(NASA-TM-78501) TORQUING PRELOAD IN
LUBRICATED BOLT (NASA) 14 p HC AO2/MF AO1
CSCL 131

G3/37 | Unclas |
| :--- |
| 28532 |

Torquing Preload in a Lubricated Bolt

H. Lee Seegmiller

August 1978

Mnsn

National Aeronautics and
Space Administration

Torquing Preload in a Lubricated Bolt

H. Lee Seegmiller, Ames Research Center, Moffett Field, California

National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035

TORQUING PRELOAD IN A LUBRICATED BOLT

H. Lee Seegmiller

Ames Research Center, NASA

SUMMARY

Abstract

The tension preload obtained by torquing a $7 / 8 \mathrm{in}$. diam UNC high strength bolt was determined for lubricated and dry conditions. Consistent preload with a variation of $\pm 3 \%$ was obtained when the bolt head area was lubricated prior to each torque application. Preload tensions nearly 70\% greater than the value predicted with the commonly used formula occurred with the lubricated bolt. A reduction to 39% of the initial preload was observed during 50 torque applications without relubrication. little evidence of wear was noted after 203 cycles of tightening.

INTRODUCTION

Bolted flanges in high-pressure fluid systems require sufficient tension or preload in the fasteners to prevent separation and leakage when pressurized. One common method of obtaining this fastener tension is by tightening to a predetermined torque. Unfortunately, the variations in friction at the bolt head and nut or threaded flange introduce uncertainties in the fastener : ension obtained by thls means (ref, l). Lubrication, thread fit, fastener material, and hardness are all important variables in relating the applied torque to the achieved fastener tension. Additional considerations in the use of flanges with tapped holes that undergo frequent disassembly are the combined uffects of thread wear and relaxation or creep which cause a gradual lousening of the $t i t$. A recent fallure of a flanged joint using tapped holes emphasized the need for specific information in these areas of tightening torque and thread wear. An experiment was conducted therefore, duplieating as nearly as possible the service conditions of the bolted joint to determine the relation between tightening torque and bolt tension. The effects of wear and thread degradation were also appraised for 203 cycles of tightening.

EXPERIMENT

Apparatus

Photographs and a dimensioned sketch of the boit and simulated flanges are shown in figures $1(a), 1(b)$ and $1(c)$. The bolts which are used in the service flange are $7 / 8 \mathrm{in}$. In dism, have unffied national coarse threads with a pitch of $9 / \mathrm{in}$. and are 5 in . long. they are made of a high-strength material. AMS6487, intended for aircraft applications, and have a minimum
tenstle yield strength of $137,880 \mathrm{~N} / \mathrm{cm}^{2}(200,000 \mathrm{psi})$. A short plug of steel was press fitted into an existing cavity in the head to facilitate accurate measurement of the bolt length. The simulated, clamped flange was made of the same material as the service flange--mild steel--and was the same thickness, 8.26 cm (3.25 in.$)$. The nut which simulates the mating service flange with tapped holes was made of type 410 stainless steel, heat treated to a minimum tensile yield stress of $79,280 \mathrm{~V} / \mathrm{cm}^{2}(115,000 \mathrm{psi})$, and an elongation of 19\%. The hardness of the nut las 22 on the Rockwell C scale and the threads which were tapped after heat :reatment were a class $3 B$ fit. A cast of the nut thread was made with a silicone rubber material and examined visually. The threads appeared to be normal in form. The bolt length was measured with a dial gage which was $9 \mathrm{~cm}(3-1 / 2 \mathrm{in}$.) in diam having a least count of $0.00025 \mathrm{~cm}(0.0001 \mathrm{in}$.). A photograph of the dial gage and holding fixture is shown in figure 1 (b).

Test Procedure

The holding fixture was fastened to a building support beam in a position convenient: for torquing. The torque wrench used for this experiment was a bending beam type that had a maximum capacity of $813 \mathrm{~N}-\mathrm{m}$ ($600 \mathrm{lb}-\mathrm{ft}$). The torque was applied by pushing down on the torque wrench handle, and since the bending beam is at the handle end, a gravity tare of $63.0 \mathrm{~N}-\mathrm{m}$ ($46.5 \mathrm{lb}-\mathrm{ft}$) was added to the indicated torque. In tightening the bolts on the service flange during an actual assembly, it is believed that some of the bolts would normally be torqued by lifting the wrench and others by pushing down on the wrench as a matter of convenience of access. In this process the gravity tare is expected to cause a $\pm 12 \%$ variation in the desired assembly torque. In order to simulate the bolted flange as nearly as possible, the bolt was lubricated profisely on the threads and under the head with the same antiseize and lubricating compound used in the service assembly. The schedule of lubrication will be noted in the discussion of the results.

The bolt tension force, F_{T}, is computed from the relation. $\mathrm{F}_{\mathrm{T}}=\mathrm{S}_{\mathrm{T}} \times \mathrm{A}$; where A is the cross-sectional area of the shank and S_{T} is the shank tensile stress. The value for S_{T} was obtained from the product of the unit elongation (strain) and the modulus of elasticity. The total elongation was found by measuring the bolt length immediately before and after each application of torque. The unit elongation was then obtained by dividing the total elongation by the grip length of $8.26 \mathrm{~cm}(3.25 \mathrm{in}$.$) . A mall error in the$ shank unit elongation is introduced by uaing the total grip length because of the threads in the grip area. This error was estimated to be about $+2.5 \%$. The entire apparatus remained essentially at a room temperature of approximately $27^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{F}\right)$ during the tests. No attempt was made to determine the effect of temperature on lubricant effectiveness. The time that the bolt was stressed was approximately 15 sec for each torque application, thus relaxation or long term creep effects were not simulated.

RESULTS AND DISGUSSION

The unit elongation of the bolt achieved by applying the service assembly torque of $606 \mathrm{~N} \rightarrow \mathrm{~m}$ ($447 \mathrm{lb}-\mathrm{ft}$) is shown in figure 2 for 50 applications. The data for this figure were obtained with lubricant applied to the bolt head before each torquing and to the threads avery ifth time. A rather consistent and high unit elongation of approximately 0.0057 was obtained. This represents a shank tensile stress in the range of $118,000 \mathrm{~N} / \mathrm{cm}^{\prime}(170,000 \mathrm{psi})$ which is 85\% of the tensile yield strength with most of the data within 3 3 of the mean value.

Values of tensile force to be expected from the assembly torque were computed with the commonly used torque formula, $T=K \times D \times F T$; where T is the appi, ed torque, K is a constant, D is the bolt diam, and $F \eta$ is the bolt tensile force. Using recommended values of 0.1 and 0.2 for K (rof. 2), corresponding to lubricated and dry fasteners, the values of 0.0017 and 0.0034 were computed for the unit elongations. The corresponding shank tensile stresses were 35,160 and $70,320 \mathrm{~N} / \mathrm{cm}^{2}(51,000$ and $102,000 \mathrm{psi})$. These values are approximately 30% and 60% of the present results and it $i s$ apparent that a much lower coefficient of friction was achieved with the carefully lubricated test bolt than was assumed in the simple formula. Using the peometry of the bolt threads, and assuming equal friction coefficient for the head beariug area and the threads, the coefficient of friction for these data was calculated and found to be 0.049 giving a value of 0.059 for K.

In order to investigate the effect of lubricant extrusion during tightening, a series of torque applications was made at the service assembly torque of $606 \mathrm{~N}-\mathrm{m}$ ($447 \mathrm{lb}-\mathrm{ft}$). These data are shown in figure 3. The bolt was lubricated under the head and on the threads prior to the first torque application but no additional lubricant was added. The torquing was cont inued for approximately 50 applications until a relatively stable tenslon was obtatned. During this test the bolt was unserewed approximately one turn past the unstressed position but was not completely removed between torque appllations. The reduction of elongation at this constant applied torque was quite rapid during the first 20 applicat lous falliag to a value of approximately 55% of the initial value. The relatively stable elongat lon achieved after 50 applications was approximately 38% of the initial loading but was within approximately 20% of the prediction $(K=0.2)$ for an unlubricated bolt. The bolt was removed and relubricated on both the head and thread areas durlag toique applicatious number 54 and 55. The elongat ion aiter lubrication, howser, was approximately 10% below the initial value (filled symbols). To see if galling or other damage had occurred, the bolt and threads were carefully cleaned and inspected. Only slight wear and burnishing were noted on the bolt and nut threads; however, some galling had vecurred on the simulated flange under the bolt head indicating the need of a bardened washer. The nut threala were size checked with a plug gage and were still a class 38 fit. the bolt was then torqued three times in this iry, elean, unlubricated condition producing elongat fous similat to that found after the first 50 torque appllaat fons without relubrication. It may be seen from a comparlaon of the data of figures 2 and 3 (head lubed each time, threads overy fifth time in tig, \therefore) :hat lubricant extrusion from the bolt head area is much more importatit that at
the threads due to the higher hearing stress under the bolt hoad, if consiatent bolt tenaion is to he achieved with lubricat fon, the bolt hesd area mat be carefully lubricated prior to each torquing.

In order to inveatigate the offect of bolt olungat lon (tensile force) on lubricant extrusion, and linearity of the torque-tonsion relationship, the data of figure 4 were obladned. For the ece tests the bolt was lubricated under the head each time it was torqued and the threads were lubricated each fifth time. The influence of the torque wrench weipht tare is seen in the bolt elengation achieved at zoro Indicated torque. The torque-tension relationship is linear up to an indicated torque of $271 \mathrm{~N}-\mathrm{m}$ (200 $\mathrm{lb}-\mathrm{ft}$). The reaulta are relacively conaistent with a acatcor of approximately 5\%. At 407 and $542 \mathrm{~N} \cdot \mathrm{~m}$ (300 and $400 \mathrm{lb}-\mathrm{ft}$) indteated torgue the achieved bolt elongat ion is lass than the extrapolated value from the lower torque. It is belleved that these higher bolt tonsile forces may have caused more complete lubrliant extruaion from the bolt head area resulting in a higher frict honal torque. This would indicate that caution should be exoteised in extrapolat fing test results to predict fastener elongat fon at other torque values.

CONCLUDING REMARKS

A high-strength hott and nut spocimen, $7 / 8-1 \mathrm{l}$. in diam, simulating a service flange assombly, was torqued 201 times to linvestigate the relat lon of tightenting torque to achieved tensfon for lubricated and dry conditions. Although lubrication is desirablo to minimize wear and galling in many applications requiring high preloads, it is seon that uncortaintios in iriction are increased unless care la taken in lubrlcat lon at assembly.

Several conclusdons were noted:

1. Although slight wear, burnishing. and galling wore ohsorved on the clamped flange in the reglon contacted by the holt head, the nut throads showed little evdence of wear alld remalned a class is ift throughout the test.
2. Tonsions considerably in excess of the values predicted with tho commonly used formula, $T=K \times D \times F y$ with $K=0.1$, were obtained with a holt which was carcfully lubrlcated on the threada and the head. In the testa at the service assembly torque of $606 \mathrm{~N}-\mathrm{m}$ ($447 \mathrm{lb}-\mathrm{ft}$) the rat l o of achteved bolt tension to predicted tenaton wan 1.67.
3. A marked decrease in bolt tenston 10 398 of tho initial value was observed during 50 torque applleat fone without relubrication. A tension approximatoly 20 greater than the predfeted value for dry assembly, $K=0.2$, was ohtalleyl for a degreased, dry holt.
4. Constatont tonslon having a variat lon of only if was ohtalned when lubricat fon was ap!led to the holt head prior to sach torgulag.

REFERENCES

1. Roehrich, Koland L.: Torquing Stresses in Lubricated Bolts. Machine Design, June 8, 1967.
2. Bolt Torque Factors. Desifn News, Nov. 8, 1976, pp. 119-120.

6
original page is
(1) P(K)R QUALITY

ORIGINAL PAGE I: OF POOR QUALJTY

- alnjxfy sufplou pue o8es tefa (q)

Figure 2. - Bolt tension achieved with $006 \mathrm{~N}-\mathrm{m}$ torque and lubrication.

Figure 3.- Effect of lubricant extrusion on bolt tension for $606 \mathrm{~N}-\mathrm{m}$ torque.

Figure 4.- Torque-tension result for luiricated bolt.

[^0]
[^0]: "For sale by the National Terhnical Information Service. Springfield, Virginia 22181

