operation at point A
(D = 0.82) would mean only 65.5% efficiency (point E) while
operating at point B would give an excellent 93.5% efficiency

(point F). Hence, use of the same storage element values (inductors)

in the novel circuit topology of the new converter (Fig. 13.1a)

would boost the efficiency by 28% over the conventional solution

(Fig. 13.1b). But as surprising as it may seem, this is only a

yhks i eia s o hk

conservative estimate, as the following section verifies. :
:

13.5 Real transistor and diode dc losses and transistor switching

losses fRE], R!Z £ 0)

We now consider what effect inclusion of the parasitic

resistances Rz] and R‘L2 has upon the real transistor and diode
losses. For the same numerical example as in the previous section,
the output dc voltage |V,| = 15V (dc gain of 3) and the output dc

current I, = }VZI/R = 200mA are the same for both converters

(operating points A and B in Fig. 13.5). However, the input dc
currents corresponding to these operating poirts are substantially

different, owing to the significant difference in their efficiencies.

R T T PP U e

For the conventional buck-boost converter we find from Fig.
13.5 for D = 0.82 the dc current gain of I]/I2 = 4.55 or I] = 910mA.

By use of the expression (13.5) for the dc transistor and diode
I1,= 1110mA.

current, that is, It = Id = 11/D we finally obtain It d

0.76 (point C

For the new converter, however, operating at D

on the dc current gain characteristic in Fig. 13.5) gives only

11/12 = 3.15 or I] = 630mA. Then, by use of (13.6) to find the

transistor and diode dc losses for this converter, we get
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I, =1+ I] + 12 = 830mA.

Consequently, when the parasitic resistances Rl] and an are
taken into account, the transistor and diode dc currents are not
the same but, for the particular example, are about 34% larger in the
conventional topology compared to the new converter topology. This
now explains very we11 why the actual measured transistor‘and diode
dc currents for the conventional buck-boost converter (Fig. 13.4)
are higher than those for the new converter (Fig. 13.3). Hence, in
reality (R y, Ry, # 0) the new converter has lower transistor and
diode dc losses than has the conventional solution.

In addition to the higher dc losses, the switching losses
now become higher for the conventional buck-boost converter, since
its transistor is operating at a higher (VCEsat’It) point and tra-
verses, during switching, a region of higher dissipation.

In conclusion, both transistor and diode dc losses and
transistor switching losses are substantially higher in the conven-
tional solution, in addition to already higher.resistive Josses.
Hence, for the same element values and output requirements (constant
dc voltage) as in the conventional topoiogy, the new converter

topology offers unmatched increase in efficiency.

13.6 Comparison of ESR losses of the output capacitance

So far we have considered only the inductors as the nonideal
elements, with their corresponding modelling representation which
includes their series parasitic resistances. The real capacitors
are, likewise, better modelled by inclusion of their effectives series

resistance (ESR), which signifies the ac losses present in the real
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capacitor. Let us, therefore, now find out what consequences its
inclusion in the model would have upon the two converters in
Fig. 13.1.

The effect of ESR is particularly pronounced at the output
capacitor CZ’ so for purpose of numerical comparison we assume that
it has ESR = 1Q. As shown before (Fig. 13.3b) output current ripple
(ac) of the new converter is small, at Aiz = 14.5mA, hence the
capacitance ac losses Pc are PC = (Aiz)2/12 ESR = 17.5uW = ]7.5x10'6H.
For the conventional buck-boost, however, the output current is
pulsating with A, = 210mA (Figc. 13.4b), hence the ac losses are
P = 3.68mW, which amounts to a 210:1 increase in power loss in the

c
conventional solution. This becomes even the dominant power loss

in the conventional buck-boost at higher load currents. For example

when Aiz = 10A (much higher l0ad current) losses in the conventional
converter become PC = §.3W, while in the new converter, owing to its

ac ripple independence of the load current, they stay the same as
before at Pc = 17.5uW. Not only would this still further degrade

the efficiency of the conventional solution at higher load currents,
but on- would have difficulty in finding a capacitor which can dis-
sipate so much power. Moreover, in order to obtain acceptable output
voltage ripple, larger capacitances have to be used in the conventional
solution and hence ESR problems would be further enhanced. None of

these prcblems is present in the new converter of Fig. 13.1a.

252

P TP T T S L Y




13.7 Size and weight reduction in the new converter

It has been demonstrated both theoretically and experimentally
that the value of the output capacitance C2 can be very small in
the new converter of Fig. 13.1la (C2 = 0.47uF) and still achieve
reasonably small switching ripple. A small value of output capaci-
tance thus eliminates the need for bulky, electrolytic capacitors of
high capacitance value. Moreover, it is very significant that the
value of the energy transferring capacitance C] does not enter the
ripple calculations in (13.3). Hence it is no surprise that the
output voltage ripple remains essentially unaffected (as observed
on the scope waveform) even when the capacitance C] is reduced 1000
times from C, = 100uF to Cy = 0.1uF, while all other conditions remain
unchanged as in (13.1) and (13.2). This once again confirms the
very significant energy transferring capabilities per unit size and
weight of the capacitive storage.

However, the voltage across the capacitance Cy is no longer

constant (dc) as for Cy =100uF, but has a triangular waveform (as
observed on the scope) with substantial magnitude. But, according
to the duality principle, this is to be compared with the triangular

current waveform of the energy transferring inductance in the conven-

tional buck-boost converter.

In conclusion, for all practical purposes, the physical size
and weight of the two capacitors C] and C2 in this new converter
(Fig. 13.1a) can be completely neglected. In addition, the two

inductors, which independently control input and output current 3
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ripple, can be significantly reduced in size (and weight) by further
increase of the switching frequency.

The important advantages of the new converter topology,
covered extensivelyin Chapters 12 and 13,are now concisely summarized

in the next section.

13.8 Summary of the advantages of the new switching converter

A novel switching dc-to-dc converter (Fig. 12.3) is developed
which offers higher efficiency, lower output voltage ripple, reduced
EMI, smaller size, and yet at the same time achieves the general
conversion function: it is capable of both increasing or decreasing
the input dc voltage depending on the duty ratio of the switchiryg

transistor. This converter einploys a new_tcpology (Fig. 12.3) which

enables it to have both input and output current continuous. The

converter uses capacitive energy transfer rather than the inductive

energy transfer employed in the other converters. In addition, when

it is incorporated into a switching regulator, stabilization problems

are reduced owing to the favorable frequency response of the new
converter (Figs. 11.8 and 11.9).

Some of the important advantages of the new converter over the
other existing converters are:

1) Provides true general (increase or decrease) dc level

conversion of both dc voltage and current

2) Offers much higher efficiency.

3) Both output voltage and current ripple are much smaller

4) No dissipation problems in the ESR of the output

capacitance




5) Substantial weight and size reduction due to smaller output
filter and smaliz- energy transferring device (capacitance C])
6) Electromagnetic interference (EMI) problems are substantially
reduced, thanks to the small ac input current ripple, without
need for additional input filters
7) Excellent dynamic response enables simple compensativii
in a switching regulator implementation.
8) Can be used as a constant-current as well as a constant-
voltage source
9) Much simpler transistor drive circuitry, since the switch-
ing transistor is referenced to ground (grounded emitter)
10) Various technological implementations cf the switching

action are possible (see Chapter 14).

In conclusion, the new switching dc-to-dc converter i3 superior
to any of the currently known dc-to-dc converters in its category,

outperforming them in every respect.
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CHAPTER 14
IMPLEMENTATION OF THE NEW SWITCHING CONVERTER
AND FUTURE AREAS OF INVESTIGATIONS

The investigations made so far have opened up several new
avenues for future research. The primary intention of this chapter is
to outline briefly some of the leads which may be followed. For that
reason, this chapter will be relatively short in scope, but neverthe-
less quite important in setting up the major thrust of future efforts.

These efforts may be classified in two main categories:
theoretical and practical. From the practical viewpoint, variaus
possibilities exist for the actual hardware implementation of the
new converter topology (Fig. 12.2) besides the one already presented
using a bipolar transistu. and diode for the realization oi the

switch. The recent advent of switching power devices (tra:sistors)

in the metal-oxide-semiconductor (MOS) technology gives an alterna-
tive hardware realization, which looks very promising. Further study
is necessary, however, to investigate the various trade-offs between
the two technoiogical implementations. The recent availability of
the complete, signal processing (feedback control) part of the
switching regulator (see Fig.1.10 or Fig.14.2), in a single integrated
circuit makes the closed-loop regulator implementation of the new
converter extremely convenient and further reduces the total size
and weight of the regulator.

From the theoretical viewpoint, several areas are now

immediately open for .«tailed analysis. The basic foundations are

already firmly laid out for modelling of the new converter in the



discontinuous conduction mode and only the detailed work remains.
Then, analysis and design of switching regulators incorporating the
new converter and also several feedback loops becomes feasible for
both conduction modes.

Finally, the search for new, innovative converter topologies
can be continued. Possible modifications of the new converter or
some other converter topologies are being sought which could include
some desirable properties, such as input-output isolation and its

corollary, the multi-output feature.

14.1 Implementation of the new converter with VMOS power transistors

Metal-oxide-semiconductor technology was considered until
recently only applicable to small-signal, low-power devices, but it
is now making inroads into the high-power field through the family of
VMOS (vertical MOS) power field-effect transistors. While bipolar
transistors are current-controlled minority-carrier devices, the VMOS
power field-effect transistors are voltage-controlled majority-
carrier devices, which has many advantages. They have much higher
input impedance, fast switching speed because of absence of minority
carrier storage, and no secondary breakdown because of the negative
temperature coefficient. Their switching speed (4 nsec typical) is
one or two orders of magnitude faster than in comparable bipolar
(200 nsec), hence the switching losses are significantly reduced.

Therefore, the circuit hardware realization of the new converter

topology (Fig. 12.2) using VMOS power transistor as shown in Fig. 14.7a
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may have some advantages over the bipolar transistor implementation

in Fig. 12.3.
b
6) Ln Cu Lz ) Ln |C| L2
—fmm—n—nm—f TN T
Vi L,
Vg-;L_— O—IEVMOS gi C, ?R %& g}ooﬁ% CZ:E §R
T VMOS

Fig. 14.1 TImpgementation of the new convertern in Fig. 10.2 by
di §ferent technological nealization of the switch S using
VMOSFET powen trhansistons.

As seen in Fig. 14.1b there is also the possibility of
replacing the diode by another VMOS power transistor. The two
transistors are then voltage driven oppositely, when one transistor
is on, the other is off and vice versa. The converters in Fig. 14.]
can be implemented by use of the state-of-the-art VMOS power

transistor VMP1 (25 watts) from Siliconix, Inc.

14.2 Closed-loop switching regulator implementing the new converter

In Fig. 14.2 it is shown how this new converter can be incor-
porated in the complete closed-loop switching regulator. For a further
reduction in size, the integrated circuit incorporating a pulse-width-
modulator (PWM), feedback circuitry, power transistor and diode on

a single integrated circuit (Texas Instruments TL 497C) is used.
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The output dc voltage V2 is then determined by
Ry
Vo = {1 ¢+ ﬁ; VREF (14.1)
where VREF 1s the internal reference voltage of VREF = 1.2V. By

use of the modelling technique of Part I and Part II, the converter
canonical circuit model can be obtained and the proper feedback
compensation designed with the help of feedtack analysis in Chapters

5 and 9. Two or more feedback loops may be considered also.
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14.3 Discontinuous conduction mode in the new converter

The ncw converter (Fig. 12.3) may be considered as consisting
of a boost power stage followed by a buck power stage, as was
expleined in Chapter 12. Then, we can define the dimensionless

parame ter K2 for the output (buck) power stage as

) = T-— fS (]42)

which will determine with the help of Table VIII {Chapter 8)
vhether or not the output buck power stage is in discontinuous conduc-"
tion mode. If it is, Table VI is instructive in defining the model
of the output (buck) power stage.
It has been shown (Chapters 5 and 9) that the open-loop low-

frequency input impedance Rin of a buck converter is

R
L= e (14.2)
in MZ

where M is the dc gain of buck power stage. Since Rin is now the

dc load for the input boost converter, we can define another dimen-

sionless parameter K] for the boost power stage as

=1
K, fo (14.3)

2L
Rin
which will now determine when the input boost power stage is
operating in discontinuous conduction mode and will define its model,
by use of Table VIII and TableVI respectively.

This now illustrates how the analysis of complex problems can

be broken down into analysis of simpler ones, and at the same time
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demonstrates the power of the complete model representation, which

also includes the converter input properties.

14.4 Search toward new, innovative converter topologies

There are some desirable converter properties, which have not
yet been discussed. Namely, all the converters considered so far,
including the new converter, have common ground for both input
(source voltage) and output (load) circuit. However, there are some

converters having the so-called isolation property, which allows the

il

unregulated source voltage ground to be isolated from the load ground.
For example, a simple modification of the conventional buck-boost u
converter in Fig. 1.1b can be made to include this isolation property |

between the input and output, and is shown in Fig. 14.3.

—kt Vv i
¥ of Jo |
\/g—_J: 4 =C §R
T
' n

Fig. 14.3 Conventional buck-boost modigied to include the {solation
property.

Comparison of Fig. 14.3 with Fig. 1.1b shows that the modifica-
tion consists only in replacing the original energy transferring
inductance by a transformer with 1:n turns ratio. Moreover this turns
ratio now proportionally affects the dc gain and appears as another

controlling factor besides duty ratio D. Hence, by adding another
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secondary circuit, two converter outputs at different dc level could
be obtained. Then, this multi-output feature comes almost as a by-
product of the isolation property of the converter. Both of these
properties are very desirable for some applications.

The natural question now arises: is it possible to build this
desirable isolation property into the new converter of Fig. 12.3 by
some appropriate modification of (or addition to) its topology? If

it is not possible, could some other converter topology based also

on the capacitive energy transfer (for basic dc conversion realization)

be devised which includes the isolation property? Perhaps, the less
ambitious goal of achieving only the multi-output feature without
the isolation property in the new converter is feasible.

The search for new innovative switching converter

topologies continues...

e e
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CONCLUSION
A general unified approach to modelling switching converters
has been developed which is directly applicable to any dc-to-dc |

converter operating in either of the two conduction modes. Despite | |

its remarkable simplicity, the method is shown to be accurate enough
for a1l practical purposes, since its primary assumption of small

switching ripple is also the main requirement for acceptable converter

performance. Both state-space averaged models and their corresponding

circuit realizations provide the circuit designer with a powerful tool

for both analysis (as demonstrated in Parts I and IT) and synthesis
(as demonstrated in Parts III and IV) of existing as well as new

converter topologies.

The importance of the completeness of the circuit model realiza-

tion, versus its representation through transfer functions only,
cannot be overemphasized cince it may be compared, for example, with
complete linear circuit model of a transistor (which besides transfer
properties, properly representsboth input and output properties as
well),versus its gain-frequency response only.

The benefits of the state-space averaging technique can now be
applied in several areas:

(1) development of compara:ive criteria and design tools based

upon the canonical models;

(2) extension and development towards modelling and analysis

of dc-to-ac and ac-to-dc inverters;

(3) search for innovations in power processing techniques.

el irs s aa e
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By use of canonical circuit models to represent the input and
the transfer properties of a general class of dc-to-dc cenverters in
both continuous and discontinuous conduction modes, the way is now
clear to apply these models in development of design cptimization
tools and comparative criteria for a wide range of switching
regulators.

In particular, it is now possible to make an informed sdection
of the optimal conduction mode for a given application. It is some-
times suggested that the discontinuous conductinn mode has a number
of advantages with respect to frequency response; however, the new
canonical models indicate that this is only part of the story in that

the benefits might be outweighed by other disadvantages.

Again as a consequence of the canonical models, it is now
possible to make a comparative classification of all known dc-to-dc 5
converters, regardless of their apparent complexity. Sin.. some ?
configurations have undesirable factors in their duty ratio frequency
response (right half-plane zeros), it is important to know whether
the resulting much more severe regulator stability conditions are
outweighed by other performance advantages.

Finally, in direct application of the canonical models, system

optimization of switching requlators can be investigated, in that
the relative merits of fixed and variable frequency operation,
and one- or two-loop feedback, can be also evaluated.
In the area of dc-to-ac and ac-to-dc inverters, much work remains
to be done, but there is a strong expectation that the present state-

space averaging techniques can be extended to include their analysis
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and design.

In Parts i1l and IV it has been demonstrated how these modelling
techniques can effectively be used in the search for new, innovative
converter topologies.

The insights that have emerged from the general state-space
mode11ing approach suggest (as illustrated in Chapter 14, for example)
that there are still some features yet to be desired in switching
converters not realized by the new optimum topology converter. Hence,
there is a whole field of new switching dc-to-dc converters yet to
be discovered. This encourages a renewed search for innovative
circuit designs (or modification of existing ones) in a field which
is yet young, and promises to yield a significant number of inventions
in the stream of its full development. This progress will naturally
be fully supported by new technologies coming at an ever-increasing
pace. However, even though the efficiency and performance of
currently existing converters will increase through better, faster
transistors, more ideal capacitors (with low ESR) and so on, it will
be primarily the responsibility of the circuit designer and inventor
to put these components to best use in a topology which is optimal
with respect to the given performance requirements. Search for new
converters, and how best to use present and future technologies, will
be of prime importance 1in achieving the ultimate goal of near-ideal

general switching dc-to-dc converters.
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APPENDICES

In the sequence of Appendices A, B and C several of the
questions related to substitution of the two switched models (3.1)
by the state-space averaged description (3.3) for the continuous
conduction operation in which two structural changes occur within each
period are thoroughly discussed. Then, in Appendix D the state-
space averaging step is naturally extended to include the multi-
structural change (three or more different topological configurations)
within each period. This also serves as a basis for development in
Part 11 of modelling procedures for switching converters operating
in the discontinuous conduction mode.

It has already been shown in Chapter 1 that the requirement
on negligible switching ripple imposes inequality restrictions (1.11)
on the choice of parameter values, namely fC << fS and w, << fs' In
Apoendix A it is demonstrated that under the same inequality conditions
(1.11) the fundamental matrix eATS can be approximated to a very high
degree of accuracy by its first-order linear term I + ATS. This 1is
confirmed both analytically and gquantitatively (numerical1y), for
a typical set of parameter values and operating conditicns for a
boost converter, though it is readily applicable to any other converter
configuration.

These linear approximations of the fundamental matrices
AyTs ArTs . . . .
e and e lead naturally in Appendix B to the state-space averaging
step (3.2) or (3.3). The evolution of the state-variables during
each period TS, originally governed by two linear system descriptions

(3.1) is with the help of these linear approximations substituted by




a single linear description (3.2) which very accurately models the
overall dynamics (with switching ripple being neglected and
"smoothed out").

Appendix C provides an excellent theoretical tonfirmation
of the validity of the state-space averaging step and the high
accu,acy of the derived results. Namely, through a rather elaborate
procedure and quite cumbersome expressions, the steady-state (dc)
conditions can be found exactly by proper matching of the boundary
conditions as shown in Appendix C. In general, besides depending
on steady-state duty ratio D, load R and parasitic resistances, the
exact dc conditions also depend on the storage element values and
switching frequency fS in a rather complicated fashion. However,
under the linear approximation of the exponential matrices, these
additional aependencies disappear, the dc conditions become dependent
on duty ratio D, load R and parasitic resistances only, and reduce
analytically to the same expressions as those predicted by the state-
space averaged model. In addition, the exact dc conditions serve as a
good quantitative measure of the high accuracy of the results obtained
via state-space averaging and offer a quantitative insight into its
basic underlying requirement, inequalities ,1.11).

In Appendix D the state-space averaging step is generalized
to multistructural converter configurations. In particular, the
state-space averaged model for converters with three structural
changes within ecach period is derived analogously as in Appendix B.
As an example, the cascade connection of boost and buck converters

(both operating in continuous conduction mode) is shown to generate,
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under special driving conditions of the two switches, either three
or four different topological configurations. Finally, the state-
space averaging step is demonstrated for the generalized switching
converter with n topological structural changes within each switching

period.




APPENDIX A

On_the linear approximation of the fundamental matrix

From the well-known body of linear system theory the exponen-
AT
tial (fundamental) matrix e > can be expressed in terms of an infinite
convergent series as:

AT
e S LA 4 A?ng/zz + A3TS3/3! v (A.1)

which in form very much resembles its scalar counterpart (expansion of
eo‘t in an infinite series). The fundamental question we now ask is:
when can this exponential matrix be satisfactorily approximated by

its first-order term (linear in TS)? Note that it is not enough

merely to specify Ts being very small, but rather small in comparison

with some other quantities dependent on matrix A (compare'with the
simple scalar case). In addition, the question of how good the linear
approximation will be for a given Ts and A ought to be answered
quantitatively.

We now demonstrate the answer to these questions on a boost
circuit example (see Fig. 3.1 and Fig. 3.2), in which for simplicity
of presentation RQ = 0 and Rc = 0 is assumed. The two matrices A]

and A2 of (3.17) then become:

0 0 o -1
A, = A, = -
0 - L
RC | N
AT,

The exponential matrix e can be found in a closed form

using an alternative definition to (A.1), that is
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AT -1 -1
e = [(st-A) 1] (A.3) |

where operator cy(f] denotes inverse Laplace transformation, while

s is -omplex frequency. By applying (A.3) to (A.2) we obtain closed
A,DT, AZD'TS

form expressions for the exponential matrices e and e

as shown in (A.4).

ALDT, ‘ 0 ) .
e = 0 e-ZwQDTS |

™ wa Sinluoo.Ts T
[] L R ] ..
costD Ts + 9 51nwbD Ts '——Z;}T__'
AD'T -0 D'T
€ See * C inw D'T “’
s nw vl __a_ 3 L}
0 'S c05m°L TS 3 sin oD Ts
w C 0
L o .
(A.8)
where
.1 A 2
Wy = 2RC ° wo *VTC = “a (R.5)
Suppose now that the switching frequency fS = 1/Ts is %

sufficiently greater than the natural frequencies Wy, and Wo of the
converter, such that

woD'T5<< 1 and muD'Tg<< 1 (A.6) E

Then, by introduction of the linear approximations i

-2w DT

a S ' o [} ]
e m]-ZwaDTs, COSwOD Tgwl, s1nwoD TsmwoD TS (A.7)

matrices in (A.4) reduce to:
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[ +A DTS =

1

[ + A2

D'T, =
°Ts

L C

D'T
3

- rc

(A.8)

Let us now calculate the exact exponential matrices (A.4)

and the approximate ones (A.8) for the typical numerical values used

in a practical boost converter

L = 6mH, C = 45uF, R

and with constant switching frequency fs

results are obtained:

r
AlaTs 1.0 0

e =
LO .982

r

1.0 0

I+A]DTS =
! 0 0.982

while natural frequencies fa and fo computed from (

30q,

D = 0.25,

10kHz.

A.D'T 0.99
e 27 s _
i 1.616
1.0
I+AZD TS =
J.667Q

v_= 37.5V
g 37.5

(A.9)

The following

-1.21x10°

0.936

-1.25x10°

0.944

A.5) are

2 |

(A.10)

]

2

-

fOL = 370/27Hz and fo = 306Hz. Note also that fc = 1/2n/LC ~ 306Hz

is very closely approximated by fo'

From (A.10) it becomes obvious that the linear approximations

for the fundamental matrices

ALDT
e | S 1+ AT

e 2

A,D'L

~ [+ A2

D'Ty

(A.11)
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will introduce insignificant error (less than 2%) since the following

inequality conditions are well satisfied:

f

?E =0 037 << 1 and ?C— = 0.0306 << 1 (A.12)
S S

€

Hence, even for the natural frequencies Wy and fc slightly
more than a decade apart from the switching frequency fs, satisfactory
results are obtained using linear approximations for the exponential

matrices.
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APPENDIX B

The fundamental approximation in the

state-space averaging approach

Consider now that a switching dc-to-dc converter operating
in the continuous conduction mode is described by the following

state-space equations for the two switched models:

Xq A]x] + b]vg for interval Tsd, (0 St s t]) o)
B.1

X = Azx2 + bzvg for interval Tsd', (t] It

<
- Ts)

Here the state-variable vector x is denoted by xy for interval Td
(0<¢s t]), and by x, for interval Tsd'(t] St s Ts) to distinguish
clearly the solutions in the two regions and to make their connection
by matching boundary conditions at t = t] more visible,

The solutions of (B.1) can easily be found in terms of
exponential matrices and convolution integrals as

t
At

x(t) = e ! x (0) + f e
0

t
A, (t-t,) A (t-1)
1 2 < <
e 2 xz(t]) + f e bzvng for (t] -t -1

t

A](t")

< <
blvng for (0 - t - t])
(B.2)

x5(t)

With the assumption that vg is almost constant (small signal assump-

tion on vg = Vg + vg where vg << Vg) so that it can be taken outside

the integrals, and by introduction of the substitutions

t
A.t A.T
B.(t) = fe Ve =ale o) for i = 1,2 (8.3)
0

into (B.2), the solutions become:
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A]t

e x](O) + vgB](t)b] for t e [O,t]]

e xz(tI) + vng(t-t])b2 for t ¢ [tl’Ts]

X](t)

xz(t)

This is pictorially represented in Fig. B.1, which shows how the
first equation in (B.4) carries initial state-vector x](O) across
interval Tsd into the x](t]) state-vector and how the sezond equation

carries it further into x2(TS) during the subsequent interval Tsd'.

xXit)

)

x,(0)

—e

Fig. B.1 Pictondal nepresentation of the evolution of the state
vector x(t) grom the oniginal switched network description

(heavy Line) and its state-space averaged model description
(dotted Line).

By definition, state variables cannot change instantaneously
(1ike inductor currents and capacitor voltages), hence the vector of

state-variables is continuous across the switching instant t], or
which has also been displayed in Fig.‘B.l. With use of (B.5) in

(B.4), the state-vector xz(Ts) is determined as:

Azd'TS A]dTS Azd'TS
XZ(TS) = e e x](O) + vg[e B](dTS)b] + Bz(d'TS)bz]

(B.6)

e
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Introduction of linear approximations (A.11) and retention
of only the first-order terms transforms (B.6) into:

xp(T) v (1 + dAT o+ d'A,T )%, (0) + v [db T  + d'bpT ] (8.7)

However, the same equation could be obtained for any switching
period, say n-th by simole substitutions x](o) = x(nTs).

xZ(Ts) = x[(n+1)Ts] which, after suitable rearrangement of (8.7),
produce:

x[(n+l)Ts] -x(nTs)
T

s

- (M]+d'A2)x(nTs) + vg(db]+d'b2) (8.8)

With the definition of the derivative

x[(n+1)Ts] - x(nTs)

x(nTs) = T, (8.9)
we define a continuous system corresponding to (8.8):
. A= dA +d'A
x = Ax + bv9 where (8.10)
b= db] + d'b2

Wwe have, finally, succeeded in substituting the original two
state-space models (B.1) by a single continuous state-space averaged
model (B.10) using only linear approximations of the exponential

matrices (A.11) which are shown in Appendix A to be very accurate.

The meaning of the state-space averaged model (B.10) should

be understood in the following way. Even though its instantaneous

state-vector x(t) (shown by dotted lines in Fig. B.1) may differ
from the evolu tion of the state vector in the original system (8.1)

(shown in heavy lines in Fig. B.1) inside the switching period Tg
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it very accurately carries the starting state x(nT) into final state
x[(n+1)T]. In essence it effectively “smooths out" the switching
ripple superimposed on its dynamic motion, as clearly displayed in
an exaggerated fashion in Fig. B.1. The actual switching ripple,
however, is much smaller than that shown in Fig. B.1 since it is
dictated by tight performance requirements in practical converters

(switching ripple usually on the order of 0.01%2). This negligibie

switching ripple is in fact what justifies the state-space averaged
model (B.10) (shown in dotted lines in Fig. B.1) which assumes zero

switching ripple.

It is interesting to point out that in going from (B.6) to

(B.7) some second order terms (proportional to TSZ) could have been
retained. However, the verv marginal added accuracy would not justify
the tremendous complexity introduced into the model. All tle

desirable properties of the model (B.10) (equivalent circuit inter-

TP

pretations, general state-space averaged model, canonical circuit
model) as well as simplicity of the pro-edure would have been lost --
sacrificed merely for the sake of a tiny correction term which is

negligible anyway (its effect being much smaller than even component

tolerances effect).

Another property of model (B.10) quickly arises. If we had
considered first the "off" interval and then the "on" interval in %
matching boundary conditions, the following equation corresponding to

(B.6) would have been obtained:

A

dT_ A d'TS A.dT ;
x(TS) = @ ‘

T7se 20 Sx(0) + vyle | %B,(d" T )by + Bi(aT by (BIT)
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However, use of linear approximations (A.11) and retention of only
the first-order terms acain results in (B.7). Hence, the state-space
averaggd model (B.10) is indistinguishable with respect to which
interval was considered to be first, whether interval (de) was
followed by interval (d'TS), or vice versa. However, if the second-
order terms are retainedsa distinction betweer models derived from

(B.6) and (B.11) would exist.

From comparison of the solution of (B.10)

Ts
ATS A(Ts-r)
x(TS) = e “x(0) + f e bvng
)
with (8.6) or (B.11), the problem of modelling can be partly stated
in the following way: can a matrix A be found such that

AT A,d'T_ A.dT
e S . e 2 Se 17s (B.]Z)

The general result is provided by the Baker-Campbell-Hausdorff series

[5] for the matrix A:

T, + dd' (AAy-A AT 2y .. (B.13)

ATS=(dA+d'A 1A, ¢

A

1 27
For switching converter applications, the second-order term is
negligible, resulting in

A= dA; + d'A, (B.14)

1
as obtained before using linear approximations (A.11). The result

(B.14) ever becomes exact when the matrices involved are commutative,

that is when A]A2 = AZAI' This is the case, for example, for the buck

converter in which A] = A2 = A.
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It remains, finally, to incorporate into model (8.10) the
cases when the output quantity does not coincide with any of the
state variables (as in, for example, the boost converter of Fig. 2.1).
Since, during the interval Tsd the output quantity becomes Yy = C]Tx
while during the interval Tsd' it is Yy = csz. the output quantity

Yy over tke whole period TS is taken to be their average, or

y = dy] + d'y2 = (dc]T+d'c2T)x (B.15)

and with (B.10) completes the state-space averaging step (3.2) or
(3.3).
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APPENDIX C

Derivation of the exact dc conditions and their

simplification_under linear approximation of the

——

exponential matrices

vle now derive the exact steady-state (dc) conditions from
the general state-space description (B.1) of the two switched circuit
models. Since for steady-state Vg © Vg (dc voltage only) and d =D,

the exact solutions analogous to (B.4) are obtained as

At
x () = e ! x)(0) + VBy(thby for t ¢ [0,t;]
(c.1)
Az(t-t])
xz(t) = e xz(t]) + Vng(t-tl)b2 for t € [tl’Ts]
where Bi(t) = I eATdT
0

solutions (C.1) contain two yet undetermined constants,

x](O) and xz(t]). We therefore impose two boundary conditions:

(a) the vector of state variables is continuous across
the switching instant t], since the inductor currents and

capacitor voltages cannot change instantaneously.

Hence
x](t]) = xz(t]) (c.2)

(b) from the steady state requirement, all the state variables

should returr after period TS to their initial values. Hence:

X](O) = XZ(TS) (C.3)
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The boundary conditions (C.2) and (C.3) are illustrated in
Fig. C.1, where v(0) = V(Ts)’ i(0) = i(TS) and i(t) and v(t) are

continuous across the switching instant t].

capacitor induc tor
’ voltage (V) currenﬂA)A
5
50
N/\Tpac'*or Volfgge /
viTs)
a0k v{0) —~ 4
P fs=1kHz
DTs
30F 13
/induc'for current
20} 2
10N i10) 0.251s . /— !
/ I(Ts)
1 1 1 1 | L i 1 _1
0 1, 05Ts time T

Fig. C.1 Typical state-variable time dependence over a single period
T, 4n the steady-state, for the boost cireudt numerdical
example with 56 = lkHz,

Insertion of (C.2) and (C.3) into (C.1) results in solution
for the initial condition x](O) as well as the other constant xz(t]):

D A2Ts DA]TS -1 D'AT

x(0) = x,(T) = V(e 2% %) (e % %3,(0T )by + By(D'T )by)

ALDT (C.4)

X5(t) = x(t;) = e Sx](O) + VgB](DTs)b]

It was already demonstrated in Appendix A that closed-form

exp »ssions for the fundamental matrices can be found, as in (A.3).
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Moreover, the same is true for Bi(t) since

, t AiT -1 Ait
B.(t) = [ e dt = Ai (e ' -1), i=1,2 (C.5)

provided inverse matrices A;] (i=1,2) exist. Hence a closed form
solution for initial conditions is obtained. Then, with use of (C.1)
and (C.4), the instantaneous state-vectors x](t) and xz(t) can be
plotted via a computer program.

In particular, for the boost circuit example of Fig. 3.1,a
computer program RIPPLE (attached to the Appendices) was made. In
addition to the parameter values shown in (A.9), R2 = 0.46Q and Rc =
0.282 were adopted and for switching frequency fs = 1kHz the inductor
current and capacitance voltage waveforms of Fig. C.1 were
generated using this program. The waveforms reveal a substantial

oitput voltage ripple (almost 15%) since the inequality conditions

(1.11) or (A.6) are not very well met.

We now proceed with derivation of the dc conditions. As
seen from Fig. C.1, the average values of inductor current and
capacitor voltage could be found by integration over the period

TS, and in general the steady-state vector X is found from:

t] Ts
1
X =3 L J X](T)dT + ( xz(r)dr] (C.6)
Po Y

Even though the integration (C.6) using (C.1) and (C.4) seems
complicated, it can actually be carried out with repeated use of

result (C.5) to obtain

283




I 0T or
1 T e T AYen (D A [ _
X(TS) Ts i~.B](UTS);(]\O)BZLD Ts)xz(t])*\/g i B](r)‘ b]+ J B.L,(t)dtb2
G 0

where (C.7)

t At

.{ 8 { )d o A-Z i 1 '] N ]

;B v A (e * -1) tAi for i 1,2 (c.8)

Equation (C.7) with tre help of (C.4), (C.5) and (C.2) now completely
determines the steady-state vector X(T) through the ruitipiication
and inversion of the known matrices A] and /., vectors b] and b,
and the exponential matrices eAlDTS and e"2P'Ts,

It is obvious from the complexity of (C.7) that X(Ts)
in general depends nct only on D and various resistive elements, but
also on all parameter values including storage elements L and € and
on switching frequency fo as well. Since the exact dc conditions
represented by (C.7) appear to be quite complicated tunctions of
switching frequency fs =1/TS, one has to resort to the computer to
obtain insight into that functional dependence. A computer program
PBOOST (attached to these Appendices) was used to plot the output dc
voliage obtained from (C.7) and the initial indu-tor current i(0)
from (C.4) as functions of switching frequency fs = I/TS for the
boost circuit example of Fig. 3.1. For the same purancter values used

before, that is:

It

L =6mH, C =45F, R =300, D =10.25, Vg 37.5v,

(C.9)
R, = 0.46Q, RC = 0.28Q

X
the computerized plot of Fig. (.2 results.
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valtage (V) current(A)
$ $
50} A B -
L output dc voltage
|
40 | -8
|
| .
30 r# continuous conduction -16
i region
l
- . 4
201 @}— discontinuous conduction
| region
10 ! 2
j{///””,——""———— initial inductor current
0 . i ] [ | 1 L1 1 0
IkHz lokHz switching frequency

Fig. C.Z Typical dependence of the steady-state (dec) conditions
loutput voltage) on the switching frequency f, in the
continuous conduction region (tu the night of the dotted
Line).

As seen from Fig. C.2, the point where the initial inductor
current i(0) becomes zero determines the boundary between continuous
and discontinuous conduction regions. Since the exact dc conditions
(C.7) are implicitly applicable to the continuous conduction region
only, this helps to contain the functional dependence (C.7) within
region of its applicability. The actual dependence of dc conditions
on switching freaquency fS in discontinuous conduction region shows

grossly different behavior, as was shown in Part II.

From Fig. C.2 it is evident that the output dc voltage changes

appreciably only when switching frequency fs becomes clese to the
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1/2n/IC = 306Hz or the effective filter

filter corner frequency fc
230Hz, while for higher switching

corner frequency fo = [)'fC

frequencies (to the right of point A in Fig. C.2) it becomes almost

constant and for all practical purposes independent of fs' Also at

point A in Fig. C.2 (fs = JkHz) substantial ripples in the instan-

taneous output voltage and inductor current are observed, as was
1i conditions (C.9) are

= 10kHz

demonstrated by Fig. C.1. However, if a

retained but the switching frequency is increased to fs
(point B on Fig. c.2), the plot

program RIPPLE.

inductor

capacitor
vo'tage (V) current(A)
50 | 5
capacitor voltage 4
a0 DTs ' i
fs - |0kHZ
-13

301 . inductor current

ol

’/l J l 1 1 1 1 0

1, 05Ts time Ts

Fig. C.3 Same as Fig. C.1 but with §. = 10kHzZ. Strory Linearly
and small nipple exhibited 3y the curves are consequenced

of eATsw 1 + AT, since /6, << 1.
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of Fig. C.3 is obtained via a computer
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From Fig. C.3 it is clear that the switching ripple is
substantially reduced and has become negligible since the inequality
requirements (A.12) or (1.11) are well satisfied. Moreover the state
variables show very strong linearity in the two intervals TgD and
TgD'on Fig. C.3. This is by no means an accident, but a consequence
of the fact that linear approximations of the fundamental matrices
(A.11) are well satisfied at point B in Fig. C.2, as was verified in
Appendix A. Hence the introduction of these linear approximations
into (C.1) would bring a linear time-dependence of state variables
and show as straight lines in Fig. 0:3. Furthermore, the same linear
approximations (A.11) when introduced into exact dc conditions (C.7),
and upon retention of first order terms only, greatly simplify the

steady state (dc) vector X(Ts) to:

A DA] + D'A2

bV where (c.10)
9 b = Db, + D'b,

Cx = AT

It may seem surprising that the steady state vector X came out to

be independent of period TS or switching frequency fs. However, it
is exactly this equation (€C.10) which models very accurately the
most interesting regioh for practical purposes-- the flat portion of
the dc output voltage shown in Fig. C.2 to the right of point A,

where switching ripple becomes negligible and whicn is also practically

independent-of switching frequency f,. It is interesting that (C.10)

becomes an exact result when the limit TS + 0 is used on (C.7), that

is
X = lim X(TS) (C.11)
TS+0
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However, one does not have to go to infinite switching frequency,
since the separation of the switching frequency from the natural
frequencies fa and fc by more than a decade would lead to esseritially
constant steady state vector X given by (c.10), as illustrated in

Fig. C.2.

Now a very interesting comparison with state space averaged
model (B.10) developed in previous Appendix B can be made. Since in
the steady state x[(n+1)Ts] = x(nTs), from (B.9) we obtain ;(nTS) =0
and (B.10) gives exactly the same result for steady state vector X
as (C.10) (with, of course, substitutions vg = Vg and d = D for dc
regime) and also coincides with result (3.7) in Chapter 3.

After deriving the quite cumbersome exact dc conditions (c.7),
one can truly appreciate the trer :ndous simplification achieved by
using the simple result (C.10), which is shown to be justified for
all cases of practical interest (negligible switching ripple). More-
over one can now fully recognize how powerful is the state-space
averaged model (B.10) vr (3.2). It not only serves to determine very
accurately the dc conditions (steady state ve.tor X) in a rather
simple way, but also is the basis for development of a dynamic model
of the switching converter as demonstrated in Chapters 3 and 4.

In addition, both dc and ac small signal models are consistent with

each other since they are obtained with thr ¢ :ime degree of accuracy

owing to the same crucial approximation (A.°1).
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switching natural << switching —— fundanental
ripple small frequencies frequency matrices

" Tinear state-space dc and ac small signal state-
approximation averaging step space averaged modei

The results of the sequence of Appendices A, B and C can now ]
be very briefly and concisely summarized. The basic pe~formance
requirement for switcning dc-to-dc converters of small (regligible)

switching ripple is shown to be the underlying motive for the follow-

ing sequence of cause and effect:

In conclusion, the recognition of this sequence of implica-

tions enabled extremely simple, powerful and very accurate scheme for
mode11ling and analysis of switching converters to be devised. This

scheme is now generalized in Appendix D to switching converterswith

N TR T U ' 1o

multistructural topological change.
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APPENDIX D

State-space_averaging step extended to converters with

multistructural (three or more) topological changes

within each period

We now derive the state-space averaging step for switching
converters characterized by three structural changes within each
switching period. Each topological structure can be described as

pefore by linear state-space equations, hence

- : < <
Xy = Ayxy + b]vg for interval les’ (0t - t])
Xy = Azx2 + b2vg for interval dsz, (t] St t2) (D.1)
: - . < <
x3 = Agxg *+ byvg for interval djT.,  (t, =t = TS)

In contrast to the previous derivation, two boundary condi-
tions are now imposed. Since the state-space vector is continuous in

transition from first to second and from second to third regions

Xz(t]) = X](t])

X3(t2)= xz(tz)

Solution of (D.1) under the small signal assumption for vg (where

(D.2)

Vg Vq+vg and Vg << Vg) yields

290

At
_ . for t ¢ [0,t-
x;(t) = e ' x;(0) + v B ()b ;]
A, (t-ty)
xo(t) = e 2p(t7) + vgBy(t-tydby  for t e [tg,t,] (D.3)
Ay(t-t,)
x4(t) = e X5(ty) + vgB3(t-t2)b3 for t ¢ [t,,T.]

e




where t
Air
B, (t) = f e Vge . i=1,2,3 (D.4)

)
Use of boundary conditions (D.2) in (D.3) gives

Ad.T A.d, T Ayd T A.d.T_ A.d
S Se 1M

:
_ g 3 272 373 272
xy(T) = e > % e S x(0) + vjle” " % SBy(dyT by +

A$d3Ts
+e Bz(d?_,Ts‘)b2 + B3(d3TS)b3] (D.5)
With introduction of the linear approximations

AidiT

S =

into (D.4) and (D.5), and after retention of only first-order terms

(1inear in TS), (D.5) reduces to
X3(Ts) = (I*d1A1+d2A2+d3A3)x](0) + (d]b]+dzb2+d3b3)vg (D.?)

This, as explained before in Appendix B, leads to a single continuous

linear system

. A = djA; + dyAy + dghg
x = Ax + bvg where (D.8)
b d]b] + d2b2 + d3b3

which, within the accuracy of approximations (D.6), models the
dynamic and static behavior of the system originally described by
periodic change among the three linear systems (D.1).

As an illustration of a switching converter with such multi-
sfrUctural change, consider the converter shown in Fig. D.la whose
two switches 5, and 52 are driven as specified in Fig. D.1b. The

two switches S] and S, are shown in their “on" position in Fig. D.la.

“y"
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——"‘_)/—fm"
s, | &8
Vg = =, ' =G, 2R
b) switches c] switches
) 4
Siah [ STon 1 oet [
— ; - R
>
S, ey S, o
L > on o
—id+djils
-~
Ts

Fig. D.1 Switching converter exhibiting multistructural change:
a) boost converter cascaded by a buck converter b) switch
drnive gon "three state” behavion c) switch drive fon
"four state" behavion.

It can easily be recognized that this converter ig actually a boost
converter cascaded by a buck converter whose switches are driven
synchronously but with different duty ratios, d] and d]+d2
respectively. This is in contrast to the case discucsed at length
in Part III, where both switches have the same duty ratio and for
which only two switched networks need be distinguished.

However, if this converter is looked upon as single system,
the switching action of Fig. D.1b would produce periodic sequential
change among three different structures (shown in Fig. D.2 b,c, and d),
while that of I'ig. D.l¢ would produce periodic sequential change

among all four different switched netwerks of Fig. D.2. In any case,

it demonstrates the feasibility of realization of the generalized




switching converter of Fig. 1.11 having three or more switched ne*
work configurations, even in the continuous conduction mode of opera-
tion. HNaturally, result (D.8) is then directly applicable to the
situation in Fig. D.1b provided the converter is operating as a whole
in the continuous conduction mode of operation {ensuring that only

those switched networks of Fig. D.2 b,c and d actually exist).

a) S, on,Sp off: b} S, on, S, on:
L

R 33

cl S, off , Sp on:
L, L2

fm\
L1

CT cz-[

Fig. 0.2 Varcous switched netwonks for the converter in Fig. D.la.

d) S, off,Sp off:

Vgl

On the other hand if the converter is looked upon as consisting
of cascaded boost and buck converters and each of them has been
modelled separately as a "two-state" converter following Part I, and
their models put together, the same result would have been obtained.

Other examples of “three-state" switching converters are the
familiar common power stages (buck, boost and buck-boost of Fig. 1.1)
operating in the discontinuous conduction mode as demonstrated in

Chapter 1. However, even though the three different switched
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networks are also clearly distinguished (compare with Fig. 1.7 for

Lo e s nren e

example) the discontinuous conduction mode represents a rather special
case of the "three-state" converter. While in ordinary "three-state”
converters {like that demonstrated by Fig. D.la, b and Fig. D.2b, ¢ and
d) all the state variables (inductor currents and capacitor voltages)

retain their essential properties which characterize them as state-

space quantities (free, independent initial an< final conditions)

this is not so for discontinuous conduction operation. HNamely, the

Gorir kS T

inductor current is forced to have zero initial and final condition
(compare Fig. 1.6 for example). Hence, inductor current which becomes
discontinuous ceases to be a true state-variable. Therefore, in
addition to the state-space averaging step (D.8) for "three-state"
coniverters, some other restrictions are imposed to reflect this limited
behavior of inductor current with fixed (zero) boundary values.

What these additional requirements are is shown in Part II, where they

g e 22 SRR I R i S S

naturally lead to the reduction of system order (discontinuous H
inductor current becoming a removed state-variable) and transform the

basic averaged model (D.8) into a linear ¢circuit model of such g
converters.,

In Chapter 1 it has already been demonstrated that the
inequality requirements (1.11)(natural frequencies << switching
frequency) are well satisfied even for the discontinuous conduction
operation. Hence, because of the results in Appendix A, the linear
approximations (D.6) are excellent and thke basic averaged model (D.8)
is a very accurate starting model for modelling converters in the

discontinuous conduction mode.



We have therefore established that the state-space averagirg
step (D.8) is generally applicable to "three-state" switching
converters: directly to the converters operating in continuous
conduction mode (alona procedures outlined in Part I), and with some
additional restrictions to converters operating ir discontinuous
conduction mode (as specified in detail in Part II).

It remains, finally, to characterize the state-space averaging
step for the generalized switching converter with n structural
changes within each switching period, namely, one described by

diTs= ti-t.

: i-1 : ‘
X Aix + bivg’ ] 1,2,...40 (D.9)

t € [t,i_-l ’ti]

for which the corresponding basic state-space averaged model is

n
A= 7 dA, A

. s2p 1

X = Ax + bvg ; n (D.10)
b = iZ] dibi

The average of possible output equatic—s can be taken as well in

analogy with (B.15).
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Short description of computer programs

PROGRAM R1PPLE is used to calculate and piot exact instantaneous
waveforms (inductcr current and capacitor
voltage) for the boost converter example of
Fig; 3.1 operating in the continuous conduction

mode.

PROGRAM PBOOST is used to calculate and plot the frequency
dependence of the exact dc conditions for the
boost converter example of Fig. 3.1 operating in

the continuous conduction mode.

PROGRAM DCGAIN is used to calculate and plot dc gain dependence
on duty ratio D for the hoost-buck converter in
Fig. 11.6 and converters in Fig. 13.1 aperating

in the continuous conduction mode.

PROGRAM NEW is used to calculate and plot frequency response
of the new converter of Fig 12.3 operating in

the continuous conduction mode.

e e St o
L Y i
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ORIGINAL PAGE xs'

PROGRAM  RIPPLE OE EOOR QUALITY

TYPE RIPPLE.F4

99
100
199
210

400

16

17

57
58
401
59

92
402

91
304

350
600

401

3

COMMDN ZHPPLOT/HPFPLOT

DIMENSION VOLRIFP(S10),CURRIF(S10) VTIHE(S510)
GIMCNSION DOC(3),XTIME(2)

DIMEMSION XF(“)yX(")'L(“)pﬂ("):n°(4):XfEMP(");XDT(2)
DIHCNSTION ALINV(A) fAINV(A)Y U(A)

DIHENSION nl(4).n“<4)'F1(4>'F“(4).TEMP(4)pn1(4)
HPFL.OT=~1 .

WRITE(S5,929)

FORMAT{1X,  INFUT N’)

READN(S5,100) N

FORMAT(IL1)

VRITE(S:,197}

FORMAT(1X, “ INPUT VG» DrRLuRCerLpC')
READ(S,»210) VGsDrRL>RCsR»Q,C :

FORMAT(ZF)

WRITE(S,400) VG,DsRLHIRC,R,QsC

FORMAT(1X» ‘PARANETAR VALUES ARE “»/91X»’VG= " yF&.274%9’D2"3F4.:2»
4%y 'RLE’sF6.21A%X 9 'RC=’ 2sF6.2+4%X 1 'R=’ 9F 6., 2,4Xs’L=2’9E1Q449 °
AX»'C="vEL10.48+1A%Xs/7/)

NN=NiXN

XP(1)>=V06/0

XP(2)=0,0

A1(2)=0.0

Al1(1)=-RL/Q

AL(3)=0.0

A1(A)=~1./((R+RC)IZXC)

A2(1)=—(RL+RCXR/ (RIRC))/0Q

A2(2)=R/((R+RCI¥C)

A2(3)=-R/ ((R$RCHIXQ)

£2(4)==1,/((R+RC)I*C)

DO 16 I=1,NN :

ucI»=3,0

DO 17 I=1,N

TIs(N+1IXR(I~-1)+42

uiIn=1.0

DO S6 I=1,NN

ALINV(I)=A1(])

DO 57 I=1,NN

A2INV(I)=A2(1)

CALL M_NV(ALTHNVIMJETLsLsN)

IF(LET1) 59:58,59 -

WRITE(S. 01)

FORMAT(1X, "DET1 IS ZERD’)

GO TO 3 .

CALL MINV(AZINVM)DET2,L M)

IFCOET2) 91.92:91

WRITE(5,402)

FORMAT(1X,DET2 IS ZERO’)

GO T0 3

WRITE(S5:304)

FORMAT(1X, ‘READ NFOINT NUMBER OF FOINTS FER FLOT?)
READ(S5,350) NPOINT

FORMATCI)

WRITE(S2600)

FORMAT(1X» ‘WHAT 1S THE SuITfC'' G FRE EQIENCY?’)
READ(S,601) FS

FORMAT(F)

IF(FS) 2:3:2

Yai ,/FS

DT=D2T

CALL OMN(F1+HsDT+RsRC»RL»Q,C)

DNT=¢1-D)XT -
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71

72

73

74
7?
106

76

7’8

41

79

31

42

81

50
500

200

300

CALL OFF(F2,N,DNT,R,RC,RL,Q,C)
DO 71 I=1sNN

TEMF(D)=F1(I)-U(D)

CAlLL GHPRD(/\lINUvTENP'FIININ'N)
D0 72 1=1,NN

TEMP(II=F2C1)-U(T)

CAaLL GMFRDCAZINV, TEMP»R2,N/NsN)
CALL CMPRIO(F2,B1,TEMP N/ NsN)

DO 73 I=1,MNN
TEMP(I)=TECMP(I)HRACT)

CALL GMFRO(TCMI» XFosXsNINs1)

caLL GMFRD(E2,F1»TENFINININ)

DO 74 I=1,NN

TEMP (D) =U(T1)-TEMP(I)

CALL SIMOQ(TEMP # X2 N2KS)

IF(KS-1) 76277:76

WRITE(S,108)

FOKMAT(1Xs ' SINGULAR SET OF EQUATIONS’)
G0 T0 3

cALL GHPRD(FI!X!XDT)N'"'!)

catlL GHF'RD([U)XP!XTEHP)N'NOI)

DO 78 I=1,»N
XDT(1)=XDT (I} +XTEMP(I)
DELTA=T/NFOINT

[0 SO K=1,NFOINT+1
TIME=DELTAX(K-1)

IF(TIME-LT) 41,42,42

CALL ONN(F1:N;TInEvR:RCpRL:DpC)
0o 79 I=1,NN .
TEMP(I)=F1(1)-U(CI)

caLl G”PRD(AIINVITEHP!D"NINDN)
CALL GHFRTI(F1» X, XTIME»MeHs1)
CAlLL GMPRO(EL »XP2 XTEMP»NsNs L)
Do 31 I=1,N .
XTIHE(I)=XfINE(I)fXTEHP(I)
VOLRIP(K)=XTINE(2)
CURRIP(K)=XTIME(L)

VTIME(K)=TINE

GO0 TO SO

TIMEN=TIMC-DT

caLL ()FF(F'.’INITIHENIRIRC)RL'OQIC’
DO 81 I=1:NN

TEMPC(I)=F2(I)-U(I)

cALL GHFT\'U(A:‘INVITCHPID:.’INDN'N)
caLL GHFT\'['(FZvXDTVXTIHE'NINI1)
CAaLL GHPI(L!([t;’;XF‘;XTEHP:N:er)

Do 32 I=1,N
XTIHE(I)3XTIﬂE(I)+XTEH?(I)
YOLRIP(K)=XTIME(2)
CURRIF(K)=XTIME(L)

VUTIMC(K)=TIME

CONTINUE

WRITE(S,500) .
FORMAT (11X ‘READ PLOTTING SCALES UOL"]N'VOLH“X'CURNIN'CURMX')
READ(S,200) VOLHIN:VOLHGXICURHINICURHhX
FORMAT(AF) | .
LAR=-1

DpOC¢1)=‘RO0OST’

pOC(2)=" CASE’

pOC(3)=1.0

cALL XYFLOT(NPOINTfl'VTIHErVOLRIPvO-vTlVOLHINrVOLHAX:DOCILAB)
noc¢t»=0.90

caLL XYPLOT(NFOXNT+1vVTIHEvCURRIPoO.vTrCURMINvCURNhX,DOC!LAB)
GO 10 1t

calL EXIT

END

T T
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PROGRAM PBOOST

TYPE PLOOST.F

99

100
199
200
299
300
304

350

400

16

17
56
57
Se
401
59

92
402

?1
&1

301

CUNHUN4/HPPLOT/HPPLOT

DIMENSION FREQ(SOO)yDCCUR(SOO)-DCUOL(SOO):CURIN(SOO):VOLIN(SOO)
PINCHSION DAC(3)

PIHENSION XP (D) XD(2) P XFC2) o XDy XDC(2) 1L (2),M(2)»D2(A)

CDIMENGION ALINV(4) sARINV(A4)UCA)

DIMENSION 2104 sA2(A) s F1(A) PF2{A) »TENF(A) ;SAVE(4)sD1(A)
HFFLOT=-1 ) :
WRITE(S,99)

FORMAT(1X,’INPUT N*)

READ(S,1 J) N

FORMAT(I )

URITE(S5,199) _ ,
FORMAT(1X ¢ INFUT UG»DsRLsRC’). TR Te

READ(5,200) VG»DsRLIRC URIGINAL PAGE ;
FORMAT (AF) 07 ; . A
URITE(5,299) Rt

FORMAT (1%,  INFUT R,L,C,FHIN,FHAX’)

REAL(5¢,300) R,Q2C»FHIN,FMAX

FORMAT(SF) .

URITE(S,304)

FORNAT(1Xs READ NPOINT NUMEBER OF POINTS PER PLOT’)
READ(S,350) NPOINT

FORMAT(X)

IF(R) 2,3.2 .
URITE(S,400) VUG,D,RLIRC,R,QsC

FORMAT(1X» ‘FARAMETAR VALUES ARE ’,/'IXr'UG=':F6-214X1'D='UF”02l
AXy ‘RL="1F6.:214X2'RC=’1F6:2+4Xy’ =’ 93F6:274%Xs L=’ »E10:4s
AXs’C="3EL10.444%X2/77)

NM=N3N . : :

Xr(1)=YCc/0

xXP(2)=0,0

AL1(2)=0,

AL(1)=-RL/Q

AL(3)=0.0

A1(A)Y=~1,/((RIRCIXC)

A2(1)=—-(RL+RCHR/(RIRCI)I/Q

A2(2)=R/ ( (RHRCIXC)

A2(3)=-R/((RIRCIXAQ)

A2¢A)=-1.,/( (RERCIXCY

DO 146 I=1sNN

U(1>=0.0

po 17 I=1+N :

II=(N+1YX(I-1)#2

u(IIY=1,0

O S6 I=1:NN

ALINVII)I=N1(Y)

PO S7 I=1,NN

A2INV(I)=n2(T)

CALL MINV(AIINY,N,DETL,LoM)

IF(RETL) S9:58,59

WRITE(S,401)

FORMAT(IX,“DET1 IS ZERO’)

GO /0 3 .

CALL MINV(AZINV,NsDET2:LsH)

IF(DET2) 921.,92,71

WRITE(H»402)

FOKMA (1Xs*DET2 IS ZERO’)

GO 10 3 - :

no 61 I=1,NN

TEMFCI) =-rxA1 INV(I) =~ (1 -D)XA2INVII)

CALL OMFRE(TEMP XD XD /MHsNo L)

WRITE(S»301) XOC1),XB(2)

FORMAT (11X, ‘DEGINNING CONDITIONS ARE’ »/¢ 1%, *DC TNDUCTOR CURRENT

R 4
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62
?4
403
93

302

71

72

73

74
77
106
76

78

79

81

82

302

DO 42 I=1,NN
TEMP(I)=-D¥AL (I C1-DIXAD(I)
CALL MINV(TENP,NyDETI2L M)
IF(OCT3) 93,94,93
WRITE(S,403)

FORNAT(1X,*DETI IS ZERO’)

GO TO 3

CALL GMPRD(TEMF »XPsXFsN/N21)

VRITE(S,302) XF(1)sXF(2)
FORMAT(1X, FINAL CONDITIONS ARE’,/»’DC INDUCTOR CURRENT IS’»
F8.4:6X,"0DC OUTFUT VOLTAGE IS’ F8.4:7/7)
XMIN=ALOG1O(FMIN)
AHAX=ALOGL O (FMAX)
XDELT=¢(XMAL-XIIN)/NPOINT

DO S0 K=1,NFOINTH1
XORD=XMINF(K-1)IXDELT

} REQ(K)=XORD

FS=(10,0)xxXORD

7=1.0/F3S

DT=DXT

caLL ONN(FleyDTvaFC:RLvQ;C)
DNT=(1~-D)XT

CALL OFF(FE;N;uNT:R-RC:RLpO:B)
DO 71 I=1,NN

TEMP(I)=F1(I)-IKX)

cALL GHPRD(AIINV:TCNP:BIrN:NrN)
D0 72 I=1sNN

TEMP(II=F2(1)-ULI) .
CALL GMFRD(AZINV,TEMP»D2sNsMNsN)

CALL GMFRD(F2,B1»TEMFPINsM/N)

00 73 I=1,NN
TEMPCI)=TEMF(I)+D2(X)

CaLL GMPPD(TFHPrXP:X:N:H:l)
CALL GMFRD(F2¢/F1,TEMPsNsNsN)

DO 74 121NN .
TEMP(I)=UCI)Y-TEMP(I)

CALL SIMQ(TEMF:X:MNsKS3)

IF(KS~-1) 7627776

WRITE(S,106)
FORihT(lX;’SINGULAR SET OF EGUATIONS’)
GO 10 3

caLl GHfRD(BZ:Fl;TCMP;NrNrN)

DO 78 I=1yNN
TEMP(I)=TEHMP(I)4B1( 1) :

CALL GMPRD(TEMF X XFsMIN2 L)
CALL GMFRUCALINVEL,TENF s HoHsN)
CALL GMFRRDCAZINV, U2, SAVEsNsHeN)
N0 792 I=1»NN
SAVE(I)=SAVECI)+TEHP(I)

CALL GMFRD(R2,D1,TEMPINsNsN)

DO 81 I=1,MN .

SAVE (I )=SAVE( ) +TEMP(T)

CALL GHFRD(SAUE;XP:XDQ:N:N:I)'
NO 82 I=1sN
XUC(L)=(XDE(T)#XF (1) 2/THXBCX)
DCCUR(K)=XDCL)

DCVOL(K)=XDC(2)

CURIMN(K)=X(1)

VOL THN(K)=2X(2)

CONTINUE

WRITLE(S,»500)

FORMAT(1X, "RECAD PLOTTING SCALES VOLMIN,VOLMAX,CURHIN,CURMAX’ /)
READ(S,200) VOLMIN,VOLMAX CURMIN, CURKAX
LAD=-1



L 2

DOC(3)=1.v i

CALL XYFLOT(NPOINTH1,FREQ,DCVOL» XMINXMAX» VOLMIN,VOLMAX,DOC,1AB)
D0C(13)=0.0

CALL XYPLOT(NFOTIHT+1 FREQ,VOL T XMIN»XMAX,» VOLMIN,VOLHAX»DOC,LAD)
CALL XYFLOTUANFOINT Lo FREQ, DCCUR» XM TN XMAX » CURKN TN CURMN DOC LAD)
CALL XYPLOT(NFOINTHL»FREQsCURTH, XMINY XMAXy CURHIN, CURNAX, DOR,LAD)

GO 70 &
.3 CaLL EXIT
END

TYPE ONN.FA 8 .
: SUEROUTINE OMNCF»NsTsRsyRCsRL»QsC)
DIMENSION F(1)

F(1)=EXP(~-RLXT/Q)

F(2)=0,0
F(3)=0,0
F(4)=EXF{~T/{ (RRCIXCI)
RETURN
END ﬂ
8 Ix!z!Wﬂ::an,n’
TYPE OFF,F2 ' ty

SUBRQUTINE OFF(FsN»T»R,RC»RLsQ,C)
DIHENSION F(}1)
TC=1.0/{(FIRCIXC) .
TL=(RL+RCEXR/(RIRC))I/Q
A=0,5%(TC+TL) .

W=SANT ((R+RL)/ ((RIRC)I%Q*XC)~-AXA)
B=0,5%(TC-TL) /W ’
AL=EXP(-AXT)XCOS(UXT)
HE=EXP(-AXT)IXSIN(WET)
F(I,=AL+BEXB

F(2)=RXRE/ ((RIERC)IXUXC)
F(3)=—-RXxBE/ ((R+KRC)xWxQ)
F(4)=AL~BEXB

RETURN

END
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PROGRAM  DCGAIN

Y BEOATN, IR
Cutiitd /UMM s meeLorT
PN RS TON NIy €500 w1264 LHMCS00) , 00ATHS00) , GATNCS00)
il rou OEFTECLO0) s P TECO00) s LG (5)
HEELOT =1
WETIICS, LOG)

160 FORMNT CLXy iy RESTSTANCES RLL,RL2,00 AND NIPOINT )
REAIN(Ly 2000 R KLD 1y HEOINHT

200 FORMATCE 2 T '
XOUT =4 o O/ZH)THT
L0 50 K1, NFOINT
XORU= (R=1 )y «X1ELT
BUTY (K ) =X0ORD
0=XORO/ (1, G-X0RD)
MOV 1. /¢, - XORD)
FACTI=R/ACRYRLZ I O¥RLL)

. FAC]Q:R/(H:DHUF?DNUT*RL2+D%Q*RLI)

GALHIR)=DECACTL
DGAINEK Y =LY FACT2
EFTC(R)=FALT1X100,
OEVIC(RY“FACTR%100,
COATMN(K) =D

50 CONTIHUE
DOC(3)~1,0
.DOC(1)=0.,0
LiB=1
calL XYPIﬁT(NPﬂTHTrﬂUTYrGﬁINyO.Oy1.0;0.077.01DUC;LOB)
raLL k(PLﬁT(WPUIUTyNUTY:nGhTHyC.C;].Oy0.0r?.OrBUCrLﬂ?)
Cal L XYPLGT(HFUIHT;DUTYrCﬁﬁIN:O.CrL.O;0.0v?.OrﬂDCrLAD)
CalL.t. KﬂPLQT(H?UlH::UU:Y:tFIC;0.0;l.O;EO.y}OO.rDﬂCrLﬁﬁ)

CALL XYL O ol nUTY PUEFIC»0.0:1.0,30.,100, ,00%, LAR)

CALL EXIT
END
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Yere nry

92
100
199
200
299
300

400

GIN -

10
. 60C

700
11
800

PROGRAM  NEW

Lbhﬂuu it or/s nrerLor

canrit el e Qelysil

PP LI FREECL00) $GIUTY (500) ,FLUTY (500) » GLITHE (500) »LINC(500)
pLndatsion noecs) .

frror=—-1t

FY=8, 14159

UIRLTE (5 29) .

FOLRST (1, 7 TRFUY PARANETARS L1,0.2¢C1eCLeRD’ 0 /)

CREALCS 1001 A UL C2IRID .

rowstinl (o5
BRIV (5 199)

FOFBAT (1Y < 12°UT PARSSITICS RL1:RL2 AHD FS’»/) Op;
REATC2200) KL1rRL2FS Autth
FURNAT (3F) o Op Ap
UIRITE(S,299) itk)

FORLAT (X, 7 1MUY FHIHsFMAX  NPOINT’ o/)

READ(S 200) FLIMFHAXr MPOINT

FORMAY(2F2I)

WRITE(S,400) 01 »y02,C1:C2sK,RLL 'RL2:DsFS

FORMAT (1 X, rPARNMIETAR VALULCS ARE’ ¢ /91Xy 1.1=’1E10.4»
4X;'L2=’:E10.414X1'Clﬁ’)E10.414X1'C2='pElO.4-4X'/le"R-'g'

F6a2'4Xl'RL1="F-5-204X"RL2='vF6o214Xr'B“'va.?.r‘XliFS"" ;
F&6:2:77) . ) - o

pU=(L/{1.-D))%%2 " . .-

RE=DEZRLL" : ‘ -

QE=DEZAL : S

CE=C1/(DID)

A0=1.+(RE{RL2)/R -
nlaccintx(l.ﬂuL?/R)+czt(RE+RL2)+(02+QE)/R .
h2=UE:C2}02$C2+UC16E:(1.4RL2/R)+02$ EXRE/RICECARIEAC23RL2
AJ:EE#UE*ﬁﬂ/R+(uh;RL2+02¥RE)$CE382

AA=0rXCITU2%C2

BO=1, 1 ("L2-RE)/R

nl=ncxckﬁ(l,~n)$(i.IRL2/R)~0E/R - .
n2=uE:cE:(1.—uym(1.+RL2/R> v : -~ . .
IF (L)Y 217210

URITE (S, 600) :

FORINTC1X e ‘LEFT HALF PLANE CONIFLEX ZEROS') . -
GO YO 11 ) .

WIKITE (S92 700) '
FORMAT CIXs “RIGHT HALF FLAMNE ZEROS’)
WIRTTIE(5,200) It .

FOLFA (14 “T1=7 2E10.4¢/)

XH M=A1LOGLO TN

XeinX:-N 0L 10 UTHAX)
XDELT=(KHAA~£HIH)/NPOINT,

DO 50 K=1,MPOIHTES .
XORD-AMIME (K- 1) ¥ XDELT

FREU(K)Y=XORD

F=2(10.0)7%#X0RD

TEF AU (KSR ‘ . .
C=CaILX(0.0rW) :

PR DTN ( BRCE B i 23t ’

uznoenlrurnz:saﬁ*n335:5$slnavs:s:sxs

G=/Q . . - -

H=1./0Q ’ . . .
GAIH-CADS(G) - : :
Uﬂ"l?(K)~20.0$AL0030(601N)

GAIM oL

uLqu(h)«no.ownLUULO(unxﬂ)

AL (6)

AL=AINAGIG)
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-
-~

19

10

.
25

22
21

37

-39

38

36

12

14

860
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DRIGINAL PAGE
B ROOR swm‘ B

A= (/AR
FIAL - T AN CARS)
IV (ALY 26,2727 .
IF(AIR)Y 1L, 19919 .
FROL - URAW-25F ]
GO TH 21
Flean-riap-rt
GO 1o .
IF(ARY 22,221,221
PrRAb: RO -PT
PR () s 120 #PRAD/PEL
AlR=RFAL (1)
T=A)MAGCID
ARG=NIZAR
PRAD=ATAN(ARG)
I CAEGY 36027037
IF(ARY 38+37:3% . .
PRAD=RAI-22PL )
GO 10O Al - °
rRAD=FRAL-PI
GU YO 4!
IFCARRY 32,11041
PRAD=VIRAN-FT
FLINEC(R)Y=1C0, XPRAD/PX
COHY T HUE ’
URITE(SS500)
FORGAT (1Y, 1 1HNFUT SCALES FOR pUTY TR FU"C GMIN,GNAX ;PHI":P“AX’)
RUADCS201) bﬁlNrGHﬂXrPHINvP"ﬁX
FORMATCAF)
L.AR=1

CIF(BL)Y 12,13,13

poc(1)=‘LHF

potcz,=’7CLR0G’

GO 10 14

pocCLLd="r> ¢

DOC(2)=" 4108’

noc(2y=1.0

caLL K(fLUf(NrDINf+lrFREﬂrGﬁUTY:YHIN!XNAX:GHIN;GH“&!DDC;LAB’
poc¢1)=0.0

CALL XYFLOT(NFOGINT 3} 'FREO!PDUTY!XHIN; XHAY s PFHIN, PEAX s DOC,LAR)
WRITE(S,B4L0)

FORMAT(1Xy *INPUT SCALES FOR LIME TR FUNC GHINy GHAXsFHIMIFHAX’)
RIEOD(S,20L) GMI GUHAX P PH L PMAX

POC(1)="LINE *

0OCC2) = TIRANS’

cnLlL ‘YILUI’NIUIJTIl-FREOrGLINrraHINr XHAX » GH1Hy GHNAX 2 BOC LAD)
pPOCC1LY-:0.0

caLl %‘i’01(VTUINI+1rrPFOrFLINErXHIN'XNAXIIHIerhﬁXnDOCILﬁB)
REAL(D 5500 RKRAJ .

FORNATYC(F)

IF(KRRD)Y 17016487

GO 1O 1
CcatL EXIT
END
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