
Aeronautical Engineering A Continuing Bibliography with Indexes NASA SP-7037 (97) June 1978

Space Administration

onautical Engineering

ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges:

STAR (N-10000 Series) N78-17989 N78-20048

IAA (A-10000 Series) A78-24824—A78-28483

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.

AERONAUTICAL ENGINEERING

A Continuing Bibliography

Supplement 97

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in May 1978 in

- Scientific and Technical Aerospace Reports (STAR)
- International Aerospace Abstracts (IAA)

INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971. Since that time, monthly supplements have been issued.

This supplement to Aeronautical Engineering -- A Continuing Bibliography (NASA SP-7037) lists 420 reports, journal articles, and other documents originally announced in May 1978 in Scientific and Technical Aerospace Reports (STAR) or in International Aerospace Abstracts (IAA)

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged in two major sections, IAA Entries and STAR Entries, in that order. The citations, and abstracts when available, are reproduced exactly as they appeared originally in IAA and STAR, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes -- subject, personal author, and contract number -- are included. An annual cumulative index will be published.

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A78-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc. (AIAA), as follows. Paper copies of accessions are available at \$6.00 per document up to a maximum of 20 pages, the charge for each additional page is \$0.25. Microfiche of documents announced in IAA are available at the rate of \$2.50 per microfiche on demand, and at the rate of \$1.10 per microfiche for standing orders for all IAA microfiche. The price for the IAA microfiche by category is available at the rate of \$1.25 per microfiche plus a \$1.00 service charge per category per issue. Microfiche of all the current AIAA Meeting Papers are available on a standing order basis at the rate of \$1.35 per microfiche.

Minimum air-mail postage to foreign countries is \$1.00 and all foreign orders are shipped on payment of pro-forma invoices

All inquiries and requests should be addressed to AIAA Technical Information Service. Please refer to the accession number when requesting publications

STAR ENTRIES (N78-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail NTIS Sold by the National Technical Information Service Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the STAR citation. Price codes are given in the tables on page vii of the current issue of STAR.

Microfiche is available regardless of age for those accessions followed by a # symbol

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Unit

NOTE ON ORDERING DOCUMENTS When ordering NASA publications (those followed by the * symbol), use the N accession number NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report* number shown on the last line of the citation, not by the N accession number It is also advisable to cite the title and other bibliographic identification

Avail SOD (or GPO) Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard \$3.00 price, for those documents identified by a # symbol.)

⁽¹⁾ A microfiche is a transparent sheet of film, 105 by 148 mm in size, containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26 1 reduction)

- Avail NASA Public Document Rooms Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory
- Avail ERDA Depository Libraries Organizations in U.S. cities and abroad that maintain collections of Energy Research and Development Administration reports, usually in microfiche form, are listed in *Nuclear Science Abstracts*. Services available from the ERDA and its depositories are described in a booklet, *Science Information Available from the Energy Research and Development Administration* (TID-4550), which may be obtained without charge from the ERDA Technical Information Center
- Avail Univ Microfilms Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm All requests should cite the author and the Order Number as they appear in the citation
- Avail USGS Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail HMSO Publications of Her Majesty's Stationery Office are sold in the U S by Pendragon House, Inc. (PHI), Redwood City, California The U S price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI
- Avail BLL (formerly NLL) British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England Photocopies available from this organization at the price shown (If none is given, inquiry should be addressed to the BLL)
- Avail ZLDI Sold by the Zentralstelle fur Luftfahrtdokumentation und -Information, Munich, Federal Republic of Germany, at the price shown in deutschmarks (DM)
- Avail Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.
- Avail U.S. Patent Office Sold by Commissioner of Patents, U.S. Patent Office, at the standard price of 50 cents each, postage free
- Other availabilities If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line

GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA A listing of public collections of NASA documents is included on the inside back cover

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS) The annual subscription rate for the monthly supplements is \$45.00 domestic, \$75.00 foreign. All questions relating to the subscriptions should be referred to NTIS, Attn. Subscriptions, 5285 Port Royal Road, Springfield Virginia 22161.

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
750 Third Ave
New York, N.Y. 10017

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents U S Patent Office Washington, D C 20231

Energy Research and Development Administration Technical Information Center P O Box 62 Oak Ridge, Tennessee 37830

ESA-Space Documentation Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Her Majesty's Stationery Office P O Box 569, S E 1 London, England

NASA Scientific and Technical Information Facility P O Box 8757 B W I Airport, Maryland 21240

National Aeronautics and Space
Administration
Scientific and Technical Information
Office (NST-41)
Washington, D C 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 Pendragon House, Inc 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U S Government Printing Office Washington, D C 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd Tylers Green London, England

U S Geological Survey 1033 General Services Administration Building Washington, D C 20242

U S Geological Survey 601 E Cedar Avenue Flagstaff, Arizona 86002

U S Geological Survey 345 Middlefield Road Menlo Park, California 94025

U S Geological Survey Bldg 25, Denver Federal Center Denver, Colorado 80225

Zentralstelle fur Luftfahrtdokumentation und -Information 8 Munchen 86 Postfach 880 Federal Republic of Germany

TABLE OF CONTENTS

IAA Entries		215
STAR Entries .	•••••••••••••••••••••••••••••••••••••••	235
Subject Index .		A-1
Personal Author	or Index	B-1
	per Index	
TYPICAL	CITATION AND ABSTRACT FROM	STAR
NASA SPONSORED		
DOCUMENT	↑↑ N78-10020*# Boeing Vertol Co Philadelphia Pa	MICROFICHE
NASA ACCESSION NUMBER	PROPULSIVE FORCE AT HIGH SPEED DATA ANALYSIS Frank McHugh Ross Clark and Mary Soloman Oct 1977 211 p 3 Vol (Contract NAS1-14317)	CORPORATE SOURCE
TITLE	(NASA-CR-145217-App-1 D210-11135-1) Avail NTIS HC A10/MF A01 CSCL 01A The basic test data obtained during the lift-propulsive force	PUBLICATION DATE
AUTHORS	limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed included are the rotor control positions blade loads	— AVAILABILITY
CONTRACT	hub tares Performance and blade loads are presented as the	SOURCE
OR GRANT	irotor lift limit is approached at fixed levels of rotor propulsive	

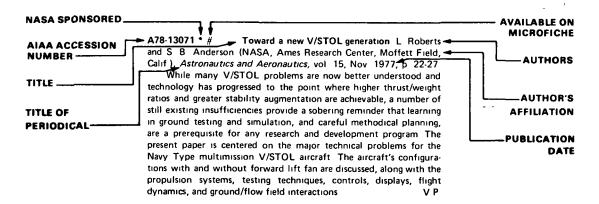
TYPICAL CITATION AND ABSTRACT FROM IAA

force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient.

as propulsive force is increased to the maximum obtainable by

the model rotor. Test data is also included that defines the

effect of stall proximity on rotor control power. The basic test


data plots are presented in volumes 2 and 3

REPORT

NUMBERS.

COSATI

CODE

AERONAUTICAL ENGINEERING

A Continuing Bibliography (Suppl. 97)

JUNE 1978

IAA ENTRIES

A78-24877 * # Noise of deflectors used for flow attachment with STOL-OTW configurations U von Glahn and D Groesbeck (NASA, Lewis Research Center, Cleveland, Ohio) Acoustical Society of America, Meeting, 94th, Miami Beach, Fla, Dec 13-16, 1977, Paper 16 p

Future STOL aircraft may utilize engine-over-the-wing (OTW) installations in which the exhaust nozzles are located above and separated from the upper surface of the wing. An external jet-flow deflector can be used with such installations to provide flow attachment to the wing/flap surfaces for lift augmentation. In the present work, the deflector noise in the flyover plane measured with several model-scale nozzle/deflector/wing configurations is examined. The deflector-associated noise is correlated in terms of velocity and geometry parameters. The data also indicate that the effective overall sound pressure level of the deflector-associated noise peaks in the forward quadrant near 40 deg from the inlet axis. (Author)

A78-24878 * # Combustor fluctuating pressure measurements in-engine and in a component test facility. A preliminary comparison M Reshotko and A Karchmer (NASA, Lewis Research Center, Cleveland, Ohio) *\(\hat{Acoustical Society of America, Meeting, 94th, Miami Beach, Fla, Dec. 13-16, 1977, Paper 18 p. 5 refs.\)

Combustor internal fluctuating pressure and far-field noise generated in a YF-102 turbofan engine are investigated, combustor internal measurements are also made in a duct-component test facility operating over a range of conditions encompassing those characteristic of the aircraft engine Although directly measured spectra for the engine and the duct-component test facility show discrepancies, the results of coherence function, transfer function and phase relationship comparisons suggest that the internal dynamics of the combustor as an acoustic source may be preserved in a component test facility

J M B

A78-24879 * # An empirical model for inverted-velocity-profile jet noise prediction J R Stone (NASA, Lewis Research Center, Cleveland, Ohio) Acoustical Society of America, Meeting, 94th, Miami Beach, Fla, Dec 13-16, 1977, Paper 28 p 12 refs

It is known that the noise generated by inverted-velocity-profile coaxial (without center plug) and coannular (with center plug) nozzles should be modeled as the combined contributions of various source regions and noise generation mechanisms. In this paper, an empirical noise-prediction model is described which considers the noise generated by two jet-mixing regions and two potential regions of shock/turbulence interaction. Results calculated from the empirical model are compared with model-scale experimental data for static and simulated flight conditions. These comparisons are made for cases where both streams are subsonic, where the outer stream is supersonic with the inner stream subsonic, and where both streams are supersonic. The cases considered cover a range of inner-to-outer-

stream area ratios and include both coaxial and coannular nozzles. It is shown that the model gives reasonable predictions of absolute noise spectra and even better predictions of incremental changes.

SD

A78-24880 * # Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber R P Woodward, J A Wazyniak, L M Shaw, and M J MacKinnon (NASA, Lewis Research Center, Cleveland, Ohio) Acoustical Society of America, Meeting, 94th, Miami Beach, Fla, Dec 13-16, 1977, Paper 21 p 13 refs

A hemispherical inlet flow control device was tested on a 50 8 cm (20-inch) diameter fan stage in the NASA-Lewis Anechoic Chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results showed about a 5 dB reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device the axial intensities were below 1 0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

A78-24882 * # The promise of eutectics for aircraft turbines H R Gray (NASA, Lewis Research Center, Cleveland, Ohio) American Society for Metals, Materials Show and Conference, Chicago, III, Oct 25-27, 1977, Paper 20 p 13 refs

Gas turbine blades and vanes for the 1980s call for new materials with higher operational temperature capabilities. The potential increase of from 40 to 110 C in operational temperature capabilities predicted for directionally solidified eutectics is a larger increment over currently available alloys than previously obtained in any new turbine blade alloy. The paper discusses the properties of gamma/gamma prime-delta and NiTaC-13 directionally solidified first-generation eutectics for use as gas turbine blade materials. A few of the more promising second-generation eutectics for blade applications (gamma-gamma prime-alpha, NiTaC 3-116A) and for vane applications (gamma-beta, COTAC 74) are also discussed. Attention is given to mechanical properties, such as transverse ductility and shear strength, that can be inherently critical in a directionally solidified eutectic. Further R&D requirements for properties, coatings, and lower cost processing technology are identified.

A78-24898 * # Output feedback regulator design for jet engine control systems W Merrill (NASA, Lewis Research Center, Cleveland, Ohio) National Electronics Conference, Chicago, III, Oct 13, 14, 1977, Paper 13 p 6 refs

A multivariable control design procedure based on the output feedback regulator formulation is described and applied to an F100 turbofan engine model. Full order model dynamics, are incorporated in the example design. The effect of actuator dynamics on closed loop performance is investigated. Also, the importance of turbine inlet temperature as an element of the dynamic feedback is studied. Step responses are given to indicate the improvement in system.

performance with this control Calculation times for all experiments are given in CPU seconds for comparison purposes (Author)

A78-24900 * # Technical and economic evaluation of advanced air cargo system concepts A H Whitehead, Jr (NASA, Langley Research Center, Hampton, Va) International Forum on Airfreight Contribution in Securing Markets Abroad, Aéroport de Paris, France, Nov 17, 18, 1977, Paper 36 p 26 refs

The paper reviews NASA air cargo market studies, reports on NASA and NASA sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

A78-24902 * # Effects of film injection on performance of a cooled turbine J D McDonel and J E Eiswerth (General Electric Co., Aircraft Engine Group, Evendale, Ohio) NATO, AGARD, Propulsion and Energetics Panel Meeting, 50th, Middle East Technical University, Ankara, Turkey, Sept. 19-23, 1977, Paper. 10 p. Contract No. NAS3-16732

Some of the most dramatic increases in the performance of turbojet and turbofan aircraft engines have been obtained as a result of increased thermodynamic cycle temperatures made possible by the use of film cooling techniques. The realization of the potential performance gains, however, is only possible if the quantity of cooling air and the aerodynamic mixing losses resulting from the injection of coolant in the form of film on the flowpath surfaces are minimized Such a minimization requires a more complete understanding of the relationship between cooling and aerodynamics. A review is conducted of tests which have been conducted to determine the effects of coolant injection on turbine performance. The results obtained in the tests are compared with an analytical technique developed for predicting coolant injection effects. Particular attention is given to the effects of turbine cooling on overall cycle thermodynamic efficiency, taking into account incremental changes in turbine thermodynamic efficiency for various incremental changes in coolant flow rate

A78-24906 * # Hydrocarbon group type determination in jet fuels by high performance liquid chromatography A C Antoine (NASA, Lewis Research Center, Cleveland, Ohio) Federation of Analytical Chemistry and Spectroscopy Societies, Annual Meeting, 4th, Detroit, Mich., Nov. 7-11, 1977, Paper 12 p.

Results are given for the analysis of some jet and diesel fuel samples which were prepared from oil shale and coal syncrudes. Thirty-two samples of varying chemical composition and physical properties were obtained. Hydrocarbon types in these samples were determined by fluorescent indicator adsorption (FIA) analysis, and the results from three laboratories are presented and compared. Recently, rapid high performance liquid chromatography (HPLC) methods have been proposed for hydrocarbon group type analysis, with some suggestion for their use as a replacement of the FIA technique. Two of these methods were used to analyze some of the samples, and these results are also presented and compared. Two samples of petroleum-based Jet A fuel are similarly analyzed.

(Author)

A78-24910 * # Progress in advanced high temperature turbine materials, coatings, and technology J C Freche and G M Ault (NASA, Lewis Research Center, Cleveland, Ohio) NATO, AGARD,

Propulsion and Energetics Panel Meeting, 50th, Middle East Technical University, Ankara, Turkey, Sept 19-23, 1977, Paper 43 p 89 refs

Several NASA-sponsored benefit-cost studies have shown that very substantial benefits can be obtained by increasing material capability for aircraft gas turbines. Prealloyed powder processing holds promise for providing superalloys with increased strength for turbine disk applications. The developement of advanced powder metallurgy disk alloys must be based on a design of optimum processing and heat treating procedures. Materials considered for high temperature application include oxide dispersion strengthened (ODS) alloys, directionally solidified superalloys, ceramics, directionally solidified eutectics, materials combining the high strength of a gamma prime strengthened alloy with the elevated temperature strength of an ODS, and composites. Attention is also given to the use of high pressure turbine seals, approaches for promoting environmental protection, and turbine cooling technology.

A78-25011 # Automatic system employing radioactive radiation to level-out an aircraft at landing (Avtomaticheskaia sistema vyravnivaniia samoleta pri posadke s ispol'zovaniem radioaktivnykh izluchenii) A B Bushuev (Leningradskii Institut Tochnoi Mekhaniki i Optiki, Leningrad, USSR) *Priborostroenie*, vol 20, no 11, 1977, p 44-46 In Russian

The automatic landing system described in the present paper will flatten-out an aircraft at the end of a curvilinear glide path with the aid of instruments which measure the altitude and vertical velocity by recording back-scattered gamma-radiation. The block diagram of the system is given and discussed Radio-isotope instruments are shown to improve system reliability.

V P

A78-25013 # Generalized algorithm of the analytical method of gyrocompassing (Obobshchennyi algoritm analiticheskogo metoda girokompasirovaniia) V V Seregin (Leningradskii Institut Tochnoi Mekhaniki i Optiki, Leningrad, USSR) *Priborostroenie*, vol 20, no 11, 1977, p 77-83 In Russian

Gyrocompassing is understood to mean a method of determining the position of the meridional plane, in which the horizontal component of the earth's angular velocity vector is used as the unit vector of the axis that coincides with the northern continuation (ray) of the meridian line. In the case of a fixed base, examined in the present paper, it is sufficient to determine the direction of the angular velocity vector of the horizontal plane's rotation in inertial space. This can be accomplished with an angular velocity transducer In the analytical approach, the input axis of the transducer is either fixed or possesses a finite number of discrete positions relative to the meridional plane, the azimuth of the position taken as the prime position being determined on a digital computer A generalized algorithm of this method is proposed, and means of passing from the algorithm to specific realizations are indicated. Some special cases are examined, and expressions for the errors characteristic of each case are derived V P

A78-25033 Simulation of airport air quality by box photochemical and Gaussian models G B Frame (Beak Consultants, Ltd., Vancouver, Canada) Air Pollution Control Association, Journal, vol. 28, Feb. 1978, p. 155-157, 8 refs

A comparison is made between two models used to simulate airport air quality. The first of these, the arbitrary reactor volume (box) includes all airport sources on the ground, in aircraft flight paths to the mixing layer, and receptor points. The model's kinetic photochemical mechanism treats hydrocarbons as lumped reactive or unreactive species, and peroxy radicals are lumped into a free radical species. The mechanism includes reactions involving molecular oxygen, hydroxyl radical, and nitrous acid. The second, Gaussian models, are found to more accurately represent the actual situation, and to be dependent on the choice of horizontal and vertical standard variation values. Results are presented, in terms of five

remote sensors as compared to the in-stack monitors are discussed (Author)

A78-25046 VHF/UHF direction-finding in air traffic control F R Huber (Rohde and Schwarz Co , Munich, West Germany) Interavia, vol 33, Feb 1978, p 146, 147

Although VHF/UHF direction-finding has been largely supplanted by primary and secondary radar (as well as advanced distance-measuring equipment), computerized synthetic displays based on radio direction finding may be useful aids in air traffic control In particular, radio direction finders for electronic surveillance and for navigation are considered Instruments described range from low-cost high-performance Doppler direction finders to large custom-made systems used as triangulation networks. An automatic-response direction finder giving the magnetic bearing of the ground transmitter and an identifying signal in clear text is also mentioned.

A78-25141 # RB 211 - Progress and prospects T E Ford Aircraft Engineering, vol 50, Jan 1978, p 4-8

The paper summarizes the significant improvements accomplished in the first two versions of the 1 RB 211 engine - the -22B version and the more powerful -524 version - and highlights some of the planned improvements for future versions. The objective of 25% reduction in specific fuel consumption (SFC) over the previous generation of gas turbine engines was achieved in the RB 211 Removal of the original hot stream spoilers and installation of a 15 deg afterbody resulted in further SFC improvements in the -22B A major improvement in high pressure turbine blade cooling has resulted from the introduction of high pressure feed air to the cooling air supply. The -524 achieved thrust increases of up to 19% over the earlier engine by means of a revised engine cycle and improved component efficiencies. Later versions will each have added thrust, with a maximum thrust of 55,000 lb projected for the 524G The -535 will be a new engine designed for the specific needs of the B 7X7, and differs mainly in having a fan 13 inches smaller than the other RB 211's It will be a three-shaft design and be rated at 32,000 lb thrust

A78-25142 # Economic and safety aspects of prolonging engine life G McRae (United Technologies Corp., Pratt and Whitney Aircraft Group, East Hartford, Conn.) Aircraft Engineering, vol. 50, Jan. 1978, p. 9-13

The paper examines the interacting factors to be considered in attempting to achieve minimum overall operating costs by optimizing maintenance and repair procedures without compromising reliability and safety. For example, savings can be achieved by eliminating regularly scheduled overhauls and using salvaged parts. When fuel was not expensive, this savings offset the cost of the resulting higher fuel consumption, but today, with higher fuel costs, this may not be true. A study conducted with the participation of a number of JT9D operators found that the optimum interval in which to conduct compressor refurbishment was 9,000 to 10,000 hours. Factors affecting performance of the JT8D fan, compressors, burner, and turbine are summarized.

A78-25149 ALIDADE - The alignment on board aircraft carriers of the inertial navigation units of Super-Etendard aircraft (ALIDADE - Alignement sur porte-avions des unités de navigation inertielle des Super-Etendard) M de Cremiers (Société d'Applications Générales d'Electricite et de Mécanique, Paris, France) Navigation (Paris), vol 26, Jan 1978, p 52-57 In French

The pre-flight alignment of the inertial navigation instruments on board Super-Etendard aircraft poses special problems due to the motions of the aircraft carriers from which the Super-Etendard craft are launched Determination of the true vertical and the north orientation are performed with an advanced alignment method termed ALIDADE, which involves a hybrid inertia/Omega/sillometer aircraft carrier reference system, an infrared link to transmit

reference information to the aircraft on deck, and sea alignment systems on board the aircraft. The ALIDADE method is scheduled to be operational in the 1980s.

J M B

A78-25150 Strategic positioning and traffic regulation in the terminal zone (Ordonnancement strategique et régulation du trafic en zone terminale) A J Fossard and N Imbert (ONERA, Centre d'Etudes et de Recherches de Toulouse, Toulouse, France) (European Organization for Civil Aviation Electronics Manufacturers, Assemblée Générale, Neuilly-sur-Seine, Hauts-de-Seine, France, Oct 14, 1977) Navigation (Paris), vol 26, Jan 1978, p 58-79 11 refs in French

A system of strategic positioning and tactical trajectory modification is proposed to rationalize aircraft arrivals and departures and to reduce fuel wastes due to delays, the system is applied to a control region 30 to 60 nautical miles from an airport. The strategic positioning is based on a prediction of spatial/temporal arrival points at the boundary of the control region and the assignment of descent trajectories (late arrivals are taken into account). The tactical trajectory modification includes aircraft velocity and heading corrections during the descent phase. A simulation of the system involving about 200 approaches of various types is reported.

A78-25176 Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977 Conference sponsored by the Society for the Advancement of Material and Process Engineering Azusa, Calif, Society for the Advancement of Material and Process Engineering (National SAMPE Technical Conference Series Volume 9), 1977 575 p \$40

The performance of materials relevant to aircraft construction is discussed, and improved methods of evaluation are described. Metals and composites are examined from the viewpoint of manufacturer, military, and airline experience. Areas of interest include fracture mechanics, materials in marine applications, corrosion prevention, durability and reliability, and adhesion. Topics reported on include high strength aluminum alloys, measurement techniques for low expansion materials, stress corrosion of structural adhesive bonds, high-strength steel processing variables that affect fatigue, lubrication of equipment for waste water reclamation, high-modulus graphite/epoxy tubes, and advanced composites for high-temperature applications.

M.L.

A78-25177 The need for improved materials in integral aircraft fuel tanks M H Trimble (Delta Air Lines, Inc., Atlanta, Ga.) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga., October 4-6, 1977 Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1977, p. 3-8 5 refs

This paper is based on an extensive Engineering Investigation of corrosion frequently found in jet aircraft integral fuel tanks. Documentation will be presented concerning the cause, the effects, and corrective action program implemented. The evidence presented will clearly show the need for development and use of improved coatings, sealants, and assembly methods in future jet aircraft fuel tanks.

(Author)

A78-25180

Analytical representation of the initial quality of fastener holes J L Rudd (USAF, Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977

Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p. 27-39 8 refs

This paper describes a method, the Equivalent Initial Quality Method, of analytically representing fastener hole initial quality

resulting from material and structural manufacturing and processing operations. The representation is accomplished by representing the imperfections which are either inherent in a material or introduced during the manufacturing of a structure with a fatigue crack of a particular size and shape. Such a representation allows the damage accumulation process to be considered as entirely crack growth with zero time to initiate a crack. The Equivalent Initial Quality Method can be used both to determine the operational limits (i.e., economic repair limit, inspection interval and fracture limit) of existing aircraft and in the design of new aircraft. Applications of the method are presented which include its use on the F/RF-4C/D, F-4E(S), and A-7D damage tolerance and life assessment programs. Potential applications and possible limitations of the Equivalent Initial Quality Method are discussed.

A78-25185 Metallurgical behavior of arresting gear deck pendants L Moskowitz (U.S. Navy, Naval Air Engineering Center, Lakehurst, N.J.) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga., October 4-6, 1977 Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1977, p. 87-99

The paper discusses were breakage in cables used as deck pendants on aircraft carriers. Visual inspection, metallographic, SEM, microhardness, tensile, and impact investigations were conducted. The more common cause of premature were breakage is a form of low-cycle fatigue aggravated or caused by cracks in the base metal emanating from cracks in the brittle surface layer. A brittle martensitic surface layer, possibly a special fine-celled form of martensite mixed with ferrite or retained austenite, is produced by rapid sliding of a hook when an arrestment occurs. These martensitic-type layers greatly reduce the force required for fracture, especially after the cable becomes deformed to an oval shape.

A78-25194 Evaluation of protective coatings applied under adverse conditions D L Behmke (U S Navy, Naval Air Engineering Center, Lakehurst, N J) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977

Avissa Calif. Society for the Advancement of Material and Process

Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p. 224-235

Major maintenance problems in the case of the launching area aboard aircraft carriers are related to corrosion effects. Flight deck hardware is exposed to cyclic heat (400 F max), hydraulic fluid, lube oil, jet fuel, sea water spray, aqueous film forming foams, and a marine atmosphere. A program was, therefore, initiated to obtain performance data on various primer coatings applied under adverse conditions and tested in a simulated shipboard environment. Twenty protective coatings were selected on the basis of a literature search along with four rust stabilizing pretreatment formulations. A better performance of several of the selected coatings compared to previous exposure tests is traced to a heavier coating thickness used in these later tests. The results suggest that a multiple coat system of approximately 8 mils thickness will provide adequate corrosion protection in the catapult/flight deck environment.

A78-25196 Today's non-metallic composite airframe structure - An airline assessment M H Kuperman and R G Wilson (United Air Lines, Inc., San Francisco, Calif.) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977

Azusa, Calif , Society for the Advancement of Material and Process Engineering, 1977, p 255-275 15 refs

The environmental durability and repair characteristics of new high performance composite materials considered for a use in aircraft design can be evaluated best on the basis of actual in-service experience during routine airline operation. A description is presented of problems with nonmetallic composite structure on today's aircraft. This structure consists mainly of epoxy-resin-

reinforced fiberglass skins over 'Nomex' or phenolic honeycomb core. The ply count may vary from three to fourteen. It has been found that heavily loaded panels tend to deteriorate more quickly from environmental effects than lightly loaded panels. Design improvements are discussed, taking into account impact damage, lightning strike and moisture resistance, flammability, and corrosion, erosion and hole elongation. Attention is given to design objectives for nonmetallic airframe structure and cost effective design for durability.

A78-25197 Service experience of composite parts on the L-1011 and C-130 R H Stone (Lockheed-California Co , Burbank, Calif) and W E Harvill (Lockheed-Georgia Co , Marietta, Ga) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga , October 4-6, 1977 Azusa, Calif , Society for the Advancement of Material and Process Engineering, 1977, p 276-288 9 refs

Composite flight service programs are in progress on two Lockheed aircraft, the L-1011 and C-130 A set of Kevlar-49/epoxy fairings are being flight tested on three L-1011's, and have had no major service problems after 10,000 hours service. The center wing box aluminum skins and hat stiffeners were reinforced with pre-cured, bonded boron/epoxy strips on three C 130's. After almost three years and over 4000 flight hours, these components are continuing to perform satisfactorily in service. Another flight service component on the L-1011 is a graphite/epoxy floor post, which is free of service problems or defects after 10,000 flight hours. These components provide significant verification of the serviceability of all three major composite reinforcement types.

A78-25199 Application of composites on civil aircraft A E Anderjaska and J R Soderquist (FAA, Engineering and Manufacturing Div, Washington, D C) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977 Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p. 297-304

The requirements of primary concern in a civil certification of composite aircraft structures are considered. The materials must be shown to be suitable and durable and the fabrication processes must be shown to be reliable. The structure must be shown to support design ultimate load without failure. Areas of special consideration are also discussed, taking into account the repeated exposure of the structure to extremes of temperature and moisture. It is pointed out that manufacturing processes and test procedures should be carefully evaluated to assure that the moisture problem is not aggravated or improperly assessed. A description is presented of the experience obtained in scheduled airline service with components consisting of composites. Attention is given to a boron/epoxy wing foreflap, graphite/epoxy spoilers, graphite/polysulfone spoilers, and a graphite/epoxy floor.

A78-25200 * Material development for laminar flow control wing panels L E Meade (Lockheed-Georgia Co , Marietta, Ga) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga , October 4-6, 1977 Azusa, Calif , Society for the Advancement of Material and Process Engineering, 1977, p 305-312 Contract No NAS1-14409

The absence of suitable porous materials or techniques for the economic perforation of surface materials has previously restricted the design of laminar flow control (LFC) wing panels to a consideration of mechanically slotted LFC surfaces. A description is presented of a program which has been conducted to exploit recent advances in materials and manufacturing technology for the fabrication of reliable porous or perforated LFC surface panels compatible with the requirements of subsonic transport aircraft. Attention is given to LFC design criteria, surface materials, surface concepts, the use of microporous composites, perforated composites, and perforated metal. The described program was successful in that fabrication processes were developed for producing predictable perforated panels both of composite and of metal.

A78-25202 Durability of adhesive bonded honeycomb sandwich in accelerated adverse environments D R Askins (Dayton, University, Dayton, Ohio) and H S Schwartz (USAF, Materials Laboratory, Wright-Patterson AFB, Ohio) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977

Azusa, Calif , Society for the Advancement of Material and Process Engineering, 1977, p. 329-350

The environmental degradation of various types of honeycomb core sandwich constructions was investigated. The constructions included combinations of aluminum and plastic core materials with aluminum, graphite composite, and fiberglass composite skins and various types of adhesives. The objectives of the investigation were to assess (1) the degree of improvement in durability of new, corrosion resistant aluminum over the untreated type, (2) the significance of the adhesive on interfacial durability, (3) possible adverse galvanic corrosion of aluminum honeycomb bonded to graphite composite skins, and (4) comparative durability of aluminum versus plastic honeycomb Analysis of the results established the significance of environmental degradation upon the various skin/core/adhesive combinations and assessed the existence and extent of synergistic interactions between the various structural constituents and the environmental factors (Author)

A78-25205 In-service performance of polyurethane and fluorocarbon rain erosion resistant radome coatings G F Schmitt, Jr (USAF, Materials Laboratory, Wright-Patterson AFB, Ohio) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977 Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p. 377-391

Erosion effects produced by rain on radomes and other exterior plastic parts of aircraft and missiles are a serious problem for an operation at subsonic and, even more, at supersonic speeds. The use of ceramic caps or all-ceramic radomes presents certain problems in connection with the inherent brittleness of this material, thermal mismatch problems, and the structural weaknesses of the ceramics Polyurethane and fluorocarbon coatings were, therefore, developed to provide for the radome protection against rain erosion under subsonic flight conditions. Initially developed polyurethane coatings showed outstanding performance in actual service. However, the polyurethanes are limited to service temperatures of not more than 150 C in case of long-term exposure, while 175 C can be tolerated for periods up to 24 hours. A variety of thermally stable polymers were investigated with the objective to obtain a coating material which can withstand higher temperatures. The investigation led to the development of a new fluoroelastomer coating for applications involving a long-term exposure to 260 C

A78-25207 C-141A service experience - Materials and processes. L D Griffin and D Latterman (USAF, Warner Robins Air Logistics Center, Robins AFB, Ga) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977 Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p. 445-456

The C-141A, which was first delivered to the U.S. Air Force (USAF) in late 1963, has become the intercontinental workhorse of the USAF Military Airlift Command. The primary structure of the C-141 represents a combination of high-strength aluminum and steel alloys. The principal structural materials are 7075-T6 and 7079. T6 aluminum and 4340 steel. Fatigue has not been a major problem with the 7075-T6 structure in the C-141A. This is mainly the result of the moderate operating stress levels for most of the aircraft structure. A number of examples are considered for corrosion problems which occurred in connection with the 4340 steel. Problems experienced with honeycomb structures are related to the difficulty of maintaining honeycomb, the cost of maintenance and inspection problems.

A78-25208 Service experience and materials evolution in Air Force jet engines L D Parsons, R H Williams, and C A Kelto (USAF, Materials Laboratory, Wright-Patterson AFB, Ohio) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga, October 4-6, 1977 Azusa, Calif, Society for the Advancement of Material and Process Engineering, 1977, p 457-469 19 refs

Developments concerning cold section components in Air Force jet engines are examined Radial-flow air compressors utilized in early gas turbine engines were operating at low temperatures and could, therefore, be fabricated of strong and light but thermally unstable materials such as aluminum alloys. The axial-flow compressors used currently in large engines are partly exposed to temperatures as high as 1300 F. A use of nickel, cobalt, or iron-base superalloys is, therefore, required for the manufacture of components exposed to such temperatures. Titanium has become the material of choice for rotating parts in environments below 1000 F Special design problems related to unexpected and unpredictable compressor failures are discussed, taking into account difficulties related to the employment of titanium and approaches for overcoming the difficulties. Attention is also given to hot section failures, the development of nickel-base alloys containing the reactive metals Al and Ti, and the employment of high chromium, high-titanium nickel-base alloys

A78-25209 S-3A composite spoiler in-service evaluation R C Knight and S A McGovern (Vought Corp., Dallas, Tex.) In Materials and processes - In service performance, Proceedings of the Ninth National Technical Conference, Atlanta, Ga., October 4-6, 1977 Azusa, Calif., Society for the Advancement of Material and Process Engineering, 1977, p. 470-477

Seven ship sets of S-3A graphite/epoxy lower spoilers are installed on East Coast and West Coast Naval squadron aircraft as part of the S-3A Composite Spoiler Service Tracking and Evaluation program Spoiler usage data has been gathered pertaining to flight hours, inspections, repairs, removals, and special incidences pertinent to spoiler function From the monitoring of the composite spoilers, the service environment in which composites will exist is being defined, along with the performance of composite structure in a service environment (Author)

A78-25261 Air France's new 'freight' installations at Charles de Gaulle Airport at Roissy, France (Les nouvelles installations 'fret' de la compagnie nationale Air-France sur l'Aéroport Charles de Gaulle à Roissy en France) M J Gardez and M M Roger (Jeumont-Schneider, Puteaux, Hauts-de-Seine, France) Sciences et Techniques, Feb 1978, p 38-42 In French

The paper describes a new type of airport freight installation designed for greater mechanization on the runway side. The Cargo Dock, as it is called, enables continuous loading and unloading of large aircraft, made possible by raising by 5 m the zones of mechanized stock and introducing a mechanized conveyance path between these zones and the aircraft bridge, that takes into account the variations of height and inclination of the aircraft Special liaison bridges are described.

A78-25263 The new railroad artery Paris-Sud-Est and high-speed trains. How the Paris Sud-Est was born - Basic options (La nouvelle artère ferroviaire Paris-Sud-Est et les trains à grande vitesse Comment est né le Paris Sud-Est - Les options fondamentales). M. J. Dupuy. (Société Nationale des Chemins de Fer Français, Paris, France). Sciences et Techniques, Feb. 1978, p. 53-55. In French.

The desire to operate high-speed passenger trains on the new Paris-Sud-Est artery led to the decision that the line be reserved exclusively for passenger trains, since the optimal geometric parameters of the track layout in the case of high-speed trains do not coincide with those for freight trains. For example, for a high-speed train, the maximum allowable declivity in the track can be raised to 35 per mill, which would enable a considerable reduction in the cost

of laying the track. If the track load of high-speed-train car sets is limited to 16 or 17 tons, the cost of track maintenance will not offset the previously mentioned savings. Aerodynamic qualities of the high-speed train will enable high speeds to be attained at an energy consumption (energy per seat-km) which is smaller than that of the electric train 'le Mistral' and about half that of a medium-performance automobile.

PTH

A78-25384 Aircraft vortex effects on ground level pollutant concentration B T Delaney (Exxon Research and Engineering Co, Mountainville, NY) and J O Ledbetter (Texas, University, Austin, Tex.) Air Pollution Control Association, Annual Meeting, 70th, Toronto, Canada, June 20-24, 1977, Paper 77-41,5 16 p 20

The effect of aircraft wake vortex transport on airport air pollution models is assessed. In particular, the emission of nitrogen oxides by aircraft during one segment of the takeoff phase (i.e., during the first 943 m of climb) is not adequately simulated by models adopted by the U.S. Air. Force and the Environmental Protection Agency. In a study conducted at a major airport, inclusion of the effects of a rolled up contrarotating vortex pair generated by aircraft in the takeoff phase is found to improve the nitrogen oxides prediction capability of a conventional airport air quality model.

A78-25385 Remote sensing of aircraft wake vortex movement in the airport environment B T Delaney (Exxon Research and Engineering Co , Mountainville, N Y), R V Noonkester (U S Naval Electronics Laboratory Center, San Diego, Calif), and J O Ledbetter (Texas, University, Austin, Tex) Air Pollution Control Association, Annual Meeting, 70th, Toronto, Canada, June 20-24, 1977, Paper 77-41,4 16 p 16 refs

The use of FM-CW radar to track aircraft wake vortices at airports is discussed, remote tracking of vortices may aid in studying ground level pollution dispersion and the effects of vortex trails on encountering aircraft. Results are reported for a month-long test of a FM-CW radar system placed at the edge of a runway at Lindbergh Field, San Diego. V-echoes detected by the FM-CW radar appear to reflect the water and/or exhaust products trapped in the descending vortex trails of aircraft departing from the runway. Thus FM-CW radar detection seems a possible alternative to vortex sensing systems based on acoustic energy, anemometers, or laser backscatter.

A78-25391 Air quality impact of aircraft at ten U S Air Force bases D F Naugle, B C Grems, III, and P S Daley (USAF, Civil and Environmental Engineering Development Agency, Tyndall AFB, Fla) Air Pollution Control Association, Annual Meeting, 70th, Toronto, Canada, June 20-24, 1977, Paper 77-41,6 16 p 7 refs

Emissions data and a computerized Gaussian dispersion model were employed to study aircraft-produced pollutants (hydrocarbons, oxides of nitrogen, particulate matter, carbon monoxide and sulfur oxides) and ambient air quality at 10 major Air Force bases In addition, a modified version of the Pollutant Standards Index (PSI), developed by the Environmental Protection Agency to relate short-term pollutant concentrations to adverse health effects, was applied to the modeling results PSI values of 4.9 for NO2, 2.1 for CO, 1.9 for total suspended particulates and 1.4 for SO2 were found, the value at which health effects may occur has been set at 100 However, the effects of hydrocarbons, dependent on complex photochemical reactions in the base areas, require further study to assess the need for a control strategy

A78-25475 # Test of an aviation oil, increased-density MS-20 (Ispytanie aviatsionnogo masla MS-20 povyshennoi plotnosti) A I Shcherbinin, M A Popov, and R N Iudina (Groznenskii Neftianoi Nauchno-Issledovatel'skii Institut, Groznyi, USSR) Severo-Kavkazskii Nauchnyi Tsentr Vysshei Shkoly, Izvestiia, Seriia Tekhnicheskikh Nauk, vol 5, no 2, 1977, p 108, 109 In Russian

Performance characteristics of increased-density MS-20 (density 0 897 g/cc) and standard MS-20 (density 0 895 g/cc) aviation oils were experimentally compared, and it was found that the choice of oil does not affect operation parameters or cause any difference in carbon or gum deposition. Values of physical and chemical parameters of the two oils and data on piston performance and depositions are reported.

A78-25516 Return of the propeller R B Aronson *Machine Design*, vol 50, Feb 23, 1978, p 20-22, 24

The propeller has been rediscovered in connection with the search for ways to reduce aircraft fuel costs. Preliminary investigations indicate that aircraft turbine engines equipped with newly designed propellers would consume 10 to 40% less fuel than present turbofan engines and might also contribute to other reductions in aircraft operating costs. Prototype propellers have been under test that, theoretically, could move an aircraft at Mach 0.8. The redesigned propellers combine properties of older propellers with those of turbine-engine fans and have been called prop-fans. According to NASA, a prop-fan engine could be available commercially by 1990. Attention is given to prop-fan models, the solution of noise problems, and engine design considerations.

A78-25584 # Description of transient motion of aviation mechanisms with double-winding electromagnetic clutches (Opisanie neustanovivshegosia dvizheniia aviatsionnykh mekhanizmov s dvukhobmotochnymi elektromagnitnymi friktsionnymi muftami) V I Panchishin and V S Manzii In Solution of boundary value problems by means of mathematical modeling Kiev, Institut Matematiki AN USSR, 1976, p 124-130 5 refs In Russian

A78-25585 # Method for solving problems of flow past a wing with fuselage bounded by an ideal fluid flow (Metody resheniia zadachi ob obtekanii kryla s fiuzeliazhem ogranichennym potokom ideal roi zhidkosti) A O Ditman, S N Okunev, L G Tsvetkov, and A N Shebalov In Solution of boundary value problems by means of mathematical modeling Kiev, Institut Matematiki AN USSR, 1976, p. 140-148 In Russian

The problem of translational-circulatory flow of an ideal fluid past an undeformable wing-fuselage combination is formulated. The motion of the body is steady and the Chaplygin-Zhukovskii condition is satisfied at the vortex sheet. The flow is three-dimensional, but can be bounded by a surface parallel to the vector of steady motion. The problem was modeled on the basis of an electromagnetic-hydrodynamic analog. This analog lies in the fact that on the surface of a metal model placed in a magnetic field of ultrasonic frequency a condition is fulfilled which is analogous to the condition of nonpermeability on the surface of a solid in the flow of an ideal fluid, while a wire filled with a current in phase with the frequency is the analog of the vortex filament. The effects of finite fuselage dimensions, wing thickness and planform, and number and location of free vortices along the trailing edge were evaluated P.T.H.

A78-25636 # Application of a finite difference scheme to the numerical solution of the direct problem of a two-dimensional cascade of airfoils (Primenenie metoda ustanovlenia k chislennomu resheniau priamoi zadachi ploskoi reshetki profilei) G A Sokolovskii, V I Gnesin, R A Nazarenko, and Zh V Shliakhova (Akademiia Nauk Ukrainskoi SSR, Institut Problem Mashinostroeniia, Kharkov, Ukrainian SSR) Problemy Mashinostroeniia, no 3, 1976, p 78-85 9 refs In Russian

A mathematical model is developed for transonic flow in a two-dimensional airfoil cascade with (in the general case) shock waves. Consideration is given to the selection of the number and form of correct boundary conditions, ensuring stability and uniqueness of the numerical solution. A Godunov finite-difference algorithm is proposed for application to a two-dimensional cascade of arbitrary airfoils. Computational results are compared with experimental data on various turbine-blade cascades.

B J

A78-25703 Continuation and direct solution of the flutter equation C Cardani and P Mantegazza (Milano, Politecnico, Milan, Italy) Computers and Structures, vol 8, Apr 1978, p 185-192 17

The flutter equation is rewritten as a system of nonlinear algebraic equations. A continuation technique is used to solve the system, and the behavior of the system is established by a tracking procedure that proceeds from mode to mode among those of interest. When only flutter frequency and speed are needed and their values are approximately known, a direct search method is used Numerical examples are given, one for a three-degree-of-freedom system, the other for a system with six symmetric vibration modes and two rigid body motions.

A78-25728 # Similar solutions in nonequilibrium nozzle flows. M Muthukrishnan and N M Reddy (Indian Institute of Science, Bangalore, India) Indian Institute of Science, Journal, vol 59. Nov 1977, p 396-418 12 refs

A method of obtaining similar solutions for pseudo-one-dimensional, nonequilibrium nozzle flows is discussed. A diatomic gas undergoing simultaneous relaxation of both vibrational and dissociational modes including coupling among them is considered. Similar solutions for oxygen and nitrogen, with nonequilibrium effects starting from the nozzle reservoir are presented. General correlating parameters have been deduced from the transformed governing equations. It is shown that all the approximate correlating parameters that have been hitherto formulated using approximate methods can be deduced from the present general correlating parameters as special cases. With the present similar solutions the flow quantities in the nozzle can be readily obtained from the charts for any given initial conditions in the nozzle.

A78-25773 # Study of the propagation of higher modes in cylindrical ducts with impedance walls (Issledovanie rasprostraneniia vysshikh mod v tsilindricheskom kanale s impedantsnymi stenkami) M A II'chenko and A N Rudenko Akusticheskii Zhurnal, vol 23, Nov Dec 1977, p 884-889 7 refs In Russian

In this investigation of higher mode propagation in cylindrical ducts with uniform flow, the dependence of the propagation constant on the impedance is determined for every mode by conformal mapping. The branch point of the functions at which two modes are joined correspond to the optimum values for the given modes at which attenuation is maximum. The optimum impedance, the maximum value of attenuation, and the corresponding eigenvalues are calculated for the first 40 modes. Their dependence on the Mach number, frequency, and duct diameter is examined, and an asymptotic expression is derived. Experimental and theoretical results are compared.

A78-25777 Spanwise structure of the plane turbulent wake M L Barsoum, J G Kawall, and J F Keffer (Toronto, University, Toronto, Canada) *Physics of Fluids*, vol 21, Feb 1978, p 157-161 9 refs National Research Council of Canada Grant No. A-2746

An experimental investigation of a developed plane turbulent wake has been carried out to gain some insight into the spanwise structure of the large scale intermittent turbulent bulges. The results indicate that these bulges are three dimensional, and that their extent in the spanwise direction is less than in the streamwise direction and greater than in the lateral direction. No evidence of periodicity was found. (Author)

A78-25879 # Multipath fading simulation model and full-scale results H S Hayre (Houston, University, Houston, Tex.) In Union Radio Scientifique Internationale, Open Symposium, La Baule, Loire-Atlantique, France, April 28-May 6, 1977, Proceedings Issy-les-Moulineaux Hauts de-Seine, France,

Comite National Français de la Radio-electricite Scientifique, 1977, p 475-480 10 refs

Vertically and horizontally polarized electromagnetic signals have been simulated for multipath fading applications such as microwave landing systems and aircraft antenna coverage. It has been found that the simulations are valid for both remote and low angle separated receiver locations. Error distributions for digital data transmission during multipath conditions are not associated with beam shape and positional shift errors often found in microwave landing systems. Environmental conditions are noted to influence error analysis during multipath fading.

A78-25945 # Experimental research on high lift airfoil section HL235 J Sato (Tokyo, University, Tokyo, Japan) Tokyo, University, Faculty of Engineering, Journal, Series A, no 15, 1977, p 26, 27 13 refs In Japanese

A high lift airfoil section which does not have sharp pressure suction peaks around its leading edge even at high incidence has been designed using numerical wind tunnel computer program. The section has been tested in low speed wind tunnels at a Reynolds number of 3.3×10 to the 5th and is proved to have C-Lmax of 1.78 and (L/D)max of 70 at C-L=1.5 (Author)

A78-26000 # The Mi-6A helicopter (Vertolet Mi-6A) A F Vakhitov and B V Burov Moscow, Izdatel'stvo Transport, 1977 220 p In Russian

The work examines the design, flight performance and aero-dynamic characteristics of the Mi-6A helicopter. The following structures and systems are discussed in detail, with copious technical data and diagrams the fuselage, takeoff and landing equipment, the powerplant, the transmission the propellers, and the hydraulic system. Consideration is also given to cabin heating and ventilation, the anti-icing system, the safety equipment, the balancing and leveling of the helicopter, and performance of the helicopter in winter conditions.

A78-26036 Recent progress and technical and economic outlooks in the processing of materials for airframe elements (Progrès récents, perspectives techniques et économiques, dans la mise en oeuvre des matériaux pour cellules) G Hilaire (Societé Nationale Industrielle Aérospatiale, Direction de la Qualité, Paris, France) and J-P Brusson (Societé Nationale Industrielle Aérospatiale, Direction industrielle, Paris, France) (Colloque des Aciers et Alliages Spéciaux dans l'Aéronautique, 7th, Le Bourget, Seine-Saint-Denis, France, June 1977) Matériaux et Techniques, vol 65, Nov-Dec 1977, p 659-672, Discussion, p 672 In French

A78-26040 Assessment of processing methods for titanium alloys for aircraft structures (Bilan des moyens de mise en oeuvre des alliages de titane pour structures d'avions) J Bevalot (Avions Marcel Dassault-Bréguet Aviation, Vaucresson, Hauts-de-Seine, France) (Colloque des Aciers et Alliages Spéciaux dans l'Aéronautique, 7th, Le Bourget, Seine-Saint-Denis, France, June 1977) Matériaux et Techniques, vol 65, Nov-Dec 1977, p 695-700, Discussion, p 701

An economic and technical assessment of the feasibility of using titanium alloys for airframe elements is presented. Attention is given to mechanical and chemical processing, cold-forming (for alphatitanium alloys), hot-forming (for alpha-beta titanium alloys), arc welding under an argon atmosphere, point-welding, and electron bombardment welding. Although the high cost of the raw material rules out a rapid rise in the use of titanium alloys for aircraft structures, economical processing techniques and the high fatigue resistance of the materials may make them at least competitive.

JMB

A78-26041 The development of materials for turbojets (Evolution des matériaux pour turboréacteurs) R Brunetaud (SNECMA, Paris, France) (Colloque des Aciers et Alliages Spéciaux

dans l'Aéronautique, 7th, Le Bourget, Seine-Saint-Denis, France, June 1977) Matériaux et Techniques, vol 65, Nov-Dec 1977, p 705-711, Discussion, p 711, 712 In French

High-performance materials for applications in turbojets are reviewed, with attention given to materials suitable for use at temperatures between 250 to 300 C in turbine and compressor disks, carters and structural elements, and turbine blades Glass fiber/resin, Kevlar/resin, carbon fiber/resin, and boron fiber/aluminum systems are considered, aluminum and titanium alloys, as well as high-performance steels, are also discussed Costs, density, moduli of elasticity, and fracture behavior of the materials are contrasted

JM B

A78-26107 # Effect of high levels of confinement upon the aerodynamics of swirl burners N Syred (University College, Cardiff, Wales) and K R Dahman (Continental Carbon Co , Houston, Tex) Journal of Energy, vol 2, Jan -Feb 1978, p 8-15 15 refs

The confinement ratio of a swirl burner/furnace combination is defined as the ratio of the cross-sectional area of the furnace to the cross-sectional area of the swirl burner, ignoring the effect of any bluff body. New experimental results are presented for the effects of high values of confinement ratio on swirling flow leaving a swirl burner Three differing configurations are tested straight exit to swirl burner, conical diverging exit plus large insert to swirl burner. and straight exit plus deflector plate to swirl burner. Velocity profiles are measured under isothermal conditions using a calibrated five-hole Pitot tube calibrated by the method of Lee and Ash (1956) It is shown that when the confinement ratio is 4, the expected aerodynamic flow patterns are considerably altered, due primarily to a reduction in the decay rate of swirl velocity, the main effect on the system is the generation of a central forward flow zone inside the central reverse flow zone. Aerodynamic flow patterns suitable for flame stabilization are identified

A78-26156 Principles and simulation of JTIDS relative navigation W R Fried (Hughes Aircraft Co., Fullerton, Calif.) *IEEE Transactions on Aerospace and Electronic Systems*, vol. AES-14, Jan 1978. p. 76-84. 17 refs

The time-synchronous operation and high accuracy time of arrival (TOA) measurement capability of Joint Tactical Information Distribution System (JTIDS) terminals makes possible a high performance relative navigation (RELNAV) function through addition of only software in the terminal's computer program. The principles of operation, the basic observation equations, and the system architecture for both absolute (geographic) and relative navigation are described. Sequential passive ranging by means of the TOA measurements, in conjunction with appropriate source selection logic and a recursive (e.g., Kalman) filter mechanization are employed to determine the user's position, velocity, and time bias. The filter algorithms and error sources, the software functional flow, and some simulation results are presented.

A78-26157 Multipath limitations on low-angle radar tracking A V Mrstik and P G Smith (General Research Corp., Santa Barbara, Calif.) *IEEE Transactions on Aerospace and Electronic Systems*, vol. AES-14, Jan. 1978, p. 85-102, 12 refs ARPA Order 2731

This paper investigates the problem of tracking targets at a low elevation angle in the presence of specular and diffuse multipath Quantitative estimates are derived of the elevation angles, and hence, range, at which targets of specified height can be accurately tracked A parametric approach is followed in which the long-standing uncertainty of how terrain forward-scatters at low grazing angles is recognized at the outset Particular attention is given to the effects of target motion which permit rejection of multipath components falling outside the radar tracker's passband. The results are presented in a form which can be readily applied to a spectrum of radar trackers with differing requirements. The limited experimental data on the specular and diffuse scattering parameters for several generic types of terrain are applied to estimate the significance of multipath under different situations and to indicate specific areas in which additional experimental data are critically needed (Author)

A78-26158 Multistatic-radar binomial detection A V Mrstik (General Research Corp., Santa Barbara, Calif.) *IEEE Transactions on Aerospace and Electronic Systems*, vol. AES-14, Jan 1978, p. 103-108. 5 refs

The performance of multistatic-radar binomial detectors is investigated. Although conceptually similar to the well-known 'M-out-of-N' detector frequently considered for monostatic systems, the multistatic detector must cope with false alarms generated by target ghosting as well as by noise threshold crossings. A procedure for deriving the detection statistics of multistatic binomial detectors is presented. The procedure is applied to derive the detection probabilities for a spectrum of false alarm probabilities, target densities, and numbers of radar receivers.

(Author)

A78-26159 Radar electronic counter-countermeasures S L Johnston (US Army, Missile Research and Development Command, Redstone Arsenal, Ala) IEEE Transactions on Aerospace and Electronic Systems, vol AES-14, Jan 1978, p 109-117 56 refs

The efficacy of radar equipment against jamming by electronic countermeasures (ECM) is secured by electronic counter-countermeasures (ECCM) Various types of ECCM are described, including those built into the transmitter, the antenna, the receiver-signal processor, and any combination of these Electromagnetic compatibility of various electronic systems with weapons systems is discussed Different types of ECM-ECCM matrix hardware are cataloged, although no mention is made of electronic counter-counter-countermeasures (ECCCM)

A78-26160 Some results on digital chirp S C Iglehart (Hughes Aircraft Co , Santa Monica, Calif) IEEE Transactions on Aerospace and Electronic Systems, vol AES-14, Jan 1978, p 118-127

Generating chirp waveforms by means of phase coding yields a simple, cost-effective mechanization. The coding process, however, introduces phase errors whose effect must be included in the design. An approximate analysis is presented, valid for moderate to high compression ratios, which allows error effects on compressed pulse amplitude and sidelobes to be calculated in a simple manner. The analysis provides criteria for selecting the coding bit width (sample rate), weighting network bandwidth, and phase-coder quantization interval and transition times. Weighting functions for maximizing the signal-to-noise ratio (SNR) or for producing desired close-in sidelobe performance are derived, as is an exact expression for the transmitted spectrum. Numerical results are presented for Gaussian and the maximum-SNR weighting. The results indicate that performance will be satisfactory for many applications.

A78-26167 Adaptive tracking filter for maneuvering targets G G Ricker and J R Williams (Interstate Electronics Corp., Anaheim, Calif.) *IEEE Transactions on Aerospace and Electronic Systems*, vol. AES-14, Jan. 1978, p. 185-193. 9 refs

A general method of continually restructuring an optimum Bayes-Kalman tracking filter is proposed by conceptualizing a growing tree of filters to maintain optimality on a target exhibiting maneuver variables. This tree concept is then constrained from growth by quantizing the continuously sensed maneuver variables and restricting these to a small value from which an average maneuver is calculated Kalman filters are calculated and carried in parallel for each quantized variable. This constrained tree of several parallel Kalman filters demands only modest computer time, yet provides very good performance. This concept is implemented for a Doppler tracking system and the performance is compared to an extended Kalman filter. Simulation results are presented which show dramatic tracking improvement when using the adaptive tracking filter. (Author)

A78-26229 # A quasisteady theory for incompressible flow past airfoils with oscillating jet flaps J M Simmons (Queensland, University, Brisbane, Australia) and M F Platzer (US Naval

Postgraduate School, Monterey, Calif) AIAA Journal, vol. 16, Mar 1978, p. 237-241, 14 refs. Navy-supported research, Australian Research Grants Committee Grant No. F70/17452

Quasisteady concepts are used for an approximate analysis of incompressible flow past airfoils with harmonically oscillating jet flaps. The instantaneous flowfield is considered as a sequence in the streamwise direction of steady flows with a properly enforced tangency condition between the jet and the external flow. The jet kinematics are found from experimentally determined jet decay characteristics, and the time-frozen jet is modeled by using Spence's steady jet flap analysis. Computed lift response shows substantial agreement with available measurements.

(Author)

A78-26230 # Potential flow around axisymmetric bodies - Direct and inverse problems M F Zedan and C Dalton (Houston, University, Houston, Tex.) AIAA Journal, vol. 16, Mar. 1978, p. 242-250. 18 refs.

The axial source distribution method for solving the direct and inverse problems of the incompressible potential flow around an axisymmetric body is modified by allowing the source intensity to vary linearly over the element length Comparison is made with the von Karman method (constant source strength) for the direct problem and with the method of Zedan and Dalton (1978) (referred to as ZD1) for the inverse problem. The present direct method was more accurate and stable than the von Karman method. It has the ability to deal with bodies having an inflection point in the meridian contour, and it requires only single-precision calculations. The present method for the inverse problem was more accurate than ZD1, especially for bodies with low fineness ratio. Fewer iterations are required in the present method than in the Bristow method (1974), but it cannot deal with bodies with sharp corners.

A78-26234 # Some singular aspects of three-dimensional transonic flow W C Chin (Boeing Commercial Airplane Co , Seattle, Wash) AIAA Journal, vol. 16, Mar. 1978, p. 275-277

Certain singular aspects in the steady formulation for threedimensional transonic flows are discussed. The method of inner and outer expansions is used to show how two separate limits can be distinguished for the inner crossflow problem, the first leading to Laplace's equation and the second leading to a mixed-type equation. The particular equation in any problem is determined by the relative value of an aspect ratio to a measure of the flow nonlinearity. The required matching process then determines the role of the outer small disturbance equation in calculating near field surface pressures

A78-26235 # Driver gas contamination in a high-enthalpy reflected shock tunnel R J Stalker (Australian National University, Canberra, Australia) and K C A Crane AIAA Journal, vol 16, Mar 1978, p 277 279 7 refs

The calculations of Davies and Wilson (1969) are extended in order to account for experimentally observed contamination of the test gas by the driver gas in a high-enthalpy reflected shock tunnel at shock Mach numbers down to 60% of the tailored interface value. At high primary shock speeds, the minimum Mach number in the boundary layer with respect to the transmitted shock does not occur at the wall, which suggests that bifurcation and, consequently, contamination are possible. By means of a momentum relation, the wall jet velocity could be calculated, which was then used to estimate the time to contamination of the test section flow.

A78-26238 # Entrainment characteristics of unsteady subsonic jets M F Platzer (U S Naval Postgraduate School, Monterey, Calif), J M Simmons, and K Bremhorst (Queensland, University, Brisbane, Australia) AIAA Journal, vol 16, Mar 1978, p 282 284 16 refs Research supported by the University of Queensland and U S Navy, Australian Research Grants Committee Grant No F70/17452

Recent results on the entrainment characteristics of two types of unsteady jet flows are presented and discussed namely, oscillating

jets with time-varying jet deflection and pulsating jets with time-varying mass flow. A fluidically oscillated jet shows increase of up to 55% in the entrainment as compared to a steady jet. Full jet pulsation is shown to have a powerful effect on entrainment. In this case, entrainment increases with frequency of pulsation. Volumetric flow rate measurements on a sinusoidally oscillated jet flap showed negligible variation from corresponding steady jet measurements. This indicates that any significant influence of jet oscillation on entrainment processes must be confined to the vicinity of the nozzle.

A78-26266 # Stresses and deformations in stiffened panels with rectangular cut-outs I - On case of uniform tensile loads. M Kuranisi, J Niisawa, R Sato, A Koiso, and T Nisimura Nihon University, Research Institute of Science and Technology, Journal, Aug 1977, p 205-220 In Japanese, with abstract in English

Formulas for calculating the stresses and deformations in panels, stiffened by stringers, with rectangular holes and with a uniform tensile load are presented, and the results obtained by use of these formulas are compared with experimental results. The theoretical analysis considers the case of six stringers instead of the actual number of ribs and stringers, and exact solutions to the six-stringer problem are provided. The procedure is intended for use in design problems involving aircraft and ship hulls.

M.L.

A78-26274 * # Three-dimensional canard-wing shape optimization in aircraft cruise and maneuver environments B M E de Silva and R L Carmichael (NASA, Ames Research Center, Moffett Field, Calif) American Institute of Aeronautics and Astronautics, Annual Meeting and Technical Display, 14th, Washington, D C, Feb 7-9, 1978, Paper 78-99 8 p 39 refs

This paper demonstrates a numerical technique for canard-wing shape optimization at two operating conditions. For purposes of simplicity, a mean surface wing paneling code is employed for the aerodynamic calculations. The optimization procedures are based on the method of feasible directions. The shape functions for describing the thickness, camber, and twist are based on polynomial representations. The primary design requirements imposed restrictions on the canard and wing volumes and on the lift coefficients at the operating conditions. Results indicate that significant improvements in minimum drag and lift-to-drag ratio are possible with reasonable aircraft geometries. Calculations were done for supersonic speeds with Mach numbers ranging from 1 to 6. Planforms were mainly of a delta shape with aspect ratio of 1.

A78-26470 The future determines the past - Bermuda I in the light of Bermuda II A F Lowenfeld (New York University, New York, N Y) Air Law, vol 3, no 1, 1978, p 2-10 47 refs

Differences between the First and Second U S -British Bermuda Agreements on air traffic are discussed. Attention is given to the 'fair and equal opportunity' clause in the First Bermuda Agreement and the 'fair competition' clause in the Second Bermuda Agreement. The Fifth Freedom clause of Bermuda I, which deals with secondary justification traffic, is critiqued, and the distinctions drawn in Bermuda II among transit, on-line connecting, and local traffic are analyzed. Rate making and rate abrogation provisions of the agreements are also considered.

A78-26471 Bermuda II and after T E Bridges (British Embassy, Washington, D.C.) Air Law, vol. 3, no. 1, 1978, p. 11-16

Some elements of the British viewpoint in renegotiating the Bermuda Agreement are presented. Particular attention is given to the capacity control provisions that have been incorporated in the Bermuda II Agreement, and to the increase in the number of U.S. gateway cities to Great Britain. The role of Bermuda II capacity control mechanisms in limiting competition on scheduled services is described, and the counterbalancing increase in charter and low-fare services is mentioned. Rationalization of the fare structure to lessen advantages for those booking in advance is proposed.

A78-26472 The impact of Bermuda II on future bilateral agreements R R Gray (Hale Russell Gray Seaman and Birkett, New York, N Y, Washington, D C) Air Law, vol 3, no 1, 1978, p 17-22

The effect of the Bermuda II air transport agreement on future bilateral pacts negotiated by the U.S. is assessed. The double-tracking system instituted by the agreement (a British carrier serving every route held by a U.S. carrier), as well as the gateway city policy and the reduction in U.S. carrier Fifth Freedom rights in the Pacific, is considered. However, double-tracking and restrictions of U.S. carrier Fifth Freedom rights will probably not be introduced into future bilateral agreements between the U.S. and other nations, as shown by recent Japanese-U.S. negotiations. The possibility that the Bermuda II agreement is illegal under U.S. law is also discussed.

A78-26474 The Concorde v the United States - Some conclusions S B Rosenfield (New England School of Law, Boston, Mass) Air Law, vol. 3, no. 1, 1978, p. 30-38 54 refs

Legal questions related to the approval of commercial service by the Concorde to the US are reviewed. The sixteen-month trial period for the Concorde at Dulles Airport, litigation over landing rights at Kennedy Airport in New York, and the possibility of Concorde service to other US airports figure in the discussion. The relevance of low-frequency vibration and vibration-rattle tests for determining the effective compliance of the Concorde with noise regulations is mentioned. The prospects of Concorde landing rights at Philadelphia and Dallas-Fort Worth are also assessed.

A78-26480 # Optimum design of a landing gear shock absorber system R Sankaranarayanan and J Nagabhushanam (Hindustan Aeronautics, Ltd., Bangalore, India) Aeronautical Society of India, Journal, vol. 28, May 1976 (Dec. 1977), p. 191-193

The nonlinear equations of motion of an oleo pneumatic shock absorber of a landing gear are set up for the touch-down condition. These are solved using an analog computer and the optimum orifice diameter is obtained. The criterion for optimization is that the integrated value of the modulus of the difference of energy stored in the shock absorber and the tire is a minimum. Application of this method to a particular landing gear shows that the theoretical value of the best orifice diameter agrees with the results obtained from drop tests.

A78-26481 # Maslen analysis of power-law shocks in inviscid hypersonic stream S Hariharan and N R Subramanian (Indian Institute of Technology, Madras, India) Aeronautical Society of India, Journal, vol. 28, May 1976 (Dec. 1977), p. 195-199 8 refs

The thin shock layer approximation of Maslen (1964) for inviscid hypersonic flow past smooth symmetric bodies has been applied to power-law shocks and the corresponding body shapes obtained. The existence of similarity solutions, as established by the hypersonic small disturbance theory, in regions away from the nose where nose bluntness will not be felt, is verified. Body-to-shock radii ratios as well as pressure and density ratios obtained by this method for various power-law indices have been compared with similar results given by Kubota. Body surface pressure compare excellently with calculations made using the laminar layer model. (Author)

A78-26482 # Wildhaber-Novikov profiles for aircraft gears - A photoelastic study of the efficiency of strength-utilisation K Ramachandra and K Lingaiah (Bangalore University, Bangalore, India) Aeronautical Society of India, Journal, vol 28, May 1976 (Dec 1977), p 201-205 5 refs Research supported by Bangalore University and Council of Scientific and Industrial Research

The experimental method of evaluating the strength-utilization factor, the ratio of the maximum contact-stress to the maximum bending-stress by three-dimensional photoelastic technique, for Wildhaber-Novikov circular arc gears, is explained in this paper. It was found that the experimental value of this factor ranges between

1 2 and 2 0 and that the profiles tested are suitable for casecarburized and nitrided steels. The experimental results are also compared with those obtained by theoretical analysis. (Author)

A78-26484 # Evaluation of torsional rigidity of circular arc aerofoil section twisted bars H B Khurasia, L D Balani, and S Rawtani (M A College of Technology, Bhopal, India) Aeronautical Society of India, Journal, vol. 28, May 1976 (Dec. 1977), p 213-217 5 refs

A method based on the solution of the integral equation approach and the evaluation of a modified warping function on the boundary of the section is discussed for the determination of torsional rigidity of any general cross-section. The method is used for circular arc aerofoil section and the study of change in its dimensional parameters on the value of torsional rigidity. A twist correction factor has also been evaluated through the use of which the torsional rigidity of twisted circular arc aerofoil section can be obtained. The results have been presented in the form of empirical formulae. (Author)

A78-26487 # A free-oscillation test rig for pitch-damping measurements in NAL trisonic wind tunnels H Sundara Murthy (National Aeronautical Laboratory, Bangalore, India) and T Narayana (Indian Space Research Organization, Vikram Sarabhai Space Centre, Trivandrum, India) Aeronautical Society of India, Journal, vol 28, May 1976 (Dec 1977), p 227-230 18 refs

A free-oscillation test rig has been developed for measuring pitch- or yaw-damping derivatives of sting-mounted models in a trisonic wind tunnel. The rig is limited in applicability to sting-mounted models with moderate fineness ratios and with fairly aft centers of rotation. Results of evaluation testing of the rig with a 25 deg cone model are in good agreement with published data. J.M.B.

A78-26488 # One axis artificial feel system S Balakrishna and A Santharam (National Aeronautical Laboratory, Bangalore, India) Aeronautical Society of India, Journal, vol 28, May 1976 (Dec 1977), p 231-236 12 refs

Joy stick feel forces, called proprioceptive cues, provide an important sensory feedback to the pilot Ideally the stick would possess feel forces governed by maneuvers, aerodynamic and structural forces and manual control requirements. Such ideal systems are not normally incorporated in aircraft, since these forces vary continuously and are difficult to produce artificially. This paper discusses a mechanization technique by which such a goal can be achieved. The technique consists of combining an electro-hydraulic position and load closed loop system which can accept any load-position-time command from an electronic function generator. The closed loop dynamic analysis is made and the system is synthesized. Such a feel system is being used in a ground based motion simulator.

(Author)

A78-26489 # Effect of blockage ratio on the turbulent near wake of a bluff body R K Sullerey, A K Gupta (Indian Institute of Technology, Kanpur, India), and C S Moorthy *Aeronautical Society of India, Journal*, vol 28, May 1976 (Dec 1977), p 237-239 8 refs

The influence of blockage ratio on the turbulent near wake of a bluff body is studied for blockage ratios of 10 6%, 17 7% and 25 0% Mean velocity and turbulence intensity distributions across the wakes are reported. Results indicate that the recirculation region is the source of most of the turbulence produced out of the mean flow. Viscous dissipation is the mechanism accounting for turbulence flow decreases beyond the mean flow.

A78-26498 Noise generated by low pressure axial flow fans III - Effects of rotational frequency, blade thickness and outer blade profile T Fukano, Y Kodama, and Y Takamatsu (Kyushu University, Fukuoka, Japan) Journal of Sound and Vibration, vol 56, Jan 22, 1978, p 261-277 7 refs

A78-26533 Black Hawk, Lamps and AAH M Lambert Flight International, vol. 113, Feb. 25, 1978, p. 503-509

Based on experience gained in Vietnam, the Army has opted to maintain and refine its helicopter assault capability. Design and operating parameters of the Sikorsky UH-60A (Black Hawk) are presented, together with a cutaway illustrating major components. Among the advantages of the UH-60A over the older UH-1 Huey are increased capacity, greatly increased maneuverability, better survivability against electronic warfare, improved med evac capability, and ease of maintenance through modular subsystems. Also discussed are the Navy Lamps Mk III and the AH-64 attack helicopter, with attention to anti-submarine warfare and anti armor capability, respectively.

A78-26549 # Precision DME for new landing system - Fast or slow pulse D Graziani (Fabbrica Apparecchiature per Communicazioni Elettriche Standard S.p.A., Milan, Italy) Electrical Communication, vol. 52, no. 4, 1977, p. 289-292 6 refs

Slow and fast pulse techniques for precision distance measuring equipment used for collocation with microwave landing systems are compared. Each system is evaluated on the basis of multipath echo effects on ground and airborne equipment, dynamic signal range, accuracy and timing requirements, compatability with existing equipment, modification to ICAO specifications, overall costs, and inherent risks. It is found that the fast pulse method offers both technical and economic advantages over the slow pulse method.

SCS

A78-26599 * A uniqueness proof for a transonic flow problem L P Cook (California, University, Los Angeles, Calif) Indiana University Mathematics Journal, vol 27, Jan - Feb 1978, p 51-71 11 refs Grant No. NsG-2171

The uniqueness of the first-order lifting-line correction to the two-dimensional transonic small disturbance potential for the flow past a lifting, three-dimensional, large-aspect-ratio wing is proved. The correction is the solution of a linear equation of mixed type in the plane slit along the positive x-axis. The boundary data consist of Neumann data, continuity restrictions, the Kutta condition, and the form of the asymptotic behavior at infinity. The zeroth-order flow is assumed to be shock-free, and hence the correction is shock-free.

PTH

A78-26739 The Concorde and cosmic rays J Lavernhe, E Lafontaine, and R Laplane (Compagnie Nationale Air France, Paris, France) Aviation, Space, and Environmental Medicine, vol 49, Feb 1978. p 419-421 5 refs

The Concorde is known to cruise at an altitude between 15,300 and 18,300 m and is therefore exposed to increased cosmic radiation due to the reduced thickness of the overlying protective shield of the atmosphere From January 21, 1976 - date of the inaugural flight to Rio de Janeiro - through December 31, 1976, Air France's Concordes operated 2642 hr of commercial flights between Paris and Rio de Janeiro, Caracas, and Washington During each of these flights, the amount of cosmic radiation dose equivalent rate was measured in order to collect a great amount of information about the possible risks of supersonic air transportation. It is found that the dose equivalent rates recorded do not represent the slightest risk for passengers, who would have accumulated about 150 mrem of radiation when flying a round trip every month throughout 1976, this figure is much lower then the annual limit of 500 mrem recommended for the general public. Likewise, a crew member flying a total of 500 hr aboard Concordes would absorb less than 500 mrem

A78-26756 # Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils (Charakterystyki temperaturowe predkosci ultradzwiekow i scisliwosci standardowych paliw i olejow naftowych) W Szachnowski and B Wislicki Instytut Lotnictwa, Prace, no 69-70, 1977, p 79-102 6 refs In Polish

The speed of sound and compressibility of liquid fuels and lubricating and hydraulic oils were measured by an ultrasonic interferometric method in the temperature range from near the solidification point up to 20 C for fuels and 90 C for oils Products tests were standard ones of Pollsh and non-Pollsh production, and included gasolines, jet fuels, diesel fuels, heating fuels, pure mineral lubricants with additions, synthetic aviation oils, viscosity improvers, and ethyl liquid

PT H

A78-26780 # Radar beacon tracking with downlinked heading and airspeed W M Hollister (MIT, Cambridge, Mass) and M S Venturino (MIT, Cambridge, Mass , R Dixon Speas Associates, Inc., Lake Success, N Y) Journal of Guidance and Control, vol 1, Jan -Feb 1978, p 21-25 7 refs

Position, ground velocity, and the wind are estimated using flight data acquired by the Discrete Address Beacon System (DABS) The measurements consist of radar range and bearing plus telemetered airspeed and heading sampled every 4 s. The data are used to determine statistics for the random errors in range and bearing, the random compass and airspeed errors, and the flight technical error in holding heading and airspeed. The random errors were found to be small in comparison to airspeed and heading-dependent compass biases. After correction for biases a fixed-gain filter provided wind estimates with an uncertainty of 2 knots (1 sigma) over a bandwidth of 0.05 Hz. The air-derived data were effective in improving tracking during vehicle accelerations or when a component of the DABS data was missing or inaccurate. Deterioration of the quality of measured data was detectable by monitoring the measurement residuals. The results have implications for systems which attempt to do large-area wind mapping with radar and telemetered air data (Author)

A78-26784 # Dual-control guidance strategy for homing interceptors taking angle-only measurements R J Casler, Jr (Charles Stark Draper Laboratory, Inc., Cambridge, Mass., Bethlehem Steel Corp., Bethlehem, Pa.) Journal of Guidance and Control, vol. 1, Jan Feb. 1978, p. 63-70. 9 refs. Grant No. DASG60-76 C 0020.

A discrete dual-control homing guidance law is proposed to improve intercept capabilities when angle-only measurements are available. A two-maneuver intercept is considered where the first maneuver inserts a measurable line-of-sight (LOS) rate to enhance the estimate of a key guidance parameter prior to the terminal maneuver used to null intercept miss. A numerical technique is proposed to evaluate the gradient of the variance of the chosen parameter with respect to a velocity correction. A first order search is used to find a velocity correction that minimizes or substantially reduces the terminal variance. The algorithm is extended to multiple-burn scenarios and is evaluated using the terminal estimation error in miss, velocity correction, and time-to-go, respectively, as the control criterion. The results yield interesting insights into the information content in the angle measurements. More importantly, they indicate that the dual control guidance law suggested here could reduce rms angle-measurement accuracy requirements by a factor of 10 or more, compared to that needed by a more traditional guidance approach. while still maintaining terminal intercept performance (Author)

A78-26785 * # Kalman filter divergence and aircraft motion estimators A E Bryson, Jr (Stanford University, Stanford, Calif) Journal of Guidance and Control, vol. 1, Jan.-Feb. 1978, p. 71-79 11 refs. Grant No. NGL-05-020-007

Kalman filters designed for many aerospace systems turn out to be unsatisfactory. The estimate errors become large compared to the errors predicted by the theory ('divergence'). One of the principal causes of this failure is that the system model contains states or modes that are undisturbed by the modeled process noise, and are neutrally stable (NS). One cure for such problems is periodic restarting of a time-varying Kalman filter. Other cures include minimum variance observers with eigenvalue constraints, added noise, pole-shifting, and destabilization. Several examples are given, including effective time-invariant estimators for the longitudinal and lateral motions of an airplane where several NS modes are undisturbed by wind gusts. An interpretation of these estimators as a

'strapdown IMU' without accelerometers, gimbaled gyros, or servos is given (Author)

A78-26791 # Discrete maneuver pilot models for flying qualities evaluation E D Onstott and W H Faulkner (Northrop Corp., Aircraft Group, Hawthorne, Calif.) Journal of Guidance and Control., vol. 1, Mar -Apr. 1978, p. 97-100 7 refs Contract No F33615-77-C-3008

A new approach to flying qualities specification and evaluation is presented which coordinates current research in the areas of pilot ratings, pilot-aircraft modeling techniques, and simulation and flight test procedures. A time domain pilot model is described which can model discontinuous and nonlinear pilot behavior in conjunction with completely general time-varying nonlinear aircraft models to simulate both discrete and continuous maneuvers. This pilot-aircraft model is applied to an existing set of in-flight simulation data, and calculates tracking error and time-on-target statistics for step target tracking that directly relate to the reported pilot comments and ratings. (Author)

A78-26793 * # Multivariable quadratic synthesis of an advanced turbofan engine controller R L DeHoff and W E Hall, Jr (Systems Control, Inc., Palo Alto, Calif.) Journal of Guidance and Control, vol. 1, Mar -Apr. 1978, p. 136-142 16 refs NASA-sponsored research, Contract No. F33615-75-C-2053

A digital controller for an advanced turbofan engine utilizing multivariate feedback is described. The theoretical background of locally linearized control synthesis is reviewed briefly. The application of linear quadratic regulator techniques to the practical control problem is presented. The design procedure has been applied to the F100 turbofan engine, and details of the structure of this system are explained. Selected results from simulations of the engine and controller are utilized to illustrate the operation of the system. It is shown that the general multivariable design procedure will produce practical and implementable controllers for modern, high-performance turbine engines. (Author)

A78-26795 * # Ride quality flight testing R L Swaim (Purdue University, West Lafayette, Ind) Journal of Guidance and Control, vol 1, Mar-Apr 1978, p 159, 160 5 refs Grant No NsG-4003

The ride quality experienced by passengers is a function of airframe rigid-body, elastic dynamic responses, autopilot, and stability augmentation system control inputs. A frequency response method has been developed to select sinusoidal elevator input time histories yielding vertical load factor distributions, within a given limit, as a function of fuselage station. The numerical technique is illustrated by applying two-degree-of-freedom short-period and first symmetric mode equations of motion to a B-1 aircraft at Mach 0.85 during sea level flight conditions.

A78-26796 # Squeeze film damper characteristics for gas turbine engines R A Marmol (United Technologies Corp., Pratt and Whitney Aircraft Group, West Palm Beach, Fla.) and J M Vance (Florida, University, Gainesville, Fla.) (American Society of Mechanical Engineers, Design Engineering Technical Conference, Chicago, III., Sept. 26-30, 1977, Paper 77-DET-23.) ASME, Transactions, Journal of Mechanical Design, vol. 100, Jan. 1978, p. 139-146. 9 refs. Army-supported research

A mathematical model for squeeze film dampers is developed, and the solution results are compared with data from four different test rigs. A special feature of the analysis is the treatment of several different types of end seals and inlets, with inlet feedback included. A finite difference method is used to solve the Reynolds equation, with a banded matrix inversion routine. The test data are taken from a new high-speed free-rotor rig, and from three previously tested controlled-orbit rigs.

(Author)

A78-26834 The damage sum in fatigue of structure components A Buch (Technion Israel Institute of Technology, Haifa, Israel) Engineering Fracture Mechanics, vol. 10, no. 2, 1978, p. 233-247, 35 refs

The effect of loading spectrum parameters and type of tested specimen was studied from the viewpoints of deviations from Miner's rule and of the value of the minimum cycle ratio sum at failure. It was found that a minimum cycle ratio sum may be chosen for sufficiently high values of spectrum parameters maximum stress and mean stress. The increase of the cycle ratio sum with the parameters of the spectrum is connected with the effect of increased strain hardening and residual compressive stresses. Some complex effects of the maximum stress and of the failure stress level on the damage sum were observed, which cannot be explained by the residual stress concept. A normal and a reversed loading sequence effect was established in two-stress level tests.

(Author)

A78-27027 Access study and simulation of the Marots communication system P J Emstad and G R Stette (Norwegian Institute of Technology, Trondheim, Norway) In International Conference on Communications, Chicago, III, June 12-15, 1977, Conference Record Volume 3 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p 41 6-108 to 41 6-112 Research sponsored by the European Space Agency

The first part of the paper describes multiple access, signalling and channel assignment of the maritime satellite communication system Marots. Several shore stations may on an equal basis be sharing the satellite capacity. Basic ideas of a shore-to-shore station control procedure are given. To verify and evaluate this part of the system prior to implementation, it was found necessary to simulate the system on a digital computer. The paper describes this simulator, written in SIMULA 67. The simulator has been designed with high degree of modularity and it can therefore be modified to represent systems of similar structure.

A78-27032 UHF demand assigned multiple access /UHF DAMA/ system for tactical satellite communications. J A Nooney (US Navy, Naval Electronic Systems Command, Washington, D.C.) In International Conference on Communications, Chicago, III, June 12-15, 1977, Conference Record Volume 3

New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 45 5-200 to 45 5-204

A military tactical communications system is described which uses 25 KHz hard-limiting UHF satellite repeater channels. Data will be transmitted over the system at a rate of 75 to 4800 bps, with a burst speed of 2400 to 32,000 bps with BPSK and QPSK modulation. Data interleaving and convolution encoding minimize interference from other satellite transmissions. System design and parameters are discussed with attention to user platforms, e.g., vehicles, surface ships, submarines, and aircraft. An increasingly automated assignment of priority channels will pre-empt data slots as necessary.

A78-27037 Null steering antennas in the tactical scenario F L Cloutier (USAF, Electronic Systems Div , Bedford, Mass) In International Conference on Communications, Chicago, III , June 12-15, 1977, Conference Record Volume 3 New York, Institute of Electrical and Electronics Engineers, Inc , 1977, p. 48 1-257, 48 1-258

This paper serves as an introduction to a series of papers relative to null steering antennas. Although null steering antennas have been the subject of much analysis and several types of systems are in use, the employment of this technology for tactical aircraft continues to be extremely difficult. Representative tactical scenarios and their impact on the design of airborne null steering antenna systems are discussed. The unstructured, multi-terminal, nodeless, unlimited access system used by tactical air forces constitutes a formidable challenge to the designer of advanced antenna systems. (Author)

A78-27038 Active reference null steering for spread spectrum signals G H Piesinger (Motorola, Inc., Government Electronic Div., Scottsdale, Ariz.) In International Conference on Communications, Chicago, III., June 12-15, 1977, Conference Record. Volume 3

New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 48 2-259 to 48 2-262

This paper describes Motorola's narrowband and wideband null steerers for airborne tactical communication systems. Both null steerers utilize the LMS algorithm and active references to achieve null depths on the order of 50 dB. The wideband configuration incorporates a weighted tapped delay line to achieve broadband null depths comparable to those provided by the narrowband system.

\(Author)

A78-27039

Analog versus digital null-steering controllers
G G Rassweiler, F Wallace, and C Ottenhoff (Harris Corp.,
Melbourne, Fla.) In International Conference on Communications,
Chicago, III., June 12-15, 1977, Conference Record Volume 3
New York, Institute of Electrical and Electronics
Engineers, Inc., 1977, p. 48 3-263 to 48 3-265

Adaptive optimization of phased arrays may be achieved by correlation control (steepest descent approach or optimum calculation) or search optimization control. The paper discusses several possible implementations of adaptive arrays, both analog and digital, and provides results of a digitally searched adaptive array. All the arrays use output power as a straightforward performance measure for minimization. Digital search control of analog RF weights, where no correlations are required, is discussed, the digital logic searches the weights to obtain a minimum output power. It is shown that for the adaptive processing of wideband RF signals (greater than 10 MHz), the simplest implementation appears to be the digital search of RF weights. The results of a simple four-element experimental digital search breadboard are examined, with special attention to questions of litter search and obtainable null depth. It is shown that even with actual weights and D/A control, digital search control using fine quantization can achieve very deep nulls in 30-40 iterations

A78-27040 Adaptive phased arrays for tactical communication systems C D Wang (Cutler-Hammer, Melville, N Y) In International Conference on Communications, Chicago, III , June 12-15, 1977, Conference Record Volume 3

New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 48 5-267 to 48 5-272. 9 refs

An adaptive array that rejects undesired or interfering signals for tactical communication systems is presented. The array pattern is controlled by an adaptive feedback system based on a steepest descent maximization of signal-to-interference ratio (SIR). Maximization of SIR is closely related to minimization of mean-square error. This paper presents an All Digital Adaptive Phased Array (ADAPA) performance in the presence of interference. Time domain design and analysis employing digital signal processing techniques to simulate the ADAPA performance are presented. The structure of the software routines reflect the exact hardware configurations to implement the system. Both the transient and steady-state behavior of the array can be evaluated. Examples of the simulations are included.

A78-27041 An adaptive interference cancellation system for elimination of co-located interference signals W F Geist (Hazeltine Corp., Greenlawn, N Y) In International Conference on Communications, Chicago, III, June 12-15, 1977, Conference Record Volume 3 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p. 48 6-273 to 48 6-276

Design concept and capabilities are described for a single-loop adaptive interference canceller that permits a substantial reduction in the frequency and spatial separation of colocated receive and transmit frequencies and antennas Performance specifications are frequency range from 118 to 136 MHz, cancellation greater than 55 dB null depth, and response time less than 20 msec. The canceller is designed to protect VHF voice communication receivers from multiple AM, FM, or CW interference signals. Test results suggest that the adaptive interference canceller offers a suitable alternative to currently used methods of eliminating colocated interference signals.

Rejection levels exceeding 55 dB can be achieved with a frequency separation between receive and transmit frequencies of only 14 kHz Since the canceller requires minimum alterations for installation, the impact on existing physical terminal facilities is negligible S D

A78-27049 The MAROTS maritime satellite programme T F Howell (European Space Agency, Paris, France) In International Conference on Communications, Chicago, Ill, June 12-15, 1977, Conference Record Volume 3 New York, Institute of Electrical and Electronics Engineers, Inc., 1977, p 321-324

The paper describes the MAROTS satellite programme of the European Space Agency, and continues by concentrating on the mission foreseen for this satellite for maritime communications. The paper illustrates services that will be possible, together with additional experiments, concerning access control and signaling, the performance of voice and data channels, the evaluation of various types of ship terminals, experiments to explore the use of satellites for distress and safety messages and operational experiments which may lead to the quantification of channel requirements for future service possibilities.

(Author)

A78-27139 # Experimental investigation of the temperature field in a plane channel carrying a stratified turbulent air stream (Eksperimental'noe issledovanie polia temperatury pri turbulentnom stratifitsirovannom techenii vozdukha v ploskom kanale) V A Kuleshov, A F Poliakov, and Iu V Tsypulev (Akademiia Nauk SSSR, Nauchno-Issledovatel'skii Institut Vysokikh Temperatur, Moscow, USSR) Teplofizika Vysokikh Temperatur, vol 15, Nov Dec 1977, p 1316-1318 10 refs In Russian

A78-27143 Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound H Sato and H Saito (Tokyo, University, Tokyo, Japan) Journal of Fluid Mechanics, vol 84, Feb 27, 1978, p 657-672 8 refs

Artificial acceleration and deceleration of the transition process in a two-dimensional wake were attempted. The wake was produced behind a thin aerofoil placed parallel to uniform flow. The sound from a loudspeaker introduced into the wake acted as an artificial disturbance. Various kinds of sound were tested and the effect on the transition was judged by the energy spectrum. Sinusoidal sound of the frequency of the maximum growth rate in the linear region decelerates the transition, whereas sound of a different frequency accelerates it. Sound of two or four frequencies is more effective in accelerating the transition when the frequencies are properly chosen White noise from the loudspeaker is not effective, but a two-peak noise specially designed for strong nonlinear interaction is the most effective in accelerating the transition process. These results can be explained by two empirical properties of the nonlinear interaction the growth suppression induced by a large amplitude fluctuation and the stronger interaction between fluctuations of closer amplitudes

(Author)

A78-27144 The noise from the large-scale structure of a jet J E Ffowcs Williams and A J Kempton (Cambridge University, Cambridge, England) *Journal of Fluid Mechanics*, vol 84, Feb 27, 1978, p 673-694 24 refs

In this paper we assess the importance as a noise source of the well-ordered large-scale structure of a jet. We propose two simple models of the structure the first emphasizes those features in common with waves that initially grow on an unstable shear layer but eventually saturate and decay, while the second regards the abrupt pairing of eddies as the most significant event in the jet's development. Our models demonstrate the possibility that forcing at one frequency could increase the broad-band noise of a jet, though, for jets with supersonic eddy convection velocities, the sound propagating in the direction of the Mach angle retains the spectrum of the excitation field. These features are consistent with the available experimental data, and strongly support the view that the large-scale structure of jet turbulence provides the dominant contribution to jet noise.

(Author)

A78-27146 The wave system attached to a finite slender body in a supersonic relaxing gas stream Y L Sinai and J F Clarke (Cranfield Institute of Technology, Cranfield, Beds, England) Journal of Fluid Mechanics, vol 84, Feb 27, 1978, p 717-741 42 refs

The results of a companion paper are extended to encompass the flow about smooth, but otherwise general body shapes. The wave behavior depends on three important parameters, namely the body thickness ratio, a quantity proportional to the difference between the frozen and equilibrium sound speeds, and the ratio of a relaxation time to a characteristic flow time. Both analytical and numerical solutions have been obtained, account is taken of nonlinearity for complete spectra of the three parameters, enabling an assessment to be made of the evolution of the wave forms for a host of situations. In particular, it is possible to predict the structures of the shock waves in various regions, and it transpires that under certain conditions vibrational relaxation can overwhelm other dissipative effects.

(Author)

A78-27259 Fatigue resistance of aircraft propeller blades M N Stepnov, A S Seregin, O V Leonova, Iu L Sukhorosov, E I Kulikov, and E V Dunaev (*Problemy Prochnosti*, May 1977, p 36-39) Strength of Materials, vol 9, no 5, Jan 1978, p 550-554 7 refs Translation

In the present paper, fatigue data obtained for aircraft propeller blades and helicopter rotors of various type are generalized. The distribution of aircraft propeller fatigue strength logarithms is found to be satisfactorily described by a normal law. Equations providing a satisfactory description of the fatigue curves are derived, along with relations characterizing the behavior of the rms deviations of the number-of-cycle logarithms from the experiment.

V.P.

A78-27266 Nonuniformity of the flow, exciting vibrations in working turbine blades A S Laskin, N D Salivon, and V F Kondrat'ev (Leningradskii Politekhnicheskii Institut, Leningrad, USSR) (Problemy Prochnosti, May 1977, p 94-96) Strength of Materials, vol 9, no 5, Jan 1978, p 612-615 Translation

The flow behind a turbine blade cascade was studied by a continuously recording device. The nonuniformity of the flow depends on potential perturbations and the aerodynamic vortex wakes behind the blade edges. Plots of the nonuniformities are presented. Energy losses resulting from the nonsteady-state interactions of the blades and complications requiring attention to the first harmonic of the joint nonuniformities are considered.

A78-27267 Automated vibrating bench for studying fatigue in gas turbine blades with programmed changes in load and temperature V T Troshchenko, A P Voloshchenko, B A Griaznov, V A Rovkov, V G Grishko, N A Fot, V † Tseitlin, D S Elenevskii, R S Bekbulatov, and E G Konopliannikov (Akademiia Nauk Ukrainskoi SSR, Institut Problem Prochnosti, Kiev, Ukrainian SSR) (Problemy Prochnosti, May 1977, p 97-104) Strength of Materials, vol 9, no 5, Jan 1978, p 616-622 Translation

A78-27383 Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors (Fehleranalyse und Simulation eines Tragheits-Navigationssystems mit fahrzeugfesten Sensoren) H Baumann Braunschweig, Technische Universitat, Fakultat für Maschinenbau und Elektrotechnik, Dr.-Ing Dissertation, 1976–163 p. 89 refs. In German

The reported investigation has the objective to obtain information concerning the navigational errors which are to be expected as a consequence of effects related to the individual components of the system (sensors, computer). A simulation of the dynamics and the error characteristics of a strapdown integrating gyroscope with momentum feedback is conducted. It is found that the described procedure of 'ternary feedback' leads to amplitude-dependent frequency characteristics in connection with the existence of pronounced nonlinearity effects. Attention is also given to the

requirements which the onboard computer will have to satisfy, directional processes needed in connection with the great effect of the initial orientation on the accuracy of platform systems, and the effect of various component errors on the navigation accuracy in the case of a rocket flight trajectory and the flight path of an airliner

IG R

A78-27406 # Optimal aperture-shape for an antenna array (Ob optimal'noi forme apertury antennoi reshetki) lu F Uchaev Radiotekhnika, vol 32, Dec 1977, p 50-54 In Russian

Cost quality criteria are used to develop an optimization procedure for the aperture shape of a radionavigation-system antenna-array. The optimal shape for such an array is determined to be a surface of revolution with a curvilinear generatrix, determined in accordance with the obtained value of A-max(beta) - the required relationship between the effective surface of the array and the angle of elevation. Since this optimal shape is difficult to realize, it is suggested that quasi-optimal shapes (an aperture composed of simpler apertures in the form of conical or cylindrical surfaces with a common axis of symmetry and placed one on top of the other) be used instead.

A78-27451 All-Union Seminar on Inverse and Conjugate Problems of Heat Transfer, 2nd, Moscow, USSR, October 19-21, 1976, Proceedings (Vsesoiuznyi Seminar po Obratnym i Sopriazhennym Zadacham Teploobmena, 2nd, Moscow, USSR, October 19-21, 1976, Materialy) Inzhenerno-Fizicheskii Zhurnal, vol 33, Dec 1977 192 p In Russian (For individual items see A78-27452 to A78-27474)

The papers deal essentially with advanced methods of processing heat-test data and with inverse heat transfer problems which form the basis for analyzing heat transfer processes, modeling thermal modes of operation, and designing heat shields Practical applications of solutions to inverse and adjoint heat conduction problems are outlined VP

A78-27452 # Some aspects of the thermal design of flight vehicles and processing of heat-test data (Nekotorye problemy teplovogo proektirovaniia letatel'nykh apparatov i ikh eksperimental'noi obrabotki) B M Pankratov (Vsesoiuznyi Seminar po Obratnym i Sopriazhennym Zadacham Teploobmena, 2nd, Moscow, USSR, Oct 19-21, 1976) Inzhenerno-Fizicheskii Zhurnal, vol 33, Dec 1977 p 967-971 In Rissian

The current status of thermal testing and designing is reviewed and some methodological problems arising in such tests are examined Attention is given to the application of computer methods for solving inverse problems to the thermal design and modeling of flight vehicles for thermal constraints. It is shown that modern thermal testing requires rational planning (including the development of effective mathematical planning methods), as well as automation of the principal functions involved in data processing. The feasibility of simulating numerically complex unsteady heat and mass transfer processes occurring in the interaction between bodies and gas flows is

A78-27455 # Application of a new test method and a new wind-tunnel-data processing technique to the study of unsteady heat conduction processes (Primenenie novoi metodiki ispytaniia i obrabotki rezul'tatov eksperimenta v teplovoi aerodinamicheskoi trube pri issledovanii protsessov nestatsionarnoi teploperedachi) O M Alifanov, N I Batura, A M Bespalov, M I Gorshkov, N A Kuz'min and A I Maiorov (Vsesoiuznyi Seminar po Obratnym i Sopriazhennym Zadacham Teploobmena, 2nd, Moscow, USSR, Oct 19-21, 1976) Inzhenerno-Fizicheskii Zhurnal, vol 33, Dec 1977, p 988-992 In Russian

A78-27542 # Future CTOL aircraft characteristics J P Braaksma (Carleton University, Ottawa, Canada) ASCE, Transportation Engineering Journal, vol. 103, July 1977, p. 477-490 23 refs Research supported by the Air Transportation Administration of Canada, National Research Council of Canada Grant No. A-8927

A suitable planning of the design of the physical facilities of an airport requires a consideration of current and future aircraft characteristics. A description is in this connection presented of some of the main trends concerning the development of CTOL aircraft characteristics. Factors affecting aircraft development are examined, taking into account the air transport market, the supply of aircraft, and new developments in advanced technology. Seventeen aircraft characteristics are considered. No new aircraft types are expected to be introduced into service from now until 1980. The only problem airport operators would face during this period would be related to gate requirements and passenger handling inside the terminal building. If economic conditions continue to improve, then for the period from 1980-1990 new aircraft in the form of derivatives of existing aircraft will enter service. Assuming a continuous growth in the economy, it could be expected that larger aircraft of 700passenger to 900-passenger capacity would appear during the period from 1990 to the year 2000

A78-27547 Airport choice in low demand region F -B Lin (Clarkson College of Technology, Potsdam, N Y) ASCE, Transportation Engineering Journal, vol 103, Nov 1977, p 711-727 11 refs

Airport choice characteristics of residents in the Massena-Ogdensburg-Potsdam area of St Lawrence County, NY were studied using data obtained in a telephone survey. The area is remote from large U.S. metropolitan areas, Montreal Airport is the closest major airport. The most influential factors governing the choice of airport were found to be the international boundary, ground access distance, and level of service represented by flight frequency and number of reachable destinations. Airport choice behaviors were explained by a binary choice process. The modeling approach, which calls for the combination of limited data with heuristic reasonings, is described. The application of this method to the problem of choosing a site for a regional airport is considered.

A78-27548 Formulation of Iowa State airport system R L Carstens (Iowa State University of Science and Technology, Ames, Iowa) and J W Murphy ASCE, Transportation Engineering Journal, vol 103, Nov 1977, p 751-762 10 refs Research supported by the Iowa Department of Transportation, Engineering Research Institute and FAA

The paper describes a method for comparing direct economic benefits with the costs of developing general aviation airports to serve as incremental additions to a state airport system. Implementation of the method is discussed with reference to lowa and the airports there. Criteria for system formulation are explained, and methodological techniques, including direct benefits, indirect benefits, the map method, and the shortcut method are discussed. A basic selection of 25 airports was made, and 29 incremental additions to the system satisfied economic criteria. Since this system of 54 airports did not afford sufficient geographical coverage, an additional 26 airports were selected (by a described procedure) to provide 96.4% coverage and to serve (within 45 minutes surface travel.) 98.7% of the state's population.

A78-27567 # Tentative establishment of a mathematical model of a turbojet engine as a controlled system (Proba okreslenia modelu matematycznego silnika turboodrzutowego jako obiektu regulacji) F Lenort *Instytut Lotnictwa, Prace,* no 68, 1977, p 3-25 21 refs In Polish

With the aid of the equations of state of a turbojet engine known from the literature, a mathematical model of the engine, which is considered to constitute a controlled system, is determined in the form of a nonlinear difference-differential equation of the second order. The coefficients of this equation are derived by the method of regression functions on the basis of statistical data

obtained from engine flight tests. The regression functions are constructed, for particular coefficients, according to the principles of the theory of similarity as applied to the turbojet engine. The importance of the regression functions and the regression coefficients is assessed by statistical methods by applying Snedecor's F-test. The agreement between the regression functions and the experimental data is tested by the method of root-mean square errors. (Author)

A78-27568 # Static electricity in aviation and methods for preventing its effects II (Elektrycznosc statyczna w lotnictwie oraz sposoby zabezpieczenia przed jej skutkami II) K Zuchowicz Instytut Lotnictwa, Prace, no 68, 1977, p 27-46 11 refs In Polish

The article discusses problems associated with static electricity in aviation and suggests methods for preventing its effects. The factors which influence the formation of electrostatic charges during fuel flow are identified, and the necessary conditions for igniting mixtures of various fuels with the air are discussed. Techniques for reducing the possibility of static electricity formation during fuel flow are outlined.

A78-27588 The fluid dynamics of rarefied molecular flow over convex bodies - A new theory and applications. N Bellomo (Torino, Politecnico, Turin, Italy) Zeitschrift für angewandte Mathematik und Physik, vol 29, Jan 25, 1978, p 112-122 23 refs

A methodology is proposed for the determination of the interaction coefficients in the case of a system involving a monochromatic gas in contact with an aluminum surface. The methodology takes into account recent results obtained by Liu et al. (1977) and theoretical considerations reported by Bellomo et al. (1977). The scattering kernel corresponding to a gas beam interacting with an aluminum surface is determined and an expression is obtained of the dimensionless force and the heat flux in the case of an elementary area in Knudsen flow. The results are employed to determine the drag and the heat flux for convex bodies under rarefied gas conditions. The values of the accommodation coefficients are given on the basis of a minimization of the distance between a theoretical and an experimental function.

A78-27721 # Aircraft measurements of the spatial fluctuation characteristics of atmospheric radio emission at wavelengths of 0 8 and 1 35 cm (Samoletnye izmereniia prostranstvennykh kharakteristik fluktuatsii radiozlucheniia atmosfery na volnakh 0,8 i 1,35 cm) S P Gagarin and B G Kutuza (Akademiia Nauk SSSR, Institut Radiotekhniki i Elektroniki, Moscow, USSR) Akademiia Nauk SSSR, Izvestiia, Fizika Atmosfery i Okeana, vol 13, Dec 1977, p 1307-1311 8 refs In Russian

A78-27840 # A case for a new model for turbulent flame propagation U S P Shet, K S Padiyar, and M C Gupta (Indian Institute of Technology, Madras, India) In National Conference on Internal Combustion Engines and Combustion, 3rd, Roorkee, India, December 10-12, 1976, Proceedings Meerut, India, Sarita Prakashan, 1976, p 359-368 17 refs

This paper highlights the need for a fresh look at the mechanism of turbulent flame propagation. A critical review of the existing theories of turbulent flame propagation is made and the inherent contradiction in them is emphasized. Though the recent correlations of the turbulent burning velocity data are improvements over the earlier models, there are still some deficiencies in the correlations which are brought out in this paper. It is proposed that the correlations could be improved by considering the effects of both large-scale and small-scale eddies represented by two dimensionless parameters. The turbulent burning velocity data of Vinckier and Van Tiggelen (1968) could be correlated successfully according to the above proposal. The success of the correlation points out the need for a new model of turbulent flame propagation. (Author)

A78-27886 * Response of periodic beam to supersonic boundary-layer pressure fluctuations Y K Lin, S Maekawa, H Nijim (Illinois, University, Urbana, III), and L Maestrello (NASA,

Langley Research Center, Hampton, Va) In Stochastic problems in dynamics, Proceedings of the Symposium, Southampton, England, July 19-23, 1976 London, Pitman Publishing, Ltd , 1977, p 468-485, Discussion, p 486 10 refs

The response of a periodic beam (modeling a periodic fuselage) to supersonic boundary-layer pressure fluctuations is analyzed on the basis of a scheme in which a decaying turbulence is treated as a superposition of frozen-pattern components, thus allowing the structural response to be similarly superposed and the advantage of frozen-pattern analysis to be maximally utilized. The fundamental solution required for the construction of the total response is one corresponding to the excitation of a frozen-pattern sinusoid. To obtain this fundamental solution, the formulation follows Mead's wave-propagation method (1971), but also takes into account the effect of freestream velocity on the same side of the turbulence excitation and the effect of a cavity on the opposite side of the structural response is computed and the results are compared with experimental data.

A78-27887 Optimum structural design of sheet-stringer panels subjected to jet noise excitation S Narayanan (Indian Institute of Technology, Madras, India) and N C Nigam (Indian Institute of Technology, Kanpur, India) In Stochastic problems in dynamics, Proceedings of the Symposium, Southampton, England, July 19-23, 1976 London, Pitman Publishing, Ltd , 1977, p 487-513, Discussion, p 514 16 refs

The minimum weight design problem for sheet-stringer panels subjected to jet noise excitation is formulated in a reliability framework for the case of the jet-noise pressure distribution treated as a stochastic process. The problem is reduced to a nonlinear programming problem and solved on a digital computer using the unconstrained minimization problem. It is found that the optimum design is sensitive to constraints in specified probability of failure and fatigue damage level, but that the design is insensitive to the manner in which the constraints on stresses are applied. It is noted that the side constraint in the stringer spacing is active in all cases.

ΒJ

A78-27907 # On the flow in a centrifugal impeller II - Effects of change in impeller width S Murata, T Ogawa (Osaka University, Suita, Japan), and M Gotoh (Ebara Corp., Fujisawa, Japan) JSME, Bulletin, vol. 21, Jan. 1978, p. 90-97, 17 refs

In this paper, a method is presented to analyze the flow in a variable-width centrifugal impeller. This analysis has been based on Hoffmeister's method and new considerations have been added to the analyses of through flow and displacement flow. This method is applied to the calculation of nonviscous and incompressible fluid flow through the centrifugal impeller with thin logarithmic spiral vanes, the velocity and pressure distributions on the vane surfaces and the influence of the impeller width ratio on the performance of the impeller are shown. (Author)

A78-27908 # Decay and modification of trailing vortex S Tanaka (Osaka University, Suita, Japan), M Kaibara (Matsushita Electric Industrial Co., Ltd., Osaka, Japan), and A Tanaka (Nihon Steel Co., Japan) JSME, Bulletin, vol. 21, Jan. 1978, p. 98-103

Some experiments of decay and modification of a trailing vortex which is shed from the tip of a lifting wing, are described. Flow fields of the trailing vortex are shown and the effects of the air jet injection from the wing-tip on the attenuation of the disturbances caused by the trailing vortex are discussed. When the air jet is not injected, changes in the flow fields near the trailing vortex in the flow direction are quite small and the total circulation and the disturbances due to the trailing vortex such as the large circumferential velocity, defects in the axial velocity and the static pressure are maintained in the region far downstream of the wing. When the air jet is injected, vortex filaments are distributed over a wide region and the disturbances can be suppressed to small quantities. The turbulence caused by the trailing vortex increases with the distance from the wing when the air jet is not used, but the jet injection has the effect of attenuating the turbulence (Author)

A78-27910 # Swirl flow in conical diffusers Y Senoo, N Kawaguchi (Kyushu University, Fukuoka, Japan), and T Nagata (Kurume Technical College, Fukuoka, Japan) *JSME*, *Bulletin*, vol 21, Jan 1978, p 112-119 7 refs

Five conical diffusers with different divergence angles were tested to clarify the influences of swirl on the pressure recovery coefficients. Pressure recovery coefficients of all diffusers were improved by swirl, and the highest coefficient was observed in an 8-deg diffuser when the flow had a moderate swirl. The flow patterns in the diffusers were examined at various conditions to clarify the relationship between the swirl and the pressure recovery coefficient.

A78-27938 # Experimental verification of an annular aerofoil theory S Pivko Académie Serbe des Sciences et des Arts, Bulletin, Classe des Sciences Techniques, vol 57, no 11, 1977, p

The results of an approximate annular aerofoil theory are presented. To provide a check of the theory, calculated pressure distributions on both outer and inner surfaces of an annular aerofoil are compared to values measured in the wind tunnel. (Author)

A78-28056 # The supersonic flow past cusped wings (Sverkhzvukovoe obtekanie ostrokonechnykh kryl'ev) G P Voskresenskii, A S II'ina, and V S Tatarenchik PMTF - Zhumal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Nov-Dec 1977, p 35-42 In Russian

Solutions to numerical problems concerning the steady-state, supersonic, inviscid flow past cusped wings are presented. A shock wave is attached to the wing's front edge. A boundary problem having initial data given by a finite-difference method to the second order of accuracy is solved. Flow characteristics at the freestream Mach number 3.0, and at various angles of incidence for triangular, sweptback, and rhombiform wings having different profiles are reviewed. It is shown that surface variations in the central, upper, and particularly lower wing surfaces are important factors to be considered in analyzing this type of flow.

A78-28057 # Calculating the interaction of a turbulent near wake behind a step and a supersonic jet (Raschet vzaimodeistviia turbulentnogo blizhnego sleda za ustupom so sverkhzvhkovoi struei).

A N Antonov PMTF - Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Nov -Dec 1977, p 43-51 14 refs In Russian

An approximation method for calculating the interaction between a turbulent near wake behind a step and a supersonic flow is proposed. Calculations are also presented for the flow in the ground region of a truncated central body of an annular nozzle and the flow behind a one-dimensional step.

A78-28102 # Unsteady boundary layer with self-induced pressure (O nestatsionarnom pogranichnom sloe samoindutsirovannym davleniem) O S Ryzhov and E D Terent'ev *Prikladnaia Matematika i Mekhanika*, vol 41, Nov-Dec 1977, p 1007-1023 15 refs In Russian

Asymptotic equations are derived that govern the unsteady processes in a boundary layer with self-induced pressure. The pressure gradient is assumed to be determined by the growth of the displacement thickness of jets situated near the surface of the body. Second-order terms are retained in the asymptotic series. A solution satisfying a linearized system of equations for the principal terms of the expansions is constructed. The connection between unsteady phenomena and boundary layer stability is discussed.

A78-28147 # Antimisting fuel kinematics related to aircraft crash landings A San Miguel (U.S. Naval Weapons Center, China Lake, Calif.) Journal of Aircraft, vol. 15, Mar. 1978, p. 137-142, 12 refs. U.S. Department of Transportation Contract No. FA76-WAI-589

An approximate analysis is presented to quantitize the kinematic behavior of antimisting Jet A fuel in an airstream representative of survivable aircraft crash landings. Antimisting fuel data were generated from a fuel-expulsive airfoil placed in an airstream adjacent

to a pulsing propane flame. Measurements of burning-front velocities and accelerations were obtained from a camera located within the airfoil. These data were used in the analysis to predict the diameter, shear stress, and shearing strain rate of the average particle of antimisting fuel in the airstream under the airfoil. A description is given of the airflow-airfoil apparatus in the context of its simulation of crash landing conditions. The feasibility of using antimisting agents to suppress a fuel fire during a crash landing is evaluated.

(Author)

A78-28148 # Display augmentation in manual control of remotely piloted vehicles S J Merhav (Technion - Israel Institute of Technology, Haifa, Israel) and A J Grunwald Journal of Aircraft, vol 15, Mar 1978, p 182-189 12 refs Research supported by the Ministry of Defence

The effectiveness of display aids for manual control of remotely piloted vehicles by television during landing approach is investigated The task is lateral and vertical control along a required glide-slope trajectory in the presence of lateral and vertical random disturbances By superimposing suitable glide-slope reference lines on the TV monitor, the glide-slope error can be derived directly from the visual field. It is theoretically investigated whether and under what conditions the display of higher-order state components is required It is shown that for a body-mounted camera, essential angular rate information can be detected from the vertical relative motion of the visual field due to vehicle pitching. This information is particularly required for relatively slow vehicle dynamics. Rapid pitching, which occurs with fast vehicle dynamics, may be detrimental to its effective control. These disturbing motions can be easily eliminated by a gyrostabilized camera, but the essential angular and pitch information is also eliminated and control becomes difficult. A display configuration is proposed in which position, rate, and acceleration cues are derived from a single error displayed by special reference bars (Author)

A78-28149 # Ideal tail load for minimum aircraft drag E V Laitone (California, University, Berkeley, Calif) *Journal of Aircraft*, vol 15, Mar 1978, p 190-192 5 refs

It is found that aircraft can have a maximum weight-to-drag ratio when the tail load is slightly positive. This corresponds to the minimum trimmed drag of conventional aircraft having an aft tail. A fuel savings of up to 5% has been predicted for the proposed configuration.

A78-28194 # The Aérospatiale helicopter factory at Marignane (Wytwornia smiglowcow Aérospatiale w Marignane). W Waskowski Technika Lotnicza i Astronautyczna, vol 33, Jan 1978, p 6-10 In Polish

The paper outlines the production activities of Aerospatiale in the field of helicopters. Attention is called to the rapid growth of the helicopter-building industry in France. The sales and licensing policies of Aerospatiale are examined. The organization of the production and training activities at Aerospatiale plants is discussed.

P.T.H.

A78-28195 # Theory of dolphin-style glider flight and principles of dynamic flight I (Teoria przelotu szybowcowego metoda delfinowania oraz zasady lotu dynamicznego I) J Sandauer (Instytut Lotnictwa, Warsaw, Poland) Technika Lotnicza i Astronautyczna, vol 33, Jan 1978, p 10-16 5 refs In Polish

The current state of the theory of dolphin-style gliding and the flight tactics ensuing from it are reviewed. Optimal flight parameters under model meteorological conditions are analyzed. The theory of dolphin-style gliding is analyzed as a problem in variational calculus. The possibility of further progress in the use of vertical air currents is demonstrated.

PTH

A78-28196 # MSP/ITWL airborne measuring system (Pokladowy system pomiarowy typu MSP/ITWL) R Kudelski and W Zabkowicz Technika Lotnicza i Astronautyczna, vol 33, Jan 1978, p 16-18 In Polish

The design and operation of a modular airborne measuring system for measuring parameters of other aircraft are presented Since such a system involves the transducing of a variety of different signals into an electric signal, special attention is given to the problem of matching the output signals of the sensors. Matching is accomplished with the aid of a modular approach. The circuits of the three main modules—the potentiometer, the tensometer, and the thermometer modules—are described.

A78-28197 # Corrosion of fuel assembly components of turbine engines and its prevention (Korozja elementow agregatow paliwowych silnikow turbinowych i jej zapobieganie) J Blachnio and M Stukonis (Instytut Techniczny Wojsk Lotniczych, Warsaw, Poland) Technika Lotnicza i Astronautyczna, vol 33, Jan 1978, p 27-32 6 refs In Polish

This paper examines the general characteristics of the corrosion process in the components of the fuel feed system of jet engines. The essential features of chemical corrosion and electrochemical corrosion are discussed, and some attention is also given to biochemical corrosion. Factors accelerating corrosion are identified, and the main effects of corrosion are enumerated. Measures for preventing corrosion are described.

A78-28218 * # The year for shaping a digital operations R&D program H J E Reid, Jr (NASA, Langley Research Center, Flight Electronics Div, Hampton, Va) Astronautics and Aeronautics, vol 16, Mar 1978, p. 41-46, 63-9 refs

Digital systems which deal with functions outside the aircraft in commercial aviation are discussed with attention to navigation and communication. New systems of air traffic control (ATC) are described, including time division multiple access (TDMA) to ground-based ATC units and to the Navstar/GPS (global positioning system). Such innovations are expected to come on-line before the mid 1980s, and greatly increase air safety, while at the same time making a pilot's work easier.

A78-28219 * # Integrated controls for a new aircraft generation W D Mace and W E Howell (NASA, Langley Research Center, Flight Electronics Div, Hampton, Va) Astronautics and Aeronautics, vol 16, Mar 1978, p 48-53 12 refs

Many of the commercial aircraft now flying will have to be phased out in the early 1980s because of fuel inefficiency and unacceptable noise levels. This paper discusses the role of new digital technology in making aircraft more fuel efficient, more reliable, and quieter. Attention is given to the integration of sensing and control functions in an aircraft in order to provide a simple, lightweight, and high redundancy system. Technology under development now is expected to come on-line in the 1990s.

A78-28220 * # Coming cockpit avionics D McIver and J J Hatfield (NASA, Langley Research Center, Flight Electronics Div , Hampton, Va) Astronautics and Aeronautics, vol 16, Mar 1978, p 54 63 18 refs

Digital and display technology combined with human factors research under development today are expected to become operational in the commercial aircraft of the 1990s. Attention is given to reducing the pilot's workload and increasing aircraft reliability through integration of electronic systems, and through multi-mode displays. Recent advances in display technology are outlined, including electroluminescent panels, beam penetration color CRTs, liquid crystal modules, and LED panels and indicators. Research cockpits are described in terms of simplification of aircraft systems evaluation and control.

A78-28273 Modification of an ambient air quality model for assessment of U S naval aviation emittants K ! Weal, D W Netzer (U S Naval Postgraduate School, Monterey, Calif), and G R Thompson *Air Pollution Control Association, Journal*, vol 28, Mar 1978, p 247, 248 10 refs Navy-supported research

The landing-takeoff (LTO) cycle was modeled for USN purposes by modifying 'A generalized air quality assessment model for Air Force operations' (AQAM) to include operational modes such as hot refueling, field carrier landing practice, Navy touch-and-go, and visual flight rule approaches Take-off delays and operations peculiar to rotary wing operations (hover work, pad work, autorotations) were also incorporated, and a LTO cycle with 21 operational modes was derived. The simulation patterns of the added features are reported. Data were obtained by observation at an airbase, and seven simulations of airbase operations were performed. Pollution effects associated with several of the simulated situations are briefly described.

A78-28370 Structural castings for aircraft - A progress report from Boeing D D Goehler (Boeing Commercial Airplane Co , Seattle, Wash) *Metal Progress*, vol 113, Mar 1978, p 38-43

A cast aluminum structure technology (CAST) program is described. Its purpose is to establish necessary structural and manufacturing technologies and to demonstrate and validate the integrity, producibility, and reliability of cast aluminum primary airframe structures. The program goal is to demonstrate, for a certain aircraft, a minimum of 30% acquisition cost saving with no weight penalty. Foundry practices and manufacturing technology used to produce partial bulkhead castings are reviewed with attention to fluidity, holding temperature, pouring temperature, screening and filtering, degassing, mold and core making, chilling requirements, and weld correction. The costs, advantages, and disadvantages of three CAST concepts - stiffened web, hybrid, and truss - are compared.

M L

A78-28371 Use of hot-stage-equipped scanning electron microscope in weld repair study of jet engine turbine vanes J F Collins, C E Maduell, and L E Schwab (US Navy, Materials Engineering Div, Alameda, Calif) *Metal Progress*, vol 113, Mar 1978, p 44-51 11 refs

The paper is concerned with repair welds of first-stage air-cooled turbine vanes (Alpak coated IN 713) in the engines of antisubmarine warfare patrol aircraft exposed to the marine environment A hot-stage SEM test was developed to aid in weld repair evaluation by providing relative hot-corrosion characteristics of weld-repaired and re-Alpak-coated vanes. Repair welding of the vanes is complicated by their rapid rate of sulfidation, great propensity for cracking, and their complex construction, furthermore, the repaired vanes must be compatible with the Alpak coating system, which is a pack cementation diffused aluminum coating Weld repair characteristics and surface features are described.

A78-28374 Selecting plastics for aircraft applications H V Pellegrini (de Havilland Aircraft of Canada, Ltd., Downsview, Ontario, Canada) *Metal Progress*, vol. 113, Mar. 1978, p. 72-76

The paper describes the use of plastic in several aircraft components Basic design requirements for the floors of one model and the forward baggage compartments and landing gear blocks of another model are considered in connection with the properties of plastics or plastic hybrids which led to their selection. Stress strain curves for various fibers as well as specific tensile strength and specific tensile modulus of reinforcing fibers are compared. Structural adhesive bonding is discussed, and some characteristics of prepregs are examined.

A78-28399 Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections (Utilisation des informations Precilec /attitude et position avion/ pour les corrections géométriques des images) J C Carrou (Centre National d'Etudes Špatiales, Toulouse, France) In Workshop on Remote Sensing, Toulouse, France, October 26-28, 1976, Proceedings Volume 2 Toulouse, Groupement pour le Développement de la Teledétection Aérospatiale, 1977, p 407-420 in French

The Daedalus multispectral rotating scanner is used for the remote sensing of earth resources. These data are then recorded along with Preciled data on the attitude and position of the aircraft Corrections are made for geometrical errors, and it is found that a correction model employing Preciled data is significantly more accurate than a model not using these data.

A78-28436 The wear of aluminum-bronze on steel in the presence of aviation fuel W Poole and J L Sullivan (Aston, University, Birmingham, England) American Society of Lubrication Engineers and American Society of Mechanical Engineers, Joint Lubrication Conference, Kansas City, Mo, Oct 3-5, 1977, ASLE Preprint 77-LC-5C-1 6 p 13 refs Research supported by the Science Research Council and Lucas Aerospace, Ltd

A study has been made of the action of a commercially available corrosion inhibitor added to hydrofined aviation fuels in reducing the wear of aluminum bronze sliding on KE180, 13 percent chromium steel From measurements of friction and wear and an extensive examination of surfaces using Auger electron spectroscopy, a surface model has been proposed which elucidates the mechanism of wear protection (Author)

A78-28439 * Evaluation of aircraft brake materials T L Ho, F E Kennedy, and M B Peterson (Rensselaer Polytechnic Institute, Troy, N Y) American Society of Lubrication Engineers and American Society of Mechanical Engineers, Joint Lubrication Conference, Kansas City, Mo, Oct 3-5, 1977, ASLE Preprint 77-LC-68-2 8 p 9 refs Grant No NGR-33-018-152

A test program was carried out to evaluate several new high-temperature friction materials for use in aircraft disk brakes A specially built test apparatus utilizing a disk brake and wheel half from a small jet aircraft was used. The apparatus enabled control of brake pressure, velocity and braking time. Tests were run under both constant and variable velocity conditions and covered a kinetic energy range similar to that encountered in aircraft brake service The materials evaluation showed that two newly developed friction materials show potential for use in aircraft disk brakes. One of the materials is a nickel-based sintered composite, while the other is a molybdenum-based material Both materials show much lower wear rates than conventional copper-based materials and are better able to withstand the high temperatures encountered during braking. Additional materials improvement is necessary, however, since both materials show a significant negative slope of the friction-velocity curve at low velocities (Author)

A78-28451

1977 report to the aerospace profession, Proceedings of the Twenty-first Symposium, Beverly Hills, Calif, October 12-15, 1977 Symposium sponsored by the Society of Experimental Test Pilots Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, 255 p.

This book represents a conference whose purpose is to evaluate aerospace technology from the pilot's point of view. Among the topics covered are F.15, F-16, and F-18A flight testing, YC-14 and -15 prototype testing, Learjet pressure tests, UTTAS tests, and B-1 terrain following analysis.

A78-28452 F-16 flight test progress report R C Ettinger and M B Johnston (USAF, Flight Test Center, Edwards AFB, Calif) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif, Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p 1-13

The F-16 aircraft is evaluated in terms of aerial performance and weapons delivery capability. Test flights in both air-superiority and ground-attack modes were conducted to measure g-stress resistance, payload capacity, climb and cruise parameters, and maneuverability using visual and instrument systems. Attention is given to weapons configuration, and to the ability to track and destroy a target either on the ground or in the air.

D M W

A78-28453 F-15/16 canopy off testing I J Singleton (USAF, Flight Test Center, Edwards AFB, Calif) and W F Kendall, Jr (USAF, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif, Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p 14-32

The history of canopy loss in USAF aircraft during 1965-75 is reviewed in terms of pilot injury and subsequent difficulties in controlling the plane. It is found that since most canopy losses occur at low speeds (due to aircraft pressurization schedules), injury and control impairment are minimal if there is a windscreen, but severe if there is not. The unitary construction of the F-16 cockpit could, therefore, pose a problem in this regard. Tests are described in which dummies and humans were subjected to both simulated (wind tunnel) and actual (runway) canopy-off conditions in F-16 and one-and two-seater F-15 aircraft. Various evasive maneuvers are outlined to help reduce air drag around the pilot, and modifications in helmet design are discussed to help the pilot maintain communication with the ground. The possibility of a pop-up windscreen for F-16 emergency use is also mentioned.

A78-28454 F-18A W H Brinks (McDonnell Douglas Corp., St. Louis, Mo.) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 32-42.

This paper discusses the configurational development of the F-18 from the YF-17 prototype Various changes in the YF-17 are described in terms of the forseen mission requirements of the F-18, i.e., a carrier-based all-weather escort and interdiction aircraft Attention is given to the leading edge extension (LEX), whose main function is to produce a high energy vortex to provide maximum lift, especially at high angles of attack, and to handling characteristics, in general. Also dealt with are the aircraft's armaments, including the AIM-7F missile and automatic fire-control system.

A78-28455 YAV-8B/AV-8B advanced Harrier program C A Plummer, Jr (McDonnell Douglas Corp., St. Louis, Mo.) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 43-65

Modifications of the Hawker Siddeley Harrier are discussed in terms of the AV-8B Harrier, produced under license in the United States Attention is given to lift improvement devices (LIDs) and to wing and flap modifications, in general Program objectives for the YAV 8B prototype are outlined, including improved payload capability, flight radius, cruise thrust, and handling characteristics. Test results (both wind tunnel and flight) are summarized and supporting programs are reviewed Cutaway diagrams and design parameters of various aircraft structural components are also presented.

A78-28456 B-1 terrain following development P S Sharp (USAF, Flight Test Center, Edwards AFB, Calif) and R Abrams (Rockwell International Corp., El Segundo, Calif) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif, Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 67-84

This paper presents results of tests of the B-1 terrain following capability. The following components of the terrain following system are reviewed both separately and in coordination with each other forward looking radar, terrain following computer, radar altimeter, terrain following/flight control system adapter, automatic throttle system, and flight control/autopilot system. The primary armaments system, the short range attack missile (SRAM), is considered with reference to other system parameters. Operational requirements are outlined, and flight test results are presented with attention to risse-over-run descriptions of various flight courses, ranging in difficulty from flat (over ocean) to severe (1,000 to 1,500 meters over 16 km). The performance of the structural mode control system (SMCS) is evaluated in terms of flight course characteristics.

A78-28457 YC-15 development and test highlights · Phase III J P Lane (McDonnell Douglas Corp , St Louis, Mo) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif , Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p 85-111

Four phases of the YC-15 test program are described, with attention to Phase III, in which the propulsion system was reconfigured to four JT8D-17 engines, and the flaps were extended to the fuselage. Test program highlights are reviewed, including STOL capability on an unpaved runway, stability control augmentation system (SCAS) function, automatic localizer mode and engine evaluation, and thrust management STOL operational tests are stressed as being critical to the fulfillment of the mission requirements of the aircraft Diagrams and descriptions of various aircraft components and flight characteristics are also presented.

A78-28458 YC-14 flight test program R L McPherson (Boeing Co., Seattle, Wash.) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 112 127. 9 refs

The prototype STOL, YC-14, is evaluated in terms of configuration and performance. Attention is given to the electronic flight control system (EFCS) and to the flight test program, including envelope expansion by varying flap position, engine and thrust reverser, minimum speed, takeoff and climb, and approach and landing (using head-up display and ILS glide-slope reference). Tests proved that the upper surface blowing concept of powered lift is both practical and efficient, and that the prototype, in general, met or exceeded design specifications.

A78-28459 YC-14B prototype testing F D Hadden (Lockheed-Georgia Co , Marietta, Ga) and H Klein (USAF, Edwards AFB, Calif) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif , Oct 12 15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p 128-136

Tests in two phases, C-141 A baseline data testing and YC-141 B flight testing, are described in terms of design and operating characteristics. Included in the first phase are tests of configurational features, e.g., standard vortex generators, vortex generators and stall strips removed, a larger vortex generator, and stretch modifications (increased fuselage dimensions). The second phase tests flying performance, e.g., airspeed calibration, flutter, loads, aerial refueling, aerial delivery systems and parachute jumps, and systems operations.

D.M.W.

A78-28460 Tri-Gull amphibian development N Ronaasen (Canadair, Ltd., Montreal, Canada) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 143-152

Various structural components of the Tri-Gull-320 seaplane are evaluated separately, and with reference to available manufacturing equipment. Structures dealt with include wings, constructed on the two-spar, multi-rib principle, empennage, using thickened spars and beaded skins, and with an 8 deg trim range for a wide choice in flap, power, and landing gear setting, power plant, with a power loading of 12 lb/B HP supplied by a Tiara 6-320 engine, landing gear (retractable tricycle), and structural materials, with PVC foam as the core material. Flight tests revealed acceptable levels of flutter and vibration, as well as good handling in rough water. Also mentioned is the use of a spin chute for runway landings.

A78 28461 UTTAS testing J C O'Connor (US Naval Test Pilot School, Patuxent River, Md) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif, Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p. 153-162

The Boeing-Vertol YUH 61 A and the Sikorsky YUH-60 A UTTAS are compared with each other and with the UH-1 Huey helicopter in terms of performance and handling qualities, e.g.,

A78-28462

survivability in medium-intensity combat environments, operability in extremes of heat and cold, payload capacity, flight stability, maneuverability, air speed, crash worthiness, and systems stability. In virtually all areas the Sikorsky UTTAS was found superior, and was awarded the Army contract D M W

A78-28462 Certifying the Learjet to 51,000 feet P T Reynolds and J P Dwyer (Gates Learjet Corp., Wichita, Kan.) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 163-175

Substantial fuel savings can be achieved by flying at higher altitudes. This paper describes modifications of the Learjet which enable it to fly safely at 51,000 feet. Among the changes discussed are improvements in the pressure vessel and redesign of the bleed air supply system to maintain the cabin pressure at 8,000 feet. The failure warning system and emergency procedure for the crew are also readjusted to the new conditions. A description of tests of the modified system are presented, including ground testing to a safety factor of 1.67 (up from 1.33), flight testing for aerodynamic stability and for emergency descent capability, and engine tests of the increased turbine inlet nozzle area.

A78-28463 Launching the Harrier from a ski jump J F Farley (Hawker Siddeley Aviation, Ltd., Kingston-on-Thames, Surrey, England) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif., Oct. 12-15, 1977.) Society of Experimental Test Pilots, Technical Review, vol. 13, no. 4, 1977, p. 186-189.

Tests conducted on ground-based runways reveal that the Harrier aircraft can be successfully launched from an incline of at least 6 deg, and most probably from an incline of up to 20 deg Advantages of this method include launch speeds up to 40 knots slower than normal and/or heavier payloads

D M W

A78-28464 * Shuttle carrier aircraft flight tests F L Fulton, Jr (NASA, Flight Research Center, Edwards, Calif) (Society of Experimental Test Pilots, Symposium, 21st, Beverly Hills, Calif, Oct 12-15, 1977) Society of Experimental Test Pilots, Technical Review, vol 13, no 4, 1977, p. 191 204

Since the Space Shuttle will need to be transported from its place of assembly to the launch site, a method has been developed whereby the Shuttle rides piggyback on a modified Boeing 747, called the Shuttle carrier aircraft (SCA). This paper describes tests of the SCA in its mated configuration. Tests include flutter, found to decrease when fiberglass and wood fairings were added to the base of each supporting pylon, stability and control, found to be acceptable after damping with control pulses, noise and buffet, found high but acceptable, and climb, in which drag was marked but acceptable with the special rated thrust (SRT) power setting Simulated launch maneuvers were undertaken at an airspeed of 273 KCAS. Transport of the Shuttle takes place with the Shuttle tail cone on, at a cruise speed of 288 KCAS at an altitude of 22,000 feet.

STAR ENTRIES

N78-17990*# Boeing Vertol Co Philadelphia, Pa RESEARCH REQUIREMENTS TO REDUCE MAINTENANCE COSTS OF CIVIL HELICOPTERS

Daniel J Million and Kenneth T Waters Feb 1978 62 p

(Contract NAS1-13624)

(NASA-CR-145288) Avail NTIS HC A04/MF A01 CSCL 01C

The maintenance problems faced by the operators of civil helicopters that result in high costs are documented Existing technology that can be applied to reduce maintenance costs and research that should be carried out were identified Good design practice and application of existing technology were described as having a significant impact on reducing maintenance costs immediately. The research and development that have potential for long range reduction of maintenance costs are presented

N78-17991*# Pratt and Whitney Aircraft, East Hartford Conn Commercial Products Div

MEAN VELOCITY, TURBULENCE INTENSITY AND TURBU-LENCE CONVECTION VELOCITY MEASUREMENTS FOR A CONVERGENT NOZZLE IN A FREE JET WIND TUNNEL COMPREHENSIVE DATA REPORT

C J McColgan and R S Larson Apr 1977 262 p (Contract NAS3-17866)

(NASA-CR-135238, PWA-5516) NTIS HC A12/MF A01 CSCL 01A

The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel The nozzle exit velocity was 122 m/sec and the wind tunnel velocity was set at 0 12 37, and 61 m/sec Measurements of flow properties including mean velocity turbulence intensity and spectra and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities test hardware, along with significant test results and conclusions Author

N78-17992*# National Aeronautics and Space Administration Langley Research Center, Langley Station Va THEORETICAL EVALUATION OF HIGH SPEED AERODY-NAMICS FOR ARROW WING CONFIGURATIONS

Samuel M Dollyhigh Feb 1978 66 p refs

(NASA-TM-78659) Avail NTIS HC A04/MF A01 CSCL 01A A limited study in the use of theoretical methods to calculate the high speed aerodynamics of arrow wing supersonic cruise configurations was conducted The study consisted of correlations with existing wind tunnel data at Mach numbers from 08 to 27, using theoretical methods to extrapolate the wind tunnel data to full scale flight conditions and presentation of a typical supersonic data package for an advanced supersonic transport application prepared using the theoretical methods A brief description of the methods and their application was given in general, all three methods had excellent correlation with wind tunnel data at supersonic speeds for drag and lift characteristics and fair to poor agreement with pitching moment characteristics The VORLAX program had excellent correlation with wind tunnel data at subsonic speeds for lift and pitching moment characteristics and fair agreement in drag characteristics

N78-17993*# Kansas Univ Center for Research Inc., Lawrence A THEORETICAL INVESTIGATION OF THE AERODYNAM-ICS OF LOW-ASPECT-RATIO WINGS WITH PARTIAL LEADING-EDGE SEPARATION

Sudhir Chandra Mehrotra and C Edward Lan Jan 1978 85 p

(Grant NsG-1046)

(NASA-CR-145304, CRINC-HC A05/MF A01 CSCL 01A CRINC-FRL-266-1) NTIS

A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free The flow tangency boundary condition is satisfied on the wing including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation the lift is found to be highly nonlinear with angle of attack

N78-17994*# Vought Corp , Hampton Va Technical Center A PROCEDURE FOR THE DETERMINATION OF THE EFFECT OF FUSELAGE NOSE BLUNTNESS ON THE WAVE DRAG OF SUPERSONIC CRUISE AIRCRAFT

Kenneth B Walkley Jan 1978 56 p refs (Contract NAS1-13500)

(NASA-CR-145306) Avail NTIS HC A04/MF A01 CSCL

The incremental wave drag penalty due to nose blunting of a fuselage was investigated using a three dimensional finite difference scheme. An aircraft typical of current supersonic cruise concepts was considered. Computational problems with the finite difference scheme as the fuselage afterbody closes were addressed A linear theory method was employed to compute the afterbody aerodynamics and effectively extends the finite difference scheme to closing afterbodies. Acceptable drag increments for various levels of nose bluntness were demonstrated using this approach Author

N78-17995*# Pennsylvania State Univ University Park Dept of Aerospace Engineering

COMPRESSOR AND FAN WAKE CHARACTERISTICS Semiannual Progress Report

B Reynolds C Hah, B Lakshminarayana and A Ravindranath Jan 1978 104 p refs

(Grant NsG-3012)

PSU/TURBO-R78-1) (NASA-CR-155766. HC A06/MF A01 CSCL 01A

A triaxial probe and a rotating conventional probe, mounted on a traverse gear operated by two step motors were used to measure the mean velocities and turbulence quantities across a rotor wake at various radial locations and downstream stations The data obtained was used in an analytical model developed to study how rotor flow and blade parameters and turbulence properties such as energy velocity correlations, and length scale affect the rotor wake characteristics and its diffusion properties The model includes three dimensional attributes, can be used in predicting the discrete as well as broadband noise generated in a fan rotor, as well as in evaluating the aerodynamic losses. efficiency and optimum spacing between a rotor and stator in turbomachinery Author

N78-17997*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center, Edwards, Calif

EFFECT OF WINGLETS ON A FIRST-GENERATION JET TRANSPORT WING 4 STABILITY CHARACTERISTICS FOR A FULL-SPAN MODEL AT MACH 030

Robert R Meyer, Jr Feb 1978 74 p refs

(NASA-TP-1119, L-11705) Avail NTIS HC A04/MF A01 CSCL 01A

The static longitudinal and lateral directional characteristics of a 0 035 scale model of a first generation jet transport were obtained with and without upper winglets. The data were obtained for take off and landing configurations at a free stream Mach number of 0 30. The results generally indicated that upper winglets had favorable effects on the stability characteristics of the aircraft Author

N78-17998*# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

EFFECT OF DESIGN CHANGES ON AERODYNAMIC AND ACOUSTIC **PERFORMANCE** OF TRANSLATING-CENTERBODY SONIC INLETS
Brent A Miller Feb 1978 49 p refs

(NASA-TP-1132 E-9283) Avail NTIS HC A03/MF A01 CSCL

An experimental investigation was conducted to determine the effect of design changes on the aerodynamic and acoustic performance of translating centerbody sonic inlets. Scale model inlets were tested in the Lewis Research Center's V/STOL wind tunnel The effects of centerbody position, entry lip contraction ratio, diffuser length, and diffuser area ratio on inlet total pressure recovery distortion, and noise suppression were investigated at static conditions and at forward velocity and angle of attack With the centerbody in the takeoff position (retracted) good aerodynamic and acoustic performance was attained at static conditions and at forward velocity. At 0 deg incidence angle with a sound pressure level reduction of 20 dB, the total pressure recovery was 0 986 Pressure recovery at 50 deg was 0 981 With the centerbody in the approach position (extended), diffuser flow separation occurred at an incidence angle of approximately 20 deg. However, good performance was attained at lower angles With the centerbody in the takeoff position the ability of the inlet to tolerate high incidence angles was improved by increasing the lip contraction ratio. However, at static conditions with the centerbody in the approach position, an optimum lip contraction ratio appears to exist, with both thinner and thicker lips yielding reduced performance

N78-17999*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

TWO-DIMENSIONAL TRANSONIC TESTING WITH SPLIT-TER PLATES

Sanford Davis and Bodapati Satyanarayana Feb 1978 24 p

(NASA-TP-1153 A-7221) Avail NTIS HC A02/MF A01 CSCL

The use of splitter plates for two dimensional transonic testing in wind tunnels was investigated on a 12% biconvex airfoil section over the Mach number range 0.6 to 1.0 Measured pressure distributions were compared to transonic theory and to other experiments, including an investigation in the same facility without splitter plates. The results of the experiment show the best agreement with theory over the entire transonic Mach number Author range

N78-18000*# Battelle Columbus Labs Ohio ANALYTICAL STUDY OF A FREE-WING/FREE-TRIMMER **CONCEPT Final Report**

Richard F Porter David W Hall, Joe H Brown, Jr, and Gerald M Gregorek Feb 1978 130 p refs (Contract NAS4-2378)

(NASA-CR-2946) Avail NTIS HC A07/MF A01 CSCL 01A

The free-wing/free-trimmer is a NASA-Conceived extension of the free-wing concept intended to permit the use of high-lift flaps. Wing pitching moments are balanced by a smaller external surface attached by a boom or equivalent structure. The external trimmer is, itself a miniature free wing, and pitch control of the wing-trimmer assembly is effected through a trailing-edge control tab on the trimmer surface. The longitudinal behavior of representative small free-wing/free-trimmer aircraft was analyzed Aft-mounted trimmer surfaces are found to be superior to forward trimmers, although the permissible trimmer moment arm is limited, in both cases, by adverse dynamic effects. Aft-trimmer configurations provide excellent gust alleviation and meet fundamental stick-fixed stability criteria while exceeding the lift capabilities Author of pure free-wing configurations

N78-18001# Naval Ship Research and Development Center, Bethesda, Md

DRAG, FLOW TRANSITION, AND LAMINAR SEPARATION ON NINE BODIES OF REVOLUTION HAVING DIFFERENT FOREBODY SHAPES

John L Power Dec 1977 59 p refs (AD-A048274, DTNSRDC-77-0065) HC A04/MF A01 CSCL 20/4

NTIS Avail

NTIS

Resistance has been measured of nine bodies of revolution, having equal volume but varying forebody shapes. Forebody shapes ranged from extremely blunt to extremely fine and included two that were flat faced. The forebodies were altered by changing their length-to-diameter ratios (L/Ds) and prismatic coefficients Drag results indicate that when the prismatic coefficient is fixed and the L/D is decreased the residual resistance will increase modestly increasing the prismatic coefficient at small L/D s increases residual resistance however at moderate L/D s it does not The results suggest that a flat-faced shape in itself does not increase resistance. In addition to resistance experiments transition regions on the models were located, using hot film probes Calculations predicted laminar separation on five of the model forebodies. The hot film measurements confirmed that separation did occur at the locations predicted downstream of the separation locations, turbulent flow occurred immediately The remaining four forebodies exhibited well-defined natural transition regions. Flow properties in the transition regions measured by the hot film gages have been compared with predicted spatial amplification ratios of disturbances calculated by linear stability theory. Results have failed to show a single relationship between measured flow properties and computed spatial amplification ratios. Correlation of amplification factors with flow regimes varied both with forebody shape and Reynolds number

N78-18002# Naval Ship Research and Development Center, Bethesda Md Aviation and Surface Effects Dept PARAMETRIC TRANSONIC EVALUATION OF TYPE A

VSTOL NACELLE DRAG Final Report, Jan - Aug 1977 Jonah Ottensoser Sep 1977 47 p refs

(AD-A048110, DTNSRDC/ASED-390) Avail HC A03/MF A01 CSCL 20/4

A parametric evaluation of the zero lift drag characteristics attributable to the large nacelles found on some Type A VSTOL candidate aircraft was conducted in the 7- by 10-foot transonic wind tunnel of the David W Taylor Naval Ship Research and Development Center Mounting the nacelles in proximity to the wings and fuselage yields levels of interference drag three to four times the isolated drag which results in the nacelle interference drag producing approximately 50 percent of the total aircraft drag. Movement of the nacelles away from the wings either longitudinally or vertically tends to reduce drag Except for the nacelles mounted forward of the wing, the nacelles have an adverse effect on lift. The particular wide nose body used proved to be highly unstable longitudinally although adding nacelles above or behind the wings tended to reduce this instability Five pairs of axisymmetric nacelles, four pairs of pylons, three longitudinal and two vertical positions were investigated on a 10-percent scale low (supercritical) wing model Author (GRA)

N78-18003# Air Force Systems Command, Wright-Patterson AFB Ohio

INVESTIGATION OF AERODYNAMIC CHARACTERISTICS OF V-WINGS NEAR SOLID SURFACE

N B Plisov and F F Latypov 13 Jul 1977 20 p Transl into ENGLISH from Tr Leningrad Korablestroitnogo Instituta (USSR) no 63, 1968 p 41-49

(AD-A048555 FTD-ID(RS)T-1237-77) NTIS Avail HC A02/MF A01 CSCL 20/4

Determined in this study are the position and rotary derivatives of a V-wing moving above a solid screen. This problem is interesting for a number of problems in the dynamics of vehicles which use the screen effect during motion. Studied is a thin V-wing of rectangular plane shape above a solid wall. The induced velocities are considered low, while the vorticity beyond the wing lies in planes corresponding to the planes of the wing. These assumptions are realized at small angles of attack, relatively

great distances between the wing and surface, and when the amplitudes of the harmonic oscillations are small. The condition of equality to zero of the normal velocity component of liquid particles should be satisfied on the solid screen

N78-18004# Air Force Systems Command, Wright-Patterson AFB Ohio

THE MOVEMENT OF A WING WITH DEFLECTED AILERONS CLOSE TO A SCREEN

V G Belinskiy and Yu I Laptev 16 Jul 1977 17 p Transl into ENGLISH from Gidrodinamika Bolshikh Skorostey (USSR), no 4 1968 p 39-48

(AD-A048651 FTD-ID(RS)T-1238-77) HC A02/MF A01 CSCL 20/4

The effect of a free surface on the characteristics of an underwater wing with deflected ailerons showed that the proximity of a free surface decreases the lift and rolling moment but increases the induced drag and the yawing moment. This work has obtained simple analytical dependences which permit estimating the effect of the proximity of a solid screen on the hydrodynamic characteristics of a wing with deflected ailerons

N78-18005# Naval Postgraduate School, Monterey, Calif. CIRCULATION CONTROL AIRFOIL STUDY Progress Report, Jan - Nov 1977

Louis V Schmidt 21 Nov 1977 32 p refs (AD-A048677, NPS-67SX77111 Avail HC A03/MF A01 CSCL 20/4

The unsteady aerodynamics, and in particular the transfer functions, applicable to the circulation control airfoils were evaluated in an unsteady flow 2 x 2 ft wind tunnel Preliminary results were obtained disclosing the nature of unsteady surface pressures over the airfoil, both amplitude and phase, relative to the oscillating cavity pressures for a range of reduced frequencies, k = 0 to 046, at a model attitude approximating the zero lift condition (blowing-off) at a moderate value of momentum blowing coefficient Positive results were obtained towards indentifying the behavior of the Coanda sheet dynamics, airfoils lift transfer function and airful damping moment

N78-18006# Air Force Flight Dynamics Lab, Wright-Patterson AFB Ohio Flight Control Div

CAMBERED JET-FLAPPED AIRFOIL THEORY WITH TABLES AND COMPUTER PROGRAMS FOR APPLICATION

Final Report, Jun 1976 - Apr 1977 Henry W Woolard and Bernard F Niehaus Sep 1977 161 p refs

(AD-A048528, AFFDL-TR-77-63) NTIS Avail HC A08/MF A01 CSCL 20/4

A quadrature method is derived for calculating the incompressible-flow aerodynamics of arbitrarily cambered jet-flapped airfoils. The anticipated application of the methodology is to highspeed subsonic flows (combat maneuvering aircraft) via the use of compressible-flow similarity transformations. The method yields the aerodynamic properties in terms of integrals having integrands which consist of the product of the camber-line ordinate and an influence function which is a parametric function of the jet-momentum coefficient. In general, the integrals involved must be evaluated by numerical methods. Tables of the necessary influence functions are given in the report GRA

N78-18007# Tennessee Univ Space Inst , Tullahoma FUNDAMENTAL STUDIES OF SUBSONIC AND TRAN-SONIC FLOW SEPARATION PART 2 SECOND PHASE SUMMARY REPORT Final Report, Jan 1974 - Sep. 1975 J M Wu, C H Chen T H Moulden, K C Reddy, and F G Collins Dec 1977 194 p refs (Contract F40600-74-C-0009)

(AD-A048615, AEDC-TR-77-10321-Pt-2) NTIS Avail HC A09/MF A01 CSCL 20/4

The work reported herein represents the second phase of a fundamental study of subsonic and transonic flow separation The detailed features of the turbulent boundary layer flow separation induced by a foward-facing step in transonic and high subsonic flow were studied. The influences of an upstream

disturbance upon the downstream separation were simulated by several shallow-cavity models of different depth to length ratios The free-stream conditions were varied over the ranges M = 0 6 to approx 0 9 and Re/ft = 5 x 10 to 6th power to approx 30 x 10 to the 6th power It was shown that certain upstream disturbances can produce higher separation pressure and skin friction than related to a single forward-facing step. A separation pressure correlation was established empirically from the cavity flow data. It was observed that a certain Reynolds number and depth-to-length-ratio cavity yielded a maximum separation pressure At the same time, an increase of free-stream Mach number continuously increased the separation pressure. The flow relaxation along the cavity floor was explored by systematic measurements and analysis of surface pressures and velocity profiles. These studies revealed that the flow relaxation started from the floor and spread outward. Therefore, the lower portion of the outer layer of the shear flow contained a longer memory, carrying the influence of the upscream disturbance to the downstream separation. The law of the wall and the wake was used for the analysis of the velocity distributions and the estimation of the skin friction. It was found that the slope of the law of the wall is different for velocity profiles of different strengths of

N78-18008# Rockwell International Corp., Thousand Oaks Calif

A COMPUTATIONAL MODEL FOR THREE-DIMENSIONAL INCOMPRESSIBLE SMALL CROSS FLOW WALL JETS Final Report, 30 Jun 1976 - 30 Jun 1977

Norman D Malmuth and R K Szeto 15 Dec 1977 108 p (Contract N62269-76-C-0382)

(AD-A048450, SC5079 5FR NADC-76-105-30) Avail NTIS HC A06/MF A01 CSCL 20/4

A computational model based on H Keller's box scheme has been used to characterize turbulent incompressible wall jets in the small cross flow approximation prototypic of flows over upper-surface-blown and augmenter wings. Submerged and coflowing cases are considered. An eddy viscosity model was used to simulate the effects of turbulence. Approximate models are identified for flows in which the jet height tends to zero. If the span flow is introduced through a fateral curvature term appearing in the spanwise momentum equation the effect of the turbulent coupling on the surface pressures, and peak spanwise velocities is weak

N78-18009# National Aerospace Lab Amsterdam (Netherlands) Flight Dynamics Div

COLLECTION OF SUPERCRITICAL AEROFOILS OBTAINED WITH THE NLR HODOGRAPH METHOD

J A VanEgmond and J W Boerstoel 7 Sep 1977 57 p

(Contract NIVR-1754)

(NLR-TR-75115-U) Avail NTIS HC A04/MF A01

Graphical and tabulated data of eighteen airfoils calculated with the NLR transonic hodograph theory is presented to show the possibilities of the calculation method for application in airfoil design studies Author (ESA)

N78-18010# Dornier-System G m b H Friedrichshafen (West Germany)

INFLUENCE OF WING TAPERING ON THE DEVELOPMENT OF A THREE-DIMENSIONAL TURBULENT BOUNDARY LAYER EXEMPLIFIED WITH A TRANSONIC WING [EINFL-USS DER FLUEGELZUSPITZUNG AUF DIE ENTWICKLUNG EINER DREIDIMENSIONALEN, TURBULENTEN GREN-ZSCHICHT AM BEISPIEL EINES TRANSSONISCHEN TRAGFLUEGELS]

H W Stock Bonn DOKZENTBw 1977 32 p refs In GERMAN, ENGLISH summary Sponsored by Bundesmin der Verteidigung

(BMVg-FBWT-77-7) Avail NTIS HC A03/MF A01 DOKZENTBW DM 20

The influence of the taper ratio of a wing was studied using a three-dimensional transonic wing. The results obtained for a section in the middle of the tapered wing were calculated using the same boundary layer method as for an infinite swept wing with an identical pressure distribution and a sweep angle which corresponds to the sweep angle at 50 % chord of the three-dimensional wing It is shown that the boundary layer integral thicknesses and their gradients in the chordwise direction are larger for the infinite swept wing than for the three-dimensional wing Marked differences were produced for the wall streamline angle beta. For the three-dimensional wing beta was negative from the leading to the trailing edge, i.e., the boundary layer mass is pushed into a direction towards the fuselage (alpha + beta smaller than 0). For the infinite swept wing beta was positive for x/c greater than 5 and became fairly large in the region of the trailing edge, i.e. the boundary layer mass is pushed in a direction towards the wing tip (alpha + beta greater than 0).

N78-18011# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Oberpfaffenhofen (West Germany) Hauptabt Flugbetrieb

CALCULATION OF THE HORIZONTAL TAIL LOADS FROM ELEVATOR ACTUATION

Jean Skudridakis 1976 129 p refs in GERMAN, ENGLISH summary

(DLR-IB-536-76/4) Avail NTIS HC A07/MF A01

An investigation was made of horizontal tail loads in maneuvering flight conditions as a result of different kinds of stabilizer inputs. To achieve a reasonable approach to the problem the complete longitudinal set of equations of motion were simplified concerning the degrees of freedom of the system which were significantly reduced from 6 to 3 or 2 deg With these simplifications the equations of motions were solved by analog computer, numerical integration, or by Laplace transforms A detailed set of elevator input time histories and related equations is presented, according to MIL-A-008861 A (USAF). The application of these sets may help to establish conditions which are as close as possible to reality for the calculation of horizontal tail loads with respect to different airworthiness standards and design instructions. The influence of elasticity of the aircraft structure is outlined Author (ESA)

N78-18012# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Oberpfaffenhofen (West Germany) Hauptabt Flugbetrieb

SUPPORTING INVESTIGATIONS DURING TESTING OF THE WDL-1 AIRSHIP IN GHANA AND UPPER VOLTA

DLR-IB-536-76/3 N78-14002

(DLR-IB-536-77/1,DLR-IB-536-76/3) Avail NTIS HC A04/MF

An evaluation is presented of the hull temperature measurements and flight data recorded during the test flight of an airship (blimp) in July and August, 1976, in Ghana and Upper Volta The hull temperature data and related environmental parameters allow analyzing the heat transfer characteristics of the hull, the emission behavior of the surface and the heat transfer coefficients as a function of the flow velocity. The flight data provide insight into the airship's operational performance especially maximum and minimum cargo and fuel consumption.

N78-18013# Messerschmitt-Boelkow-Blohm G m b H , Otto-brunn (West Germany)

A METHOD FOR CALCULATION OF THE PRESSURE DISTRIBUTION OF WING-BODY CONFIGURATIONS FOR LARGE ANGLE OF ATTACK AT SUBSONIC SPEED [EIN VERFAHREN ZUR BERECHNUNG DER DRUCKVERTEILUNG VON FLUEGEL-RUMPFANORDNUNGEN BEI HOHER ANSTELLUNG IM UNTERSCHALLBEREICH]

G Gregoriou Bonn DOKZENTBw 1977 33 p refs In GERMAN, ENGLISH summary

(Contract T/RF-41/RF-410/51106)

(BMVg-FBWT-77-15) Ávail NTIS HC A03/MF A01. DOKZENTBw DM 20

An iterative singularity method was developed based on the potential theory which yields the pressure distribution of symmetric wing-body configurations in the nonlinear angle of attack range at subsonic speeds. The body is axisymmetric and of finite length

and arbitrary thickness. The wing is infinitely thin and located at mid-wing position. The following mathematical model was used. 1) wing lattice method, free vortices partially inclined to the wing plane, 2) body ring sources over the body surface.

Author (ESA)

N78-18014# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Goettingen (West Germany) Abt Elestomechanik und Aeroelastische Stabilitaet

APPLICATION AND COMPARISON OF MODAL PERTURBA-TION METHODS AND MODAL CORRECTION PRO-CEDURES EXEMPLIFIED BY A SWEPT WING WITH TWO EXTERNAL STORES

Raymond Freymann 27 May 1977 44 p refs in GERMAN, ENGLISH summary Report will also be announced as translation (ESA-TT-463)

(DLR-FB-77-21) Avail NTIS HC A03/MF A01 DFVLR, Cologne DM 22 60

investigations on a swept wing model structure with two external stores were carried out by applying modal perturbation methods and modal correction methods to inertia modifications on the external stores Experimental modal data resulting from ground vibration tests on the same model structure in two different configurations were partially compared with calculated modal data in order to check the accuracy and suitability of the different modification methods

Author (ESA)

N78-18018# European Space Agency Paris (France) UNSTEADY PRESSURE MEASUREMENTS ON WINGSTORE COMBINATIONS IN INCOMPRESSIBLE FLOW

Hermann Triebstein Jan 1978 78 p refs Transl into ENGLISH of Instationaere Drickverteilungsmessungen an Fluegel-Aussenlastkombinationen in inkompressibler Stroemung, DFVLR, Goettingen, West Ger Report DLR-FB-77-12, 28 Mar 1977 Original report in GERMAN previously announced as N78-11017 Original German report available from DFVLR, Cologne DM 36 20

(ESA-TT-426 DLR-FB-77-12) Avail NTIS HC A05/MF A01 Measurements of unsteady pressures on harmonically oscillating wingstore combinations in incompressible flow are dealt with The measurements were made in a subsonic wind tunnel. The pressure was measured for yaw- pitch-, and heave oscillations of the store at different locations of the store in x-, y-, and z-direction. The pitching and yawing oscillations were made about two different axes. Further unsteady pressure distributions were measured on the wing-store combination at harmonically pitching oscillations of the wing and on the store at pitching and heaving oscillations of the store without the wing. Some results were compared with theoretical results. The flow speed was V = 40 m/s and the oscillation frequencies were f = 6, 12 and Author (ESA)

N78-18019# National Aerospace Lab , Amsterdam (Netherlands) Flight Dynamics Div

PHAROS, PROCESSOR FOR HARMONIC ANALYSIS OF THE RESPONSE OF OSCILLATING SURFACES

P H Fuijkschot 21 Apr 1977 10 p Presented at the 7th Intern Congr on Instrumentation in Aerospace Simulation Facilities, Wiltshire, Engl , Sep 1977

(NLR-MP-77012-U) Avail NTIS HC A02/MF A01

A computer controlled system is described which was primarily developed for investigating the relation between the movement of a harmonically excited windtunnel model and the resulting unsteady pressure distribution. The application and the relevant measurement techniques are outlined, and a functional description of the configuration is given. Some of the more interesting electronic principles are discussed PHAROS is essentially an accurate multichannel transfer function analyzer (TFA) with a frequency range of 0 to 10 kHz. The TDA operation is performed on all channels simutaneously, giving high speed in addition to the fundamental components, the amplitude and phase of higher harmonics can be established, allowing a time waveform reconstruction of non-linear phenomena. Author (ESA)

N78-18020 Colorado Univ., Boulder

SIMULATION MODEL FOR AN ENPLANING-PASSENGER-VEHICLE CURBSIDE AT HIGH-VOLUME AIRPORTS Ph.D Thesis

Charles Allen Hall 1977 297 p

Avail Univ Microfilms Order No 77-29923

How simulation of airport activities at the enplaning curbside can be used to accurately determine the efficiency of this important portion of the airport is described. Simulation requires validating the computer model against the airport curbside system it simulates and was done by statistical comparisons between measured and computed quantities that were based on data taken at three airports. A series of simulation models were developed. The variables in the models include. (1) number of lanes, (2) number of spaces per lane (3) interarrival patterns, (4) vehicle class distribution, (5) service times, (6) exit methods Dissert Abstr

N78-18021# Federal Aviation Administration Atlantic City, NJ National Aviation Facilities Experimental Center

THE ANALYSIS OF NATIONAL TRANSPORTATION SAFETY BOARD LARGE FIXED-WING AIRCRAFT ACCIDENT/ INCIDENT REPORTS FOR THE POTENTIAL PRESENCE OF LOW-LEVEL WIND SHEAR Final Report

Jack J Shrager Dec 1977 84 p refs

(FAA Proj. 154-451-110)

(AD-A048354 FAA-NA-77-41 FAA-RD-77-169) Avail NTIS HC A05/MF A01 CSCL 01/2

The National Transportation Safety Board aircraft accident/ incident data base covering the years 1964 through 1975 was screened to select those accidents involving aircraft of 12,500 pounds gross weight or greater in which the potential of low level wind shear as a factor could not be discounted The successive filtering techniques employed eliminated all but 25 of the 59,465 accidents or incidents which comprised the total data base used. The presence of a low level wind shear was a distinct possibility in these 25 takeoff or approach and Author landing accidents/incidents

N78-18022# Naval Postgraduate School, Monterey Calif A COMPARISON OF INTEGRATED AND CONVENTIONAL COCKPIT WARNING SYSTEMS MS Thesis

Joseph Dennis Mazza Sep 1977 42 p refs

(AD-A048670) Avail NTIS HC A03/MF A01 CSCL 01/4

An experiment was performed in which seventeen subjects responded to warning signals presented on displays simulating integrated and conventional aircraft cockpit warning systems Performance using the conventional system was superior in terms of both mean reaction time and number of errors committed

Author (GRA)

N78-18023# Coast Guard Washington, D C PRELIMINARY TESTS OF INFLATABLE LIFERAFTS FOR STABILITY IN HIGH WINDS Final Report

M R Daniels, Jr., R L Markle and S G Maness 1 Dec 1977 39 p

(AD-A048722, USCG-M-1-78) Avail NTIS HC A03/MF A01 CSCL 06/7

This report presents the results of a preliminary investigation of the stability of various marine-type inflatable liferafts when affoat and exposed to high wind forces. The report describes capsizings resulting from wind forces generated by helicopter downdraft and the slipstream of a fixed-wing aircraft

Author (GRA)

N78-18024*# Chicago Univ III Dept of the Geophysical

AN ANALYSIS OF THREE WEATHER-RELATED AIRCRAFT

T Theodore Fujita and Fernando Caracena (Environ Res Lab Boulder, Colo) Apr 1977 44 p refs Submitted for publication Sponsored in part by NSF

(Grants NGR-14-001-008, NOAA-04-4-158-1)

(NASA-CR-155363 PB-275090/9, SMRP-RP-145

NOAA-77101302) Avail NTIS HC A03/MF A01 CSCL 01B

Two aircraft accidents in 1975 one at John F Kennedy International Airport at New York City on June 24 and the other at Stapleton International Airport at Denver on August 7 were examined. The third accident on June 23, 1976 at Philadelphia International Airport is being investigated All accidents occurred as aircraft, either descending or climbing lost altitude while experiencing strong wind shear inside downburst

N78-18025* # National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

FLIGHT TEST RESULTS OF THE STRAPDOWN HEXAD INERTIAL REFERENCE UNIT (SIRU) VOLUME 2 TEST REPORT

Ronald J. Hruby and William S. Bjorkman (Analytical Mechanics Associates Inc. Mountain View Calif.) Jul 1977 96 p. refs. (NASA-TM-73223 A-6973) Avail NTIS HC A05/MF A01 CSCL 17G

Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance Performance shortcomings are analyzed

N78-18026# Transportation Systems Center, Cambridge, Mass CHARACTERIZATION OF CURRENT TOWER CAB ENVI-RONMENTS Interim Report, Jan - Mar 1977

V J Hobbs D F Clapp P Rempfer D Devoe J Bellantoni, L Maddock J Raudseps, L Stevenson, J R Coonan, J Kuhn et al Nov 1977 207 p refs (AD-A048306, DOT-TSC-FAA-77-19 FAA-EM-77-10) Avail

NTIS HC A10/MF A01 CSCL 13/3

A description of the general tower cab environment is given in terms of (a) the evolution of the tower cab current cab classification and staffing levels and the basic flow of Air Traffic Control data relevant to cab operations (b) a breakdown of functions performed by tower cab personnel the basic equipment used to perform those functions and allocation of equipment and responsibilities to various controller positions and (c) current tower related systems and procedures including airspace surveillance surface surveillance, flight data handling and the role of the flight progress strip air/ground communications the data processing and display systems weather related systems, and current landing systems Author

N78-18027# Lincoln Lab , Mass Inst of Tech Lexington UPLINK COVERAGE MEASUREMENTS IN THE LOS ANGELES AREA FOR PASSIVE BCAS

F Nagy Jr 7 Nov 1977 31 p (Contracts DOT-FA77WAI-727 F19628-78-C-0002 FAA Proj 052-241-04)

(AD-A048288 ATC-81 FAA-RD-77-134) Avail NTIS HC A03/MF A01 CSCL 01/4

Uplink (1030 MHz) measurement results are presented based on data recorded by the Airborne Measurement Facility during normal landings and takeoffs at the LAX Van Nuys, and San Diego airports. The data presented are relevant to current investigations of passive beacon-based collision avoidance systems and include (1) the interrogator environment as received, (2) its division between FAA and other interrogators (3) its dependence on aircraft height during landings and take-offs and (4) the availability of P2 pulses of sufficient strength for PRF (pulse repetition frequency) tracking. The number of interrogators was found to increase with the aircraft height at the rate of 2.5 to 3 interrogators per 1000 ft. Thus P2 pulse tracking appears to be feasible down to 2000 ft at LAX and lower at San Diego Author

N78-18032# IIT Research Inst. Annapolis Md THE IMPACT OF A PROPOSED ACTIVE BCAS ON ATCRBS PERFORMANCE IN THE WASHINGTON, D C, 1981 **ENVIRONMENT** Final Report

Norman Theberge Sep 1977 48 p refs (Contracts F19628-76-C-0017, DOT-FA70WAI-175) (AD-A048589, ECAC-PR-77-037, FAA-RD-77-140) NTIS HC A03/MF A01 CSCL 17/7

A computer model of the proposed active Beacon Collision Avoidance System (BCAS) was developed to investigate the impact of BCAS on the Air Traffic Control Radar Beacon System (ATCRBS) ground system Predictions were made for the early 1981 Washington D.C., environment. Two ground environments were simulated an all-ATCRBS environment and a 25%/75% Discrete Address Beacon System (DABS)/ATCRBS mix Airborne fruit rates and the effect of BCAS/DABS mode power programming on interference were also predicted Author (GRA)

N78-18036# Mitre Corp McLean, Va METREK CONCEPTS FOR ESTIMATING CAPACITY OF BASIC RUNWAY CONFIGURATIONS

F A Amodeo A L Haines, and A N Sinha May 1977 50 p

(Contract DOT-FA70WA-2448)

(PB-274578/4 MTR-7115-Rev-1)

NTIS Avail HC A03/MF A01 CSCL 01B

One method of evaluating the impact of changes in the governing longitudinal separation standards on final approach is through the estimation of runway capacity. The arrival stream is analyzed with respect to the applicable longitudinal separation standards, ATC system performance and the interactions with departures, if any as governed by the appropriate ATC rules and procedures. Concepts are developed for arrival only departure only arrival/departure dual-lane and intersecting runway configurations

N78-18037# Mitre Corp, McLean, Va METREK Div BENEFITS OF MLS GUIDANCE FOR CURVED AP-PROACHES VOLUME 2 OPERATIONAL BENEFITS FOR **NEW YORK AIRPORTS**

R R Iver Jul 1975 52 p refs (Contract DOT-FA70WA-2448)

MTR-6951-Vol-2) NTIS (PB-274585/9, Avail

HC A04/MF A01 CSCL 01C

Projected benefits of curved approaches during marginal VFR and IFR weather conditions provided by implementing MLS at LaGuardia and Kennedy are investigated It is shown that the operational flexibility due to MLS contributes the following benefits increases in capacity at LGS during IFR and marginal VFR conditions reductions in airport noise exposure over populated areas around JKF and LGA, reductions in NASCOM delays at LGA and savings in operating costs for airlines by terminal route reductions

N78-18038# Mitre Corp McLean Va METREK Div CONCEPTS FOR DETERMINATION OF LONGITUDINAL SEPARATION STANDARDS ON FINAL APPROACH

A L Haines Oct 1975 44 p refs (Contract DOT-FA70WA-2448)

(PB-274590/9 MTR-7047) Avail NTIS HC A03/MF A01 CSCL 01C

Definitions are developed with a view toward identifying the relationships between separation standards and the variables describing the final approach environment. This provides a basis for systematic evaluation of changes in separation standards due to changes in the environment, particularly through Engineering and Development products Analytical relationships are developed primarily for IFR conditions represented by strict adherence to all applicable ATC rules and procedures. For modeling purposes relationships are also developed for standards for VFR conditions represented by visual approaches from an IFR flight plan GRA

N78-18040 Washington Univ Seattle

APPLICATION OF SYSTEM IDENTIFICATION TO ANALYTIC ROTOR MODELING FROM SIMULATED AND WIND TUNNEL DYNAMIC TEST DATA Ph D Thesis

Debashis Banerjee 1977 202 p

Avail Univ Microfilms Order No 77-28337

Aircraft state and parameter identification methods are introduced A simplified form of the Maximum Likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel tests results for accelerated cyclic pitch stirring excitation. The goal is to determine the dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements Reverse flow effects are considered for high rotor advance ratios Two inflow models are studied, the first is based on an equivalent blade Lock number the second is based on a time delayed momentum inflow Basic rotor parameters are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is studied. A relation between the accuracy of the identified parameters and the length of input data is established in simulation studies. Dissert Abstr.

N78-18041*# National Aeronautics and Space Administration Washington D C

A NEW HELICOSTAT FROM SNIAS HELICOPTER DIVI-SION

J Morisset Dec 1977 15 p refs Transl into ENGLISH from Air Cosmos (France) no 653, 8 Jan 1977 p 19-22 and 40 Trans by Scientific Translation Service, Santa Barbara,

(Contract NASw-2791)

(NASA-TM-75063) Avail NTIS HC A02/MF A01 CSCL 01C The Helicostat was described as a helicopter in which the vehicle weight is nullified by two balloons arranged in a catamaran fashion Development of such a vehicle is discussed and various uses for these helicopters are summarized Author

N78-18042*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center Edwards Calif

FLIGHT TESTS OF A RADIO-CONTROLLED AIRPLANE MODE WITH A FREE-WING, FREE-CANARD CONFIGURA-TION

Shu W Gee 1978 13 p refs

(NASA-TM-72853 H-1008) Avail NTIS HC A02/MF A01

Flight characteristics controllability and potential operating problems were investigated in a radio-controlled airplane model in which the wing is so attached to the fuselage that it is free to pivot about a spanwise axis forward of its aerodynamic center and is subject only to aerodynamic pitching moments imposed by lift and drag forces and a control surface. A simple technique of flying the test vehicle in formation with a pickup truck was used to obtain trim data. The test vehicle was flown through a series of maneuvers designed to permit evaluation of certain characteristics by observation. The free-wing free-canard concept was determined to be workable Stall/spin characteristics were considered to be excellent, and no effect on longitudinal stability was observed when center of gravity changes were made. Several problems were encountered during the early stages of flight testing such as aerodynamic lockup of the free canard and excessive control sensitivity. Lack of onboard instrumentation precluded any conclusions about gust alleviation or ride qualities Author

N78-18043*# National Aeronautics and Space Administration Ames Research Center Moffett Field Calif

AEROMECHANICAL STABILITY OF HELICOPTERS WITH A BEARINGLESS MAIN ROTOR PART 1 EQUATIONS OF MOTION

Dewey H Hodges Feb 1978 102 p refs Prepared in cooperation with Army Aviation Res and Develop Command Moffett Field

(NASA-TM-78459 A-7301-Pt-1) HC A06/MF A01 CSCL 01C

NTIS Avail

Equations of motion for a coupled rotor-body system were derived for the purpose of studying air and ground resonance characteristics of helicopters that have bearingless main rotors For the fuselage only four rigid body degrees of freedom are considered longitudinal and lateral translations pitch and roll The rotor is assumed to consist of three or more rigid blades Each blade is joined to the hub by means of a flexible beam segment (flexbeam or strap). Pitch change is accomplished by twisting the flexbeam with the pitch-control system, the characteristics of which are variable. Thus, the analysis is capable of implicitly treating aeroelastic couplings generated by the flexbeam elastic deflections, the pitch-control system and the angular offsets of the blade and flexbeam. The linearized equations are written in the nonrotating system retaining only the cyclic rotor modes thus, they comprise a system of homogeneous ordinary differential equations with constant coefficients. All contributions to the linearized perturbation equations from inertia, gravity quasi-steady aerodynamics and the flexbeam equilibrium deflections are retained exactly. Author

N78-18044*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

A FUGHT EVALUATION OF A TRAILING ANEMOMETER FOR LOW-SPEED CALIBRATIONS OF AIRSPEED SYSTEMS ON RESEARCH AIRCRAFT

Bruce D Fisher, Bruce J Holmes and H Paul Stough III Feb 1978 62 p refs

(NASA-TP-1135, L-11960) Avail NTIS HC A04/MF A01 CSCL 01C

Research airspeed systems on three low-speed general aviation airplanes were calibrated by the trailing anemometer method. Each airplane was fitted with an NASA pitot-static pressure tube mounted on either a nose or wing boom. The uncalibrated airspeed systems contained residual static-pressure position errors which were too large for high-accuracy flight research applications. The trailing anemometer calibration was in agreement with the tower flyby calibration for the one aircraft for which the comparison was made. The continuous deceleration technique for the trailing anemometer method offers reduced test time with no appreciable loss of accuracy for airspeed systems with pitot-static system lag characteristics similar to those described.

N78-18045*# National Aeronautics and Space Administration Langley Research Center, Langley Station Va

FUSELAGE STRUCTURE USING ADVANCED TECHNOLOGY METAL MATRIX FIBER REINFORCED COMPOSITES Patent Application

Robert K Robinson (Boeing Commercial Airplane Co Seattle) and Harry M Tomlinson, inventors (to NASA) (Boeing Commercial Airplane Co, Seattle) Filed 16 Feb 1978 15 p Sponsored by NASA

(NASA-Case-LAR-11688-1 US-Patent-Appl-SN-878540) Avail NTIS HC A02/MF A01 CSCL 01C

A fuselage structure in which the skin is comprised of layers of a metal matrix fiber reinforced composite is described. The plies of the composite material are built up so as to take advantage of the unidirectional properties of strength and stiffness of the composite material with alternate plies of material oriented at approximately 45 deg and approximately 315 deg to the fuselage longitudinal axis. The stringers, which run longitudinally and support the skin are also reinforced with layers of metal matrix fiber reinforced material oriented at approximately 0 deg relative to the fuselage longitudinal axis. The metal matrix fiber reinforced composite used in the preferred embodiment is borsic aluminum Borsic aluminum is comprised of silicone coated boron fibers embedded in an aluminum matrix which results in a fuselage structure that is significantly lighter than a similar fuselage of titanium NASA

N78-18046# Advisory Group for Aerospace Research and Development Paris (France)

FATIGUE DESIGN OF FIGHTERS GUIDELINES FOR OBTAINING AND MAINTAINING ADEQUATE FATIGUE PERFORMANCE OF TACTICAL AIRCRAFT

Jan 1978 138 p refs

(AGARD-AG-231 ISBN-92-835-1271-5) Avail NTIS HC A07/MF A01

Guidelines are presented to establish recommended procedures for fatigue conscious design of aircraft with special reference to tactical aircraft. Steps of the design process are outlined and for each step based on current knowledge those procedures most likely to provide adequate fatigue performance are given

N78-18047# National Aerospace Lab , Amsterdam (Netherlands) FATIGUE DESIGN OF FIGHTERS, GUIDELINES FOR OBTAINING AND MAINTAINING ADEQUATE FATIGUE PERFORMANCE OF TACTICAL AIRCRAFT GENERAL SURVEY

J B deJonge In AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 6-11 refs

Avail NTIS HC A07/MF A01

In the structural design process of a new aircraft, a number of successive stages can be defined. Four successive phases are distinguished here, (a) The definition phase. In this phase, the basic structural lay-out including the type of structure and materials to be used is determined (b). The development phase. In this phase, the detail design of the structure takes place. (c) The prototype and production phase. This phase is characterised by the assessment of the performance of the new aircraft and its certification. (d). The service phase. The aircraft has entered service and is being subjected to its actual operational environment. The impact of fatigue on the structural design and the considerations with regard to the fatigue phenomenon in each of these successive phases are discussed.

N78-18048# Air Force Systems Command, Wright-Patterson AFB, Ohio Structures Div

THE DEVELOPMENT OF FATIGUE/CRACK GROWTH ANALYSIS LOADING SPECTRA

J E Holpp and M A Landy /n AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 13-41 refs

Avail NTIS HC A07/MF A01

The processes involved in developing a realistic loading spectrum are described. The purpose of developing a realistic loading spectrum is to define a stress-time history that is representative of those stresses encountered by a component during actual usage. The discussion centers around developing load and stress spectrum for aircraft structural (airframe) components particularly fighter or strike aircraft. The realism of the spectrum is determined by the accuracy of the input from the different disciplines and the degree of complexity that the analyst is willing or able to go to There are many external factors to be considered in the spectrum development process Among these are time and money considerations available data, degree of accuracy required, etc. These factors may require the use of simpler less time consuming techniques than one would prefer to use for realism's sake. The steps involved in the processes include (1) Mission profile definition (2) Loading environment (3) Loading conditions, (4) Structural loads analysis (5) Stress analysis and (6) Stress sequencing

N78-18049# Industrieanlagen-Betriebsgesellschaft m b H , Ottobrunn (West Germany)

CALCULATION METHODS FOR FATIGUE LIFE AND CRACK PROPAGATION

Walter Schutz In AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 45-76 refs

Avail NTIS HC A07/MF A01

A number of more or less well known methods to calculate fatigue life in the crack initiation and crack propagation phases are discussed. Each section is divided into two sub-sections.

present status and potential improvements. Methods are classified as present status when they are used widely in industry, examined by systematical test programs or are simply outgrowths of older methods and no improvement can be expected for fundamental reasons. They are classified as potential improvements when they offer some hope for improvement compared to the present status but this has not been conclusively proved. Thus a method will be in the potential improvements section when it has not been thouroughly examined experimentally although it may have been around for many years.

Author

N78-18050# Industrieanlagen-Betriebsgesellschaft mbH Ottobrunn (West Germany)

TESTS ON DETAILS AND COMPONENTS

K Ahrensdorf In AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 77-106 refs

Avail NTIS HC A07/MF A01

The fatigue life of critical components and/or the reaction of their structures to cracks must be determined to serve as a basis for fatigue life calculation and the final layout of fatigue-critical components. Such fatigue tests are often combined with detailed stress analyses. Also carried out are specimen tests to determine the crack propagation rates for the materials used and the crack growth in critical areas. Specimen tests are employed to complement the component tests because even in this early phase, it is not only interesting to find out how the structure will react to a mission mix used for fatigue verification, but it is also necessary to investigate the influence of variations of mission mix. These trade-off studies give information about the limitations in life associated with different usage. A seemingly more severe load spectrum may yield a longer life.

N78-18051# Royal Aircraft Establishment, Farnborough (England)

CURRENT STANDARDS OF FATIGUE TEST ON STRIKE AIRCRAFT

R D J Maxwell In AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 107-116 refs

(AGARD-AR-92) Avail NTIS HC A07/MF A01

Many types of aircraft are operated by countries other than those in which the aircraft were designed and tested It is important, therefore that sufficient information on major tests is made available to enable the airworthiness authorities of all user countries to interpret the tests in terms of their own requirements and monitoring systems. The discussion outlines in an advisory manner a list of the steps necessary to achieve the above objectives and to recommend those procedures based on current knowledge most likely to produce acceptable outputs at each step. The presentation is divided into three sections. (1) a brief statement of the objectives of a fatigue test and a list of the essential steps needed to achieve those objectives (2) a summary of the recommendations of the way in which each of the steps should be carried out and (3) a review of the background philosophy associated with the recommendations Author

N78-18062# National Aerospace Lab , Amsterdam (Netherlands) FATIGUE LOAD MONITORING

J B DeJonge In AGARD Fatigue Design of Fighters Guidelines for Obtaining and Maintaining Adequate Fatigue Performance of Tactical Aircraft Jan 1978 p 117-134 refs

Avail NTIS HC A07/MF A01

For modern fighter aircraft with their usage versatility and desired long operational lives on the one hand and their finite fatigue endurance on the other, monitoring of operational load experience has become indispensable. Monitored loads are used for re-assessing the service life under operational conditions and the inspection intervals for fail-safe structures which are based on crack growth rates in conjunction with loading severity Methods available for such re-assessment are discussed Various load monitoring techniques are described and general aspects of fatigue load monitoring are discussed.

N78-18053# Army Aviation Engineering Flight Activity Edwards AFB, Calif

AIRWORTHINESS EVALUATION NUH-1H HELICOPTER WITH GLOBAL POSITIONING SYSTEM Final Report

Charles L Thomas and Tom P Benson May 1977 189 p refs

(AD-A047971 USAAEFA-76-13) Avail NTIS MF A01 CSCL 01/3

The United States Army Aviation Engineering Flight Activity conducted a limited airworthiness flight evaluation of an NUH-1H helicoptor in which a prototype global positioning system (GPS) was installed Flight tests were conducted at Edwards Air Force Base California, between 18 and 27 January 1977 Nine test flights were conducted for a total of 11 productive flight hours Testing was performed to determine the effect of GPS installation on vibration and pilot-induced oscillation (PIO) characteristics of the NUH-1H helicopter During this test, one deficiency and one shortcoming were noted. The deficiency was insufficient aft longitudinal control margin in rearward flight. The shortcoming was insufficient directional control margin in hover and lowspeed flight. The deficiency and the shortcoming were a result of the gross weight and center of gravity of the helicopter after installation of the GPS, although both were within normal UH-1H operating limits. There was no significant effect on vibration characteristics or increase in PIO tendencies of the NUH-1H as a result of the GPS installation Author (GRA)

N78-18054# Boeing Vertol Co., Philadelphia, Pa LIMITATIONS OF THE CH-47 HELICOPTER IN PERFORM-

ING TERRAIN FLYING WITH EXTERNAL LOADS
Final Report, Jul 1976 - Apr 1977
Irvin B Alansky, James M Davis and Theodore S Garnett, Jr

Irvin B Alansky, James M Davis and Theodore S Garnett, Jr Aug 1977 161 p refs (Contract DAAJO2-76-C-0028)

(AD-A048580, D210-11225-1, USAAMRDL-TR-77-21) Avail NTIS HC A08/MF A01 CSCL 01/2

Quantitative limitations of the CH-47 helicopter performing terrain flying with external loads have been developed using a fully coupled total force and moment simulation math model of the helicopter and external load Load sway motion and susceptibility to pilot induced oscillations in night/instrument meteorological conditions were identified as the prime source of these limitations. Masking considerations were determined for various external load configurations including an 8x8x20-foot MILVAN and a 155mm howitzer. Incorporation of load stabilization (AAELSS) coupled with a shortened sling suspension or a Self-Hoisting Cargo Interface Device, offers the best potential for alleviating the limits identified, while providing improved masking requirements and reductions in pilot workload. In addition, the levels of maneuverability possible with the present state-of-theart visionic systems (including FLIR and NVG) were defined for terrain flying during night operations

N78-18055# Grumman Aerospace Corp Bethpage, N Y FLIGHT QUALIFICATION OF TITANIUM F-14A AIRFRAME COMPONENTS MANUFACTURED BY HOT ISOSTATIC PRESSING (HIP) Final Report, 1 Nov 1975 - 31 Mar 1977

R Witt Jun 1977 116 p refs (Contract N00019-76-C-0143)

(AD-A048485) Avail NTIS HC A06/MF A01 CSCL 01/3 This program established that fuselage braces (Part No A51B21683) manufactured by the hot isostatic pressing (HIP) process can satisfy flight requirements for forged parts. The HIP braces withstood 24 000 equivalent flight hours (four design lives) without failure. The projected cost saving related to the utilization of the HIP process in manufacturing of these parts is in the range of 30 to 40% Ti-6Al-6V-2Sn titanium alloys consolidated by HIP exhibited excellent fracture toughness and elongation characteristics and obtained K sub ic and percent elongation values in the range of 69-74 ksi sq root of in and 15-16%, respectively Representative F sub tu and F sub ty values were approximately 3% below the current design specifications for forgings. However, these values can be increased by minor modifications in the oxygen content within allowable limits Mechanical properties exhibited isotropic characteristics

NTIS

Reproducibility studies indicated that current tight tolerances for machined components may have to be relaxed to assure that all dimensions of hot isostatically pressed (HIP'd) parts meet design specifications Experimental welds on HIP and vacuum annealed materials met radiographic and ultrasonic acceptance criteria. Utilization of the HIP process in manufacturing fatigue-critical airframe components will depend on availability of high-quality powders with certified purity standards to insight GRA.

N78-18056# National Aerospace Lab Amsterdam (Netherlands) Scientific Services

FLIGHT-PATH RECONSTRUCTION OF SYMMETRIC NONSTEADY FLIGHTS

M VanDerWilt 17 May 1977 35 p refs (NLR-TR-76133-U) Avail NTIS HC A03/MF A01

An essential part of the process of determining the aircraft performance from data or nonsteady hight tests is the so-called flight path reconstruction. A flight path reconstruction with the square-root information formulation of the Kalman filter and smoother is described. This estimation method is applied to a symmetric nonsteady flight. Results of flight path reconstruction are obtained by processing simulated flight test measurements.

Author (ESA)

N78-18057# Dornier-System G m b H , Friedrichshafen (West Germany)

IMPROVEMENT OF FLIGHT MEASURING DATA WITH A KALMAN FILTER [VERBESSERUNG DER FLUGMES-SDATEN DURCH EIN KALMAN-FILTER]

L Platzoeder Bonn DOKZENTBw 1977 104 p refs In GERMAN ENGLISH summary

(Contract T/RF-41/RF-410/51082)

(BMVg-FBWT-77-6) Avail NTIS HC A06/MF A01 DOKZENTBW DM 30

Improvement of Fiat G91-T3 flight test measuring data using a Kalman filter algorithm was studied. The system equations and the Kalman filter equations are given and the regression analysis is presented Tests with the Kalman filter FORTRAN computer program. listed in the appendix, are reported and results are discussed. Both the filtering and the one channel smoothing of the measuring data produce an improvement in the regression analysis, but not nearly to the expected extent. Indeed the filtering produces a distinct reduction of the measuring data noise But it is shown that the regression analysis is insensible to noise, as expected so that the improvement in the measuring data could not improve the results. Tests with simulated data also show that the filter is very well qualified to filter out systematic errors. In the flight test results this is also seen in the improvements of the multiple correlation coefficient. To summarize studies with a Kalman-filter-algorithm show the technique to be a valuable tool in dynamic systems parameter identification. Author (ESA)

N78-18058# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany) Inst fuer Aerodynamik

MODERN CONCEPTS FOR AERODYNAMIC ROTOR DESIGN

H Koerner Sep 1977 87 p refs In GERMAN ENGLISH summary Presented at the Course of Hubschraubertech 1 Bundeswehrakad fuer Wehrverwaltung u Wehrtech Mannheim West Ger 29 Sep 1977

(DLR-IB-151-77/11) Avail NTIS HC A05/MF A01

As survey of new concepts for the improvement of the aerodynamic performance of rotors is given improvements of the conventional hinged rotor are discussed especially new airfoil sections and modified blade planforms. The new rotor concepts are considered together with aerodynamic problems in connection with new flight vehicles such as compound airplanes. A short survey of the aerodynamic methods available for rotor design is presented.

N78-18059# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Oberpfaffenhofen (West Germany) Inst fuer Dynamik der Flugsysteme

OPTIMAL LEVEL CONTROLS OF HIGH PERFORMANCE AIRCRAFT [OPTIMALE EBENE STEUERUNGEN VON HOCHLEISTUNGSFLUGZEUGEN]

D Kraft G C Shau K H Well and E Berger 12 Jul 1977 53 p refs In GERMAN

(DLR-IB-552-77/20) Avail NTIS HC A04/MF A01

The application of computer programs for the analysis and synthesis of optimal aircraft designs to the problem of optimal controls design is dealt with The mathematical model of aircraft motion is described. An equations system related to the linearized equations of motion was set up and the necessary optimality conditions formulated. The approximation of aerodynamic and propulsion characteristics is discussed and an approximation by rational functions is proposed. Two highly developed fast optimization algorithms are presented a multitarget and a collocation method. Methods for determining estimated values are outlined. Results of numerical calculations for time and fuel optimized trajectories of two high performance aircraft are presented.

N78-18060# Marconi Space and Defence Systems Ltd., Camberley (England)

THE PHILOSOPHY ADOPTED FOR THE FLIGHT TESTING OF THE PANAVIA TORNADO AVIONICS SYSTEM IN HACK AIRCRAFT

P H Morgan 1977 17 p Presented at the Symp on Data and Inform Process in Marine Navigation Systems Brunel Univ. Uxbridge Engl. 6 Sep. 1977

Avail NTIS HC A02/MF A01

The philosophy and techniques adopted for the flight testing of the swing-wing Tornado aircraft digitally based self-contained all-weather NAV/ATTACK avionics system are presented. The subsystems for navigation, displays, flight control, weapon aiming, computing and data transmission are described. The development organization and development program system are described briefly. The stage 3 flight trials program is detailed.

N78-18 $\hat{\mathbf{0}}\mathbf{6}\mathbf{1} \tilde{\#}$ Westinghouse Defense and Electronic Systems Center Baltimore, Md

F-4E AVIONICS UPDATE Final Report, 15 Jun. - 30 Sep 1976

A F Wenk Aug 1977 48 p refs (Contract F33615-76-C-1340) (AD-AO47949, AFAL-TR-77-91) Avail HC AO3/MF AO1 CSCL 19/5

This report covers the final phase of the previous F-4E Austere HUD Program AFAL-TR-76-190, dated December 1976 This report covers live aerial gun firing performance support that Westinghouse provided for the gunsight mechanization previously incorporated in test aircraft No 304 at AFFTC The report also covers SEAFAC support work and transformers delivered to SEAFAC Author (GRA)

N78-18062# Hughes Helicopters, Culver City, Calif Display Systems Lab

LIQUID CRYSTAL AIRBORNE DISPLAY Final Technical Report, Mar 1973 - Dec 1976

Richard N Winner, Michael N Ernstoff, and William R Byles Aug 1977 261 p refs

(Contract F33615-73-C-1221)

(AD-A048198 HAC-P76-527R HAC-Ref-C9383

AFAL-TR-77-18) Avail NTIS HC A12/MF A01 CSCL 14/2

A solid-state liquid crystal television display panel is described. This display has been developed as a replacement for the cathode-ray tube in direct-view and head-up display applications for tactical aircraft. Its key advantages are. (1) high contrast in small and large areas, (2) gray shade capability under all levels of illumination including direct-sunlight. (3) uniform high resolution over the entire display area. (4) interface similar to CRT. TV display and (5) low power, weight volume. Cockpit installations have been designed for the display which permit viewing under

day and night conditions Measurements have confirmed that the display brightness and contrast remain superior to the CRT for all single-place cockpit viewing positions under anticipated in-flight illumination conditions. The presentation of gray scale television images under direct sunlight illumination has been demonstrated. The display is built using silicon LSI circuit technology to form the metal-oxide semiconductor addressing circuits which define a matrix of electrodes used to directly activate a liquid crystal film. The present display is 2 in square and consists of 40 000 elements arranged in a 200 x 200 array. Techniques have been successfully illustrated for increasing the size of the display by assembling a mosaic array of modules that are electrically interconnected.

N78-18033# Dynamics Research Corp Wilmington Mass DIGITAL AVIONICS INFORMATION SYSTEM (DAIS) WID-1980'S MAINTENANCE ANALYSIS Final Report, May 1975 - Oct 1976

Andrew J Czuchry, John M Glasier, Herbert E Engel, H Anthony Baran (AFHRL, Wright-Patterson AFB, Ohio), Marjorie A Bristol, and Duncan L Dieterly (AFHRL, Wright-Patterson AFB Ohio) Brooks AFB Tex AFHRL Jul 1977 79 p refs

(Contract F33615-75-C-5218, AF Proj 2051)

(AD-A047886, AFHRL-TR-77-45) Avail NTIS HC A05/MF A01 CSCL 09/3

The fundamental objective of the Digital Avionics Information System (DAIS) Life Cycle Cost (LCC) Study is to provide the Air Force with an enhanced in-house capability to incorporate LCC considerations during all stages of the system acquisition process. The purpose of this report is to describe the technical approach, results and conclusions obtained from a Maintenance Task Analysis (MTA) conducted on a mid-1980s DAIS conceptual design configuration to identify and quantify support maintenance task requirements. This conceptual design configuration is one of two developed as bases for determining the maintenance support requirements of DAIS systems. They are described in AFHRL-TR-76-59, Mid-1980s Digital Avionics Information System Conceptual Design Configuration The first is representative of an application of the DAIS principles of avionics integration to current avionics equipment. The second represents an application of DAIS principles to equipment expected to be operational in the mid-1980s. An MTA was conducted on the current DAIS conceptual design configuration, AFHRL-TR-76-71, Digital Avionics Information System (DAIS) Current Maintenance Task Analysis Its results provided a baseline for conducting the MTA reported here. The approach taken was to identify major system design changes and innovative support system capabilities projected to be available in the mid-1980s timeframe along with major mechanization differences between the two conceptual designs

N78-18034# Environmental Research Inst of Michigan, Ann Arbor Radar and Optics Div MOLOGRAPMIC COMBINERS FOR MEAD-UP DISPLAYS Final Report, 1 May 1976 - 31 Jan 1977

W S Colburn and B J Chang Wright-Patterson AFB, Ohio AFAL Oct 1977 108 p refs

(Contract F33615-76-C-1182)

(AD-A047998, ERIM-122400-9-F, AFAL-TR-77-110) Avail NTIS HC A06/MF A01 CSCL 20/6

The use of holographic optical elements as combiners in Head-Up Displays (HUD) offers performance improvements in two respects because the holographic combiner has a high reflectivity over a narrow spectral region, it can make more efficient use of the light, and by forming the final element of the collimating lens, it can increase the field-of-view. Both improvements were examined separately in an analytical and experimental investigation directed at evaluating holographic combiners in existing HUD systems Flat holographic combiners that can be substituted on a one-for-one replacement basis for the conventional combiner in an existing HUD were designed and fabricated The combiners were fabricated in dichromated gelatin, and were characterized by diffraction efficiencies in excess of 90% and angular bandwidths of 10 to 12 deg A computer analysis of curved holographic combiners in the A-10 HUD generated a design that shows promise for increasing the instantaneous

field-of-view to 15 deg and the total field-of-view to 20 deg GRA

N78-18035# Draper (Charles Stark) Lab Inc Cambridge Mass PALEFAC Final Report, 1 Mor. 1975 - 31 May 1977 H B Chalstrom, Jr Wright-Patterson AFB Ohio AFAL Sep 1977 24 p refs

(Contract F33615-75-C-1206, AF Proj. 2052)

(AD-A048331, R-1087, AFAL-TR-77-167) Avail NTIS HC A02/MF A01 CSCL 09/2

This report describes the Palefac system which is part of the non-real-time support software of the Digital Avionics Information System (DAIS) of the Air Force Avionics Laboratory (AFAL) Palefac is a tool which aids in the development of real-time flight software for avionics embedded digital computers. This report deals with three aspects of the relationship of Palefac to the DAIS program

Author (GRA)

R78-18036 National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

INTEGRATED GAS TURBINE ENGINE-NACELLE Potont Arthur P Adamson, Donald F Sargisson, and Charles L Stotler, Jr., inventors (to NASA) Issued 25 Oct 1977 9 p Filed 3 Nov 1975 Division of US Patent Appl SN-522108, filed 8 Nov 1974

(NASA-Case-LEW-12389-2, US-Patent-4 055,041, US-Patent-Appl-SN-628221, US-Patent-Class-60-226R

US-Patent-Class-60-39 31, US-Patent-Class-244-53A,

US-Patent-Class-244-54) Avail US Patent Office CSCL 21E A nacelle for use with a gas turbine engine is presented An integral webbed structure resembling a spoked wheel for

rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine.

Official Gazette of the U.S. Patent Office

R78-18037* National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

VARIABLE MIXER PROPULSION CYCLE Potent
Dan Joseph Rundell (GE, Cleveland), Donald Patrick McHugh
(GE Cleveland), Tom Foster (GE, Cleveland), and Ralph Harold
Brown inventors (to NASA) (GE, Cleveland) Issued 24 Jan
1978 10 p Filed 2 Jun 1975 Sponsored by NASA
(NASA-Case-LEW-12917-1, US-Patent-4,069,661,

US-Patent-Appl-SN-583055 US-Patent-Class-60-204, US-Patent-Class-60-262) Avail US Patent Office CSCL 21E

A design technique method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.

Official Gazette of the U.S. Patent Office

전**78-180**28⁹# Pennsylvania State Univ University Park Dept of Mechanical Engineering

INVESTIGATION OF THE UNSTEADY PRESSURE DISTRI-BUTION ON THE BLADES OF AN AXIAL FLOW FAM Final Report, Sep 1973 - Sep 1977

Robert E Henderson and Gary F Franke Mar 1978 138 p

(Grant NGR-39-009-275)

(NASA-CR-15571) Avail NTIS HC A07/MF A01 CSCL 21E

The unsteady response of a stator blade caused by the interaction of the stator with the wakes of an upstream rotor was investigated Unsteady pressure distributions were measured using a blade instrumented with a series miniature pressure transducers. The influence of several geometrical and flow

parameters - rotor/stator spacing, stator solidity and stator incidence angle - were studied to determine the unsteady response of the stator to these parameters. A major influence on the stator unsteady response is due to the stator solidity. At high solidities the blade-to-blade interference has a larger contribution. While the range of rotor/stator spacings investigated had a minor influence, the effect of stator incidence angle is significant. The data indicate the existence of an optimum positive incidence which minimizes the unsteady response.

Author.

N78-18069# General Electric Co., Cincinnati Ohio Aircraft Engine Group

GE CORE ENGINE NOISE INVESTIGATION, LOW EMISSION ENGINES Final Report, Jun 1975 - Dec 1976

R K Matta G T Sandusky and V L Doyle Feb 1977 286 p refs

(Contract DOT-FA75WA-3688)

(AD-A048590, FAA-RD-77-4) Avail NTIS HC A13/MF A01 CSCL 20/1

Investigations were conducted to determine the variables affecting source strength spectrum shape, and farfield directivity This investigation included scale model tests to evaluate the effects of exhaust nozzle geometry on radiation patterns of low frequency noise. A full-scale combustor rig test was used to identify the controlling variables of combustor noise at the source Two engines tests were run to validate the findings from the scale model tests and add to the overall data base of core noise measurements. The relationship between combustor source noise and emissions was studied and qualitative trends identified for advanced low emissions combustors. Studies were made of the attenuation of high frequency turbine noise by downstream blade rows, the broadband noise generation by turbines, and the controlling parameters for turbine tone/jet stream interaction This included a turbine rig test in single and multistage configurations along with a unique data acquisition system. Scale model tests were used to define the effect of the pertinent aero-acoustic parameters on turbine tone scattering by jet stream turbulence The results of these investigations were used to improve the component prediction techniques derived under the Core Engine Noise Control Program

N78-18070*# Pratt and Whitney Aircraft Group, West Palm Beach, Fla Government Products Div

F-15/NONAXISYMMETRIC NOZZLE SYSTEM INTEGRA-TION STUDY SUPPORT PROGRAM Contractor Report, 24 Feb. 1977 - 30 Sep. 1977

H L Stevens Feb 1978 171 p refs

(Contract NAS3-20608)

(NASA-CR-135252, FR-9232) Avail NTIS HC A08/MF A01 CSCL 21E

Nozzle and cooling methods were defined and analyzed to provide a viable system for demonstration 2-D nozzle technology on the F-15 aircraft Two candidate cooling systems applied to each nozzle were evaluated The F-100 engine mount and case modifications requirements were analyzed and the actuation and control system requirements for two dimensional nozzles were defined Nozzle performance changes relative to the axisymmetric baseline nozzle were evaluated and performance and weight characteristics for axisymmetric reference configurations were estimated. The infrared radiation characteristics of these nozzles installed on the F-100 engine were predicted. A full scale development plan with associated costs to carry the F100 engine/two-dimensional (2-D) nozzle through flight tests was defined.

N78-18071# Calspan Corp , Buffalo, N Y

STUDIES OF HEAT TRANSFER TO GAS TURBINE COMPO-NENTS Final Report, Jun 1976 - Oct 1977

Michael G Dunn and Frank J Stoddard Wright-Patterson AFB, Ohio AFAPL Oct 1977 54 p refs (Contract F33615-76-C-2092)

(AD-A048551, CALSPAN-XE-5933-A-102 AFAPL-TR-77-66) Avail NTIS HC A04/MF A01 CSCL 21/5

A 180 sector of the first stage stationary inlet nozzle of the AiResearch TFE-731-2 engine was instrumented with thin-film

heat-transfer gages and experiments were performed to obtain detailed heat-transfer rate distributions. It is shown that the experimental apparatus can potentially be used to study total-pressure losses in cascades. The experimental apparatus consists of a helium-driven shock tube as a short-duration source of high-temperature high-pressure gas, driving a nozzle test-section device mounted near the exit of a primary shock-tunnel receiver tank. The nozzle test-section device consists of a forward transition. section with a circular opening facing the supersonic primary nozzle flow and with the external shape of a frustum of a cone Internal contouring is provided to transform the circular-section subsonic intake flow into one filling approximately a 180 annular segment having a geometry approximating that of the entrance to the turbine stator stage in a turbojet. Detailed measurements of static pressure in the test section and heat-transfer rate on the stator sector have been obtained and are reported herein

Author (GRA)

N78-18072# Sportavia-Puetzer G mbH and Co , K G (West Germany)

EXPERIMENTAL DETERMINATION AND COMPARISON WITH THEORY OF THRUST, NOISE AND DRIVING WEIGHT OF PROPELLER DRIVES [EXPERIMENTELLE BESTIMMUNG UND VERGLEICH MIT DER THEORIE VON SCHUB, LAERM UND ANTRIEBSGEWICHT VON PROPELLERANTRIEBEN] H Oberdoerster, M Schliewa, H Schrecker, and M Weck Bonn DOKZENTBW 1977 78 p refs in GERMAN, ENGLISH summary

(Contract T/RF-41/RF-410/41110)

(BMVg-FBWT-77-16) Ávail NTIS HC A05/MF A01. DOKZENTBw DM 30

Noise, static thrust and thrust in flight were experimentally determined for the quiet aircraft, Sportavia SS Results were compared with those from the calculation method of Hamilton Standard for propeller thrust and Pilatus for propeller noise Prior conditions for the comparisons were established from comparison test flights for the gliding flight polar error, from measurement of the characteristics of the engine and from calibrations of the indicating instruments. Weights of propeller and engine for predefined performance and engine speeds were recorded.

N78-18073# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Cologne (West Germany) Inst fuer Luftstrahlantriebe

INVESTIGATION OF THE JET WAKE DISCHARGE FLOW OF A HEAVILY LOADED CENTRIFUGAL COMPRESSOR IMPELLER M.S. Thesis - Tech Hochschule Aechen

Dietrich Eckardt 18 Jul 1977 227 p refs In GERMAN, ENGLISH summary Report will also be announced as translation (ESA-TT-466)

(DLR-FB-77-32) Avail NTIS HC A11/MF A01, DFVLR Cologne DM 91 20

The complex flow field in high performance centrifugal compressors was studied. Newly developed measuring techniques for unsteady static and total pressures (based on semiconductor transducers) as well as flow directions (special hot-wire probe), and a digital data analysis system for fluctuating signals (sampling technique) were tested thoroughly. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the Dean-Senoo theory, which was extended to compressible flows.

N78-18075*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center, Edwards, Calif FLIGHT-DETERMINED STABILITY AND CONTROL COEF-FICIENTS OF THE F-111A AIRPLANE

Kenneth W IIIff Richard E Maine and Sandra Thornberry Steers Mar 1978 91 p refs

(NASA-TM-72851) Avail NTIS HC A05/MF A01 CSCL 01C A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing sweep angles of 26 deg, 35 deg, and 58 deg. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle.

of attack range of 2 deg to 15 deg. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were

N78-18076*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center Edwards, Calif

ANALYTICAL STUDY OF RIDE SMOOTHING BENEFITS OF CONTROL SYSTEM CONFIGURATIONS OPTIMIZED FOR PILOT HANDLING QUALITIES

Bruce G Powers Feb 1978 60 p refs (NASA-TP-1148, H-922) Avail NTIS HC A04/MF A01 CSCL 01C

An analytical study was conducted to evaluate the relative improvements in aircraft ride qualities that resulted from utilizing several control law configurations that were optimized for pilot handling qualities only. The airplane configuration used was an executive jet transport in the approach configuration. The control law configurations included the basic system, a rate feedback system, three command augmentation systems (rate command, attitude command, and rate command/attitude hold), and a control wheel steering system. Both the longitudinal and lateral directional axes were evaluated A representative example of each control law configuration was optimized for pilot handling qualities on a fixed base simulator. The root mean square airplane responses to turbulence were calculated, and predictions of ride quality ratings were computed by using three models available in the literature

N78-18077# Toronto Univ (Ontario) Inst for Aerospace Studies

THE APPLICATION OF TECHNIQUES FOR PREDICTING STOL AIRCRAFT RESPONSE TO WIND SHEAR AND TURBULENCE DURING THE LANDING APPROACH

L D Reid, A B Markov, and W O Graf Jun 1977 172 p refs

(UTIAS-215 CN-ISSN-0082-5255) Avail NTIS HC A08/MF A01

Techniques examined include an experimental approach which collects flow statistics at fixed points along the nominal flight path. The correlations are then employed with a linear aircraft model to predict RMS response. In the second technique studied, turbulence velocities are measured from which aerodynamic forces can be calculated using linear aerodynamics. These measurements can be made by a moving probe in a boundary layer wind tunnel or by a properly instrumented aircraft in the field B L.P

N78-18078# Air Force Inst of Tech, Wright-Patterson AFB, School of Engineering

THE EFFECTS OF EXTERNAL STORES ON THE FLUTTER OF A NON-UNIFORM CANTILEVER M S Thesis Van C Sherrer Dec 1977 105 p refs

AFIT-GAE/AA/77D-13) (AD-A048360, NTIS HC A06/MF A01 CSCL 20/4

A computer study of the effects of external stores simulated by lumped masses was conducted with a finite element, cantilever, nonuniform wing model. The NASTRAN (Level 16.0) computer program flutter format was used to obtain flutter speeds and frequencies Mass balancing with a single concentrated mass caused a reduction in flutter speed as the mass was moved chordwise toward the trailing edge and spanwise toward the wing tip. Flutter speeds and frequencies of a 100 lb and a 200 lb store, simulated by two equal masses, were compared to an equivalent concentrated mass at the store center of gravity The stores consistently raised the flutter frequency over that of the single mass, but flutter speed results were not conclusive

Author (GRA)

N78-18080# National Aerospace Lab , Amsterdam (Netherlands) Space Flight Div

FLIGHT TEST OF STICK FORCE STABILITY IN ATTITUDE-STABILIZED AIRCRAFT

H A Mooij and M F C VanGool 18 May 1977 7 p refs Presented at the AIAA 4th Atmospheric Flight Conf., Hollywood, Fla 8-10 Aug 1977

(NLR-MP-77015-U) Avail NTIS HC A02/MF A01

The need of artificially generated positive stick force stability for longitudinal flight control systems based on pitch-ratecommand/attitude-hold (PRC/AH) has been investigated in two flight test programs using a Beechcraft Queen Air-80 and a Fokker F-28/Mk6000 The main conclusion, based on statistical analysis of performance measures and 'effort ratings' of 120 approaches, is that positive stick force stability reduces airspeed deviations from the reference speed at the cost of increased glide path deviations and increased pilot effort. Only for relatively small levels of positive stick force stability was a modest reduction of airspeed deviation obtained, while glide path tracking and pilot effort were not significantly degraded as compared to the case of neutral stick force stability Author (ESA)

N78-18081# European Space Agency, Paris (France) DETERMINATION OF DYNAMIC CHARACTERISTICS FROM FLIGHT TEST DATA

Martin Marchand Dec 1977 29 p refs Transl into ENGLISH of 'Ein Verfahren fuer die Bestimmung von dynamischen Flugeigenschaftskenngroessen aus Flugversuchsdaten', DFVLR, Brunswick Report DLR-FB-77-26, 20 Jun 1977 Original report in GERMAN previously announced as N78-14044 Original German report available from DFVLR, Cologne DM 13 20

(ESA-TT-434, DLR-FB-77-26) Avail NTIS HC A03/MF A01 An evaluation procedure for the determination of dynamic characteristics from flight test data was developed. The procedure uses a gradient method for the evaluation of eigenvalues and a regression method for the calculation of eigenvectors. The procedure was programmed in FORTRAN and successfully applied during a handling qualities assessment of a fighter aircraft. The procedure is described and some results from both simulation and flight testing are presented Author (ESA)

N78-18082 Virginia Univ , Charlottesville

OPTIMAL AIRCRAFT SIMULATOR DEVELOPMENT BY ADAPTIVE RANDOM SEARCH **OPTIMIZATION** Ph.D Thesis

Guy Otis Beale, Jr 1977 180 p

Avail Univ Microfilms Order No 77-28601

An Adaptive Random Search technique was developed for parameter optimization. The result of the optimization process is a discrete time transfer function to be used as an integration operator in the simulation of closed loop nonlinear, dynamic systems. The transfer function is optimized for the particular system being simulated. The search for the optimum parameter set is guided by past successful parameter values. A vector valued performance criterion is used with the optimization procedure. This allows the consideration of several cost functions simultaneously. For a particular simulation trial to be considered successful, no element of the performance vector may increase in value, and at least one element must decrease. The optimization technique was applied to the simulation of aircraft motion in a vertical plane, as well as to a more general twelfth order aircraft model

N78-18083* National Aeronautics and Space Administration Ames Research Center Moffett Field, Calif

FULL COLOR HYBRID DISPLAY FOR AIRCRAFT SIMULA-TORS Patent

Wendell D Chase inventor (to NASA) Issued 25 Oct 1977 11 p Filed 17 Oct 1975 Supersedes N76-10148 (14 - 01, p 0021)

(NASA-Case-ARC-10903-1 US-Patent-4,055 004

US-Patent-Appl-SN-623536 US-Patent-Class-35-12N,

US-Patent-Class-358-104) Avail US Patent Office CSCL

A full spectrum color monitor, connected to the camera and lens system of a television camera supported by a gantry frame over a terrain model simulating an aircraft landing zone, projects the monitor image onto a lens or screen visually accessible to a trainee in the simulator A digital computer produces a pattern corresponding to the lights associated with the landing strip onto a monochromatic display and an optical system projects the calligraphic image onto the same lens so that it is superposed on the video representation of the landing field. The optical system includes a four-color wheel which is rotated between the calligraphic display and the lens and an apparatus for synchronizing the generation of a calligraphic pattern with the color segments on the color wheel. A servo feedback system responsive to the servo motors on the gantry frame produces an input to the computer so that the calligraphically generated signal corresponds in shape, size and location to the video signal.

N78-18084*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va

LASER VELOCIMETER SURVEY ABOUT A NACA 0012 WING AT LOW ANGLES OF ATTACK

Danny R Hoad (Army Aviation Research and Development Command), James F Meyers, Warren H Young, Jr (Army Aviation Research and Development Command) and Timothy E Hepner (Army Aviation Research and Development Command) Jan 1978 155 p refs

(NASA-TM-74040) Avail NTIS HC A08/MF A01 CSCL 14B An investigation was conducted in the Langley V/STOL tunnel with a laser velocimeter to obtain measurements of airflow velocities about a wing at low angles of attack. The applicability of the laser velocimeter technique for this purpose in the V/STOL tunnel was demonstrated in this investigation with measurement precision bias calculated at -1 33 percent to 0 91 percent and a random uncertainty calculated at + or - 0.47 percent. Free stream measurements were obtained with this device and compared with velocity calculations from pitot static probe data taken near the laser velocimeter measurement location. The two measurements were in agreement to within 1 percent. Velocity measurement results about the centerline at 0.6 degrees angle of attack were typically those expected At 475 degrees, the velocity measurements indicated that a short laminar separation bubble existed near the leading edge with an oscillating shear

N78-18085*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va DESIGN AND PERFORMANCE EVALUATION OF SLOTTED WALLS FOR TWO-DIMENSIONAL WIND TUNNELS Publish 1978-22 and 15 feb.

Richard W Barnwell Feb 1978 33 p refs

(NASA-TM-78648) Avail NTIS HC A03/MF A01 CSCL 14B A procedure for designing slotted walls for two dimensional wind tunnels is is presented. The design objective is the minimization of blockage of streamline curvature or the reduction of both. The slotted wall boundary condition is derived both for flow from the tunnel into the plenum and vice versa, and the procedure for evaluating wall interference is described. A correlation of experimental data for the slotted wall boundary condition is given. Results are given for several designs and evaluations of slotted wind tunnel walls.

N78-18086*# Southampton Univ (England) THE 0 1m SUBSONIC CRYOGENIC TUNNEL AT THE UNIVERSITY OF SOUTHAMPTON

M J Goodyer Jan 1978 43 p refs (Grant NsG-7172)

(NASA-CR-145305) Avail NTIS HC A03/MF A01 CSCL 14B

The design and performance of a low speed one atmosphere cryogenic wind tunnel is described. The tunnel is fan driven and operates over the temperature range 305K to 77K at Mach numbers up to 0.28. It is cooled by the injection and evaporation of liquid nitrogen in the circuit, and the usual test gas is nitrogen. The tunnel has a square test section 0.1m across and was built to allow at low costs, the development of testing techniques and the development of instrumentation for use in cryogenic tunnels, and to exploit in general instrumentation work the unusually wide range of unit Reynolds number available in such tunnels. The tunnel was first used in the development of surface flow visualization techniques for use at cryogenic temperatures.

N78-18087# Appli-Mation, Inc., San Diego Calif AUTOMATED WEAPON SYSTEM TRAINER: EXPANDED ADAPTIVE MODULE FOR BASIC INSTRUMENT FLIGHT MANEUVERS Final Report, Jun 1974 - Jul 1976

John P Charles and Robert M Johnson Orlando Fla Naval Training Equipment Center Aug 1977 204 p refs (Contract N61339-74-C-0141)

(AD-A048498 AISR/376 NAVTRAEQUIPC-74-C-0141-1) Avail NTIS HC A10/MF A01 CSCL 05/9

Previous studies have demonstrated the conceptual and technical feasibility of automated and adaptive aviation simulator training. This study was concerned with exploring the impact of operational syllabiliand training requirements on these advanced techniques. The Advanced Jet Instrument Training syllabilis was selected and analyzed. A demonstration of the application of automated and adaptive techniques to the syllabilis was conducted utilizing the R and D simulator at the Naval Training Equipment Center. Several new approaches to performance measurement, syllabilis structuring and training control were developed to meet the syllabilis requirement and training objectives. The techniques and applications were successfully demonstrated. Author (GRA)

N78-18131*# Fiber Science Inc., Gardena Calif COMPOSITE HUB/METAL BLADE COMPRESSOR ROTOR Contractor Report, Dec. 1974 - Oct. 1975

Sam Yao Jan 1978 25 p

(Contract NAS3-18926)

(NASA-CR-135343) Avail NTIS HC A02/MF A01 CSCL 11D

A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

N78-18138# SRI International Corp., Menlo Park, Calif EXPLORATORY DEVELOPMENT OF CONDUCTIVE COATING MATERIALS Final Report, 15 Mar 1976 - 15 Mar 1977

S R Morrison, M Landstrass, and D B Parkinson Wright-Patterson AFB, Ohio AFML Jun 1977 60 p refs (Contract F33615-76-C-5072)

(AD-AO48253, AFML-TR-77-90) Avail NTIS HC AO4/MF A01 CSCL 11/3

The object of this study is the development of a conductive white coating (paint) primarily for use on aircraft radomes. Two problems are addressed. First, in order to maintain a low pigment volume concentration (PVC) so the coating will have good erosion resistance, we have examined ways of inducing the pigment to flocculate in a chain or snowflake structure. This structure is needed to maintain interparticle contacts, and thus high conductance while permitting a low PVC. The most effective way found to induce chain flocculation was with an applied electric field. With the flocs thus formed, they were cemented into permanent units with a SiCl4 treatment. The second problem examined was the preparation of a white pigment with a stable conductance showing resistance to oxidation. It is pointed out that more work on this latter problem is needed before a completely satisfactory paint is developed GRA

N78-18158# National Bureau of Standards Washington D C STUDIES OF THE FLASH FIRE POTENTIAL OF AIRCRAFT CABIN INTERIOR MATERIALS Final Report, Aug 1975 - Sep. 1976

Michael J Manka Henry Pierce and Clayton Huggett Dec 1977 35 p refs Sponsored in part by the National Aviation Facilities Experimental Center (NAFEC) Atlantic City NJ (Contract DOT-FA67NF-AP-21)

(AD-AO48475 NA-77-180 FAA-RD-77-47) Avail NTIS HC AO3/MF AO1 CSCL 13/12

A minimum energy principle was proposed to characterize the flash fire behavior of the complex mixture of fuels derived from the pyrolysis of organic materials. This principle states that

a flash fire is possible when the potential combustion energy content of the pyrolyzate air mixture exceeds approximately 425 cal/L. A variety of experiments was performed to provide support for the minimum energy principle. The results were in general agreement with predictions but the accuracy of the measurements was not good enough to permit detailed conclusions. Oxidative pyrolysis plays a significant role in the formation of the fuel-air mixture in the flash fire cell. Particulates contribute to the creation of flash fire conditions but they present a difficult measurement problem.

N78-18188# Naval Air Development Center Warminster, Pa Air Vehicle Technology Dept

ACCELERATED LABORATORY CORROSION TEST FOR MATERIALS AND FINISHES USED IN NAVAL AIRCRAFT Progress Report

S J Ketcham 14 Sep 1977 12 p refs (AD-A048059 NADC-77252-30) Avail NTIS HC A02/MF A01 CSCL 14/2

An accelerated laboratory corrosion test has been developed to screen materials and finishes for use on naval aircraft. Sulfur dioxide is introduced at periodic intervals into a conventional salt fog chamber to simulate conditions produced by the carrier stack gas/marine environment. Procedures for conducting the test are described.

Author (GRA)

N78-18226# Army Mobility Equipment Research and Development Center Fort Belvoir, Va

COMPARISON TESTS ON THE 100-GPM ELECTROKINETIC FUEL DECONTAMINATOR AND A 100-GPM MILITARY STANDARD FILTER/SEPARATOR Final Technical Report William R Williams Sep 1977 35 p

(AD-A048655 MERADCOM-2220) Avail NTIS HC A03/MF A01 CSCL 21/4

This report covers identical tests performed on the 100-GPM Electrokinetic Fuel Decontaminator and a 100-GPM Military Standard Filter/Separator for the purpose of comparing performances Performance is based upon the ability to remove emulsified water from fuel Test fuels were turbine fuel JP-5 and diesel fuel No 2 Water is injected into the fuel upstream of a centrifugal pump out of the test vessel in concentrations of 0.5, 2, 5, and 10% The effluent, pressure-drop readings are also taken. The effluent fuel from each test vessel is measured for water concentration using a turbidimeter. Tests are performed at ambient temperatures and low temperatures. Results are correlated, and the performances of the two test vessels are compared Conclusions are as follows (a) The Electrokinetic Fuel Decontaminator demonstrates improved overall efficiency in removing water from turbine fuel and diesel fuel over the currently used Military Standard Filter/Separator (b) The Electronkinetic Fuel Decontaminator demonstrates a lower overall pressure drop than the Military Standard Filter/Separator (c) The power consumption of the Electrokinetic Fuel Decontaminator is primarily dependent on the amount of water present and, to a lesser extent, on temperature (d) The power consumption for decontaminating diesel fuel is approximately three times as great as that for decontaminating turbine fuel (e) The current necessary to remove 1 gallon of water from turbine fuel is approximately 1 ampere for diesel fuel, the current is approximately 3 amperes Author (GRA)

N78-18264# Institute for Telecommunication Sciences Boulder, Colo

OBJECTIVE MEASUREMENT OF VOICE CHANNEL INTELLIGIBILITY Final Report

K J Gamauf and W J Hartman Oct 1977 76 p refs Sponsored in part by Army

(Contract DOT-FA74WAI-448)

(AD-A048611, FAA-RD-77-153) Avail NTIS HC A05/MF A01 CSCL 17/2

Following the results of a feasibility study an objective intelligibility measure is developed using a large data base consisting of 8-50 word phonetically balanced word groups with twelve different kinds of distortion Justification for the use of this particluar measure is included with mathematical deriva-

tions and physical interpretations. A discussion of the feasibility of a hardware implementation of the software developed here is also included.

Author

N78-18272# R and D Associates, Marina Del Rey Calif AIRCRAFT RESPONSE EFFECT ON E-FIELD MEASURE-MENTS

Gerard Schlegel 9 Mar 1977 82 p refs (Contract DNA001-77-C-0012) (AD-A047986 AD-E300042 RDA-TR-140801-008 DNA-4279T) Avail NTIS HC A05/MF A01 CSCL 20/3

This report describes the effect of the aircraft response on the measurement of E-fields In investigating this effect the effective height data developed by the Boeing Corporation for a I-m blade antenna on a C-130 aircraft was utilized Difficulties in using this data are discussed and calculated phase functions to correspond to the amplitude data are presented Calculated antenna open circuit voltages are then presented for different free field variations and polarizations

Author (GRA)

N78-18289# National Aerospace Lab , Amsterdam (Netherlands) Scientific Services

DETERMINATION OF ANTENNA RADIATION PATTERNS, RADAR CROSS SECTIONS AND JAM-TO-SIGNAL RATIOS BY FLIGHT TESTS

O B M Pietersen G J Alders, and R B A Wasch 14 Sep 1976 13 p Presented at the Symp on Flight Test Tech of the AGARD Flight Mech Panel, Porz-Wahn West Ger, 11-14 Oct 1976

(NLR-MP-76023-U) Avail NTIS HC A02/MF A01

A flight test data acquisition and processing method aimed at the determination of radiation patterns of airborne equipment is discussed. The data acquisition procedure and the data processing and presentation schemes used, are discussed. ESA

N78-18290# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Oberpfaffenhofen (West Germany) Inst fuer Flugfunk und Mikrowellen

THE GEOMETRICAL THEORY OF DIFFRACTION - A METHOD FOR THE SOLUTION OF ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS OF COMPLICATED STRUCTURES IN THE HIGH FREQUENCY CASE

A Schrott [1977] 250 p refs In GERMAN, ENGLISH summary Report will also be announced as translation (ESA-TT-435) Avail NTIS HC A11/MF A01

Determination of the radiation characteristic of antennas on complicated structures such as satellites and aircraft, and the scattering at these structures in the high frequency case with the aid of the geometrical theory of diffraction is dealt with The complicated structures are divided into canonical forms which can be analyzed by rigorous asymptotic methods. The most important canonical problems like the diffraction at an edge are treated extensively. The diffraction coefficients for the computation of the diffracted field are presented. Ray tracing is carried out for several structures. The computation of the field at caustics with the aid of equivalent edge currents or correction factors respectively is discussed in detail. The field of application and the accuracy of the geometrical theory of diffraction is demonstrated with numerous computational examples.

N78-18291# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt Oberpfaffenhofen (West Germany) Inst fuer Flugfunk und Mikrowellen

THE INTEGRAL EQUATION METHOD - A COMPUTATIONAL METHOD FOR DIFFRACTED AND SCATTERED FIELDS OF COMPLICATED STRUCTURES

V Stein [1977] 214 p refs in GERMAN ENGLISH summary Report will also be announced as translation (ESA-TT-436) Avail NTIS HC A10/MF A01

Determination of the radiation and scattering behavior of complicated structures with the aid of the integral equation method is dealt with These structures may be complicated isolated radiators or shapes like helicopters or satellites which are excited by an electromagnetic wave. The real structure is substituted by a mathematical model for the solution of the electric and magnetic field integral equations by means of the method of moments. In

order to reduce the computer storage requirements special procedures such as the numerical Green function are used. The combination of both integral equations for the investigation of special problems like the resonance case is discussed in some detail. The field of application and the accuracy of the integral equation method are demonstrated with numerous computational examples Author (ESA)

N78-18319# Norden Norwalk, Conn

STANDARD ELECTRONIC MODULE RADAR COST ANALY-SIS Final Report, 1 Jun - 30 Nov 1976
R Hoefle R Archbald, and R Lipeles Jul 1977 111 p refs

(Contract F33615-76-C-1306)

(AD-A048207 Rept-1266-R-0007 AFAL-TR-77-26) Avail NTIS HC A06/MF A01 CSCL 17/9

The standard electronic module radar (SEMR) is a redesigned AN/APN-59b weather, navigation beacon radar system using standard electronic modules wherever possible. Two configurations of SEMR have been developed to permit use in C-130 and C-135 or in C-141 aircraft. Both configurations include built-in test equipment (BITE) to provide fault detection and isolation to 4 to 6 modules Author (GRA)

N78-18321# Westinghouse Electric Corp Baltimore, Md MODULAR PACKAGING APPROACHES Final Report, 1 Mar - 30 Sep. 1976

W W Staley Jul 1977 129 p refs (Contract F33615-75-C-1269)

(AD-A048205 Rept-77-0043 AFAL-TR-76-61-Vol-2) Avail NTIS HC A07/MF A01 CSCL 09/3

The objective of this study is to investigate the feasibility practicality and implementation of standard electronic modules SEM for avionics. Tradeoff studies are used to provide quantitative SEM formats. The broad spectrum of considerations necessary to characterize standard packaging for a wide class of avionics applications are investigated in depth quantification is placed primarily on digital signal processing and to a lesser degree on analog circuitry. The work is performed in four tasks whereby Task 1 evaluates current and past industry and DOD module programs, Task 2 studies present technology and technological trends for determination of the standard avionics modules, Task 3 is a compilation of industry and DOD data concerning standard module information and concepts, and Task 4 is the detailed development and evaluation of the proposed 'Westinghouse SEM' including the construction of demonstration hardware The efforts of Tasks 1, 2, and 3 are described in the previous issued interim Report AFAL-TR-76-61, Volume 1. This Final Report describes the details of the study performed on Task 4 with the conclusions made and recommendations for future work

Author (GRA)

N78-18377# Avions Marcel Dassault-Breguet Aviation, Saint-Cloud (France)

SEPARATION PROBLEMS ENCOUNTERED BY AIRCRAFT DESIGNERS CSS DIV. DES ETUDES AVANCEES. [LES PROBLEMES DE DECOLLEMENTS POSES A L'AVION-

Pierre Perrier In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 11 p refs In FRENCH

Avail NTIS HC A11/MF A01

The different ways in which flow separation presents problems to aircraft manufacturers in the design and performance prediction of civil and military aircraft are distinguished. The means used to resolve these problems are reviewed from an analytical and experimental viewpoint. Areas of research which show promise for reducing the adverse effects of quasi- and quasi-steady and unsteady separation are explored ARH

N78-18381*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

INTRODUCTION TO UNSTEADY ASPECTS OF SEPARA-TION IN SUBSONIC AND TRANSONIC FLOW

W J McCroskey In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 8 p refs

Avail NTIS HC A11/MF A01 CSCL 20D

Almost any flow that separates will have some degree of unsteadiness in some cases the fluctuations will be almost complete stochastic, in others it will be highly organized and in still others, it will be a combination of random and periodic components Some peculiar unsteady phenomena are reviewed and several classes of flow problems are discussed. Flow visualization and pressure measurements are used to explore external flows past fluff bodies unsteady separation on slender bodies and internal flows ARH

N78-18382# Royal Aircraft Establishment Bedford (England) PREDICTION OF THE SEVERITY OF BUFFETING

D G Mabey In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 30 p refs

Avail NTIS HC A11/MF A01

The nature of buffeting, and buffeting criteria for fighter and transport aircraft are examined. Flow fields about unswept wings, swept wings, and slender wings are discussed. Although the onset of flow separations (the buffet boundary) can be predicted by a combination of boundary layer methods and potential flow theory, adequate theoretical methods are not yet available to predict the aerodynamic excitation after separation. The prediction of the severity of aircraft buffeting will continue to depend on model tests in wind tunnels. Three types of model tests are. (1) ordinary wind tunnel models used to measure unsteady wing-root strain in the first bending mode, (2) ordinary wind tunnel models used to measure the unsteady pressure across the appropriate surface, and (3) aeroelastic models used to measure unsteady responses. The importance of using wind tunnels with low levels of flow unsteadiness is emphasized. Alternative methods of determining buffeting onset are discussed ARH

N78-18383*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

SOME UNSTEADY SEPARATION PROBLEMS FOR SLEN-DER BODIES

W J McCroskey In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 11 p refs

Avail NTIS HC A11/MF A01 CSCL 20D

The development of reliable prediction techniques for engineering purposes requires a fundamental and detailed understanding of the unsteady flow fields on wings and rotating blades. Some of the peculiar features of unsteady separated flows that are not simple analogs or extensions of quasi-steady flows are discussed These include the unsteady Kutta-Joukowski condition dynamic stall on oscillating airfoils (with applications to helicopter rotor blades) and unsteady shock wave-boundary layer interaction Author

N78-18384# Royal Aircraft Establishment Farnborough (England) Dept of Aerodynamics

INVISCID FLUID MODELS, BASED ON ROLLED-UP VORTEX SHEETS, FOR THREE-DIMENSIONAL SEPARATION AT HIGH REYNOLDS NUMBER

J H B Smith In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 27 p refs

Avail NTIS HC A11/MF A01

The inviscid fluid models which have been used to represent flows with three dimensional separations of vortex type are introduced and described. Their strengths and weaknesses are discussed and suggestions are made for improvements. A selection of results for a wide range of problems is presented The difficulties which arise in trying to extend these models to represent separation from highly swept separation lines on smooth bodies are explored and a view is given of the present position and developments in the immediate future Author

N78-18387*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

PREDICTION OF UNSTEADY SEPARATED FLOWS ON OSCILLATING AIRFOILS

W J McCroskey In AGARD Three Dimensional and Unsteady Separation at High Reynolds Numbers Feb 1978 8 p refs

Avail NTIS HC A11/MF A01 CSCL 20D

Calculating the flow around an airfoil undergoing dynamic stall is a task which has not yet been accomplished at high Reynolds numbers although several approximate analytical methods have been proposed. The most promising of those methods seems to be either a combination of the discrete potential vortex and thin boundary layer approaches or a significantly improved version of the strong viscous-inviscid interaction approach. The former may prove to be superior for low speed high amplitude flows, but the latter seems likely to be more suitable for airfoils that operate under supercritical transonic flow conditions and for cases that do not penetrate deeply into stall At the present time, the engineer who is faced with the need to predict the aerodynamic forces and moments on oscillating airfoils would be better advised to turn to one of the empirical correlation techniques or perhaps to utilize more than one method and average the results. In any event, these methods permit the essential features of dynamic stall to be described, even though further improvements are highly desirable. Future efforts will probably see more use made of the two-dimensional theoretical analyses, while experiments can be expected to play the major role in assessing the importance of the three-dimensional effects that are likely to be encountered in practice

N78-18408# European Space Agency, Paris (France) THE USE OF PYRANOMETERS IN AIRCRAFT

Hans P Fimpel Dec 1977 54 p refs Transl into ENGLISH of 'Die Verwendung von Pyranometern in Flugzeugen' DFVLR Oberpfaffenhofen, West Ger Report DLR-FB-77-24 3 Jun 1977 Original report in GERMAN previously announced as N78-14379 Original German report available from DFVLR, Cologne DM 1850

(ESA-TT-433, DLR-FB-77-24) Avail NTIS HC A04/MF A01 The Moll-Gorczynski-Solarimeter and the Eppley-Pyranometer Model PSP were investigated in order to find out whether they can be used for measurements onboard aircraft. The influence of temperature and pressure on the sensitivity, the dependence of the inclination, and the heating through high air-velocities were studied in laboratory and ground-based measurements Measurements with an aircraft showed that the influence of quick variations of the air temperature can be easily corrected Author (ESA)

N78-18441# Abex Corp , Oxnard, Calif RELIABILITY, IMPROVEMENT WARRANTY (RIW) MID CONTRACT EVALUATION Report, Apr 1973 - Aug 1977 Oscar Markowitz 15 Oct 1977 138 p refs (Contract N00383-73-C-3318)

(AD-A048244, ASO-TEE-2-77) Avail NTIS HC A07/MF A01 CSCL 15/5

RIW (Reliability Improvement Warranty) is considered by DOD (Department of Defense) as being in a trial phase during which the philosophies techniques and applications could be wrung out The Abex RIW contract, about which this report deals, innovated features of no exclusions, support, as well as early timing in the sequence of the life of an item. Thus, the report on this Abex RIW contract is meaningful in terms of evaluating RIW results against other most likely results should an otherwise normal support mode have been selected rather than RIW The pre-contract history is provided as well as the main conditions and terms of the RIW contract itself. Each area of interest (Program, Administration Engineering Logistics and Economics) is reviewed and quantified from data developed for the RIW contract purposes as well as data from other Navy sources obtained for evaluation purposes. Throughout the report results obtained within the Abex contract are compared against non-RIW alternatives as well as other experiences obtained with other equivalent engine driven hydraulic pumps supported

without benefits of RIW Conclusions to date can be made that the RIW goals anticipated were more than met and the RIW contract has, in fact, resulted in a most cost effective support alternative available to the Navy Additionally, the RIW alternative has provided superlative support to the fleet within a Navy investment considerably less than other comparative units used in other front line Navy aircraft. The report provides considerable supportative detail and analysis to back up the above conclu-Sions Author (GRA)

N78-18459*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va.

DEVELOPMENT AND APPLICATION OF AN OPTIMIZATION PROCEDURE FOR FLUTTER SUPPRESSION USING THE AERODYNAMIC ENERGY CONCEPT

E Nissim (Technion - Israel Inst of Tech.) and I Abel Feb 1978 39 p refs (NASA-TP-1137, L-11909) Avail NTIS HC A03/MF A01

An optimization procedure is developed based on the responses of a system to continuous gust inputs. The procedure uses control law transfer functions which have been partially determined by using the relaxed aerodynamic energy approach. The optimization procedure yields a flutter suppression system which minimizes control surface activity in a gust environment. The procedure is applied to wing flutter of a drone aircraft to demonstrate a 44 percent increase in the basic wing flutter dynamic pressure. It is shown that a trailing edge control system suppresses the flutter instability over a wide range of subsonic Mach numbers

N78-18548# Federal Energy Administration, Washington D C Office of Conservation and Environment

and flight altitudes. Results of this study confirm the effectiveness

Author

FEDERAL POLICY OPTIONS TO EFFECT FUEL CONSERVA-TION IN THE AIR INDUSTRY

Robert L Bowles In Union Coll Effects of Energy Constraints on Transportation Systems Dec 1977 p 399-408

Avail NTIS HC A24/MF A01

of the relaxed energy approach

CSCL 20K

Federal policies which may have potential for reducing petroleum consumption within the transportation sector are presented Airlines consume nearly 10 percent of the transportation energy and constitute a considerable portion of the operating cost Federal policies discussed include (1) Fuel Allocation and Price Control, (2) Taxation, (3) Air Carrier Regulation, (4) Aviation System Regulation and (5) Federal Expenditures and Investment

N78-18549# Bureau of Economic Analysis, Washington, D C MEASURING THE IMPACT ON SCHEDULED AIR LINES OPERATIONS OF RESTRICTIONS IN FUEL AVAILABILITY J C Constanz In Union Coll Effects of Energy Constraints on Transportation Systems Dec 1977 p 409-416

Avail NTIS HC A24/MF A01

Airline and aircraft manufacturers' fuel conservation efforts are presented A description was given of how since 1973 passengers flown per gallon of fuel used have increased by 19 percent. The airline reduced the average number of flights flown each day to conserve fuel and to take advantage of more efficient aircraft which carry more passengers per flight. Use of computerized flight plans (optimum routes altitudes and speeds) reduced the use of fuel to a considerable extent. Use of flight simulators and fewer engines during taxing reduced the consumption of petroleum

N78-18595# Environmental Protection Agency, Ann Arbor Mich Standards Development and Support Branch

AIRCRAFT EMISSION FACTORS

Robert G Pace Mar 1977 29 p refs (PB-275067/7 AC-77-03) Avail NTIS HC A03/MF A01 CSCL

Updated aircraft engine emission factors and a sample of the calculation methodology used in obtaining these numbers are presented Modal emission factors were calculated for a number of gas turbine and piston aircraft engines. Emission factors per aircraft per landing take-off cycle were calculated for representative aircraft engine combinations. Included were commercial jet transports business jets turboprops and general aviation piston aircraft.

GRA

N78-18797*# Aerospace Corp , El Segundo, Calif Advanced Programs Div

FAULT-TOLERANT SOFTWARE FOR AIRCRAFT CONTROL SYSTEMS Final Report, Oct. 1966 - Oct. 1977

1 Feb 1978 82 p refs (Contract NAS1-14644)

(NASA-CR-145298, ATR-78(7640)-1) Avail NTIS

HC A05/MF A01 CSCL 09B

Concepts for software to implement real time aircraft control systems on a centralized digital computer were discussed A fault tolerant software structure employing functionally redundant routines with concurrent error detection was proposed for critical control functions involving safety of flight and landing. A degraded recovery block concept was devised to allow collocation of critical and noncritical software modules within the same control structure. The additional computer resources required to implement the proposed software structure for a representative set of aircraft control functions were discussed. It was estimated that approximately 30 percent more memory space is required to implement the total set of control functions. A reliability model for the fault tolerant software was described and parametric estimates of failure rate were made.

N78-18823*# National Aeronautics and Space Administration Langley Research Center Langley Station, Va

EIGENVALUE/EIGENVECTOR ASSIGNMENT USING OUTPUT FEEDBACK

S Srinathkumar Feb 1978 32 p refs

(NASA-TP-1118, L-11869) Avail NTIS HC A03/MF A01 CSCL 09B

The problem of eigenvalue assignment in a linear time-invariant system using output feedback is considered. New sufficient conditions are derived to assign an almost arbitrary set of minimum (n,m + r - 1) distinct eigenvalues where n, m, and r are the number of states, inputs and outputs, respectively. These conditions precisely identify the class of systems where such an assignment is impossible. The synthesis technique also highlights the freedom in selection of closed-loop eigenvectors under output feedback. The utility of eigenvalue/eigenvector assignment in transient response shaping is illustrated by the design of a controller for the lateral dynamics of an aircraft.

Author

N78-18873*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

CONCORDE NOISE-INDUCED BUILDING VIBRATIONS JOHN F KENNEDY INTERNATIONAL AIRPORT

W H Mayes, R DeLoach, D G Stephens, J M Cawthorn, H K Holmes, R B Lewis B G Holliday, and D W Ward Jan 1978 38 p refs

(NASA-TM-78660, Rept-1) Avail NTIS HC A03/MF A01 CSCL 20A

The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft Preliminary results indicate that the relationship between window vibration and aircraft noise is (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window (2) consistent from flyover to flyover for a given aircraft type under approach conditions (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced

under approach power conditions) and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics

Author

N78-18874*# DyTec Engineering, Inc. Huntington Beach, Calif INVESTIGATION OF GROUND REFLECTION AND IMPEDANCE FROM FLYOVER NOISE MEASUREMENTS Final Report

Robert L Chapkis and Alan H Marsh Feb 1978 142 p refs (Contract NAS1-14797)

(NASA-CR-145302 DyTec-R-7708) Avail NTIS HC A07/MF A01 CSCL 20A

An extensive series of flyover noise tests was conducted for the primary purpose of studying meteorological effects on propagation of aircraft noise. The test airplane a DC 9-10, flew several level-flight passes at various heights over a taxiway. Two microphone stations were located under the flight path. A total of 37 runs was selected for analysis and processed to obtain a consistant set of 1/3 octave band sound pressure levels at half-second intervals. The goal of the present study was to use the flyover noise data to deduce acoustical reflection coefficients and hence acoustical impedances.

Author

N78-18878# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Berlin (West Germany) Inst fuer Turbulenzforschung

ACOUSTIC INTERFERENCE EFFECTS AND THE ROLE OF HELMHOLTZ NUMBER IN AERODYNAMIC NOISE

H V Fuchs 1977 30 p refs Presented at the Symp on Turbulence, Berlin 1-5 Aug 1977

(DLR-IB-257-77/11) Avail NTIS HC A03/MF A01

Recent coherence measurements in the near and far fields of both cold-air model jets and real jet engine flows show a strong exisymmetric structure in both the turbulent flow and the acoustic wave field radiated at small angles to the jet axis Coherent source phenomena occur at the relevant Strouhal numbers around the spectral peaks in the turbulent and acoustic pressure fields and persist at high Reynolds and Mach numbers. Empirical scaling laws common in aerodynamic noise were frequently based on merely a typical density, velocity, and length of the mean flow as the characteristic parameters. Such a simple dependence emerges from a dimensional analysis of Lighthill-Curle-type source integrals by assuming a small-scale eddy structure of the turbulence. For these scaling laws to be strictly valid the scale 1c of the individual turbulent sources must be small compared to the acoustic wave length radiated In cases where the coherently radiating sources are found to be not acoustically compact, scaling laws should incorporate. additionally, at least one of the following parameters acoustic compactness ratio, turbulence coherence ratio, and Helmholtz number Author (ESA)

N78-19042*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

TWO-DIMENSIONAL OSCILLATING AIRFOIL TEST APPARATUS

Frank L Gibson, Andrew J Hocker Jr, and Dennis S Matsuhiro In NASA Goddard Res Center The 11th Aerospace Mech Symp Apr 1977 p 171-178

Avail NTIS HC A11/MF A01 CSCL 14B

A two-dimensional oscillating airfoil test apparatus is presented as a method of measuring unsteady aerodynamic forces on an airfoil or rotor blade section. The oscillating airfoil testing, which was built for use in NASA Ames Research Center's 1x11-foot Transonic Wind Tunnel (speed range M = 0.4 - 1.4) allows determination of unsteady loadings and detailed pressure distributions on representative airfoil sections undergoing simulated pitching and flapping motions. The design details of the motion generating system and supporting structure are presented.

N78-19047 Northwestern Univ , Evanston III GENESIS N + 1 THE ORIGINS OF THE TURBO-JET REVOLUTION Ph.D Thesis

Edward W Constant II 1977 554 p Avail Univ Microfilms Order No 77-32291

The derivation of radical airframe and gas turbine component performance assumptions from advances in theoretical aerodynamics was examined in the invention of the turbo-jet engine. To facilitate comprehension of the complex elements and interrelations central to the turbo-jet revolution an ideal typical model for technological change similar to that of Thomas Kuhn's for science was proposed In addition to portraying the direct impact of advances in scientific theory on technological change, the model also attempts to portray the relation of scientific method especially the ideal of technological testability to such change Furthermore the model describes the critical importance of technological systems interface constraints on changes in any one system or sub-system Dissert Abstr

N78-19048*# National Aeronautics and Space Administration, Washington D C

EFFECT OF PERTURBED FLOW ON THE TRANSITION FROM THE SUPERSONIC LAMINAR BOUNDARY LAYER TO THE TURBULENT

A M Kharitonov Jan 1978 18 p refs Transl into ENGLISH from the book 'Aeromekhanika Moscow Nauka Press, 1976 p 153-164 Original language document was A77-30570 Transl by Sci Transl Serv Santa Barbara, Calif

(NASA-TM-75196) Avail NTIS HC A02/MF A01 CSCL 01A Results of experimental studies on the effect of various factors on the transition of a supersonic boundary layer are discussed It is shown that in supersonic wind tunnels a significant effect on the transition of the boundary layer on a model is exerted by the scale of acoustic perturbations which is proportional to the boundary layer displacement thickness of the working section Experimental data obtained over a wide range of variation of flow parameters in aerodynamically similar test installations with different dimensions of the working section are generalized by means of a correlation parameter based on the displacement

N78-19049*# Boeing Commercial Airplane Co Seattle Wash TEST DATA REPORT, LOW SPEED WIND TUNNEL TESTS OF A FULL SCALE LIFT/CRUISE-FAN INLET, WITH ENGINE, AT HIGH ANGLES OF ATTACK

W M Shain Jan 1978 165 p

(Contract NAS2-9640)

(NASA-CR-152055 T6-6145) Avail NTIS HC A08/MF A01 CSCL 01A

A low speed wind tunnel test of a fixed lip inlet with engine was performed. The inlet was close coupled to a Hamilton Standard 1.4 meter variable pitch fan driven by a lycoming T55-L-11A engine Tests were conducted with various combinations of inlet angle of attack freestream velocities, and fan airflows Data were recorded to define the inlet airflow separation boundaries performance characteristics, and fan blade stresses The test model installation instrumentation test data reduction and final data are described

N78-19060*# Burroughs Corp Paoli Pa

NUMERICAL AERODYNAMIC SIMULATION FACILITY PRELIMINARY STUDY EXTENSION EXECUTIVE SUM-MARY Final Report

Feb 1978 11 p

(Contract NAS2-9456)

(NASA-CR-152106) Avail NTIS HC A02/MF A01 CSCL

An optimized functional design of key elements of the Numerical Aerodynamic Simulation Facility was investigated. The following tasks were performed and are discussed (1) develop optimize, and describe the functional description of the custom hardware (2) delineate trade-off areas between performance, reliability availability serviceability, and programmability (3) develop metrics and models for validation of the candidate system's performance (4) conduct a functional simulation of the system design (5) perform a reliability analysis of the system design and (6) develop the software specifications to include a user level high level programming language a correspondence between the programming language and instruction set, and outline the operating system requirements

Author

N78-19051*# Burroughs Corp Paoli Pa NUMERICAL AERODYNAMIC SIMULATION FACILITY PRELIMINARY STUDY EXTENSION Final Report

Feb 1978 273 p (Contract NAS2-9456)

(NASA-CR-152107) Avail NTIS HC A12/MF A01 CSCL 01A

The production of an optimized design of key elements of the candidate facility was the primary objective of this report This was accomplished by effort in the following tasks (1) to further develop optimize and describe the function description of the custom hardware (2) to delineate trade off areas between performance reliability availability, serviceability and programmability (3) to develop metrics and models for validation of the candidate systems performance (4) to conduct a functional simulation of the system design (5) to perform a reliability analysis of the system design and (6) to develop the software specifications to include a user level high level programming language a correspondence between the programming language and instruction set and outline the operation system requirements

N78-19052* Control Data Corp., St. Paul, Minn and Advanced Design Lab

PRELIMINARY STUDY FOR A NUMERICAL AERODYNAMIC SIMULATION FACILITY PHASE 1. EXTENSION

N R Lincoln Feb 1978 434 p refs

(Contract NAS2-9457)

(NASA-CR-152108) Avail NTIS HC A19/MF A01 CSCL

Functional requirements and preliminary design data were identified for use in the design of all system components and in the construction of a facility to perform aerodynamic simulation for airframe design A skeleton structure of specifications for the flow model processor and monitor, the operating system, and the language and its compiler is presented

N78-19053*# National Aeronautics and Space Administration, Washington, D C

TRANSONIC FLOW PAST AN AIRFOIL WITH CONDENSA-

B Schmidt Mar 1978 21 p refs Transl into ENGLISH from Acta Mechanica (Austria), v 2, 1966 p 194-208 Transl by Sci Transl Serv, Santa Barbara, Calif (Contract NASw-2791)

(NASA-TM-75201) Avail NTIS HC A02/MF A01 CSCL 01A In connection with investigations conducted to determine the influence of water vapor on experiments in wind tunnels, the question arose as to what changes due to vapor condensation might be expected in airfoil measurements. Density measurements on circular-arc airfoils aided by an interferometer in choked tunnels with parallel walls show that increasing humidity produces increasing changes in the flow field. The flow becomes nonstationary at high humidity. At the airfoil however, the influence of the condensation is only felt, inasmuch as the shock bounding the local supersonic region moves upstream with increasing humidity while its intensity decreases. The density distribution upstream of the shock remains unchanged Even if the flow becomes nonstationary in the vicinity of the airfoil no changes occur at the airfoil

N78-19054# National Aerospace Lab , Tokyo (Japan) CALCULATION OF THE LIFT OF PARTIALLY-STALLED WINGS

Bradford H Wick Apr 1977 13 p refs (NAL-TR-498T) Avail NTIS HC A02/MF A01

Methods of calculating the lift and the spanwise distributions of the lift of thin sweptback wings with partially stalled flow were presented and evaluated. The evaluation was made by comparing the calculated and measured results for a number of wings It was concluded that the methods provide a reasonably accurate means of calculating the lift and its spanwise distribu-

N78-19055*# National Aeronautics and Space Administration Hugh L. Dryden Flight Research Center, Edwards, Calif

AN ANNULAR WING Patent Application

Harold J Walker, inventor (to NASA) Filed 24 Feb 1978

(NASA-Case-FRC-11007-1, US-Patent-Appl-SN-880725) Avail NTIS HC A02/MF A01 CSCL 01A

An annular wing is described for the purpose of supporting an aircraft in flight without the use of directional stabilizer surfaces The wing comprises an annular body of substantially uniform symmetrical configuration characterized by an annular positive lifting surface and a chord line. The wing is highly maneuverable, simple in concept, economic to fabricate and characterized by stable horizontal flight properties at subsonic speeds

N78-19056*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

THE ROLE OF TIME-HISTORY EFFECTS IN THE FORMULA-TION OF THE AERODYNAMICS OF AIRCRAFT DYNAM-ICS

Murray Tobak and Lewis B Schiff Mar 1978 12 p refs Proposed for Presentation at the AGARD Symp on Dyn, Athens, Greece, 22-24 May 1978

(NASA-TM-78471, A-7328) Avail NTIS HC A02/MF A01 CSCL 01A

The scope of any aerodynamic formulation proposing to embrace a range of possible maneuvers is shown to be determined principally by the extent to which the aerodynamic indicial response is allowed to depend on the past motion. Starting from the linearized formulation in which the indicial response is independent of the past motion, two successively more comprehensive statements about the dependence on the past motion are assigned to the indicial response (1) dependence only on the recent past and (2) dependence additionally on a characteristic feature of the distant past. The first enables the rational introduction of nonlinear effects and accommodates a description of the rate dependent aerodynamic phenomena characteristic of airfoils in low speed dynamic stall, the second permits a description of the double valued aerodynamic behavior characteristic of certain kinds of aircraft stall. An aerodynamic formulation based on the second statement, automatically embracing the first, may be sufficiently comprehensive to include a large part of the aircraft's possible maneuvers. The results suggest a favorable conclusion regarding the role of dynamic stability experiments in flight Author dynamics studies

N78-19058*# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

WATER-TUNNEL EXPERIMENTS ON AN OSCILLATING AIRFOIL AT RE EQUALS 21,000

Kenneth W McAlister and Lawrence W Carr Mar 1978 84 p

(NASA-TM-78446 A-7232) Avail NTIS HC A05/MF A01

Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to (1) create a conveniently striated and well preserved set of inviscid flow markers, and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices

N78-19069*# National Aeronautics and Space Administration. Langley Research Center, Langley Station, Va

DYNAMIC WIND-TUNNEL TESTS OF AN AEROMECHANI-CAL GUST-ALLEVIATION SYSTEM USING SEVERAL DIFFERENT COMBINATIONS OF CONTROL SURFACES Eric C Stewart and Robert V Doggett, Jr Mar 1978 37 p. refs

(NASA-TM-78638, L-11918) Avail NTIS HC A03/MF A01 CSCL 01A

Some experimental results are presented from wind tunnel studies of a dynamic model equipped with an aeromechanical gust alleviation system for reducing the normal acceleration response of light airplanes. The gust alleviation system consists of two auxiliary aerodynamic surfaces that deflect the wing flaps through mechanical linkages when a gust is encountered to maintain nearly constant airplane lift. The gust alleviation system was implemented on a 1/6-scale rod mounted, free flying model that is geometrically and dynamically representative of small four place, high wing, single engine light airplanes The effects of flaps with different spans, two size of auxiliary aerodynamic surfaces plain and double hinged flaps, and a flap elevator interconnection were studied. The model test results are presented in terms of predicted root mean square response of the full scale airplane to atmospheric turbulence. The results show that the gust alleviation system reduces the root mean square normal acceleration response by 30 percent in comparison with the response in the flaps locked condition. Small reductions in pitch-rate response were also obtained. It is believed that substantially larger reductions in normal acceleration can be achieved by reducing the rather high levels of mechanical friction which were extant in the alleviation system of the present model

N78-19061# Massachusetts Inst of Tech Cambridge Fluid **Dynamics Research Lab**

A LIFTING SURFACE THEORY FOR WINGS EXPERIENCING LEADING-EDGE SEPARATION Final Report, 1 Jan 1975 -30 Jun 1977

Thomas K Matoi and Sheila E Widnall 30 Jun 1977 148 p refs

(Contract N00014-75-C-0257)

(AD-A048439 ONR-CR215-230-3F) NTIS HC A07/MF A01 CSCL 20/4

This report describes a nonlinear lifting surface theory for a wing with leading-edge vortices in a steady incompressible flow A numerical scheme has been developed from this theory and initial runs have been made for the delta wing and arrow wing planforms A general procedure for other planforms is also described. The present formulation is the result of an extensive modification of the work of Nangia and Hancock in which a model of the leading-edge vortex is added to a vorticity representation of the wing and wake. This lifting surface theory program is based on the kernel function formulation in that the vorticity distribution is described by continuous functions with unknown coefficients. The vortex location is similarly described by functions with unknown coefficients. These unknowns are found by satisfying the downwash condition and the no-force condition on the leading-edge vortex representation. Due to the nonlinear nature of the boundary conditions with respect to the vortex position, the solution is obtained from an iterative scheme based on Newton's method Results for the delta wing and arrow wing are presented and compared with experiment and other theories

N78-19062# Air Force Inst of Tech Wright-Patterson AFB. Ohio School of Engineering

AN EXPERIMENTAL INVESTIGATION OF STEADY ASYM-METRIC VORTEX SHEDDING FROM A SLENDER BODY OF REVOLUTION AT HIGH ANGLES OF ATTACK M S Thesis

Robert Rudolph Turelli Dec 1977 64 p refs

(AF Proj 1366)

NTIS AFIT/GAE/AA/77D-15) (AD-A048370. Avail HC A04/MF A01 CSCL 21/4

An experimental investigation of the effects of Mach number and Reynolds number on the side forces induced on a stender body of revolution at high angles of attack was conducted. The tests were carried out in the Air Force Flight Dynamics Laboratory's Trisonic Gasdynamic Facility.

N78-19064# Aerospace Corp El Segundo, Calif Aerophysics Lab

LINEARIZED NEWTONIAN AERODYNAMICS OF SLENDER INFLATED CONES Interim Report

John W Ellinwood 5 Dec 1977 37 p

(Contract F04701-77-C-0078)

(AD-A048695 TR-0078(3940-02)-1 SAMSO-TR-77-218) Avail NTIS HC A03/MF A01 CSCL 16/3

Bionic vehicles covered with unsupported cloth are predicted to experience skin displacement from aerodynamic pressure at small angle of attack. The resulting shape aerodynamic force, and moment perturbations are predicted as functions of given axial tension and internal pressurization. A tension parameter is identified that varies inversely as dynamic pressure. It is concluded that the inflatable loses its shape dramatically unless this tension parameter is least of order one, and that this useful boundary cannot be appreciably extended by increasing pressurization, unless the internal pressure is at least an order of magnitude larger than external pressures.

Author (GRA)

N78-19065# McDonnell-Douglas Astronautics Co , Huntington Beach, Calif

AERODYNAMIC COMPUTER CODE FOR COMPUTING PRESSURE LOADING ON COMPLETE MISSILE FOR STRUCTURAL ANALYSIS Final Report, 1 Jun 1976 - 31 Dec 1977

Kenneth K Wang Jan 1978 215 p refs (AD-A048840 MDC-G7215) Avail NTIS MF A01 CSCL 01/1

Aerodynamic computer code for calculating the pressure distribution on missile or its components e.g., body and wings and to interpolate by surface fit at locations as specified for structural analysis using the NASTRAN computer code

Author (GRA)

N78-19067# Beech Aircraft Corp., Wichita Kans GUIDED DROGUE FUGHT TEST REPORT Final Report, Nov 1976 - Nov 1977

J A Ellsworth, W R Fox D E Lovendahl and J E Moore 6 Sep 1977 43 p refs

(Contract N00019-76-C-0555)

(AD-A049164, E-23027) Avail NTIS HC A03/MF A01 CSCL 01/2

An experimental maneuverable aerial refueling drogue was designed fabricated, and flight tested. The drogue was trailed from the wing tip of a CC-137 tanker. Tests were conducted from 200 to 300 KEAS. The drogue exhibited stable trail, and maneuvering commands resulted in drogue displacements similar to predictions.

Author (GRA)

N78-19068# Arizona Univ , Tucson Dept of Aerospace and Mechanical Engineering

UNSTEADY TRANSONIC FLOW COMPUTATIONS

A R Seebass Sep 1977 35 p refs Presented at the AGARD Fluid Dyn Panel Symp on Unsteady Aerodynamics Ottawa 26-28 Sep 1977

(Contract N00014-76-C-0182)

(AD-A049188) Avail NTIS HC A03/MF A01 CSCL 20/4 The effects of unsteady modes of motion on two-dimensional

transonic flows are investigated Numerical algorithms that treat shock waves as moving discontinuities are described for nonlinear and time-linearized perturbation flows. Results for transonic flow past an NACA 64A006 airfoil experiencing harmonic motions in one of several modes are presented.

Author (GRA)

N78-19069# Air Force Inst of Tech , Wright-Patterson AFB.
Ohio School of Engineering

AN AERODYNAMIC INVESTIGATION OF A FORWARD SWEPT WING M.S. Thesis

Kenneth Lewis Sims Dec 1977 115 p refs (AD-A048898 AFIT/GAE/AA/77D-14) Avail NTIS HC A06/MF A01 CSCL 20/4

This study consisted of modeling and wind tunnel testing of a high speed subsonic low aspect ratio, forward swept wing with an advanced supercritical airfoil section for the purpose of determining its lift, drag, and pitching moment characteristics as compared to a similar aft swept wing. Tests were conducted at Mach numbers of 0 63 to 0 93 in the Air Force Flight Dynamics Laboratory's Trisonic Gasdynamic Facility located at Wright-Patterson Air Force Base, Ohio Two wing configurations forward and aft swept, were tested and compared to computer predictions provided by the Unified Subsonic-Supersonic Program (Woodward's Version B) The results indicated that the forward swept wing was capable of higher useable angles of attack while maintaining a lower drag coefficient for angles of attack below eight degrees. Wind tunnel test results are presented in graphical and tabular form for use in future design studies of similar aerodynamic configurations Author (GRA)

N78-19070# Air Force Inst of Tech Wright-Patterson AFB.
Ohio School of Engineering

DOUBLET LATTICE AERODYNAMIC PREDICTIONS FOR AN OSCILLATING F-5 WING WITH STORES MS Thesis

Daniel L Parker Dec 1977 99 p refs (AD-A048968, AFIT/GAE/AA/77D-10)

) Avail NTIS

HC A05/MF A01 CSCL 20/4

The Doublet Lattice Method with the Method of Images was used to predict Unsteady Aerodynamic Coefficients and Pressures on a Model F-5 Wing with various store configurations, oscillating in subsonic flow Various finite element lattice configurations were tested to obtain numerical convergence and indicate the optimum modelling technique Test conditions included Mach numbers of 6 8, 9 and 95 At each Mach number oscillation frequencies of 0 20 Hz, and 45 Hz were considered Convergence studies confirmed the utility and accuracy of Multhopp or sinusoidal lattice distributions. Steady state pressure predictions compared favorably to those obtained by Woodward's Method Predictions showed significant increases in aerodynamic forces caused by adding tip stores to the wing Author (GRA)

N78-19071# Air Force Inst of Tech Wright-Patterson AFB Ohio School of Engineering

MAGNUS EFFECTS ON BALLISTIC TRAJECTORIES MS. Thesis

James D Schneider Dec 1977 118 p refs (AD-AO48966 AFIT/GA/AA/77D-8) Avail NTIS HC AO6/MF AO1 CSCL 19/4

The effect of Magnus coefficients projectile spin rate, and pitching motion on lateral displacement of a ballistic trajectory is investigated by use of a six degree of freedom simulation. The coefficients had no significant effect. Increased spin rate extends the projectile impact point both down range and cross range. Oscillations induced by rate motion increased the lateral deviation but oscillations induced by an initial displacement did not.

Author (GRA)

N78-19072# Martin Marietta Corp Baltimore, Md BOUNDARY LAYER OVER SPINNING BLUNT-BODY OF REVOLUTION AT INCIDENCE INCLUDING MAGNUS FORCES

K C Wang 1977 56 p refs (Contract F49620-76-C-0004) (AD-A049199, AFOSR-77-1306TR) HC A04/MF A01 CSCL 20/4

Avail NTIS

An incompressible laminar flow over a spinning blunt-body at incidence is investigated. The approach follows strictly the three-dimensional boundary layer theory, and the lack of initial profiles is readily resolved. The rule of the dependence zone is satisfied with the Krause scheme and complete numerical solutions are obtained for an ellipsoid of revolution at 6 deg incidences and two different spin rates. Spinning causes asymmetry which in turn, introduces the Magnus force. The asymmetry is most pronounced in crossflow but is also noticeable in the skin-friction and displacement thickness of the meridional

flow A variety of crossflow profiles are determined as are the streamline patterns in the cross- and meridional-planes which are especially useful in visualizing the flow structure. Detailed distribution of skin frictions displacement thicknesses and centrifugal pressure are presented. A new derivation of the total displacement thickness is given and a negative displacement thickness is found physically meaningful. The Magnus forces due to the crossflow skin friction and the centrifugal pressure are determined, these two forces partly compensate each other At lower spin rate the frictional force is larger resulting in a positive Magnus force At high spin rate, the opposite is obtained At high incidence (30 deg), the leeside separated region associated with an open separation is found not amenable to a classical boundary layer treatment. The present boundary layer calculations could be carried out in the longitudinal direction only up to the beginning of an open separation. Since an open separation moves forward with increasing incidence the calculable area, Author (GRA) therefore, decreases

N78-19073# North Carolina State Univ Raleigh Dept of Mechanical and Aerospace Engineering

LIFT HYSTERESIS OF AN OSCILLATING SLENDER ELLIPSE Interim Report

W Donald Johnson and J C Williams III 30 Sep 1977 45 p refs

(Grants DAHC04-75-G-0007 DA-ARO(D)-31-124-72-G134) (AD-A049343, ARO-10157 7-E) Avail NTIS HC A03/MF A01 CSCL 20/4

A theoretical investigation has been made to determine the variation of lift with time on a slender elliptic cylinder oscillating in pitch. The development of the unsteady two-dimensional laminar boundary layer over the surfaces of the pitching ellipse is calculated and the periodic variation of lift is determined by matching the rate at which boundary layer developed vorticity is shed into the wake with the time rate of change of circulation about the ellipse. The effects of mean angle-of-attack and oscillation frequencies on lift hysteresis loops are determined it is shown that the hysteresis loops change direction for mean angles of attack greater than that corresponding to maximum steady state lift.

N78-19074# Air Force Systems Command, Wright-Patterson AFB Ohio Foreign Technology Div

STATIC STABILITY OF VEHICLES WHICH USE THE LIFTING FORCE OF AIRFOILS

V I Koroley 27 Jul 1977 20 p ref Transl into ENGLISH from Sudostr i Morskiye Sooruzheniya (USSR), no 2, 1966 p 45-55

(AD-A049069, FTD-ID(RS)T-1239-77) Avail NTIS HC A02/MF A01 CSCL 20/4

In designing rapid transportation facilities which use the lifting force of airfoils near a solid or liquid screen one important problem is that of providing stable motion of sufficient duration. In the present article we discuss the problem of static stability in vehicles which have two airfoils - a leading and a trailing (tandem system) - separated by a certain distance determined by the length of the cabin body.

N78-19075# Princeton Univ , N J Dept of Aerospace and Mechanical Sciences

AN EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF THE HOVERING AND FORWARD FLIGHT CHARACTERISTICS OF THE AEROCRANE HYBRID HEAVY LIFT VEHICLE Final Report

W F Putman and H C Curtiss, Jr Sep 1977 135 p refs (Contract N62269-76-C-0464)

(AD-A049084, AMS-TR-1351, NADC-76201-30) Avail NTIS HC A07/MF A01 CSCL 01/3

Results of an analytical and experimental investigation of an AEROCRANE hybrid heavy lift vehicle are discussed. The experimental program involved free-flight investigations of the trim and dynamic stability characteristics of the AEROCRANE in hovering and forward flight using a Froude-scaled model. The effects of a simple feedback system on the dynamic stability of the model and the ability of a remote pilot to control the model.

are discussed. Analytical predictions of the model characteristics showed very good agreement with the experimental data.

Author (GRA)

N78-19076# Naval Postgraduate School, Monterey, Calif LASTOP: A COMPUTER CODE FOR LASER TURRETS OPTIMIZATION OF SMALL PERTURBATION TURRETS IN SUBSONIC OR SUPERSONIC FLOW Final Report, 1976 - 1977

Garret N Vanderplaats and Allen E Fuhs 20 Dec 1977 240 p refs

(AD-A049272, NPS-69-77-004) Avail NTIS MF A01 CSCL 01/1

A program has been developed which calculates optical path length and phase distortion arising from the density field surrounding a laser turret Further the program finds the optimum turret shape yielding minimum phase distortion. The aerodynamic model is briefly described, however the optimization and control codes are thoroughly presented. Sample data input and sample output are given. The program is listed. The material is presented in detail so that this report constitutes a user's manual.

Author (GRA)

N78-19077# Air Force Systems Command, Wright-Patterson AFB, Ohio Foreign Technology Div

A WING IN AN UNSTEADY GAS FLOW, PART 1

S M Belotserkovskiy B K Skripach, and V G Tabachnikov 8 Sep 1977 517 p Transl into ENGLISH of the book 'Krylo v Nestatsionarnom Potoke Gaza" Moscow, Izd Nauka 1971 p 1-767 3 Vol

(AD-A048999 FTD-ID(RS)T-1543-77-Pt-1) Avail NTIS HC A22/MF A01 CSCL 01/3

Contents Aerodynamic Coefficients, Formulation of the Problem of the Unsteady Motion of Wing, Basic Formula for the Potential of the Disturbed Velocities, Common Properties of Linear Unsteady Problems, and Similarity Parameters Duhamel Integral, Theorem of Momentum and Rational Method of Solution of Linear Unsteady Problems, Reciprocity Theorem and Its Corollaries Experimental Determination of Unsteady Aerodynamic Wing Characteristics, Low Speeds (Incompressible Medium M = 0). The Velocity Field of Oblique Horseshoe Vortex in an Incompressible Medium Method of the Calculation of Aerodynamic Wing Characteristics with the Harmonic Dependences of the Kinematic Parameters on Time, and Method of the Calculation of Aerodynamic Wing Characteristics with the Arbitrary Dependences of the Kinematic Parameters on Time

N78-19078# Air Force Systems Command Wright-Patterson AFB, Ohio Foreign Technology Div

A WING IN AN UNSTEADY GAS FLOW, PART 2

S M Belotserkovskiy, B K Skripach, and V G Tabachnikov 8 Sep 1977 497 p Transl into ENGLISH of the book Krylo v Nestatsionarnom Potoke Gaza Moscow, Izd , Nauka 1971 p 1-767 3 Vol

(AD-A049000 FTD-ID(RS)T-1534-77-Pt-2) Avail NTIS HC A21/MF A01 CSCL 01/3

Contents Method of the Calculation of Apparent Additional Masses of Wings of Arbitrary Planform, Some Point Solutions Calculation of the Unsteady Wing Characteristics of Arbitrary Planform High Subsonic Speeds (0 - M - 1), Method of the Calculation of the Coefficients of Aerodynamic Derivatives The Velocity Field of Unsteady Discrete Vortex in a Compresses Medium, Method of the Calculation of Aerodynamic Wing Characteristics with Arbitrary Time Dependences, Some Known Solutions Calculation of the Unsteady Wing Characteristics of Arbitrary Planform, Supersonic Speeds' (M = 2) Numerical Method of the Calculation of Aerodynamic Wing Characteristics, with Harmonic Time Disturbances Numerical Method of the Calculation of Aerodynamic Wing Characteristics with Arbitrary Time Dependences, and Some Exact Solutions for Wings with Supersonic Edges with Harmonic Time Dependences

N78-19079# Air Force Systems Command, Wright-Patterson AFB Ohio Foreign Technology Div A WING IN AN UNSTEADY GAS FLOW, PART 3 S M Belotserkovskiy, B K Skripach, and V G Tabachnikov 8 Sep 1977 384 p refs Transl into ENGLISH of the book 'Krylo v Nestatsionarnom Potoke Gaza" Moscow Izd Nauka 1971 p 1-767 3 Vol (AD-A049001 FTD-ID(RS)T-1543-77-Pt-3) Avail NTIS

HC A17/MF A01 CSCL 01/3

Contents Some Precise Solutions for Wings with Supersonic Edges with Arbitrary Time Dependences Procedure of Calculation of the Aerodynamic Wing Characteristics of Arbitrary Planform Practical Applications Special Features of the Practical Use of Duhamel Integral in Tasks of Aerodynamics Approximation Method Coefficients of the Aerodynamic Derivative and of Apparent Additional Masses Some Common Properties of Unsteady Effect of Planform, Numbers M and p* on the Aerodynamic Derivatives of Wings and Effect of Planform, the Mach Numbers and Laws of Motion for Transient Functions

GRA

N78-19080# Hebrew Univ , Jerusalem (Israel) THE DYNAMICS OF NON SPHERICAL PARTICLES Final Technical Report, 1 Mar 1975 - 1 Jun. 1977 Isaiah Gallily Jun 1977 75 p refs

(Grant DA-ERO-75-G-021 DA Proj 2MO-6110-B-53B) (AD-A047144) Avail NTIS HC A04/MF A01 CSCL 04/1

In this paper the aerodynamic translational mobility of nonsphericals was experimentally determined for Knudsen numbers of up to 0.2 The particles were glass cylinders, which represent asbestos fibers and ice needles, and cubes, which represent the primary constituents of metal oxide aggregates The method of determination and the apparatus used were based on a stereophotography of the trajectories of the particles in still air and a photogrammetric measurement of the (three) dimensions of the particles in a scanning electron microscope The results for cylinders, compared with continuous fluid theoretical values of the coefficients, show a reasonable correspondence with expectation which even improved when the blunt edge effect of the particles was taken into consideration However, in the case of cylinders having diameters above 1 micrometer the experimentally determined coefficients were higher by about 50% than the continuous fluid calculated ones whereas in the case of cylinders of diameters less than 0.5 micrometers the determined coefficients were smaller than the calculated values. The resistance coefficients of cubes showed similar tendencies. The deposition of cylindrical particles in still air was studied in a specially constructed sedimentation cell in this cell, a method for the size distribution analysis of these particles was tried

N78-19081# Transportation Research Board, Washington, D C IMPLEMENTATION PLAN FOR AN AIR TRANSPORTATION RESEARCH INFORMATION SERVICE Final Report

Sep 1977 137 p

(Contract DOT-FA77WA-3872)

FAA-EM-77-14) (AD-A049301. Avail NTIS

HC A07/MF A01 CSCL 01/2

An air transportation research information service (ATRIS) that would provide the user community with abstracts of documents and resumes of research projects that relate to the air transport field was presented. The potential user community for ATRIS services and products was discussed, recommendations were made for specific types of interactions between ATRIS and the user community. Input scope was presented in terms of twenty one subject areas and sixteen types of information Output scope was presented in terms of announcement bulletins, special bibliographies, and batch mode and on line retrieval services. The report includes an implementation plan for the first three years of ATRIS development and operations. The plan contains specific proposals for input/output operations in each year cost estimates for the proposed operations, and funding strategies for meeting the cost requirements through support from sponsors, institutional supports, and user charges

N78-19082*# Washington Univ, St Louis, Mo Dept of Civil Engineering

BENEFIT-COST EVALUATION OF AN INTRA-REGIONAL AIR SERVICE IN THE BAY AREA Technical Report. 1 Jan - 31 Dec 1977 Lonnie E Haefner 28 Dec 1977 285 p refs

(Grant NsG-2170)

(NASA-CR-152084) Avail NTIS HC A13/MF A01 CSCL 05C 05C

Utilization of an iterative statistical model is presented to evaluate combinations of commuter airport sites and surface transportation facilities in confunction with service by a given commuter aircraft type in light of Bay Area regional growth alternatives and peak and off-peak regional travel patterns. The model evaluates such transportation options with respect to criteria of airline profitability, public acceptance, and public and private nonuser costs. It incorporates information modal split, peak and off-peak use of the air commuter fleet, terminal and airport cost, development costs and uses of land in proximity to the airport sites regional population shifts and induced zonal shifts in travel demand. The model is multimodal in its analytical capability and performs exhaustive sensitivity analysis Author

N78-19084# Boeing Vertol Co Philadelphia Pa CRASHWORTHY TROOP SEAT TESTING PROGRAM

Final Report, May 1974 - Dec 1976

M J Reilly Nov 1977 206 p refs
(Contract DAAJ02-74-C-0036 DA Proj 1L2-62209-AH-76) (AD-A048975 D210-11169-1, USAAMRDL-TR-77-13) Avail NTIS HC A10/MF A01 CSCL 01/3

Crashworthy troop seat designs developed under a previous contract were reviewed and design refinements were made Component testing was planned and tests were performed Malfunctioning components were redesigned and were retested satisfactorily A new tubular-strut energy attenuator was developed to replace the rolling helical-wire energy attenuator which did not function properly Crashworthy troop seats fabricated under a previous contract were modified, with new components developed during component testing Additional seats were fabricated for static testing in various crash impact attitudes A total of six static tests including two retests required as a result of minor failures, were performed by Dynamic Science as a subcontractor Analysis of the test results showed that the forwardand aft-facing seat configurations were highly successful in meeting the test objectives in all attitudes, with the exception of the lateral loading. Eleven dynamic tests were performed by FAA-Civil Aeromedical Institute in three series of tests

N78-19085# Naval Ship Research and Development Center, Rethesda Md

NAVAL EMERGENCY AIR CARGO DELIVERY SYSTEM (NEACDS) FEASIBILITY TESTS AND EVALUATION Final Report, Oct. 1973 - May 1977

Russell H Putnam Maurice J Zubkoff, Fred A Myers, and Thomas E Wheatley Dec 1977 94 p refs

NTIS

DTNSRDC-77-0117) (AD-A048988, HC A05/MF A01 CSCL 01/3

The Naval Emergency Air Cargo Delivery System (NEACDS) is designed to provide an emergency delivery capability to resupply priority items to ships at sea from fixed wing aircraft via airdrop The major objective of the project has been to establish the feasibility of this concept with the added provisions of (1) not putting a man or boat in the water during retrieval up through sea state 4 and (2) using commonly available off-the-shelf materials. The basic naval problems solved were waterproofing, shock mitigation, load flotation, and retrieval at sea. Coordinating procedures for ship-aircraft operations and communications were developed The feasibility of NEACDS has been demonstrated and a limited capability is available for use. This report summarizes the program of static drops, range airdrops and fleet drops for the NEACDS

N78-19086# National Transportation Safety Board, Washington, D C Bureau of Accident Investigation

AIRCRAFT ACCIDENT REPORT. KNOB HILL, INC., CESSNA-421, N999MB, NOGALES, ARIZONA, 22 JANUARY 1977

27 Oct 1977 33 p

NTIS (NTISUB/C/104-011, NTSB-AAR-77-11) Avail HC A03/MF A01 Paper copy also available on subscription, North American Continent price \$35 00/year all others write for quote CSCL 01B

Radar contact with the aircraft was acquired north of Nogales at 9,000 ft. The controller advised the pilot to turn immediately because of a mountain peak, but radar contact was lost. The aircraft was destroyed and both occupants were killed. The National Transportation Safety Board determines that the probable cause of the accident was the controllers' issuance of an improper departure clearance climb restriction, and altitude clearance. The controllers lack of knowledge and noncompliance with standard ATC procedures placed the aircraft in proximity to high terrain

N78-19087# National Transportation Safety Board Washington, D C Bureau of Accident Investigation

AIRCRAFT ACCIDENT REPORT. TEXAS INTERNATIONAL AIRLINES, INC. DOUGLAS DC-9-14, N9104, STAPLETON INTERNATIONAL AIRPORT, DENVER, COLORADO, 16 NOVEMBER 1976

27 Oct 1977 50 p

NTSB-AAR-77-10) (NTISUB/C/104-010 Avail HC A03/MF A01, Paper copy also available on subscription North American Continent price \$35 00/year, all others write for quote CSCL 01B

On November 16, 1976 a McDonnell Douglas DC-9-14, crashed after rejecting a takeoff from runway 8 right at Stapleton International Airport, Denver, Colorado The takeoff was rejected when the stall warning stick shaker activated after the aircraft had rotated for takeoff. The aircraft overran the runway, traversed drainage ditches, struck approach light stanchions, and stopped Eighty-one passengers and five crewmembers evacuated the aircraft, 14 persons were injured. The National Transportation Safety Board determines that the probable cause of this accident was a malfunction of the stall warning system for undetermined reasons which resulted in a false stall warning and an unsuccessful attempt to reject the takeoff after the aircraft had accelerated beyond refusal and rotation speeds GRA

N78-19088# National Aviation Facilities Experimental Center. Atlantic City N J

HIGH-ALTITUDE AREA NAVIGATION (RNAV) ENROUTE SIMULATION Final Report, Mar - Aug 1976

Francis M Willett, Jr and Mark R Taylor Dec 1977 85 p refs

(FAA Proj 044-326-080)

(AD-A049315, FAA-NA-77-4 FAA-RD-77-128) Avail NTIS HC A05/MF A01 CSCL 17/7

A four-part dynamic simulation using two systems of navigation area navigation (RNAV) and very high frequency omnidirectional radio range (VOR), was conducted to (1) validate the results derived from fast-time simulation tests of RNAV and Jet-VOR route structures through real-time simulation tests, (2) determine whether benefits resulted from the application of RNAV in the high-altitude enroute environment, and (3) establish the impact that the number of potential aircraft conflict situations has on the ATC system and system user Simulations were conducted in a fast-time mode, without controller intervention, for an area encompassed by five high altitude Chicago Air Route Traffic Control Center sectors and for a single selected sector of the five Real-time simulations, with controller intervention, were conducted for both the five- and one-sector configurations. Test results showed a significant reduction in controller workload in the RNAV system compared to the VOR system for both sector configurations. Comparison of the fast-time potential conflict data with real-time controller workload and system performance measures did not show any correlation between the two sets of data Author

N78-19089# National Aviation Facilities Experimental Center, Atlantic City, N J

DERIVATION OF GROUNDSPEED INFORMATION FROM AIRBORNE DISTANCE MEASURING EQUIPMENT DME INTERROGATORS Final Report, Oct. 1975 - Sep 1976 John Gallagher, William Lynn and Robert H Pursel Nov 1977 55 p

(FAA Proj 073-320-100)

(AD-A049277, FAA-NA-77-28, FAA-RD-77-135) Avail NTIS HC A04/MF A01 CSCL 01/4

Laboratory and flight tests were conducted to investigate the derivation of aircraft groundspeed from the range rate pulse information obtained from ARINC 568 distance measuring equipment (DME) interrogators. Initial tests determined the limitation of the range rate pulse output from the two interrogators tested Subsequent effort was directed toward digital filtering techniques to improve accuracy and response time of the DME-derived groundspeed. Best results were obtained with either accelerometer complementation or Kalman filtering with velocity and acceleration observations. Both techniques achieved standard deviations of about 3 knots when compared to inertial navigation system aroundspeed

N78-19090# Lincoln Lab , Mass Inst of Tech , Lexington A HARDWARE IMPLEMENTATION OF THE ATCRBS REPLY PROCESSOR USED IN DABS

R G Nelson and J H Nuckols 19 Sep 1977 58 p refs (Contracts DOT-FA-72WAI-621 F196228-76-C-0002 FAA Proj 034-241-012)

(AD-A047622/6 ATC-78, FAA-RD-77-92) Avail NTIS HC A04/MF A01 CSCL 17/7

A special-purpose digital hardware processor which implements the ATCRBS reply processing algorithms designed for use in the Discrete Address Beacon System (DABS) was developed and used in two DABS-related programs. A detailed functional description of this processor and its implementation is reported It could serve as the ATCRBS reply processor for a beacon collison avoidance system with minor modifications

N78-19094*# McDonnell-Douglas Corp St Louis, Mo CONCEPTUAL DESIGN STUDY OF A HARRIER V/STOL RESEARCH AIRCRAFT

Waldemar E Bode Roger L Berger Glen A Elmore and Thomas R Lacey Feb 1978 293 p

(Contract NAS2-9748)

(NASA-CR-152086) Avail NTIS HC A13/MF A01 CSCL

MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control display and guidance research aircraft. Control concepts such as rate damping attitude stabilization velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated and landing navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL The safety pilot always has take command capability. The modifications studied fall into two categories basic modifications and optional modifications Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed Author

N78-19095# Royal Aircraft Establishment, Farnborough (England)

ICING ON HELICOPTERS

Karl Wagner Jul 1977 15 p Transl into ENGLISH from Flug-Rev Int (West Ger), v 9 1971 p 31-34 (RAE-Trans-1911, BR60629) Avail NTIS HC A02/MF A01

Some of the problems peculiar to helicopters were discussed Emphasis was placed on the vulnerability of the rotor. A simple hypothesis for a safety criterion for the rotor was presented Three encounters were cited, two which seemed to confirm the hypothesis and one which did not. The discrepancy was explained by distinguishing between icing due to large drops of supercooled rain and icing due to small drops of very fine drizzle or fog. The mechanisms of icing at these two conditions were briefly discussed

N78-19096*# Rockwell International Corp., Los Angeles, Calif STUDY OF HYPERSONIC PROPULSION/AIRFRAME INTEGRATION TECHNOLOGY Final Report

William R Hartill Thomas P Goebel, and Verle V VanCamp Jan 1978 97 p refs

(Contract NAS1-14859)

(NASA-CR-145321 NA-78-24) Avail NTIS

HC A05/MF A01 CSCL 01C

An assessment is done of current and potential ground facilities, and analysis and flight test techniques for establishing a hypersonic propulsion/airframe integration technology base. A Mach 6 cruise prototype aircraft incorporating integrated Scramjet engines was considered the baseline configuration, and the assessment focused on the aerodynamic and configuration aspects of the integration technology. The study describes the key technology milestones that must be met to permit a decision on development of a prototype vehicle, and defines risk levels for these milestones. Capabilities and limitations of analysis techniques, current and potential ground test facilities, and flight test techniques are described in terms of the milestones and risk levels.

N78-19097# General Dynamics/Convair San Diego, Calif DEVELOPMENT OF THERMOPLASTIC COMPOSITE AIRCRAFT STRUCTURAL ELEMENTS Final Report, Jun 1975 - Dec. 1978

R C Goad May 1977 72 p refs (Contract N62269-75-C-0386)

(AD-A048468, NADC-77187-30) Avail NTIS HC A04/MF A01 CSCL 11/9

This work accomplished the design, fabrication, and testing of structural panels of representative thermoplastic construction suitable for use in the forward fuselage areas of advanced CTOL and V/STOL carrier-based Naval aircraft Author (GRA)

N78-19098# Hughes Aircraft Co., Culver City, Calif Display Systems Lab

DEVELOPMENT OF A PROGRAMMABLE PANEL Final Report 15 Jun 1975 - 16 Jul 1976

Final Report, 15 Jun 1975 - 15 Jul 1976 G Wolfson Aug 1977 31 p refs (Contract N62269-75-R-0372)

(AD-A048469, HAC-P77-383 HAC-REF-D4443,

NADC-77264-30) Avail NTIS HC A03/MF A01 CSCL 14/2
A programmable control panel utilizing a liquid crystal alphanumeric display with four lines of twenty characters each was designed and fabricated. The panel features ten pushbuttons with the liquid crystal display providing two lines of four characters each as a programmable pushbutton legend. This panel was designed to demonstrate liquid crystal alphanumeric display technology as applied to advanced integrated controls and displays for future. Navy avionics systems.

Author (GRA)

N78-19099*# Naval Postgraduate School, Monterey, Calif PROCEEDINGS OF THE NAVY/NASA VSTOL FLYING QUALITIES

C J Mazza (NADC, Warminster, Pa), D M Layton, and L V Schmidt Aug 1977 550 p refs Proc held at Monterey, Calif, 26-28 Apr 1977, sponsored by NADC and NASA (NASA-CR-155810, AD-A047961) Avail NTIS HC A23/MF A01 CSCL 01C

Flying qualities of V/STOL aircraft used in Navy operations are reviewed. Topics discussed include aircraft development and flight testing, flight controls and displays, and seaborne launch and recovery interface.

N78-19100*# National Aeronautics and Space Administration Ames Research Center Moffett Field, Calif

A COMPARISON OF V/STOL HANDLING REQUIREMENTS WITH THE VAK-191B

Seth B Anderson In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 3-20

Avail NTIS HC A23/MF A01 CSCL 01C

The two available V/STOL criteria references were compared with flight measurements obtained on the VAK-191B along with

the pilot's comments relative to the aircraft meeting the specifications Differences in the specifications themselves were also noted Handling qualities requirements for shipboard operation were emphasized

Author

N78-19101*# McDonnell Aircraft Co St Louis, Mo MIL-F-83300, VIEW FROM AN AIRCRAFT DESIGNER

T R Lacey In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 21-52 refs

Avail NTIS HC A23/MF A01 CSCL 01C

The MIL-F-8330Ó V/STOL Flying Qualities Specification is reviewed from three aspects (1) its effectiveness as a guide to the attainment of well balanced V/STOL aircraft design, (2) the relevance of its requirements to the successful emergence of the Harrier and (3) its relative merits and deficiencies when compared to the AGARD V/STOL Handling Criteria Suggested changes for making it a more useful tool for the V/STOL aircraft designer are presented

N78-19102*# Grumman Aerospace Corp , Bethpage, N Y V/STOL HOVER STABILITY IMPACT ON HOVER CONTROL TASK

A B Whitaker, C P Kelly, R B Wittman and R P Martorella In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 53-70 ref

Avail NTIS HC A23/MF A01 CSCL 01C

Longitudinal static stability requirements for V/STOL aircraft are discussed in terms of vertical landing on a small ship at night response of the aircraft to air turbulence, and hovering light. The increased pilot workload encountered under these flight conditions is considered. Results of a flight simulation study performed to evaluate a specific hover control task two control systems - attitude rate command and translational velocity command and the pilots performance with and without turbulence are reported. It is concluded that the translational velocity command system provides the control requirements for good spot hovering capability and reduced pilot workload.

N78-19103*# Aeroplane and Armament Experimental Establishment, Boscombe Down (England)

V/STOL FLYING QUALITIES REQUIREMENTS IN THE UK
John R Williams In Naval Postgraduate School Proc of the
Navy/NASA VSTOL Flying Qualities Aug 1977 p 71-92 refs

Avail NTIS HC A23/MF A01 CSCL 01C

Acceptance and suitability testing is discussed in relation to providing a numerical basis for quantitative assessments and, together with measured aircraft characteristics, the formulation of flying qualities requirements and design criteria for V/STOL aircraft Harrier handling qualities during short takeoff and semi-jetborne flight are assessed with emphasis on longitudinal stability maneuverability and pilot compensation. Flight safety is also considered. A restriction of the short takeoff nozzle angle to a maximum of 50 deg instead of the 60 deg specified by the flight manual is proposed. Results of flight tests and pilot ratings for various configurations and the two techniques indicate that the proposed technique improved significantly the handling qualities of the outboard stores configuration during short takeoffs.

N78-19104*# Naval Air Systems Command, Washington D C REVIEW OF US NAVY VSTOL HANDLING QUALITIES REQUIREMENTS

Dale E Hutchings In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 93-110

Avail NTIS HC A23/MF A01 CSCL 01C

Handling qualities requirements for V/STOL operations from small ships are considered in terms of the ship operating environment Turbulence wind over the deck, ship motion, visibility and severe weather and sea conditions are among the factors discussed

N78-19105*# Calspan Corp , Buffalo, N Y CAPABILITIES OF THE NAVY VARIABLE STABILITY X-22A FOR V/STOL FLYING QUALITIES R AND D

Edwin W Aiken John L. Beilman, J Victor Lebacqz, and John W Clark, Jr (NADC Warminster, Pa) In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 111-138 refs

Avail NTIS HC A23/MF A01 CSCL 01C

The X-22A V/STOL Flight Research Facility which provides in-flight simulation capability applicable to hover, low speed, and transition flight investigation of fixed wing V/STOL flying is described. The variable stability system, the guidance and display equipment the data acquisition and processing system, and the ground simulator are included. Research programs involving the STOL flying qualities for landing approach the control system display and guidance requirements for VTOL aircraft instrument approach and landing, and the expansion of the adverse weather operation capabilities of the Navy's VTOL aircraft are briefly JMS summarized

N78-19106°# National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif

A PILOTED SIMULATION OF V/STOL LANDINGS ABOARD A NON-AVIATION SHIP

Ronald M Gerdes In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 139-158

Avail NTIS HC A23/MF A01 CSCL 01C

A lift fan simulation program was conducted to examine V/STOL handling qualities and operational problems to find solutions to high pilot workload problem areas and to simulate terminal guidance and control of a landing on a nonaviation ship Piloting aids evaluated include an advanced attitude control system, a decoupled flight path control system, and an integrated head-up display. Results are discussed from a pilot's point of view with emphasis on reduction of pilot workload during V/STOL aircraft recoveries at sea

N78-19107*# Royal Aircraft Establishment, Bedford (England) THE STO DECK LAUNCH PROBLEM

O P Nicholas In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 159-176

Avail NTIS HC A23/MF A01 CSCL 01C

Harrier aircraft launch performance is assessed. Ship pitching motion, deck-end speed target launch speed margin, and minimum sea clearance are among the factors considered. Avoidance of a bow-down catapult launch is emphasized J M S

N78-19108*# Naval Air Test Center, Patuxent River, Md SHIPBOARD TESTING OF THE AV-8A HARRIER

A M Rossetti and J E lies /n Naval Postgraduate School Proc. of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 177-200

Avail NTIS HC A23/MF A01 CSCL 01C

Minimum end airspeed flying qualities and performance optimum STO trim settings and effects of mistrim on STO flying qualities are discussed along with dynamic interface (STO, VTO, VL), approach and VL flying qualities, and effects of inboard tanks in combination with outboard stores. The reaction control system center of gravity aircraft loading nozzle angle, and airspeed are considered. The influence of pilot workload on the optimum trim setting and the post launch flying qualities are included JMS

N78-19109*# Vought Corp Dallas Tex ANALYSIS OF THE INFLUENCE OF THE OGE/IGE TRANSI-TION ON VAK-191B FLYING QUALITIES IN HOVER

Robert L. Fortenbaugh In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 201-236 refs

Avail NTIS HC A23/MF A01 CSCL 01C

Single axis pitch and roll frequency response data were taken with the VAK-1918 control system in the VTOL mode. This

mode has proportional attitude command in each axis. Therefore while the pitch axis input command was oscillated, the roll control system attempted to hold wings level and, similarly, while the roll axis input command was oscillated, the pitch control system attempted to maintain a reference attitude. The yaw axis of the pedestal was locked for these tests because the aircraft yaw control system is rate command in all modes and would allow aircraft heading to drift in the presence of yaw moment disturbances. Analysis of the roll response data which produced quantification of the in ground effect (IGE) propulsioninduced roll angle effect on the aircraft and subsequent analysis of the influence of this effect on roll flying qualities are described Validity of the analytical flying qualities results and the IGE and out of ground effect roll models is established by comparison with VAK-191B operational limitations and pilot comments on the aircraft's handling characteristics. A similar analysis of the pitch response data was made and figures summarizing these results are included Author

N78-19110* # National Aeronautics and Space Administration Ames Research Center Moffett Field, Calif

PILOT CENTERED REQUIREMENTS IN CONTROL/DISPLAY DESIGN

Ronald A Hess In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 237-258

Avail NTIS HC A23/MF A01 CSCL 01C

A method developed for predicting pilot opinion ratings for particular vehicles and tasks using optimal control pilot model is described and an outline of a flight director design procedure based upon the optimal control pilot model is given Longitudinal and lateral control of a helicopter in hover and in a -6 deg constant ground speed-command landing approach are considered Emphasis is placed on display design for optimum V/STOL control

N78-19111*# Systems Technology Inc Hawthorne, Calif SURVEY OF PILOTING FACTORS IN V/STOL AIRCRAFT WITH IMPLICATIONS FOR FLIGHT CONTROL SYSTEM DESIGN

Robert F Ringland and Samuel J Craig In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 269-292 refs

Avail NTIS HC A23/MF A01 CSCL 01C

Flight control system design factors involved for pilot workload relief are identified. Major contributors to pilot workload include configuration management and control and aircraft stability and response qualities. A digital fly by wire stability augmentation, configuration management, and configuration control system is suggested for reduction of pilot workload during takeoff, hovering, and approach

N78-19112* McDonnell Aircraft Co., St. Louis, Mo. RATIONALE FOR SELECTION OF A FLIGHT CONTROL SYSTEM FOR LIFT CRUISE FAN V/STOL AIRCRAFT

Roman K Konsewicz In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 293-342

(GP77-0375-28) Avail NTIS HC A23/MF A01 CSCL 01C Various features of the lift cruise fan V/STOL concept are briefly reviewed. The ability to operate from small ships in adverse weather low visibility, and rough sea conditions is emphasized as is the need for a highly capable flexible and reliabile flight control system. A three channel control by wire digital flight control system is suggested. The requirement for automatic flight control, the advantage of control by wire implementation, the preference for a digital computer and the need for three channel redundancy are among the factors discussed

N78-19113*# Boeing Military Airplane Development Seattle

PRELIMINARY DESIGN OF A FLIGHT CONTROL SYSTEM FOR A V/STOL AIRPLANE WITH GEARED VARIABLE PITCH FANS

Philip Gotleib In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 343-362 Avail NTIS HC A23/MF A01 CSCL 01C

A flight control system designed for an aircraft powered by three variable pitch fans, interconnected by shafts to provide lifting system redundancy is considered for application to a Navy Type A V/STOL aircraft with similar configurational features. The differences and similarities in the applications are discussed with emphasis on a design approach for safety in the event of failures in the propulsion and flight control systems. Differences in flying qualities and system design criteria are considered.

Author

N78-19114*# Honeywell, Inc., Minneapolis, Minn Avionics

ELECTRONICS PLUS FLUIDICS FOR V/STOL FLIGHT CONTROL

Russell C Hendrick /n Naval Postgraduate School Proc of the Navy/NASA VSTQL Flight Qualities Aug 1977 p 363-386

Avail NTIS HC A23/MF A01 CSCL 01C

The redundant digital fly by wire flight control system coupled with a fluidic system, which uses hydraulic pressure as its signal transmission means to provide pilot and feedback sensor control of airframe forcing functions is considered for application to the V/STOL aircraft A potential fluidics system is introduced and anticipated performance, weight and reliability is discussed Integration with the redundant electronic channels is explored, with the safety and mission reliability of alternate configurations estimated

Author

N78-19115*# Boeing Vertol Co., Philadelphia Pa THE HELICOPTER/SHIP DYNAMIC-INTERFACE PROBLEM A NEW APPROACH

Theodore S Garnett Jr and James M Davis In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 387-406

Avail NTIS HC A23/MF A01 CSCL 01C

A wind tunnel test was conducted in the Boeing Vertol low speed V/STOL tunnel to assess aerodynamic wake turbulence behind the superstructure of a 1/50-scale FF1052-class U S Navy frigate Dynamic velocity data were measured at a sufficient number of locations in the separated wake to define major areas of turbulence affecting helicopter operations aboard ship. The results are to be applied in piloted flight simulation work aimed at solving ship/helicopter dynamic-interface problems. The testing accomplished to map the turbulent wake is documented and results are presented.

N78-19116*# Naval Postgraduate School, Monterey Calif A SUMMARY OF SHIP DECK MOTION DYNAMICS AS APPLIED TO VSTOL AIRCRAFT

A E Baitis In its Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 407-460 refs

Avail NTIS HC A23/MF A01 CSCL 01C

Ship deck motions are considered in terms of the landing/takeoff of V/STOL aircraft from small ships. Fluctuations in the air turbulence shed by the ship's superstructures, wind direction and velocity, and wind turbulence loads on the aircraft are among the factors discussed. Roll stabilization using antiroll tanks, fins, and rudders is covered.

N78-19117*# Center for Naval Analyses, Washington, D C SEAKEEPING CONSIDERATIONS IN THE EMPLOYMENT OF V/STOL ON NAVAL SHIPS

S R Olson /n Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 461-476 refs

Avail NTIS HC A23/MF A01 CSCL 01C

Compatibility of Naval ships as V/STOL support platforms and the ship motions that V/STOL aircraft must endure are discussed A methodology which evaluates the impact of motion riteria such as the maximum ship motion allowable during V/STOL landing/launch is presented Emphasis is given to design alternatives that reduce ship motion

J M S

N78-19118*# Naval Air Systems Command, Washington, D C Launch/Recovery Branch

REQUIREMENTS FOR VLA SYSTEMS

Noel S Flynn In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 477-494

Avail NTIS HC A23/MF A01 CSCL 01C

The effectiveness of visual landing aid (VLA) systems during the approach and landing flight phase of V/STOL aircraft is examined Baseline requirements for VLA systems are determined JMS

N78-19119*# Naval Ocean Systems Center, San Diego Calif VTOL/HELICOPTER APPROACH AND LANDING GUIDANCE SENSORS FOR NAVY SHIP APPLICATIONS

S K Miyashiro and F E Morris In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p. 495-514

Avail NTIS HC A23/MF A01 CSCL 01C

Approach and landing guidance sensors essential to recover V/STOL aircraft and helicopter on ships are described. Alternative techniques which feature different operating frequencies from microwave to optical-infrared, different geometric techniques of position fixing by range and angle measurements from a single point or points on a short baseline available at the landing platform typically forty feet wide are included. Other factors discussed include ceiling/visibility requirements, in-close accuracy, safety and pilot acceptance, and compatibility with air traffic control and landing systems.

N78-19120*# Naval Air Systems Command, Washington, D C Advanced Aircraft Development and Systems Objectives Office

NAVTOLAND AND FLYING QUALITIES

Thomas S Momiyama In Naval Postgraduate School Proc of the Navy/NASA VSTOL Flying Qualities Aug 1977 p 515-546 refs

Avail NTIS HC A23/MF A01 CSCL 01C

The V/STOL operational capability is reviewed with emphasis on pilot workload and all-weather landing guidance systems. A research and development program to correlate and integrate the development of all systems and techniques involved in enabling the pilot to fly V/STOL aircraft onto ships and tactical sites is described. Aircraft design parameters that affect its control in the vertical takeoff and landing flight regimes are emphasized. Topics considered include. (1) integrated flight controls and displays. (2) low speed sensor. (3) air traffic control approach and landing guidance systems. (4) visual landing aids. (5) ground effect induced thrust variation problems, and (6) handling qualities.

N78-19121# McDonnell Aircraft Co, St Louis, Mo GENERALIZED PROCEDURES FOR TRACKING CRACK GROWTH IN FIGHTER AIRCRAFT Final Technical Report, 15 Sep 1975 - 15 Oct, 1976 G S Parker Jan 1977 178 p refs

G S Parker Jan 1977 178 p refs (Contract F33615-75-C-3136, AF Proj 1367) (AD-A048847, AFFDL-TR-76-133) Avail NTIS HC A09/MF A01 CSCL 11/6

This study is composed of three major parts, (1) effects of usage parameters on crack growth (2) development of generalized procedures, and (3) implementation of the tracking program During the development of generalized procedures, crack growth trends and alternate methods of tracking were established in addition the recorded data requirements have been evaluated. The effort regarding implementation of a tracking program consisted of an evaluation of logistics and the identification of technical difficulties and potentially significant costs.

Author (GRA)

N78-19122# Air Force Inst of Tech , Wright-Patterson AFB, Ohio School of Engineering

DESIGN AND EVALUATION OF A SIDE FORCE GENERATOR MODIFICATION FOR THE XBQM-1 REMOTELY PILOTED VEHICLE

Glenn R Leimbach Dec 1977 136 p refs (AD-A048901 AFIT/GAE/AA/77D-7) HC A07/MF A01 CSCL 01/3 Avail NTIS.

Wingtip and fuselage mounted side force generator (SFG) surfaces were designed and installed on the XBQM-106 remotely piloted vehicle (RPV) to enhance its lateral terminal response characteristics. These surfaces were sized and positioned in an attempt to keep the net rolling and yawing moments about the CG unchanged when the aircraft was side slipping. The FLEXSTAB digital computer system in conjunction with traditional hand calculated method was used to evaluate the RPV's stability, control, and time response characteristics. The time history responses to rudder, alleron rudder/alleron, and wind gust inputs were generated and plotted by the FLEXSTAB program From these plots it was determined that the SFG modification increased the yaw rate response 10.6% while decreasing the roll rate 10.7% and the side slip angle response 25.1% dutch roll damping was increased 4% and the DR period decreased 8% The roll mode time to half amplitude increased 16.7% and the spiral stability increased for the modified vehicle. The longitudinal stability suffered a slight decrease due to the SFG Author (GRA)

N78-19123# Air Force Inst of Tech, Wright-Patterson AFB, Ohio School of Engineering

A FEASIBILITY STUDY OF A MANUAL BOMB RELEASE WHILE IN A TURN MS Thesis

Joel Dana Walton Dec 1977 123 p refs

(AD-A048882, AFIT/GAE/AA/77D-17) HC A06/MF A01 CSCL 15/7 NTIS

This study attempts to determine if a pilot can manually release a bomb while in a turn. The nonlinear equations describing the geometry, fire control law, aircraft equations of motion, flight controls and pilot model are developed. These equations are linearized so that a frequency response analysis can be conducted for perturbations about a nominal trajectory. The system response is evaluated using wind gust inputs and lateral stick inputs and plotting the resulting system perturbations over a given frequency Author (GRA)

N78-19124# Hughes Helicopters Culver City, Calif ADVANCED TECHNOLOGY HELICOPTER LANDING GEAR Final Report, Apr. 1975 - Apr. 1977 Ralph E Goodall Oct 1977 150 p refs (Contract DAAJ02-75-C-0028)

(AD-A048891, HH-77-41, USAAMRDL-TR-77-27) Avail NTIS HC A07/MF A01 CSCL 01/3

This report covers the work performed on the advanced helicopter landing gear program by Hughes Helicopters The objectives of the program were to design, fabricate, and test a wheel-type advanced main landing gear concept possessing high-energy-absorbing characteristics for helicopters in the 15,000-pound class These objectives were achieved by formulating design criteria through a data search, choosing the most cost-effective composite material and through a design analysis, selecting the most promising landing gear concept. This concept used graphite epoxy as a structural material to fabricate the trailing arm of the main landing gear of the Hughes YAH-64 helicopter by wet-filament winding (WFW). The graphite arm was successfully tested demonstrating the practicality of employing composite structures in the construction of high-energyattenuating landing gear components. The program showed that the graphite trailing arm was 11 percent lighter than the baseline steel arm. The weight of the baseline landing gear could be reduced by maximizing the use of composites 7 percent by using existing WFW equipment, and 26 percent by developing Author (GRA) and using a toroid winding machine

N78-19125# Kearney (A T) and Co, Inc Chicago, III Caywood-Schiller Div

THE MISSION TRADE-OFF METHODOLOGY (MTOM) MODEL MODEL DESCRIPTION Final Report

W J Strauss, N D Bailey, and M W Kasper Dec 1977 126 p refs

(Contract F33615-74-C-5141)

(AD-A049318 JTCG/AS-76-S-001) Avail NTIS HC A07/MF A01 CSCL 01/3

Presented are the results assumptions and rationale of a model to evaluate the relative cost-effectiveness of proposed aircraft modifications for survivability enhancement. Two primary questions are addressed how effective are the proposed modifications in a mission context and what are the important factors contributing to the improvement. To answer these questions, the MTOM model was developed. Parametric variations are presented and analyzed Author (GRA)

N78-19126# Advisory Group for Aerospace Research and Development, Paris (France)

ROTORCRAFT DESIGN

Jan 1978 342 p refs Proceedings of the Flight Mechanics Panel Symp, Moffett Field, Calif, 16-19 May 1977 (AGARD-CP-233 ISBN-92-835-1272-3) HC A15/MF A01

Military and civilian rotorcraft designers are provided with exchanges concerning common problems and grounds for civil/military cooperation Sessions included military requirements and new rotorcraft systems, civil operations and new helicopter designs, and research vehicles. Rotor wind tunnel and flight research are also reviewed, and opportunities for coordinating military and civil requirements and specifications are discussed

N78-19127# Army Aviation Systems Command, St Louis, Mo PROJECTED NEEDS OF US ARMY AVIATION

Story C Stevens In AGARD Rotorcraft Design Jan 1978 22 p refs '

Avail NTIS HC A15/MF A01

The projected needs of U.S. Army air mobility as they are seen today within the U.S. Army Aviation Systems Command are reviewed. The U.S. Army's envisioned future aviation requirements are discussed and their relation to research and development needs is summarized. Special emphasis is given to those aspects of the military requirements which seem to offer the best opportunities for coordination with civil developments Both the short term needs, as exemplified by the currently developing systems and the long term requirements, which may be represented by conceptual studies only, are addressed Author

N78-19128# Bundesministerium der Verteidigung, Bonn (West Germany)

GERMAN ARMY HELICOPTER DEVELOPMENT AND PROSPECTS FOR THE FUTURE

K W Mack and H Jakob In AGARD Rotorcraft Design Jan 1978 22 p

Avail NTIS HC A15/MF A01

The present German army helicopter development is concentrated on a light antitank helicopter (ATH) and a liasion-and-observation helicopter (LOH) based on the civilian BO 105 helicopter of Messerschmitt-Bolkow-Blohm The outstanding characteristics of these two systems is a high degree of commonality that is promising considerable advantages for cost effectiveness maintenance, overhaul and other logistic aspects Guidelines for the future German military helicopter development are among others night- and bad-weather capability, increased maneuverability, improved survivability and crashworthiness, improved maintenance, overhaul and repair, reduction of the number of types, and consideration of standardization and interoperability requirements Author

N78-19129# Canadian Forces Base, Shearwater (Nova Scotia) CANADIAN NAVY EXPERIENCE WITH SMALL SHIP HELICOPTER OPERATIONS

N H J Browne In AGARD Rotorcraft Design Jan 1978 4 p

Avail NTIS HC A15/MF A01

A short summary is presented of the development of the Canadian Navy's approach and solution to operating medium size helicopters from small ships in the North Atlantic. This is followed by a general description of the Helicopter Hauldown Rapid Securing Device - the main item of equipment which enabled successful open sea operations with the available equipment. An overview of the operating capabilities of the Destroyer/Helicopter system, the lessons learned from its development and a subjective assessment of future helicopter requirements for the Canadian Navy are also offered.

N78-19130# Ministry of Defence, London (England) Directorate of Naval Air Warfare

BRITISH MILITARY HELICOPTER PROGRAMMES

J D W Husband In AGARD Rotorcraft Design Jan 1978 7 p

Avail NTIS HC A15/MF A01

The range of helicopters in current use within the UK armed services is described and the broad requirements for the future are examined. It is recognized that, because of the spiralling cost of development of new helicopters, every effort will have to be made to reduce the through life costs by improving the life, reliability and maintainability of components. Survivability, both in crash resistance and in reduced vulnerability to hostile fire are of particular importance in the battlefield environment, while increased speed and endurance are sought in naval helicopters.

N78-19131# Army Aviation Systems Command, St Louis, Mo Research, Development and Engineering Directorate THE US ARMY UTTAS AND AAH PROGRAMS Ronald F Gormont and Robert A Wolfe In AGARD Rotorcraft

Design Jan 1978 18 p refs

Avail NTIS HC A15/MF A01

The U.S. Army's latest developed utility and attack helicopters with contracts recently awarded to Sikorsky Aircraft for the utility tactical transport aircraft system (UTTAS) and Hughes Aircraft for the advanced attack helicopter (AAH) are addressed. A brief history into the background of the Army's requirement for a UTTAS and AAH is provided along with a history of the development, a general description of the aircraft with intended missions, planned activities significant capabilities, and potential alternate uses of the resulting designs. The capabilities and potential alternate uses consider the implication of the stringent military requirements in adapting the UTTAS and AAH to other nonmilitary or noncombat missions. Both development programs have concentrated efforts on reliability and maintainability characteristics which provide enhanced operational capability on the modern day battlefield at an affordable cost Author

N78-19132# Department of the Navy, Washington D C US NAVY/MARINE CORPS ROTARY WING REQUIREMENTS

J A Purtell In AGARD Rotorcraft Design Jan 1978 4 p

Avail NTIS HC A15/MF A01

Points addressed include how rotorcraft fit into a Navy committed to a future VTOL force, current helicopter developments in Naval avuation with emphasis upon characteristics and capabilities of CH-53E Super Stallion LAMPS MK III, and the AH-1T improved Sea Cobra, and finally, what current trends are underway in navalized helicopters to applications

Author

N78-19133# British Airways Helicopters Ltd Horley (England) BRITISH AIRWAYS HELICOPTER OPERATIONS

J A Cameron In AGARD Rotorcraft Design Jan 1978 4 p

Avail NTIS HC A15/MF A01

The helicopter's role in civil aviation in the United Kingdom is assessed. The main operation considered is a helicopter passenger service from Penzance on Britain's south west coast to the Isles of Sicily. A comparison is made between fixed wing aircraft and rotary wing aircraft in regard to operating costs and flight time reduction. Other aspects of operations economics are examined, including helicopter design, fleet maintenance and overhaul life.

N78-19134# Squadron 330/B-Wing Banak AFB, Laksalv (Norway)

AIR-SEA RESCUE OPERATIONS SEARCH AND RESCUE EXPERIENCE

Tore Skaar In AGARD Rotorcraft Design Jan 1978 8 p

Avail NTIS HC A15/MF A01

The 330th squadron operates Sea King helicopters for air-sea rescue missions all along the Norwegian coast. The operational environment is one of the most demanding in the world. The shortcomings of the present generation of helicopters are discussed, the most serious being the lack of in flight icing protection of the rotor systems.

N78-19135# KLM North Sea Helicopters, Amsterdam (Netherlands)

SOME ASPECTS OF OFFSHORE OPERATIONS IN THE NETHERLANDS

R J VanDerHarten In AGARD Rotorcraft Design Jan 1978 7 p refs

Avail NTIS HC A15/MF A01

The sound film Bridging the Troubled Waters' (Sikorsky Aircraft), which gives a general impression of helicopter operations between mainland and naval destinations, is summarized Problems which had to be solved in order to realize the required services on a 24-hour basis are reviewed. One of these problems was the certification of helicopter weather minima for IFR-flight This involved the development and evaluation of instrument procedures and the proper choice of instruments and panel layout the navigational aids and the communication system Special attention was paid to the radar system, which provides not only weather detection but is also used during the approach to the targets at sea, as well as to the recent evaluation of an integrated pilot display system, which has a great potential for very low weather minima without the use of automatic guidance Author

N78-19136# Hughes Helicopters, Culver City, Calif COMBINED MILITARY AND COMMERCIAL APPLICATION OF LIGHT HELICOPTERS

E E Cohen, K B Amer, and R E Moore $\it In$ AGARD Rotorcraft Design Jan 1978 21 p $_{\rm V}$ Avail NTIS HC A15/MF A01

An overview is presented of light helicopters of less than 4000 pounds gross weight used by both military and commercial aviation. Hughes Helicopters background in light helicopters the design considerations and criteria used in the development of these helicopters and the Army's entry into light helicopter development are considered as well. Some conjecture is offered on the design considerations and criteria which might be used to develop a next generation lightweight multipurpose helicopter which could be used suitably by both military and commercial aviation.

N78-19137# Messerschmitt-Boelkow-Blohm G m b H Munich (West Germany)

LONG TERM EXPERIENCE WITH A HINGELESS/COMPOSITE ROTOR

G Reichert and E Weiland In AGARD Rotorcraft Design Jan 1978 14 p refs

Avail NTIS HC A15/MF A01

The Messerschmitt-Bolkow-Blohm Company has gained good experience with its light helicopter MBB - BO 105, which is engaged in civilian as well as in military operations. Up to now, more than 300 BO 105 helicopters have been delivered to customers and some 250,000 hours of flight time have been accumulated The first helicopters have about 5,000 flight hours This experience is especially valuable because the BO 105 is the first production helicopter with a hingeless rotor and fiberglass rotorblades which has been able to prove its ability in practical operation consistently over a long period of time. The broad spectrum of operation and experience includes the following types of missions in civilian operation, utility, executive, rescue police offshore, lighthouse supply as well as LOH, scout and antitankmissions in military operation. Besides the problems resulting from this broad field of operations, which are typical for many light helicopters, additional questions associated with the new technology were specially considered for example the changed handling characteristics and the different loading situation of the hingeless rotor and the behavior of the fatigue loaded fiberglass blades

Author

N78-19138# Textron Bell Helicopter Ft Worth Tex THE BELL MODEL 222

James R Garrison In AGARD Rotorcraft Design Jan 1978

Avail NTIS HC A15/MF A01

The design objectives, features and performance of the recently developed Bell Model 222 helicopter are described The Model 222 was designed to meet the needs of the worldwide commercial market Primary design objectives were safety, efficiency reduced cost of ownership, and superior handling qualities. From the test results, the Model 222 is a fuel conservative, productive aircraft with excellent flying qualities. The 222 far exceeds the FAA requirements for fail-safe design and crashworthiness. Redundancy, 8g seats crash resistant fuel tanks and real twin-engine safety are examples. The latter refers to the fact that for any altitude at which the helicopter can hover OGE, it can continue to cruise if one engine fails. Author

N78-19139# Sikorsky Aircraft, Stratford, Conn THE SIKORSKY S-76 PROGRAM

R F Donovan In AGARD Rotorcraft Design Jan 1978 14 p

Avail NTIS HC A15/MF A01

The Sikorsky S-76 helicopter was designed for the commercial market in general, and in particular was designed to serve the off-shore oil market and meet its requirements to carry 12 passengers and a crew of two on a 400 nautical mile radius mission with flotation equipment.

N78-19140# Societe Nationale Industrielle Aerospatiale Paris (France)

THE AS 350 LIGHT HELICOPTER

Rene Mouille In AGARD Rotorcraft Design Jan 1978 18 p

Avail NTIS HC A15/MF A01

The AS-350 was designed especially for civil operators, with cost effectiveness a major concern. Overall architectural design reduced the number of engine components resulting in a lightweight (4200 lb), single-engined helicopter capable of carrying a crew of six.

N78-19141# Dornier-Werke G m b H Friedrichshafen (West Germany)

TETHERED RPV-ROTORCRAFT

G Kannamueller and W Goeller In AGARD Rotorcraft Design Jan 1978 7 p

Avail NTIS HC A15/MF A01

A tethered rotor platform was designed for the stabilization of transmitters and receivers of electromagnetic waves at an adequate altitude over a ground control station for military and civil purposes. The complete system consisted of rotor platform, tethering cable, and ground control station. Apart from the transmission of command and information data the tethering cable was also used for the power supply. Tethered rotor platforms were used primarily in the military field for electronic warfare, fire control communication and surveillance of battlefield, sea surface and air space.

N78-19142*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

EVALUATION OF THE TILT ROTOR CONCEPT THE XV-15'S ROLE

James H Brown Jr H Kipling Edenborough (Textron Bell Helicopter Fort Worth, Tex.) and Kenneth G Wernicke In AGARD Rotorcraft Design Jan 1978 9 p Prepared in cooperation with Army Air Mobility Res and Develop Lab, Moffett Field Calif

Avail NTIS HCA15/MFA01 CSCL01C

The need for an aircraft combining the efficient vertical takeoff and landing capability of a helicopter with the efficient high speed characteristics of a fixed wing turboprop is examined The ability of the tilt rotor concept to fill this requirement and examples as to its potential usefulness in both military and civil missions are discussed

Author

N78-19143# Army Air Mobility Research and Development Lab , Fort Eustis, Va

THE ADVANCING BLADE CONCEPT (ABC) ROTOR PROGRAM

Harvey R Young and Duane R Simon In AGARD Rotorcraft Design Jan 1978 23 p refs

Avail NTIS HC A15/MF A01

The advancing blade concept, a coaxial counterrotating hingeless helicopter rotor system, was flight tested. Flight results in a basic helicopter configuration confirmed several important advantages of the concept and identified some shortcomings. The background and current status of the program are presented, and rotor and test aircraft features are briefly described. Author

N78-19144*# National Aeronautics and Space Administration Langley Research Center, Langley Station Va

THE ROTOR SYSTEMS RESEARCH AIRCRAFT A NEW STEP IN THE TECHNOLOGY AND ROTOR SYSTEM VERIFICATION CYCLE

Robert J. Houston, Julian L. Jenkins, Jr., and John L. Shipley (Army Air Mobility Res. and Develop Lab Hampton, Va.) In AGARD Rotorcraft Design. Jan. 1978. 24 p. refs.

Avail NTIS HC A15/MF A01 CSCL 01C

Rotor systems research aircraft vehicles, (RSRA), were developed specifically to provide the capabilities necessary for the effective and efficient in-flight test and verification of promising new rotor concepts and supporting technology developments. The capabilities of the RSRA aircraft for potential research programs are discussed.

N78-19145# National Aeronautical Establishment, Ottawa (Ontario)

THE NAE AIRBORNE V/STOL SIMULATOR

S R M Sinclair, W E B Roderick and K Lum In AGARD Rotorcraft Design Jan 1978 12 p refs

Avail NTIS HC A15/MF A01

Specialized facilities for investigating the problems associated with high-lift low-speed flight were established. The airborne simulator's four major areas of systems development are discussed installation of an electrohydraulic actuator system to interface with the basic helicopter controls development and integration of a hybrid computing system, implementation of a model-following autopilot, and development of a broadband motion sensing system. A short description of each of these systems is given.

N78-19146# Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt, Brunswick (West Germany) Inst fuer Flugmechanik

DFVLR ROTORCRAFT RESEARCH

B Gmelin, H J Langer, and P Hamel In AGARD Rotorcraft Design Jan 1978 17 p refs

Avail NTIS HC A15/MF A01

Selected activities in the field of rotorcraft research and development are presented and discussed helicopter wind tunnel test stands active vibration control, crew escape systems and helicopter system identification.

N78-19147# Westland Helicopters Ltd., Yeovil (England) RESEARCH REQUIREMENTS FOR THE IMPROVEMENT OF HELICOPTER OPERATIONS

Martin V Lowson In AGARD Rotorcraft Design Jan 1978 13 p refs

Avail NTIS HC A15/MF A01

Principal difficulties in helicopter performance engineering were studied. Problems in the areas of noise both external and internal and ice formation were examined. Reduction of rotor speed as a noise control method was suggested, and ice formation was attributed to meteorological uncertainties. Author

N78-19148# Office National d Etudes et de Recherches Aerospatiales, Paris (France)

ONERA AERODYNAMIC RESEARCH WORK ON HELICOPTERS

Jean-Jacques Philippe and Claude Armand In AGARD Rotorcraft Design Jan 1978 19 p refs

Avail NTIS HC A15/MF A01

Aerodynamic research on helicopters included basic research in two or three-dimensional flows and studies on rotors. The study of steady and unsteady characteristics of airfoils and of problems pertaining to blade tips and to vortex interactions is discussed. For the rotors, a computing program for the forces on the blades based on the acceleration potential method was develped. The problems of unsteady transonic aerodynamics related to high speed flight are also discussed. In order to perform wind tunnel tests for helicopter companies and for research purposes two rotor test rigs were developed. Measuring techniques which were used and the more characteristic results for total forces on helicopter or convertible, for absolute pressure on the blades for identification of the boundary layers, for smoke visualizations and for rotating blade deformations are described.

N78-19149# Westland Helicopters Ltd Yeovil (England) WESTLAND WISP

M J Breward In AGARD Rotorcraft Design Jan 1978 14 p ref

Avail NTIS HC A15/MF A01

Feasibility studies for a surveillance and target acquisition system led to a proposal for a remotely piloted helicopter with co-axial twin rotors having symmetry about the rotor axis. One project which has proceeded into hardware status and which has commenced flight trials carries a trainable television camera and gyro based automatic stabilization equipment. It is operable by two persons one of which performs all piloting functions.

N78-19150# Societe Nationale Industrielle Aerospatiale, La Courneuve (France)

TECHNICAL AND FINANCIAL FALL-OUT ON ARMED FORCES FROM COMMERCIAL AND EXPORT HELICOPTER PROGRAMMES

Andre L Renaud In AGARD Rotorcraft Design Jan 1978 4 p

Avail NTIS HC A15/MF A01

An attempt was made to highlight the drawbacks for industry, and advantages for armed forces, when launching a helicopter program as a private venture. The drawbacks for the industry lie in the investments, the lack of operational and technical specifications, and of official crews judgement on the aircraft. The advantages for military operators were the deferred and lower non-recurring cost outlay if a helicopter was developed as a private venture.

N78-19151# Boeing Vertol Co., Philadelphia, Pa CIVIL AND MILITARY DESIGN REQUIREMENTS AND THEIR INFLUENCE ON THE PRODUCT

David G Harding and John P Walsh In AGARD Rotorcraft Design Jan 1978 9 p refs

Avail NTIS HC A15/MF A01

Differences in airworthiness requirements were found to cause substantial cost increases particularly for civil application of military helicopters. The effects of these differences are discussed by examing the civil certification programs of various military helicopters.

Author

N78-19156*# National Aeronautics and Space Administration, Washington, D C

LOW CYCLE FATIGUE IN TURBINES

M Brun Mar 1978 23 p refs Transl into ENGLISH from Fatigue Oligocyclique dans les Turbomachines Mecanique Materiaux Elec (France), no 323-324, Nov-Dec 1976 p 42-50 Transl by Kanner (Leo) Associates, Redwoood City, Calif (Contract NASw-2790)

(NASA-TM-75264) Avail NTIS HC A02/MF A01 CSCL 21E

Behavior of certain components at low-cycle fatigue is a parameter related to the conditions of use of turbines, to the technology of engine production and to the precision of its regulation. The laboratory takes this into account using data from sophisticated tests and rigorous analyses. The production plan includes careful examination of possible causes of premature rupture. This parameter has motivated the metallurgy industry to develop new materials and new technology.

N78-19157*# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

PREDICTED INLET GAS TEMPERATURES FOR TUNGSTEN FIBER REINFORCED SUPERALLOY TURBINE BLADES

Edward A Winsa Leonard J Westfall, and Donald W Petrasek 1978 23 p refs Presented at 2d Intern Conf on Composite Materials, Toronto, Canada 16-20 Apr 1978 sponsored by Am Inst of Mining, Metallurgical and Petroleum Engineers (NASA-TM-73842) Avail NTIS HC A02/MF A01 CSCL 21E

Tungsten fiber reinforced superalloy composite (TFRS) impingement cooled turbine blade inlet gas temperatures were calculated taking into account material spanwise strength, thermal conductivity material oxidation resistance, fiber-matrix interaction, and coolant flow Measured values of TFRS thermal conductivities are presented Calculations indicate that blades made of 30 volume percent fiber content TFRS having a 12,000 N-m/kg stress-to-density ratio while operating at 40 atmospheres and a 0.06 coolant flow ratio could permit a turbine blade inlet gas temperature of over 1900K This is more than 150K greater than similar superalloy blades.

N78-19158*# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

HIGH TEMPERATURE ENVIRONMENTAL EFFECTS ON METALS

S J Grisaffe, C E Lowell and C A Stearns 1977 19 p refs Presented at 24th Sagamore Army Materials Res Conf Risk and Failure Analysis for Reliability Bolton Landing, N Y, 22-26 Aug 1977 (NASA-TM-73878) Avail NTIS HC A02/MF A01 CSCL 21E

The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in (1) improved alloys or ceramics. (2) protective surface coating. (3) use of additives to the engine environment, and (4) air/fuel cleanup to eliminate harmful impurities.

 $\mbox{N78-19159}\mbox{\ensuremath{\mbox{\sc 4}}{\#}}$ National Aeronautics and Space Administration, Washington, D C

APPROXIMATE DYNAMIC MODEL OF A TURBOJET ENGINE

O A Artemov Mar 1978 9 p refs Transl into ENGLISH from Samoletostr Tekh Vozdush Flota (USSR), no 40, 1976 p 34-37 Original language document announced as A77-32705 Transl by Kanner (Leo) Associates, Redwood City Calif (NASA-TM-75263) Avail NTIS HC A02/MF A01 CSCL 21E

An approximate dynamic nonlinear model of a turbojet engine is elaborated on as a tool in studying the aircraft control loop, with the turbojet engine treated as an actuating component Approximate relationships linking the basic engine parameters and shaft speed are derived to simplify the problem, and to aid in constructing an approximate nonlinear dynamic model of turbojet engine performance useful for predicting aircraft motion.

N78-19162# Naval Air Propulsion Test Center Trenton, NJ Propulsion Technology and Project Engineering Dept EFFECT OF FUEL BOUND NITROGEN ON OXIDES OF NITROGEN EMISSION FROM A GAS TURBINE ENGINE Interim Report

Anthony F Klarman and Anthony J Rollo Dec 1977 33 p refs

(ZF57571004)

(AD-A048382 NAPC-PE-1) Avail NTIS HC A03/MF A01 CSCL 21/4

Fuels of varying nitrogen content were tested in a T63-A-5A engine to measure their effects on exhaust gas emissions. Five test fuels varying in fuel bound nitrogen content from 3 microgram (nitrogen)/g (fuel) to 902 microgram (nitrogen)/g (fuel) were The nitrogen content in the fuel was adjusted by mixing a JP-5 type fuel derived from shale oil (902 microgram (nitrogen)/g (fuel)) and regular petroleum JP-5 fuel (3 microgram (nitrogen)/g (fuel)) Nitrogen content of the fuel had no effect on engine performance. The carbon monoxide and unburned hydrocarbon emissions were equivalent for all the fuels included in the test program. For the engine power ratings tested, the oxides of nitrogen emissions increased with increasing nitrogen content of the test fuel. The conversion efficiency of fuel bound nitrogen to oxides of nitrogen appears to be independent of the nitrogen content of the fuel. Difficulties in measuring small changes in oxides of nitrogen level resulting from low nitrogen content fuels (50 microgram nitrogen/g (fuel) or less) caused the conversion efficiency to be very variable. The conversion efficiency for fuels with a nitrogen content of 250 microgram (nitrogen)/g (fuel) or greater was approximately 45 percent Author (GRA)

N78-19163# AIResearch Mfg Co, Phoenix Ariz FABRICATION AND TEST OF A FLUIDIC FUEL-CONTROL AND BLEED-AIR-LOAD-CONTROL SYSTEM FOR GAS TURBINE ENGINES Final Report, 25 Jul 1976 - 31 Aug 1977

T S Thurston Dec 1977 41 p (Contract DAAG39-76-C-0129)

(AD-A049039, AIResearch-41-1803A, HDL-CR-77-129-1) Avail NTIS HC A03/MF A01 CSCL 13/7

This program has produced a production fluidic fuel-control and bleed-air-load-control system which consists of a fuel control. a load valve and a temperature sensor Three sets of hardware were produced for use in a follow-on program. This hardware will be subjected to acceptance tests on the Air Research Model GTCP 85-180 gas turbine engine. The production system improved. the steady-state performance over that demonstrated on the prototype control produced under the previous program. The fluidic circuits were designed to perform within specification limits when operated at altitude as well as high and low temperature conditions Designs and drawings were modified wherever necessary to facilitate production. The system underwent engine and fuel bench testing to confirm design improvement and performance. As part of this testing a 50-hour endurance bench test of the fuel control was performed. This test as well as the engine tests conducted identified minor problems with the fuel metering valve and the speed sensor which were easily corrected The appropriate design changes were incorporated into the production configuration. The production fluidic fuel-control and bleed-air-load-control system performed satisfactorily meeting the program and engine requirements and is therefore recommended for follow-on program testing Author (GRA)

N78-19164# Bolt, Beranek, and Newman, Inc., Canoga Park, Calif

SENSITIVITY OF AIRCRAFT RUNUP/COMMUNITY NOISE PREDICTIONS TO EXCESS GROUND ATTENUATION

Thomas C Dunderdale Dec 1977 28 p refs (Contract F33615-76-C-0528)

(AD-A049067 AMRL-TR-77-76) Avail NTIS HC A03/MF A01 CSCL 01/3

This study examines the sensitivity of aircraft ground runup noise predictions to the accuracy of excess ground attenuation algorithms presently used in NOISEMAP Day/Night Level (DNL) noise exposure contours were computed for one hour of single engine military power ground runup activity by F-4, C-131 and C-5 aircraft These aircraft were chosen since they have straight jet low bypass ratio fan and high bypass ratio fan engines. The propagation algorithms studied were no excess ground attenuation, standard NOISEMAP excess attenuation, and NOISEMAP excess attenuation plus and minus one standard.

deviation of the field test data used to develop the present NOISEMAP algorithm This study clearly substantiates the need for further field measurements planned by AMRL in 1977 and 1978 to refine or modify the ground propagation algorithm and establish confidence in its accuracy.

N78-19165# Northrop Corp , Hawthorne Calif Structural Dynamics Research Dept

A NON-GAUSSIAN GUST MODEL FOR AIRCRAFT RESPONSE ANALYSIS

W S Pi and C Hwang 8 Feb 1978 36 p refs Backup document for AIAA Synoptic scheduled for publication in AIAA Journal in Jul 1978

(NOR-76-223) Avail NTIS HC A03/MF A01

The non-Gaussian model was created through a zero-memory transformation of a Gaussian process. Single or multiple transformation parameters were used to control the severity and other statistical characteristics of the non-Gaussian process. The composite nature of gust patches of various intensity was accounted for through the accumulative statistics. Methods to predict the aircraft response statistics to the non-Gaussian gust model were developed by approximating the response integral as its Riemann sum. Application of the probabilistic theory indicates that the statistical properties of response can be expressed in multifold integral forms and its moments can be expressed in explicit forms. The response of Northrop F-5A aircraft subject to the non-Gaussian gust was formulated and the response statistics presented.

N78-19166*# National Aeronautics and Space Administration Hugh L Dryden Flight Research Center, Edwards, Calif

A PORTABLE DEVICE PARTICULARLY SUITED FOR USE IN STARTING AIR-START UNITS FOR AIRCRAFT Patent Application

William R Rosier and George C Volk, inventors (to NASA) Filed 9 Mar 1978 15 p $\,$

(Contract NAS4-2272)

(NASA-Case-FRC-10113-1, US-Patent-Appl-SN-885066) Avail NTIS HC A02/MF A01 CSCL 01E

The invention is embodied in a device including (1) a DC circuit having a pair of terminal plugs, each plug being characterized by a first, second, and third terminal, (2) a pair of manually operable switches for connecting the first terminal of each of the plugs to the positive side of a voltage source, (3) a circuit lead connecting the second terminal of each plug to the negative side of said source (4) a pair of electrical cables adapted to connect the first and second terminals of each plug to an air-start unit, (5) means for connecting each of the cables between the first terminal of one plug and the third terminal of the other plug of the pair, and (6) a second pair of manually operable switches for selectively connecting the third terminal of each plug of the pair to the negative side of the voltage source whereby electrical continuity of each cable of the pair may be examined prior to being connected to an air-start unit.

N78-19167# Naval Air Engineering Center Lakehurst, N J Test Dent

EVALUATION OF THE CVN 68/CVN 69 LAUNCHING SYSTEM Final Report, 16 Aug 1970 - 31 Mar 1976 Michael A Manganello 28 Dec 1977 75 p refs

NTIS

Michael A Manganello 28 Dec 1977 75 p rets (AD-AO49044 NAEC-94-1140) Avail HC AO4/MF A01 CSCL 13/10

This report presents the final evaluation of the Integrated Catapult Control Station and associated catapult equipment for the CVN 68/CVN 69 launching system Evaluation testing was conducted on the TC13 Mod 1 catapult site. The report delineates the deficiencies and discrepancies found in the CVN 68/CVN 69 launching system. Implementation of the recommended changes to the deficient items would greatly improve operations and increase the reliability and maintainability of the catapults aboard the CVN 68/CVN 69 and later carriers with these innovations incorporated.

N78-19168# Air Force Inst. of Tech., Wright-Patterson AFB.
Ohio School of Engineering

ANALYSIS AND DESIGN OF A COOLED SUPERCRITICAL

AIRFOIL TEST MODEL M & Thesis
Ray Glenn Pope, Jr Dec 1977 101 p refs AFIT/GAE/AA/77D-11) (AD-A048895, NTIS HC A06/MF A01 CSCL 20/4

A wind tunnel test model of a supercritical airfoil was designed to investigate the wall cooling effect on subsonic boundary layer stability A DSMA 523 airfoil section was employed. The model was designed to have surface temperature instrumentation and a liquid nitrogen cooling system. Heat transfer, aerodynamic loads and stresses, and instrumentation were analyzed for the proposed test conditions. A computer program was developed to analyze the forced, convective heat transfer over a two-dimensional body with a constant wall temperature. The program utilized an integral method to compute local Santon numbers. Local heat flux and total heat flow were predicted for a Mach number of 07, Reynolds numbers of 0923 x 10 to the 6th power and 1 673 x 10 to the 6th power and cooling ratios from 1 000 to 0 824 The stress analysis consisted of applying beam bending theory, along with some simplifying assumptions to the model Construction drawings and specified test conditions for Mach numbers of 03, 05 and 07 are included. The proposed tests are to be conducted in the subsonic test section of the Trisonic Author (GRA) Test Facility at Wright-Patterson AFB, Ohio

N78-19169# Air Force Human Resources Lab. Brooks AFB.

DISPLAY AND SPEECH DEVICES FOR SIMULATOR INSTRUCTOR/OPERATOR STATION APPLICATIONS Final Report, Jun 1975 - Jun 1976

Noel F Schwartz Dec 1977 18 p refs (AD-A049247, AFHRL-TR-77-50) HC A02/MF A01 CSCL 05/9

Avail NTIS

Author (GRA)

The Air Force Human Resources Laboratory (AFHRL) has the responsibility for research and development of advanced simulation techniques including more efficient and more effective Instructor Operator Stations (IOS) which would possibly use newly developed display devices and techniques and speech response/ recognition devices. This review was undertaken to become better acquainted with the state of the art of hardware devices which could be used for the IOS s of advanced aircraft training simulators and to provide some guidance in these devices to designers, specifiers and users of IOS's Attention focused mainly on display devices and speech response/recognition devices. A survey of technical literature concerning display devices, and speech synthesis and speech recognition devices was accomplished and contacts were established with a number of manufacturers and developers of these devices to determine the latest developments and potential applications Also, literature was searched for R and D related to the application of such devices. Some of the merits and shortcomings of a number of display devices (i.e., cathode ray tubes (CRT) and alternative but similar devices) are discussed and descriptions of their operation are included Speech interaction with computers is also discussed in a similar manner It is concluded that new display devices will not significantly impact the general design or utilization of the IOS Advancement of speech recognition could have a significant impact, but development beyond present capabilities does not

N78-19170# Gulf and Western Applied Science Labs Waltham,

SENSORY MECHANISM MODELING Interim Report, 26 Jan 1976 - 20 Jul 1977

Joshua Borah, Laurence R Young and Renwick E Curry Oct 1977 40 p refs

(Contract F33615-76-C-0039)

appear imminent

(AD-A049278, AFHRL-TR-77-70) NTIS

HC A03/MF A01 CSCL 06/16

The purpose of this study was to model human motion and orientation sensing mechanisms so that simulator motion cueing systems can be designed to take full advantage of the characteristics of these sensory mechanisms. Individual models for vestibular, visual, tactile and proprioceptive sensors have been either adapted from previous modeling work or formulated from available psychophysical and neurophysiological data. A literature search

was conducted to help identify material in the area of mechanoreceptor systems and the resulting bibliography is included A composite model structure has been proposed, using a Kalman filter blending technique to integrate information from the different sensory modalities into a single estimate of state. The Kalman filter represents the presumed function of neural central processing The model has been implemented in the form of a digital computer program, and promising preliminary results, in qualitative agreement with known responses, have been obtained using only vestibular model components. Ongoing work is directed at exercising the nonvestibular modalities, performing thorough validation and exercise of the entire model, and extending the model where possible

N78-19208# Air Force Inst of Tech , Wright-Patterson AFB, Ohio School of Engineering

A GENERAL STUDY OF HYBRID COMPOSITE LAMINATES M.S. Thesis

George D Brooks Dec 1977 65 p refs (AD-AO48364, AFIT/GAE/AA/77D-2) HC A04/MF A01 CSCL 11/4

NTIS

This thesis is a general study of hybrid composite laminates that includes application of a three dimensional stress analysis approximation technique based on equilibrium considerations and free edge effects. Thermal residual stresses and effects of replacing lamina in a composite laminate with lamina composed of hybrid material were investigated. Two types of 48 ply hybrid composite laminates were tested under tensile and flexure loading. Results achieved experimentally for the moduli of elasticity were compared with values predicted by laminated plate theory and laminated beam theory. Thermal residual stresses proved to be significant and worthy of due consideration in stress analysis of test specimens. Hybridization, as studied appeared to have little effect on the overall properties of a laminate. Hybrid composite laminates obey classical laminate theory and can, in certain ply configurátions develop considerable free edge effect stresses

Author (GRÅ)

N78-19325*# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio

JET AIRCRAFT HYDROCARBON FUELS TECHNOLOGY John P Longwell, ed 1978 64 p Workshop held at Cleveland, Ohio, 7-9 Jun 1977

(NASA-CP-2033, E-9457) Avail NTIS HC A04/MF A01 CSCL 21D

A broad specification, referee fuel was proposed for research and development. This fuel has a lower, closely specified hydrogen content and higher final boiling point and freezing point than ASTM Jet A The workshop recommended various priority items for fuel research and development. Key items include prediction of tradeoffs among fuel refining distribution, and aircraft operating costs, combustor liner temperature and emissions studies, and practical simulator investigations of the effect of high freezing point and low thermal stability fuels on aircraft fuel systems

Author

N78-19326* # Gordian Associates, Inc., New York COMPUTER MODEL FOR REFINERY OPERATIONS WITH EMPHASIS ON JET FUEL PRODUCTION. **VOLUME 2:** DATA AND TECHNICAL BASES Final Report

Daniel N Dunbar and Barry G Tunnah 21 Feb 1978 55 p refs

(Contract NAS3-20620)

(NASA-CR-135334, Rept-1099-1) NTIS HC A04/MF A01 CSCL 21D

The FORTRAN computing program predicts the flow streams and material, energy, and economic balances of a typical petroleum refinery, with particular emphasis on production of aviation turbine fuel of varying end point and hydrogen content specifications The program has provision for shale oil and coal oil in addition to petroleum crudes A case study feature permits dependent cases to be run for parametric or optimization studies by input of only the variables which are changed from the base case The report has sufficient detail for the information of most readers Author

N78-19362# Hughes Aircraft Co Fullerton, Calif Ground Systems Group

HIGH RESOLUTION, HIGH BRIGHTNESS COLOR TELEVI-SION PROJECTOR: ANALYSIS, INVESTIGATIONS, DESIGN, PERFORMANCE OF BASELINE PROJECTOR Final Report, Jul. 1976 - Mar. 1977

P C Baron, E R Charles, D E Sprotbery, and D B Jorgensen Sep 1977 134 p ref

(Contract F33615-76-C-0040, AF Proj. 6114)

(AD-A049279, AFHRL-TR-77-33(1)) NTIS

HC A07/MF A01 CSCL 14/2

This study addressed the problem of establishing the feasibility of, and defining, a high performance color television projector to be used in optically mosaicked, computer image generator (CIG) driven wide-field-of-view simulators. Based on verbal briefing, reviewing documentation and a visit to the Advanced Simulator for Pilot Training (ASPT) at Williams AFB, the RFP requirements were interpreted, refined and prioritized. The survey task reviewed the extant state-of-the-art in display technology for techniques which held promise of meeting the RFP requirements Based on this task, it was concluded that only the liquid crystal light valve (LCLV) technology had a chance to do so, however, its performance needed to be upgraded significantly from the then current state A systematic investigation of all components contributing to projector operation was therefore undertaken. The lamp, illumination system, polarizing beamsplitter, dichroics, LCLVs, CRT, deflection system projection lens and screen were all subjected to a systematic test/analysis cycle, and improvements were made as required Samples were obtained, tested and analyzed, breadboards were built and tested, and detailed studies were conducted Subcontract studies were let, to investigate the dichroics and the projection lens. The latter was a major effort by Kollmorgen Corp Tradeoffs were generated relating brightness to color purity/range, light falloff to pilot head motion, and resolution to CRT spot size and projection lens cost Components were then selected (or specified) to result in an RFP-compliant system which yielded minimum overall risk. The projector was defined in detail

N78-19517# Honeywell, Inc., Hopkins, Minn Defense Systems

HYDRAULIC CONSTANT RECOIL PROGRAM Final Report, 28 Jun. 1974 - 30 Apr 1977

Robert Gartner 18 Nov 1977

(Contract DAAA09-74-C-2077) (AD-A049313

HONEYWELL-47212) NTIS Avail

HC A06/MF A01 CSCL 13/7

The design, development and testing of a test prototype hydraulic servo recoil system that reduces the recoil forces of the 20mm M197 gatling gun to near-constant levels is described The system concept, system implementation and engineering, preflight and flight test on board an AH-1G helicopter are summarized Preliminary conclusions are that the vibrations in the helicopter resulting from gun firing are virtually eliminated Author (GRA)

N78-19553 Purdue Univ , Lafayette, Ind

ANALYSIS OF SINGLE AND DOUBLE COVERAGE AIR-CRAFT MULTISPECTRAL SCANNER ARRAYS FOR POSI-TIONAL DATA Ph.D Thesis Max Michael Ethridge 1977 317 p

Avail Univ Microfilms Order No 77-30073

The development of an analytical model for the restitution of multiply scanned multispectral scanner (MSS) digital data arrays was investigated A brief discussion concerning the potential mapping applications of aircraft MSS digital data was followed by a description of six geometric restitution techniques. The six techniques, which include collinearity, piecewise polynomials, weighted mean, moving averages, meshwise linear interpolation, and Gauss-Markov models, were each used to restitute four strips of actual aircraft MSS digital data. An analysis of the results obtained from considerable experimentation with the recently proposed Gauss-Markov model was also presented. The restitution results from the six techniques provide input for a statistically based analysis involving analysis of variance and

Newman-Keuls techniques By considering the results of the statistical analysis together with subjective factors, the three most suitable techniques were found Dissert Abstr

N78-19713* Alden Electronic and Impulse Recording Equipment Co., Washington, D. C.

AVIATION WEATHER SERVICE REQUIREMENTS, 1980 -1990

Newton A Lieurance In Tennessee Univ Space Inst Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 18-26

Avail NTIS HC A15/MF A01 CSCL 04B

Future aviation weather needs are discussed Priority weather requirements and deficiencies existing for weather observations and forecast services in terminal areas are presented Needs in en route operations up to 30 km are addressed with emphasis on turbulence, presence of suspended ice and water particles, SST to supersonic speeds, solar radiation, ozone and sonic booms. Some conclusions are drawn and recommendations. are presented

N78-19714* National Aeronautics and Space Administration Marshall Space Flight Center, Huntsville, Ala

OVERVIEW OF NASA/MARSHALL SPACE FLIGHT CEN-TER'S PROGRAM ON KNOWLEDGE OF ATMOSPHERIC **PROCESSES**

Dennis W Camp In Tennessee Univ Space Inst Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 28-40 refs

Avail NTIS HC A15/MF A01 CSCL 04A

The Marshall Space Flight Center (MSFC) is charged with the responsibility to enhance aviation safety through improving understanding of various atmospheric phenomena. A brief discussion is presented concerning the tasks and work being accomplished by MSFC. The tasks are defined as follows. (1) to determine and define the turbulence and steady wind environments induced by buildings, towers hills, trees, etc., (2) to identify, develop, and apply natural environment technology for the reconstruction and/or simulation of the natural environment for aircraft accident investigation and hazard identification, (3) to develop basic information about free atmosphere perturbations, (4) to develop and apply fog modification mathematical models to assess candidate fog modification schemes and to develop appropriate instrumentation to aquire basic data about fog. To accomplish these tasks MSFC has developed a program involving field data acquisition, wind tunnel studies, theoretical studies, data analysis and flight simulation studies

N78-19715* National Oceanic and Atmospheric Administration, Rockville Md

AN OVERVIEW OF AVIATION WEATHER SERVICES

John W Connolly In Tennessee Univ Space Inst Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 41-48

Avail NTIS HC A15/MF A01 CSCL 04B

Safety of flight is the first concern of the aviation weather service, the economics of air transportation is a second major interest. Weather is a significant causal factor impacting on the efficiency of air transportation. A discussion is presented on the functions of various weather service agencies as they relate to one another in the dissemination of information to the pilot and to the air traffic controller Improvements in the aviation weather service and weather knowledge are cited as future goals. The weather service at the present time is an efficient system but future aviation objectives dictate more improvements are needed (especially in automation technology) to enhance flight planning and for safe and efficient flight execution

N78-19717* National Aeronautics and Space Administration Langley Research Center, Langley Station, Va AIRPLANE DESIGN FOR GUSTS

John C Houbolt *In* Tennessee Univ Space Inst. Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 58-71 refs

Avail NTIS HC A15/MF A01 CSCL 01C

There are two basic approaches used for the structural design of aircraft due to dust encounter. One is a discrete gust approach, the other is based on power spectral techniques. Both of these approaches are explained in this report. Tacit to the above approaches is the assumption that loading on the airplane arises primarily from vertical gusts. A study of atmospheric turbulence was made not only on the vertical component, but on the longitudinal and transverse gust components as well. An analysis was made to establish the loads that develop when explicit consideration is given to both the vertical and head-wind components. The results are reported. Also included in this report are brief comments on gust effects during approach and landing.

N78-19718* Federal Aviation Administration Washington, D. C. A SYNOPSIS OF THE WEATHER PROBLEMS FACING TODAY'S GENERAL AVIATION PILOTS

James C Pope In Tennessee Univ Space Inst. Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 72-82

Avail NTIS HC A15/MF A01 CSCL 04B

Concentration on weather to data has primarily been at the point of observation. There have been efforts to obtain and disseminate en route weather through pilot reports (PIREPS), but the efforts have been meager. What is needed is the cooperative efforts on the application of technology to the acquisition and dissemination of the en route weather data for those pilots in the air as well as those who are flight planning on the ground. A comprehensive three-dimensional computer storage system is proposed that receives weather information from all aircraft on IFR flight plans and stores this information by altitude and geographic coordinates. Also, a report on the Federal Aviation Administration's Research Engineering and Development Aviation Weather Program from the aspect of past, present and future is given.

N78-19719* National Aeronautics and Space Administration Marshall Space Flight Center Huntsville Ala NASA'S AVIATION SAFETY RESEARCH AND TECHNOL-

NASA'S AVIATION SAFETY RESEARCH AND TECHNOL-OGY PROGRAM

George H Fichtl In Tennessee Univ Space Inst Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 83-102 refs

Avail NTIS HC A15/MF A01 CSCL 01B

Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized. (1) The nature of operating problems (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems (9) Aircraft fire technology, (10) Crashworthiness research (11) Aircraft wake vortex hazard research and (12) Aviation safety reporting system Author

N78-19722* Airline Pilots Association, Denison Tex PROBLEMS PILOTS FACE INVOLVING WIND SHEAR

W W Melvin In Tennessee Univ Space Inst. Proc. of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar. 1977 p. 175-187 refs

Avail NTIS HC A15/MF A01 CSCL 04B

Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

N78-19723* Boeing Aerospace Co., Seattle, Wash WIND MODELS FOR FLIGHT SIMULATOR CERTIFICATION OF LANDING AND APPROACH GUIDANCE AND CONTROL SYSTEMS

Dwight R Schaeffer In Tennessee Univ Space Inst Proc of the 1st Ann Meteorol and Environ Inputs to Aviation Systems Workshop Mar 1977 p 188-274 refs

Avail NTIS HC A15/MF A01 CSCL 17G

The definition of a model suitable for certification was the main objective of this report. The model was designed to simplify and reduce the wind model parameters to enable evaluation of a large number of aircraft and control system design parameters. Analytical descriptions of wind phenomena were presented. For those parameters defying analytic description, probabilistic descriptions were sought. A brief analysis of the effects of wind on aircraft motion was conducted. The axes transformations required between wind and turbulence components in their inherent axis system and in the airplane's axis system were shown. Techniques of providing a random process on computers for the representation of turbulence were presented. A simulation model was presented that combines all the foregoing components.

N78-19778*# National Aeronautics and Space Administration Ames Research Center Moffett Field, Calif

FUTURE COMPUTER REQUIREMENTS FOR COMPUTA-TIONAL AERODYNAMICS

Feb 1978 515 p refs Proceedings held at Moffett Field, Calif , 4-6 Oct 1977

(NASA-CP-2032 A-7291) Avail NTIS HC A22/MF A01 CSCL 09B

Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

N78-19779*# National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

COMPUTATIONAL AERODYNAMICS AND THE NUMERI-CAL AERODYNAMIC SIMULATION FACILITY

Victor L. Peterson *In its* Future Computer Requirements for Computational Aerodynamics Feb 1978 p 5-30

Avail NTIS HC A22/MF A01 CSCL 09B

Technical and economic reasons for accelerating the maturation of the discipline of computational aerodynamics include the cost of conducting the experiments required to provide the empirical data base for new aeronautical vehicles and the limitations in test facilities (Reynolds number, wall and support interferences, aeroelastic distortions, real-gas effects, etc.) for simulating the full-scale vehicle environment. General ourpose computers do not have the necessary capability for the next stage of development. Solution of the three dimensional Reynolds averaged Naiver-Stokes equations in a short time to be practical for design purposes will require 40 times the power of current supercomputers. However, it is feasible to construct a special purpose processor that will meet these requirements to enhance the nation's aerodynamic design capability in the 1980's Author.

N78-19784*# Boeing Co Seattle Wash

COMPUTATIONAL AERODYNAMICS REQUIREMENTS. THE FUTURE ROLE OF THE COMPUTER AND THE NEEDS OF THE AEROSPACE INDUSTRY

Paul E Rubbert In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 81-90

Avail NTIS HC A22/MF A01 CSCL 09B

The commercial airplane builder's viewpoint on the important issues involved in the development of improved computational aerodynamics tools such as powerful computers optimized for fluid flow problems is presented. The primary user of computational aerodynamics in a commercial aircraft company is the design engineer who is concerned with solving practical engineering problems. From his viewpoint, the development of program interfaces and pre-and post-processing capability for new computational methods is just as important as the algorithms and machine architecture. As more and more details of the entire flow field are computed, the visibility of the output data becomes a major problem which is then doubled when a design capability is added. The user must be able to see, understand, and interpret the results calculated. Enormous costs are expanded because of the need to work with programs having only primitive user interfaces.

N78-19785*# General Dynamics/Fort Worth Tex REMARKS ON FUTURE COMPUTATIONAL AERODYNAMICS REQUIREMENTS

R G Bradley and I C Bhateley *In* NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 91-101

Avail NTIS HC A22/MF A01 CSCL 09B

The development of upgraded and expanded computational aerodynamics methods for the design and analysis of aircraft configurations should be performed by both government and industry to ensure that the objectives for aircraft design are satisfied from both the industrial competitive design standpoint and from the government standpoint Any programs developed must be heavily user-oriented and provide maximum visibility and creditability to management Early consideration should be given to the adequate management of such a facility when it becomes available

N78-19786* National Aeronautics and Space Administration Ames Research Center, Moffett Field, Calif FUTURE REQUIREMENTS AND ROLES OF COMPUTERS IN AERODYNAMICS

Thomas J Gregory In its Future Computer Requirements for Computational Aerodynamics Feb 1978 p 102-107

Avail NTIS HC A22/MF A01 CSCL 09B

While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality

N78-19787* Lockheed-Georgia Co, Marietta PROJECTED ROLE OF ADVANCED COMPUTATIONAL AERODYNAMIC METHODS AT THE LOCKHEED-GEORGIA COMPANY

Manuel E Lores In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 108-120

Avail NTIS HC A22/MF A01 CSCL 09B

Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output

N78-19788*# ARO, Inc., Arnold Air Force Station, Tenn COMPUTATIONAL AERODYNAMICS REQUIREMENTS IN CONJUNCTION WITH EXPERIMENTAL FACILITIES

J Leith Potter and John C Adams In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 121-131

Avail NTIS HC A22/MF A01 CSCL 09B

The importance computational aerodynamics in improving quality and efficiency in production of information at a wind tunnel test center is discussed. Some principal applications of the calculations are to extend or clarify the understanding of experimental data, particularly when wind tunnel or scaling limitations prevent attainment of all conditions of interest, and to furnish on-line or near-on-line math-model results or other comparative data needed for test direction.

N78-19789*# Boeing Co., Seattle, Wash COMPUTATIONAL FLUID DYNAMICS (CFD). FUTURE ROLE AND REQUIREMENTS AS VIEWED BY AN APPLIED AERODYNAMICIST

H Yoshihara In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 132-142

Avail NTIS HC A22/MF A01 CSCL 20D

The problem of designing the wing-fuselage configuration of an advanced transonic commercial airliner and the optimization of a supercruiser fighter are sketched, pointing out the essential fluid mechanical phenomena that play an important role Such problems suggest that for a numerical method to be useful, it must be able to treat highly three dimensional turbulent separations, flows with jet engine exhausts, and complex vehicle configurations. Weaknesses of the two principal tools of the aerodynamicist, the wind tunnel and the computer, suggest a complementing combined use of these tools, which is illustrated by the case of the transonic wing-fuselage design. The anticipated difficulties in developing an adequate turbulent transport model suggest that such an approach may have to suffice for an extended period. On a longer term, experimentation of turbulent transport in meaningful cases must be intensified to provide a data base for both modeling and theory validation purposes

N78-19791*# McDonnell-Douglas Research Labs , St Louis,

VISCOUS FLOW SIMULATIONS IN VTOL AERODYNAMICS

W W Bower In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 154-167 refs

(Contract N00014-76-C-0494)

Avail NTIS HC A22/MF A01 CSCL 01A

The critical issues in viscous flow simulations, such as boundary-layer separation, entrainment, turbulence modeling, and compressibility, are discussed with regard to the ground effects

problem for vertical-takeoff-and-landing (VTOL) aircraft A simulation of the two-dimensional incompressible lift jet in ground proximity is based on solution of the Reynolds-averaged Navier-Stokes equations and a turbulence-model equation which are written in stream function-vorticity form and are solved using Hoffman's augmented-central-difference algorithm. The resulting equations and their shortcomings are discussed when the technique is extended to two-dimensional compressible and three-dimensional incompressible flows.

N78-19792*# Air Force Flight Dynamics Lab , Wright-Patterson AFB, Ohio

CRITICAL ISSUES IN VISCOUS FLOW COMPUTATIONS

W L. Hankey In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 168-175 refs

Avail NTIS HC A22/MF A01 CSCL 20D

In developing computer programs to numerically solve the Navier-Stokes equations, the purpose of the computation must be clearly kept in mind. In the Air Force, the purpose is to provide design information on non-linear aerodynamic phenomenon for aircraft that perform throughout the flight corridor. This translates into the requirement for a computer program which can solve the time averaged compressible Navier-Stokes equations (with a turbulence model) in three dimensions for generalized geometries. The intended application of the results then controls the priorities in addressing critical issues. Recurrent problem areas encountered in the study of viscous flow include. (1) grid generation for arbitrary geometry. (2) numerical difficulties, (3) turbulence models, (4) accuracy and efficiency, and (5) smearing of discontinuities.

N78-19793*# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va

VISCOUS FLOW SIMULATION REQUIREMENTS

Julius E Harris In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 176-208 refs

Avail NTIS HC A22/MF A01 CSCL 20D

Although significant advances have been made in the simulation of two-dimensional compressible laminar viscous flows by numerically solving the compressible Navier-Stokes (N S) equations, problem areas still remain to be solved before viscous flows requiring solution of the compressible N S equations can be efficiently and accurately simulated for flows of aerodynamic interest. These problem areas include turbulence (three-dimensional character), complex geometry, flow unsteadiness, placement of artificial boundaries relative to solid boundaries, specification of boundary conditions, and large flow gradients near surfaces and in the vicinity of shock waves for supersonic flows.

N78-19795*# Georgia Inst of Tech, Atlanta PROSPECTS FOR COMPUTATIONAL AERODYNAMICS

J C Wu In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 221-227 refs

Avail NTIS HC A22/MF A01 CSCL 01A

The integral representations approach, for the solution of the Navier-Stokes equations is discussed as well as experience in its development and in applying available finite-difference and finite-element techniques to the treatment of three-dimensional problems, and the computation of turbulent flow The magnitude of efforts required to develop turbulence models and three-dimensional algorithms indicates that the computational fluid dynamics research must have a broad base Broader access to modern computing facilities that are in existence within NASA should be promoted for active researchers not directly affiliated with that agency

N78-19801*# Tennessee Univ, Knoxville FINITE ELEMENT CONCEPTS IN COMPUTATIONAL AERODYNAMICS

A J Baker In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 278-289 refs

(Contract NAS1-14307, Grants NsG-1261, NsG-1391) Avail NTIS HC A22/MF A01 CSCL 09B

Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

N78-19804*# Colorado State Univ , Fort Collins Computer Science Dept

REVIEW OF THE AIR FORCE SUMMER STUDY PROGRAM ON THE INTEGRATION OF WIND TUNNELS AND COMPUTERS

Bernard W Marschner In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 326-334

Avail NTIS HC A22/MF A01 CSCL 09B

The present state of computational fluid dynamics and its impact on the design cycle and computer requirements for future developments in this field were explored. The increase in productivity and efficiency which experimental facilities can achieve by a close integration with computers was investigated together with possible improvements in simulation quality of wind tunnels in conjunction with computer control. Research experiments are outlined to provide a better understanding of the physics of fluid flow and to assist in the modeling of these phenomena for computational methods, with primary emphasis on turbulent flows.

Author

N78-19806*# IBM Research Lab, San Jose, Calif MULTIPROCESSING TRADEOFFS AND THE WIND-TUNNEL SIMULATION PROBLEM

Tien Chi Chen In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 335-342

Avail NTIS HC A22/MF A01 CSCL 09B

The architecture tradeoff issue is discussed, concentrating on an oversimplified version of the multiprocessing aspect A degree of symmetric multiprocessing is unavoidable, the choice is either complete symmetric multiprocessing or a number of identical pipelines. The processing elements can be geared to do either plane-multiprocessing, or line-multiprocessing. Other important design choices are the number notation, word length, main memory size, cache memory size, and different means to implement data transport.

N78-19814*# Institute for Advanced Computation, Sunnyvale, Calif

SPECIALIZED COMPUTER ARCHITECTURES FOR COMPUTATIONAL AERODYNAMICS

David K Stevenson In NASA Ames Res Center Future Computer Requirements for Computational Aerodynamics Feb 1978 p 423-428

Avail NTIS HC A22/MF A01 CSCL 09B

In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important

problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed

Author

N78-19849# Bolt Beranek, and Newman, Inc., Canoga Park,

NOISEMAP COMPUTER PROGRAM OPERATOR MANUAL ADDENDUM FOR VERSION 34 OF NOISEMAP

Nicolaas Reddingius Wright-Patterson AFB, Ohio AMRL Dec 1977 14 p

(Contract F33615-76-C-0507)

(AD-A049070, AMRL-TR-77-75-Add) NTIS Avail

HC A02/MF A01 CSCL 09/2

NOISEMAP is a computerized procedure for predicting contours of equal noise exposure around airbases. It is routinely used to aid airbase planners to prevent community encroachment limiting the aircraft operational effectiveness of installations and for conducting environmental noise assessment studies. This technical memorandum describes the four new features incorporated into version 34 of the NOISEMAP program. These are new sideline noise exposure algorithm, estimation of maximum allowed cutoff for computation estimation of grid spacing on the basis of runway utilization, additions to the GPCP interface to make Compatible Use District Maps in the preferred format for USAF AICUZ analyses Author (GRA)

N78-19868* National Aeronautics and Space Administration Ames Research Center, Moffett Field Calif

CONSERVATIVE IMPLICIT SCHEMES FOR THE FULL POTENTIAL EQUATION APPLIED TO TRANSONIC FLOWS Terry L. Holst (Army Aviation R and D Command, Moffett Field, Calif) and William F Ballhaus Mar 1978 37 p refs (NASA-TM-78469, A-7338) Avail NTIS HC A03/MF A01 CSCL 12A

Implicit approximate factorization techniques (AF) were investigated for the solution of matrix equations resulting from finite difference approximations to the full potential equation in conservation form. For transonic flows, an artificial viscosity required to maintain stability in supersonic regions, was introduced by an upwind bias of the density. Two implicit AF procedures are presented and their convergence performance is compared with that of the standard transonic solution procedure, successive line overrelaxation (SLOR) Subcritical and supercritical test cases are considered. The results indicate that the AF schemes are substantially faster than SLOR Author

N78-19896*# National Aeronautics and Space Administration Pasadena Office, Calif

RESOLUTION ENHANCED SOUND DETECTING AP-**PARATUS Patent Application**

James M Kendall, inventor (to NASA) (JPL) Filed 16 Dec 1977 10 p

(Contract NAS7-100)

(NASA-Case-NPO-14134-1, US-Patent-Appl-SN-861392) Avail NTIS HC A02/MF A01 CSCL 20A

The acuity of an acoustic mirror and microphone system is increased in order to precisely detect the location of a noise source, such as that created by an airframe in a wind tunnel, or by machinery. The apparatus which includes mirror which reflects sound from a source to a microphone, can be shifted until the noise detected by microphone is loudest, to determine the precise location from which the sound originates. An enclosure is positioned around the mirror and is filled with a heavy gas such as Freon. The sound waves move slower in the heavy gas than in air, so the wavelength of sound waves is shorter, and the mirror can more accurately focus the sound waves onto the microphone A pair of thin sheets in front of the mirror is pressed apart by slightly pressured air between them so that all light rays pass perpendicular to the interface between the air in front of the wall and the Freon gas behind wall and are not refracted by the Freon gas

N78-19899* General Electric Co., Cincinnati, Ohio Advanced Engineering and Technology Dept
EVALUATION OF THE IN-FLIGHT NOISE SIGNATURE OF

A 32-CHUTE SUPPRESSOR NOZZLE: ACQUISTIC DATA REPORT

M T Moore and V L Doyle Nov 1977 438 p refs (Contract NAS2-9312)

(NASA-CR-152076) Avail NTIS HC A19/MF A01 CSCL

Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests Author

N78-20010# Army Research and Technology Labs, Moffett Field, Calif

ARMY AVIATION RDT AND E PLAN, SIXTH EDITION

Oct 1977 372 p

(AD-A049214) Avail NTIS HC A16/MF A01 CSCL 01/3 This Plan presents a time-phased analysis and presentation of the scientific and technological R/D efforts required to support the development of advanced airmobile systems responsive to the future needs of the Army Plans and objectives are set forth for Army aviation research and development activities for FY78-97, with emphasis on the period from the present to 1982 Current R/D efforts in Army air mobility are directed primarily toward the development of a family of aircraft capable of vertical and short takeoffs and landings. These aircraft will fulfill identified requirements in the land combat functions of mobility, intelligence, firepower, combat service support, and command control, and communications The Airmobile Systems section of the Plan is aligned to present the operational systems, developing systems, and R/D planning concepts as an element of the land combat functions of mobility, intelligence, firepower, combat service support, and command, control and communication rather than as individual systems. The Technology sections present the research effort needed assuming no constraints on resources, to develop the technology base necessary to support the airmobile system concepts. The Technology sections also provide a discussion of program planning and include the philosophy for the development of technical thrusts for the individual technologies The Plan covers RDT/E activities (6.1 through 6.7 program categories) and also MM/T activities, which are normally part of Procurement of Equipment and Missiles-Army (PEMA) GRA

N78-20011# Army Research and Technology Labs, Moffett Field, Calif

ARMY RESEARCH AND TECHNOLOGY LABORATORIES, FY 1977 Annual Report

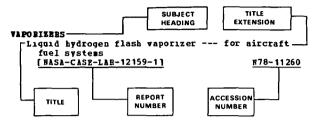
1977 54 p

(AD-A049212) Avail NTIS HC A04/MF A01 CSCL 01/3 The U.S. Army Research and Technology Laboratories (RTL) perform the air mobility R and D efforts of the U.S. Army Aviation Research and Development Command (AVRADCOM) capabilities of their staff of research, engineering, and support personnel span the sciences, disciplines, and technologies of Army aviation

N78-20012# Army Research and Technology Labs, Moffett Field, Calif.

ARMY AVIATION RDT AND E PLAN SIXTH EDITION. **EXECUTIVE SUMMARY**

Oct 1977 23 p


(AD-A049213) Avail NTIS HC A02/MF A01 CSCL 01/3 For abstract, see N78-20010

SUBJECT INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 97)

JUNE 1978

Typical Subject Index Listing

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content a title extension is added separated from the title by three hyphens. The NASA or AIAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.

Δ

A	
ACCELERATED LIFE TESTS	
Accelerated laboratory corrosion test for	
materials and finishes used in naval airc	
[AD-A048059]	N78-18188
ACOUSTIC ATTENUATION Sensitivity of aircraft runup/community noi	
predictions to excess ground attenuation	.se
[AD-A049067]	N78-19164
ACOUSTIC DUCTS	170-17104
Study of the propagation of higher modes in	1
cylindrical ducts with impedance walls	- for
aircraft noise reduction	
	A78-25773
ACOUSTIC IMPEDANCE	
Investigation of ground reflection and impe	dance
from flyover noise measurements	
[NASA-CR-145302]	N78-18874
ACOUSTIC REASURERENTS	
Evaluation of the in-flight noise signature	of a
32-chute suppressor nozzle: Acoustic dat	
outdoor static and 40 x 80 ft. wind t	unnel
tests	
[NASA-CR-152076]	N78-19899
ACOUSTIC PROPAGATION	
Resolution enhanced sound detecting apparat	ds
wind tunnel apparatus for airframe noise localization	
	N78-19898
ACOUSTIC PROPERTIES	11/0-13030
Effect of design changes on aerodynamic and	
acoustic performance of translating-cente	
sonic inlets	r pod 1
[NASA-TP-1132]	N78-17998
ACOUSTIC VELOCITY	
Temperature characteristics of the speed of	sound
and compressibility of standard fuels and	
petroleum oils	
•	A78-26756
ADAPTIVE CONTROL	
Active reference null steering for spread s	pectrum
signals	-
	A78-27038
Adaptive phased arrays for tactical communi	cation
systems for ECM rejection	
	A78-27040
An adaptive interference cancellation syste	n for
elimination of co-located interference si	gnals
for ATC sites	
	A78-27041

	A78-26167
ADDRESIVE BONDING	
Durability of adhesive bonded honeycomb s in accelerated adverse environments	THOUSE TO H
	A78-25202
AERIAL RECOMMAISSANCE Utilization of Precilec information /airc	raft
attitude and position/ for geometric im	age
corrections	
ABROACOUSTICS	A78-28399
Study of the propagation of higher modes cylindrical ducts with impedance walls	in
cylindrical ducts with impedance walls aircraft noise reduction	for
	A78-25773
Noise generated by low pressure axial flo	w fans.
III - Effects of rotational frequency, thickness and outer blade profile	prade
	A78-26498
Artificial control of the laminar-turbule transition of a two-dimensional wake by	nt external
sound	
The poice from the large-seels structure	A78-27143
The noise from the large-scale structure	A78-27144
The wave system attached to a finite slen	
in a supersonic relaxing gas stream	178-27146
APRODYNAMIC CHARACTERISTICS	
Effects of film injection on performance cooled turbine	of a
	178-24902
Method for solving problems of flow past with fuselage bounded by an ideal fluid	a wing
with fuselage bounded by an ideal fluid	178-25585
Theoretical evaluation of high speed aero	dynamics
for arrow wing configurations [NASA-TM-78659]	N78-17992
A theoretical investigation of the aerody	namics of
low-aspect-ratio wings with partial lea separation	ding-edge
[NASA-CR-145304]	N78-17993
Investigation of aerodynamic characterist	ics of
V-wings near solid surface (AD-A0485551	N78-18003
Cambered jet-flapped airfoil theory with	
and computer programs for application [AD-A048528]	N78-18006
Limitations of the CH-47 helicopter in pe	
terrain flying with external loads [AD-A048580]	179_10ne4
Numerical aerodynamic simulation facility	N78-18054 •
<pre>Preliminary study extension. Executive [NASA-CR-152106]</pre>	
[NASA-CR-152106] The role of time-history effects in the	N78-19050
The role of time-history effects in the formulation of the aerodynamics of airc	raft
dynamics [NASA-TM-78471]	N78-19056
Doublet lattice aerodynamic predictions f	
oscillating P-5 wing with stores	N78-19070
LASTOP: A computer code for laser turret	
optimization of small perturbation turn	
subsonic or supersonic flow [AD-A049272]	N78-19076
A wing in an unsteady gas flow, part 1	_
[AD-A048999] A wing in an unsteady gas flow, part 2	78-19077
[AD-A049000]	N78-19078
A wing in an unsteady gas flow, part 3 [AD-A049001]	N78-19079
[• • • • • • • • • • • • • • • • • • •	870-17079

ADAPTIVE PILTERS

AERODYNAMIC CONFIGURATIONS	A uniqueness proof for a transonic flow problem
Pffect of design changes on aerodynamic and acoustic performance of translating-centerbody	Theory of delphin-style slider flight and
sonic inlets	Theory of dolphin-style glider flight and principles of dynamic flight. I
[NASA-TP-1132] · N78-17998	A78-28195
<pre>Inalytical study of a free-wing/free-trimmer concept for gust alleviation and high lift</pre>	Numerical aerodynamic simulation facility. Preliminary study extension
[MASA-CR-2946] N78-18000	[NASA-CR-152107] N78-19051
In annular wing	Preliminary study for a numerical aerodynamic
[NASA-CASE-FRC-11007-1] N78-19055	simulation facility. Phase 1: Extension
ABRODYNAMIC DRAG Ideal tail load for minimum aircraft drag	[NASA-CR-152108] N78-19052 Dynamic wind-tunnel tests of an aeromechanical
A78-28149	gust-alleviation system using several different
Drag, flow transition, and laminar separation on	combinations of control surfaces
nine bodies of revolution having different forebody shapes	[NASA-TM-78638] N78-19059 Static stability of vehicles which use the lifting
[AD-A048274] N78-18001	force of airfoils
Parametric transonic evaluation of type A VSTOL	[AD-A049069] N78-19074
nacelle drag [AD-A048110] N78-18002	The dynamics of non spherical particles aerodynamic translational mobility of cubes and
AERODYNAMIC PORCES	cylinders
Linearized Newtonian aerodynamics of slender inflated cones	[AD-A047144] N78-19080
[AD-A048695] R78-19064	Puture Computer Requirements for Computational Aerodynamics
Doublet lattice aerodynamic predictions for an	[NASA-CP-2032] N78-19778
oscillating F-5 wing with stores [AD-A048968] N78-19070	Computational aerodynamics and the numerical
AERODINA MIC HEATING	aerodynamic simulation facility N78-19779
Experimental investigation of the temperature	Computational aerodynamics requirements: The
field in a plane channel carrying a stratified turbulent air stream	future role of the computer and the needs of the
A78-27139	aerospace industry R78-19784
Application of a new test method and a new	Remarks on future computational aerodynamics
wind-tunnel-data processing technique to the	requirements government/industry relations N78-19785
study of unsteady heat conduction processes A78-27455	Puture requirements and roles of computers in
ABRODYNAMIC LOADS	aerodynamics
Calculation of the horizontal tail loads from	N78-19786
elevator actuation [DLR-IB-536-76/4] N78-18011	Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia
Aerodynamic computer code for computing pressure	company
loading on complete missile for structural analysis NASTRAN	N78-19787
[AD-A048840] N78-19065	Computational aerodynamics requirements in confunction with experimental facilities
Doublet lattice aerodynamic predictions for an	wind tunnel test data
oscillating P-5 wing with stores	N78-19788
	N78-19788 Viscous flow simulations in VTOL aerodynamics
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791
oscillating P-5 wing with stores [AD-A048968] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Printe element concepts in computational aerodynamics N78-19801 Specialized computer architectures for
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11]	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Prinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY	Viscous flow simulations in VTOL aerodynamics finite difference technique Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] N78-18005	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROFLASTICITY Continuation and direct solution of the flutter equation P78-25703
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] N78-18005	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROFLASTICITY Continuation and direct solution of the flutter equation P78-25703
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Plight-determined stability and control	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AEROMAUTICAL EMGINEERING
oscillating P-5 wing with stores [AD-A0489681 N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043	N78-19788 Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78859] Plight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78059] N78-18043 AEROMAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [MASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft designers css blv. des Etudes Avancees.	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19801 AERORLASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AEROWAUTICAL ENGINEBERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78859] Plight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78059] N78-18043 AEROMAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] N78-18005 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] N78-18075 Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19801 AERORLASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AERORAUTICAL ENGINEBERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees.
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [MASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [MSA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TH-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees. Projected role of advanced computational
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the IBQM-1 remotely piloted vehicle [AD-A048901] AERODYNAMIC STALLING	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19801 AERORLASTICITY Continuation and direct solution of the flutter equation P78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AERORAUTICAL ENGINEBERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees.
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [NSA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle [AD-A048901] AERODYNAMIC STALLING Calculation of the lift of partially-stalled wings	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation AFROPELASTICITY Continuation and direct solution of the flutter equation N78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TH-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787
oscillating P-5 wing with stores [AD-A0489681] N78-19070 AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Plight-determined stability and control coefficients of the F-111A airplane [NFSA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle [AD-A048901] N78-19122 ABRODYNAMIC STALLING Calculation of the lift of partially-stalled wings [NAL-TR-4981] N78-19054	Viscous flow simulations in VTOL aerodynamics finite difference technique Viscous flow simulation requirements of aerodynamic interest N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19801 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [NSA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle [AD-A048901] N78-19122 AERODYNAMIC STALLING Calculation of the lift of partially-stalled wings [NAL-TR-498T] AERODYNAMICS Effect of high levels of confinement upon the	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation AFROPELASTICITY Continuation and direct solution of the flutter equation N78-25703 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TH-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Plight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18075 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle [AD-A048901] ABRODYNAMICS Effect of high levels of confinement upon the aerodynamics of swirl burners	Viscous flow simulations in VTOL aerodynamics finite difference technique Viscous flow simulation requirements of aerodynamic interest N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19801 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TH-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787 AERONAUTICS Projected needs of US Army Aviation N78-19127 Aviation weather service requirements, 1980 - 1990
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC BOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18075 Design and evaluation of a side force generator modification for the IBQM-1 remotely piloted vehicle [AD-A048901] AERODYNAMIC STALLING Calculation of the lift of partially-stalled wings [NAL-TR-498T] AERODYNAMICS Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107	Viscous flow simulations in VTOL aerodynamics finite difference technique N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 AEROMAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements A78-26036 Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787 AEROMAUTICS Projected needs of US Army Aviation N78-19127 Aviation weather service requirements, 1980 - 1990 N78-19713
oscillating P-5 wing with stores [AD-A0489681] AERODYNAMIC MOISE Noise of deflectors used for flow attachment with STOL-OTW configurations A78-24877 An empirical model for inverted-velocity-profile jet noise prediction A78-24879 Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-26498 Acoustic interference effects and the role of Helmholtz number in aerodynamic noise [DLR-IB-257-77/11] N78-18878 AERODYNAMIC STABILITY Circulation control airfoil study wind tunnel stability tests [AD-A048677] Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Plight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18075 Design and evaluation of a side force generator modification for the XBQM-1 remotely piloted vehicle [AD-A048901] ABRODYNAMICS Effect of high levels of confinement upon the aerodynamics of swirl burners	Viscous flow simulations in VTOL aerodynamics finite difference technique Viscous flow simulation requirements of aerodynamic interest N78-19791 Viscous flow simulation requirements of aerodynamic interest N78-19793 Prospects for computational aerodynamics integro-differential formulation N78-19795 Pinite element concepts in computational aerodynamics N78-19801 Specialized computer architectures for computational aerodynamics N78-19814 AEROELASTICITY Continuation and direct solution of the flutter equation Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TH-78459] N78-18043 AERONAUTICAL ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for airframe elements Separation problems encountered by aircraft designers css Div. des Etudes Avancees. N78-18377 Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company N78-19787 AERONAUTICS Projected needs of US Army Aviation N78-19127 Aviation weather service requirements, 1980 - 1990

SUBJECT INDEX

An overview of aviation weather services		AIR TRAPPIC	
Airplane design for gusts	N78-19715	Uplink coverage measurements in the Los Ar area for passive BCAS collision avo	ıdance
A synopsis of the weather problems facing general aviation pilots	₦78-19717 tođay's	[AD-A098288] AIR TRAPPIC CONTROL VHP/UHP direction-finding in air traffic o	N78-18027 control
FASA's aviation safety research and techno	N78-19718 ology	Strategic positioning and traffic regulation	A78-25046
program	N78-19719	the terminal zone	¥78-25150
AEROSPACE INDUSTRY Computational aerodynamics requirements- future role of the computer and the need		An adaptive interference cancellation systemation of co-located interference series for ATC sites	signals
aerospace industry	₹78-1978¢	The year for shaping a digital operations	A78-27041 RED
Remarks on future computational aerodynami requirements government/industry rel		program for PTC	A78-28218
ABROTHERHODYBANICS	N 70- 19765	Characterization of current tower cab envi [AD-A048306]	N78-18026
The fluid dynamics of rarefied molecular f convex bodies - A new theory and applica		Concepts for estimating capacity of basic configurations	runway N78-18036
AH-64 HELICOPTER	A 70-27500	[PB-274578/4] Benefits of MLS guidance for curved approx	
Black Hawk, Lamps and AAH	A78-26533	Volume 2: Operational benefits for New Airports	
AIR CARGO Technical and economic evaluation of advan	ced air	[PB-274585/9] Concepts for determination of longitudinal	พ78-18037 L
cargo system concepts	A78-24900	separation standards on final approach [PB-274590/9]	N78-18038
Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra		A hardware implementation of the ATCPBS re processor used in DABS	eply
Naval Emergency Air Cargo Delivery System	A78-25261	TAD-A047622/6] AIR TRANSPORTATION	N78-19090
feasibility tests and evaluation	(NEACDS)	The future determines the past - Bermuda 1	
[AD-A048988] AIR COOLING Effects of film injection on performance of	N78~19085	light of Bermuda II air transportati agreement	ion 178-26470
cooled turbine		Bermuda II and after	
AIR PLOW	A78-24902	The impact of Bermuda II on future bilater	A78-26471
Effect of high levels of confinement upon aerodynamics of swirl burners		agreements	178-26472
Experimental investigation of the temperat	178-26107 ure	The Concorde v. the United States - Some of	conclusions A78-26474
field in a plane channel carrying a stra turbulent air stream	tified	Formulation of Iowa State airport system	A78-27548
AIR JETS Decay and modification of trailing wortex	A78~27139	Federal policy options to effect fuel cons in the air industry	m78-18548
AIR LAUNCHING	178-27908	Measuring the impact on scheduled air line operations of restrictions in fuel avail	es
Shuttle carrier aircraft flight tests	A78-28464	Implementation plan for an air transportat	N78-18549
AIR NAVIGATION		research information service	
Principles and simulation of JTIDS relativ navigation Joint Tactical Informatio Distribution System		[AD-A049301] Benefit-cost evaluation of an intra-region service in the Bay area	N78-19081 nal air
Radar beacon tracking with downlinked head	A78-26156 ling and	[NASA-CR-152084] An overview of aviation weather services	ห78-19082
airspeed	A78~26780	AIRBORNE BOUIPHENT	N78-19715
AIR POLLUTION		MSP/ITWL airborne measuring system	
Aircraft vortex effects on ground level po concentration	llutant	The use of pyranometers in aircraft	A78-28196
[APCA PAPER 77-41,5]	A78-25384	[ESA-TT-433]	₽78-18408
Remote sensing of aircraft wake vortex mov the airport environment aircraft exh		Derivation of groundspeed information from airborne Distance Measuring Equipment DM	
products tracking [APCA PAPER 77-41,4]	A78-25385	interrogators wind shear [AD-A049277]	N78-19089
AIR QUALITY	R/O 25505	AIRBORNE/SPACEBORNE COMPUTERS	1.0 13003
Simulation of airport air quality by box photochemical and Gaussian models		B-1 terrain following development	A78-28456
Aircraft wortex effects on ground level po	A78~25033	AIRCRAPT Capabilities of the Navy variable stabilit	W T-221
concentration		for V/STOL flying qualities R and D	-
[APCA PAPER 77-41,5] Air quality impact of aircraft at ten U.S.	A78-25384 Air	AIRCRAFT ACCIDENT INVESTIGATION	N78-19105
Porce bases		The analysis of National Transportation Sa	fety
[APCA PAPER 77-41,6] Modification of an ambient air quality mod		Board large fixed-wing aircraft accident/incident reports for the potent	:1al
assessment of U.S. naval aviation emitta	nts A78~28273	presence of low-level wind shear [AD-A048354]	א78-1802 ¹
Aircraft emission factors		An analysis of three weather-related aircr	
[PB-275067/7] AIR TO AIR REPUBLING	N78~18595	accidents [NASA-CR-155363]	N78-18024
Guided drogue flight test report		Aircraft accident report: Knob Hill, Inc.	•
[AD-A049164]	N78~19067	Cessna-421, N999MB, Mogales, Arizona, 23	
		[NTISUB/C/104-011]	N78-19086

AIRCRAFT ACCIDENTS SUBJECT INDEX

Aircraft accident report: Texas International Airlines, Inc., Douglas DC-9-14, N9104,	Application of composites on civil aircraft A78-2519
Stapleton International Airport, Denver, Colorado, 16 November 1976	Material development for laminar flow control wing panels
[NTISUB/C/104-010] N78-19087	A78-25200
AIRCRAFT ACCIDENTS	In-service performance of polyurethane and
The analysis of Wational Transportation Safety Board large fixed-wing aircraft	fluorocarbon rain erosion resistant radome coatings
accident/incident reports for the potential presence of low-level wind shear	A78-25209 C-191A service experience - Materials and processes
[AD-A048354] N78-18021 An analysis of three weather-related aircraft	A78-2520 Selecting plastics for aircraft applications
accidents [NASA-CR-155363] N78-18024	A78-2837
WASH's aviation safety research and technology program	One axis artificial feel system pilot proprioceptive cue forces on aircraft joy stick
N78-19719	A78-26488
ATRCRAFT ANTENNAS Null steering antennas in the tactical scenario	Discrete maneuver pilot models for flying qualities evaluation
A78-27037	
Aircraft response effect on E-field measurements [AD-A047986] w78-18272	Display augmentation in manual control of remotely piloted vehicles
The geometrical theory of diffraction - a method for the solution of electromagnetic boundary	A78-28148 Integrated controls for a new aircraft generation
<pre>value problems of complicated structures in the high frequency case satellite and aircraft</pre>	A78-28219 Analytical study of ride smoothing benefits of
antennas	control system configurations optimized for pilot handling qualities
The integral equation method - a computational	[NASA-TP-1148] N78-1807
method for diffracted and scattered fields of complicated structures satellite and	Pault-tolerant software for aircraft control systems [NASA-CR-145298] N78-1879
aircraft antennas N78-18291	Pilot centered requirements in control/display design
AIRCRAFT BRAKES	า78-1911
Description of transient motion of aviation mechanisms with double-winding electromagnetic	Approximate dynamic model of a turbojet engine [NASA-TM-75263] N78-1915
clutches	AIRCRAFT DESIGN
A78-25584 Evaluation of aircraft brake materials	Method for solving problems of flow past a wing with fuselage bounded by an ideal fluid flow
[ASLE PREPRINT 77-LC-6B-2] A78-28439	A78-2558
AIRCRAPT CARRIERS	Experimental research on high lift airfoil section
ALIDADE - The alignment on board aircraft carriers of the inertial navigation units of	RL235
Super-Etendard aircraft	Optimum design of a landing gear shock absorber
A78-25149 Metallurgical behavior of arresting gear deck	system A78-26480
pendants A78-25185	Some aspects of the thermal design of flight vehicles and processing of heat-test data
A comparison of V/STOL handling requirements with the VAK-191B	Puture CTOL aircraft characteristics
N78-19100 Evaluation of the CVN 68/CVN 69 launching system	A78-27542 Integrated controls for a new aircraft generation
[AD-A049044] N78-19167	78-28219
AIRCRAFT COMMUNICATION Active reference null steering for spread spectrum	P-18A configurational development from YP-17 prototype
signals A78-27038	YC-14B prototype testing A78-2845
The year for shaping a digital operations R&D program for ATC	78-28459
A78-28218	A78-28460
Objective measurement of voice channel intelligibility	Analytical study of a free-wing/free-trimmer concept for gust alleviation and high lift
[AD-A048611] N78-18264	[NASA-CR-2946] N78-18000
AIRCRAPT COMPARTHENTS Studies of the flash fire potential of aircraft	Separation problems encountered by aircraft designers css Div. des Etudes Avancees.
cabin interior materials [AD-A048475] N78-18158	N78-1837 MIL-F-83300; view from an aircraft designer
PIRCRAPT CONFIGURATIONS	1910-1910 ב
Noise of deflectors used for flow attachment with STOL-OTW configurations	AIRCRAPT ENGINES The promise of eutectics for aircraft turbines
A78-24877 P-18A configurational development from YP-17	A78-24882 Progress in advanced high temperature turbine
prototype A78-28454	materials, coatings, and technology A78-24910
The analysis of Mational Transportation Safety Board large fixed-wing aircraft	RB 211 - Progress and prospects A78-2514
accident/incident reports for the potential presence of low-level wind shear	Economic and safety aspects of prolonging engine life
[AD-A048354] N78-18021	A78-25142
AIRCRAPT CONSTRUCTION MATERIALS Evaluation of protective coatings applied under	Test of an aviation oil, increased-density MS-20 A78-25475
adverse conditions	YC-15 development and test highlights - Phase III A78-28457
Today's non-metallic composite airframe structure	P-15/nonaxisymmetric nozzle system integration
- Àn airline assessment A78-25196	study support program [NASA-CR-135252] N78-18070
Service experience of composite parts on the L-1011 and C-130	Aircraft emission factors [PB-275067/7] N78-18595
a78-25197	- · · · · · · · · · · · · · · · · · · ·

SUBJECT INDEX AIRCRAFT SAPETY

A portable device particularly suited for starting air-start units for aircraft [NASA-CASE-PRC-10113-1]	use in N78-19166	AIRCRAPT HAIRTEBARCE Research requirements to reduce maintenanc of civil helicopters	e costs
AIRCBAPT BQUIPMENT Wildhaber-Novikov profiles for aircraft ge		(NASA-CR-145288) AIRCRAPT HAWEUVERS	N78-17990
<pre>photoelastic study of the efficiency of strength-utilisation</pre>		Air quality impact of aircraft at ten U.S. Porce bases	Air
Alreraft measurements of the spatial fluct characteristics of atmospheric radio emi:		[APCA PAPER 77-41,6] Discrete maneuver pilot models for flying qualities evaluation	A78-25391
wavelengths of 0.8 and 1.35 cm	A78-27721	AIRCRAPT HODELS	A78-26791
MSP/ITWL airborne measuring system	A78-28196	Plight tests of a radio-controlled airplan with a free-wing, free-canard configurat	
<pre>Exploratory development of conductive coat: materials for use on aircraft radome:</pre>		[NASA-TH-72853] AIRCRAFT MOISE Study of the propagation of higher modes 1:	
AIRCRAFT FUEL SISTERS Corrosion of fuel assembly components of to	arbine	cylindrical ducts with impedance walls - aircraft noise reduction	for
engines and its prevention	A78-28197	The wave system attached to a finite slend	A78-25773
AIRCBAPT FOBLS		in a supersonic relaxing gas stream	_
Static electricity in aviation and methods preventing its effects. II		GE core engine noise investigation, low em	A78-27146 ission
The wear of aluminum-bronze on steel in the	A78-27568	engines [AD-A048590]	N78-18069
presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1]	A78-28436	Investigation of ground reflection and imp from flyover noise measurements	
Jet aircraft hydrocarbon fuels technology [NASA-CP-2033]	N78-19325	T NA SA-CR-145302]	N78-18874
AIRCRAFT GUIDANCE		NOISEMAP computer program operator manual. Addendum for version 3.4 of NOISEMAP	
Kalman filter divergence and aircraft moti- estimators		[AD-A049070] AIRCRAPT PARTS	N78-19849
AIRCBAPT HAZARDS	A78-26785	Service experience of composite parts on the L-1011 and C-130	he
Aptimisting fuel kinematics related to airc	raft	S-3A composite spoiler in-service evaluati	A78-25197
•	A78-28147		A78-25209
AIRCRAPT INSTRUMENTS Generalized algorithm of the analytical med	thod of	AIRCRAPT PERFORMANCE 1977 report to the aerospace profession;	
gyrocompassing	A78-25013	Proceedings of the Twenty-first Symposium Beverly Hills, Calif., October 12-15, 19	
Analysis of single and double coverage aircontinuous process of single and double coverage aircontinuous for position		P-16 flight test progress report	178-28451
AIRCBAPT LANDING	N78-19553	YAV-8B/AV-8B advanced Harrier program	A78-28452
Precision DME for new landing system - Past slow pulse		B-1 terrain following development	A78-28455
Effect of winglets on a first-generation jo	178-26549 et	YC-14 flight test program	A78-28456
transport wing. 4: Stability character: for a full-span model at Mach 0.30		YC-14B prototype testing	A78-28458
[NASA-TP-1119] Concepts for estimating capacity of basic i	478-17997 Tunway	Optimal level controls of high performance	178-28459 aircraft
configurations [PB-274578/4]	N78-18036	[DLR-IB-552-77/20] The role of time-history effects in the	N78-18059
Benefits of MLS guidance for curved approace Volume 2. Operational benefits for New 1		formulation of the aerodynamics of aircradynamics	
Alrports [PB-274585/9]	N78-18037	[NASA-TM-78471] Shipboard testing of the AV-8A Harrier	N78-19056
Concepts for determination of longitudinal separation standards on final approach		A non-Gaussian gust model for aircraft res	N78-19108
[PB-274590/9] The application of techniques for predicting	N78-18038	analysis [WOR-76-223]	N78-19165
aircraft response to wind shear and turb		AIRCRAFT PILOTS	
during the landing approach [UTIAS-215]	N78-18077	A synopsis of the weather problems facing of general aviation pilots	
Plight test of stick force stability in attitude-stabilized aircraft [NLR-NP-77015-U]	₩78-18080	AIRCRAFT PRODUCTION The Aerospatiale helicopter factory at Mar:	N78-19718
Pull color hybrid display for aircraft simu		AIRCRAFT RELIABILITY	A78-28194
(NASA-CASE-ARC-10903-1] A piloted simulation of V/STOL landings about	N78-18083 Pard a	Airworthiness evaluation NUH-1H helicopter global positioning system	with
non-aviation ship A summary of ship deck motion dynamics as a	N78-19106	[AD-A047971] Generalized procedures for tracking crack of in fighter algorithms.	N78-18053 growth
to VSTOL aircraft	N78-19116	[AD-AÖ48847] Civil and military design requirements and	N78-19121 their
Seakeeping considerations in the employment V/STOL on Naval ships		influence on the product	N78-19151
Requirements for VLA systems	N78-19117	AIRCRAFT SAFETY Static electricity in aviation and methods	for
IRCRAFT LAUNCHING DEVICES	N78-19118	preventing its effects. II	A78-27568
The STO deck launch problem	N78-19107	P-15/16 canopy off testing	A78-28453
Evaluation of the CVN 68/CVN 69 launching s			

AIRCRAPT SPECIFICATIONS -		Water-tunnel experiments on an oscillating	airfoil
The Mi-6A helicopter Russian book	A78-26000	at RE equals 21,000 [NASA-TM-78446]	N78-19058
AIRCRAPT STABILITY	A70 20000	Static stability of vehicles which use the	
YC-15 development and test highlights - Phas	se III A78-28457	force of airfoils	N78-19074
UTTAS testing		[AD-A049069] AIRFRAND NATERIALS	N 70- 13074
Certifying the Learjet to 51,000 feet	A78-28461	Recent progress and technical and economic outlooks in the processing of materials	for
Effect of winglets on a first-generation jet	A78-28462 t.	airframe elements	A78-26036
transport wing4: Stability characters for a full-span model at Mach 0.30	stics	The development of materials for turbojets	A78-26041
[NASA-TP-1119] AIRCRAPT STRUCTURES	N78-17997	A general study of hybrid composite laminat airframe materials	es
The need for improved materials in integral		[AD-A048364]	N78-19208
aircraft fuel tanks	A78-25177	AIRPRAMES Today's non-metallic composite airframe st	acture
Analytical representation of the initial qua		- An airline assessment	A78-25196
of fastener holes for aircraft structu	A78-25180	Plight qualification of titanium F-14A air:	
Evaluation of protective coatings applied us		components manufactured by Hot Isostatic	
adverse conditions	A78-25194	Pressing (HIP) [AD-A048485]	N78-18055
Durability of adhesive bonded honeycomb sand	dwich	Study of hypersonic propulsion/airframe	
in accelerated adverse environments	A78-25202	integration technology [NASA-CR-145321]	N78-19096
Assessment of processing methods for titanion		Generalized procedures for tracking crack	
alloys for aircraft structures	20 26000	in fighter aircraft	n30-40434
The development of materials for turbojets	A78-26040	(AD-A0488477 AIRLINE OPERATIONS	N78-19121
	78-26041	Air Prance's new 'freight' installations at	
Patigue resistance of aircraft propeller bla	ades A78-27259	Charles de Gaulle Airport at Roissy, Fran	1Ce 1A78-25261
Structural castings for aircraft - A progres	ss	The future determines the past - Bermuda I	
report from Boeing	A78-28370	light of Bermuda II air transportation agreement	n
Tri-Gull amphibian development -	A78-28460	Bermuda II and after	¥78-26470
Calculation methods for fatigue life and cra			A78-26471
propagation	N78-18049	The impact of Bermuda II on future bilatera agreements	1
Tests on details and components	778-18050	The Concorde v. the United States - Some co	A78-26472
Current standards of fatigue test on strike	aircraft		A78-26474
[AGARD-AR-92] Fatigue load monitoring	178-18051	Puture CTOL aircraft characteristics	A78-27542
	78-18052	A simulation model for an	
Development of thermoplastic composite aircr structural elements	rart	<pre>enplaning-passenger-vehicle curbside at high-volume airports</pre>	
[AD-A048468] K	778-19097	· · · · · ·	N78-18020
AIRCRAFT WAKES Aircraft wortex effects on ground level poll	Intant	British Airways helicopter operations	พ78-19133
concentration	Lucume	AIRPORT PLANNING	13133
	178-25384	Airport choice in low demand region	170 27507
Remote sensing of aircraft wake vortex movement the airport environment aircraft exhau		Formulation of Iowa State airport system	178-27547
products tracking [APCA PAPER 77-41,4]	78-25385	AIRPORT TOWERS	A78-27548
AIRFOIL PROFILES Experimental research on high lift airfoil s	roction	Characterization of current tower cab envir [AD-A048306]	onments N78-18026
HL235		AIRPORTS	N/0-10020
A Experimental verification of an annular aero	178-25945 ofoil	Simulation of airport air quality by box photochemical and Gaussian models	
theory		-	A78-25033
Collection of supercritical aerofoils obtain	178-27938	Remote sensing of aircraft wake vortex move the airport environment aircraft exha	
with the NLR hodograph method		products tracking	usc
[178-18009	FAPCA PAPER 77-41,47	A78-25385
AIRFOILS A quasisteady theory for incompressible flow	r ·nast	A simulation model for an enplaning-passenger-vehicle curbside at	
airfoils with oscillating jet flaps	-	high-volume airports	
A Experimental verification of an annular aero	178-26229	Benefits of MLS guidance for curved approac	N78-18020
theory		Volume 2: Operational benefits for New Y	
Circulation control airfoil study wind t	178-27938 :unnel	Airports [PB-274585/9]	N78-18037
stability tests		Concorde noise-induced building vibrations	
	178-18005	Kennedy International Airport	N70_10077
Cambered jet-flapped airfoil theory with tab and computer programs for application -		[NASA-TM-78660] Benefit-cost evaluation of an intra-regiona	N78-18873 l air
	178-18006	service in the Bay area	
Prediction of unsteady separated flows on oscillating airfoils		AIRSHIPS	N78-19082
Two-dimensional oscillating airfoil test app	178-18387 paratus	Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta	
Å.	78-19042	temperature, flight data, operational pro	blems
Transonic flow past an airfoil with condensa [NASA-TM-75201] N	178-19053	[DLR-IB-536-77/1]	N78-18012

ATROSPHEBIC CHEMISTRY SUBJECT INDEX

to experimental and application importion tion	n of	1 MM DWW1 1 DD1 WC	
An experimental and analytical investigation the hovering and forward flight characteri		Optimal aperture-shape for an antenna array	7
of the aerocrane hybrid heavy lift vehicle	e	for radio navigation of flight vehicles	
[AD-A049084] AIRSPEED	N78-19075	ANTENNA DESIGN	A78-27406
A flight evaluation of a trailing anemometer	r for	Wull steering antennas in the tactical sce	nario
low-speed calibrations of airspeed systems	s on	ANTENNA RADIATION PATTERNS	A78-27037
research aircraft [NASA-TP-1135]	978-1804 4	Determination of antenna radiation pattern:	s, rađar
ALGORITHMS		cross sections and jam-to-signal ratios	
Sensitivity of aircraft runup/community nois predictions to excess ground attenuation	se	flight tests (NLR-MP-76023-U)	N78-18289
[AD-A049067]	N78-19164	APERTURES	
ALIGNMENT ALIDADE - The alignment on board aircraft ca	3771070	Optimal aperture-shape for an antenna array for radio navigation of flight vehicles	7
of the inertial navigation units of	1111013	tor radio advigation of fright ventores	A78-27406
Super-Etendard aircraft	178-25149	APPROACH	- CMOT
ALL-WEATHER AIR NAVIGATION	170-23149	The application of techniques for predicting aircraft response to wind shear and turb	
The philosophy adopted for the flight testing		during the landing approach	
the Panavia Tornado avionics system in Hac	CK	[UTIAS-215] APPROACH AND LANDING TESTS	N78-18077
×	778-18060	1977 report to the aerospace profession;	
ALPHANUMERIC CHARACTERS Development of a programmable panel		Proceedings of the Twenty-first Symposium Beverly Hills, Calif., October 12-15, 19	
	778-19098	beverly mility culting occopies to 13, 15	A78-28451
ALUMINUM ALLOYS		YC-14 flight test program	178-28458
C-141A service experience - Materials and pr	178-25207	Shuttle carrier aircraft flight tests	P10-20430
Structural castings for aircraft - A progres	ss		A78-28464
report from Boeing	78-28370	Wind models for flight simulator certificate landing and approach guidance and control	
ABBIENT TEMPERATURE			พ78-19723
High temperature environmental effects on me [NASA-TM-73878]	etals 178-19158	APPROACH CONTROL Benefits of MLS guidance for curved approach	thac
AMPHIBIOUS AIRCRAPT	170-19130	Volume 2: Operational benefits for New 1	
Tri-Gull amphibian development	70 00140	Airports	
ANALOG CIRCUITS	A78-28460	[PB-274585/9] Concepts for determination of longitudinal	₽78-18037
Analog versus digital null-steering controll		separation standards on final approach	
ANECHOIC CHAMBERS	178-27039	[PB-274590/9] VTOL/Helicopter approach and landing guidan	N78-18038
Effectiveness of an inlet flow turbulence co	ontrol	sensors for Navy ship applications	ice
device to simulate flight fan noise in an			₹78-19119
anechoic chamber	78-24880	ARCHITECTURE (COMPUTERS) Preliminary study for a numerical aerodynamical	iic
ANEHOMETERS		simulation facility. Phase 1: Extension	1
A flight evaluation of a trailing anemometer low-speed calibrations of airspeed systems		[NASA-CR-152108] Specialized computer architectures for	N78-19052
research aircraft	, on	computational aerodynamics	
[NASA-TP-1135] NAMELE OF ATTACK	178-18044	ARBA NAVIGATION	N78-19814
The movement of a wing with deflected ailerc	ons	High-altitude area navigation (RNAV) enrout	:e
close to a screen [AD-A048651]	79_1000b	simulation	N78-19088
A method for calculation of the pressure	178-18004	[AD-A049315] ARRED PORCES (PORKIGN)	N70-19000
distribution of wing-body configurations f	for	German Army helicopter development and pros	spects
large angle of attack at subsonic speed based on potential theory		for the future	N78-19128
[BMVG-FBWT-77-15]	178-18013	Canadian Navy experience with small ship	
Laser velocimeter survey about a NACA 0012 w low angles of attack	ring at	helicopter operations	N78-19129
	778-18084	ARRED PORCES (UNITED STATES)	870-17-23
An experimental investigation of steady asym	metric	Projected needs of US Army Aviation	ท78-19127
vortex shedding from a slender body of revolution at high angles of attack		The US Army UTTAS and AAH programs	N/0-1912/
[AD-A048370]	78-19062	• • •	י1913 –78 אַ
ANGULAR RESOLUTION Dual-control guidance strategy for homing		Analysis of single and double coverage airc	raft
interceptors taking angle-only measurement		multispectral scanner arrays for position	nal data
ANGULAR VELOCITY	178-26784	ARRESTING GEAR	ท78-19553
Generalized algorithm of the analytical meth	od of	Metallurgical behavior of arresting gear de	eck
gyrocompassing	70-25042	pendants	A78-25185
ANNULAR NOZZLES	178-25013	ARROW WINGS	A 70- 25 185
An empirical model for inverted-velocity-pro	file	Theoretical evaluation of high speed aerody	namics
jet noise prediction	78-24879	for arrow wing configurations [NASA-TM-78659]	ท78-17992
Calculating the interaction of a turbulent n		ASCENT TRAJECTORIES	
wake behind a step and a supersonic jet	78-28057	Strategic positioning and traffic regulation the terminal zone	n in
ABRULAR PLATES			A78-25150
Experimental verification of an annular aero theory	ofoil	ATMOSPHERIC CHEMISTRY Simulation of airport air quality by hox	
- A	78-27938	photochemical and Gaussian models	
LWURTT		prococnemical and databatan models	
Annuli		photochemical and datastan models	A78-25033
An annular wing	178-19055	photochemical and datastan models	A78-25033

ATHOSPHERIC CIRCULATION SUBJECT INDEX

ATHOSPHBRIC CIRCULATION		BACKSCATTERING	
Overview of NASA/Marshall Space Plight Cer program on knowledge of atmospheric proc	esses	Automatic system employing radioactive rad to level-out an aircraft at landing	
ATHOSPHERIC DIFFUSION	N78-19714	BALLISTIC TRAJECTORIES	A78-25011
Aircraft vortex effects on ground level po	llutant	Magnus effects on ballistic trajectories	
concentration [APCA PAPER 77-41,5]	A78-25384	[AD-A048966] BARS	19071–1978
ATHOSPHERIC EPPECTS	11.0 25504	Evaluation of torsional rigidity of circul	ar arc
Evaluation of protective coatings applied adverse conditions		aerofoil section twisted bars	A78-26484
ATHOSPHERIC HODELS	A78-25194	BASE FLOW Calculating the interaction of a turbulent	2025
Simulation of airport air quality by box photochemical and Gaussian models		wake behind a step and a supersonic jet	A78-28057
•	A78-25033	BENDING	
A non-Gaussian gust model for aircraft res analysis	ponse	Wildhaber-Novikov profiles for aircraft ge photoelastic study of the efficiency of	ars - A
[NOR-76-223]	N78-19165	strength-utilisation	
Wind models for flight simulator certifica			A78-26482
landing and approach guidance and control ATMOSPHERIC RADIATION	N78-19723	BENDING VIBRATION Fatigue resistance of aircraft propeller b	lades A78-27259
Aircraft measurements of the spatial fluct	uation	BIRONIALS	R70-27233
characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm		Multistatic-radar binomial detection	78-26158
ATHOSPHERIC TURBULENCE	A78-27721	BLADE TIPS	****
The application of techniques for predicti	ng STOL	ONERA aerodynamic research work on helicop	N78-19148
aircraft response to wind shear and turk	ulence	BLEEDING	
during the landing approach [UTIAS-215]	₹78-18077	Fabrication and test of a fluidic fuel-con- bleed-air-load-control system for gas tu	
Overview of NASA/Marshall Space Flight Cen	ter's	engines	
program on knowledge of atmospheric proc	esses N78-19714	[AD-A049039] BLOCKING	N78-19163
Airplane design for gusts	R70 13714	Effect of blockage ratio on the turbulent	near
AMMANAN TENTALANA	N78-19717	wake of a bluff body	*70 26*00
ATTITUDE INDICATORS Utilization of Precilec information /aircr	aft	BLUFF BODIES	A78-26489
attitude and position/ for geometric ima	ge	Effect of blockage ratio on the turbulent	near
corrections	178-28399	wake of a bluff body	A78-26489
ATTITUDE STABILITY		BLUNT BODIES	
<pre>Plight test of stick force stability in attitude-stabilized aircraft</pre>		Maslen analysis of power-law shocks in inv	iscid
f NLR-MP-77015-0]	N78-18080	hypersonic stream	A78-26481
AUTOMATIC LANDING CONTROL	• - • •	A procedure for the determination of the e	
Automatic system employing radioactive rad to level-out an aircraft at landing	lation	fuselage nose bluntness on the wave drag supersonic cruise aircraft	or
	A78-25011	[NASA-CR-145306]	N78-17994
AUTOMATIC TEST EQUIPMENT Automated vibrating bench for studying fat	ique in	Boundary layer over spinning blunt-body of revolution at incidence including magnus	forces
gas turbine blades with programmed chang		[AD-A049199]	N78-19072
load and temperature	A78-27267	BODIES OF REVOLUTION Potential flow around axisymmetric bodies	- Direct
AVIONICS	A 70 2 7207	and inverse problems	Direct
Coming cockpit avionics	A78-28220	Dana flow homesition and laminos generali	A78-26230
The philosophy adopted for the flight test		Drag, flow transition, and laminar separate nine bodies of revolution having different	
the Panavia Tornado avionics system in H		forebody shapes	
aircraft	N78-18060	[AD-A048274] An experimental investigation of steady as:	R78-18001
Digital Avionics Information System (DAIS)		vortex shedding from a slender body of	
Mid-1980's maintenance analysis [AD-A047886]	N78-18063	revolution at high angles of attack [AD-A048370]	N78-19062
Palefac		Boundary layer over spinning blunt-body of	
[AD-A048331] Modular packaging approaches	N78-18065	revolution at incidence including magnus	forces N78-19072
[AD-A048205]	N78-18321	[AD-A049199] BODY-WING CONFIGURATIONS	N70-19072
AXIAL PLOW		Method for solving problems of flow past a	
Investigation of the unsteady pressure distribution on the blades of an axial f [NASA-CR-155771]		with fuselage bounded by an ideal fluid	A78-25585
AXISYMETRIC BODIES	N78-18068	A method for calculation of the pressure distribution of wing-body configurations	for
Potential flow around axisymmetric bodies and inverse problems	- Direct	large angle of attack at subsonic speed - based on potential theory	
Englan analygis of november shocks as in-	A78-26230	[BMVG-FBWT-77-15]	N78-18013
Maslen analysis of power-law shocks in inv hypersonic stream	19010	Flight tests of a radio-controlled airplane with a free-wing, free-canard configuration	
_	A78-26481	[NA SA-TM-72853]	N78-18042
В		BOBING 747 AIRCRAPT Shuttle carrier aircraft flight tests	
		•	A78-28464
B-1 AIRCRAPT B-1 terrain following development		BOMBS (ORDNANCE) A feasibility study of a manual bomb releas	se while
collen tolavilly detelopment	A78-28456	in a turn	~ #HTTE
		[AD-A048882]	N78-19123

SUBJECT INDEX CHARMEL CAPACITY

BOROF REISPORCED MATERIALS Application of composites on civil aircraft	t A78-25199	Standard electronic module radar cost analy [AD-A048207] C-135 AIRCHAFT	ysis N78-18319
BOUNDARY LAYER CONTROL Artificial control of the laminar-turbulentransition of a two-dimensional wake by	t	Standard electronic module radar cost analy [PD-A048207] C-141 ATRCRAPT	7515 178-18319
sound	CACCINGI	C-141A service experience - Materials and p	processes
BOUNDARY LAYER EQUATIONS	A78-27143		A78-25207
Unsteady boundary layer with self-induced	pressure		A78-28459
	A78-28102	Standard electronic module radar cost analy	
BOUNDARY LAYER PLOW Boundary layer over spinning blunt-body of		<pre>「AD-A048207] CABLES (BOPES) Metallurgical behavior of arresting gear de</pre>	N78-18319
revolution at incidence including magnus	N78-19072	pendants	-CK
BOUNDARY LAYER SEPARATION A theoretical investigation of the aerodyna	amics of	CALIBRATIEG	178-25185
low-aspect-ratio wings with partial lead:		A flight evaluation of a trailing anemomete low-speed calibrations of airspeed system	
separation [HASA-CR-1453041	N78-17993	research aircraft	15 OII
Separation problems encountered by aircraft			¥78-18044
designers css Div. des Etudes Avancees.		CALIPORNIA	
Tatroduction to machania accords of consent	N78-18377	Uplink coverage measurements in the Los And area for passive BCAS collision avoid	
Introduction to unsteady aspects of separate subsonic and transonic flow	cion in	[AD-A048288]	ท78-18027
SUPPORTO UNA CERTISONIC LION	N78-18381	CARBER	
Prediction of the severity of buffeting	- wind	Cambered jet-flapped airfoil theory with ta	ables
tunnel tests		and computer programs for application	N78-18006
Some unsteady separation problems for slend	N78-18382	[AD-A048528] CAMADA	N 70-18006
some unsteady separation problems for siem	N78-18383	Canadian Navy experience with small ship	
Inviscid fluid models, based on rolled-up	vortex	helicopter operations	
sheets, for three-dimensional separation	at high		N78-19129
Reynolds number	₩78-18384	CANARD COMPIGURATIONS Three-dimensional canard-wing shape optimize	zation
A lifting surface theory for wings experien		in aircraft cruise and maneuver environme	
leading-edge separation	,	[AIAA PAPER 78-99]	A78-26279
[AD-A048439]	N78-19061	Flight tests of a radio-controlled airplane	e mode
BOUNDARY LAYER STABILITY	Procento	with a free-wing, free-canard configurati	N78-18042
Unsteady boundary layer with self-induced	A78-28102	CANCELLATION CIRCUITS	10012
Some unsteady separation problems for slend		An adaptive interference cancellation syste elimination of co-located interference si	
Analysis and design of a cooled supercritic	1	for ATC sites	
			. 70 07004
airfoil test model wall temperature			178-27041
airfoil test model wall temperature on boundary layer stability		CAMOPIES	¥78-27041
airfoil test model wall temperature	effect	CAMOPIES P-15/16 canopy off testing	A78-27041
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separate	effect N78-19168 Lon on	CAMOPIES P-15/16 canopy off testing	A78-28453
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separatenine bodies of revolution having different forebody shapes	effect N78-19168 Lon on nt	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem	A78-28453 to the
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274]	effect N78-19168 Lon on nt N78-18001	CAMOPIES F-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to	A78-28453 to the of a
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in e bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition	effect N78-19168 Lon On nt N78-18001 from	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils	A78-28453 to the of a A78-25636
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274]	effect N78-19168 Lon On nt N78-18001 from	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem	A78-28453 to the of a A78-25636
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separate in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to	effect N78-19168 Lon On nt N78-18001 from	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades	A78-28453 to the of a A78-25636
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS	effect N78-19168 LON ON N78-18001 from the	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS	A78-28453 to the of a A78-25636 Lons in A78-27266
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a second control of the company of the company control of the company value of the company of the company value	effect N78-19168 Lon on nt N78-18001 from the N78-19048 method	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressions.	A78-28453 to the of a A78-25636 Lons in A78-27266
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in e bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic boundary captures.	effect N78-19168 Lon on nt N78-18001 from the N78-19048 method	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS	A78-28453 to the of a A78-25636 Lons in A78-27266
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a second control of the company of the company control of the company value of the company of the company value	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progression report from Boeing CATAPULTS	A78-28453 to the of a A78-25636 tons in A78-27266
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures	effect N78-19168 LON ON N78-18001 from the N78-19048 method dary in the rcraft	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progression report from Boeing	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the	CAMOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progression report from Boeing CATAPULTS The STO deck launch problem	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 N78-19107
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NAS-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic boundary value problems of complicated structures high frequency case satellite and an antennas	effect N78-19168 Lon on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progression report from Boeing CATAPULTS	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 N78-19107
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas	effect N78-19168 Lon on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290	CAMOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching statements (AD-A04904) CENTIMETER WAYES	A78-28453 to the of a A78-25636 Lons in A78-27266 ess A78-28370 H78-19107 system R78-19167
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TN-75196] BOUNDARY VALUE PROBLESS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1]	effect N78-19168 lon on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard of the CVN 68/CVN 69 launching standard of the CVN 68/CVN 69 launching standard of the SVN 69 launching standard of the SVN 68/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 6	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING	effect N78-19168 LON ON N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e N78-28436	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching solution (AD-A049044) CENTINETER WAYES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissions.	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TN-75196] BOUNDARY VALUE PROBLESS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1]	effect N78-19168 LON ON N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e N78-28436	CAMOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard of the CVN 68/CVN 69 launching standard of the CVN 68/CVN 69 launching standard of the SVN 69 launching standard of the SVN 68/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 69/CVN 6	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separate nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic boundary value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests	effect N78-19168 LON ON N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e N78-28436	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching so [AD-A049044] CENTINETER WAYES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissive wavelengths of 0.8 and 1.35 cm	A78-28453 to the of a A78-25636 Lons in A78-27266 ess A78-28370 N78-19107 system N78-19167 aation ssion at A78-27721
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e R78-28436 - wind N78-18382	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching solution of the CVN 68/CVN 69 launching solution are characteristics of atmospheric radio emissions wavelengths of 0.8 and 1.35 cm CEMTRIFUGAL COMPRESSORS Investigation of the jet wake discharge flow	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 N78-19107 system N78-19167 aation ssion at A78-27721 ow of a
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde noise-induced building vibrations	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e R78-28436 - wind N78-18382	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard (AD-A049044) CENTINETER WAYES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissive wavelengths of 0.8 and 1.35 cm CENTRIFUGAL COMPRESSORS Investigation of the jet wake discharge fluctures in the standard compressor i	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation ssion at A78-27721 ow of a peeller
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation in bodies of revolution having different forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e R78-28436 - wind N78-18382	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching solution of the CVN 68/CVN 69 launching solution are characteristics of atmospheric radio emissions wavelengths of 0.8 and 1.35 cm CEMTRIFUGAL COMPRESSORS Investigation of the jet wake discharge flow	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 N78-19107 system N78-19167 aation ssion at A78-27721 ow of a
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] BULKNEADS	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard measurements of the spatial flucture characteristics of atmospheric radio emissive wavelengths of 0.8 and 1.35 cm CENTINUGAL COMPRESSORS Investigation of the jet wake discharge fluctures in the complex of the spatial compressor in the complex of t	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 aution ssion at A78-27721 ow of a peller R78-18073
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde moise-induced building vibrations Kennedy International Airport [NASA-TM-78660] BUILDINGS Structural castings for aircraft - A progre	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching so [AD-A049044] CENTINETER WAVES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissivavelengths of 0.8 and 1.35 cm CENTRIFUGAL COMPRESSORS Investigation of the jet wake discharge flucture in the company of th	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 aution ssion at A78-27721 ow of a peller R78-18073
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separat: nine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bound value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] BULKNEADS	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft N78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard measurements of the spatial flucture characteristics of atmospheric radio emissive wavelengths of 0.8 and 1.35 cm CENTINUGAL COMPRESSORS Investigation of the jet wake discharge fluctures in the complex of the spatial compressor in the complex of t	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 aution ssion at A78-27721 ow of a peller R78-18073
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde moise-induced building vibrations Kennedy International Airport [NASA-TM-78660] BUILDINGS Structural castings for aircraft - A progre	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching so [AD-A049044] CENTINETER WAVES Aircraft measurements of the spatial fluctor characteristics of atmospheric radio emissivavelengths of 0.8 and 1.35 cm CENTRIFUGAL COMPRESSORS Investigation of the jet wake discharge flucture for the service of the	A78-28453 to the of a A78-25636 Lons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation ssion at A78-27721 ow of a peller R78-18073 January R78-19086
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde moise-induced building vibrations Kennedy International Airport [NASA-TM-78660] BUILDINGS Structural castings for aircraft - A progre	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching solution and the CVN 68/CVN 69 launching solution are characteristics of atmospheric radio emissions wavelengths of 0.8 and 1.35 cm CENTRIPUGAL COMPRESSORS Investigation of the jet wake discharge flow heavily loaded centrifugal compressor important to the complex compressor imports and complex compressor imports are considered to the complex compressor imports and compressor imports are considered to the complex complex compressor imports are considered to the complex complex complex complex compressor imports are considered to the complex	A78-28453 to the of a A78-25636 Lons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation ssion at A78-27721 ow of a peller R78-18073 January R78-19086
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TH-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic boundary layer to the solution of electromagnetic boundary value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASIE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] BUILDEDS Structural castings for aircraft - A progree report from Boeing	effect N78-19168 non on nt N78-18001 from the N78-19048 method dary in the rcraft W78-18290 e A78-28436 - wind N78-18382 John F. N78-18873	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching standard measurements of the spatial flucture characteristics of atmospheric radio emissivavelengths of 0.8 and 1.35 cm CENTIFUGAL COMPRESSORS Investigation of the jet wake discharge flucture flucture in progressive flucture fluc	A78-28453 to the of a A78-25636 Lons in A78-27266 ess A78-28370 H78-19107 system R78-19167 nation ssion at A78-27721 ow of a peller R78-18073 January R78-19086
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde moise-induced building vibrations Kennedy International Airport [NASA-TM-78660] BUILDINGS Structural castings for aircraft - A progre	### ##################################	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching so [AD-A049004] CENTINBTER WAVES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissions wavelengths of 0.8 and 1.35 cm CENTRIPUGAL COMPRESSORS Investigation of the jet wake discharge flucture for the spatial flucture of the spatial flucture for flucture for the spatial flucture for flucture fore	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 N78-19107 system N78-19167 action at A78-27721 ow of a peller N78-18073 January N78-19086 forming N78-18054
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic boundary layer to turbulent and the solution of electromagnetic boundary layer to turbulent solution of electromagnetic boundary value problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] BUILDIEADS Structural castings for aircraft - A programment from Boeing C C-15 AIRCRAFT [YC-15 development and test highlights - Philadelic Content of the severity of the severity of the content of the content of the severity of the co	### ##################################	CANOPIES P-15/16 canopy off testing CASCADE FLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching solution (AD-A04904) CENTINETER WAVES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissivatelengths of 0.8 and 1.35 cm CENTRIFUGAL COMPRESSORS Investigation of the jet wake discharge flow heavily loaded centrifugal compressor imports are considered accordant report: Knob Hill, Inc., Cessna-421, N999MB, Nogales, Arizona, 22 1977 [NTISUB/C/104-011] CH-47 HELICOPTER Limitations of the CH-47 helicopter in perfection flying with external loads [AD-A048580] CHANNEL CAPACITY UHF demand assigned multiple access /UHF DE	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 action ation ssion at A78-27721 bw of a peller R78-18073 , January R78-19086 forming R78-18054
airfoil test model wall temperature on boundary layer stability [AD-A048895] BOUNDARY LAYER TRANSITION Drag, flow transition, and laminar separation ine bodies of revolution having difference forebody shapes [AD-A048274] Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] BOUNDARY VALUE PROBLEMS The geometrical theory of diffraction - a for the solution of electromagnetic bounvalue problems of complicated structures high frequency case satellite and an antennas BRONZES The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] BUFFETING Prediction of the severity of buffeting tunnel tests BUILDINGS Concorde moise-induced building vibrations Kennedy International Airport [NASA-TM-78660] SULMEADS Structural castings for aircraft - A progre report from Boeing C C-15 AIRCRAFT	### ##################################	CANOPIES P-15/16 canopy off testing CASCADE PLOW Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils Nonuniformity of the flow, exciting vibration working turbine blades CASTINGS Structural castings for aircraft - A progressive report from Boeing CATAPULTS The STO deck launch problem Evaluation of the CVN 68/CVN 69 launching so [AD-A049004] CENTINBTER WAVES Aircraft measurements of the spatial flucture characteristics of atmospheric radio emissions wavelengths of 0.8 and 1.35 cm CENTRIPUGAL COMPRESSORS Investigation of the jet wake discharge flucture for the spatial flucture of the spatial flucture for flucture for the spatial flucture for flucture fore	A78-28453 to the of a A78-25636 tons in A78-27266 ess A78-28370 H78-19107 system R78-19167 action ation ssion at A78-27721 bw of a peller R78-18073 , January R78-19086 forming R78-18054

478-25197

CHANNEL PLOW SUBJECT INDEX

CHANNEL FLOW Study of the propagation of higher modes in cylindrical ducts with impedance walls for aircraft noise reduction	COMBUSTION REPLICIENCY A case for a new model for turbulent flame propagation A78-27840
A78-25773 Experimental investigation of the temperature field in a plane channel carrying a stratified	COMMERCIAL AIRCRAFT Application of composites on civil aircraft A78-25199
turbulent air stream 478-27139	Future CTOL aircraft characteristics A78-27542
CHANNELS (DATA TRANSHISSION) The MAROTS maritime satellite programme	Integrated controls for a new aircraft generation A78-28219
CHEMICAL AWALYSIS Hydrocarbon group type determination in jet fuels by high performance liquid chromatography	COMMUNICATION THEORY Adaptive phased arrays for tactical communication systems for ECM rejection A78-27040
A78-24906 CHBHICAL INDICATORS Hydrocarbon group type determination in jet fuels by high performance liquid chromatography A78-24906	COMPOSITE HATERIALS Materials and processes - In service performance; Proceedings of the Ninth National Technical Conference, Atlanta, Ga., October 4-6, 1977 A78-25176
CHIRP SIGNALS Some results on digital chirp radar design A78-26160	Application of composites on civil aircraft A78-25199 Material development for laminar flow control wing
CIVIL AVIATION The future determines the past - Bermuda I in the	panels A78-25200
light of Bermuda II air transportation agreement	COMPOSITE STRUCTURES Today's non-metallic composite airframe structure - An airline assessment
Bermuda II and after	A78-25196
A78-26471 The impact of Bermuda II on future bilateral agreements	S-3A composite spoiler in-service evaluation A78-25209 Development of thermoplastic composite aircraft
A78-26472 The year for shaping a digital operations R&D program for ATC	structural elements [AD-A048468] N78-19097 Long term experience with a hingeless/composite
A78-28218 Combined military and commercial application of	rotor #78-19137
light helicopters N78-19136 CLUTCHES	COMPRESSIBILITY Temperature characteristics of the speed of sound and compressibility of standard fuels and
Description of transment motion of aviation mechanisms with double-winding electromagnetic	petroleum oils A78-26756
clutches	COMPRESSOR ROTORS Compressor and fan wake characteristics
COASTS Air-sea rescue operations. Search and rescue	[NASA-CR-155766] N78-17995 Composite hub/metal blade compressor rotor
experience N78-19134	[NASA-CR-135343] N78-18131 COMPUTATION
COCKPITS A comparison of integrated and conventional	Computational aerodynamics and the numerical aerodynamic simulation facility
cockpit warning systems pilot performance and reaction time in man machine systems [*D-A048670] w78-18022	N78-19779 Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia
CODING Aerodynamic computer code for computing pressure	company N78-19787
loading on complete missile for structural analysis NASTRAN	Computational aerodynamics requirements in conjunction with experimental facilities
[AD-A048840] N78-19065	wind tunnel test data n78-19788
Holographic combiners for head-up displays [AD-A047998] N78-18064 COLLISION AVOIDANCE	Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist computer systems design
<pre>Uplink coverage measurements in the Los Angeles area for passive BCAS collision avoidance fAD-A0482881 N78-18027</pre>	N78-19789 Critical issues in viscous flow computations N78-19792
COLOR TELEVISION Pull color hybrid display for aircraft simulators	COMPUTER PROGRAMMING Prospects for computational aerodynamics
landing aids	integro-differential formulation
[NASA-CASE-ARC-10903-1] N78-18083 High resolution, high brightness color television	COMPUTER PROGRAMS
projector: Analysis, investigations, design, performance of baseline projector	Cambered jet-flapped airfoil theory with tables and computer programs for application
FAD-A0492791 N78-19362 COMBUSTION CHAMBERS	[AD-A048528] N78-18006 A simulation model for an
Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary compatison	enplaning-passenger-vehicle curbside at high-volume airports R78~18020
A78-24878 Effect of high levels of confinement upon the aerodynamics of swirl burners	Improvement of flight measuring data with a Kalman filter [BMYG-PBWT-77-6] N78-18057
A78-26107	Palefac
GE core engine noise investigation, low emission engines	[AD-A048331] N78-18065 LASTOP: A computer code for laser turrets
[AD-A048590] N78-18069 COMBUSTION CONTROL Reference bigh lovels of confinement upon the	optimization of small perturbation turrets in subsonic or supersonic flow
Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107	[AD-A049272] W78-19076

SUBJECT INDEX CONTROL SURFACES

Analysis and design of a cooled supercritical airfoil test model wall temperature effect	Viscous flow simulation requirements of aerodynamic interest
on boundary layer stability [AD-A048895] 978-19168	Finite element concepts in computational
Computer model for refinery operations with	aerodynamics
emphasis on jet fuel production. Volume 2:	N78-19801
Data and technical bases	Review of the Air Porce summer study program on
F NASA-CR-135334] N78-19326	the integration of wind tunnels and computers
NOISEMAP computer program operator manual.	N78-19804
Addendum for version 3.4 of NQISEMAP	CONCORDE AIRCRAFT
[AD-A049070] N78-19849	The Concorde v. the United States - Some conclusions
COMPUTER STORAGE DEVICES	A78-26474
A synopsis of the weather problems facing today's general aviation pilots	The Concorde and cosmic rays A78-26739
₩78-19718	Concorde noise-induced building vibrations John F.
COMPUTER SYSTEMS DESIGN	Kennedy International Airport
Preliminary study for a numerical aerodynamic	[NASA-TH-78660] N78-18873
simulation facility. Phase 1: Extension	CONDENSATES
[WASA-CR-152108] W78-19052	Transonic flow past an airfoil with condensation
Puture Computer Requirements for Computational	[NASA-TH-75201] N78-19053
Aerodynamics [NASA-CP-2032] N78-19778	COMPERENCES Haterials and processes - In service performance;
[NASA-CP-2032] N78-19778 Computational aerodynamics and the numerical	Proceedings of the Winth National Technical
aerodynamic simulation facility	Conference, Atlanta, Ga., October 4-6, 1977
N78-19779	178-25176
Computational aerodynamics requirements: The	All-Union Seminar on Inverse and Conjugate
future role of the computer and the needs of the	Problems of Heat Transfer, 2nd, Moscow, USSR,
aerospace industry	October 19-21, 1976, Proceedings
N78-19784	1977 report to the aerospace profession;
Remarks on future computational aerodynamics requirements government/industry relations	Proceedings of the Twenty-first Symposium,
N78-19785	Beverly Hills, Calif., October 12-15, 1977
Puture requirements and roles of computers in	178-28451
aerodynamics	Proceedings of the Navy/NASA VSTOL Plying Qualities
N78-19786	[NASA-CR-155810] N78-19099
Computational Pluid Dynamics (CPD): Future role	Rotorcraft Design
and requirements as viewed by an applied aerodynamicıst computer systems design	[AGARD-CP-233] N78-19126 Puture Computer Requirements for Computational
N78-19789	Aerodynamics
Specialized computer architectures for	[NASA-CP-2032] N78-19778
computational aerodynamics	CONICAL BODIES
₩78-19814	Swirl flow in conical diffusers
COMPUTER SYSTEMS PROGRAMS Plight test results of the strapdown hexad	A78-279'0 Linearized Newtonian aerodynamics of slender
inertial reference unit (SIRU). Volume 2: Test	inflated comes
report	[AD-A048695] N78-19064
[NASA-TH-73223] N78-18025	CONICAL BOZZLES
Pault-tolerant software for aircraft control systems	Evaluation of the in-flight noise signature of a
[NASA-CR-145298] N78-18797	32-chute suppressor nozzle: Acoustic data report
COMPUTERIZED DESIGN Some aspects of the thermal design of flight	outdoor static and 40 x 80 ft. wind tunnel tests
vehicles and processing of heat-test data	[NASA-CR-152076] N78-19899
A78-27452	CONTAMINANTS
Aerodynamic computer code for computing pressure	Modification of an ambient air quality model for
loading on complete missile for structural	assessment of U.S. naval aviation emittants
analysis WASTRAW	A78-28273
[AD-A048840] W78-19065 COMPUTERIZED SIMULATION	CONTABLEATION Driver gas contamination in a high-enthalpy
Multipath fading simulation model and full-scale	reflected shock tunnel
results polarized electromagnetic signal	A78-26235
transmission	CONTRACTS
A78-25879	Reliability, Improvement Warranty (RIW) mid
Principles and simulation of JTIDS relative	contract evaluation
navigation Joint Tactical Information	[AD-A048244] N78-18441
Distribution System A78-26156	CONTROL Conceptual design study of a Harrier V/STOL
Access study and simulation of the Marots	research aircraft
communication system	[NA SA-CR-152086] N78-19094
A78-27027	CONTROL BOARDS
A simulation model for an	Characterization of current tower cab environments
enplaning-passenger-vehicle curbside at	[AD-A048306] N78-18026 Development of a programmable panel
high-volume airports N78-18020	[AD-A048469] N78-19098
Numerical aerodynamic simulation facility.	CONTROL CONFIGURED VEHICLES
Preliminary study extension. Executive summary	Analytical study of ride smoothing benefits of
[NASA-CR-152106] N78-19050	control system configurations optimized for
Sensory mechanism modeling	pilot handling qualities [NASA-TP-1148] N78-18076
[AD-A049278] N78-19170 Computational aerodynamics and the numerical	[NASA-TP-1148] N78-18076 CONTROL STABILITY
aerodynamic simulation facility	YC-15 development and test highlights - Phase III
W78-19779	A78-28457
Computational aerodynamics requirements in	CONTROL SURPACES
conjunction with experimental facilities	Material development for laminar flow control wing
wind tunnel test data N78-19788	panels A78-25200
Viscous flow simulations in VTOL aerodynamics	The movement of a wing with deflected ailerons
finite difference technique	close to a screen
ห78-19791	[AD-A048651] N78-18004

CONTROL THEORY SUBJECT INDEX

Dynamic wind-tunnel tests of an aeromech	anical	Generalized procedures for tracking cra	ck growth
gust-alleviation system using several	different	in fighter aircraft	w70-10171
Combinations of control surfaces [NASA-TH-78638]	พ78-19059	[AD-A048847] CRACKING (FRACTUBING)	N78-19121
CONTROL THEORY Tentative establishment of a mathematica		The development of fatigue/crack growth loading spectra	-
a turbojet engine as a controlled syst	em 178-27567	CRANES	N78-18048
Circulation control airfoil study wi stability tests		An experimental and analytical investig the howering and forward flight chara	
[AD-A048677] Rationale for selection of a flight cont	N78-18005 rol system	of the aerocrane hybrid heavy lift ve [AD-A049084]	ehicle N78-19075
for lift cruise fan V/STOL aircraft [GP77-0375-28]	N78-19112	CRASH LANDING Antinisting fuel kinematics related to	aircraft
CONTROLLERS Multivariable quadratic synthesis of an turbofan engine controller	advanced	crash landings Crashworthy troop seat testing program	A78-28147
Analog versus digital null-steering cont	A78-26793 rollers	[AD-A048975] CRYOGENICS	N78-19084
CONVERGENT NOZZLES	A78-27039	The 0.1m subsonic cryogenic tunnel at t University of Southampton	he
Mean velocity, turbulence intensity and convection velocity measurements for a		[NASA-CR-145305] Cubes (Hathehatics)	N78-18086
convergent nozzle in a free jet wind to comprehensive data report		The dynamics of non spherical particles aerodynamic translational mobility of	
[NASA-CR-135238] CONVEXITY	N78-17991	cylinders [AD-A047144]	N78-19080
The fluid dynamics of rarefied molecular convex bodies - A new theory and applic	cations	CUMULATIVE DAMAGE The damage sum in fatigue of structure	components
COOLING	A78-27588	CYLINDRICAL BODIES	
Analysis and design of a cooled supercri- airfoil test model wall temperatur- on boundary layer stability		The dynamics of non spherical particles aerodynamic translational mobility of cylinders	
[AD-A048895] CORRECTION	N78-19168	[AD-A047144]	₽78-19080
Application and comparison of modal perty	urbation	D	
methods and modal correction procedure		D1 HDTHC	
exemplified by a swept wing with two ex stores	rternai	DAMPING A free-oscillation test rig for pitch-d	lauping
[DLR-FB-77-21] CORROSION	N78-18014	measurements in N.A.L. trisonic wind	tunnels 178-26487
Accelerated laboratory corrosion test for materials and finishes used in naval a		DATA PROCESSING	of +bo
[AD-A048059] CORROSION PREVENTION	N78-18188	PHAROS, processor for harmonic analysis response of oscillating surfaces models	
Corrosion of fuel assembly components of engines and its prevention	turbine	[NLR-MP-77012-U] DATA REDUCTION	N78-18019
CORROSION RESISTANCE	478-28197	Rvaluation of the in-flight noise signa 32-chute suppressor nozzle: Acoustic	
The need for improved materials in integrations aircraft fuel tanks	ral	outdoor static and 40 x 80 ft. wi	
nu=1u	A78-25177	[NASA-CR-152076]	ห78-19899
Evaluation of protective coatings applied adverse conditions		DATA TRANSMISSION UHF demand assigned multiple access /UH	
CORROSION TESTS Use of hot-stage-equipped scanning elect:	A78-25194	system for tactical satellite communi DC 9 AIRCRAFT	A78-27032
microscope in weld repair study of jet		Aircraft accident report: Texas Intern	ational
turbine vanes	A78-28371	Airlines, Inc., Douglas DC-9-14, N910 Stapleton International Airport, Denv	
COSHIC RAYS The Concorde and cosmic rays	.70 06730	Colorado, 16 November 1976 [NTISUB/C/104-010]	N78-19087
COST AWALYSIS	A78-26739	DEFENSE COMBUNICATIONS SATELLITE SYSTEM UNF demand assigned multiple access /UN	P DAMA/
Standard electronic module radar cost and [AD-A048207]	N78-18319	system for tactical satellite communi	
Technical and financial fall-out on armed from commercial and export helicopter p	programmes	DBPLECTORS Noise of deflectors used for flow attac	hment with
COST EPPECTIVENESS	ห78-19150	STOL-OTW configurations	A78-24877
Optimal aperture-shape for an antenna arm for radio navigation of flight vehicles		DEMAND (ECONOMICS) Airport choice in low demand region	A70 24077
	A78-27406		A78-27547
Reliability, Improvement Warranty (RIW) : contract evaluation [AD-A048244]		DESCRBT TRAJECTORIES Strategic positioning and traffic regul	ation in
(AD-2048244) COST BEDUCTION Research requirements to reduce maintena	N78-18441	the terminal zone DESIGN ANALYSIS	178-25150
of civil helicopters [NASA-CR-145288]	N78-17990	Patigue design of fighters: Guidelines obtaining and maintaining adequate fa	
COSTS Research Requirements for the improvement		performance of tactical aircraft [AGARD-AG-231]	N78-18046
helicopter operations	N78-19147	Patigue design of fighters; guidelines obtaining and maintaining adequate fa	for
CRACK PROPAGATION		performance of tactical aircraft: Ge	neral survey
Calculation methods for fatigue life and propagation		Modern concepts for aerodynamic rotor d	N78-18047
	N78-18049	f DLR-IB-151-77/111	พ78-18058

SUBJECT INDEX ELECTRON MICROSCOPY

Conceptual design study of a Harrier V/STOL	Derivation of groundspeed information from
research aircraft [NASA-CR-152086] N78-19094	airborne Distance Measuring Equipment DME
[NASA-CR-152086] N78-19094 DIATONIC GASES	interrogators wind shear [AD-A049277] N78-19089
Similar solutions in nonequilibrium nozzle flows	DRAG REDUCTION
A78-25728	Three-dimensional canard-wing shape optimization
DIESEL PUELS	in aircraft cruise and maneuver environments
Comparison tests on the 100-GPM electrokinetic fuel decontaminator and a 100-GPM military	[AIAA PAPER 78-99] Ideal tail load for minimum aircraft drag
standard filter/separator	A78-28149
[AD-A048655] N78-18226	DYNAMIC CHARACTERISTICS
DIFFERENTIAL EQUATIONS	Determination of dynamic characteristics from
Prospects for computational aerodynamics integro-differential formulation	flight test data FESA-TT-434 N78-18081
Threegro-differential formulacion W78-19795	[ESA-TT-434] N78-18081 The role of time-history effects in the
DIFFUSERS	formulation of the aerodynamics of aircraft
Swirl flow in conical diffusers	dynamics
A78-27910 DIGITAL COMPUTERS	[NASA-TM-78471] N78-19056
Palefac	DYNAMIC MODELS Approximate dynamic model of a turbojet engine
[AD-A048331] N78-18065	[NASA-TH-752631 N78-19159
Future requirements and roles of computers in	DYNAMIC RESPONSE
aerodynamics	Response of periodic beam to supersonic
DIGITAL INTEGRATORS N78-19786	boundary-layer pressure fluctuations A78-27886
Analog versus digital null-steering controllers	DYNAHIC STRUCTURAL ANALYSIS
A78-27039	Continuation and direct solution of the flutter
DIGITAL NAVIGATION	equation
Generalized algorithm of the analytical method of gyrocompassing	N78-25703
A78-25013	DYNAMIC TESTS Determination of dynamic characteristics from
Principles and simulation of JTIDS relative	flight test data
navigation Joint Tactical Information	[ESA-TT-434] N78-18081
Distribution System	E
A78-26156 The philosophy adopted for the flight testing of	L
the Panavia Tornado avionics system in Hack	BCONONIC ANALYSIS
alrcraft	Recent progress and technical and economic
N78-18060	outlooks in the processing of materials for
DIGITAL RADAR SYSTEMS Some results on digital chirp radar design	airframe elements A78-26036
A78-26160	Assessment of processing methods for titanium
DIGITAL SINULATION	alloys for aircraft structures
Numerical aerodynamic simulation facility.	A78-26040
Preliminary study extension [NASA-CR-152107] N78-19051	ECONOMIC FACTORS Economic and safety aspects of prolonging engine
DIGITAL SYSTEMS	life
The year for shaping a digital operations RED	A78-25142
program for ATC	BIGENVALUES
A78-28218 Digital Avionics Information System (DAIS):	Eigenvalue/eigenvector assignment using output feedback
Mid-1980's maintenance analysis	[NASA-TP-1118] N78-18823
[AD-A047886] N78-18063	RIGENVECTORS
DIRECTIONAL CONTROL	Ergenvalue/eigenvector assignment using output
Active reference null steering for spread spectrum signals	feedback [NASA-TP-1118] N78-18823
A78-27038	ELECTRIC FIELDS
DISCRETE ADDRESS BEACON SYSTEM	Aircraft response effect on E-field measurements
Radar beacon tracking with downlinked heading and	[AD-A047986] N78-18272
airspeed	RLECTRIC MOTORS
A78-26780 Uplink coverage measurements in the Los Angeles	Description of transient motion of aviation mechanisms with double-winding electromagnetic
area for passive BCAS collision avoidance	clutches
[AD-A048288] N78-18027	A78-25584
A hardware implementation of the ATCRBS reply	ELECTRORIBETICS 100 GREAT
processor used in DABS [AD-A047622/6] N78-19090	Comparison tests on the 100-GPM electrokinetic fuel decontaminator and a 100-GPM military
DISPLAY DEVICES	standard filter/separator
VBF/UHF direction-finding in air traffic control	[AD-A048655] N78-18226
A78-25046	BLECTROHAGNETIC FIELDS
Coming cockpit avionics R78-28220	Aircraft response effect on E-field measurements [AD-A047986] N78-18272
Liquid crystal airborne display	BLECTROMAGNETIC PULSES
[AD-A048198] N78-18062	Precision DME for new landing system - Past or
Pull color hybrid display for aircraft simulators	slow pulse
landing aids [NASA-CASE-ARC-10903-1] W78-18083	PIPCEDONACEPRIC SCAPERRIES
[NASA-CASE-ARC-10903-1] N78-18083 Development of a programmable panel	BLECTROHAGTETIC SCATTERING The integral equation method - a computational
[AD-A048469] N78-19098	method for diffracted and scattered fields of
Pilot centered requirements in control/display	complicated structures satellite and
design	aircraft antennas
H78-19110 Display and speech devices for simulator	N78-18291
instructor/operator station applications	Use of hot-stage-equipped scanning electron
[AD-A049247] N78-19169	microscope in weld repair study of jet engine
DISTANCE MEASURING EQUIPMENT	turbine vanes
Precision DME for new landing system - Fast or slow pulse	A78-28371
are bring	

178-26549

ELECTRONIC CONTROL SUBJECT INDEX

BLECTRONIC CONTROL	Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report
YC-14 flight test program A78-28458	outdoor static and 40 x 80 ft. wind tunnel
ELECTRONIC COUNTERNEASURES	tests
Radar electronic counter-countermeasures	[NASA-CR-152076] N78-19899
A78-26159	ENGINE PARTS
Adaptive phased arrays for tactical communication	Progress in advanced high temperature turbine
systems for ECM rejection	materials, coatings, and technology
A78-27040	A78-24910 Service experience and materials evolution in Air
BLECTRONIC MODULES	Force jet engines
MSP/ITWL airborne measuring system A78-28196	178-25208
Standard electronic module radar cost analysis	Studies of heat transfer to gas turbine components
FAD-A048207] N78-18319	[AD-A048551] N78-18071
Modular packaging approaches	ENGINE STARTERS
[AD-A048205] N78-18321	A portable device particularly suited for use in
ELECTRONIC PACKAGING	starting air-start units for aircraft
Modular packaging approaches	[NASA-CASE-FRC-10113-1] N78-19166
[AD-A048205] N78-18321	ENGINE TESTS
ELECTROSTATIC CHARGE	Combustor fluctuating pressure measurements in-engine and in a component test facility - A
Static electricity in aviation and methods for	preliminary comparison
preventing its effects. II A78-27568	A78-24878
ELEVATORS (CONTROL SURFACES)	ENTHALPY
Calculation of the horizontal tail loads from	Driver gas contamination in a high-enthalpy
elevator actuation	reflected shock tunnel
[DLR-IB-536-76/4] N78-18011	A78-26235
ELLIPSOIDS	CHTRAINSBUT
Lift hysteresis of an oscillating slender ellipse	Entrainment characteristics of unsteady subsonic
[AD-A049343] N78-19073	jets A78-26238
BHISSION	ENVIRONMENT EFFECTS
Aircraft emission factors f PB-275067/7 N78-18595	Evaluation of protective coatings applied under
ENERGY CONSERVATION	adverse conditions
Pederal policy options to effect fuel conservation	A78-25194
in the air industry	Application of composites on civil aircraft
n78-18548	178-25199
EMERGY POLICY	Durability of adhesive bonded honeycomb sandwich
Federal policy options to effect fuel conservation	in accelerated adverse environments
in the air industry	¥78-25202
N78-18548	ENVIRONMENTS Characterization of current tower cab environments
Measuring the impact on scheduled air lines operations of restrictions in fuel availability	[AD-A048306] N78-18026
N78-18549	EQUATIONS OF HOTION
ENGINE DESIGN	Aeromechanical stability of helicopters with a
	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [MASA-TM-78459] N78-18043
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPART SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [MASA-TH-78459] RQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [MASA-CR-145305] N78-18086
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPARET SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an
EMGINE DESIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS
EMGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [MASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] N78-18070 Genesis N + 1: The origins of the turbo-jet revolution	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /afroraft
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution ENGINE INLETS	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AWALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE INLETS Test data report, low speed wind tunnel tests of a	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine,	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AWALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /africaft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78-19049	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AWALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /africaft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78-19049	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785
BEGINE DRSIGN RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] BNGINE NOISE	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 BQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 BEROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 BEROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTINATORS Kalman filter divergence and aircraft motion estimators A78-26785 BUTECTICS The promise of eutectics for aircraft turbines
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] ENGINE NOISE Combustor fluctuating pressure measurements	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections ESTIBATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TR-73842] ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTINATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution EMGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AMALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] NNGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] A78-25391
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] BNGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 BQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 BEROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 BEROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTINATORS Kalman filter divergence and aircraft motion estimators A78-26785 BUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE IBLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TH-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] N78-18069	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AMALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-28399 ESTIMATORS Alman filter divergence and aircraft turbines A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TR-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTINATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE IBLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TH-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 BQUIPHENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 BEROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 BEROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [ARCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 BNGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AMALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /africaft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine [AD-A048382] N78-19162
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TR-73842] ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5 [BBVG-PBUT-77-16] N78-18072	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR COBRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-28399 ESTIMATORS EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 ENHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine [AD-A048382] EXTERNAL STORES
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 BNGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AMALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine [AD-A098382] N78-19162
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 P-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] M78-18070 Genesis N + 1: The origins of the turbo-jet revolution N78-19047 EBGINE IBLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TH-73842] N78-19157 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5 [BMVG-PBWT-77-161] Sensitivity of aircraft runup/community noise	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPMENT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR ANALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book A78-27383 ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-26167 EXHAUST GASES Air quality impact of aircraft at ten U.S. Air Force bases [APCA PAPER 77-41,6] Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine [AD-A048382] EVTERNAL STORES Application and comparison of modal perturbation
RB 211 - Progress and prospects A78-25141 Service experience and materials evolution in Air Force jet engines A78-25208 Tentative establishment of a mathematical model of a turbojet engine as a controlled system A78-27567 F-15/nonaxisymmetric nozzle system integration study support program [NASA-CR-135252] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 ENGINE INLETS Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TN-73842] N78-19049 ENGINE NOISE Combustor fluctuating pressure measurements in-engine and in a component test facility - A preliminary comparison A78-24878 Effectiveness of an inlet flow turbulence control device to simulate flight fan noise in an anechoic chamber A78-24880 GE core engine noise investigation, low emission engines [AD-A048590] Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5 [BNG-PSWT-77-161] Sensitivity of aircraft runup/community noise predictions to excess ground attenuation	Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] N78-18043 EQUIPHERT SPECIFICATIONS The 0.1m subsonic cryogenic tunnel at the University of Southampton [NASA-CR-145305] N78-18086 ERROR AMALYSIS Error analysis and simulation concerning an inertial navigation system with vehicle-fixed sensors German book ERROR CORRECTING CODES Utilization of Precilec information /aircraft attitude and position/ for geometric image corrections A78-28399 ESTIMATORS Kalman filter divergence and aircraft motion estimators A78-26785 EUTECTICS The promise of eutectics for aircraft turbines A78-24882 EVASIVE ACTIONS Adaptive tracking filter for maneuvering targets A78-25391 Modification of an ambient air quality model for assessment of U.S. naval aviation emittants A78-28273 Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine engine [AD-A048382] N78-19162 EXTERNAL STORES Application and comparison of modal perturbation methods and modal correction procedures

SUBJECT INDEX PLAPPIEG

Unsteady pressure measurements on wing-stor combinations in incompressible flow	re	PEEDBACK CONTROL Output feedback regulator design for jet en	aine
[ESA-TT-426]	N78-18018	control systems	-
The effects of external stores on the flut- non-uniform cantilever	ter of a	One axis artificial feel system pilot	A78-24898
[AD-A048360]	N78-18078	proprioceptive cue forces on aircraft joy	stick A78-26488
F		Eigenvalue/eigenvector assignment using out feedback	put
P-4 AIRCRAPT			N78-18823
F-4E avionics update	N78-18061	PIGHTER AIRCRAFT	,
[AD-A047949] P-14 AIRCRAPT	N/0-10061	Patique design of fighters: Guidelines for obtaining and maintaining adequate fatigu	
Flight qualification of titanium P-14A airs	frame	performance of tactical aircraft	
components manufactured by Hot Isostatic Pressing (HIP)		[AGARD-AG-231] Fatique design of fighters; guidelines for	N78-18046
[AD-A048485]	N78-18055	obtaining and maintaining adequate fatigu	
P-15 AIRCRAFT P-15/16 canopy off testing		performance of tactical aircraft: Genera	1 survey N78-18047
	A78-28453	The development of fatigue/crack growth and	
P-15/nonaxisymmetric nozzle system integrate study support program	tion	loading spectra	N78-18048
[NASA-CR-135252]	N78-18070	Generalized procedures for tracking crack g	
P-16 AIRCRAPT		in fighter aircraft	ห78-19121
P-16 flight test progress report	A78-28452	[AD-A048847] PILE COOLING	N/0-19121
P-15/16 canopy off testing	-70 00:50	Effects of film injection on performance of	a
F-17 AIRCRAFT	A78-28453	cooled turbine	A78-24902
F-18A configurational development from	YF-17	PINISHES	
prototype	A78-28454	Accelerated laboratory corrosion test for materials and finishes used in naval airc	raft
F-18 AIRCRAFT		[AD-A048059]	N78-18188
P-18A configurational development from prototype	¥P-17	Application of a finite difference scheme t	o the
prococype	A78-28454	numerical solution of the direct problem	
P-111 AIRCRAFT		two-dimensional cascade of airfoils	A78-25636
Flight-determined stability and control coefficients of the F-111A airplane		The supersonic flow past cusped wings	# 10-23030
[NASA-TM-72851]	N78-18075		A78-28056
PAILURE MODES Metallurgical behavior of arresting gear de	eck	Viscous flow simulations in VTOL aerodynami finite difference technique	cs
pendants			N78-19791
pendancs	170 25405		
PASTEMERS	A78-25185	PINITE ELEMENT METHOD	
PASTEMERS Analytical representation of the initial qu	nality	PINITE ELEMENT METHOD Finite element concepts in computational aerodynamics	
PASTEMERS Analytical representation of the initial quof fastener holes for aircraft struct	nality cures	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics	พ78-19801
PASTEBERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS)	nality cures A78-25180	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report	ท 78–19801
PASTEMERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for	uality cures a78-25180	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report	
PASTEMENS Analytical representation of the initial quantum of fastener holes for aircraft struct PATIGUE (MATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft	nality :ures .A78-25180 :	PINITE ELEMENT METHOD Finite element concepts in computational aerodynamics PIRE CONTBOL F-16 flight test progress report F-4E avionics update [AD-A047949]	ท 78–19801
PASTEMERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231]	uality cures a78-25180	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] FIRE PREVENTION	N78-19801 N78-28452 N78-18061
PASTEURERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue	mality cures A78-25180 c m78-18046	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report F-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings	N78-19801 A78-28452 N78-18061 raft
PASTEMERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for	nality cures A78-25180 c ee W78-18046 de	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings	N78-19801 N78-28452 N78-18061
PASTEURES Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and	nality cures A78-25180 c ne W78-18046 ne ll survey W78-18047	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report F-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc	N78-19801 N78-28452 N78-18061 raft N78-28147
PASTEBERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General	nality cures A78-25180 c e W78-18046 de ll survey W78-18047 ulysis	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report F-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials	N78-19801 A78-28452 N78-18061 raft A78-28147
PASTEURES Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and	nality cures A78-25180 c ne W78-18046 ne ll survey W78-18047	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials	N78-19801 N78-28452 N78-18061 raft N78-28147
PASTEBERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and loading spectra	aality cures A78-25180 c e w78-18046 de il survey w78-18047 ulysis w78-18048	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report F-9E avionics update [AD-A007949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A008475] FIXED WINGS The analysis of National Transportation Saf	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158
PASTEBERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and loading spectra PATIGUE LIFE Fatigue resistance of aircraft propeller blooming and maintaining and propeller blooming and p	aality cures A78-25180 : ie W78-18046 ie il survey W78-18047 ilysis W78-18048	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTBOL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety
PASTEMERS Analytical representation of the initial group of fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General formance of tactical aircraft general formance of tactical	mality cures A78-25180 cure W78-18046 le W78-18047 ll survey W78-18047 llysis W78-18048 lades A78-27259 lyue in	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety
PASTEURES Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and loading spectra PATIGUE LIFE Patigue resistance of aircraft propeller black automated wibrating bench for studying fatigue.	mality cures A78-25180 cure W78-18046 le W78-18047 ll survey W78-18047 llysis W78-18048 lades A78-27259 lyue in	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report F-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety
PASTEMERS Analytical representation of the initial group of fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General formance of tactical aircraft: General formance of tactical aircraft: General formance of tactical aircraft: Fatigue resistance of aircraft propeller blacking and tamperature of tactical for studying fatigus turbine blades with programmed change load and temperature Calculation methods for fatigue life and cr	mality cures A78-25180 te W78-18046 il survey W78-18047 ilysis W78-18048 iades A78-27259 gue in es in	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety
PASTEURES Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (MATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General The development of fatigue/crack growth and loading spectra PATIGUE LIFE Patigue resistance of aircraft propeller blades with programmed change load and temperature	mality cures A78-25180 te W78-18046 il survey W78-18047 ilysis W78-18048 iades A78-27259 gue in es in	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-92 avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FIABE PROPAGATION A case for a new model for turbulent flame propagation	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety
PASTEBERS Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General formance of tactical aircraft propeller bladeing spectra PATIGUE LIPE Fatigue resistance of aircraft propeller bladeing tactical formance of tactical formance of tactical aircraft propeller bladeing tactical formance of tactical formance of tactical aircraft propeller bladeing tactical formance of tactica	mality cures A78-25180 m78-18046 me n1 survey N78-18047 mrs-18048 mades A78-27259 gue in A78-27267 mack	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021
PASTEMERS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General fatigue performance of tactical aircraft: General fatigue performance of tactical aircraft: General fatigue for a fatigue for a fatigue for a fatigue for studying fatigus turbine blades with programmed change load and temperature Calculation methods for fatigue life and crappagation PATIGUE TESTS Fatigue design of fighters; guidelines for	mality cures A78-25180 m78-18046 me n1 survey N78-18047 mr8-18048 mades A78-27259 me mi mar8-27257 mack mr8-18049	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-92 avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021
PASTEBERS Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (HATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General formance of tactical aircraft propeller bladeing spectra PATIGUE LIPE Fatigue resistance of aircraft propeller bladeing tactical formance of tactical formance of tactical aircraft propeller bladeing tactical formance of tactical formance of tactical aircraft propeller bladeing tactical formance of tactica	aality cures A78-25180 R78-18046 R8	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-28147
PASTEURES Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General the development of fatigue/crack growth and loading spectra PATIGUE LIPE Patigue resistance of aircraft propeller blautomated vibrating bench for studying fatigus turbine blades with programmed change load and temperature Calculation methods for fatigue life and crapropagation PATIGUE TESTS Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General	Rality Cures A78-25180 See N78-18046 See N78-18047 See N78-18048 See N78-27259 See See See See See See See See See Se	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report F-4E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings FLAME STABILITY Effect of high levels of confinement upon t	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-28147
PASTEMENS Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General for General factor of tactical aircraft: General factor of tactical aircraft: General factor of fatigue/crack growth and loading spectra PATIGUE LIPE Patigue resistance of aircraft propeller blace with programmed change load and temperature Calculation methods for fatigue life and craptopagation PATIGUE TESTS Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General fests on details and components	nality cures A78-25180 n78-18046 n878-18047 n1ysis N78-18048 nades A78-27259 nigue in sin A78-27267 nack N78-18049	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings PLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-28147
PASTEURNS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General the development of fatigue/crack growth and loading spectra PATIGUE LIPE Patigue resistance of aircraft propeller blautomated vibrating bench for studying fatigus turbine blades with programmed change load and temperature Calculation methods for fatigue life and crapropagation PATIGUE TESTS Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General Tests on details and components Current standards of fatigue test on strike	mality cures A78-25180 m78-18046 m878-18047 m878-18047 m878-18048 m878-27259 m9 in m878-27267 mack m878-18049 me mali survey m878-18049 me mali survey m878-18047 m878-18047 m878-18050 maircraft	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] PIRE PREVENTION Antimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] PIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] PLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings PLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-27840 raft A78-28147 he
PASTEMENS Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (HATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General for General factor of tactical aircraft: General factor of tactical aircraft: General factor of fatigue/crack growth and loading spectra PATIGUE LIPE Patigue resistance of aircraft propeller blace with programmed change load and temperature Calculation methods for fatigue life and craptopagation PATIGUE TESTS Patigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General fests on details and components	nality cures A78-25180 n78-18046 n878-18047 n1ysis N78-18048 nades A78-27259 negue in s in A78-27267 nack N78-18049 negue in sin A78-18049 negue in sin A78-18049	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings PLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners FLAMMABILITY Studies of the flash fire potential of airc cabin interior materials	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-27840 raft A78-28147 he A78-26107
PASTBURES Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General field of the second of tactical aircraft: General field of the second of tactical aircraft: General field of the second of tactical aircraft propeller blue development of fatigue/crack growth and loading spectra PATIGUE LIPE Fatigue resistance of aircraft propeller blue for a studying fatigue tesis turbine blades with programmed change load and temperature Calculation methods for fatigue life and crappopagation PATIGUE TESTS Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General fests on details and components Current standards of fatigue test on strike [AGARD-AR-92] Fatigue load monitoring	mality cures A78-25180 m78-18046 m878-18047 m878-18047 m878-18048 m878-27259 m9 in m878-27267 mack m878-18049 me mali survey m878-18049 me mali survey m878-18047 m878-18047 m878-18050 maircraft	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] PIRE PREVENTION Antimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] PIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] PLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings PLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners PLAMBBILITY Studies of the flash fire potential of airc cabin interior materials [AD-A048475]	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-27840 raft A78-28147 he
PASTEURES Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (MATERIALS) Patigue design of fighters: Guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft [AGARD-AG-231] Patigue design of fighters; guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft: General factions of the development of fatigue/crack growth and loading spectra PATIGUE LIFE Patigue resistance of aircraft propeller blaces authorized blades with programmed change load and temperature Calculation methods for fatigue life and craft propagation PATIGUE TESTS Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft: General fests on details and components Current standards of fatigue test on strike (AGARD-AR-92)	nality cures A78-25180 n78-18046 n878-18047 n1ysis N78-18048 nades A78-27259 negue in s in A78-27267 nack N78-18049 negue in sin A78-18049 negue in sin A78-18049	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics FIRE CONTROL P-16 flight test progress report P-9E avionics update [AD-A047949] FIRE PREVENTION Antimisting fuel kinematics related to airc crash landings FIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings PLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners FLAMMABILITY Studies of the flash fire potential of airc cabin interior materials	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-27840 raft A78-28147 he A78-26107 raft N78-18158
PASTEMENS Analytical representation of the initial quof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General field of the second of tactical aircraft: General field of the second of tactical aircraft: General field of the second of tactical aircraft general field of the second of tactical aircraft general field of the second of tactical aircraft propeller blacking and temperature PATIGUE LIPE Fatigue resistance of aircraft propeller blacking at the second of the second of tactical aircraft for propagation PATIGUE TESTS Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General fests on details and components Current standards of fatigue test on strike [AGARD-AR-92] Fatigue load monitoring Low cycle fatigue in turbines [NASA-TM-75264] FBASIBILITY AMALYSIS	mality cures A78-25180 m78-18046 m878-18046 m878-18047 m878-18048 m878-27259 m9 m m m m m m m m m m m m m m m m m	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report P-4E avionics update [AD-A047949] FRE PREVENTION Antimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPAGATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings FLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners FLAMMABILITY Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FLAPPING Application of system identification to ana rotor modeling from simulated and wind tu	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-28147 he A78-28147 he A78-26107 raft N78-18158
PASTEMENS Analytical representation of the initial grof fastener holes for aircraft struct PATIGUE (MATERIALS) Fatigue design of fighters: Guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft [AGARD-AG-231] Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft: General fighters of the development of fatigue/crack growth and loading spectra PATIGUE LIFE Fatigue resistance of aircraft propeller black automated vibrating bench for studying fatigus turbine blades with programmed change load and temperature Calculation methods for fatigue life and crapropagation PATIGUE TESTS Fatigue design of fighters; guidelines for obtaining and maintaining adequate fatiguperformance of tactical aircraft: General Tests on details and components Current standards of fatigue test on strike [AGARD-AR-92] Fatigue load monitoring Low cycle fatigue in turbines [NASA-TM-75264] FBASIBILITY ANALYSIS Assessment of processing methods for titanialloys for aircraft structures	mality cures A78-25180 m78-18046 m878-18046 m878-18047 m878-18048 m878-27259 m9 m m m m m m m m m m m m m m m m m	PINITE ELEMENT METHOD Pinite element concepts in computational aerodynamics PIRE CONTROL P-16 flight test progress report P-0E avionics update [AD-A0047949] FIRE PREVENTION Intimisting fuel kinematics related to airc crash landings PIRES Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FIXED WINGS The analysis of National Transportation Saf Board large fixed-wing aircraft accident/incident reports for the potenti presence of low-level wind shear [AD-A048354] FLAME PROPACATION A case for a new model for turbulent flame propagation Antimisting fuel kinematics related to airc crash landings FLAME STABILITY Effect of high levels of confinement upon t aerodynamics of swirl burners FLAMMABILITY Studies of the flash fire potential of airc cabin interior materials [AD-A048475] FLAPPING Application of system identification to ana rotor modeling from simulated and wind tu dynamic test data	N78-19801 A78-28452 N78-18061 raft A78-28147 raft N78-18158 ety al N78-18021 A78-28147 he A78-28147 he A78-26107 raft N78-18158

PLASE POINT SUBJECT INDEX

PLASE POINT Studies of the flash fire potential of aircraft	Rationale for selection of a flight control system for lift cruise fan V/STOL aircraft
cabin interior materials [AD-A048475] N78-1815	fGP77-0375-28] p78-19112 Preliminary design of a flight control system for
FLAT PLATES Two-dimensional transonic testing with splitter	a V/STOL airplane with geared variable pitch fans N78-19113
plates	Electronics plus fluidics for V/STOL flight control
[NASA-TP-1153] N78-1799 PLIGHT CHARACTERISTICS	NAVTOLAND and flying qualities
The Mi-6A helicopter Russian book A78-2600	N78-19120
Discrete maneuver pilot models for flying qualities evaluation	landing and approach guidance and control systems N78-19723
A78-2679 Proceedings of the Navy/NASA VSTOL Flying Qualities	NASA's aviation safety research and technology
[NASA-CR-155810] N78-1909 A comparison of V/STOL handling requirements with	м78-19719
the VAK-191B N78-1910 MIL-F-83300: wiew from an aircraft designer	FLIGHT HECHAMICS) Theory of dolphin-style glider flight and principles of dynamic flight. I
N78-1910	
V/STOL hover stability impact on hover control task N78-1910	
V/STOL flying qualities requirements in the UK control during short takeoff N78-1910	[DLR-IB-552-77/20] N78-18059 FLIGHT_PATHS B-1 terrain following development
Review of US wavy VSTOL handling qualities	A78-28456
reguirements	Flight-path reconstruction of symmetric nonsteady flights
Capabilities of the Navy variable stability X-22A for V/STOL flying qualities R and D	[NLK-TR-76133-U] N78-18056 FLIGHT SAPETI
N78-1910 A piloted simulation of V/STOL landings aboard a	Certifying the Learjet to 51,000 feet A78-28462
non-aviation ship	Aviation weather service requirements, 1980 - 1990 N78-19713
Shipboard testing of the AV-8A Harrier N78-1910	
Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in hover N78-1910	NASA's aviation safety research and technology program
Survey of piloting factors in V/STOL aircraft with implications for flight control system design	N78-19719 PLIGHT SIMULATION
N78-1911 Rationale for selection of a flight control system	High-altitude area navigation (RNAV) enroute simulation
for lift cruise fan V/STOL aircraft N78-1911	[AD-A049315] N78-19088
Preliminary design of a flight control system for a V/STOL airplane with geared variable pitch face.	non-aviation ship
N78-1911: Electronics plus fluidics for V/STOL flight control N78-1911:	Optimal aircraft simulator development by adaptive
The helicopter/ship dynamic-interface problem: A new approach	W78-18082 Full color hybrid display for aircraft simulators
ห78-1911!	landing aids
A summary of ship deck motion dynamics as applied to VSTOL aircraft	[NASA-CASE-ARC-10903-1] N78-18083 Automated weapon system trainer: Expanded
N78-19116 Seakeeping considerations in the employment of	maneuvers
V/STOL on Naval ships N78-1911	
Requirements for VLA systems N78-19118	
VTOL/Helicopter approach and landing guidance sensors for wavy ship applications	Display and speech devices for simulator instructor/operator station applications
N78-19119 NAVTOLAND and flying qualities N78-19120	High resolution, high brightness color television
PLIGHT CONTROL	performance of baseline projector
B-1 terrain following development	
YC-14 flight test program A78-28458	
Plight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report	FLIGHT STABILITY TESTS Flight-determined stability and control coefficients of the F-111A airplane
FNASA-TH-73223 N78-18025 Plight-determined stability and control coefficients of the F-111% airplane	FRASA-TM-72851] N78-18075 Flight test of stick force stability in attitude-stabilized aircraft
[NASA-TM-72851] N78-18075 V/STOL hover stability impact on hover control task	
W78-19102 W/STOL flying qualities requirements in the UK	flight test data [ESA-TT-434] N78-18081
control during short takeoff N78-19103	FLIGHT TESTS Ride quality flight testing
Survey of piloting factors in V/STOL aircraft with implications for flight control system design	A78-26795
implications for flight control system design #78-19111	1977 report to the aerospace profession; Proceedings of the Twenty-first Symposium, Bewerly Hills, Calif., October 12-15, 1977
	A78-28451

P-16 flight test progress report PLOW ROHATTONS A78-28452 Conservative implicit schemes for the full potential equation applied to transonic flows [NASA-TH-78469] N78-P-15/16 canopy off testing A78-28453 N78-19868 PLOW GROWRTRY YAV-8B/AV-8B advanced Harrier program A78-28455 Critical issues in viscous flow computations B-1 terrain following development N78-19792 A78-28456 YC-15 development and test highlights - Phase III A78-28457 Introduction to unsteady aspects of separation in subsonic and transonic flow YC-14 flight test program A78-28458 PLOW VELOCITY YC-14B prototype testing Driver gas contamination in a high-enthalpy A78-28459 reflected shock tunnel Tri-Gull amphibian development A78-26235 A78-28460 PLOW VISUALIZATION Prediction of unsteady separated flows on oscillating airfoils UTTAS testing A78-28461 Certifying the Learjet to 51,000 feet N78-18387 A78-28462 PLUID DYNAMICS Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist --- computer systems design Shuttle carrier aircraft flight tests A78-28464 Plight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test N78-19789 report PLUID FILES [NASA-TM-73223] Squeeze film damper characteristics for gas N78-18025 Plight tests of a radio-controlled airplane mode turbine engines with a free-wing, free-canard configuration [NASA-TM-72853] N7 [ASHE PAPER 77-DET-23] 178-26796 N78-18052 PLUID PILTERS flight evaluation of a trailing anemometer for low-speed calibrations of airspeed systems on Comparison tests on the 100-GPM electrokinetic fuel decontaminator and a 100-GPM military research aircraft
[NASA-TP-1135] standard filter/separator [AD-A048655] N78-18044 N78-18226 PLUID INJECTION Flight-path reconstruction of symmetric nonsteady Effects of film injection on performance of a flights [NLR-TR-76133-U] N78-18056 cooled turbine Improvement of flight measuring data with a Kalman 178-24902 PLUIDICS filter N78-18057 Electronics plus fluidics for V/STOL flight control The philosophy adopted for the flight testing of the Panavia Tornado avionics system in Hack N78-19114 Pabrication and test of a fluidic fuel-control and bleed-air-load-control system for gas turbine aircraft N78-18060 engines Determination of antenna radiation patterns, radar FAD-A0490391 N78-19163 PLUOROCA REOMS cross sections and jam-to-signal ratios by In-service performance of polyurethane and fluorocarbon rain erosion resistant radome flight tests [NLR-MP-76023-U] N78-18289 Guided drogue flight test report
[AD-A049164] coatings N78-19067 A78-25205 The rotor systems research aircraft: A new step PLUTTER in the technology and rotor system verification The effects of external stores on the flutter of a non-uniform cantilever [AD-A048360] N78-19144 N78-18078 Hydraulic constant recoil program PLUTTER AMALYSIS [AD-A049313] Continuation and direct solution of the flutter N78-19517 equation PLIGHT TRAINING Automated weapon system trainer: Expanded adaptive module for basic instrument flight A78-25703 Development and application of an optimization procedure for flutter suppression using the maneuvers FAD-A0484981 N78-18087 aerodynamic energy concept [NA SA-TP-1137] Display and speech devices for simulator N78-18459 instructor/operator station applications PLY BY WIRE CONTROL FAD-A0492477 Electronics plus fluidics for V/STOL flight control N78-19169 PLIGHT VEHICLES N78-19110 Error analysis and simulation concerning an inertial navigation system with vehicle-fixed PORRRODIRS Drag, flow transition, and laminar separation on nine bodies of revolution having different sensors --- German book forebody shapes
[AD-A048274] A78-27383 PLOW CHARACTERISTICS N78-18001 Effect of perturbed flow on the transition from the supersonic laminar boundary layer to the PORECASTING Projected needs of US Army Aviation N78-19127 turbulent [NASA-TH-751961 PLOW DEPLECTION N78-19048 British Military helicopter programmes N78-19130 Noise of deflectors used for flow attachment with STOL-OTW configurations PRACTURE STREEGTH Patigue resistance of aircraft propeller blades A78-24877 178-27259 PLOW DISTRIBUTION PRANCE method for solving problems of flow past a wing with fuselage bounded by an ideal fluid flow Air France's new 'freight' installations at Charles de Gaulle Airport at Roissy, France A78-25585 A 78-25261 On the flow in a centrifugal impeller. II The new railroad artery Paris-Sud-Est and Effects of change in impeller width high-speed trains: How the Paris Sud-Est was born - Basic options --- for high speed A78-27907 Decay and modification of trailing vortex passenger trains A78-27908 178-25263

SUBJECT INDEX

PREB FLIGHT		GAS TEMPERATURE	
Theory of dolphin-style glider flight and		Predicted inlet gas temperatures for tungst	en.
principles of dynamic flight. I		fiber reinforced superalloy turbine blade	
principles of almamic riligine. I	A78-28195	[NASA-TH-73842]	N78-19157
PREE VIBRATION	N.O 20173	GAS TURBINE ENGINES	M/0-1913
A free-oscillation test rig for pitch-dam	nina	The promise of eutectics for aircraft turbi	200
measurements in N.A.L. trisonic wind tu			.nes 178-24882
measurements in Waraba tilsonic wind to	A78-26487	Effects of film injection on performance of	
TOTAL TOTAL A CONCRETE THE	M/0-2040/		. a
PREQUENCY ASSIGNMENT	N1 W1 /	cooled turbine	A78-24902
UHP demand assigned multiple access /UHP			
system for tactical satellite communica		Progress in advanced high temperature turbi	ne
	A78-27032	materials, coatings, and technology	
PREQUENCY STANDARDS			¥78-24910
Active reference null steering for spread	spectrum	RB 211 - Progress and prospects	
signals			A78-25141
	A78-27038	Squeeze film damper characteristics for gas	1
PUBL CONSUMPTION		turbine engines	
Return of the propeller			A78-26796
	A78-25516	Integrated gas turbine engine-nacelle	
Certifying the Learjet to 51,000 feet			N78-1806
	A78-28462	Variable mixer propulsion cycle	
Pederal policy options to effect fuel con	servation		N78-18067
in the air industry		Studies of heat transfer to gas turbine com	
	N78-18548		N78-18071
Measuring the impact on scheduled air lin		Genesis N + 1: The origins of the turbo-jet	
operations of restrictions in fuel avai		revolution	
	N78-18549		₩78-19047
FUEL CONTROL		Fabrication and test of a fluidic fuel-cont	
Pabrication and test of a fluidic fuel-co	ntrol and	bleed-air-load-control system for gas tur	bine
bleed-air-load-control system for gas t	urbine	engines ,	
engines		[AD-A049039]	N78-19163
[AD-A049039]	₩78-19163	GAS TURBINES	
PUEL CORROSION		Effect of fuel bound nitrogen on oxides of	
Corrosion of fuel assembly components of	turbine	nitrogen emission from a gas turbine engi	ne
engines and its prevention		[AD-A048382]	N78-19162
•	A78-28197	GAS-BETAL INTERACTIONS	
FUEL PLOW		The fluid dynamics of rarefied molecular fl	OM OAGE
Static electricity in aviation and method:	s for	convex bodies - A new theory and applicat	
preventing its effects. II			A78-27588
	178-27568	GENERAL AVIATION AIRCRAFT	
FUEL TANKS		Technical and financial fall-out on armed f	orces
The need for improved materials in integra	al	from commercial and export helicopter pro	
aircraft fuel tanks			Ñ78-19150
	A 78-25 177	Civil and military design requirements and	
PUELS	X10 23177	influence on the product	CHCLL
Temperature characteristics of the speed	of sound		N78-19151
and compressibility of standard fuels as		GERHANY	110-1515
petroleum oils	IIu	German Army helicopter development and pros	
pecroledm offs	A78-26756	for the future	pects
FULL SCALE TESTS	R/0-20/30		N78-19128
Multipath fading simulation model and full	1-00-10	GHANA	N 70-13 - 20
results polarized electromagnetic s		Supporting investigations during testing of	+ ho
transmission	19na 1	WDL-1 airship in Ghana and Upper Volta	
CLGHSWISSION	478-25879		
PUSBLAGES	470-23073	temperature, flight data, operational pro	N78-18012
		[DLR-IB-536-77/1] GLASS PIBER REINPORCED PLASTICS	M /0- 100 12
Method for solving problems of flow past			
with fuselage bounded by an ideal fluid		Today's non-metallic composite airframe str	acture
	A78-25585	 An airline assessment 	
Response of periodic beam to supersonic			A78-25196
boundary-layer pressure fluctuations		GLIDE PATHS	
	A78-27886	Automatic system employing radioactive radi	ation
A procedure for the determination of the		to level-out an aircraft at landing	. 70 0505-
fuselage nose bluntness on the wave drag	g or		A78-25011
supersonic cruise aircraft		GLIDING	
[NASA-CR-145306]	N78-17994	Theory of dolphin-style glider flight and	
Puselage structure using advanced technology	ogy metal	principles of dynamic flight. I	
matrix fiber reinforced composites	HER 4555		A78-28195
[NASA-CASE-LAR-11688-17	N78-18045	GLOBAL POSITIONING SYSTEM	
_		Airworthiness evaluation NUH-1H helicopter	With
G		global positioning system	
			N78-18053
GAS DISCHARGE TOBES		GOVERNMENT/INDUSTRY RELATIONS	
Investigation of the jet wake discharge f		Pederal policy options to effect fuel conse	rvation
heavily loaded centrifugal compressor is		in the air industry	
(DLR-PB-77-32]	N78-18073		N 78- 18548
GAS PLOW		Remarks on future computational aerodynamic	
A wing in an unsteady gas flow, part 1		requirements government/industry rela	
[AD-A048999]	N78-19077		N78-19785
F wing in an unsteady gas flow, part 2		GRAPHITE-EPOXY COMPOSITE MATERIALS	
[AD-A049000]	₩78-19078	Application of composites on civil aircraft	
A wing in an unsteady gas flow, part 3			178-25199
[AD-A049001]	N78-19079	S-3A composite spoiler in-service evaluatio	n
GAS INJECTION			A78-25209
Decay and modification of trailing vortex		Composite hub/metal blade compressor rotor	
•	A78-27908		N78-18131
GAS STREAMS		Advanced technology helicopter landing gear	
Variable mixer propulsion cycle			N78-19124
	#70_100£7		
[NASA-CASE-LEW-12917-1]	พ 78 – 18067		

ς.

HELICOPTERS SUBJECT INDEX

GROUND EFFECT		HEAT BESISTART ALLOYS	
Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities	in hower	Progress in advanced high temperature turk	bine
crausition on vak-1916 flying quarteres	N78-19109	materials, coatings, and technology	A78-24910
GROUND HANDLING	_	Predicted inlet gas temperatures for tungs	
ir Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Pra		fiber reinforced superalloy turbine blace [NASA-TH-73842]	1es №78-19157
charges de Gaurre Milport de Morssy, Fre	A78-25261	HEAT TRANSPER	R/0 13137
GROUND SPEED		All-Union Seminar on Inverse and Conjugate	
Derivation of groundspeed information from airborne Distance Measuring Equipment D		Problems of Heat Transfer, 2nd, Moscow, October 19-21, 1976, Proceedings	USSR,
interrogators wind shear		october 17 21, 1970, Proceedings	A78-27451
[AD-A049277]	N78-19089	Some aspects of the thermal design of flic	
GROUND STATIONS Access study and simulation of the Marots		wehicles and processing of heat-test day	ta A78-27452
communication system		Application of a new test method and a new	
	A78-27027	wind-tunnel-data processing technique to	
GROUND TESTS Launching the Harrier from a ski jump		study of unsteady heat conduction proces	sses A78-27455
such outside and married store a out lark	A78-28463	Studies of heat transfer to gas turbine co	omponents
GUIDANCE SENSORS		[AD-A048551]	N78-18071
Dual-control guidance strategy for homing interceptors taking angle-only measurements		HEAVY LIFT LAUNCH VEHICLES In experimental and analytical investigation	ion of
	A78-26784	the hovering and forward flight characte	
VTOL/Helicopter approach and landing guide	ance	of the aerocrane hybrid heavy lift vehic	
sensors for Wavy ship applications	N78-19119	[AD-A049084] HELICOPTER CONTROL	N78-19075
GUNDER TRAINING		UTTAS testing	
P-4E avionics update	W78-18061	HDITCARED RECYCE	A78-28461
[AD-A047949] GUST ALLEVIATORS	470-10001	HELICOPTER DESIGN The Mi-6A helicopter Russian book	
Analytical study of a free-wing/free-trim	mer concept	•	A78-26000
for gust alleviation and high lift [NASA-CR-2946]	N78-18000	Black Hawk, Lamps and AAH	A78-26533
Dynamic wind-tunnel tests of an aeromechan		A new helicostat from SNIAS helicopter div	
gust-alleviation system using several di		[NASA-TM-75063]	N78-18041
combinations of control surfaces [NASA-TM-78638]	N78-19059	Advanced technology helicopter landing gear [AD-A048891]	ar N78-19124
GUSTS	170-19039	Rotorcraft Design	N70-13124
Development and application of an optimization		[AGARD-CP-233]	N78-19126
procedure for flutter suppression using aerodynamic energy concept	the	Long term experience with a hingeless/comprete rotor	posite
[NASA-TP-1137]	N78-18459	20002	N78-19137
A non-Gaussian gust model for aircraft res	sponse	The Bell Model 222	w70 10120
analysis [NOR-76-223]	N78-19165	The Sikorsky S-76 program	N78-19138
Airplane design for gusts			₹78-19139
GYROCOMPASSES	₹78-19717	The #S 350 light helicopter	N78-19140
Generalized algorithm of the analytical me	ethod of	The Advancing Blade Concept (ABC) rotor pr	
gyrocompassing	170 05043	Hanking a rise	N78-19143
GYROSCOPES	A78-25013	Westland Wisp	N78-19149
Error analysis and simulation concerning a		Civil and military design requirements and	
<pre>inertial navigation system with vehicle- sensors German book</pre>	-fixed	influence on the product	ท78-19151
Sensors German Dook	178-27383	HELICOPTER PERFORMANCE	10151-014
Н		The M1-6A helicopter Russian book	
" , "		Black Hawk, Lamps and AAH	A78-26000
HARMONIC ANALYSIS		breek nearly nembo due usu	A78-26533
PHAROS, processor for harmonic analysis of	f the	UTTAS testing	170-20065
response of oscillating surfaces Wir models	nd tunner	A new helicostat from SNIAS helicopter div	A78-28461 vision
[NLR-MP-77012-U]	N78-18019	[NASA-TH-75063]	N78-18041
HARMONIC OSCILLATION A quasisteady theory for incompressible fi	low nact	Aeromechanical stability of helicopters with bearingless main rotor Part 1: Popart	
A quasisteady theory for incompressible fl airfoils with oscillating jet flaps	ros hasr	<pre>bearingless main rotor. Part 1: Equati motion</pre>	ions of
	A78-26229	[NASA-TH-78459]	N78-18043
HARRIER AIRCHAFT YAV-8B/AV-8B advanced Harrier program		Limitations of the CH-47 helicopter in per	forming
in. objat ob datamoed marrier program	A78-28455	terrain flying with external loads [AD-A048580]	N78-18054
Launching the Harrier from a ski jump		Rotorcraft Design	
Shipboard testing of the AV-8A Harrier	A78-28463	[AGARD-CP-233] British Military helicopter programmes	N78-19126
	N78-19108		N78-19130
HEAD-UP DISPLAYS	.1	Some aspects of offshore operations in the	•
A comparison of integrated and conventions cockpit warning systems pilot perfor		Netherlands	N78-19135
and reaction time in man machine systems	5	The Bell Model 222	
[AD-A048670] Holographic combiners for head-up displays	N78-18022	HELICOPTEES	N78-19138
[AD-A047998]	N78-18064	The Mi-6A helicopter Russian book	
A feasibility study of a manual bomb relea	se while		A78~26000
in a turn [AD-A048882]		The Aerospatiale helicopter factory at Mar	
•	N78-19123		A78-28194
	N78-19123	Research requirements to reduce maintenance	A78-28194 ce costs
	N78-19123	Research requirements to reduce maintenance of civil helicopters [NASA-CR-145288]	

HIGH ALTITUDE SUBJECT INDEX

Airworthiness evaluation NUH-1H helicopter global positioning system	with	HOT PRESSING Flight qualification of titanium P-14A air:	frame
[AD-A047971]	N78-18053	components manufactured by Hot Isostatic	
Crashworthy troop seat testing program [AD-A048975]	N78-19084	Pressing (HIP) [AD-A048485]	N78-18055
Icing on helicopters		HOVERING	
[RAE-LIB-TRANS-1911] VTOL/Helicopter approach and landing guida	N78-19095	In experimental and analytical investigation the hovering and forward flight character	
sensors for Navy ship applications		of the aerocrane hybrid heavy lift vehic	le
13 A. A. alandam balinantam landina an	N78~19119	[AD-A049084]	ท78-19075
Advanced technology helicopter landing gea [AD-A048891]	N78-19124	Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities:	in hover
British Airways helicopter operations			N78-19109
Air-sea rescue operations. Search and res experience		HOVERING STABILITY V/STOL hover stability impact on hover con-	trol task N78-19102
Some aspects of offshore operations in the Netherlands		HUGHES AIRCHAFT The US Army UTTAS and AAH programs	พ78-19131
Combined military and commercial applicati	N78-19135 ion of	HULLS (STRUCTURES) Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta	
The Bell Model 222	N78-19136	temperature, flight data, operational pro	oblems N78-18012
	N78-19138	HUMAN FACTORS ENGINEERING	
Tethered RPV-rotorcraft	N78-19141	Survey of piloting factors in V/STOL aircra implications for flight control system do	esign
DFVLR rotorcraft research	N78-19146	HYDRAULIC EQUIPMENT	19111 - 78
ONERA aerodynamic research work on helicop	ters N78-19148	Hydraulic constant recoil program [AD-A049313]	N78-19517
Technical and financial fall-out on armed	forces	HYDRAULIC PLUIDS	
from commercial and export helicopter pr	ogrammes: 78-19150	Temperature characteristics of the speed of and compressibility of standard fuels and petroleum oils	
High-altitude area navigation (RNAV) enrou	ite	•	A78-26756
simulation [AD-A049315]	N78-19088	HYDRAULIC TEST TUNNELS Water-tunnel experiments on an oscillating	airfoıl
HIGH ALTITUDE BALLOONS A new helicostat from SNIAS helicopter div	rision	at RE equals 21,000 [NASA-TH-78446]	N78-19058
[NASA-TM-75063]	N78-18041	HYDROCARBON FURLS	
HIGH PREQUENCIES The geometrical theory of diffraction - a for the solution of electromagnetic boun		Jet aircraft hydrocarbon fuels technology [NASA-cP-2033] HYDROCARBOWS	N78-19325
value problems of complicated structures		Hydrocarbon group type determination in jet	fuels
high frequency case satellite and ai antennas	rcraft	by high performance liquid chromatography	7 A78-24906
	N78-18290	HYDRODYBABICS	A / 0-24300
HIGH RESOLUTION High resolution, high brightness color tel	oricion	The movement of a wing with deflected ailer close to a screen	cons
projector: Analysis, investigations, de	esign,	[AD-A048651]	N78-18004
performance of baseline projector	v70 40363	HYPERSONIC PLIGHT	
[AD-A049279] HIGH SPEED	N78-19362	Study of hypersonic propulsion/airframe integration technology	
Theoretical evaluation of high speed aerod for arrow wing configurations	ynamics	[NASA-CR-145321] HYPERSONIC FLOW	N78-19096
[NASA-TM-78659]	N78-17992	Maslen analysis of power-law shocks in invi	iscid
HIGH TEMPERATURE ENVIRONMENTS	4-1-	hypersonic stream	170 26404
High temperature environmental effects on [NASA-TM-73878]	N78-19158	HYSTERESIS	178-26481
HODOGRAPHS	1	Lift hysteresis of an oscillating slender e	
Collection of supercritical aerofoils obta with the NLR hodograph method	ined	[AD-A049343]	19073 – 78
[NLR-TR-75115-U]	N78-18009	-	
Moderate Analytical representation of the initial q	1176-18009		
of fastener holes for aircraft struc		ICE FORBATION	
of fastener notes for afficiant struct	uality tures	ICE FORMATION Icing on helicopters	
HOLOGRAPHY	uality tures A78-25180	Icing on helicopters [RAB-LIB-TBANS-1911] IGNITION LINITS	N78-19095
HOLOGRAPHY Holographic combiners for head-up displays	uality tures A78-25180	Icing on helicopters [RAB-LIB-TRANS-1911] IGHITION LIMITS Static electricity in aviation and methods	
HOLOGRAPHY HOLOGRAPHIC combiners for head-up displays [AD-A047998] HOMING DEVICES	uality tures A78-25180	Icing on helicopters	
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998]	tuality tures A78-25180 N78-18064	Icing on helicopters	for A78-27568
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOMING DEVICES Dual-control guidance strategy for homing	tuality tures A78-25180	Icing on helicopters [RRB-LIB-TRAWS-1911] IGWITION LIMITS Static electricity in aviation and methods preventing its effects. IT IMAGE PROCESSING	for A78-27568
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOHING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOMB CORES Durability of adhesive bonded honeycomb sa	nuality tures A78-25180 N78-18064 nts A78-26784	Icing on helicopters [RRB-LIB-TRANS-1911] IGHITION LIMITS Static electricity in aviation and methods preventing its effects. II IMAGE PROCESSING Utilization of Precilec information /aircra attitude and position/ for geometric imag corrections	for A78-27568
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOMING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOMB CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments	nuality tures A78-25180 N78-18064 nts A78-26784	Icing on helicopters [FRAB-LIB-TBAWS-1911] IGWITION LIMITS Static electricity in aviation and methods preventing its effects. II IMAGE PROCESSING Utilization of Precilec information /aircra attitude and position/ for geometric imag corrections IMAGING TECHNIQUES Full color hybrid display for aircraft simu	for A78-27568 Aft ge A78-28399
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOHING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOME CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments HONEYCOME STRUCTURES	nuality tures A78-25180 N78-18064 nts A78-26784 ndwich A78-25202	Icing on helicopters [RRB-LIB-TRAWS-1911] IGWITION LIBITS Static electricity in aviation and methods preventing its effects. IT IMAGE PROCESSING Utilization of Precilec information /aircra attitude and position/ for geometric image corrections IMAGING TECHNIQUES Pull color hybrid display for aircraft simulation aids	for A78-27568 Aft ge A78-28399 Alators
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOMING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOMB CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments	nuality tures A78-25180 N78-18064 nts A78-26784 ndwich A78-25202 ructure	Icing on helicopters [FRAB-LIB-TBANS-1911] IGWITION LIMITS Static electricity in aviation and methods preventing its effects. IT IMAGE PROCESSING Utilization of Precilec information /aircratitude and position/ for geometric image corrections IMAGING TECHNIQUES Full color hybrid display for aircraft simulanding aids [NASA-CASE-ARC-10903-1] IMPELLERS	for A78-27568 Aft te A78-28399 A1ators N78-18083
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOMING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOME CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments HONEYCOME STRUCTURES Today's non-metallic composite airframe st	nuality tures A78-25180 N78-18064 nts A78-26784 ndwich A78-25202 ructure A78-25196 processes	Icing on helicopters	for A78-27568 aft te A78-28399 alators N78-18083
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOHING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOME CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments HONEYCOME STRUCTURES Today's non-metallic composite airframe st - An airline assessment C-14 ¹ A service experience - Materials and HORIZONTAL TAIL SURFACES	nuality tures A78-25180 N78-18064 nts A78-26784 ndwich A78-25202 ructure A78-25196 processes A78-25207	Icing on helicopters [RRB-LIB-TRANS-1911] IGWITION LIMITS Static electricity in aviation and methods preventing its effects. IT IMAGE PROCESSING Utilization of Precilec information /aircratitude and position/ for geometric image corrections IMAGING TECHNIQUES Full color hybrid display for aircraft simulation aids [NASA-CASE-ARC-10903-1] IMPELLERS On the flow in a centrifugal impeller. II -	for A78-27568 Aft te A78-28399 A1ators N78-18083
HOLOGRAPHY Holographic combiners for head-up displays [AD-A047998] HOMING DEVICES Dual-control guidance strategy for homing interceptors taking angle-only measureme HONEYCOMB CORES Durability of adhesive bonded honeycomb sa in accelerated adverse environments HONEYCOMB STRUCTURES Today's non-metallic composite airframe st - An airline assessment C-141A service experience - Materials and	nuality tures A78-25180 N78-18064 nts A78-26784 ndwich A78-25202 ructure A78-25196 processes A78-25207	Icing on helicopters [FRAE-LIB-TRANS-1911] IGNITION LINITS Static electricity in aviation and methods preventing its effects. II IMAGE PROCESSING Utilization of Precilec information /aircratitude and position/ for geometric image corrections IMAGING TECHNIQUES Full color hybrid display for aircraft simulanding aids [NASA-CASE-ARC-10903-1] IMPELLERS On the flow in a centrifugal impeller. II - Effects of change in impeller width	for A78-27568 aft ge A78-28399 Mators N78-18083 - A78-27907 W of a

SUBJECT INDEX JET ENGINES

INCOMPRESSIBLE FLOW A quasisteady theory for incompressible fl	low past	The impact of Bermuda II on future bilater agreements	ral
airfoils with oscillating jet flaps	A78-26229	The Concorde v. the United States - Some of	A78-26472
Potential flow around axisymmetric bodies and inverse problems		INTERPOGATION	A78-26474
On the flow in a centrifugal impeller. II	A78-26230	Derivation of groundspeed information from airborne Distance Measuring Equipment DM	
Effects of change in impeller width	A78-27907	interrogators wind shear [AD-A049277]	N78-19089
A computational model for three-dimensions incompressible small cross flow wall jet	1	INVISCID FLOW Haslen analysis of power-law shocks in inv	
[AD-A048450] Unsteady pressure measurements on wing-sto	N78-18008	hypersonic stream	A78-26481
combinations in incompressible flow [ESA-TT-426]	N78-18018	On the flow in a centrifugal impeller. II	
INERTIAL NAVIGATION		Effects of change in impeller width	178-27907
ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft	carriers	Inviscid fluid models, based on rolled-up sheets, for three-dimensional separation Reynolds number	
	A78-25149	•	N78-18384
Error analysis and simulation concerning a inertial navigation system with wehicle- sensors German book		IOWA Pormulation of Iowa State airport system	A78-27548
	A78-27383	ISOSTATIC PRESSURE	
IMPLATABLE STRUCTURES Preliminary tests of inflatable liferafts	for	Flight qualification of titanium F-14A air components manufactured by Hot Isostation	
stability in high winds [AD-A048722]	N78-18023	Pressing (HIP) [AD-A048485]	N78-18055
Linearized Newtonian aerodynamics of slend inflated comes	ier er	J	
[AD-A048695] INFORMATION SYSTEMS	N78-19064	JAMBING	
Principles and simulation of JTIDS relative		Radar electronic counter-countermeasures	170 261EN
navigation Joint Tactical Information Distribution System		Determination of antenna radiation pattern	
Digital Avionics Information System (DAIS)	A78-26156	cross sections and jam-to-signal ratios flight tests	рÀ
Mid-1980's maintenance analysis	N78-18063	[NLR-MP-76023-U] JET AIRCRAFT	N78-18289
Palefac		The development of materials for turbojets	
[AD-A048331] Implementation plan for an air transportat	N78-18065 tion	Jet aircraft hydrocarbon fuels technology	A78-26041
research information service [AD-A049301]	N78-19081	[WASA-CP-2033] JET AIRCRAPT WOISE	N78-19325
An overview of aviation weather services	N78-19715	The noise from the large-scale structure of	of a jet A78-27144
INLET PLOW		Optimum structural design of sheet-stringe	
Effectiveness of an inlet flow turbulence device to simulate flight fan noise in a anechoic chamber		subjected to jet noise excitation Concorde noise-induced building vibrations	A78-27887
	A78-24880	Kennedy International Firport	
Effect of design changes on aerodynamic ar acoustic performance of translating-cent sonic inlets		[NASA-TM-78660] Acoustic interference effects and the role Helmholtz number in aerodynamic noise	N78-18873 of
[NA SA-TP-1132]	N78-17998	[DLR-IB-257-77/11]	N78-18878
INLET NOZZLES Studies of heat transfer to gas turbine co		Sensitivity of aircraft runup/community no predictions to excess ground attenuation	1
[AD-A048551] INSTRUMENT BERORS	พ78~18071	[AD-A049067] JET ENGINE PUBLS	N78-19164
The use of pyranometers in aircraft [ESA-TT-433]	N78-18408	Hydrocarbon group type determination in je by high performance liquid chromatograph	
INTEGRAL EQUATIONS Evaluation of torsional rigidity of circul		•	A78-24906
aerofoil section twisted bars		Antimisting fuel kinematics related to air crash landings	A78-28147
The integral equation method - a computati	A78-26484 Lonal	Corrosion of fuel assembly components of t	
<pre>method for diffracted and scattered fiel complicated structures satellite and aircraft antennas</pre>		engines and its prevention	A78-28197
	N78-18291	Comparison tests on the 100-GPM electroking fuel decontaminator and a 100-GPM milita	
Prospects for computational aerodynamics - integro-differential formulation		standard filter/separator [AD-A048655]	พ78-18226
INTERCEPTORS	N78-19795	Effect of fuel bound nitrogen on oxides of nitrogen emission from a gas turbine eng	
Dual-control guidance strategy for homing interceptors taking angle-only measureme	ents	[AD-AÖ48382] Jet aircraft hydrocarbon fuels technology	พ78-19162
INTERNETALLICS	A78-26784	[WASA-CP-2033] Computer model for refinery operations wit	N78-19325 h
The promise of eutectics for aircraft turb	ines 178-24882	emphasis on jet fuel production. Volume Data and technical bases	2:
INTERNATIONAL LAW The future determines the past - Bermuda I	in the	[NASA-CR-135334] Jet Bugines	N78-19326
light of Bermuda II air transportati agreement		Economic and safety aspects of prolonging life	engine
•	A78-26470		A78-25142
Bermuda II and after	A78-26471	Service experience and materials evolution Force jet engines	
			A78-25208

JET EXHAUST SUBJECT INDEX

Composite hub/metal blade compressor rote [NASA-CR-135343]	N78-18131	VTOL/Helicopter approach and landing guidance sensors for Navy ship applications	
JET EXHAUST Modification of an ambient air quality me	adal far	LANDING GEAR	/8-19119
assessment of U.S. naval aviation emit		Description of transient motion of aviation mechanisms with double-winding electromagne	tic
JET FLAPS		clutches	
A quasisteady theory for incompressible	flow past		8-25584
airfoils with oscillating jet flaps	A78-26229	Optimum design of a landing gear shock absorb	er
Cambered jet-flapped airfoil theory with			8-26480
and computer programs for application		Wildhaber-Novikov profiles for aircraft gears	
[AD-A048528]	N78-18006	photoelastic study of the efficiency of	
JET FLOW		strength-utilisation	8-26482
An empirical model for inverted-velocity- jet noise prediction	-broille	Advanced technology helicopter landing gear	0-20402
,	A78-24879		8-19124
Entrainment characteristics of unsteady	subsonic	LASER DOPPLER VELOCIMETERS	
jets	A78-26238	Laser velocimeter survey about a NACA 0012 wi low angles of attack	ing at
JET VANES			8-18084
Use of hot-stage-equipped scanning electr		LAUNCHING BASES	
microscope in weld repair study of jet turbine vanes	engine	Launching the Harrier from a ski jump	8-28463
	A78-28371	LEADING EDGES	0 20 105
JOURNAL BEARINGS		A theoretical investigation of the aerodynami	
Squeeze film damper characteristics for question turbine engines	jas	low-aspect-ratio wings with partial leading separation	-eage
[ASME PAPER 77-DET-23]	A78-26796		8-17993
		A lifting surface theory for wings experienci	ng
K		leading-edge separation [AD-A048439] N7	8-19061
KALMAN FILTERS		LBAR JET AIRCRAFT	0 17001
Kalman filter divergence and aircraft mot	tion	Certifying the Learjet to 51,000 feet	
estimators	178-26785	LIFE BAFTS	8-28462
Flight-path reconstruction of symmetric m		Preliminary tests of inflatable liferafts for	
flights		stability in high winds	
[NLR-TR-76133-U] Improvement of flight measuring data with	N78-18056	[AD-A048722] N7	8-18023
filter		Analytical study of a free-wing/free-trimmer	concept
FBMVG-PBWT-77-6] KEVLAB (TRADEHARK)	N78-18057	for gust alleviation and high lift FNASA-CR-2946] N7	8-18000
Service experience of composite parts on	the	Calculation of the lift of partially-stalled	
L-1011 and C-130		C m x mp h00m 3 ""	0-10066
2 1011 dad 6 150			8-19054
• • • • • • • • • • • • • • • • • • •	A78-25197	Lift hysteresis of an oscillating slender ell	ipse
L	A78-25197	Lift hysteresis of an oscillating slender ell	ipse 8-19073
L	A78-25197	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils	ipse 8-19073 fting
L-1011 AIRCRAFT Service experience of composite parts on		Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils	ipse 8-19073
L-1011 AIRCRAFT	the	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEMPATION Noise of deflectors used for flow attachment	ipse 8-19073 fting 8-19074
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130		Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEMFATION Noise of deflectors used for flow attachment STOL-OTW configurations	ipse 8-19073 fting 8-19074 with
L-1011 AIRCRAFT Service experience of composite parts on	the A78-25197	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEMFATION Noise of deflectors used for flow attachment STOL-OTW configurations	ipse 8-19073 fting 8-19074 with 8-24877
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai	the 178-25197 : :craft	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHENTATION Noise of deflectors used for flow attachment STOL-OTW configurations A7 Experimental research on high lift airfoil second	ipse 8-19073 fting 8-19074 with 8-24877 ction
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059]	the &78-25197	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the 11 force of airfoils [AD-A049069] N7 LIFT AUGHEWANTION Noise of deflectors used for flow attachment STOL-OTW configurations Experimental research on high lift airfoil sentings	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition	the 178-25197 : :: :: :: :: :: :: :: :: ::	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHENTATION Noise of deflectors used for flow attachment STOL-OTW configurations A7 Experimental research on high lift airfoil second	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer	the 178-25197 : :: :: :: :: :: :: :: :: ::	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment STOL-OTW configurations Experimental research on high lift airfoil sentings HL235 P-18A configurational development from yr prototype A7	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition	the 178-25197 : :: :: :: :: :: :: :: :: ::	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment of the state of the stat	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW	the A78-25197 : .r.craft N78-18188 on from .o the N78-19048	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIPT AUGHEWATION Noise of deflectors used for flow attachment STOL-OTW configurations Experimental research on high lift airfoil sentings HL235 P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa	the A78-25197 :	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment of the state of the stat	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes	the A78-25197 : ::craft N78-18188 on from :o the N78-19048 stion on	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the 11 force of airfoils [AD-A049069] N7 LIFT AUGHEWANTION Noise of deflectors used for flow attachment STOL-OTW configurations Experimental research on high lift airfoil semications P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439]	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer trubulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274]	the A78-25197 :	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment stole-off configurations Experimental research on high lift airfoil sentings H1235 P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DENG RATIO	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS	1 the A78-25197 ::	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEMATION Noise of deflectors used for flow attachment stol-otw configurations A7 Experimental research on high lift airfoil sentings HL235 P-18A configurational development from TP- prototype TAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] N7: LIFT DRAG BATIO Three-dimensional canard-wing shape optimizat.	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer trubulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274]	the A78-25197	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment stol-otw configurations A7 Experimental research on high lift airfoil senting set of the second set of the second sec	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer trurbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels	1 the A78-25197 ::	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment stole-off configurations A7 Experimental research on high lift airfoil sentings HL235 P-18A configurational development from TP- prototype A7 TAY-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] N7 LIFT DRAG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment: [AIAA PAPER 78-99] LIFT FABS	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule	the A78-25197 :	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment stoleoff configurations A7 Experimental research on high lift airfoil semilizations R1235 A7 F-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program A7: LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment (AIAA PAPER 78-99) LIFT TANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with engin	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer trurbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by	the A78-25197 :	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment stole-off configurations A7 Experimental research on high lift airfoil sentings HL235 P-18A configurational development from YP prototype A7 TAY-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment. [AIAA PAPER 78-99] LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s 8-26274 of a
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer to turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound	the A78-25197 :	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment stole-off configurations A7 Experimental research on high lift airfoil sentings HL235 P-18A configurational development from YP prototype A7 TAY-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment. [AIAA PAPER 78-99] LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a ne, 8-19049
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR PLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR PLOW AIRPOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound	1 the 178-25197 1	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGENETATION Noise of deflectors used for flow attachment stole-otw configurations A7 Experimental research on high lift airfoil sentings HL235 P-18A configurational development from YP prototype A7 YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DEAG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment: [AIAA PAPER 78-99] LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginate high angles of attack [NASA-CR-152055] Rationale for selection of a flight control stole in the cruise fan V/STOL aircraft	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s 8-26274 of a ne, 8-19049 ystem
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR PLOW AIRPOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite laminar	1 the 178-25197 1	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment stolenow configurations A7 Experimental research on high lift airfoil semilists HL235 A7 P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment. [AIAA PAPER 78-99] LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NASA-CR-152055] Rationale for selection of a flight control stor lift cruise fan V/STOL aircraft [GP77-0375-28] N7	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a ne, 8-19049
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer through the supersonic laminar flow companies that the supersonic laminar flow companels LAMINAR WAKES Artificial control of the laminar turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite laminar frame materials [AD-A048364]	1 the 178-25197 1	Lift hysteresis of an oscillating slender ell [AD-A049343] N7 Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIFT AUGEREMATION Noise of deflectors used for flow attachment stole-off configurations A7 Experimental research on high lift airfoil sentices HL235 P-18A configurational development from YP prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DEVICES Therefore the separation [AD-A048439] LIFT DEVICES Therefore the separation [AD-A048439] LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginate high angles of attack [NASA-CR-152055] Rationale for selection of a flight control of for lift cruise fan V/STOL aircraft [GP77-0375-28] LIGHT AIRBORNE BULTIPURPOSE SYSTEM Black Hawk, Lamps and AAH	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s 8-26274 of a ne, 8-19049 ystem 8-19112
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR PLOW AIRPOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite lamin airframe materials [AD-A048364] LANDING AIDS	1 the 178-25197 1	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the li force of airfoils [AD-A049069] N7 LIPT AUGHEWATION Noise of deflectors used for flow attachment stolentwisters configurations Experimental research on high lift airfoil semiliary HL235 P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIPT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] N7: LIPT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment. [AIAA PAPER 78-99] A7 LIFT PANS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NASA-CR-152055] Rationale for selection of a flight control stolentwist for lift cruise fan V/STOL aircraft [GP77-0375-28] LIGHT AIRBORNE HULTIPURPOSE SYSTEM Black Hawk, Lamps and AAH	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s 8-26274 of a ne, 8-19049 ystem
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer through the supersonic laminar flow companies that the supersonic laminar flow companels LAMINAR WAKES Artificial control of the laminar turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite laminar frame materials [AD-A048364]	1 the 178-25197 1	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment STOL-OTW configurations A7 Experimental research on high lift airfoil set RL235 P-18A configurational development from YP prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRAG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment: [AIAA PAPER 78-99] LIFT PAMS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NNSA-CR-152055] Rationale for selection of a flight control s for lift cruise fan V/STOL aircraft [GF77-0375-28] LIGHT AIRBORNE BULTIPURPOSE SYSTEM Black Hawk, Lamps and AAH	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a ne, 8-19049 ystem 8-19112 8-26533
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite lamin airframe materials [AD-A048364] LANDING AIDS Display augmentation in manual control of piloted vehicles	the	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIPT AUGHEWATION Noise of deflectors used for flow attachment STOL-OTW configurations A7 Experimental research on high lift airfoil semilose of the miles	ipse 8-19073 fting 8-19074 with 8+24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a ne, 8-19049 ystem 8-19112 8-26533 of
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPHENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separane bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite lamin airframe materials [AD-A048364] LAMDING AIDS Display augmentation in manual control of piloted vehicles Full color hybrid display for aircraft si	the	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment stol-otw configurations A7 Experimental research on high lift airfoil set H1235 A7 P-18A configurational development from YP prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIFT DRAG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment: [AIAA PAPER 78-99] LIFT PAMS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NASA-CR-152055] Rationale for selection of a flight control sfor lift cruise fan V/STOL aircraft [GF77-0375-28] LIGHT AIRBORME BULTIPURPOSE SYSTEM Black Hawk, Lamps and AAH LIGHT AIRCRAFT Combined military and commercial application of light helicopters	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion 8-26274 of a ne, 8-19049 ystem 8-19112 8-26533
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR PLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite lamin airframe materials [AD-A048364] LANDING AIDS Display augmentation in manual control of piloted vehicles Full color hybrid display for aircraft si landing aids [NASA-CASE-ARC-10903-1]	the	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIPT AUGHEWATION Noise of deflectors used for flow attachment STOL-OTW configurations A7 Experimental research on high lift airfoil semilars HL235 P-18A configurational development from YP- prototype YAV-8B/AV-8B advanced Harrier program LIPT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] LIPT DRNG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment. [AIAA PAPER 78-99] LIFT PRNS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NASA-CR-152055] Rationale for selection of a flight control story for lift cruise fan V/STOL aircraft [GP77-0375-28] LIGHT AIRCRAFT Combined multipurpose System Black Hawk, Lamps and AAH LIGHT AIRCRAFT Combined military and commercial application of light helicopters N7: LIQUID CHROMATOGRAPHY Hydrocarbon group type determination in jet for	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s-26274 of a ne, 8-19049 ystem 8-26533 of 8-19136
L-1011 AIRCRAFT Service experience of composite parts on L-1011 and C-130 LABORATORY EQUIPMENT Accelerated laboratory corrosion test for materials and finishes used in naval ai [AD-A048059] LAMINAR BOUNDARY LAYER Effect of perturbed flow on the transition the supersonic laminar boundary layer turbulent [NASA-TM-75196] LAMINAR FLOW Drag, flow transition, and laminar separa nine bodies of revolution having differ forebody shapes [AD-A048274] LAMINAR FLOW AIRFOILS Material development for laminar flow companels LAMINAR WAKES Artificial control of the laminar-turbule transition of a two-dimensional wake by sound LAMINATES A general study of hybrid composite lamin airframe materials [AD-A048364] LANDING AIDS Display augmentation in manual control of piloted vehicles Full color hybrid display for aircraft si landing aids	the A78-25197 Foraft N78-18188 On from To the N78-19048 Ation on The trol wing A78-25200 A78-25200 A78-27143 Aates N78-19208 Fremotely A78-28148 mulators	Lift hysteresis of an oscillating slender ell [AD-A049343] Static stability of vehicles which use the liforce of airfoils [AD-A049069] N7 LIFT AUGHEWATION Noise of deflectors used for flow attachment stol-otw configurations A7 Experimental research on high lift airfoil set HL235 A7 P-18A configurational development from YP prototype YAV-8B/AV-8B advanced Harrier program LIFT DEVICES A lifting surface theory for wings experience leading-edge separation [AD-A048439] N7: LIFT DRAG RATIO Three-dimensional canard-wing shape optimizat in aircraft cruise and maneuver environment: [AIAA PAPER 78-99] LIFT PAMS Test data report, low speed wind tunnel tests full scale lift/cruise-fan inlet, with enginat high angles of attack [NNSA-CR-152055] Rationale for selection of a flight control sfor lift cruise fan V/STOL aircraft [GP77-0375-28] LIGHT AIRBORNE BULTIPURPOSE SYSTEM Black Hawk, Lamps and AAH LIGHT AIRCRAFT Combined military and commercial application of light helicopters N7: LIQUID CHROMATOGRAPHY Hydrocarbon group type determination in jet for by high performance liquid chromatography	ipse 8-19073 fting 8-19074 with 8-24877 ction 8-25945 -17 8-28454 8-28455 ng 8-19061 ion s-26274 of a ne, 8-19049 ystem 8-26533 of 8-19136

SUBJECT INDEX BETAL HATRIX COMPOSITES

LIQUID CRYSTALS		Pilot centered requirements in control/dis	play
Liquid crystal airborne display [AD-A048198]	N78-18062	design	N78-19110
Development of a programmable panel	N78-18062	HAHAGERENT PLANNING	870-19110
[AD-A048469]	N78-19098	Army aviation RDT and E plan, sixth editio	
LOAD DISTRIBUTION (PORCES) Ideal tail load for minimum aircraft drag		[AD-A049214] Army aviation RDT and E plan. Sixth edita	N78-20010
reed tall load for minimum affectate at ay	A78-28149	Executive summary	On•
The development of fatigue/crack growth an		[AD-A049213]	N78-20012
loading spectra	N78-18048	MANUAL CONTROL	
LOAD TESTING MACHINES	N70-10040	One axis artificial feel system pilot proprioceptive cue forces on aircraft jo	v stick
Automated vibrating bench for studying fat	igue in		A78-26488
gas turbine blades with programmed chang load and temperature	es in	Display augmentation in manual control of piloted wehicles	remotely
tong and cemberature	A78-27267	prioted Venicles	A78-28148
LOADS (PORCES)		A feasibility study of a manual bomb relea	se while
Fatigue load monitoring	N78-18052	in a turn [AD-A048882]	N78-19123
Crashworthy troop seat testing program		MAPPING	
[AD-A048975] LOCKHEED AIRCRAFT	N78-19084	NOISEMAP computer program operator manual.	
Projected role of advanced computational		Addendum for version 3.4 of NOISEMAP	N78-19849
aerodynamic methods at the Lockheed-Geor	gia	HARITIME SATELLITES	
company	N78-19787	The MAROTS maritime satellite programme	178-27049
LOGISTICS	N/0-19/8/	HARKET RESEARCH	A76-27049
Technical and economic evaluation of advan	ceđ air	Technical and economic evaluation of advan	ced air
cargo system concepts	A78-24900	cargo system concepts	¥78-24900
LONGITUDINAL CONTROL	R70-24300	MAROTS (ESA)	F70-24300
Optimal level controls of high performance		Access study and simulation of the Marots	
[DLR-IB-552-77/20] Flight test of stick force stability in	พ78-18059	communication system	A78-27027
attitude-stabilized aircraft		The MAROTS maritime satellite programme	R70 2702.
[NLR-HP-77015-0]	N78-18080		A78-27049
LONGITUDINAL STABILITY The application of techniques for predicti	na STOL	MATERIALS SCIENCE Haterials and processes - In service perfo	rmance:
aircraft response to wind shear and turb	ulence	Proceedings of the Ninth National Techni	cal
during the landing approach	₩78-18077	Conference, Atlanta, Ga., October 4-6, 1	
LOOK ANGLES (TRACKING)	N/0-100//	HATERIALS TESTS	178-25176
Multipath limitations on low-angle radar t		Evaluation of aircraft brake materials	
LOW ASPECT BATIO WINGS	A78-26157	[ASLE PREPRINT 77-LC-6B-2] NATHENATICAL HODELS	A78-28439
A theoretical investigation of the aerodyn	amics of	Multipath fading simulation model and full	-scale
low-aspect-ratio wings with partial lead	ing-edge	results polarized electromagnetic si	gnal
separation [NASA-CR-145304]	N78-17993	transmission	A78-25879
LOW SPEED		Squeeze film damper characteristics for ga	
F flight evaluation of a trailing anemomet low-speed calibrations of airspeed syste		turbine engines [ASME PAPER 77-DET-23]	178-26796
research aircraft	us on	Tentative establishment of a mathematical	
[NASA-TP-1135]	N78-18044	a turbojet engine as a controlled system	
LOW SPEED WIND TUNNELS Experimental research on high lift airfoil	section	A case for a new model for turbulent flame	A78-27567
HL235	50012011	propagation	
LUBRICATING OILS	A78-25945	•	A78-27840
Test of an aviation oil, increased-density	NS-20	A computational model for three-dimensiona incompressible small cross flow wall jet.	
·	A78-25475	[AD-A048450]	N78-18008
Temperature characteristics of the speed of and compressibility of standard fuels an		Inviscid fluid models, based on rolled-up sheets, for three-dimensional separation	
petroleum oils	u	Reynolds number	at nign
	A78-26756		N78-18384
M		Benefit-cost evaluation of an intra-region service in the Bay area	al air
•••		[NASA-CR-152084]	N78-19082
HAGNUS EFFECT		Generalized procedures for tracking crack	growth
Magnus effects on ballistic trajectories [AD-A048966]	N78-19071	in fighter aircraft [AD-A048847]	N78-19121
HAINTAINABILITY		MATRICES (CIRCUITS)	
Economic and safety aspects of prolonging \(\)	engine	Liquid crystal airborne display [AD-A048198]	N78-18062
1110	A78-25142	HATRICES (HATHEHATICS)	N 70-10002
HAINTHNANCE	_	Conservative implicit schemes for the full	
Digital Avionics Information System (DAIS) Mid-1980's maintenance analysis	7	potential equation applied to transonic [NASA-TM-78469]	flows N78-19868
f AD-A047886]	N78-18063	HEASURING INSTRUMENTS	1170 .3000
HAN HACHINE SYSTEMS		MSP/ITWL airborne measuring system	.70
Discrete maneuver pilot models for flying qualities evaluation		MECHANICAL DEVICES	A78-28196
	A78-26791	Two-dimensional oscillating airfoil test a	
A comparison of integrated and conventional cockpit warning systems pilot perform		HETAL HATRIX COMPOSITES	N78-19042
and reaction time in man machine systems		Puselage structure using advanced technological	gy metal
[AD-A048670]	N78-18022	matrix fiber reinforced composites	
		[WASA-CASE-LAR-11688-1]	N78-18045

BETAL SURFACES SUBJECT INDEX

METAL SURPACES	_	HISSION PLANNING	
The wear of aluminum-bronze on steel in th presence of aviation fuel	ie	The Mission Trade-Off Methodology (MTOM) model. Model description	
[ASLE PREPRINT 77-LC-5C-1]	A78-28436		19125
METALLOGRAPHY		HIXBRS	
Materials and processes - In service performance Proceedings of the Ninth National Techni	rmance; .cal	Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] N78-	18067
Conference, Atlanta, Ga., October 4-6, 1		HODE (STATISTICS)	
Watallansinal balantum of amounting and a	A78-25176	Application and comparison of modal perturbation	n
Metallurgical behavior of arresting gear d pendants	eck	methods and modal correction procedures exemplified by a swept wing with two external	
Fondante	A78-25185	stores	
METALS			18014
High temperature environmental effects on [NASA-TM-73878]	metals N78-19158	MOLECULAR FLOW The fluid dynamics of rarefied molecular flow o	VOT
METEOROLOGICAL SERVICES	470 13130	convex bodies - A new theory and applications	
Aviation weather service requirements, 198		A78-	27588
An overview of aviation weather services	N78-19713	MOTION STABILITY Kalman filter divergence and aircraft motion	
	N78-19715	estimators	
A synopsis of the weather problems facing	today's		26785
general aviation pilots	N78-19718	The philosophy adopted for the flight testing o	f
MICROWAVE ANTENNAS		the Panavia Tornado avionics system in Rack	-
Optimal aperture-shape for an antenna arra	y	aircraft	
for radio navigation of flight vehicles	A78-27406	BULTIPATH TRANSHISSION	18060
MICROWAVE LANDING SYSTEMS		Multipath fading simulation model and full-scale	е
Precision DME for new landing system - Fas	t or	results polarized electromagnetic signal	
slow pulse	A78-26549	transmission	25879
Benefits of MLS guidance for curved approa-	ches.	Multipath limitations on low-angle radar tracking	ng
Volume 2. Operational benefits for New	York		26157
Airports [PB-274585/9]	N78-18037	Multistatic-radar binomial detection	26158
HILITARY AIR PACILITIES		HULTIPROCESSING (COMPUTERS)	
Air quality impact of aircraft at ten U.S. Force bases	Air	Multiprocessing tradeoffs and the wind-tunnel simulation problem	
	A78-25391		19805
HILITARY AIRCRAFT		HULTISPECTRAL BAND SCANNERS	
Service experience and materials evolution Force jet engines	in Air	Analysis of single and double coverage aircraft multispectral scanner arrays for positional de	
rored jet engines	A78-25208		19553
The Mission Trade-Off Methodology (MTOM) m	rafo.	·	
	oder.	a le	
Model description		Ň	
Model description [AD-A049318] HILITARY AVIATION	N78-19125	NACELLES	
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition	พ78-19125 n	Parametric transonic evaluation of type # VSTOL	
Model description [AD-A049318] HILLTARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214]	N78-19125 n N78-20010	Parametric transonic evaluation of type A VSTOL nacelle drag	
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212]	N78-19125 n N78-20010 PY 1977 N78-20011	Parametric transonic evaluation of type & VSTOL nacelle drag [ND-N048110] N78- Integrated gas turbine engine-nacelle	18002
Model description [AD-A09318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition	N78-19125 n N78-20010 PY 1977 N78-20011	Parametric transonic evaluation of type & VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78-	18002 18066
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212]	N78-19125 n N78-20010 PY 1977 N78-20011	Parametric transonic evaluation of type # VSTOL nacelle drag [ND-N048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of	18002 18066 f a
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS	N78-19125 N78-20010 FY 1977 N78-20011 On.	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack	18002 18066 f a
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and pro-	N78-19125 N78-20010 FY 1977 N78-20011 On.	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78-	18002 18066 f a
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS	N78-19125 N78-20010 FY 1977 N78-20011 On.	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack	18002 18066 f a ,
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship	N78-19125 N78-20010 PY 1977 N78-20011 DN. N78-20012 Spects	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever	18002 18066 f a , 19049 f a
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A09212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecutive future	N78-19125 N78-20010 PY 1977 N78-20011 DD. N78-20012 Spects N78-19128	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78-	18002 18066 f a , 19049 f a 18078
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship	N78-19125 N78-20010 PY 1977 N78-20011 DN. N78-20012 Spects	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever	18002 18066 f a , 19049 f a 18078
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Navy experience with small ship helicopter operations British Military helicopter programmes	N78-19125 N78-20010 PY 1977 N78-20011 DD. N78-20012 Spects N78-19128	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN	18002 18066 f a , 19049 f a 18078 e
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and proform the future Canadian wavy experience with small ship helicopter operations	N78-19125 N	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78-	18002 18066 f a , 19049 f a 18078
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Navy experience with small ship helicopter operations British Military helicopter programmes	N78-19125 N78-20010 PY 1977 N78-20011 DN. N78-20012 Spects N78-19128 N78-19130 N78-19131 N78-19131	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of	18002 18066 f a , 19049 f a 18078 e
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and proform the future Canadian wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement	N78-19125 n N78-20010 PY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19130 N78-19131 nts N78-19131	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing	18002 18066 f a , 19049 f a 18078 e
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs	N78-19125 n N78-20010 PY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19130 N78-19131 nts N78-19131	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing	18002 18066 f a , 19049 f a 18078 e 19065 of
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and professor the future Canadian wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement Yvaluation of the tilt rotor concept. The	N78-19125 n N78-20010 PY 1977 N78-20011 pn. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19131 NTS-19132 XV-15's N78-19142	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing VHF/UHP direction-finding in air traffic control A78-	18002 18066 f a , 19049 f a 18078 e 19065 of
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement role Civil and military design requirements and	N78-19125 n N78-20010 PY 1977 N78-20011 pn. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19131 NTS-19132 XV-15's N78-19142	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis WASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78-: WHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative	18002 18066 f a , 19049 f a 18078 e 19065 of
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement Pvaluation of the tilt rotor concept. The role Civil and military design requirements and influence on the product	N78-19125 n N78-20010 PY 1977 N78-20011 pn. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19131 NTS-19132 XV-15's N78-19142	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing VHF/UHP direction-finding in air traffic control A78-	18002 18066 f a , 19049 f a 18078 e 19065 of
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement process Fivaluation of the tilt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program	N78-19125 N78-20010 PY 1977 N78-20011 DD. N78-20012 Spects N78-19128 N78-19129 N78-19130 N78-19131 nts W78-19132 XY-15's N78-19142 their N78-19151	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78-: WHF/UHF direction-finding in air traffic control A78-: Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System	18002 18066 f a , 19049 f a 18078 e 19065 of
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army aviation RDT and E plan. Sixth edition [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement F valuation of the tilt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313]	N78-19125 n N78-20010 PY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19132 IV-15's N78-19142 their	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- MASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System A78-2	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement for the future for the corps rotary wing requirement for the corps and form of the filt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined military and commercial applications	N78-19125 n N78-20010 PY 1977 N78-20011 pn. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19132 XY-15's N78-19142 their N78-19151 N78-19151	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis WASTRAN [AD-A048840] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78-: WHF/UHF direction-finding in air traffic control A78-: Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Temport	18002 18066 f a 19049 f a 18078 e 19065 of 25013 1 25046 est
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Navy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement Fivaluation of the tilt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS	N78-19125 N78-20010 PY 1977 N78-20011 Dn. N78-20012 Spects N78-19128 N78-19129 N78-19130 N78-19131 NTS N78-19132 XV-15's N78-19142 their N78-19151 N78-19151	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distinuous System A78- Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Temport [NASA-TM-73223] N78-	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement for the future for the corps rotary wing requirement for the corps and form of the filt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined military and commercial applications	N78-19125 n N78-20010 PY 1977 N78-20011 pn. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19132 XY-15's N78-19142 their N78-19151 N78-19151	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System A78- Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TM-73223] WAVIGATION INSTRUMENTS	18002 18066 f a 19049 f a 18078 e 19065 of 25013 25046 26156 est 18025
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined willtary and commercial application light helicopters HILITARY TECHNOLOGY Adaptive phased arrays for tactical communications	N78-19125 n N78-20010 PY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19128 N78-19130 N78-19131 nts N78-19132 XY-15's N78-19142 their N78-19517 on of N78-19136	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- MASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System A78- Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Temport [NASA-TM-73223] N78- NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carrie of the inertial navigation units of	18002 18066 f a 19049 f a 18078 e 19065 of 25013 25046 26156 est 18025
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement for the future for the corps rotary wing requirement for the cole Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined military and commercial application light helicopters	N78-19125 n N78-20010 FY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19129 N78-19130 N78-19131 nts N78-19131 nts N78-19131 the near	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- NASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System A78-: Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TH-73223] N78- NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carries of the inertial navigation units of Super-Etendard aircraft	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046 26156 est 18025 ers
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and profor the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined willtary and commercial application light helicopters HILITARY TECHNOLOGY Adaptive phased arrays for tactical communications	N78-19125 n N78-20010 PY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19128 N78-19130 N78-19131 nts N78-19132 XY-15's N78-19142 their N78-19517 on of N78-19136	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- NASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System A78-: Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TH-73223] N78- NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carries of the inertial navigation units of Super-Etendard aircraft	18002 18066 f a 19049 f a 18078 e 19065 of 25013 25046 26156 est 18025
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosection for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement and influence on the tilt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined military and commercial application light helicopters MILITARY TECHNOLOGY Adaptive phased arrays for tactical community systems for FCM rejection MISSILE DESIGN Perodynamic computer code for computing pre-	N78-19125 N78-20010 FY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19128 N78-19130 N78-19131 nts N78-19131 N78-19132 IV-15's N78-19142 their N78-19151 N78-19517 on of N78-19136 ication 178-27040 essure	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TH-73223] N78- NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carrie of the inertial navigation units of Super-Etendard aircraft NAVY Proceedings of the Navy/NASA VSTOL Plying Quality	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046 26156 est 18025 ers 25149 ties
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosecution for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement for the future for the role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] MILITARY OPERATIONS Combined military and commercial application light helicopters MILITARY TECHNOLOGY Adaptive phased arrays for tactical communications and computer code for computing proloading on complete missile for structures.	N78-19125 N78-20010 FY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19128 N78-19130 N78-19131 nts N78-19131 N78-19132 IV-15's N78-19142 their N78-19151 N78-19517 on of N78-19136 ication 178-27040 essure	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis WASTRAN [AD-A048360] N78- WAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing WHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TM-73223] NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carries of the inertial navigation units of Super-Etendard aircraft NAVI Proceedings of the Navy/NASA VSTOL Plying Qualit [NASA-CR-155810]	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046 26156 est 18025 ers
Model description [AD-A049318] HILITARY AVIATION Army aviation RDT and E plan, sixth edition [AD-A049214] Army research and technology laboratories, [AD-A049212] Army aviation RDT and E plan. Sixth edition Executive summary [AD-A049213] HILITARY HELICOPTERS German Army helicopter development and prosection for the future Canadian Wavy experience with small ship helicopter operations British Military helicopter programmes The US Army UTTAS and AAH programs US Navy/Marine Corps rotary wing requirement and influence on the tilt rotor concept. The role Civil and military design requirements and influence on the product Hydraulic constant recoil program [AD-A049313] HILITARY OPERATIONS Combined military and commercial application light helicopters MILITARY TECHNOLOGY Adaptive phased arrays for tactical community systems for FCM rejection MISSILE DESIGN Perodynamic computer code for computing pre-	N78-19125 N78-20010 FY 1977 N78-20011 on. N78-20012 spects N78-19128 N78-19128 N78-19130 N78-19131 nts N78-19131 N78-19132 IV-15's N78-19142 their N78-19151 N78-19517 on of N78-19136 ication 178-27040 essure	Parametric transonic evaluation of type A VSTOL nacelle drag [AD-A048110] N78- Integrated gas turbine engine-nacelle [NASA-CASE-LEW-12389-2] N78- Test data report, low speed wind tunnel tests of full scale lift/cruise-fan inlet, with engine, at high angles of attack [NASA-CR-152055] N78- WASTRAN The effects of external stores on the flutter of non-uniform cantilever [AD-A048360] N78- Aerodynamic computer code for computing pressure loading on complete missile for structural analysis NASTRAN [AD-A04880] N78- NAVIGATION AIDS Generalized algorithm of the analytical method of gyrocompassing A78- VHF/UHF direction-finding in air traffic control A78- Principles and simulation of JTIDS relative navigation Joint Tactical Information Distribution System Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: To report [NASA-TH-73223] N78- NAVIGATION INSTRUMENTS ALIDADE - The alignment on board aircraft carrie of the inertial navigation units of Super-Etendard aircraft NAVY Proceedings of the Navy/NASA VSTOL Plying Quality	18002 18066 f a , 19049 f a 18078 e 19065 of 25013 1 25046 26156 est 18025 ers 25149 ties

SUBJECT INDEX NUMERICAL PLOW VISUALIZATION

Capabilities of the Wavy variable stability X- for V/STOL flying qualities R and D		NOZZLE PLOW In empirical model for inverted-velocity-profit	ıle
NAVTOLAND and flying qualities	3-19105	jet noise prediction A78	3-24879
US Wavy/Marine Corps rotary wing requirements	3-19120		vs 1-25728
BAR FIRIDS N78	3-19132	Swirl flow in conical diffusers A78	3-27910
Some singular aspects of three-dimensional transonic flow	1 3-26239	<pre>IOMBRICAL ABALTSIS A theoretical investigation of the aerodynamic low-aspect-ratio wings with partial leading-</pre>	sof
BAR WARES		separation	3-17993
	3-25777	Compressor and fan wake characteristics	
Effect of blockage ratio on the turbulent near wake of a bluff body	: 3-26489	[NASA-CR-155766] N78 Analytical study of a free-wing/free-trimmer c for gust alleviation and high lift	3-17995 concept
Calculating the interaction of a turbulent nea wake behind a step and a supersonic jet	ır	[NASA-CR-2946] N78 Prediction of unsteady separated flows on	3-18000
A78 ETHERLANDS	3-28057	oscillating airfoils	8~18387
Some aspects of offshore operations in the Netherlands		Preliminary study for a numerical aerodynamic simulation facility. Phase 1: Extension	, ,,,,,,,,
BW YORK	-19135	[NASA-CR-152108] P78 Future Computer Requirements for Computational	19052
Benefits of MLS guidance for curved approaches		Aerodynamics	
Volume 2: Operational benefits for New York Airports [PB-274585/9] N78	3-18037	[NASA-CP-2032] N76 Computational aerodynamics and the numerical aerodynamic simulation facility	3-19778
OISE GENERATORS		N78	3-19779
Noise generated by low pressure axial flow famili - Effects of rotational frequency, blade			-19792
	-26498	Prospects for computational aerodynamics integro-differential formulation	
OISE BRASUREMENT Investigation of ground reflection and impedan	ce !	N78 IUMBRICAL CONTROL	1-19795
from flyover noise measurements [NASA-CR-145302] N78	-18874	Multivariable quadratic synthesis of an advance turbofan engine controller	:eđ
OISE POLLUTION Sensitivity of aircraft runup/community noise		Integrated controls for a new aircraft generat	
predictions to excess ground attenuation [AD-A049067] N78	-19164	Numerical aerodynamic simulation facility.	-28219
DISE REDUCTION Effectiveness of an inlet flow turbulence cont	ro)	Preliminary study extension. Executive summ	ary 3-19050
device to simulate flight fan noise in an anechoic chamber		IDMERICAL PLOW VISUALIZATION Application of a finite difference scheme to t	
	-24880	numerical solution of the direct problem of	
Study of the propagation of higher modes in cylindrical ducts with impedance walls for	or	two-dimensional cascade of airfoils	-25636
aircraft noise reduction		Puture Computer Requirements for Computational	
Research Requirements for the improvement of	-25773		-19778
helicopter operations W78	-19147	Computational aerodynamics and the numerical aerodynamic simulation facility	
Evaluation of the in-flight noise signature of 32-chute suppressor nozzle: Acoustic data r		N78 Computational aerodynamics requirements: The	19779
outdoor static and 40 x 80 ft. wind tunn- tests	el	future role of the computer and the needs of aerospace industry	
[NASE-CR-152076] N78- DISE SPECTRA	-19899	N78 Remarks on future computational aerodynamics	1-19784
	jet -27144		ns 1-19785
OMEQUILIBRIUM PLOW Similar solutions in nonequilibrium nozzle flo 178	vs -25728	Puture requirements and roles of computers in aerodynamics N78	-19786
ONLINEAR EQUATIONS Continuation and direct solution of the flutter		Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia	
equation A78	-25703	company w78	-19787
DBUBIFORM FLOW Nonuniformity of the flow, exciting wibrations	: 1n	Computational aerodynamics requirements in conjunction with experimental facilities	
working turbine blades A78	-27266		-19788
NWAY Air-sea rescue operations. Search and rescue		Computational Fluid Dynamics (CFD): Future ro and reguirements as viewed by an applied	le
	-19134		-19789
OSE COMES A procedure for the determination of the effect	t of	Viscous flow simulations in VTOL aerodynamics finite difference technique	
fuselage nose bluntness on the wave drag of supersonic cruise aircraft		Critical issues in viscous flow computations	-19791
[NASA-CR-145306] N78- DZZLE DESIGN	-17994	N78 Viscous flow simulation requirements of	- 19792
F-15/nonaxisymmetric nozzle system integration study support program		aerodynamic interest	-19793
	-18070	Prospects for computational aerodynamics integro-differential formulation	
			-19795

OPPSHORE EMERGY SOURCES SUBJECT INDEX

•		PATLOADS Limitations of the CH-07 beliconter in nor	forming
O		Limitations of the CH-47 helicopter in per terrain flying with external loads	TOTMING
OPPSHORE EMERGY SOURCES Some aspects of offshore operations in the		[AD-A048580] Naval Emergency Air Cargo Delivery System	N78-18054 (NBACDS)
vetherlands	N78-19135	feasibility tests and evaluation [AD-A048988]	N78-19085
OMNIDIRECTIONAL RADIO RANGES High-altitude area navigation (RNAV) enrou	to.	PRRCEPTION Sensory mechanism modeling	
simulation		[AD-A049278]	₩78-19170
[AD-A049315]	N78-19088	PERPORATED PLATES	
ONBOARD EQUIPMENT ALIDEDE - The alignment on board aircraft of the inertial navigation units of	carriers	Analytical representation of the initial q of fastener holes for aircraft struc	
Super-Etendard aircraft	A78-25149	Stresses and deformations in stiffened pan rectangular cut-outs. I - On case of uni	els with
OPERATING SYSTEMS (COMPUTERS)	n.0 23143	tensile loads	
preliminary study for a numerical aerodyna simulation facility. Phase 1: Extensio	n	PERFORMANCE TESTS	A78-26266
[NASA-CR-152108] OPERATING TEMPERATURE	ท78-19052	Test of an aviation oil, increased-density	#S-20 #78-25475
The 0.1m subsonic cryogenic tunnel at the mniversity of Southampton		PERTURBATION THEORY Application and comparison of modal pertur	hation
[NASA-CR-145305]	N78-18086	methods and modal correction procedures	Ducton
OPERATIONAL HAZARDS NASA's aviation safety research and techno	logy	exemplified by a swept wing with two ext stores	ernal
program	N78-19719	[DLR-FB-77-21]	N78-18014
OPERATIONAL PROBLEMS Supporting investigations during testing o	-	PHASE SHIFT REYING UHP demand assigned multiple access /UHP D system for tactical satellite communicat	
WDL-1 airship in Ghana and Upper Volta -	hull	•	A78-27032
temperature, flight data, operational pr [DLR-IB-536-77/1]	N78-18012	PHOTOCHERICAL REACTIONS Simulation of airport air quality by box	
problems pilots face involving wind shear	N78-19722	photochemical and Gaussian models	A78-25033
OPTICAL PROPERTIES		PHOTOBLASTIC AWALYSIS	1
Holographic combiners for head-up displays [AD-A047998] OPTIMAL CONTROL	N78-18064	Wildhaber-Novikov profiles for aircraft ge photoelastic study of the efficiency of strength-utilisation	ars - A
nual-control guidance strategy for homing		•	A78-26482
interceptors taking angle-only measuremen	A78-26784	PILOT PERFORMANCE Discrete maneuver pilot models for flying	
<pre>optimal level controls of high performance</pre>	N78-18059	qualities evaluation	A78-26791
Optimal aperture-shape for an antenna arra	v	F-15/16 canopy off testing	A78-28453
for radio navigation of flight vehicles	-	A comparison of integrated and conventiona	1
Optimal aircraft simulator development by	A78-27406 adaptive	cockpit warning systems pilot perfor and reaction time in man machine systems	
random search optimization	n70 .40000	[AD-A048670]	N78-18022
OSCILLATING PLOW Entrainment characteristics of unsteady sul	N78-18082	Analytical study of ride smoothing benefit control system configurations optimized pilot handling qualities	
jets		[NASA-TP-1148]	N78-18076
OSCILLATIONS	A78-26238	Survey of piloting factors in V/STOL aircr implications for flight control system d	esign
Prediction of unsteady separated flows on oscillating airfoils		Problems pilots face involving wind shear	19111 - 78
Two-dimensional oscillating airfoil test a	N78-18387 pparatus	PISTON ENGINES	N 78-19722
Water-tunnel experiments on an oscillating	N78-19042	Test of an aviation oil, increased-density	MS-20 A78-25475
at RE equals 21,000		PITCH (INCLINATION)	
[NAS4-TH-78446] Lift hysteresis of an oscillating slender of [AD-A049343]	N78-19058 ellipse N78-19073	A free-oscillation test rig for pitch-damp measurements in N.A.L. trisonic wind tun	
(AU-804364)	#70-19U/3	PITCHING BONENTS	R/0-2040/
P		A summary of ship deck motion dynamics as to VSTOL aircraft	
PANELS Stresses and deformations in stiffened panel	ale with	PLASTIC AIRCRAFT STRUCTURES	N78-19116
rectangular cut-outs. I - On case of unit		Selecting plastics for aircraft application	ns 178-28374
PARTICLE SIZE DISTRIBUTION	A78-26266	PNEUMATIC EQUIPMENT Optimum design of a landing gear shock abs	
The dynamics of non spherical particles aerodynamic translational mobility of cul		system	178-26480
cylinders [AD-A047144]	N78-19080	POLARIZED ELECTROMAGNETIC RADIATION Multipath fading simulation model and full	-scale
PARTICLE TRAJECTORIES The dynamics of non spherical particles		results polarized electromagnetic si transmission	gna1
aerodynamic translational mobility of cul cylinders	bes and	POLTURETHANE RESINS	A78-25879
[AD-A047144]	N78-19080	In-service performance of polygrethane and	
PASSENGER AIRCRAPT Ride quality flight testing		fluorocarbon rain erosion resistant rado coatings	me
	A78-26795		A78-25205

SUBJECT INDEX RADAR TRACKING

PORTABLE EQUIPMENT A portable device particularly suited for use in starting air-start units for aircraft [NASA-CASE-PRC-10113-1] POSITION INDICATORS Utilization of Precilec information /aircraft	PROPELLER DRIVE Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5 [BMVG-PBWT-77-16] PROPELLER EFFICIENCY
attitude and position/ for geometric image corrections	Return of the propeller
POTENTIAL FLOW	PROPELLER PAWS Return of the propeller
Potential flow around arisymmetric bodies - Direct and inverse problems A78-26230	PROPELLERS
A uniqueness proof for a transonic flow problem A78-26599 POTENTIAL THEORY	Experimental determination and comparison with theory of thrust, noise and driving weight of propeller drives light aircraft Sportavia S5 [BMVG-PBWT-77-16]
A method for calculation of the pressure distribution of wing-body configurations for large angle of attack at subsonic speed based on potential theory	PROPRIOCEPTION One axis artificial feel system pilot proprioceptive cue forces on aircraft joy stick A78-26488
[BHVG-PBHT-77-15] N78-18013 PREDICTION ANALYSIS TECHNIQUES	PROPULSION Variable mixer propulsion cycle
Prediction of the severity of buffeting wind tunnel tests	[NASA-CASE-LEW-12917-1] N78-18067 Study of hypersonic propulsion/airframe
PREDICTIONS N78-18382	integration technology [NASA-CR-195321] N78-19096
Sensitivity of aircraft runup/community noise predictions to excess ground attenuation	PROTECTIVE CONTINGS Evaluation of protective coatings applied under
[AD-A049067] N78-19164 PRESSURE DISTRIBUTION	adverse conditions A78-25194
Some singular aspects of three-dimensional transonic flow	Exploratory development of conductive coating materials for use on aircraft radomes
Response of periodic beam to supersonic	[AD-A048253] R78-18138 PROTOTYPES
boundary-layer pressure fluctuations A78-27886	YC-14B prototype testing A78-28459
Experimental verification of an annular aerofoil theory A78-27938	PULSE PREQUENCY HODULATION Uplink coverage measurements in the Los Angeles area for passive BCAS collision avoidance
A method for calculation of the pressure distribution of wing-body configurations for	[AD-A048288] N78-18027 PULSE RADAR
large angle of attack at subsonic speed based on potential theory	Multistatic-radar binomial detection A78-26158
「PRVG-PBWT-77-15] Unsteady pressure measurements on wing-store combinations in incompressible flow	PURSUIT TRACKING Adaptive tracking filter for maneuvering targets A78-26167
[25A-TT-426] N78-18018 Investigation of the unsteady pressure	PYRAMORETERS The use of pyranometers in aircraft
distribution on the blades of an axial flow fan [NASA-CR-155771] N78-18068	[ESA-TT-433] N78-18408
Aerodynamic computer code for computing pressure loading on complete missile for structural	Q
analysis NASTRAN N78-19065 PRESSURE GRADIERTS	QUALITATIVE AWALYSIS Hydrocarbon group type determination in jet fuels by high performance liquid chromatography
Unsteady boundary layer with self-induced pressure A78-28102	A78-24906 QUASI-STEADY STATES
Investigation of the unsteady pressure distribution on the blades of an axial flow fan [MASA-CR-155771] N78-18068	A quasisteady theory for incompressible flow past airfoils with oscillating jet flaps A78-26229
PRESSURE OSCILLATIONS Combustor fluctuating pressure measurements	R
in-engine and in a component test facility - A preliminary comparison	RADAR BEACONS
PRESSURE RECOVERY	Radar beacon tracking with downlinked heading and airspeed
Swirl flow in conical diffusers A78-27910	A78-26780 Uplink coverage measurements in the Los Angeles
PRODUCTION ENGINEERING Recent progress and technical and economic outlooks in the processing of materials for	area for passive BCAS collision avoidance [AD-A048288] N78-18027 RADAR CROSS SECTIONS
airframe elements A78-26036 PROJECTORS	Determination of antenna radiation patterns, radar cross sections and jam-to-signal ratios by flight tests
High resolution, high brightness color television projector: Analysis, Investigations, design,	[NLR-NP-76023-U] N78-18289 BADAR DETECTION
performance of baseline projector [AD-A049279] W78-19362 PROPAGATION HODES	Multistatic-radar binomial detection A78-26158 RADAR EQUIPMENT
Study of the propagation of higher modes in cylindrical ducts with impedance walls for	Radar electronic counter-countermeasures
aircraft noise reduction A78-25773	Standard electronic module radar cost analysis [AD-A048207] N78-18319
PROPELLER BLADES Patigue resistance of aircraft propeller blades A78-27259	BADAE HAVIGATION B-1 terrain following development A78-28456
	RADAR TRACKING Multipath limitations on low-angle radar tracking A78-26157

RADAR TRANSMISSION SUBJECT INDEX

Radar beacon tracking with downlinked head arrspeed	ling and	REFIBING Computer model for refinery operations wit	h
	A78-26780	emphasis on jet fuel production. Volume	
RADAR TRANSMISSION Some results on digital chirp radar de	sion	Data and technical bases [NASA-CR-135334]	N78-19326
· -	A78-26160	REPLECTION	
RADIATION DOSAGE The Concorde and cosmic rays		Investigation of ground reflection and imp from flyover noise measurements	edance
-	A78-26739	[NASA-CR-145302]	N78-18874
RADIATION MEASURING INSTRUMENTS Automatic system employing radioactive rad	iation	REPRACTORY HATERIALS Progress in advanced high temperature turb	ine
to level-out an aircraft at landing		materials, coatings, and technology	A78-24910
RADIO ANTENNAS	A78-25011	REGIONAL PLANNING	A76-24910
Null steering antennas in the tactical sce	nario 178-27037	Airport choice in low demand region	A78-27547
RADIO CONTROL	A/8-2/03/	Pormulation of Iowa State airport system	A 70-21547
Plight tests of a radio-controlled airplan		REGRESSION ANALYSIS	A78-27548
with a free-wing, free-canard configurat [NASA-TM-72853]	N78-18042	Improvement of flight measuring data with	a Kalman
RADIO DIRECTION FINDERS VHF/UHP direction-finding in air traffic c	antral	filter [BMVG-FBWT-77-6]	N78-18057
·	A78-25046	REGULATORS	
RADIO EMISSION Aircraft measurements of the spatial fluct	nation	Output feedback regulator design for jet e control systems	ngine
characteristics of atmospheric radio emi		•	A78-24898
wavelengths of 0.8 and 1.35 cm	A78-27721	REINFORCED PLASTICS Selecting plastics for aircraft application	ns
RADIO PREQUENCY INTERPERENCE			A78-28374
An adaptive interference cancellation syst elimination of co-located interference s		A general study of hybrid composite lamina airframe materials	tes
for ATC sites	•	[AD-A048364]	N78-19208
Objective measurement of voice channel	A78-27041	REINFORCED PLATES Stresses and deformations in stiffened pane	els with
intelligibility	w70 4006#	rectangular cut-outs. I - On case of uni	form
[AD-A048611] RADIO NAVIGATION	N78-18264	tensile loads	A78-26266
Optimal aperture-shape for an antenna arra	у	REINFORCING FIBERS	an motal
for radio navigation of flight vehicles	A78-27406	Puselage structure using advanced technolo- matrix fiber reinforced composites	gy merar
RADIOACTIVE ISOTOPES Automatic system employing radioactive rad	.ation	[NASA-CASE-LAR-11688-1] Predicted inlet gas temperatures for tungs	N78-18045
to level-out an aircraft at landing		fiber reinforced superalloy turbine blad	es
RADONE NATERIALS	A78-25011	[NASA-TH-73842] RELIABILITY	78-19157
In-service performance of polyurethane and		Reliability, Improvement Warranty (RIW) mi	a
fluorocarbon rain erosion resistant rado coatings	⊒e	contract evaluation [AD-A048244]	N78-18441
•	A78-25205	RENOTE SENSORS	
Exploratory development of conductive coat	ing	Remote sensing of aircraft wake vortex move the airport environment aircraft exh	
materials for use on aircraft radome	s	products tracking	A78-25385
[AD-A048253] RAIL TRANSPORTATION	N78-18138	[APCA PAPER 77-41,4] Error analysis and simulation concerning a	n
The new railroad artery Paris-Sud-Est and high-speed trains: How the Paris Sud-Est	was	inertial navigation system with vehicle- sensors German book	fixed
born - Basic options for high speed	was		A78-27383
passenger trains	A78-25263	Utilization of Precilec information /aircrattitude and position/ for geometric image.	
RAIN		corrections	-
In-service performance of polyurethane and fluorocarbon rain erosion resistant rado		RENOTELY PILOTED VEHICLES	A78-28399
coatings		Display augmentation in manual control of	remotely
RAMJET ENGINES	A78-25205	piloted vehicles	A78-28148
Study of hypersonic propulsion/airframe		Design and evaluation of a side force gene modification for the XBQM-1 remotely pil-	
integration technology [NASA-CR-145321]	N78-19096	wehicle	ocea
RANDOM PROCESSES Optimal arcraft simulator development by		[AD-A048901] Westland Wisp	N78-19122
random search optimization	•		N78-19149
RAREFIED GAS DINAMICS	N78-18082	RESCUE OPERATIONS Air-sea rescue operations. Search and res	cne
The fluid dynamics of rarefied molecular f		experience	
convex bodies - A new theory and applica	tions A78-27588	RESBARCH AIRCRAFT	N78-19134
REACTION TIME	_	A flight evaluation of a trailing anemomet	
A comparison of integrated and conventiona cockpit warning systems pilot perfor		low-speed calibrations of airspeed systeresearch aircraft	ms on
and reaction time in man machine systems		[NASA-TP-1135]	N78-18044
[AD-A048670] REAL TIME OPERATION	N78-18022	Conceptual design study of a Harrier V/STO research aircraft	L
Palefac	W70_10065	[NASA-CR-152086]	N78-19094
[AD-A049331] RECTAMGULAR PAWELS	N78-18065	RESEARCH AND DEVELOPMENT The year for shaping a digital operations 1	R& D
Optimum structural design of sheet-stringe	r panels	program for ATC	A78-28218
subjected to jet noise excitation			n/0-/0/10
	A78-27887	Integrated controls for a new aircraft gene	

SUBJECT INDEX SEA LAUNCHING

Coming cockpit avionics A78-282	
Army aviation RDT and E plan, sixth edition N78-200 N78-200 Army research and technology laboratories, PY 1977	
[AD-A049212] Fray aviation RDT and E plan. Sixth edition.	N78-19143 I1 ONERA aerodynamic research work on helicopters N78-19148
Executive summary	ROTOR BLADES (TURBOHACHINERY)
[AD-A049213] N78-200	
RESEARCH HANAGEBERT Research requirements to reduce maintenance costs	distribution on the blades of an axial flow fan [NASA-CR-155771] N78-18068
of civil helicopters [NASA-CR-145288] N78-179	ROTORS Npplication of system identification to analytic
RESEARCH VEHICLES	rotor modeling from simulated and wind tunnel
The rotor systems research aircraft: A new step in the technology and rotor system verification	dynamic test data N78-18040
cycle N78~191	RUNWAYS 4 Launching the Harrier from a ski jump
RESIDUAL STRESS	A78-28463
The damage sum in fatigue of structure components A78-268 REVISIONS	Concepts for estimating capacity of basic runway configurations [PB-274578/4] N78-18036
Conceptual design study of a Harrier V/STOL	Concepts for determination of longitudinal
research aircraft	separation standards on final approach
[NASA-CR-152086] N78-190 REYNOLDS HUMBER	94 [PS-274590/9] N78-18038 BURAL AREAS
Inviscid fluid models, based on rolled-up vortex sheets, for three-dimensional separation at high	Airport choice in low demand region A78-27547
Reynolds number	
RHEOELECTRICAL SIMULATION	S S
Method for solving problems of flow past a wing	S-3 AIRCRAFT
with fuselage bounded by an ideal fluid flow A78-255	S-3A composite spoiler in-service evaluation A78-25209
BIDING QUALITY	SAFETY
Ride quality flight testing A78-267	Crashworthy troop seat testing program PS [AD-A048975] N78-19084
Analytical study of ride smoothing benefits of	SAN PRANCISCO (CA)
control system configurations optimized for pilot handling qualities	Benefit-cost evaluation of an intra-regional air service in the Bay area
[NASP-TP-1148] N78-180	6 [NASA-CR-152084] N78-19082
Aeromechanical stability of helicopters with a	SANDWICH STRUCTURES Durability of adhesive bonded honeycomb sandwich
bearingless main rotor. Part 1: Equations of motion	in accelerated adverse environments A78-25202
[NASA-TM-78459] N78-180	
The Advancing Blade Concept (ABC) rotor program	The geometrical theory of diffraction - a method
N78-191	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the
ROTARY WING AIRCRAFT ROTOCCAFT Design	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft
ROTARY WING AIRCRAFT ROTOCCART Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290
ROTARY WING AIRCRAFT ROTOCCCAFT Design [AGARD-CP-233] US Navy/Marine Corps rotary wing requirements Tethered RPV-rotocccaft	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of
ROTARY WING AIRCRAFT ROTOCCART Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotoccaft N78-191	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and
ROTARY WING AIRCRAFT ROTORCAFT Besign [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft The rotor systems research aircraft: A new step in the technology and rotor system verification cycle	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODBLS
ROTARY WING AIRCRAFT ROTORCAFT Besign [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODBLS
ROTARY WING AIRCRAFT ROTARY WING AIRCRAFT ROTARY ROTORCAFT ROTO	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30
ROTARY WING AIRCRAFT ROTORCAFT Besign [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle DPVLR rotorcraft research	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics
ROTARY WING AIRCRAFT ROTARY RO	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE HODRLS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody
ROTARY WING AIRCRAFT ROTARY WING ROTARY WINGS Patigue resistance of aircraft propeller blades	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALB MODBLS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] N78-17998
ROTARY WING AIRCRAFT ROTARY WINGS Fatigue resistance of aircraft propeller blades ROTARY WINGS	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet
ROTARY WING AIRCRAFT ROTARY WING ROTARY WING ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30 [NASA-TP-1119] Reffect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE HODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DPVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78459] N78-180 Nodern concepts for aerodynamic rotor design	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Fatigue resistance of aircraft propeller blades Ar8-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78059] Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE HODRLS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] N78-18036
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T=-78459] N78-180 Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180 Two-dimensional oscillating airfoil test apparatus	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] Neasuring the impact on scheduled air lines operations of restrictions in fuel availability
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DPVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-TM-78459] Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] Two-dimensional oscillating airfoil test apparatus N78-190 Long term experience with a hingeless/composite	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] N88-18549
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T*-78459] N78-180 Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] Two-dimensional oscillating airfoil test apparatus N78-190 Long term experience with a hingeless/composite rotor	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEBULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] Neasuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEN EFFECT Investigation of aerodynamic characteristics of
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Fatigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78459] N78-180 N78-180 N78-191 Two-dimensional oscillating airfoil test apparatus N78-190 Long term experience with a hingeless/composite rotor N78-191 ROTOR AERODINANICS	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] Reasuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEN EFFECT Investigation of aerodynamic characteristics of V-vings near solid surface
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DPVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T*-78459] N78-180 Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180 Nodern term experience with a hingeless/composite rotor ROTOR AERODYNANICS Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] Reasuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEN EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] N78-18003 SE-3160 HELICOPTER
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft The rotor systems research aircraft: A new step in the technology and rotor system verification cycle DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Fatigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78459] N78-180 N78-180 Two-dimensional oscillating airfoil test apparatus N78-190 Long term experience with a hingeless/composite rotor ROTOR AERODINANICS Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/b] Reasuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEN EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] N78-18003 SP-3160 HELICOPTER The AS 350 light helicopter
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78859] N78-180 Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180 Long term experience with a hingeless/composite rotor ROTOR AERODINANTCS Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile A78-2645	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] N78-18036 Measuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEM EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] SP-3160 HELICOPTER The AS 350 light helicopter
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Fatigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T*-78459] N78-180 Hodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180 Long term experience with a hingeless/composite rotor ROTOR AERODINANICS Noise generated by low pressure arial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile Compressor and fan wake characteristics [NASA-CR-155766] N78-1799	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/b] Reasuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18036 SCREEN EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] N78-18003 SEA_LAUNCHING The STO deck launch problem
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WINGS Patigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78459] N78-180 Nodern concepts for aerodynamic rotor design [DLR-IB-151-77/11] N78-180 Long term experience with a hingeless/composite rotor FOTOR ABRODINANTCS Noise generated by low pressure arial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile Compressor and fan wake characteristics [NASA-CR-155766] Application of system identification to analytic rotor modeling from simulated and wind tunnel	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Mach 0.30 [NASA-TP-1119] N78-17997 Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-19047 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] N78-18036 Measuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEM EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] SP-3160 HELICOPTER The AS 350 light helicopter
ROTARY WING AIRCRAFT Rotorcraft Design [AGARD-CP-233] N78-191 US Navy/Marine Corps rotary wing requirements N78-191 Tethered RPV-rotorcraft N78-191 The rotor systems research aircraft: A new step in the technology and rotor system verification cycle N78-191 DFVLR rotorcraft research Research Requirements for the improvement of helicopter operations N78-191 ROTARY WIMCS Fatigue resistance of aircraft propeller blades A78-272 Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion [NASA-T#-78459] N78-180 N78-180 Two-dimensional oscillating airfoil test apparatus N78-190 Long term experience with a hingeless/composite rotor ROTOR AERODYNAMICS Noise generated by low pressure axial flow fans. III - Effects of rotational frequency, blade thickness and outer blade profile Compressor and fan wake characteristics [NASA-CR-155766] Application of system identification to analytic	The geometrical theory of diffraction - a method for the solution of electromagnetic boundary value problems of complicated structures in the high frequency case satellite and aircraft antennas N78-18290 The integral equation method - a computational method for diffracted and scattered fields of complicated structures satellite and aircraft antennas N78-18291 SCALE MODELS Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics for a full-span model at Nach 0.30 [NASA-TP-1119] Effect of design changes on aerodynamic and acoustic performance of translating-centerbody sonic inlets [NASA-TP-1132] Genesis N + 1: The origins of the turbo-jet revolution N78-17998 SCHEDULING Concepts for estimating capacity of basic runway configurations [PB-274578/4] Measuring the impact on scheduled air lines operations of restrictions in fuel availability N78-18549 SCREEN EFFECT Investigation of aerodynamic characteristics of V-wings near solid surface [AD-A048555] SCHENCIENG The AS 350 light helicopter 8 SEA LAUNCHING The helicopter/ship dynamic-interface problem: A new approach

SEAPLANES SUBJECT INDEX

summary of ship deck motion dynamics as a	nnlied	SIGNAL ENCODING	
to VSTOL aircraft	N78-19116	Some results on digital chirp radar de	sign A78-26160
Seakeeping considerations in the employment		SIGNAL PADING	A70-20100
V/STOL on Naval ships	N78-19117	Multipath fading simulation model and full- results polarized electromagnetic sig	
SEAPLANES Tri-Gull amphibian development		transmission	A78-25879
. 11 Gail ambulding development	178-28460	SIGNAL PROCESSING	
SENTS		Adaptive phased arrays for tactical communi	ication
Crashworthy troop seat testing program [AD-A048975]	N78-19084	systems for BCM rejection	A78-27040
SEPARATED FLOW		SIGNAL STABILIZATION	
Pundamental studies of subsonic and transon separation. Part 2: Second phase summar		MSP/ITWL airborne measuring system	A78-28196
[AD-A048615]	N78-18007	SIKORSKY AIRCRAPT	
Introduction to unsteady aspects of separat subsonic and transonic flow	ion in	The US Army UTTAS and AAH programs	N78-19131
	N78-18381	The Sikorsky S-76 program	N70 13131
Prediction of unsteady separated flows on			N78-19139
oscillating airfoils	N78-18387	SINULATORS The NAE airborne V/STOL simulator	
SERVICE LIFE		·	N78-19145
Economic and safety aspects of prolonging e life	ngine	SLENDER BODIES The wave system attached to a finite slender	r bods
	A78-25142	in a supersonic relaxing gas stream	er pod i
SERVONECHANISHS		•	A78-27146
Rydraulic constant recoil program [AD-A049313]	N78-19517	Some unsteady separation problems for slend	N78-18383
SHIP TERMINALS	.,,	An experimental investigation of steady as	
Access study and simulation of the Marots		vortex shedding from a slender body of	
communication system	A78-27027	revolution at high angles of attack [AD-A048370]	N78-19062
SHIPS		Lift hysteresis of an oscillating slender	
Review of US Navy VSTOL handling qualities requirements		[AD-A049343] SLIDING PRICTION	N78-19073
•	N78-19104	The wear of aluminum-bronze on steel in the	9
The helicopter/ship dynamic-interface probl new approach	em: A	presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1]	A78-28436
	N78-19115	Evaluation of aircraft brake materials	R70 20450
Seakeeping considerations in the employment	of	[ASLE PREPRINT 77-LC-6B-2]	A78-28439
V/STOL on Naval ships	N78-19117	SLOTTED WIND TUNNELS Design and performance evaluation of slotte	ed walls
SHOCK ABSORBERS	_	for two-dimensional wind tunnels	
Optimum design of a landing gear shock abso system	rber	[NASA-TH-78648] SHALL PERTURBATION PLOW	ท78-18085
•	A78-26480	A uniqueness proof for a transonic flow pro	
SHOCK LAYERS	said	SOLID SURFACES	A78-26599
Maslen analysis of power-law shocks in invi hypersonic stream	SCIU	Investigation of aerodynamic characteristic	s of
	A78-26481	V-wings near solid surface	w70 10002
SHOCK TUNNELS Driver gas contamination in a high-enthalpy		[AD-A048555] SONIC BOOMS	ท78-18003
reflected shock tunnel		The wave system attached to a finite slende	er body
SHOCK WAVE INTERACTION	A78-26235	in a supersonic relaxing gas stream	A78-27146
The supersonic flow past cusped wings		SOUND LOCALIZATION	
SHOCK WAVE PROPAGATION	A78-28056	Resolution enhanced sound detecting apparate wind tunnel apparatus for airframe noise	:us
The wave system attached to a finite slender	r body	localization	
in a supersonic relaxing gas stream	170 27416	[NASA-CASE-NPO-14134-1]	N78-19898
SHORT TAKEOFF AIRCRAFT	A78-27146	SOUND TRANSDUCERS Resolution enhanced sound detecting apparat	us
Noise of deflectors used for flow attachmen	t with	wind tunnel apparatus for airframe noise	
STOL-OTW configurations	A78-24877	localization [NASA-CASE-NPO-14134-1]	N78-19898
YC-15 development and test highlights - Pha	se III	SOUND WAVES	
	A78-28457	The noise from the large-scale structure of	a jet 178-27144
Parametric transonic evaluation of type A V nacelle drag	210L	SPACE SHUTTLE ORBITERS	R/0-2/144
[AD-A048110]	N78-18002	Shuttle carrier aircraft flight tests	.70 0000
The application of techniques for predictin aircraft response to wind shear and turbu		SPACE SHUTTLES	A78-28464
during the landing approach		1977 report to the aerospace profession;	
<pre>fUTIAS-215] The WAB airborne V/STOL simulator</pre>	N78-18077	Proceedings of the Twenty-first Symposium Beverly Hills, Calif., October 12-15, 197	
	N78-19145		A78-28451
SIGNAL AWALYSIS Analog versus digital null-steering control:	lors	SPEECH RECOGNITION Display and speech devices for simulator	
	1015 A78-27039	instructor/operator station applications	
Adaptive phased arrays for tactical communic	cation	[AD-A049247]	N78-19169
systems for ECM rejection	A78-27040	SPIN STABILIZATION Hagnus effects on ballistic trajectories	
An adaptive interference cancellation system	m for	FPD-A048966]	ท78-19071
elimination of co-located interference si for ATC sites	gnals	SPOILERS S-3A composite spoiler in-service evaluation	n .
	A78-27041	composite appearant an activate considere	A78-25209

SUBJECT INDEX SUPERCRITICAL WINGS

SPREAD SPECTRUM TRANSMISSION Active reference null steering for spread signals	spectrum	Calculation methods for fatigue life and c propagation	erack 18049
STABILITY	A78-27038	Linearized Newtonian aerodynamics of slend inflated cones	
Preliminary tests of inflatable liferafts stability in high winds		[AD-A048695] A general study of hybrid composite lamina	N78-19069 ates
[AD-A048722] STABILITY DERIVATIVES	ท78-18023	airframe materials [AD-A048364]	N78-19208
A free-oscillation test rig for pitch-damp measurements in N.A.L. trisonic wind tun		STRESS-STRAIN RELATIONSHIPS Stresses and deformations in stiffened pan rectangular cut-outs. I - On case of uni	
STABILIZED PLATFORES Tethered RPV-rotorcraft		tensile loads	A78-26266
STANDARDIZATION	พ78-19141	STRUCTURAL AWALYSIS Evaluation of torsional rigidity of circul	lar arc
Modular packaging approaches [AD-A048205]	N78-18321	aerofoil section twisted bars	A78-26484
STANDARDS Current standards of fatigue test on strik	e aircraft	The effects of external stores on the flut non-uniform cantilever	ter of a
[AGARD-AR-92] STARTING	N78-18051	[AD-A048360] STRUCTURAL DESIGN	N78-18078
A portable device particularly suited for starting air-start units for aircraft	use in	Optimum structural design of sheet-stringe subjected to jet noise excitation	er panels
[NASA-CÁSE-PRC-10113-1] STATIC BLECTRICITY	N78-19166	Airplane design for gusts	A78-27887
Static electricity in aviation and methods preventing its effects. II	for	STRUCTURAL DESIGN CRITERIA	N78-19717
STATIC FIRING	A78-27568	The need for improved materials in integra	1
Evaluation of the in-flight noise signatur			A78-25177
32-chute suppressor nozzle: Acoustic da outdoor static and 40 x 80 ft. wind		Material development for laminar flow cont panels	FOI Wing
tests [NASA-CR-152076]	₩78-19899	STRUCTURAL ENGINEERING	
STATIC PRESSURE Two-dimensional transonic testing with spl plates	itter	Recent progress and technical and economic outlooks in the processing of materials airframe elements	
[WASA-TP-1153] STATIC STABILITY	ห78-17999	STRUCTURAL PAILURE	A78-26036
Static stability of vehicles which use the force of airfoils	lifting	The damage sum in fatigue of structure com	ponents A78-26834
[AD-A049069] STEADY PLOW	N78-19074	STRUCTURAL RELIABILITY Today's non-metallic composite airframe st	
Some singular aspects of three-dimensional transonic flow	-	- An airline assessment	A78-25196
STEELS	A78-26234	Service experience of composite parts on t L-1011 and C-130	: he
C-141% service experience - Materials and	processes A78-25207	Durability of adhesive bonded honeycomb sa	178-25197
Wildhaber-Novikov profiles for aircraft ge photoelastic study of the efficiency of	ears - A	in accelerated adverse environments	A78-25202
strength-utilisation	A78-26482	STRUCTURAL VIBRATION A quasisteady theory for incompressible fl	low past
STEERABLE ANTERNAS Null steering antennas in the tactical sce	enario	airfoils with oscillating jet flaps	A78-26229
Active reference null steering for spread	A78-27037	Nonuniformity of the flow, exciting vibrat working turbine blades	
signals	178-27038	Concorde noise-induced building vibrations	A78-27266 John P.
STIPPENING Stresses and deformations in stiffened pan	els with	Kennedy International Airport [NASA-TM-78660]	N78-18873
rectangular cut-outs. I - On case of uni tensile loads	form	SUBSONIC PLOW Entrainment characteristics of unsteady su	bsonic
STIPPNESS	A78-26266	jets	A78-26238
Evaluation of torsional rigidity of circul aerofoil section twisted bars	ar arc	Pundamental studies of subsonic and transo separation. Part 2: Second phase summa	nic flow
STOCHASTIC PROCESSES	A78-26484	[AD-A048615] SUBSONIC SPEED	₩78-18007
Optimum structural design of sheet-stringe subjected to jet noise excitation	r panels	A method for calculation of the pressure distribution of wing-body configurations	for
STRAIN HARDENING	A78-27887	large angle of attack at subsonic speed based on potential theory	
The damage sum in fatigue of structure com	ponents A78-26834	[BMVG-PBWT-77-15] SUPERCRITICAL WINGS	78-18013 -78
STRAPDOWN INERTIAL GUIDANCE		Collection of supercritical aerofoils obta	ined
Ralman filter divergence and aircraft moti estimators		with the NLR hodograph method [NLR-TR-75115-U]	N78-18009
Error analysis and simulation concerning a	178-26785	An aerodynamic investigation of a forward [AD-A048898]	swept wing N78-19069
inertial navigation system with vehicle- sensors German book	fixed	Analysis and design of a cooled supercriti airfoil test model wall temperature	.cal
STRESS ANALYSIS	A78-27383	on boundary layer stability [AD-A048895]	₹78-19168
Wildhaber-Novikov profiles for aircraft ge photoelastic study of the efficiency of strength-utilisation	ars - A	(60 6070000)	2.0 15100

A78-26482

SUPERSONIC AIRCRAFT SUBJECT INDEX

SUPERSONIC AIRCRAFT A procedure for the determination of the e	effect of	V/STOL flying qualities requirements in the control during short takeoff	v v
fuselage nose bluntness on the wave drag supersonic cruise aircraft	of		N78-19103
[NASA-CR-145306] SUPERSONIC BOUNDARY LAYERS	N78-17994	Launching the Harrier from a sk1 jump	A78-28463
Response of periodic beam to supersonic		TAPERING	
boundary-layer pressure fluctuations	A78-27886	Influence of wing tapering on the developme three-dimensional turbulent boundary laye	
Effect of perturbed flow on the transition the supersonic laminar boundary layer to		exemplified with a transonic wing [BMVG-PBWT-77-7]	N78-18010
turbulent [NASA-TM-75196]	N78-19048	TARGET ACQUISITION Adaptive tracking filter for maneuvering ta	
SUPERSONIC CRUISE AIRCRAFT RESEARCH		•	A78-26167
Theoretical evaluation of high speed aerod for arrow wing configurations	ynamics	TECHNOLOGICAL PORECASTING Return of the propeller	
[NASA-TM-78659] SUPERSONIC DRAG	N78-17992	Puture CTOL aircraft characteristics	A78-25516
Three-dimensional canard-wing shape optimi			A78-27542
in alroraft cruise and maneuver environm [Alah Paper 78-99] SUPERSONIC FLOW	A78-26274	Future Computer Requirements for Computation Aerodynamics [NASA-CP-2032]	N78-19778
The wave system attached to a finite slend	er body	Computational aerodynamics requirements: T	he
in a supersonic relaxing gas stream	178-27146	future role of the computer and the needs aerospace industry	
The supersonic flow past cusped wings	A78-28056	Projected role of advanced computational	N78-19784
Introduction to unsteady aspects of separa subsonic and transonic flow		aerodynamic methods at the Lockheed-Georg company	
LASTOP: A computer code for laser turrets	N78-18381	Computational Fluid Dynamics (CFD): Future	N78-19787 role
optimization of small perturbation turre subsonic or supersonic flow	ts in	and requirements as viewed by an applied aerodynamicist computer systems design	m
(AD-A049272) SUPERSONIC JET FLOW	N78-19076		N78-19789
Calculating the interaction of a turbulent	near	Progress in advanced high temperature turbi	ne
wake behind a step and a supersonic jet	A78-28057	materials, coatings, and technology	A78-24910
SUPERSONIC WIND TUNNELS Application of a new test method and a new		1977 report to the aerospace profession: Proceedings of the Twenty-first Symposium	١,,
wind-tunnel-data processing technique to study of unsteady heat conduction proces	the	Beverly Hills, Calif., October 12-15, 197	
	A78-27455	TECHNOLOGY UTILIZATION	
SWEPT WINGS The supersonic flow past cusped wings		Fuselage structure using advanced technolog matrix fiber reinforced composites	A merar
Influence of wing tapering on the developm three-dimensional turbulent boundary lay		[MASA-CASE-LAR-11688-1] TELECOMMUNICATION The MAROTS maritime satellite programme	N78-18045
exemplified with a transonic wing [BMVG-PBWT-77-7]	N78-18010		A78-27049
Application and comparison of modal pertur		Display augmentation in manual control of r	emotely
methods and modal correction procedures exemplified by a swept wing with two ext	ernal		A78-28148
stores [DLR-PB-77-21]	N78-18014	TELEVISION SYSTEMS Liquid crystal airborne display	
An aerodynamic investigation of a forward [AD-A048898]			N78-18062
SWEPTBACK WINGS		Some aspects of the thermal design of fligh	
Calculation of the lift of partially-stall [NAL-TR-498T]	ed wings N78-19054	vehicles and processing of heat-test data	A78-27452
SWIRLING Effect of high levels of confinement upon	the	TEMPERATURE DISTRIBUTION Experimental investigation of the temperatu	re
aerodynamics of swirl burners	A78-26107	field in a plane channel carrying a strat turbulent air stream	
Swirl flow in conical diffusers			A78-27139
SYSTEMS AWALTSIS	178-27910	TEMPERATURE EFFECTS Temperature characteristics of the speed of	sound
<pre>"echnical and economic evaluation of advan- cargo system concepts</pre>		and compressibility of standard fuels and petroleum oils	
SYSTEMS ENGINEERING	A78-24900	TENSILE STRESS	178-26756
Multivariable quadratic synthesis of an ad- turbofan engine controller	vanced A78-26793	Stresses and deformations in stiffened pane rectangular cut-outs. I - On case of unif- tensile loads	
P-15/nonaxisymmetric nozzle system integra	tion		A78-26266
study support program [NASA-CR-135252]	N78-18070	Air France's new 'freight' installations at Charles de Gaulle Airport at Roissy, Fran	ce
T		Aviation weather service requirements, 1980	A78-25261 - 1990
TAIL ASSEMBLIES Ideal tail load for minimum aircraft drag			N78-19713
TAKBOPP	A78-28149	Strategic positioning and traffic regulatio the terminal zone	
Concepts for estimating capacity of basic to configurations	_	Dual-control guidance strategy for homing	A78-25150
[PB-274578/41	N78-18036	interceptors taking angle-only measuremen	ts A78-26784

SUBJECT INDEX TRANSONIC PLOW

Concepts for determination of longitudinal Separations standards on final approach	1170_10 020	TIME BESPONSE Precision DME for new landing system - Past	or
[PB-274590/9] TERRAIN POLLOWING AIRCRAFT	N78-18038	slow pulse	78-26549
B-1 terrain following development		TITABLUR ALLOYS	/0-20343
p , certain tortowill descrobment	A78-28956	Assessment of processing methods for titanium	_
Limitations of the CH-47 helicopter in perf		alloys for aircraft structures	•
terrain flying with external loads			78-26040
	N78-18054	Plight qualification of titanium P-144 airfr	
TEST PACILITIES		components manufactured by Hot Isostatic	_
Numerical aerodynamic simulation facility.		Pressing (HIP)	
Preliminary study extension. Executive s	UMBALY		78-18055
F NASA-CR-152106]	พ78-19050	TOLERANCES (MECHANICS)	
Numerical aerodynamic simulation facility.		Pault-tolerant software for aircraft control	
Preliminary study extension		[NASA-CR-145298] N	78-18797
	ท78-19051	TORSIONAL VIBRATION	
TEST STANDS		Evaluation of torsional rigidity of circular	arc
Two-dimensional oscillating airfoil test ap		aerofoil section twisted bars	
	N78-19042		78-26484
THER HAL CONDUCTIVITY		TOWED BODIES	
All-Union Seminar on Inverse and Conjugate	CCD	Guided drogue flight test report	70_10067
Problems of Heat Transfer, 2nd, Moscow, U October 19-21, 1976, Proceedings	22K*		78-19067
	A78-27451	TRACKING FILTERS Adaptive tracking filter for maneuvering tard	note:
THERMAL CYCLING TESTS	110 21431		78-26167
Automated vibrating bench for studying fati	ane in	TRACKING RADAR	.0 20 0.
gas turbine blades with programmed change		Nultipath limitations on low-angle radar trac	cking
load and temperature			78-26157
	A78-27267	TRADEOFFS	
THERBAL SINULATION		The Mission Trade-Off Methodology (MTOM) mode	21.
Some aspects of the thermal design of fligh	t	Model description	
<pre>vehicles and processing of heat-test data</pre>			78-19125
	A78-27452	Multiprocessing tradeoffs and the wind-tunne	l
Application of a new test method and a new		simulation problem	
wind-tunnel-data processing technique to			78-19805
study of unsteady heat conduction process		TRAPPIC CONTROL	
	A78-27455	Access study and simulation of the Marots	
THERMOPLASTIC RESINS		communication system	
Development of thermoplastic composite airc structural elements	rart	TRAILING-EDGE FLAPS	78-27027
	N78-19097	Analytical study of a free-wing/free-trimmer	concont
THIN AIRPOILS	N/0-1303/	for gust alleviation and high lift	Concept
Artificial control of the laminar-turbulent			78-18000
transition of a two-dimensional wake by e		TRAINING DEVICES	
Sound	2002.10.2	Automated weapon system trainer: Expanded	
	A78-27143	adaptive module for basic instrument flight	t
THIS PILES		maneuvers	-
Studies of heat transfer to gas turbine com	ponents		78-18087
	N78-18071	TRAJECTORY OPTIMIZATION	
THIR WINGS		Optimal level controls of high performance as	ırcraft
A uniqueness proof for a transonic flow pro	blem	[DLR-IB-552-77/20] N	78-18059
	A78-26599	TRANSPER PUNCTIONS	
Investigation of aerodynamic characteristic	s of	Development and application of an optimization	
V-wings near solid surface	-70 40000	procedure for flutter suppression using the	9
	N78-18003	aerodynamic energy concept	
THREE DIMENSIONAL BOUNDARY LAYER	-4 -6 -	[NASA-TP-1137] N' TRAUSITION PLON	78-18459
Influence of wing tapering on the developme		Artificial control of the laminar-turbulent	
three-dimensional turbulent boundary laye exemplified with a transonic wing	L	transition of a two-dimensional wake by ext	orna 1
	N78-18010	sound	rer na r
THREE DIMENSIONAL PLOW	11.0 10010		78-27143
Some singular aspects of three-dimensional		TRANSLATIONAL HOTION	
transonic flow		The dynamics of non spherical particles	
	A78-26234	aerodynamic translational mobility of cubes	s and
A computational model for three-dimensional		cylinders	
incompressible small cross flow wall jets		[AD-A047144] N	78-19080
	N78-18008	TRANSONIC PLOW	
Inviscid fluid models, based on rolled-up v		Application of a finite difference scheme to	
sheets, for three-dimensional separation	at high	numerical solution of the direct problem of	E a
Reynolds number		two-dimensional cascade of airfoils	
	N78-18384		78-25636
Boundary layer over spinning blunt-body of	£0770-	Some singular aspects of three-dimensional	
revolution at incidence including magnus [AD-A049199]	N78-19072	transonic flow	78-26234
THRUST	N/0-130/2	A uniqueness proof for a transonic flow probl	
Experimental determination and comparison w	ith		78-26599
theory of thrust, noise and driving weigh		Two-dimensional transonic testing with splitt	
propeller drives light aircraft Sport		plates	
	ท78-18072		78-17999
TILTING BOTOBS		Fundamental studies of subsonic and transonic	
Evaluation of the tilt rotor concept: The	XV-15's	separation. Part 2: Second phase summary	
role		[AD-A048615] N	78-18007
	N78-19142	Introduction to unsteady aspects of separation	n in
TIBE DIVISION HULTIPLE ACCESS		subsonic and transonic flow	
OHP demand assigned multiple access /OHP DA			78-18381
system for tactical satellite communication		Transonic flow past an airfoil with condensat	
	A78-27032		78-19053
		Unsteady transonic flow computations	10-10060
		[AD-A0491881 N7	78-19068

TRANSONIC SPEED SUBJECT INDEX

Conservative implicit schemes for the full potential equation applied to transonic [NRSA-TM-78469]		TURBOJET ENGINES Genesis N + 1: The origins of the turbo-jet revolution	t
TRANSONIC SPEED Influence of wing tapering on the developm three-dimensional turbulent boundary lay	ent of a	Approximate dynamic model of a turbojet ene [NASA-TM-75263]	N78-19047 gine N78-19159
exemplified with a transonic wing [BMVG-PBWT-77-7]	ท78-18010	TURBONACHINE BLADES Evaluation of torsional rigidity of circula	ar arc
TRANSONIC WIND TUNNELS Two-dimensional transonic testing with spl	ittor	aerofoil section twisted bars	A78-26484
plates		Noise generated by low pressure axial flow	fans.
[HASA-TP-1153] TRANSPORT AIRCRAFT	78- 17999	III - Effects of rotational frequency, bit thickness and outer blade profile	lade
Technical and economic evaluation of advan cargo system concepts	ced air	TURBOPROP BUGINES	178-26498
	A78-24900	Return of the propeller	
Effect of winglets on a first-generation j transport wing. 4: Stability character		TURBULENCE	A78-25516
for a full-span model at Mach 0.30 [WASA-TP-1119]	N78-17997	Mean velocity, turbulence intensity and tur convection velocity measurements for a	rbulence
TRIBOLOGY Evaluation of aircraft brake materials		convergent nozzle in a free jet wind tung Comprehensive data report	nel.
TASLE PREPRINT 77-LC-6B-2]	A78-28439	[NASA-CR-135238]	N78-17991
TUNGSTEN ALLOYS Predicted inlet gas temperatures for tungs	ten	TURBULENCE EFFECTS A case for a new model for turbulent flame	
fiber reinforced superalloy turbine blad [NASA-TM-73842]	es N78-19157 /	propagation	A78-27840
TURBINE BLADES	•	Separation problems encountered by aircraft	
The promise of eutectics for aircraft turb	A78-24882	designers css Div. des Etudes Avancees.	N78-18377
Application of a finite difference scheme numerical solution of the direct problem		TURBULENT BOUNDARY LAYER Fundamental studies of subsonic and transor	nic flow
two-dimensional cascade of airfoils		separation. Part 2: Second phase summar	ry report
Nonuniformity of the flow, exciting wibrat	A78-25636 ions in	[AD-A048615] Influence of wing tapering on the developme	
working turbine blades	A78-27266	three-dimensional turbulent boundary laye exemplified with a transonic wing	er
Automated vibrating bench for studying fat gas turbine blades with programmed change		[BMVG-FBWT-77-7] Effect of perturbed flow on the transition	N78-18010
load and temperature		the supersonic laminar boundary layer to	
Use of hot-stage-equipped scanning electron		turbulent [NASA-TM-75196]	N78-19048
microscope in weld repair study of jet e turbine vanes	ngine	TURBULENT PLOW Effectiveness of an inlet flow turbulence of	control
Predicted inlet gas temperatures for tungs fiber reinforced superalloy turbine blad		device to simulate flight fan noise in ar anechoic chamber	a 278-24880
[NASA-TM-73842]	N78-19157	Experimental investigation of the temperatu	ıre
TURBINE ENGINES Corrosion of fuel assembly components of t	urbine	field in a plane channel carrying a strat turbulent air stream	
engines and its prevention	A78-28197	The noise from the large-scale structure of	A78-27139 Eajet
Low cycle fatigue in turbines [NASA-TM-75264]	₩78-19156	Compressor and fan wake characteristics	A78-27144
TURBOPAN ENGINES		[NA SA-CR-155766]	N78-17995
Combustor fluctuating pressure measurement in-engine and in a component test facili		Acoustic interference effects and the role Helmholtz number in aerodynamic noise	
preliminary comparison	A78-24878	[DLR-IB-257-77/11] TURBULENT WAKES	N78-18878
Effectiveness of an inlet flow turbulence of device to simulate flight fan noise in a		Spanwise structure of the plane turbulent w	rake A78-25777
anechoic chamber	 A78-24880	Pffect of blockage ratio on the turbulent n wake of a bluff body	
Output feedback regulator design for jet en		•	A78-26489
control systems	478-24898	Artificial control of the laminar-turbulent transition of a two-dimensional wake by e	
Service experience and materials evolution Force jet engines	in Air	sound	A78-27143
Return of the propeller	A78-25208	Calculating the interaction of a turbulent wake behind a step and a supersonic jet	
	A78-25516	• • •	A78-28057
Multivariable quadratic synthesis of an adv turbofan engine controller	vanced	TWISTING Evaluation of torsional rigidity of circula	r arc
TURBOPANS	A78-26793	aerofoil section twisted bars	A78-26484
Noise generated by low pressure axial flow		TWO DIMENSIONAL PLOW	
III - Effects of rotational frequency, bl thickness and outer blade profile	A78-26498	Application of a finite difference scheme t numerical solution of the direct problem two-dimensional cascade of airfoils	
TURBOJET ENGINE CONTROL Output feedback regulator design for jet en	ngine	Spanwise structure of the plane turbulent w	A78-25636 rake
control systems	A78~24898	•	A78-25777
Multivariable quadratic synthesis of an adv		Prtificial control of the laminar-turbulent transition of a two-dimensional wake by e sound	external
Tentative establishment of a mathematical m		Experimental verification of an annular aer	A78-27143 ofoil
a turbojet engine as a controlled system	A78-27567	theory	A78-27938

SUBJECT INDEX VELOCITY HEASUREMENT

Ú		Puture requirements and roles of computers aerodynamics	in
•		-	N78-19786
UH-1 HELICOPTEE UTTAS testing	A78-28461	Computational aerodynamics requirements in conjunction with experimental facilities wind tunnel test data	
UH-601 HELICOPTER	A 70-2040 I	wind tunnel test data	N78-19788
Black Hawk, Lamps and AAH	178-26533	Computational Pluid Dynamics (CFD): Futur and requirements as viewed by an applied	e role
UTTAS testing	A78-28461	aerodynamicist computer systems desi	.gn - N78-19789
UH-61A HELICOPTER UTTAS testing	20101	V	.,. ,,,,,,
	A78-28461		
OLTRAHIGH PREQUENCIES VHP/UHP direction-finding in air traffic		V/STOL AIRCRAFT Conceptual design study of a Harrier V/STO research aircraft	L
UHF demand assigned multiple access /UHF system for tactical satellite communica		[NASA-CR-152086] Proceedings of the Navy/NASA VSTOL Plying [NASA-CR-155810]	N78-19094 Qualities N78-19099
OLTRASOMIC TESTS Temperature characteristics of the speed and compressibility of standard fuels a		A comparison of V/STOL handling requirement the VAK-191B	N78-19100
petroleum oils	A78-26756	MIL-P-83300; view from an aircraft designe	N78-19101
UBIQUENESS THEOREM A uniqueness proof for a transonic flow p		V/STOL hover stability impact on hover con	N78-19102
UNITED KINGDON V/STOL flying qualities requirements in t	A78-26599	V/STOL flying qualities requirements in th control during short takeoff	e UK N78-19103
control during short takeoff	N78-19103	Review of US Wavy VSTOL handling qualities requirements	
British Military helicopter programmes	N78-19130	Capabilities of the Navy variable stabilit	N78-19104 ▼ X-221
British Airways helicopter operations	N78-19133	for V/STOL flying qualities R and D	พ78-19105
UNSTEADY FLOW Entrainment characteristics of unsteady s jets	subsonic	A piloted simulation of V/STOL landings ab non-aviation ship	
•	A78-26238	The STO deck launch problem	
Unsteady boundary layer with self-induced Circulation control airfoil study win	A78-28102	Shipboard testing of the AV-8A Harrier	78-19107 19108-19108
stability tests [AD-A048677] Unsteady pressure measurements on wing-st	N78-18005	Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities	
combinations in incompressible flow [ESA-TT-426]	N78-18018	Pilot centered requirements in control/dis design	play
Investigation of the unsteady pressure distribution on the blades of an axial [NASA-CR-155771]	N78-18068	Survey of piloting factors in V/STOL aircr implications for flight control system d	esign
Investigation of the jet wake discharge f heavily loaded centrifugal compressor i [DLR-PB-77-32]		Rationale for selection of a flight contro for lift cruise fan V/STOL aircraft	N78-19111 1 system
Introduction to unsteady aspects of separ subsonic and transonic flow	ation in N78-18381	<pre>[GP77-0375-28] Preliminary design of a flight control sys a V/STOL airplane with geared variable p</pre>	
Some unsteady separation problems for sle Prediction of unsteady separated flows on	N78-18383	Electronics plus fluidics for V/STOL fligh	N78-19113
oscillating airfoils	ท78-18387	The helicopter/ship dynamic-interface prob new approach	
Unsteady transonic flow computations [AD-A049188]	N78-19068	A summary of ship deck motion dynamics as	N78-19115 applied
A wing in an unsteady gas flow, part 1 [AD-A048999]	N78-19077	to VSTOL aircraft	N78-19116
A wing in an unsteady gas flow, part 2 fAD-A049000] A wing in an unsteady gas flow, part 3	N78-19078	Seakeeping considerations in the employmen V/STOL on Waval ships	
[AD-A049001] UPPER VOLTA	N78-19079	Requirements for VLA systems	N78-19117 N78-19118
Supporting investigations during testing WDL-1 airship in Ghana and Upper Volta temperature, flight data, operational p	hull	VTOL/Helicopter approach and landing guida sensors for Navy ship applications	
[DLR-IB-536-77/1] USER HABUALS (COMPUTER PROGRAMS)	N78-18012	NAVTOLAND and flying qualities	N78-19119
NOISEMAP computer program operator manual Addendum for version 3.4 of NOISEMAP [AD-A049070]	- N78-19849	VARIABLE PITCH PROPELLERS Preliminary design of a flight control sys a V/STOL airplane with geared variable p	itch fans
USER REQUIREMENTS Computational aerodynamics requirements: future role of the computer and the nee		WELOCITY DISTRIBUTION An empirical model for inverted-velocity-p	N78-19113
aerospace industry	N78-19784	jet noise prediction	A78-24879
Remarks on future computational aerodynam	ics	VELOCITY HEASUREMENT	
requirements government/influstry re	N78-19785	Laser velocimeter survey about a NACA 0012 low angles of attack [NASA-TH-74040]	wing at N78-18084

VERTICAL TAKEOFF AIRCRAFT Parametric transonic evaluation of type A '	VSTOL	W	
nacelle drag	.0102		
[AD-A048110]	N78-18002	WAKES	
Evaluation of the tilt rotor concept: The role	XV-15'S	Compressor and fan wake characteristics [NASA-CR-155766]	N78-17995
1016	N78-19142	Investigation of the jet wake discharge fl	ow of a
The WAE airborne V/STOL simulator	-30 4045	heavily loaded centrifugal compressor im	peller N78-18073
Viscous flow simulations in VTOL aerodynam:	N78-19145	[DLR-FB-77-32] WALL JETS	N/6-160/3
finite difference technique	-05	A computational model for three-dimensiona	1
·	N78-19791	incompressible small cross flow wall jet	
VERY HIGH PREQUENCIES VHP/UHP direction-finding in air traffic co	ntrol	[AD-A048450] WALL TEMPERATURE	N78-18008
, m, om alloodid line in all ordina	A78-25046	analysis and design of a cooled supercriti	
VIBRATION ISOLATORS	_	airfoil test model wall temperature	effect
Squeeze film damper characteristics for gasturbine engines	5	on boundary layer stability [AD-A048895]	N78-19168
[ASME PAPER 77-DET-23]	A78-26796	WARNING SYSTEMS	
VIBRATION MEASUREMENT	7-1 · · · ·	Certifying the Learjet to 51,000 feet	A78-28462
Concorde noise-induced building vibrations Kennedy International Airport	John F.	A comparison of integrated and conventiona	
[NASA-TM-78660]	N78-18873	cockpit warning systems pilot perfor	mance
VIBRATION HODE		and reaction time in man machine systems	N78-18022
Continuation and direct solution of the flue equation	rter	[AD-A048670] WATER VAPOR	N70-10022
·	A78-25703	Transonic flow past an airfoil with conden	sation
VIBRATION SINULATORS		[NASA-TM-75201] WAVE DIFFRACTION	N78-19053
A free-oscillation test rig for pitch-damp: measurements in N.A.L. trisonic wind tun		The geometrical theory of diffraction - a	method
	A78-26487	for the solution of electromagnetic boun	dary
VIBRATION TESTS	1 0 1 0	<pre>value problems of complicated structures high frequency case satellite and ai</pre>	
Automated wibrating bench for studying fat: gas turbine blades with programmed change	es in	antennas	Lorare
load and temperature			ท78-18290
VISCOUS PLOW	A78-27267	The integral equation method - a computati method for diffracted and scattered fiel	
Viscous flow simulations in VTOL aerodynami	ics	complicated structures satellite and	
finite difference technique		aircraft antennas	www. 40004
Critical issues in viscous flow computation	N78-19791	WAVE DRAG	N78-18291
CITCIONI ISSUES IN TIDOUS IION COMPUTATION	N78-19792	A procedure for the determination of the e	
Viscous flow simulation requirements of	Ē	fuselage nose bluntness on the wave drag	of
aerodynamic interest	N78-19793	supersonic cruise aircraft f NASA-CR-1453061	N78-17994
VISUAL PLIGHT		WEAPON SYSTEMS	
Requirements for VLA systems	W70 40440	Radar electronic counter-countermeasures	A78-26159
VOICE COMMUNICATION	ท78-19118	Automated weapon system trainer: Expanded	
An adaptive interference cancellation syste		adaptive module for basic instrument fli	
elimination of co-located interference si for ATC sites	ignals	maneuvers [AD-A048498]	N78-18087
101 11.0 21.00	A78-27041	WEAR INHIBITORS	
Objective measurement of voice channel		The wear of aluminum-bronze on steel in th	е
intelligibility [AD-A048611]	N78-18264	presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1]	A78-28436
VORTEX BREAKDOWN		WEAR TESTS	
Decay and modification of trailing vortex	170 27000	The wear of aluminum-bronze on steel in the presence of aviation fuel	е
VORTEX SHRETS	A78-27908	[ASLE PREPRINT 77-LC+5C-1]	A78-28436
Inviscid fluid models, based on rolled-up		WEATHER	
sheets, for three-dimensional separation Reynolds number	at high	An analysis of three weather-related aircr accidents	aft
Reynords number	N78-18384	[NASA-CR-155363]	N78-18024
VORTEX STREETS		WEATHER PORECASTING	
Decay and modification of trailing vortex	178-27908	Aviation weather service requirements, 198	U - 1990 N78-19713
VORTICES		An overview of aviation weather services	
Fircraft vortex effects on ground level pol	llutant	l appropria of the weether rechlore forces	N78-19715
concentration [APCA PAPER 77-41,5]	A78-25384	A synopsis of the weather problems facing general aviation pilots	coda y s
Remote sensing of aircraft wake vortex move	ement in	•	N78-19718
the airport environment aircraft exhaproducts tracking	aust	WEBS (SUPPORTS) Integrated gas turbine engine-nacelle	
[APCA PAPER 77-41,4]	178-25385	[NASA-CASE-LEW-12389-2]	N78-18066
Compressor and fan wake characteristics		WELD TRSTS	
<pre>NASA-CR-1557667 Ilifting surface theory for wings experien</pre>	N78-17995	Use of hot-stage-equipped scanning electro microscope in weld repair study of jet e	
leading-edge separation	icing	turbine vanes	ngrne
[AD-A0484391	N78-19061	**************************************	A78-28371
In experimental investigation of steady asy vortex shedding from a slender body of	/mmetric	WIDEBAND CONMUNICATION Null steering antennas in the tactical sce	nario
revolution at high angles of attack		Secoring uncommend in the thecital see	A78-27037
[AD-A048370]	N78-19062	WIND (RETEOROLOGY)	e
VULNERABILITY The Mission Trade-Off Methodology (MTOM) mo	odel.	Preliminary tests of inflatable liferafts stability in high winds	IOE
Model description		[AD-A048722]	N78-18023
[AD-A049318]	N78-19125		

SUBJECT INDEX SINGS

FIND SHEAR	WIND TUNNELS
The analysis of National Transportation Safety	Mean velocity, turbulence intensity and turbulence
Board large fixed-wing aircraft	convection velocity measurements for a
accident/incident reports for the potential	convergent nozzle in a free jet wind tunnel.
presence of low-level wind shear	Comprehensive data report
[AD-A048354] N78-18021	[NASA-CR-135238] N78-17991
The application of techniques for predicting STOL	The 0.1m subsonic cryogenic tunnel at the
aircraft response to wind shear and turbulence	University of Southampton
during the landing approach [UTIAS-215] N78-18077	[NASA-CR-145305] N78-18086
Derivation of groundspeed information from	Review of the Air Porce summer study program on the integration of wind tunnels and computers
airborne Distance Measuring Equipment DME	p78-19804
interrogators wind shear	Multiprocessing tradeoffs and the wind-tunnel
[AD-A049277] R78-19089	simulation problem
Problems pilots face involving wind shear	N78-19805
N78-19722	WIND VELOCITY
IND TORBEL APPARATUS	Radar beacon tracking with downlinked heading and
Resolution enhanced sound detecting apparatus	arrspeed
wind tunnel apparatus for allframe noise localization	#78-26780 Rean velocity, turbulence intensity and turbulence
[NASA-CASE-NPO-14134-1] N78-19898	convection velocity measurements for a
IND TUNNEL HODRLS	convergent nozzle in a free jet wind tunnel.
PHAROS, processor for harmonic analysis of the	Comprehensive data report
response of oscillating surfaces Wind tunnel	[NASA-CR-135238] N78-17991
models	WING CAMBER
[NLR-MP-77012-U] N78-18019	Three-dimensional canard-wing shape optimization
Dynamic wind-tunnel tests of an aeromechanical	in aircraft cruise and maneuver environments
gust-alleviation system using several different	[AIAA PAPER 78-99] A78-26274
combinations of control surfaces	WING LOADING
[NASA-TM-78638] N78-19059	The damage sum in fatigue of structure components
Analysis and design of a cooled supercritical	A78-26834
airfoil test model wall temperature effect on boundary layer stability	WING OSCILLATIONS
[AD-A048895] N78-19168	Unsteady pressure measurements on wing-store combinations in incompressible flow
IND TUNNEL STABILITY TESTS	[ESA-TT-426] N78-18018
Circulation control airfoil study wind tunnel	PHAROS, processor for harmonic analysis of the
stability tests	response of oscillating surfaces Wind tunnel
[AD-A048677] N78-18005	models
IND TUNNEL TESTS	[NLR-MP-77012-U] N78-18019
Spanwise structure of the plane turbulent wake	Development and application of an optimization
A78-25777	procedure for flutter suppression using the
Experimental research on high lift airfoil section	aerodynamic energy concept
HL235	[NASA-TP-1137] N78-18459
A78-25945	WING PARELS
A free-oscillation test rig for pitch-damping	Material development for laminar flow control wing
measurements in N.A.L. trisonic wind tunnels A78-26487	panels
Experimental investigation of the temperature	WING PLANFORMS
field in a plane Channel carrying a stratified	Three-dimensional canard-wing shape optimization
turbulent air stream	in aircraft cruise and maneuver environments
A78-27139	[AIAA PAPER 78-99] A78-26274
Application of a new test method and a new	WING PROFILES
wind-tunnel-data processing technique to the	The supersonic flow past cusped wings
study of unsteady heat conduction processes	A78-28056
A78-27455	WING TIP VORTICES
YAV-8B/AV-8B advanced Harrier program	Decay and modification of trailing vortex
A78-28455	778-27908
Theoretical evaluation of high speed aerodynamics for arrow wing configurations	WINGS Affect of winglets on a first-generation det
[NASA-TM-78659] N78-17992	Effect of winglets on a first-generation jet transport wing. 4: Stability characteristics
Two-dimensional transonic testing with splitter	for a full-span model at Mach 0.30
plates	[NASA-TP-1119] N78-17997
ÎNASA-TP-1153] N78-17999	The movement of a wing with deflected ailerons
Pundamental studies of subsonic and transonic flow	close to a screen
separation. Part 2: Second phase summary report	[AD-A048651] F78-18004
[AD-A048615] 478-18007	Plight tests of a radio-controlled airplane mode
Prediction of the severity of buffeting wind	with a free-wing, free-canard configuration
tunnel tests	[NASA-TH-72853] N78-18042
N78-18382	The effects of external stores on the flutter of a
Test data report, low speed wind tunnel tests of a full scale lift/cruise-fan inlet, with engine,	non-uniform cantilever
at high angles of attack	[AD-A048360] N78-18078 Laser velocimeter survey about a NACA 0012 wing at
F NASA-CR-152055] N78-19049	low angles of attack
Dynamic wind-tunnel tests of an aeromechanical	[NASA-TH-74040] N78-18084
gust-alleviation system using several different	An annular wing
combinations of control surfaces	[NASA-CASE-PRC-11007-1] N78-19055
[NASA-TM-78638] N78-19059	A lifting surface theory for wings experiencing
Computational aerodynamics requirements in	leading-edge separation
conjunction with experimental facilities	[AD-A048439] N78-19061
wind tunnel test data	Doublet lattice aerodynamic predictions for an
₹78-19788	oscillating P-5 wing with stores
IND TOWNEL WALLS	[AD-A048968] N78-19070
Design and performance evaluation of slotted walls	A wing in an unsteady gas flow, part 1
for two-dimensional wind tunnels [NASA-TH-78648] N78-18085	[AD-A048999] N78-19077
[NASA-TH-78648] N78-18085	A wing in an unsteady gas flow, part 2 [AD-A049000] N78-19078
	[10 10 10 10 10 10 10 10 10 10 10 10 10

SUBJECT INDEX YAW

YAW F free-oscillation test rig for pitch-damping measurements in W.A.L. trisonic wind tunnels A78-26487

YC-14 AIRCRAPT
Structural castings for aircraft - A progress
report from Boeing

A78-28370

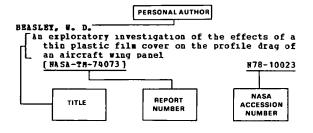
YC-14 flight test program

A78-28458

YC-14B prototype testing

A78-28459

PERSONAL AUTHOR INDEX


AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 97)

JUNE 1978

N78-19801

178-26088

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter The report number helps to indicate the type of document cited (e.g. NASA report translation NASA contractor report) The accession number is located beneath and to the right of the title e.g. N78-10023. Under any one author's name the accession numbers are arranged in sequence with the IAA accession numbers appearing first

ABBL, I. Development and application of an optimization procedure for flutter suppression using the state of the suppression using	
aerodynamic energy concept	
[NASA-TP-1137]	N78-18459
	4/0-10459
ABRAMS, R.	
B-1 terrain following development	
	178-28456
ADAMS, J. C.	
Computational aerodynamics requirements in conjunction with experimental facilities	
•	N78-19788
ADAMSON, A. P.	
Integrated gas turbine engine-nacelle	
[WASA-CASE-LEW-12389-2]	N78-18066
AHRBESDORF, K.	
Tests on details and components	
	N78-18050
AIKEN, B. W.	
01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	

Capabilities of the Navy variable stability X-22A for V/STOL flying qualities R and D N78-19105 ALANSKY, I. B.

Limitations of the CH-47 helicopter in performing terrain flying with external loads [AD-A048580] N78-1805B

ALDERS, G. J.
Determination of antenna radiation patterns, radar cross sections and jam-to-signal ratios by flight tests [NLR-MP-76023-0] N78-18289

Application of a new test method and a new wind-tunnel-data processing technique to the study of unsteady heat conduction processes A78-27455

Combined military and commercial application of light helicopters

REODEO, P. A Concepts for estimating capacity of basic runway configurations [PB-274578/4] N78-18036

ANDERJASKA, A. B. Application of composites on civil aircraft

A comparison of V/STOL handling requirements with the VAK-191B N78-19100

ANTOINE, A. C. Hydrocarbon group type determination in jet fuels by high performance liquid chromatography ARTONOV. A. N. Calculating the interaction of a turbulent near wake behind a step and a supersonic jet 178-28057 Standard electronic module radar cost analysi [AD-A048207] N78-18319 ARMAND, C.
ONERA aerodynamic research work on helicopters N78-19148 ARONSON, R. B. Return of the propeller A78-25516 ARTEHOV, O. A. Approximate dynamic model of a turbojet engine [NASA-TM-75263] N78 ห78-19159 ASKINS, D. R. Durability of adhesive bonded honeycomb sandwich in accelerated adverse environments A78-25202 AULT, G. H. Progress in advanced high temperature turbine materials, coatings, and technology ¥78-24910 В BAILEY, N. D.
The Mission Trade-Off Methodology (MTOM) model. Model description FAD-A0493181 N78-19125 BAITIS, A. E.

A summary of ship deck motion dynamics as applied to VSTOL aircraft N78-19116

BAKER, A. J. Pinite element concepts in computational aerodynamics

BALAKRISHWA, S.
One axis artificial feel system

BALLAWI, L. D. Evaluation of torsional rigidity of circular arc aerofoil section twisted bars A78-26484

BALLHAUS. W. P. Conservative implicit schemes for the full potential equation applied to transonic flows [NASA-TM-78469] N78-N78-19868 BANBRJER, D.

Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data

N78-18040 BARAN, H. A.
Digital Avionics Information System (DAIS): Mid-1980's maintenance analysis [AD-A047886] N78-18063

BARNWELL, R. W. Design and performance evaluation of slotted walls for two-dimensional wind tunnels [NASA-TM-78648] BARON, P. C.

High resolution, high brightness color television projector: Analysis, investigations, design, performance of baseline projector [AD-A049279]

BARSOUR, H. L. Spanwise structure of the plane turbulent wake A78-25777

PERSONAL AUTHOR INDEX BATURA, N. I.

BATURA, N. I.		BOWER, W. W.	
application of a new test method and a new		Viscous flow simulations in VTOL aerodynamics	-19791
<pre>wind-tunnel~data processing technique to study of unsteady heat conduction proces</pre>		BOWLES, R. L.	- 13731
•	A78-27455	Federal policy options to effect fuel conserva	tion
BAUHANN, H. Error analysis and simulation concerning a	•	in the air industry	-18548
inertial navigation system with vehicle-		BRAAKSHA, J. P.	10340
sensors		Future CTOL aircraft characteristics	
BEALE, G. O., JR.	A78-27383	BRADLEY, R. G.	-27542
Optimal aircraft simulator development by	ađaptive	Remarks on future computational aerodynamics	
random search optimization		requirements	40705
BEHNKE, D. L.	₹78-18082	BREHHORST, K.	-19785
Evaluation of protective coatings applied	under	Entrainment characteristics of unsteady subson	ic
adverse conditions	170 25100	jets	-26238
BEILMAN, J. L.	A78-25194	BREWARD, H. J.	-20230
Capabilities of the Navy variable stabilit	y X-22A	Westland Wisp	
for $V/STOL$ flying qualities R and D	N78-19105	BRIDGES, T. E.	-19149
BEKBULATOV, B. S.	170-17103	Bermuda II and after	
Automated vibrating bench for studying fat			-26471
gas turbine blades with programmed change load and temperature	es in	BRINKS, W. H. F-18A	
road and competatoric	A78-27267		-28454
BELINSKIY, V. G.		BRISTOL, M. A.	
The movement of a wing with deflected ailer close to a screen	cons	<pre>pigital Avionics Information System (DAIS): Mid-1980's maintenance analysis</pre>	
[AD-A048651]	N78-18004	[AD-A047886] N78	-18063
BELLANTONI, J.		BROOKS, G. D. A general study of hybrid composite laminates	
Characterization of current tower cab envis	N78-18026	[AD-A048364] N78:	-19208
BELLONO, N.		BROWN, J. H., JR.	
The fluid dynamics of rarefied molecular f convex bodies - A new theory and applica		Analytical study of a free-wing/free-trimmer c [NASA-CR-2946] N78	oncept -18000
convex nodies - a new theory and apprica	A78-27588	Evaluation of the tilt rotor concept: The XV-	
BELOTSERKOVSKIY, S. H.		role	10102
A wing in an unsteady gas flow, part 1 [AD-A048999]	N78-19077	BROWN, R. H.	-19142
A wing in an unsteady gas flow, part 2		Variable mixer propulsion cycle	
[AD-A049000]	ท78-19078		-18067
A wing in an unsteady gas flow, part 3 [AD-A049001]	N78-19079	BROWNE, N. H. J. Canadian Navy experience with small ship	
BENSON, T. P.		helicopter operations	
Airworthiness evaluation NUH-1H helicopter	with	BRUN, M.	-19129
global positioning system [AD-A047971]	N78-18053	Low cycle fatigue in turbines	
BERGER, E.	· i 64	•	-19156
Optimal level controls of high performance [DLR-IB-552~77/20]	N78-18059	BRUNETAUD, R. The development of materials for turbojets	
BERGER, R. L.		A78	-26041
Conceptual design study of a Harrier V/STO: research aircraft	L	Recent progress and technical and economic	
[NASA-CR-152086]	N78-19094	outlooks in the processing of materials for	
BESPALOY, A. H.		airframe elements	-26036
Application of a new test method and a new wind-tunnel-data processing technique to	the	BRYSON, A. E., JR.	-26036
study of unsteady heat conduction process	ses	Kalman filter divergence and aircraft motion	
DD71105 7	A78-27455	estimators	-26785
BEVALOT, J. Assessment of processing methods for titan:	Lum	BUCH, A.	20/03
alloys for aircraft structures		The damage sum in fatigue of structure compone	
BHATELEY, I. C.	A78-26040	BUROV, B. V.	-26834
Remarks on future computational aerodynamic	s	The Mi-6% helicopter	
requirements	-70 40705		-26000
BJORKHAN, W. S.	N78-19785	BUSHUEV, A. B.	
Plight test results of the strapdown hexad		Automatic system embloying radioactive radiatio	on
		Automatic system employing radioactive radiation to level-out an aircraft at landing	
inertial reference unit (SIRU). Volume	2: Test	to level-out an aircraft at landing A78	on -25011
inertial reference unit (SIRU). Volume : report	2: Test N78-18025	to level-out an aircraft at landing	
inertial reference unit (SIRU). Volume : report [NASA-TM-73223] BLACHNIO, J.	N78-18025	to level-out an aircraft at landing N78 BYLES, W. R. Liquid crystal airborne display	
inertial reference unit (SIRU). Volume is report [MASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to	N78-18025	to level-out an aircraft at landing N78 BYLES, W. R. Liquid crystal airborne display	-25011
inertial reference unit (SIRU). Volume : report [NASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to engines and its prevention	N78-18025	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C	-25011
inertial reference unit (SIRU). Volume is report [WASA-TM-73223] BLACHWIO, J. Corrosion of fuel assembly components of to engines and its prevention BODE, W. E.	N78-18025 arbine A78-28197	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C CAMERON, J. A.	-25011
inertial reference unit (SIRU). Volume : report [NASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to engines and its prevention	N78-18025 arbine A78-28197	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C CAMBERON, J. A. British Airways helicopter operations	-25011
inertial reference unit (SIRU). Volume is report [NASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to engines and its prevention BODE, W. E. Conceptual design study of a Harrier V/STON research aircraft [NASA-CR-152086]	N78-18025 arbine A78-28197	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C CAMERON, J. A. British Airways helicopter operations CAMP, D. W,	-25011 -18062 -19133
inertial reference unit (SIRU). Volume : report [WASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of trends and its prevention BODE, W. E. Conceptual design study of a Harrier V/STOR research arcraft [NASA-CR-152086] BOERSTOEL, J. W.	N78-18025 arbine A78-28197 N78-19094	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C CAMBRON, J. A. British Airways helicopter operations N78: CAMP, D. W. Overview of NASA/Marshall Space Flight Center's	-25011 -18062 -19133
inertial reference unit (SIRU). Volume is report [NASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to engines and its prevention BODE, W. E. Conceptual design study of a Harrier V/STOI research aircraft [NASA-CR-152086] BOERSTOEL, J. W. Collection of supercritical aerofoils obtained with the NLR hodograph method	N78-18025 arbine A78-28197 , N78-19094	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] N78. C CAMERON, J. A. British Airways helicopter operations CAMP, D. W. Overview of NASA/Marshall Space Flight Center's program on knowledge of atmospheric processes	-25011 -18062 -19133
inertial reference unit (SIRU). Volume : report [WASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of trends and its prevention BODE, W. E. Conceptual design study of a Harrier V/STOR research arcraft [WASA-CR-152086] BOERSTOEL, J. W. Collection of supercritical aerofoils obtained the NLR hodograph method [WLR-TR-75115-U]	N78-18025 arbine A78-28197 N78-19094	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] C CAMBRON, J. A. British Airways helicopter operations N78: CAMP, D. W. Overview of NASA/Marshall Space Plight Center's program on knowledge of atmospheric processes. N78: CARACENA, F.	-25011 -18062 -19133 s
inertial reference unit (SIRU). Volume is report [NASA-TM-73223] BLACHNIO, J. Corrosion of fuel assembly components of to engines and its prevention BODE, W. E. Conceptual design study of a Harrier V/STOI research aircraft [NASA-CR-152086] BOERSTOEL, J. W. Collection of supercritical aerofoils obtained with the NLR hodograph method	N78-18025 arbine A78-28197 , N78-19094	to level-out an aircraft at landing BYLES, W. R. Liquid crystal airborne display [AD-A048198] N78. C CAMERON, J. A. British Airways helicopter operations CAMP, D. W. Overview of NASA/Marshall Space Flight Center's program on knowledge of atmospheric processes	-25011 -18062 -19133 s

PERSONAL AUTHOR INDEX DEHOFF, R. L.

CARDANI, C.		COLLIES, J. P.	
Continuation and direct solution of the flue	atter	Use of hot-stage-equipped scanning electron microscope in weld repair study of jet er	
•	A78-25703	turbine vanes	-
CARMICHABL, R. L.		CONTOUT I I	178-28371
Three-dimensional canard-wing shape optimismon and arroraft cruise and maneuver environments		CONNOLLY, J. W. An overview of aviation weather services	
(AIAA PAPER 78-99)	A78-26274		N78-19715
CARR, L. W.	-1-6-11	CONSTANT, E. W., II	
Water-tunnel experiments on an oscillating at RE equals 21,000	alrioli	Genesis N + 1: The origins of the turbo-jet revolution	-
[NA SA - TM - 78446]	N78-19058		N78-19047
CARROU, J. C.	- 61	CONSTANT, J. C.	
Utilization of Precilec information /aircra attitude and position/ for geometric image	art Je	Measuring the impact on scheduled air lines operations of restrictions in fuel availa	
corrections	, -		ท78- 18549
CIRCADEC D F	A78-28399	COOK, L. P.	h1 a=
CARSTERS, R. L. Pormulation of Iowa State airport system		A uniqueness proof for a transonic flow pro	A78-26599
	A78-27548	COOBAN, J. R.	
CASLER, R. J., JR.		Characterization of current tower cab envir	onments_ N78-18026
Dual-control guidance strategy for homing interceptors taking angle-only measurement	nts	[AD-A048306] CRAIG, S. J.	N70-10020
	A78-26784	Survey of piloting factors in V/STOL aircra	
CANTHORN, J. H.	7-1- P	implications for flight control system de	
Concorde noise-induced building vibrations Kennedy International Airport	John r.	CRANE, K. C. A.	N78-19111
[NASA-TM-78660]	N78-18873	Driver gas contamination in a high-enthalpy	,
CHALSTRON, H. B., JR.		reflected shock tunnel	
Palefac [AD-A048331]	N78-18065	CURRY, R. E.	¥78-26235
CHANG, B. J.		Sensory mechanism modeling	
Holographic combiners for head-up displays		[AD-A049278]	N78-19170
[AD-A047998] CHAPKIS, R. L.	N78-18064	CURTISS, H. C., JR. An experimental and analytical investigation	n of
Investigation of ground reflection and impe	edance	the hovering and forward flight character	
from flyover noise measurements		of the aerocrane hybrid heavy lift wehicl	
[NPSA-CR-145302] CHARLES, R. R.	N78-18874	[AD-A049084] CZUCHRY, A. J.	N78-19075
High resolution, high brightness color tele	evision	Digital Avionics Information System (DAIS):	
projector: Analysis, investigations, des		Mid-1980's maintenance analysis	
performance of baseline projector [AD-A049279]	N78-19362	f AD-A047886]	N78-18063
CHARLES, J. P.	N/0-19302	_	
Automated weapon system trainer: Expanded		D	
Automated weapon system trainer: Expanded adaptive module for basic instrument flic	ght	DAHUAN, K. R.	ho
Automated weapon system trainer: Expanded	ght N78-18087	DAHMAN, K. R. Effect of high levels of confinement upon t	he
Automated weapon system trainer: Expanded adaptive module for basic instrument fligmaneuvers [AD-A048498] CHASE, W. D.	N78-18087	DAHMAN, K. R. Effect of high levels of confinement upon t aerodynamics of swirl burners	he A78-26107
Automated weapon system trainer: Expanded adaptive module for basic instrument fligmaneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft similarity for a	N78-18087	DAHMAN, K. R. Effect of high levels of confinement upon taerodynamics of swirl burners DALEY, P. S.	A78-26107
Automated weapon system trainer: Expanded adaptive module for basic instrument fligmaneuvers [AD-A048498] CHASE, W. D.	N78-18087	DAHMAN, K. R. Effect of high levels of confinement upon t aerodynamics of swirl burners	A78-26107
Automated weapon system trainer: Expanded adaptive module for basic instrument fligmaneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon	N78-18087 Plators N78-18083	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6]	A78-26107
Automated weapon system trainer: Expanded adaptive module for basic instrument flicturant annuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan	N78-18087 plators N78-18083 nic flow ry report	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C.	A78-26107 Fir A78-25391
Automated weapon system trainer: Expanded adaptive module for basic instrument fligmaneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon	N78-18087 Plators N78-18083	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6]	A78-26107 Fir A78-25391
Automated weapon system trainer: Expanded adaptive module for basic instrument flicturaneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Hultiprocessing tradeoffs and the wind-tune	N78-18087 Plators N78-18083 Nic flow Ty report N78-18007	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Porce bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems	A78-26107 Fir A78-25391
Automated weapon system trainer: Expanded adaptive module for basic instrument flig maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C.	N78-18087 plators N78-18083 plate flow propert N78-18007 pel	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR.	A78-26107 Air A78-25391 Direct A78-26230
Automated weapon system trainer: Expanded adaptive module for basic instrument flicturaneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Hultiprocessing tradeoffs and the wind-tune	N78-18087 Plators N78-18083 Nic flow Ty report N78-18007	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Porce bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems	A78-26107 Air A78-25391 Direct A78-26230
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIN, W. C. Some singular aspects of three-dimensional	N78-18087 plators N78-18083 plate flow propert N78-18007 pel	DAHMAN, K. R. Effect of high levels of confinement upon aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722]	A78-26107 Air A78-25391 Direct A78-26230
Automated weapon system trainer: Expanded adaptive module for basic instrument flicturaneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIM, W. C.	N78-18087 Plators N78-18083 Mic flow Ty report N78-18007 Mic l	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Porce bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DANIELS, M. B., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. N.	A78-26107 Air A78-25391 Direct A78-26230 Or N78-18023
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIN, W. C. Some singular aspects of three-dimensional	N78-18087 plators N78-18083 plate flow propert N78-18007 pel	DAHMAN, K. R. Effect of high levels of confinement upon aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722]	A78-26107 Air A78-25391 Direct A78-26230 Or N78-18023
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunk simulation problem CHIM, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envis	N78-18087 plators N78-18083 nic flow ry report N78-18007 nel N78-19805 A78-26234 conments	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance of the CH-47 helic	A78-26107 Air A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir	N78-18087 plators N78-18083 plators nic flow ry report N78-18007 plator nel N78-19805	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance in the content of the content of the content of the content of the characteristic problems.	A78-26107 Air A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIM, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR.	N78-18087 plators N78-18083 price flow ry report N78-18007 pel N78-19805 A78-26234 conments N78-18026	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A088722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance in the content of the conte	A78-26107 Air A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir	N78-18087 Plators N78-18083 Dic flow Ty report N78-18007 Diel N78-19805 A78-26234 Conments N78-18026	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance in the content of the conte	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D	N78-18087 plators N78-18083 price flow ry report N78-18007 pel N78-19805 A78-26234 conments N78-18026	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with split	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NaSA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D	N78-18087 Plators N78-18083 Price flow Treport N78-18007 Price flow N78-19805 A78-26234 Conments N78-18026 TR-22A N78-19105	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. H. Limitations of the CH-47 helicopter in perfection of the CH-47 helicopter in perfection of the characteristic (AD-A048580) The helicopter/ship dynamic-interface problem new approach DAVIS, S. Two-dimensional transonic testing with splinglates	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D	N78-18087 plators N78-18083 pic flow ry report N78-18007 pel N78-19805 A78-26234 conments N78-18026 y K-22A N78-19105 per body	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DANIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A088722] DAVIS, J. M. Limitations of the CH-47 helicopter in performance flying with external loads [AD-A088580] The helicopter/ship dynamic-interface probleme approach DAVIS, S. Two-dimensional transonic testing with splinglates [NASA-TP-1153] DE CREMIERS, M.	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A N78-19115 tter
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NaSA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender in a supersonic relaxing gas stream	N78-18087 Plators N78-18083 Price flow Treport N78-18007 Price flow N78-19805 A78-26234 Conments N78-18026 TR-22A N78-19105	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. H. Limitations of the CH-47 helicopter in perfection flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problem new approach DAVIS, S. Two-dimensional transonic testing with splingless [NASA-TP-1153] DE CREMIERS, H. ALIDADE - The alignment on board aircraft of	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A N78-19115 tter
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender	N78-18087 Plators N78-18083 Dic flow Ty report N78-18007 Diel N78-19805 A78-26234 Conments N78-18026 Y K-22A N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DANIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A088722] DAVIS, J. M. Limitations of the CH-47 helicopter in performance flying with external loads [AD-A088580] The helicopter/ship dynamic-interface probleme approach DAVIS, S. Two-dimensional transonic testing with splinglates [NASA-TP-1153] DE CREMIERS, M.	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A N78-19115 tter
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NaSA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIW, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. F. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scen	N78-18087 Plators N78-18083 Dic flow Ty report N78-18007 Diel N78-19805 A78-26234 Conments N78-18026 Y K-22A N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105 Diel N78-19105	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. H. Limitations of the CH-47 helicopter in performance for the certain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with spling plates [NASA-TP-1153] DE CREMIERS, H. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-18054 em: A N78-19115 tter
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scent	N78-18087 Plators N78-18083 Anic flow ry report N78-18007 Anic l N78-19805 A78-26234 Conments N78-18026 Y K-22A N78-19105 A78-27146 AARIO A78-27037	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Porce bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DANIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. M. Limitations of the CH-47 helicopter in performance in flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problem new approach DAVIS, S. Two-dimensional transonic testing with splin plates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. H. R.	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-19115 Atter N78-17999 Carriers
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color hybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIE, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JB. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. F. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, P. L. Null steering antennas in the tactical scent	N78-18087 Plators N78-18083 Anic flow ry report N78-18007 Anic l N78-19805 A78-26234 Conments N78-18026 Y K-22A N78-19105 A78-27146 AARIO A78-27037	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. M. Limitations of the CH-47 helicopter in performance in flying with external loads [AD-A008580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with splin plates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. M. R. Three-dimensional canard-wing shape optimiz	A78-26107 A78-25391 Direct A78-26230 FOR 18023 FOR 18054 EMBRICH 19115 ATRICH 17999 FOR 178-17999 FOR 178-25149 FOR 178-25149
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scent combined military and commercial application light helicopters	N78-18087 Plators N78-18083 Anic flow ry report N78-18007 Anic l N78-19805 A78-26234 Conments N78-18026 Y K-22A N78-19105 A78-27146 AARIO A78-27037	DAHMAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, M. B., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. M. Limitations of the CH-47 helicopter in perfecter in flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problem new approach DAVIS, S. Two-dimensional transonic testing with splin plates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. M. B. Three-dimensional canard-wing shape optimiz in aircraft cruise and maneuver environment (AIAA PAPER 78-99)	A78-26107 A78-25391 Direct A78-26230 FOR 18023 FOR 18054 EMBRICH 19115 ATRICH 17999 FOR 178-17999 FOR 178-25149 FOR 178-25149
Automated weapon system trainer: Expanded adaptive module for basic instrument flig maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIE, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. F. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scent combined military and commercial application light helicopters COLBURN, W. S.	N78-18087 plators N78-18083 nic flow ry report N78-18007 nel N78-19805 A78-26234 conments N78-18026 7 X-22A N78-19105 per body A78-27146 nario A78-27037 on of	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A008722] DAVIS, J. N. Limitations of the CH-47 helicopter in performance and flying with external loads [AD-A008580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with splin plates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. R. Three-dimensional canard-wing shape optimiz in aircraft cruise and maneuver environment (AIAA PAPER 78-99] DEHOPP, R. L.	A78-26107 A78-25391 Direct A78-26230 FOR N78-18023 FOR N78-18054 EMB N78-19115 ATR-17999 FOR N78-17999 FOR N78-25149 FOR N78-25149 FOR N78-26274
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summar [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scent combined military and commercial application light helicopters	N78-18087 plators N78-18083 nic flow ry report N78-18007 nel N78-19805 A78-26234 conments N78-18026 7 X-22A N78-19105 pr body A78-27146 nario A78-27037 on of N78-19136	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, H. R., JR. Preliminary tests of inflatable liferafts of stability in high winds [AD-A008722] DAVIS, J. H. Limitations of the CH-47 helicopter in perfit terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with splin plates [NASA-TP-1153] DE CREMIERS, H. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. H. E. Three-dimensional canard-wing shape optimiz in aircraft cruise and maneuver environmental AIAA PAPER 78-99] DEHOFP, B. L. Hultivariable quadratic synthesis of an adventage in aircraft of an adventage in a contraction of a contraction of an adventage in a contraction of a contr	A78-26107 A78-25391 Direct A78-26230 FOR N78-18023 FOR N78-18054 EMB N78-19115 ATR-17999 FOR N78-17999 FOR N78-25149 FOR N78-25149 FOR N78-26274
Automated weapon system trainer: Expanded adaptive module for basic instrument flig maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NaSA-CASE-ARC-10903-1] CHEN, C. H. Fundamental studies of subsonic and transon separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tune simulation problem CHIE, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. F. Characterization of current tower cab envir [AD-A048306] CLARKE, J. W., JB. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. F. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, F. L. Null steering antennas in the tactical scent combined military and commercial application light helicopters COLBURN, W. S. Holographic combiners for head-up displays [AD-A047998] COLLINS, F. G.	N78-18087 plators N78-18083 plators N78-18083 plators N78-18007 plators N78-18007 plators N78-19805 N78-19805 N78-18026 N78-18026 N78-19105 plators N78-19105 plators N78-19105 plators N78-19106 N78-19136 N78-19136	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. M. Limitations of the CH-47 helicopter in perfecterain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with splinglates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. M. E. Three-dimensional canard-wing shape optimized in aircraft cruise and maneuver environmental falae properties. [AIAA PAPER 78-99] DEHOFF, B. L. Multivariable quadratic synthesis of an advance of a super-superior controller.	A78-26107 A78-25391 Direct A78-26230 FOR N78-18023 FOR N78-18054 EMB N78-19115 ATR-17999 FOR N78-17999 FOR N78-25149 FOR N78-25149 FOR N78-26274
Automated weapon system trainer: Expanded adaptive module for basic instrument flict maneuvers [AD-A048498] CHASE, W. D. Full color bybrid display for aircraft sime [NASA-CASE-ARC-10903-1] CHEN, C. H. Pundamental studies of subsonic and transor separation. Part 2. Second phase summan [AD-A048615] CHEN, T. C. Multiprocessing tradeoffs and the wind-tunn simulation problem CHIN, W. C. Some singular aspects of three-dimensional transonic flow CLAPP, D. P. Characterization of current tower cab envir [AD-A048306] CLARK, J. W., JR. Capabilities of the Navy variable stability for V/STOL flying qualities R and D CLARKE, J. P. The wave system attached to a finite slender in a supersonic relaxing gas stream CLOUTIER, P. L. Null steering antennas in the tactical scent combined military and commercial application light helicopters COLBURN, W. S. Holographic combiners for head-up displays [AD-A047998]	N78-18087 plators N78-18083 nic flow ry report N78-18007 nel N78-18005 A78-26234 conments N78-18026 7 X-22A N78-19105 pr body A78-27146 nario A78-27037 on of N78-19136 N78-18068 nic flow	DAHBAN, K. R. Effect of high levels of confinement upon to aerodynamics of swirl burners DALEY, P. S. Air quality impact of aircraft at ten U.S. Force bases [APCA PAPER 77-41,6] DALTON, C. Potential flow around axisymmetric bodies and inverse problems DAWIELS, M. R., JR. Preliminary tests of inflatable liferafts for stability in high winds [AD-A048722] DAVIS, J. M. Limitations of the CH-47 helicopter in perfecterain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface problemew approach DAVIS, S. Two-dimensional transonic testing with splinglates [NASA-TP-1153] DE CREMIERS, M. ALIDADE - The alignment on board aircraft of the inertial navigation units of Super-Etendard aircraft DE SILVA, B. M. E. Three-dimensional canard-wing shape optimized in aircraft cruise and maneuver environmental falae properties. [AIAA PAPER 78-99] DEHOFF, B. L. Multivariable quadratic synthesis of an advance of a super-superior controller.	A78-26107 A78-25391 Direct A78-26230 Or N78-18023 Orming N78-19115 Atter N78-1919 Arriers A78-25149 Aation mts A78-26274 anced

PERSONAL AUTHOR INDEX

DEJONGE, J. B.			
Patique design of fighters; guidelines for obtaining and maintaining adequate fatigue performance of tactical aircraft: General		ELEBEVSKII, D. S. Automated wibrating bench for studying fat gas turbine blades with programmed chang- load and temperature	
Patique load monitoring	N78-18047	ELLINWOOD, J. W.	178-27267
DELANKY, B. T.	N78-18052	Linearized Newtonian aerodynamics of slende inflated cones	9 C
Aircraft vortex effects on ground level policoncentration	lutant	[AD-A048695] ELLSWORTH, J. A.	N78-19064
	A78-25384 ment in	Guided drogue flight test report [AD-A049164]	N78-19067
the airport environment	A 78-25385	ELMORE, G. A. Conceptual design study of a Harrier V/STO	L
DELOACH, R. Concorde noise-induced building vibrations	John F.	research aircraft [NASA-CR-152086]	N78-19094
Kennedy International Airport [NASA-TM-78660] DEVOE, D.	N78-18873	EBSTAD, P. J. Access study and simulation of the Marots communication system	
Characterization of current tower cab envir	onments N78-18026	ENGEL, H. E.	A78-27027
DISTERLY, D. L.		Digital Avionics Information System (DAIS)	:
Digital Avionics Information System (DAIS): Mid-1980's maintenance analysis		Mid-1980's maintenance analysis [AD-A047886]	N78-18063
	n78-18063	BRHSTOFF, H. N.	
DITHAH, A. O.	_	Liquid crystal airborne display	
Method for solving problems of flow past a with fuselage bounded by an ideal fluid f		[AD-A048198] ETHRIDGE, H. H.	N78-18062
DOGGETT, R. V., JR.	R 70-23363	Analysis of single and double coverage air multispectral scanner arrays for position	
Dynamic wind-tunnel tests of an aeromechanic			N78-19553
<pre>gust-alleviation system using several diff combinations of control surfaces</pre>	ferent	F-16 flight test progress report	
	R78-19059	1-10 flight test progress report	A78-28452
Theoretical evaluation of high speed aerody: for arrow wing configurations		F	
[NASA-TN-78659] DONOVAN, R. P.	N78-17992	FARLEY, J. P. Launching the Harrier from a ski jump	
The Sikorsky S-76 program		Madicutus the naturer from a ski jump	A78-28463
DOYLE, V. L. GE core engine noise investigation, low emis	778-19139 ssion	PAULKBER, W. E. Discrete maneuver pilot models for flying qualities evaluation	
engines	78-18069	DDADAG DTITTING T W	A78-26791
[ND-A048590] Evaluation of the in-flight noise signature 32-chute suppressor nozzle: Acoustic data	of a	PPOWCS WILLIAMS, J. E. The noise from the large-scale structure of	f a jet 1878-27144
	778-19899	FICHTL, G. H. WASA's aviation safety research and technol	
Patigue resistance of aircraft propeller bla		program	
	178-27259		N78-19719
DUNBAR, D. W.	178-27259	PIMPEL, H. P.	N78-19719
Computer model for refinery operations with		The use of pyranometers in aircraft	
			N78-19719 N78-18408
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBRDALB, T. C.	?: 178-19326	The use of pyranometers in aircraft [RSA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system	N78-18408
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation	?: 178-19326 se	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135]	N78-18408
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBRDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067]	?: 178-19326	The use of pyranometers in aircraft [RSA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] PLINE, B. S.	N78-18408 er for es on
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, T. G. Studies of heat transfer to gas turbine comp	2: 178-19326 5e 178-19164 ponents	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, B. S. Requirements for VLA systems	N78-18408 er for es on
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, E. G. Studies of heat transfer to gas turbine comp [AD-A049851]	2: 178-19326 se 178-19164	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [MASA-TP-1135] FLYND, W. S. Requirements for VLA systems FORD, T. B.	N78-18408 er for ns on N78-18044
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBRDALB, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, H. G. Studies of heat transfer to gas turbine comp[AD-A048551] DUPUY, H. J.	2: 178-19326 5e 178-19164 ponents	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, B. S. Requirements for VLA systems	N78-18408 er for ns on N78-18044
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [NASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, G. G. Studies of heat transfer to gas turbine community, and and an account of the community of the communit	2: 478-19326 se 478-19164 conents 478-18071	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLIME, W. S. Requirements for VLA systems FORD, T. B. RB 211 - Progress and prospects FORTEMBAUGH, R. L.	N78-18408 er for ns on N78-18044 N78-19118
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN, E. G. Studies of heat transfer to gas turbine community and the community of t	2: 478-19326 se 478-19164 conents 478-18071	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLIME, B. S. Requirements for VLA systems FORD, T. E. RB 211 - Progress and prospects	N78-18408 er for es on N78-18044 N78-19118 A78-25141
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, H. G. Studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community, and the studies of heat transfer to gas turbine community and the studies of heat transfer to gas turbine community and the studies of heat tr	2: 478-19326 se 478-19164 ponents 478-18071	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer in the second state of the second system of the system of the system of the system of the second system of the system of the second system of the system of the second system of the system	N78-18408 er for es on N78-18044 N78-19118
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN H. G. Studies of heat transfer to gas turbine community for the co	2: 478-19326 se 478-19164 ponents 478-18071	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLIME, B. S. Requirements for VLA systems FORD, T. E. RB 211 - Progress and prospects PORTEMBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in	N78-18408 er for is on N78-18044 N78-19118 A78-25141 in hover N78-19109 on in
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBEDALE, T. C. Sensitivity of aircraft runup/community noise predictions to excess ground attenuation [AD-A049067] DUNN H. G. Studies of heat transfer to gas turbine community H. J. The new railroad artery Paris-Sud-Est and high-speed trains: How the Paris Sud-Est when the Basic options DWYER, J. P. Certifying the Learjet to 51,000 feet	2: 478-19326 se 478-19164 ponents 478-18071 was	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer of the control of	N78-18408 er for ns on N78-18044 N78-19118 A78-25141 Ln hover N78-19109
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUND, H. G. Studies of heat transfer to gas turbine community, and the studies of heat	2: 478-19326 se 478-19164 ponents 478-18071 vas 478-25263	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, B. S. Requirements for VLA systems FORD, T. B. RB 211 - Progress and prospects FORTERBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in FOSSARD, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle	N78-18408 er for ns on N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBRDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN, H. G. Studies of heat transfer to gas turbine commander of the commandation [AD-A048551] DUPUY, H. J. The new railroad artery Paris-Sud-Est and high-speed trains: How the Paris Sud-Est where the commandation of the paris Sud-Est where the commandation of the paris Sud-Est where the commandation of the jet wake discharge flow heavily loaded centrifugal compressor impersions.	2: 478-19326 se 478-19164 ponents 478-18071 was 178-25263 178-28462	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, W. S. Requirements for VLA systems FORD, T. E. RB 211 - Progress and prospects FORTEMBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in FOSSARD, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle [HASA-CASE-LEW-12917-1] FOT, W. A.	N78-18408 er for son N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBRDALB, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN, H. G. Studies of heat transfer to gas turbine community noise and the sense of heat transfer to gas turbine community. The new railroad artery Paris-Sud-Est and high-speed trains: How the Paris Sud-Est and high-speed t	2: 478-19326 se 478-19164 ponents 478-18071 was 478-25263 478-28462	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, E. S. Requirements for VLA systems FORD, T. B. RB 211 - Progress and prospects FORTERBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in the terminal zone FOSSARD, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] FOT, W. A. Automated wibrating bench for studying fating as turbine blades with programmed change	N78-18408 er for ns on N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150 N78-18067
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNE, H. G. Studies of heat transfer to gas turbine community. Machine and high-speed trains: How the Paris Sud-Est and high-speed train	2: 478-19326 se 478-19164 conents 478-18071 488 478-25263 478-28462 476 a conents 478-18073 47-15's	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, E. S. Requirements for VLA systems FORD, T. E. RB 211 - Progress and prospects FORTEMBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in FOSSAED, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle [HASA-CASE-LEW-12917-1] FOT, E. A. Automated vibrating bench for studying fatings turbine blades with programmed changes load and temperature	N78-18408 er for ns on N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150 N78-18067
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNE, H. G. Studies of heat transfer to gas turbine community. Machine and high-speed trains: How the Paris Sud-Est and high-speed train	2: 478-19326 se 478-19164 ponents 478-18071 was 478-25263 478-28462	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLINE, E. S. Requirements for VLA systems FORD, T. B. RB 211 - Progress and prospects FORTERBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in the terminal zone FOSSARD, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] FOT, W. A. Automated wibrating bench for studying fating as turbine blades with programmed change	N78-18408 er for son N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150 N78-18067 igue in sin A78-27267
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDERDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN, B. G. Studies of heat transfer to gas turbine community. Machine and high-speed trains: How the Paris Sud-Est and high-speed train	2: 478-19326 se 478-19164 ponents 478-18071 488 178-25263 178-28462 4 of a 1911er 178-18073 47-15's	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system research aircraft [NASA-TP-1135] FLIME, E. S. Requirements for VLA systems FORD, T. E. RB 211 - Progress and prospects FORTEMBAUGH, R. L. Analysis of the influence of the OGE/IGE transition on VAK-191B flying qualities in FOSSARD, AJ. Strategic positioning and traffic regulation the terminal zone FOSTER, T. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] FOT, W. R. Automated wibrating bench for studying fatings turbine blades with programmed change load and temperature FOI, W. R. Guided drogue flight test report [AD-A009164]	N78-18408 er for son N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150 N78-18067 igue in so in
Computer model for refinery operations with emphasis on jet fuel production. Volume 2 Data and technical bases [WASA-CR-135334] DUNDBEDALE, T. C. Sensitivity of aircraft runup/community nois predictions to excess ground attenuation [AD-A049067] DUNN, H. G. Studies of heat transfer to gas turbine community noise of heat transfer to gas turbine community. H. J. The new railroad artery Paris-Sud-Est and high-speed trains: How the Paris Sud-Est and high-speed trains: H	2: 478-19326 se 478-19164 ponents 478-18071 488 178-25263 178-28462 4 of a 1911er 178-18073 47-15's	The use of pyranometers in aircraft [ESA-TT-433] FISHER, B. D. A flight evaluation of a trailing anemometer of the control o	N78-18408 er for son N78-18044 N78-19118 A78-25141 in hover N78-19109 on in A78-25150 N78-18067 igue in sin A78-27267

PERSONAL AUTHOR INDEX GREES, B. C., III

PRANKE, G. P. Investigation of the unsteady pressure distribution on the blades of an axial f	low fan	GERDES, R. H. A piloted simulation of V/STOL landings about non-aviation ship	pard a
f NASA-CR-155771]	N78-18068	•	N78-19106
PRECEB, J. C. Progress in advanced high temperature turb materials, coatings, and technology		GIBSON, F. L. Two-dimensional oscillating airfoll test a	pparatus N78-19042
DDDV#1## D	A78-24910	GLASIER, J. H.	_
FRETERATE, R. Application and comparison of modal pertur methods and modal correction procedures	bation	Digital Avionics Information System (DAIS): Mid-1980's maintenance analysis [AD-A047886]	พ78-18063
exemplified by a swept wing with two ext	ernal	GRELIN, B.	
stores, { DLR-PB-77-21 }	N78-18014	DPVLR rotorcraft research	N78-19146
PRIBD, W. R.		GBESIB, V. I.	170 17140
Principles and simulation of JTIDS relativ navigation	e A78-26156	Application of a finite difference scheme to numerical solution of the direct problem two-dimensional cascade of airfoils	
PUCHS, H. V.	A70-20130	two-dimensional cascade of airfolds	A78-25636
Acoustic interference effects and the role Helmholtz number in aerodynamic noise	of	GOND, R. C. Development of thermoplastic composite airc	craft
[DLR-IB-257-77/11]	₹78-18878	structural elements	
PUHS, A. B.	•	[AD-A048468]	N78-19097
LASTOP: A computer code for laser turrets optimization of small perturbation turre		GOBBEL, T. P. Study of hypersonic propulsion/airframe	
subsonic or supersonic flow		integration technology	
[AD-A049272]	N78-19076	[NASA-CR-145321]	N78-19096
PUIJKSCHOT, P. H. PHAROS, processor for harmonic analysis of	the	GOERLER, D. D. Structural castings for aircraft - A progre	ess
response of oscillating surfaces		report from Boeing	
[NLR-MP-77012-U]	N78-18019	CARLIND	A78-28370
FUJITA, T. T. An analysis of three weather-related aircr	aft	GOELLER, W. Tethered RPV-rotorcraft	
accidents			N78-19141
[NASA-CR-155363] FUKANO, T.	₩78-18024	GOODALL, R. B. Advanced technology helicopter landing gear	-
Noise generated by low pressure axial flow III - Effects of rotational frequency, b		[AD-A048891] GOODTER, M. J.	78-19124
thickness and outer blade profile	11111	The 0.1m subsonic cryogenic tunnel at the	
FULTON, P. L., JR.	A78-26498	University of Southampton [NASA-CR-145305]	N78-18086
Shuttle carrier aircraft flight tests		GORMONT, R. P.	
	178-28464	The US Army UTTAS and AAR programs	พ78-19131
G		GORSHKOV, H. I.	W/O // /3 /
G		GORSHKOV, H. I. Application of a new test method and a new	
GAGARIH, S. P.	nation	Application of a new test method and a new wind-tunnel-data processing technique to	the
GAGARIH, S. P. Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi		Application of a new test method and a new	the
Aircraft measurements of the spatial fluct	ssion at	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P.	the ses 178-27455
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm		Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control system.	the ses 178-27455 tem for
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from	A78-27721	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P.	the ses 178-27455 tem for
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM	A78-27721	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable p. GOTOH, H.	the ses A78-27455 tem for itch fans N78-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators	ssion at ৯78-27721 দ	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pictures. GOTOH, H. On the flow in a centrifugal impeller. II	the ses A78-27455 tem for itch fans N78-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A049277] GALLIIT, I.	A78-27721	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable process. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width	the ses A78-27455 tem for itch fans N78-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles	SSION at A78-27721 P. N78-19089	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pitch. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O.	the ses 178-27455 tem for itch fans 178-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144]	ssion at ৯78-27721 দ	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable p. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting the state of the sta	the ses A78-27455 tem for itch fans m78-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GRALLILY, I. The dynamics of non spherical particles [AD-A047144] GAMAUP, K. J. Objective measurement of voice channel	SSION at A78-27721 P. N78-19089	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach	the ses A78-27455 tem for ttch fans N78-19113 - A78-27907 ng STOL llence
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUF, K. J. Objective measurement of voice channel intelligibility	SSION AT A78-27721 P. N78-19089 N78-19080	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pictures. GOTOH, M. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbut during the landing approach [UTIAS-215]	the ses A78-27455 tem for itch fans m78-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUP, K. J. Objective measurement of voice channel intelligibility [AD-A048611]	SSION at A78-27721 P. N78-19089	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pictory. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbuduring the landing approach [UTIAS-215] GRAY, H. R.	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ng STOL llence
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARDEZ, M. J. Air France's new 'freight' installations a	SSION at A78-27721 P. N78-19089 N78-19080 N78-18264	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable picture. GOTOH, M. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. B. The promise of eutectics for aircraft turbing the promise of eutectics for aircraft turbing the standard of turbing the stand	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ng STOL llence
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GRLLILY, I. The dynamics of non spherical particles [AD-A047144] GAMAUP, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARDEZ, H. J.	SSION at A78-27721 P. N78-19089 N78-19080 N78-18264	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pictory. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbuduring the landing approach [UTIAS-215] GRAY, H. R.	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ag STOL llence W78-18077 ines A78-24882
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GANAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0486611] SARDEZ, H. J. Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra	### SSION at ### A78-27721 ### ### ### ### ### ### ### ### ### #	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbut during the landing approach [UTIAS-215] GRAY, H. R. The promise of eutectics for aircraft turbut GRAY, R. R.	the ses 178-27455 ten for ttch fans 178-19113 - 178-27907 ng STOL nlence 178-18077 ines 178-24882
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARDEZ, H. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Pra GARHETT, T. S., JR. Limitations of the CH-47 helicopter in per	### SSION at ### A78-27721 ### ### ### ### ### ### ### ### ### #	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. R. The promise of eutectics for aircraft turbing the impact of Bermuda II on future bilateral agreements	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ag STOL llence W78-18077 ines A78-24882
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GANAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0486611] SARDEZ, H. J. Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra	### SSION at ### A78-27721 ### ### ### ### ### ### ### ### ### #	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, B. B. The promise of eutectics for aircraft turbit of the following shear and turbed of the flow of the flow of the promise of eutectics for aircraft turbits. GRAY, B. B. The impact of Bermuda II on future bilaters.	the ses A78-27455 tem for itch fans W78-19113 - A78-27907 ag STOL ilence W78-18077 ines A78-24882 al
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABBUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARDEZ, H. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra GARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface prob	xsion at A78-27721 P. N78-19089 N78-19080 N78-18264 t nce A78-25261 forming N78-18054	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit and the flow in a centrifugal impeller. II—Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. B. The promise of eutectics for aircraft turbing the impact of Bermuda II on future bilatera agreements GRAZIANI, D.	the ses A78-27455 tem for titch fans W78-19113 - A78-27907 ag STOL llence W78-18077 ines A78-24882 al A78-26472 : or
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GAHAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0086611] SARDEZ, M. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra SARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A008580]	### 18054 lem: A	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pit and the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, B. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilatera agreements GRAZIANI, D. Precision DRE for new landing system - Past slow pulse	the ses A78-27455 tem for itch fans W78-19113 - A78-27907 ag STOL ilence W78-18077 ines A78-24882 al
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUP, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARRETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R.	xsion at A78-27721 P. N78-19089 N78-19080 N78-18264 t nce A78-25261 forming N78-18054	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pitch. GOTOH, M. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predictive aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, M. B. The promise of eutectics for aircraft turbing GRAY, R. R. The impact of Bermuda II on future bilatera agreements GRAZIANI, D. Precision DME for new landing system - Past	the ses 178-27455 ten for ttch fans 178-19113
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GANAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0086611] GARDEZ, H. J. Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra GARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A008580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Model 222	### 18054 lem: A	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pitch of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, B. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilaters agreements GRAZIANI, D. Precision DME for new landing system - Past slow pulse GBEGOREK, G. M. Analytical study of a free-wing/free-trimme [NASA-CR-2946] GREGORIOU, G.	the ses A78-27455 tem for titch fans W78-19113 - A78-27907 and STOL allence W78-18077 times A78-24882 at A78-26549 er concept
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] SARDEZ, H. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra SARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Hodel 222 GARTHER, R. Hydraulic constant recoil program	xsion at A78-27721 R N78-19089 N78-19080 N78-18264 t nce A78-25261 forming M78-18054 lem: A N78-19115	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pixelements. If the end of th	the ses A78-27455 tem for titch fans W78-19113 - A78-27907 and STOL allence W78-18077 times A78-24882 at A78-26549 er concept W78-18000
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GAHAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0086611] SARDEZ, M. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra SARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A008580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Model 222 SARTHER, R. Hydraulic constant recoil program [AD-A049313]	xsion at A78-27721 R N78-19089 N78-19080 N78-18264 t nce A78-25261 forming N78-18054 lem: A N78-19115	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pitch of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, B. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilaters agreements GRAZIANI, D. Precision DME for new landing system - Past slow pulse GBEGOREK, G. M. Analytical study of a free-wing/free-trimmer [NASA-CR-2946] GREGORIOU, G. A method for calculation of the pressure distribution of wing-body configurations large angle of attack at subsonic speed	the ses A78-27455 tem for ttch fans \(\pi \) 778-19113 \\ A78-27907 \\ A78-27907 \\ A78-18077 \\ A78-24882 \\ A78-26472 \\ COT \(\pi \) 778-18000 \\ for \(\pi \) 78-18000 \\ for \(\pi \)
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A049277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GABAUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] SARDEZ, H. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra SARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Hodel 222 GARTHER, R. Hydraulic constant recoil program	### ### ### ### ### ### ### ### ### ##	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pixelements. If the end of th	the ses A78-27455 tem for titch fans W78-19113 - A78-27907 and STOL allence W78-18077 times A78-24882 at A78-26549 er concept W78-18000
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A0049277] GALLILY, I. The dynamics of non spherical particles [AD-A0047144] GABAUF, K. J. Objective measurement of voice channel intelligibility [AD-A048611] GARDEZ, H. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Pra GARHETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Hodel 222 GARRISON, J. R. Hydraulic constant recoil program [AD-A049313] GEE, S. W.	xsion at A78-27721 R N78-19089 N78-19080 N78-18264 t nce A78-25261 forming N78-18054 lem: A N78-19115 N78-19115	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable pix a V/STOL airplane pix a V/STOL airplane pix a V/STOL airplane pix a V/STOL airplane pix airp	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ag STOL llence W78-18077 ines A78-24882 al A78-26549 er concept W78-18000 for W78-18013
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A0047144] GABAUP, K. J. Objective measurement of voice channel intelligibility [AD-A0048611] GARDEZ, M. J. Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra GARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A0048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Model 222 GARTHER, R. Hydraulic constant recoil program [AD-A0493131] SEE, S. W. Plight tests of a radio-controlled airplan with a free-wing, free-canard configurat [NASA-TM-72853] SEIST, W. F.	xsion at A78-27721 R R78-19089 N78-19080 N78-18264 t nce A78-25261 forming M78-18054 lem: A N78-19115 M78-19117 e mode ion M78-18042	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable picture. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilaters agreements GRAZIANI, D. Precision DME for new landing system - Past slow pulse GREGOREW, G. H. Analytical study of a free-wing/free-trimme [NASA-CR-2946] GREGORIOU, G. A method for calculation of the pressure distribution of wing-body configurations large angle of attack at subsonic speed [BWG-PBWT-77-15] GREGORY, T. J. Future requirements and roles of computers aerodynamics	the ses A78-27455 tem for tich fans W78-19113 - A78-27907 ag STOL llence W78-18077 ines A78-24882 al A78-26549 er concept W78-18000 for W78-18013
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Heasuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A047144] GAHAUF, K. J. Objective measurement of voice channel intelligibility [AD-A0086611] SARDEZ, M. J. Air Prance's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra GARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A008580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Model 222 SARTWER, R. Hydraulic constant recoil program [AD-A049313] SEE, S. W. Plight tests of a radio-controlled airplan with a free-wing, free-canard configurat [NASA-TM-72853] SHIST, W. P. An adaptive interference cancellation systematics.	### ### ### ### ### ### ### ### ### ##	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable picture. The system of the flow in a centrifugal impeller. II - Effects of change in impeller width GRAF, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilatera agreements GRAZIANI, D. Precision DRE for new landing system - Past slow pulse GREGOREK, G. H. Analytical study of a free-wing/free-trimme (NASA-CR-2946) GREGORIOU, G. A method for calculation of the pressure distribution of wing-body configurations large angle of attack at subsonic speed (BRYG-PBWT-77-15) GREGORY, T. J. Future requirements and roles of computers aerodynamics GREES, B, C., III	the ses A78-27455 tem for ttch fans M78-19113 . A78-27907 ag STOL alence M78-18077 ines A78-24882 al A78-26472 cor A78-26549 er concept M78-18000 for M78-18013 in M78-19786
Aircraft measurements of the spatial fluct characteristics of atmospheric radio emi wavelengths of 0.8 and 1.35 cm GALLAGHER, J. Derivation of groundspeed information from airborne Distance Measuring Equipment DM interrogators [AD-A009277] GALLILY, I. The dynamics of non spherical particles [AD-A0047144] GABAUP, K. J. Objective measurement of voice channel intelligibility [AD-A0048611] GARDEZ, M. J. Air France's new 'freight' installations a Charles de Gaulle Airport at Roissy, Fra GARNETT, T. S., JR. Limitations of the CH-47 helicopter in per terrain flying with external loads [AD-A0048580] The helicopter/ship dynamic-interface prob new approach GARRISON, J. R. The Bell Model 222 GARTHER, R. Hydraulic constant recoil program [AD-A0493131] SEE, S. W. Plight tests of a radio-controlled airplan with a free-wing, free-canard configurat [NASA-TM-72853] SEIST, W. F.	### ### ### ### ### ### ### ### ### ##	Application of a new test method and a new wind-tunnel-data processing technique to study of unsteady heat conduction process. GOTLEIB, P. Preliminary design of a flight control syst a V/STOL airplane with geared variable picture. GOTOH, H. On the flow in a centrifugal impeller. II - Effects of change in impeller width GRAP, W. O. The application of techniques for predicting aircraft response to wind shear and turbed during the landing approach [UTIAS-215] GRAY, H. B. The promise of eutectics for aircraft turbed GRAY, R. R. The impact of Bermuda II on future bilaters agreements GRAZIANI, D. Precision DME for new landing system - Past slow pulse GREGOREW, G. H. Analytical study of a free-wing/free-trimme [NASA-CR-2946] GREGORIOU, G. A method for calculation of the pressure distribution of wing-body configurations large angle of attack at subsonic speed [BWG-PBWT-77-15] GREGORY, T. J. Future requirements and roles of computers aerodynamics	the ses A78-27455 tem for ttch fans M78-19113 . A78-27907 ag STOL alence M78-18077 ines A78-24882 al A78-26472 cor A78-26549 er concept M78-18000 for M78-18013 in M78-19786

GRIAZNOV, B. A.		HARVILL, W. B.	_
Automated vibrating bench for studying fat qas turbine blades with programmed chang		Service experience of composite parts on t L-1011 and C-130	he
load and temperature	,03 11	2 TOTT GRA O 150	A78-25197
·	A78-27267	HATFIELD, J. J.	
GRIPPIN, L. D. C-141A service experience - Materials and	DECCESSOS	Coming cockpit avionics	A78-28220
C 1411 OCZ 1200 ORFOZZONOS NACOZZZA ZBI	A78-25207	HATRE, H. S.	
GRISAPPE, S. J.		Multipath fading simulation model and full- results	-scale
High temperature environmental effects on [NASA-TM-73878]	metals N78-19158	results	A78-25879
GRISERO, V. G.	11.0 13130	HENDERSON, R. B.	
Automated vibrating bench for studying fat		Investigation of the unsteady pressure	lau fan
gas turbine blades with programmed chang load and temperature	jes in	distribution on the blades of an axial fi	N78-18068
	A78-27267	RENDRICK, R. C.	
GROESBECK, D.	ne with	Electronics plus fluidics for V/STOL flight	t control N78-19114
Noise of deflectors used for flow attachments STOL-OTW configurations	ant Alti	REPRER, T. E.	1170 13114
•	A78-24877	Laser velocimeter survey about a NACA 0012	wing at
GRUNWALD, A. J. Display augmentation in manual control of	remotely	low angles of attack [NASA-TM-74040]	N78-18084
piloted vehicles	remotery	HESS, R. A.	1170 10004
	A78-28148	Pilot centered requirements in control/disp	play
GUPTA, A. K. Effect of blockage ratio on the turbulent	noar	design	N78-19110
wake of a bluff body	"ear	HILAIRE, G.	
	A78-26489	Recent progress and technical and economic	
GUPTA, M. C. A case for a new model for turbulent flame	•	outlooks in the processing of materials : airframe elements	ror
propagation		WELLEUM CECHONO	A78-26036
	A78-27840	HO, T. L.	
Н		Evaluation of aircraft brake materials [ASLE PREPRINT 77-LC-6B-2]	A78-28439
		HOAD, D. R.	
HADDEN, P. D.		Laser velocimeter survey about a NACA 0012 low angles of attack	wing at
YC-14B prototype testing	A78-28459	[NASA-TH-74040]	N78-18084
HABPNER, L. E.		HOBBS, V. J.	
Benefit-cost evaluation of an intra-region service in the Bay area	al air	Characterization of current tower cab envis	ronments N78-18026
TNASA-CP-152084]	N78-19082	HOCKER, A. J., JR.	N/0 10020
HAH, C.		Two-dimensional oscillating airfoil test a	
Compressor and fan wake characteristics [NASA-CR-155766]	N78-17995	HODGES, D. H.	N78-19042
HAINES, A. L.	11.0 17.333	Aeromechanical stability of helicopters with	
Concepts for estimating capacity of basic	runway	bearingless main rotor. Part 1: Equation	ons of
configurations [PB-274578/4]	N78-18036	motion [NASA-TM-78459]	N78-18043
Concepts for determination of longitudinal		HOEPLE, R.	
separation standards on final approach [PB-274590/9]	N78-18038	Standard electronic module radar cost analy [AD-A048207]	ys1s N78-18319
HALL, C. A.	N70-10030	HOLLIDAY, B. G.	470 10517
A simulation model for an		Concorde noise-induced building vibrations	John P.
<pre>enplaning-passenger-vehicle curbside at high-volume airports</pre>		Kennedy International Airport [NASA-TM-78660]	N78-18873
arga vorans arrestos	N78-18020	HOLLISTER, W. M.	
HALL, D. W.		Radar beacon tracking with downlinked head:	ing and
Analytical study of a free-wing/free-trimm [NASA-CR-2946]	%78-18000	airspeed	A78-26780
HALL, W. E., JR.		HOLHES, B. J.	
Multivariable quadratic synthesis of an ad turbofan engine controller	vanced	A flight evaluation of a trailing anemometer low-speed calibrations of airspeed system	
turbotan cagano controller	A78-26793	research aircraft	3 011
HABEL, P.		[NASA-TP-1135]	N78-18044
DPVLR rotorcraft research	N78-19146	HOLBES, H. K. Concorde noise-induced building vibrations	John P.
HANKEY, W. L.	(1.0 1)140	Rennedy International Airport	
Critical issues in viscous flow computation		[NASA-TM-78660]	N78-18873
HARDING, D. G.	N78-19792	HOLPP, J. E. The development of fatigue/crack growth and	alvsis
Civil and mulitary design requirements and	their	loading spectra	-
influence on the product	N78-19151	HOLST, T. L.	N78-18048
HARIHARAN, S.	N70-13131	Conservative implicit schemes for the full	
Maslen analysis of power-law shocks in inv	ıscıd	potential equation applied to transonic	
hypersonic stream	A78-26481	[NASA-TH-78469] HOUBOLT, J. C.	N78-19868
HARRIS, J. E.	20407	Airplane design for gusts	
Viscous flow simulation requirements	W7D 40703	•	N78-19717
HARTILL, W. R.	N78-19793	HOUSTON, R. J. The rotor systems research aircraft: A new	step
Study of hypersonic propulsion/airframe		in the technology and rotor system verifi	
integration technology [WASA-CP-145321]	₩78-19096	cycle	N78-19144
HARTMAN, W. J.	470-17 0 70	HOWELL, T. P.	n/0-17144
Objective measurement of voice channel		The MAROTS maritime satellite programme	
intelligibility [AD-A048611]	N78-18264		A78-27049
· · · · · · · · · · · · · · · · · · ·			

PERSONAL AUTHOR INDEX KONDRATEV, V. P.

HOWELL, W. B. Integrated controls for a new aircraft gen	neration A78-28219	K	
HRUBY, R. J. Flight test results of the strapdown hexad		RAIBARA, M. Decay and modification of trailing vortex	A78-27908
inertial reference unit (SIRU). Volume report [NASA-TM-73223]	N78-18025	KANNAHUELLER, G. Tethered RPV-rotorcraft	
HUBBR, P. R. VHP/UHP direction-finding in air traffic o	ontrol A78-25046	KARCHHER, 1. Combustor fluctuating pressure measurement	
#UGGBTT, C. Studies of the flash fire potential of air cabin interior materials	craft	in-engine and in a component test facili preliminary comparison	ty - A A78-24878
[AD-A048475] HUSBAND, J. D. W. British Military helicopter programmes	ห78-18158	KASPER, H. W. The Mission Trade-Off Methodology (MTOM) m Model description	odel.
HUTCHINGS, D. E. Review of US Navy VSTOL handling qualities	ท78-19130	[AD-A049318] KAWAGUCHI, N. Swirl flow in conical diffusers	N78-19125
requirements			178-27910
HWANG, C. A non-Gaussian gust model for aircraft res	₩78-19104 sponse	KAWALL, J. G. Spanwise structure of the plane turbulent	wake 178-25777
analysis [NOR-76-223]	N78-19165	KEFFER, J. F. Spanwise structure of the plane turbulent	wake 178-25777
IGLEHART, S. C.		<pre>KELLY, C. P. V/STOL hower stability impact on hower con</pre>	trol task N78-19102
Some results on digital chirp	A78-26160	RELTO, C. A. Service experience and materials evolution Porce jet engines	
Study of the propagation of higher modes i cylindrical ducts with impedance walls	in A78-25773	KEHPTOW, A. J. The noise from the large-scale structure o	178-25208 f a jet
ILES, J. E. Shipboard testing of the AV-8A Harrier	N78-19108	REBUBLL, J. R. Resolution enhanced sound detecting appara	178-27199 tus
KLIPP, K. W. Plight-determined stability and control coefficients of the F-111A airplane		[MASA-CASE-MPO-14134-1] KENDALL, W. P., JR. P-15/16 canopy off testing	N78-19898
[NASA-TM-72851] (LINA, A. S. The supersonic flow past cusped wings	N78-18075	KERREDY, F. B. Evaluation of aircraft brake materials	A78-28453
INDERT, N.	A78-28056	[ASLE PREPRINT 77-LC-6B-2] KETCHAM, S. J. Accelerated laboratory corrosion test for	A78-28439
Strategic positioning and traffic regulati the terminal zone	A78-25150	materials and finishes used in naval air [AD-A048059]	craft N78-18188
UDINA, R. W. Test of an aviation oil, increased-density	MS-20 A78-25475	RHARITONOV, A. H. Effect of perturbed flow on the transition the supersonic laminar boundary layer to	
IYER, R. R. Benefits of MLS guidance for curved approa Volume 2: Operational benefits for New		turbulent [NASA-TM-75196] KHURASIA, H. B.	N78-19048
Airports [PB-274585/9]	N78-18037	Evaluation of torsional rigidity of circul aerofoil section twisted bars	ar arc A78-26484
J		KLARNAN, A. P. Effect of fuel bound nitrogen on oxides of	
JAKOB, H. German Army helicopter development and pro for the future	spects	nitrogen emission from a gas turbine eng [AD-A048382] KLEIW, H.	
JENKINS, J. L., JR.	N78-19128	TC-14B prototype testing	A78-28459
The rotor systems research aircraft: A ne in the technology and rotor system verif cycle		KBIGHT, R. C. S-3A composite spoiler in-service evaluati	
OBNSON, B. M. Automated weapon system trainer: Expanded	N78-19144	KODIMA, Y. Noise generated by low pressure axial flow III - Effects of rotational frequency, b	fans.
adaptive module for basic instrument fli maneuvers	ght	thickness and outer blade profile	A78-26498
[AD-A048498] IOHNSON, W. D. Lift hysteresis of an oscillating slender		KOERHER, H. Modern concepts for aerodynamic rotor desi [DLR-IB-151-77/11]	gn N78-18058
[AD-A049343] IOHESTON, H. B. F-16 flight test progress report	N78-19073	KOISO, A. Stresses and deformations in stiffened pan rectangular cut-outs. I - On case of uni	
OHNSTON, S. L.	A78-28452	tensile loads	A78-26266
Radar electronic counter-countermeasures	A78-26159	KONDRATEV, V. P. Nonuniformity of the flow, exciting wibrat working turbine blades	ions in
High resolution, high brightness color tel projector: Analysis, investigations, de	evision sign,	January	A78-27266
performance of baseline projector [AD-A049279]	N78-19362		

KOHOPLIANNIKOV, E. G.		LAPLANE, R.	
Automated vibrating bench for studying fat gas turbine blades with programmed chang		The Concorde and cosmic rays	A78-26739
load and temperature		LAPTEV, Y. I.	
KONSEWICZ, R. K.	A78-27267	The movement of a wing with deflected ailer close to a screen	rons
Rationale for selection of a flight contro	l system	[AD-A048651]	N78-18004
for lift cruise fan V/STOL aircraft [GP77-0375-28]	ท78-19112	LARSON, R. S. Hean velocity, turbulence intensity and tur	bulence
KOROLEY, V. I. Static stability of vehicles which use the	lifting	convection velocity measurements for a convergent nozzle in a free jet wind tun	nel.
force of airfoils	_	Comprehensive data report	
[AD-A049069] KRAPT, D.	N78-19074	[NASA-CR-135238] LASKIN, A. S.	N78-17991
Optimal level controls of high performance [DLR-IB-552-77/20]	n78-18059	Nonuniformity of the flow, exciting vibration working turbine blades	ions in
KUDELSKI, R.	W10-10033	•	A78-27266
MSP/ITWL airborne measuring system	A78-28196	LATTERNAM, D. C-141A service experience - Materials and p	processes
KUHW, J.		· ·	A78-25207
Characterization of current tower cab envi [AD-A048306]	N78-18026	LATYPOV, F. P. Investigation of aerodynamic characteristic	s of
KULESHOV, V. A. Experimental investigation of the temperat	nre	V-wings near solid surface [AD-A048555]	N78-18003
field in a plane channel carrying a stra		LAVERHE, J.	
turbulent air stream	A78-27139	The Concorde and cosmic rays	A78-26739
KULIKOV, E. I. Fatigue resistance of aircraft propeller b	lades	LAYTON, D. H. Proceedings of the Navy/WASA VSTOL Plying (nalities
	A78-27259	[NA SA-CR-155810]	N78-19099
KUPERNAN, M. H. Today's non-metallic composite airframe st	ructure	LEBACQZ, J. V. Capabilities of the Navy variable stability	7 X-22A
- An airline assessment	A78-25196	for V/STOL flying qualities R and D	N78-19105
KURANISI, H.		LEDBETTER, J. O.	
Stresses and deformations in stiffened pan rectangular cut-outs. I - On case of uni		Aircraft vortex effects on ground level pol concentration	Llutant
tensile loads		[APCA PAPER 77-41,5]	A78-25384
KUTUZA, B. G.	A78-26266	Remote sensing of aircraft wake wortex move the airport environment	ement in
Alreraft measurements of the spatial fluct characteristics of atmospheric radio emi:		[APCA PAPER 77-41,4] LBIHBACH, G. B.	A78-25385
wavelengths of 0.8 and 1.35 cm		Design and evaluation of a side force gener	
KUZHIR, N. A.	A78-27721	modification for the XBQM-1 remotely pilo vehicle	oted
Application of a new test method and a new		[AD-A048901]	N78-19122
wind-tunnel-data processing technique to study of unsteady heat conduction process	ses	LEMORT, P. Tentative establishment of a mathematical math	nodel of
	A78-27455	a turbojet engine as a controlled system	A78-27567
		LEONOVA, O. V.	
L		Fatigue resistance of aircraft propeller bl	
LACEY, T. R.			178-27259
Conceptual design study of a Harrier V/STO	ī.	LEWIS, B. B. Concorde noise-induced building vibrations	178-27259
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086]	N78-19094	Concorde noise-induced building vibrations Kennedy International Airport	178-27259 John P.
Conceptual design study of a Harrier V/STO research aircraft	N78-19094	Concorde noise-induced building vibrations	178-27259
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] HIL-P-83300; view from an aircraft designe LAFORTAINE, E.	N78-19094 T	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDREER, A. Supporting investigations during testing of	A78-27259 John P. W78-18873
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] HIL-F-83300; view from an aircraft designe LAPONTAINE, E. The Concorde and cosmic rays	N78-19094 T	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1]	A78-27259 John P. W78-18873
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] HIL-P-83300; view from an aircraft designe LAFORTAINE, E.	ท78-1909น r ท78-19101	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] LICKLEDBERE, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIEURANCE, W. A.	A78-27259 John F. N78-18873 E the N78-18012
Conceptual design study of a Harrier V/STO research aircraft [NASA-CF-152086] MIL-Y-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag	ท78-1909น r ท78-19101	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDEBER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980	A78-27259 John F. N78-18873 E the N78-18012
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYANA, B. Compressor and fan wake characteristics	N78-19094 F N78-19101 A78-26739 A78-28149	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] LICKLEDBERE, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIEURANCE, W. A.	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHIMARAYANA, B. Compressor and fan wake characteristics [NASA-CR-155766]	N78-19094 r N78-19101 N78-26739	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDEBER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIW, PB. Airport choice in low demand region	A78-27259 John P. N78-18873 The N78-18012) - 1990
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYANA, B. Compressor and fan wake characteristics	N78-19094 F N78-19101 A78-26739 A78-28149 N78-17995	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, PB. Airport choice in low demand region LIE, Y. K. Response of periodic beam to supersonic	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAM, C. E.	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDEBER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIM, PB. Airport choice in low demand region LIM, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIWARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAW, C. B. A theoretical investigation of the aerodyn	N78-19094 T N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, PB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLD, B. R.	A78-27259 John F. N78-18873 E the N78-18012) - 1990 N78-19713 A78-27547
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMANANA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAM, C. E. A theoretical investigation of the aerodynlow-aspect-ratio wings with partial lead separation	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIW, FB. Airport choice in low demand region LIW, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, N. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension	A78-27259 John F. N78-18873 The N78-18012 1-1990 N78-19713 A78-27547 A78-27886
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-1452086] MIL-P-03300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYAMA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAN, C. B. A theoretical investigation of the aerodynlow-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, H.	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, YB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, N. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGALAH, K.	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27886 Aic N78-19052
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] HIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYANA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAN, C. E. A theoretical investigation of the aerodyn- low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, B. Exploratory development of conductive coat.	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIW, FB. Airport choice in low demand region LIW, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLW, B. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGAIAH, K. Wildhaber-Novikov profiles for aircraft gea	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27886 Aic N78-19052
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-03300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYAMA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAN, C. B. A theoretical investigation of the aerodynlow-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, B. Exploratory development of conductive coatmaterials [AD-A048253]	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, YB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, N. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGALAH, K.	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27886 Aic N78-19052
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHWARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAN, C. B. A theoretical investigation of the aerodyn low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, B. Exploratory development of conductive coat: materials [AD-A048253] LANDY, N. A. The development of fatigue/crack growth an	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993 ing N78-18138	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, PB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, B. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGAIAH, K. Wildhaber-Novikov profiles for aircraft ges photoelastic study of the efficiency of strength-utilisation LIPELES, R.	A78-27259 John F. N78-18873 E the N78-18012) - 1990 N78-19713 A78-27547 A78-27886 A10 N78-19052 A11 A78-26482
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] HIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, B. Black Hawk, Lamps and AAH LAN, C. E. A theoretical investigation of the aerodyn- low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, B. Exploratory development of conductive coat- materials [AD-A048253] LANDI, R. A.	N78-19094 N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993 ing N78-18138 alysis	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of wDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, YB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, N. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGAIAH, K. Wildhaber-Novikov profiles for aircraft geo photoelastic study of the efficiency of strength-utilisation LIPELES, R. Standard electronic module radar cost analy	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27547 A78-27886 Aic N78-19052 Ars - A A78-26482 Visis
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIWARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, M. Black Hawk, Lamps and AAH LAN, C. E. A theoretical investigation of the aerodyn low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, H. Exploratory development of conductive coat materials [AD-A048253] LANDY, N. A. The development of fatigue/crack growth an loading spectra LANE, J. P.	N78-19094 T N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993 ing N78-18138 alysis N78-18048	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, FB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, H. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGAIAH, K. Wildhaber-Novikov profiles for aircraft ges photoelastic study of the efficiency of strength-utilisation LIPELES, R. Standard electronic module radar cost analy [AD-A048207] LONGWELL, J. P.	A78-27259 John F. N78-18873 E the N78-18012) - 1990 N78-19713 A78-27547 A78-27886 A10 N78-19052 A11 A78-26482
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFONTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIMARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, M. Black Hawk, Lamps and AAH LAW, C. E. A theoretical investigation of the aerodyn- low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, M. Exploratory development of conductive coat: materials [AD-A048253] LANDI, N. A. The development of fatigue/crack growth an loading spectra LANE, J. P. YC-15 development and test highlights - Phi-	N78-19094 T N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993 ing N78-18138 alysis N78-18048	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of WDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIW, PB. Airport choice in low demand region LIW, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LIMCOLW, W. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LIMCALHAH, K. Wildhaber-Novikov profiles for aircraft ges photoelastic study of the efficiency of strength-utilisation LIPELES, R. Standard electronic module radar cost analy [AD-A048207]	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27547 A78-27886 Aic N78-19052 Ars - A A78-26482 Visis
Conceptual design study of a Harrier V/STO research aircraft [NASA-CR-152086] MIL-P-83300; view from an aircraft designe LAFORTAINE, E. The Concorde and cosmic rays LAITONE, E. V. Ideal tail load for minimum aircraft drag LAKSHHIWARAYAWA, B. Compressor and fan wake characteristics [NASA-CR-155766] LAMBERT, M. Black Hawk, Lamps and AAH LAN, C. E. A theoretical investigation of the aerodyn low-aspect-ratio wings with partial lead separation [NASA-CR-145304] LANDSTRASS, H. Exploratory development of conductive coat materials [AD-A048253] LANDY, N. A. The development of fatigue/crack growth an loading spectra LANE, J. P.	N78-19094 T N78-19101 A78-26739 A78-28149 N78-17995 A78-26533 amics of ing-edge N78-17993 ing N78-18138 alysis N78-18048 ase III	Concorde noise-induced building vibrations Kennedy International Airport [NASA-TH-78660] LICKLEDERER, A. Supporting investigations during testing of wDL-1 airship in Ghana and Upper Volta [DLR-IB-536-77/1] LIBURANCE, N. A. Aviation weather service requirements, 1980 LIN, FB. Airport choice in low demand region LIN, Y. K. Response of periodic beam to supersonic boundary-layer pressure fluctuations LINCOLN, N. R. Preliminary study for a numerical aerodynam simulation facility. Phase 1: Extension [NASA-CR-152108] LINGAIAH, K. Wildhaber-Novikov profiles for aircraft geo photoelastic study of the efficiency of strength-utilisation LIPPLES, R. Standard electronic module radar cost analy [AD-A048207] LONGWELL, J. P. Jet aircraft hydrocarbon fuels technology	A78-27259 John P. N78-18873 The N78-18012) - 1990 N78-19713 A78-27547 A78-27547 A78-276482 A78-26482 VSis N78-18319

N78-19146

PERSONAL AUTEOR INDEX ECGOVERS, S. A.

LORES, M. B.		HAHZII, V. S.	
Projected role of advanced computational		Description of transient motion of aviation	
aerodynamic methods at the Lockheed-Geor	gia	mechanisms with double-winding electromag	neric
	N78-19787		A78-25584
LOVENDARL, D. E. Guided drogue flight test report		MARCHAND, E. Determination of dynamic characteristics fr	OM
[AD-A049164]	N78-19067	flight test data	
LOWELL, C. E.			N78-18081
High temperature environmental effects on [NASA-TM-73878]	M78-19158	MARKLE, R. L. Preliminary tests of inflatable liferafts for	OF
LOWENPELD, A. P.		stability in high winds	
The future determines the past - Bermuda I light of Bermuda II	in the	[AD-A048722] HARKOV, A. B.	₩ 7 8-18023
•	A78-26470	The application of techniques for predictin	
LOWSON, M. V. Research Requirements for the improvement	of	aircraft response to wind shear and turbu during the landing approach	lence
helicopter operations	O.		N78-18077
T. 110 P	₽78-19147	HARROWITZ, O.	
LUB, K. The NAE airborne V/STOL simulator		Reliability, Improvement Warranty (RIW) mid contract evaluation	
	N78-19145	[AD-A048244]	N78-18441
LYMB, W. Derivation of groundspeed information from		MARMOL, R. A. Squeeze film damper characteristics for gas	
airborne Distance Measuring Equipment DM		turbine engines	
interrogators [AD-A049277]	ห78-19089	[ASHE PAPER 77-DET-23] HARSCHWER, B. W.	A78-26796
[10 1047211]	N.O 13003	Review of the Air Porce summer study progra	
M		the integration of wind tunnels and compu	
HABBY, D. G.		MARSH, A. H.	N78-19804
Prediction of the severity of buffeting	70 40000	Investigation of ground reflection and impe	dance
HACE, W. D.	N78-18382	from flyover noise measurements [NASA-CR-145302]	N78-18874
Integrated controls for a new aircraft gen		MARTORELLA, R. P.	
HACK, K. W.	A78-28219	V/STOL hower stability impact on hower cont	rol task N78-19102
German Army helicopter development and pro	spects	MATOI, T. K.	1170-15102
for the future		A lifting surface theory for wings experien	cing
HACKINHON, M. J.	N78-19128	leading-edge separation [AD-A048439]	N78-19061
Effectiveness of an inlet flow turbulence		MATSUHIRO, D. S.	
<pre>device to simulate flight fan noise in a anechoic chamber</pre>	n	Two-dimensional oscillating airfoil test ap	paratus N78-19042
	A78-24880	HATTA, R. K.	
HADDOCK, L. Characterization of current tower cab envi	ranmanta	GE core engine noise investigation, low emi- engines	ssion
[AD-A048306]	N78-18026		N78-18069
MADURLL, C. B. Use of hot-stage-equipped scanning electro	_	MAXWELL, R. D. J. Current standards of fatigue test on strike	aireraft.
microscope in weld repair study of jet e			N78-18051
turbine vanes	.70 00074	MAYES, W. H.	
HARRAWA, S.	A78-28371	Concorde noise-induced building vibrations of Kennedy International Airport	John r.
Response of periodic beam to supersonic		[NA SA-TM-78660]	N78-18873
boundary-layer pressure fluctuations	A78-27886	Froceedings of the Navy/NASA VSTOL Plying Q	nalities
HARSTRELLO, L.		[NA SA -CR-155810]	N78-19099
Response of periodic beam to supersonic boundary-layer pressure fluctuations		HAZZA, J. D. A comparison of integrated and conventional	
boundary-layer pressure fractuations	A78-27886	cockpit warning systems	
MAINE, R. E.			N78-18022
Flight-determined stability and control coefficients of the F-111A airplane		Water-tunnel experiments on an oscillating	airfoil
[NASA-TH-72851]	N78-18075	at RE equals 21,000	
MATOROV, A. I. Application of a new test method and a new		[NASA-TM-78446] HCCOLGAN, C. J.	N78-19058
wind-tunnel-data processing technique to	the	Mean velocity, turbulence intensity and turk	bulence
study of unsteady heat conduction process	ses 178-27455	convection velocity measurements for a convergent nozzle in a free jet wind tunn	۵۱.
HALHUTH, N. D.		Comprehensive data report	
A computational model for three-dimensional incompressible small cross flow wall jet.		[NASA-CR-135238] HCCROSKEY, W. J.	N78-17991
[AD-A048450]	™78-18008	Introduction to unsteady aspects of separat:	ion in
HANESS, S. G.	F	subsonic and transonic flow	
Preliminary tests of inflatable liferafts stability in high winds	ior	Some unsteady separation problems for slenders	N78-18381 er bodies
[AD-A048722]	₹78-18023	1	N78-18383
HANGAUBLLO, H. A. Evaluation of the CVN 68/CVN 69 launching:	system	Prediction of unsteady separated flows on oscillating airfoils	
[AD-A049044]	N78-19167		N 78-18387
HANKA, H. J. Studies of the flash fire potential of airc	craft	ECCONEL, J. D. Effects of film injection on performance of	
cabin interior materials	AT AT P	cooled turbine	u
[AD-A048475]	N78-18158		A78-24902
EASTEGAZZA, P. Continuation and direct solution of the flu	utter	MCGOVERN, S. A. S-3A composite spoiler in-service evaluation	n
equation	170 05703		X78-25209

A78-25703

MCHUGH, D. P. PERSONAL AUTHOR INDEX

MCHUGH, D. P.		HORRISON, S. R.	
Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1]	N78-18067	Exploratory development of conductive coat materials	ing
HCIVER, D. Coming cockpit avionics	W70-10007	[AD-A048253] EOSKOWITZ, L.	N78-18138
HCPHERSON, R. L.	A78-28220	Metallurgical behavior of arresting gear d pendants	leck
YC-14 flight test program	A78-28458	HOUILLE, R.	A78-25185
MCRAE, G. Economic and safety aspects of prolonging		The AS 350 light helicopter	N78-19140
life	A78-25142	MOULDEN, T. H. Fundamental studies of subsonic and transo	
MEADE, L. B. Material development for laminar flow cont		separation. Part 2: Second phase summa [AD-A048615]	
panels	A78-25200	HRSTIK, A. V. Nultipath limitations on low-angle radar t	
HERROTEA, S. C. A theoretical investigation of the aerodyn low-aspect-ratio wings with partial lead		Multistatic-radar binomial detection	A78-26157
separation [NASA-CR-145304]	N78-17993	MURATA, S. On the flow in a centrifugal impeller. II	-
Problems pilots face involving wind shear	N78-19722	Effects of change in impeller width	A78-27907
MBRHAV, S. J. Display augmentation in manual control of		Formulation of Iowa State airport system	A78-27548
piloted wehicles	A78-28148	MUTHUKRISHWAN, M. Similar solutions in nonequilibrium nozzle	
MERRILL, W. Output feedback regulator design for jet e		STERS, P. A.	178-25728
control systems	A78-24898	Naval Emergency Air Cargo Delivery System feasibility tests and evaluation	
HEYER, R. R., JR. Effect of winglets on a first-generation j	let	[AD-A048988]	№78-19085
transport wing. 4: Stability character for a full-span model at Mach 0.30		N	
(NASA-TP-1119) HEYEBS, J. P.	N78-17997	NAGABHUSHAWAH, J. Optimum design of a landing gear shock abs	orber
Laser velocimeter survey about a NACA 0012 low angles of attack	-	system	A78-26480
[NASA-TM-74040] HILLER, B. A. Effect of design changes on aerodynamic an	N78-18084	NAGATA, T. Swirl flow in conical diffusers	A78-27910
acoustic performance of translating-cent sonic inlets		WAGY, F., JR. Uplink coverage measurements in the Los An	
(NASA-TP-1132) HILLION, D. J.	N78-17998	area for passive BCAS [AD-A048288]	N78-18027
Research requirements to reduce maintenanc of civil helicopters	e costs	NARAYANA, T. A free-oscillation test rig for pitch-damp	ing
[NASA-CR-145288] HITASHIRO, S. K.	₩78-17990	measurements in N.A.L. trisonic wind tun	
VTOL/Helicopter approach and landing guida sensors for Navy ship applications	nce	NARAYANAN, S. Optimum structural design of sheet-stringe	r panels
HOHIYAHA, T. S.	ท78-19119	subjected to jet noise excitation	A78-27887
NAVTOLAND and flying qualities	N78-19120	NAUGLE, D. P. Air quality impact of aircraft at ten U.S.	Air
HOOIJ, H. A. Plight test of stick force stability in attitude-stabilized aircraft		Force bases [APCA PAPER 77-41,6] NAZARENKO, R. A.	A78-25391
(NLR-MP-77015-U) HOORE, J. E.	N78-18080	Application of a finite difference scheme numerical solution of the direct problem	
Guided drogue flight test report [AD-A049164]	N78-19067	two-dimensional cascade of airfoils	A78-25636
Evaluation of the in-flight noise signatur		NPLSON, R. G. A hardware implementation of the ATCRBS re	ply
32-chute suppressor nozzle: Acoustic da [NASA-CR-152076] HOORE, R. E.	N78-19899	processor used in DABS [AD-A047622/6] WETZER, D. W.	N78-19090
Combined mulitary and commercial application light helicopters		Modification of an ambient air quality mod assessment of U.S. naval aviation emitta	nts
HOORTHY, C. S.	พ78-19136	NICHOLAS, O. P.	A78-28273
Effect of blockage ratio on the turbulent wake of a bluff body		The STO deck launch problem	N78-19107
HORGAN, P. H.	A78-26489	Cambered jet-flapped airfoil theory with t	ables
The philosophy adopted for the flight test the Panavia Tornado avionics system in H aircraft		and computer programs for application [AD-A048528] NIGAM, W. C.	₹78-18006
HORISSET, J.	N78-18060	Optimum structural design of sheet-stringe	r panels
A new helicostat from SNIAS helicopter div			
[NASA-TM-75063]	ision N78-18041	subjected to jet noise excitation	A78-27887
	N78-18041		els with

PERSONAL AUTHOR INDEX POPOV, H. A.

NIJIE, H.		PARKINSON, D. B.	
Response of periodic beam to supersonic boundary-layer pressure fluctuations		Exploratory development of conductive coat materials	ing
	A78-27886	[AD-A048253]	N78-18138
NISIMURA, T. Stresses and deformations in stiffened pan	ale with	PARSONS, L. D.	in lir
rectangular cut-outs. I - On case of uni		Service experience and materials evolution Force jet engines	IU AIL
tensile loads			A78-25208
BISSIE, E.	A78-26266	PELLEGRINI, H. V. Selecting plastics for aircraft application	ne
Development and application of an optimiza	tion		A78-28374
procedure for flutter suppression using	the	PERRIER, P.	_
aerodynamic energy concept [NASA-TP-1137]	N78-18459	Separation problems encountered by aircraf designers cas Div. des Etudes Avancees.	t
MOONEY, J. A.		•	N78-18377
UHP demand assigned multiple access /UHP D system for tactical satellite communicat		PETERSON, E. B. Evaluation of aircraft brake materials	
	A78-27032	[ASLE PREPRINT 77-LC-68-2]	A78-28439
NOODKESTER, B. V.	omon# 15	PETERSON, V. L.	-1
Remote sensing of aircraft wake vortex mov the airport environment	ement in	Computational aerodynamics and the numeric aerodynamic simulation facility	aı.
[APCA PAPER 77-41,4]	A78-25385	· · · · · · · · · · · · · · · · · · ·	¥78-19779
MUCKOLS, J. H. A hardware implementation of the ATCRBS re	plv	PETRASER, D. W. Predicted inlet gas temperatures for tungs	ten
processor used in DABS	-	fiber reinforced superalloy turbine blad	es
[AD-A047622/6]	N78-19090	[NASA-TH-73842]	N78-19157
^		PHILIPPE, J. J. ONERA aerodynamic research work on helicop	ters
			N78-19148
OBERDOERSTER, H. Experimental determination and comparison	with	PI, W. S. A non-Gaussian gust model for aircraft res	ponse
theory of thrust, noise and driving weig		analysis	
propeller drives [BMVG-FBWT-77-16]	N78-18072	[NOR-76-223] PIERCE, 8.	N78-19165
OCOHOR, J. C.	N70 10072	Studies of the flash fire potential of air	craft
UTTAS testing	A78-28461	cabin interior materials	N78-18158
OGAWA, T.	A / 0-20401	[AD-A048475] PIESINGER, G. H.	M/Q-10130
On the flow in a centrifugal impeller. II	-	Active reference null steering for spread	spectrum
Effects of change in impeller width	A78-27907	signals	A78-27038
OKUHEV, S. W.		PIETERSEN, O. B. H.	
Method for solving problems of flow past a with fuselage bounded by an ideal fluid		Determination of antenna radiation pattern cross sections and jam-to-signal ratios	
***** *********************************	A78-25585	flight tests	_
OLSON, S. R. Seakeeping considerations in the employmen	t of	[NLR-MP-76023-U] PIVKO, S.	N78-18289
V/STOL on Naval ships		Experimental verification of an annular ae	rofoıl
ORSTOTT, E. D.	N78-19117	theory	₽78-27938
Discrete maneuver pilot models for flying		PLATERR, H. P.	
qualities evaluation	A78-26791	A quasisteady theory for incompressible fl airfoils with oscillating jet flaps	ow past
OTTENHOFF, C.	X70-20731	allions with oscillating jet liaps	A78-26229
Analog versus digital null-steering control	llers A78-27039	Entrainment characteristics of unsteady su	bsonic
OTTERSOSER, J.	A 70-27039	jets	A78-26238
Parametric transonic evaluation of type A	VSTOL	PLATZOEDER, L.	
nacelle drag [AD-A048110]	N78-18002	Improvement of flight measuring data with a filter	a Kalman
,	10002	[BMVG-PBWT-77-6]	N78-18057
P		PLISOV, N. B. Investigation of aerodynamic characteristic	cs of
PACE, R. G.		V-wings near solid surface	
Aircraft emission factors [PB-275067/7]	N78-18595	[AD-A048555] PLUMMER, C. A., JR.	N78-18003
PADIYAR, K. S.	C6C01-07N	Y)V-8B/AV-8B advanced Harrier program	
A case for a new model for turbulent flame		20171707 1 0	A78-28455
propagation	A78-27840	POLIAROV, A. P. Experimental investigation of the temperate	ure
PANCHISHIN, V. I.		field in a plane channel carrying a stra-	
Description of transient motion of aviation mechanisms with double-winding electroma		turbulent air stream	A78-27139
clutches	_	POOLE, W.	
PANKRATOV, B. H.	A78-25584	The wear of aluminum-bronze on steel in the presence of aviation fuel	e
Some aspects of the thermal design of flig		[ASLE PREPRINT 77-LC-5C-1]	A78-28436
vehicles and processing of heat-test data	a A78-27452	POPE, J. C.	+ oda v te
PARKER, D. L.		A symopsis of the weather problems facing general aviation pilots	rodal.2
Doublet lattice aerodynamic predictions for	r an	•	N78-19718
oscillating P-5 wing with stores [AD-A048968]	N78-19070	POPE, R. G., JR. Analysis and design of a cooled supercritic	cal
PARKER, G. S.		airfoil test model	
Generalized procedures for tracking crack of in fighter aircraft	growth	[AD-A048895] POPOV, H. A.	N78-19168
[AD-A048847]	ท78-19121	Test of an aviation oil, increased-density	
			A78-25475

PERSONAL AUTHOR INDEX

Conjustion with experimental facilities Drugs, J. J. Drey, flow transition, and laminar separation on nine bodies of revolution having different and property of the second property				
Cooperational accognation requirements in conjunction with experimental faculties #78-19780 [#78-1908	Analytical study of a free-wing/free-trim [NASA-CR-2946]		Combustor fluctuating pressure measurement in-engine and in a component test facili	
Compressor and fan wate characteristics 378-1798 beg. 1, 1, 1 and position on nine bodies of revolution having different for corebody habous of revolution having different for public based on the corebody habous and position of the core of the second had been core of the second had	Computational aerodynamics requirements i			A78-24878
nise bodies of revolution having different forcebody shapes and revolution having different forcebody shapes and revolution having different for checking shapes and revolution of the hardy and the state of the shapes and the shapes are shaped and the shapes are shaped and the shapes are shaped as a shape of policy hadding qualities with the shapes are shaped as a shape of groundspeed information from althorne bistance Resouring Engineers 1878-1905 [1982KL, J. 1878-1905] [1982KL	POWER, J. L.	N78-19788	Compressor and fan wake characteristics [NASA-CR-155766]	ห78-17995
PRISE, R. G. G. MORIES, R. G. G. G. MORIES, R. G. G. MORI	nine bodies of revolution having differ			178-28862
control system configurations optisized for plot handling qualities 178-1807 PBESII, B. B. Derivation of groundspeed information from altrores pitation of groundspeed information from altrores pitations of groundspeed information from altrores possessing payment on a grant file of the control system deeper of the accordance bybrid heavy lift websites o	[AD-A048274] POWERS, B. G.			argets
### ### ### ### ### ### ### ### ### ##	control system configurations optimized			
activoractors interconactors interconactors INT8-1908 IN	(NISA-TP-1148) PURSEL, R. H.		implications for flight control system d	
### 1878-1808 ##	airborne Distance Measuring Equipment D		Puselage structure using advanced technolo	gy metal
### 1878-1911 ### 1878-1911 ### 1878-1912 ### 18	[AD-A049277]	N78-19089	[NA SA-CASE-LAR-11688-1]	N78-18045
An experimental and analytical investigation of the bevering and forward flight characteristics of the accordance hybrid heavy lift vehicle of the bowering and forward flight characteristics of the accordance hybrid heavy lift vehicle of the computer of the accordance of the accord				พ78-19145
### And the state of the state	An experimental and analytical investigat the hovering and forward flight charact	eristics	Air France's new 'freight' installations a	
feasibility tests and evaluation [AD-A08988] N78-19085 R RAHCHNDRA K. Wildhaber-Novikov profiles for aircraft gears - A photoelastic study of the efficiency of strength-utilisation A78-2682 RASSWRIER, G. G. Analog versus digital null-steering controllers [AD-A089306] N78-27039 RAUDSERS, J. Characterization of current tower cab environments [AD-A08306] N78-18026 RAVIRDRAWAR, A. Compressor and fan wake characteristics Compressor and fan wake characteristics A78-2682 RAVIRDRAWAR, S. Evaluation of torsional rigidity of circular arc accofold section tuisted bars A78-26884 REDDIRGURS, W. ROISERD, CO. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A089070) REDDT, R. G. Long ters experience with a hingeless/composite rotor RT6-19137 RETICERR, G. Long ters for shaping a digital operations RED program A78-2816 RETID, L. D. RETID, L. D. RETID, R. J. R., JR. The year for shaping a digital operations RED PROGRAM A78-2816 RETID, L. D. Technical and financial fall-out on armed forces from consercial and export helicopter programses from consercial and export helicopter programses from consercial and export helicopter programses A78-2816: SAN HIGGER, A. Antialisting feel kneestics related to aircraft crash landings A78-2816: SAN HIGGER, A. Antialisting feel kneestics related to aircraft crash landings A78-2816: ANSSERIE, B. Tri-Gull amphibion development The Concorde v. the United States - Some conclumion. A78-26482 The Concorde v. the United States - Some conclumion. A78-26482 ROSERTIP, D. SOMASTRIP, D. ROSERTIP, D. ROSERTI	PUTHAN, R. H.		Effect of fuel bound nitrogen on oxides of	1/
MANAGEMENTER, K. Winable-Novitor profiles for aircraft gears - h phatche-Novitor for gears A78-2682 RASSWILER, G. G. Analog verus digital null-steering controllers A78-27039 RAUDSER, J. Characterization of current tower cab environments (RASI-CRE-PEC-10113-1] RAVIEDRANYER, A. Compressor and fan wake characteristics (RASI-CRE-TEST-66) (RASI-CRE-TEST-66) (RASI-CRE-TEST-66) (RASI-CRE-TEST-66) (RASI-CRE-TEST-66) RAVIEDRANYER, A. Compressor and fan wake characteristics (RASI-CRE-TEST-66) (RASI-CRE	feasibility tests and evaluation	•	[AD-A048382]	N78-19162
The Concorde v. the United States - Some conclusion. 18-2687 Photoelastic study of the efficiency of strength-utilisation 18-2687 RESSWEILER, G. G. Analog versus digital null-steering controllers 18-27039 REMIDISPRS, J. Characterization of current tower cab environments (19-2048306) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization of current tower cab environments (18-27039) RAYINDARMIN, A. Characterization (18-27039) RAYINDARMIN, A. Characterizat	R		•	A78-28460
### A 18-26482 ### A 18-26483 ### A 18-26483 ### A 18-26484 ### A 18-26484	RAMACHANDRA, K. Wildhaber-Novikov profiles for aircraft go		The Concorde v. the United States - Some c	onclusions A78-26474
RRISSHILER, G. G. Analog versus digital null-steering controllers Analog versus digital null-steering controlners Analog versus digital null-steering controllers Analog versus digital perations and analog and testing of the Av-8A Harrier ROSERTIT, 1. B. Shipboard testing of the Av-8A Harrier Automated vibrating bench for studying fatigue in gas turble blades with programs dealing in data ordeperature Analog vibrating bench for studying fatigue in gas turble blades with programs at the programs Analog vibrating bench for studying fatigue in gas turble blades with programs at the programs at the blades with programs of computations of the Av-8A Harrier ROSERTIT, 1. B. Shipboard testing of the Av-8A Harrier Automated vibrating bench for studying fatigue in gas turble blades with programs dealing in data dealing and the anade analog and transonic flow acrospose industry ROSERTIT, 1. B. Shipboard testing of the Av-8A Harrier ROVEN, V. A. Automated vibrating bench for studying fatigue in gas turble of the computer and the needs of the future role of the computer and the needs of the future role of the computer and the			A portable device particularly suited for	use in
RAUDSEPS, J. Characterization of current tower cab environments [AD-A048306] RAYTHDRAWATT, A. Compressor and fan wake characteristics [RASA-CR-155766] RAYTHRAIT, S. Evaluation of torsional rigidity of circular arc aerofoil section twisted bars A78-2688 REDDINGIUS, W. ROSSEMAP computer program operator manual. Addendum for version 3.4 of NOISEMAP [AD-A048306] REDDIN K. C. Pundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048016] REDDIN H. R. Similar solutions in nonequilibrium nozzle flows rotor REIDERT, G. Long term experience with a hingeless/composite rotor REID, R. J. E., JR. The year for shaping a digital operations RED program A78-2818 REIDL, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach aircraft response to wind shear and turbulence during the landing approach aircraft response to wind shear and turbulence during the landing approach [AD-A048306] REMID, L. D. Crashworthy troop seat testing program [AD-A048306] REMIPER, P. S. Characterization of current tower cab environments [AD-A048306] REMIPER, P. S. Characterization of current tower cab environments [AD-A048306] REMIDERT, C. A78-2726 REMIDERT, P. E. Computational aerodynamics requirements: The future role of the computer and the needs of the aerospace industry REDDING. A78-2726 REUDEN, A. M. Study of the propagation of higher modes in cylindrical ducts with impedance with initial quality of fastener holes REDDING. A. M. Study of the propagation of higher modes in cylindrical ducts with impedance with a hingeless/composite rotor W78-1907 REIDERT, C. Variable mitronal aerodynamics requirements: The future role of the computer and the needs of the aerospace industry REUDEN. A. M. Study of the propagation of higher modes in cylindrical ducts with impedance with im		ollers	[NASA-CASE-PRC-10113-1] BOSSETTI, A. H.	N78-19166
RAVINDRANATE, A. Compressor and fan wake characteristics [MASA-CR-155766] R78-17995 RAVIANT, S. Evaluation of torsional rigidity of circular arc aerofoil section twisted bars A78-26484 REDDINGIUS, W. NOISEMAP computer program operator manual. Addendum for version 3.4 of NOISEMAP [AD-A049070] R78-19849 REDDIT, K. C. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report yr8-18007 REDDIT, H. H. Similar solutions in nonequilibrium nozzle flows I78-25728 REICERET, G. Long term experience with a hingeless/composite rotor RFB. L. D. The year for shaping a digital operations RED program A78-28118 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [AD-A048975] RFB. J. Casahworthy troop seat testing program [AD-A048936] REMIPPER, P. S. Characterization of current tower cab environments [AD-A048936] RFBANDD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programms	Characterization of current tower cab envi	ironments	ROVKOV, V. A.	N78-19108 ique in
REPAIR S. Evaluation of torsional rigidity of circular arc aerofoil section twisted bars A78-26484 REDDINGIUS, W. NOISEMAP computer program operator manual. Addendum for version 3.4 of NOISEMAP (AD-A099070) RT8-19849 REDDI, K. C. Pundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A048615) REDDI, B. M. Similar solutions in nonequilibrium nozzle flows A78-25728 REICHERT, G. Long term experience with a hingeless/composite rotor The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach (AD-A048975) REILLY, M. J. Crashworthy troop seat testing program (AD-A048975) REILLY, M. J. Characterization of current tower cab environments (AD-A048936) REMAND, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programs RT8-28107 RTHOUS, W. RT8-19849 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes A78-25180 RTBDD, J. L. Analytical representation of the initial quality of fastener holes RTBDD, J. L. Analytical representation of the propagation of higher nodes in Cylindrical ducts with inpedance valls RTBDD, J. L. Analytical representation of t	RAVINDRANATH, A. Compressor and fan wake characteristics		gas turbine blades with programmed chang	es in
A78-26484 REDDIGIUS, M. NOISEMAP Computer program operator manual. Addendum for version 3.4 of NOISEMAP (AD-A099070) R78-19899 REDDI, K. C. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] R78-18007 REDDI, R. M. Similar solutions in nonequilibrium nozzle flows Similar solutions in nonequilibrium nozzle flows Clong term experience with a hingeless/composite rotor REDD, H. J. E., JR. The year for shaping a digital operations RED program A78-28218 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIR-215] R78-18077 REILLY, H. J. Crashworthy troop seat testing program (AD-A048975) R78-18026 REMPPER, P. S. Characterization of current tower cab environments (AD-A048975) R78-18026 REMADD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes	RAWTANI, S.			
NOISEMAP computer program operator manual. Addendum for version 3.4 of NOISEMAP (AD-A049070] N78-19849 REDDY, K. C. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] N78-18007 REDDY, N. H. Similar solutions in nonequilibrium nozzle flows A78-25728 REICHERT, G. Long term experience with a hingeless/composite rotor The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [AD-A048975] N78-18077 REILIF, E. J. Crashworthy troop seat testing program [AD-A048975] N78-1904 REMPPER, P. S. Characterization of current tower cab environments [AD-A048975] N78-18026 RENDEN, A. L. Analytical representation of the initial quality of fastener holes N78-1907 RUBDHKO, A. H. Study of the propagation of higher modes in cyclidarical ducts with impedance walls RUBDELL, D. J. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] N78-18067 RIZHOV, O. S. Unsteady boundary layer with self-induced pressure transition of a two-dimensional wake by external sound A78-28107 SALIVOR, E. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27163 SALIVOR, E. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 SAN BIGURL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28107 A78-28107 A78-28107 A78-28107 SALIVOR, E. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 A78	aerofoil section twisted bars		future role of the computer and the need	s of the
[AD-A049070] N78-19849 REDDIY, K. C. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] N78-18007 REDDIY, N. H. Similar solutions in nonequilibrium nozzle flows A78-25728 REICHERT, G. Long term experience with a hingeless/composite rotor N78-19137 REID, H. J. E., JR. The year for shaping a digital operations RED program A78-2818 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] N78-1807 REILLY, R. J. Crashworthy troop seat testing program [AD-A048975] REPPYER, P. S. Characterization of current tower cab environments [AD-A048306] N78-18026 REMPAGN, A. M. Study of the propagation of higher modes in cylindrical ducts with impedance walls A78-25773 RUBDELL, D. J. Variable mixer propulsion cycle [NNSA-CASE-LEW-12917-1] N78-18067 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27103 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27103 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27103 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 A78-28187 A78-28187 STUDEKO, A. M. Study of the propagation of higher modes in cylindrical ducts with impedance valls A78-25773 RUBDELL, D. J. Variable mixer propulsion cycle [NNSA-CASE-LEW-12917-1] N78-18067 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 A78-28107 SALIVOR, M. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107	NOISEMAP computer program operator manual.	•		
separation. Part 2: Second phase summary report [ND-A048615] N78-18007 REDDY, N. H. Similar solutions in nonequilibrium nozzle flows A78-25728 REICHERT, G. Long term experience with a hingeless/composite rotor N78-19137 REID, H. J. E., JR. The year for shaping a digital operations RED program A78-28218 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] N78-18077 REILIT, H. J. Crashworthy troop seat testing program [AD-A048375] N78-19084 REMPFER, P. S. Characterization of current tower cab environments [AD-A048375] N78-18026 ERMAUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes Study of the propagation of higher modes in cylindrical ducts with impedance walls A78-25773 RUMDELL, D. J. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] N78-18067 RYZHOV, O. S. Unsteady boundary layer with self-induced pressure A78-28107 A78-28107 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVOR, B. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVOR, B. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-28107 A78-28107 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVOR, B. D. ARTIFICIAL D. ARTIFICIAL D. ARTIFICIAL D. ARTIFICIAL D. ARTIFICAL D	[AD-A049070] REDDY, K. C.		of fastener holes	A78-25180
Similar solutions in nonequilibrium nozzle flows A78-25728 REICHERT, G. Long term experience with a hingeless/composite rotor N78-19137 REID, H. J. B., JR. The year for shaping a digital operations RED program A78-28218 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] Crash worthy troop seat testing program (AD-A048975] REILLY, H. J. Characterization of current tower cab environments (AD-A048306) Technical and financial fall-out on armed forces from commercial and export helicopter programmes RUNDELL, D. J. Variable mixer propulsion cycle [NASA-CASE-LEW-12917-1] R78-18067 RYZHOV, O. S. Unsteady boundary layer with self-induced pressure A78-28102 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVON, B. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27266 SAN HIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28197 A78-28107	separation. Part 2: Second phase summa [AD-A048615]	ary report	Study of the propagation of higher modes is	
Long term experience with a hingeless/composite rotor R78-19137 REID, H. J. E., JR. The year for shaping a digital operations R8D program A78-28218 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] REILLY, H. J. Crashworthy troop seat testing program [An-A048975] REHPER, P. S. Characterization of current tower cab environments [An-A048306] REMPAUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes RYZHOV, O. S. Unsteady boundary layer with self-induced pressure A78-28102 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27103 SALIVON, B. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27266 SAN HIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28107	Similar solutions in nonequilibrium nozzle			
REID, H. J. E., JR. The year for shaping a digital operations RED program A78-2818 REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] N78-18077 REILLY, H. J. Crashworthy troop seat testing program [AD-A048975] N78-19084 REMEMPER, P. S. Characterization of current tower cab environments (AD-A048306) N78-18026 ERMAND, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes A78-28102 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVON, N. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27266 SAW HIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28147	Long term experience with a hingeless/comp	posite	RYZHOV, O. S.	
Program A78-28218 RBID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] REILLY, H. J. Crashworthy troop seat testing program [AD-A048975] REMBPER, P. S. Characterization of current tower cab environments [AD-A048306] REMBAUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes A78-28218 SAITO, H. Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 SALIVON, N. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27266 SAW HIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28147	REID, H. J. E., JR.		_	A 78-28102
REID, L. D. The application of techniques for predicting STOL aircraft response to wind shear and turbulence during the landing approach [UTIAS-215] N78-18077 REILLY, M. J. Crashworthy troop seat testing program [AD-A048975] N78-19084 REMPFER, P. S. Characterization of current tower cab environments [AD-A048306] N78-18026 REMNAUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes Artificial control of the laminar-turbulent transition of a two-dimensional wake by external sound A78-27143 NONUNIFORMITY Of the flow, exciting vibrations in working turbine blades A78-27266 SAM BIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28147	· · · · · · · · · · · · · · · · · · ·		_	
[UTIAS-215] N78-18077 BEILLY, H. J. Crashworthy troop seat testing program [AD-A048975] N78-19084 REMPFER, P. S. Characterization of current tower cab environments [AD-A048306] N78-18026 REMNUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes SALIVON, H. D. Nonuniformity of the flow, exciting vibrations in working turbine blades A78-27266 SAF HIGUEL, A. Antinisting fuel kinematics related to aircraft crash landings A78-28147	The application of techniques for predicti aircraft response to wind shear and turk	ing STOL	Artificial control of the laminar-turbulen- transition of a two-dimensional wake by	
Crashworthy troop seat testing program [AD-A048975] N78-19084 REMPFER, P. S. Characterization of current tower cab environments [AD-A048306] N78-18026 REMNUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes working turbine blades A78-27266 SAM SIGUEL, A. Antimisting fuel kinematics related to aircraft crash landings A78-28147	[UTIAS-215]	N78-18077		178-27143 ions in
Characterization of current tower cab environments [AD-A048306] RT8-18026 Crash landings A78-28147 Technical and financial fall-out on armed forces from commercial and export helicopter programmes	Crashworthy troop seat testing program [AD-A048975]	N78-19084	working turbine blades	178-27266
REWAUD, A. L. Technical and financial fall-out on armed forces from commercial and export helicopter programmes	Characterization of current tower cab envi		Antimisting fuel kinematics related to air	craft
	RENAUD, A. L. Technical and financial fall-out on armed	rogrammes	-	A78-28147

SINCLAIR, S. R. M. PERSONAL AUTHOR INDEX

A78-28195

SANDAUER, J.
Theory of dolphin-style glider flight and principles of dynamic flight. I

SANDUSKY, G. 7.
GP core engine noise investigation, low emission

SCHWARTZ, H. S.

Durability of adhesive bonded honeycomb sandwich
in accelerated adverse environments

A78-25

SCHWIRTZ, 8. P. Display and speech devices for simulator

A78-25202

engines [AD-A048590]	N78-18069	instructor/operator station applications [AD-A049247]	N78-19169
SANKARANARATANAN, B.		SEEBASS, A. R.	
Optimum design of a landing gear shock abs	sorber	Unsteady transonic flow computations [10-1049188]	N78-19068
3/300	A78-26480	SEBOO, Y.	13000
SANTHARAM, A.		Swirl flow in conical diffusers	
One axis artificial feel system	A78-26488	SEREGIN, A. S.	A78-27910
SARGISSON, D. F.	A.O 20400	Patigue resistance of aircraft propeller b	lades
Integrated gas turbine engine-nacelle	#30 400CC		178-27259
[NASA-CASE-LEW-12389-21 SATO, H.	N78-18066	SEREGIE, V. V. Generalized algorithm of the analytical me	thad of
Artificial control of the laminar-turbuler	nt	gyrocompassing	chou or
transition of a two-dimensional wake by	external		A78-25013
sound	A78-27143	SHAIN, W. H. Test data report, low speed wind tunnel te	ete of a
Sato, J.	A.O 21 143	full scale lift/cruise-fan inlet, with e	
Experimental research on high lift airfoil	l section	at high angles of attack	***********
HL235	A78-25945	[NASA-CR-152055] SHARP, P. S.	N78-19049
SATO, R.		B-1 terrain following development	
Stresses and deformations in stiffened par		cnin a a	A78-28456
rectangular cut-outs. I - On case of uni tensile loads	LIOLE	SHAU, G. C. Optimal level controls of high performance	aircraft
	A78-26266	[DLR-IB-552-77/20]	N78-18059
SATYANARAYANA, B.		SHAW, L. H.	
Two-dimensional transonic testing with spl plates	riccer	Effectiveness of an inlet flow turbulence device to simulate flight fan noise in a	
[NASA-TP-1153]	ห78-17999	anechoic chamber	
SCHABPPER, D. B. Wind models for flight simulator certification	tion of	CUCUDDDT#T# 1 *	A78-24880
landing and approach quidance and contro		SHCHERBININ, A. I. Test of an aviation oil, increased-density	#S-20
	Ħ78-19723	•	A78-25475
SCHIPP, L. B. The role of time-history effects in the		SHEBALOV, A. W. Method for solving problems of flow past a	wing
formulation of the aerodynamics of aircr	raft	with fuselage bounded by an ideal fluid	
dynamics	w70 400F6		A78-25585
[NASA-TH-78471] SCHLEGEL, G.	₩78-19056	SHERRER, V. C. The effects of external stores on the flut	ter of a
Aircraft response effect on E-field measur	cements	non-uniform cantilever	
[AD-A047986]	N78-18272	[AD-A048360]	N78-18078
SCHLIEWA, M. Experimental determination and comparison	with	SHET, U. S. P. A case for a new model for turbulent flame	
theory of thrust, noise and driving weigh		propagation	
propeller drives [BMVG-FEWT-77-16]	N78-18072	SHIPLEY, J. L.	A78-27840
SCHRIDT, B.	N70-10072	The rotor systems research aircraft: A ne	w step
Transonic flow past an airfoil with conden		in the technology and rotor system verif	
[NASA-TM-75201] SCHHIDT, L. V.	N78-19053	cycle	N78-19144
Circulation control airfoil study		SHLINKHOVA, ZH. V.	
[AD-A048677]	₩78-18005	Application of a finite difference scheme	
Proceedings of the Navy/NASA VSTOL Plying [NASA-CR-155810]	N78-19099	numerical solution of the direct problem two-dimensional cascade of airfoils	or a
SCHHITT, G. P., JR.			A78-25636
In-service performance of polyurethane and fluorocarbon rain erosion resistant rado		SHEAGER, J. J. The analysis of National Transportation Sa	fat w
coatings	ome	Board large fixed-wing aircraft	lecy
•	A78-25205	accident/incident reports for the potent	ial
SCHWEIDER, J. D. Magnus effects on ballistic trajectories		presence of low-level wind shear [AD-A048354]	N78-18021
[AD-A048966]	N78-19071	SIMBORS, J. H.	X10 1002
SCHRECKER, H.		A quasisteady theory for incompressible fl	ow past
Experimental determination and comparison theory of thrust, noise and driving weight		airfoils with oscillating jet flaps	A78-26229
propeller drives	, 01	Entrainment characteristics of unsteady su	
[BHVG-PBWT-77-16]	N78-18072	jets	.70 26220
SCHROTT, A. The geometrical theory of diffraction - a	met hod	SINON, D. R.	A78-26238
for the solution of electromagnetic boun	dary	The Advancing Blade Concept (ABC) rotor pr	
value problems of complicated structures high frequency case	in the	CTMC F T	N78-19143
uidu ileddench case	N78-18290	SIMS, K. L. An aerodynamic investigation of a forward	swept wing
SCHUTZ, W.	_	[AD-A048898]	พ78-19069
Calculation methods for fatigue life and c propagation	rack	SINAI, Y. L. The wave system attached to a finite slend	ar hadu
brokada oron	N78-18049	in a supersonic relaxing gas stream	er pogl
SCHWAB, L. B.	_		A78-27146
Use of hot-stage-equipped scanning electron microscope in weld repair study of jet e		SINCLAIR, S. R. M. The NAE airborne V/STOL simulator	
turbine wanes		was dated in order branches	N78-19145
	A78-28371		

SINGLETON, I. J. PERSONAL AUTHOR INDEX

SINGLETOR, I. J. F-15/16 canopy off testing		STEVERSOR, L. Characterization of current tower cab environments
	A78-28453	(AD-A0483061 N78-18026
SINHA, A. W. Concepts for estimating capacity of basic configurations	runway	STEWART, E. C. Dynamic wind-tunnel tests of an aeromechanical gust-alleviation system using several different
[PB-274578/4] SKAAB, T.	N78-18036	combinations of control surfaces [NASA-TH-78638] N78-19059
Air-sea rescue operations. Search and res experience		STOCK, H. W. Influence of wing tapering on the development of a
SKRIPACR, B. K.	N78-19134	three-dimensional turbulent boundary layer exemplified with a transonic wing fBMyg-pBWY-77-71 N78-18010
A wing in an unsteady gas flow, part 1 [AD-A048999]	N78-19077	STODDARD, P. J.
A wing in an unsteady gas flow, part 2 [AD-A049000] P wing in an unsteady gas flow, part 3	N78-19078	Studies of heat transfer to gas turbine components [AD-A048551] N78-18071 STORE, J. R.
[AD-A049001] SKUDRIDAKIS, J.	N78-19079	An empirical model for inverted-velocity-profile jet noise prediction
Calculation of the horizontal tail loads fe elevator actuation	rom	A78-24879 STORE, R. H.
	N78-18011	Service experience of composite parts on the L-1011 and C-130
Inviscid fluid models, based on rolled-up		A78-25197
sheets, for three-dimensional separation Reynolds number	•	STOTLER, C. L., JR. Integrated gas turbine engine-nacelle
SHITH, P. G.	N78-18384	[NASA-CASE-LEW-12389-21 N78-18066 STOUGH, H. P., III
Multipath limitations on low-angle radar t	A78-26157	A flight evaluation of a trailing anemometer for low-speed calibrations of airspeed systems on research aircraft
Application of composites on civil aircraf		[NASA-TP-1135] N78-18044
SOKOLOVSKII, G. A.	178-25199	STRAUSS, W. J. The Mission Trade-Off Methodology (MTOM) model.
Application of a finite difference scheme numerical solution of the direct problem		Model description [AD-A049318] N78-19125
two-dimensional cascade of airfoils	A78-25636	STUKONIS, M. Corrosion of fuel assembly components of turbine
SPROTBERY, D. E. High resolution, high brightness color tel		engines and its prevention A78-28197
projector: Analysis, investigations, de		SUBRAHANIAN, N. R.
performance of baseline projector [AD-A049279]	N78-19362	Haslen analysis of power-law shocks in inviscid hypersonic stream A78-26481
SRINATHRUNAR, S.		
Eigenvalue/eigenvector assignment using ou	tput	SUKHOROSOV, IU. L.
feedback [NASA-TP-1118]	tput N78-18823	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259
feedback [NSA-TP-1118] STALBY, W. W. Hodular packaging approaches	N78-18823	SUKHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near
feedback [NSA-TP-1118] STALEY, W. W. Hodular packaging approaches [AD-A048205] STALKER, R. J.	N78-18823 N78-18321	SURHOROSOV, IU. L. Patigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489
feedback [NSSA-TP-1118] STALBY, W. W. Hodular packaging approaches [AD-A048205]	N78-18823 N78-18321	SUKHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLERRY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp	N78-18823 N78-18321	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAR, J. L.
feedback [NISA-TP-1118] STALEY, W. W. Hodular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NISA-TH-73878]	N78-18823 N78-18321 Y A78-26235	SURHOROSOV, IU. L. Patigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA HURTHY, H. A free-oscillation test rig for pitch-damping
feedback [NFSA-TP-1118] STALBY, W. W. Hodular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Flight-determined stability and control	N78-18823 N78-18321 Y A78-26235 metals	SURHOROSOV, IU. L. Patigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487
feedback [NBSA-TP-1118] STALBY, W. W. Modular packaging approaches [AD-A048205] STALKER, B. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NASA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851]	N78-18823 N78-18321 Y A78-26235 metals	SURHOROSOV, IU. L. Patigue resistance of aircraft propeller blades A78-27259 SULLERBY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIN, R. L. Ride quality flight testing
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NRSA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLBREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIN, R. L. Ride quality flight testing SYRED, N.
feedback [NASA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NASA-TH-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NASA-TH-72851] STEIN, V.	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners
feedback [NBSA-TP-1118] STALBY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NBSA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075	SURHOROSOV, IU. L. Patigue resistance of aircraft propeller blades A78-27259 SULLERBY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the
feedback [NSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NSA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F.	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLBREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLB PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIH, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fnels and
feedback [NBSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, B. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NASA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NASA-TM-72851] STEIH, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, H. N.	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F.	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing A78-26795 SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NASA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the P-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Fatigue resistance of aircraft propeller be	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F.	SURHOROSOV, IU. L. Patique resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional
feedback [NSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, H. N. Fatigue resistance of aircraft propeller be STETTE, G. R. Access study and simulation of the Barots	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLBREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLB PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756
feedback [NSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NASA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Fatigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing A78-26795 SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets
feedback [NSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Fatigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system STEVENS, H. L. F-15/nonaxisymmetric nozzle system integra	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873 lades A78-27259	SURHOROSOV, IU. L. Patique resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets [AD-A048450] TABACHBIKOV, V. G.
feedback [NISA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NISA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NISA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NISA-TM-78660] STEPHOV, M. N. Patigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873 lades A78-27259	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets [AD-A048850] N78-18008
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Fatigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system STEVENS, H. L. F-15/nonaxisymmetric nozzle system integra study support program [NASA-CR-135252] STEVENS, S. C.	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873 lades A78-27259 A78-27027 tion	SURHOROSOV, IU. L. Patique resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets [AD-A048450] TABACHNIKOV, V. G. A wing in an unsteady gas flow, part [AD-A048999] A wing in an unsteady gas flow, part 2
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NRSA-TM-73878] STEERS, S. T. Plight-determined stability and control coefficients of the P-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Patigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system STEVENS, H. L. P-15/nonaxisymmetric nozzle system integra study support program [NASA-CR-135252] STEVENS, S. C. Projected needs of US Army Aviation	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873 lades A78-27259 A78-27027 tion	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing SYRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets (AD-A048050) N78-18008 T TABACHNIKOV, V. G. A wing in an unsteady gas flow, part ' [AD-A049099] A wing in an unsteady gas flow, part 2 [AD-A0490001 A wing in an unsteady gas flow, part 3
feedback [NFSA-TP-1118] STALEY, W. W. Modular packaging approaches [AD-A048205] STALKER, R. J. Driver gas contamination in a high-enthalp reflected shock tunnel STEARNS, C. A. High temperature environmental effects on [NSA-TM-73878] STEERS, S. T. Flight-determined stability and control coefficients of the F-111A airplane [NASA-TM-72851] STEIN, V. The integral equation method - a computati method for diffracted and scattered fiel complicated structures STEPHENS, D. G. Concorde noise-induced building vibrations Kennedy International Airport [NASA-TM-78660] STEPHOV, M. N. Fatigue resistance of aircraft propeller b STETTE, G. R. Access study and simulation of the Marots communication system STEVENS, H. L. F-15/nonaxisymmetric nozzle system integra study support program [NASA-CR-135252] STEVENS, S. C.	N78-18823 N78-18321 Y A78-26235 metals N78-19158 N78-18075 onal ds of N78-18291 John F. N78-18873 lades A78-27259 A78-27027 tion N78-18070	SURHOROSOV, IU. L. Fatigue resistance of aircraft propeller blades A78-27259 SULLEREY, R. K. Effect of blockage ratio on the turbulent near wake of a bluff body A78-26489 SULLIVAN, J. L. The wear of aluminum-bronze on steel in the presence of aviation fuel [ASLE PREPRINT 77-LC-5C-1] A78-28436 SUNDARA MURTHY, H. A free-oscillation test rig for pitch-damping measurements in N.A.L. trisonic wind tunnels A78-26487 SWAIM, R. L. Ride quality flight testing STRED, N. Effect of high levels of confinement upon the aerodynamics of swirl burners A78-26107 SZACHNOWSKI, W. Temperature characteristics of the speed of sound and compressibility of standard fuels and petroleum oils A78-26756 SZETO, R. K. A computational model for three-dimensional incompressible small cross flow wall jets [AD-A048450] TABACHNIKOV, V. G. A wing in an unsteady gas flow, part ' [AD-A048999] N78-19077 A wing in an unsteady gas flow, part 2 [AD-A049000] N78-19078

PERSONAL AUTHOR INDEX WANG, K. C.

TAKAHATSU, Y.		14	
Noise generated by low pressure axial flow III - Effects of rotational frequency, b		V	
thickness and outer blade profile	A78-26498	VARHITOV, A. P. The Mi-6A helicopter	
TABARA, A.		-	A78-26000
Decay and modification of trailing vortex TAWAKA, S. Decay and modification of trailing vortex	A78-27908	VANCARP, V. V. Study of hypersonic propulsion/airframe integration technology [NASA-CR-145321]	N78-19096
TATARENCHIK, V. S.	A78-27908	VANCE, J. H. Squeeze film damper characteristics for ga	s
The supersonic flow past cusped wings	178-28056	turbine engines [ASME PAPER 77-DET-23]	A78-26796
TAYLOR, H. R. High-altitude area navigation (RWAV) enrou simulation	te	WANDERHARTEM, R. J. Some aspects of offshore operations in the Netherlands	•
[AD-A049315] TERENTEY, E. D.	N78-19088	VANDERPLAATS, G. N.	N78-19135
Unsteady boundary layer with self-induced	pressure A78-28102	LASTOP: A computer code for laser turrets optimization of small perturbation turre	
THOMAS, C. L. Airworthiness evaluation NUH-1H helicopter	with	subsonic or supersonic flow [AD-A049272]	N78-19076
global positioning system [AD-A047971]	N78-18053	VANDERWILT, M. Flight-path reconstruction of symmetric no	nsteadv
THOMPSON, G. R. Modification of an ambient air quality mod		flights [NLR-TR-76133-U]	N78-18056
assessment of U.S. naval aviation emitta		VANEGHOUD, J. A. Collection of supercritical aerofoils obta	ined
THURSTON, T. S. Pabrication and test of a fluidic fuel-con	trol and	with the NLR hodograph method [NLR-TR-75115-U]	N78-18009
<pre>bleed-air-load-control system for gas tu engines</pre>		<pre>VANGOOL, H. P. C. Flight test of stick force stability in</pre>	
[AD-A049039] TOBAK, H.	N78-19163	attitude-stabilized aircraft [NLR-MP-77015-U]	N78-18080
The role of time-history effects in the formulation of the aerodynamics of aircr	aft	VENTURING, N. S. Radar beacon tracking with downlinked head	ing and
dynamics [NASA-TM-78471]	N78-19056	airspeed	A78-26780
TONLINSON, H. M. Fuselage structure using advanced technological	av metal	<pre>VOLK, G. C. A portable device particularly suited for</pre>	nse in
matrix fiber reinforced composites [NASA-CASE-LAR-11688-1]	N78-18045	starting air-start units for aircraft [NASA-CASE-FRC-10113-1]	N78-19166
TRIEBSTEIN, H. Unsteady pressure measurements on wing-sto	re	WOLOSHCHERKO, A. P. Automated vibrating bench for studying fat	ique in
combinations in incompressible flow [BSA-TT-426]	N78-18018	gas turbine blades with programmed chang load and temperature	es in
TRIMBLE, M. H. The need for improved materials in integra	1	VON GLANN, U.	A78-27267
aircraft fuel tanks	A78-25177	Noise of deflectors used for flow attachme STOL-OTW configurations	nt with
TROSHCHERKO, V. T. Automated wibrating bench for studying fat	ione in	VOSKRESEBSKII, G. P.	A78-24877
gas turbine blades with programmed chang load and temperature	es in	The supersonic flow past cusped wings	A78-28056
TSBITLIN, V. I.	A78-27267	147	
Automated wibrating bench for studying fat gas turbine blades with programmed chang		WAGNER, K.	
load and temperature		Icing on helicopters	w79 10005
TSVETKOV, L. G.	A78-27267	[RAE-LIB-TRANS-1911] WALKER, H. J.	ท78-19095
Method for solving problems of flow past a with fuselage bounded by an ideal fluid	flow	An annular wing [NASA-CASE-PRC-11007-1]	N78-19055
TSYPULEY, IU. V. Experimental investigation of the temperat	A78-25585 ure	WALKIEY, R. B.) procedure for the determination of the e fuselage nose bluntness on the wave drag	
field in a plane channel carrying a stra turbulent air stream		supersonic cruise aircraft [NASA-CR-145306]	N78-17994
TUNNAH, B. G. Computer model for refinery operations wit	A78-27139 h	WALLACE, P. Analog versus digital null-steering contro	llers 178-27039
emphasis on jet fuel production. Volume Data and technical bases		WALSH, J. P. Civil and military design requirements and	
[NASA-CR-135334] TURBLLI, R. B.	N78-19326	influence on the product	N78-19151
An experimental investigation of steady as	ymmetric	WALTON, J. D.	
vortex shedding from a slender body of revolution at high angles of attack [AD-ADM3701	N78-19062	A feasibility study of a manual bomb relea in a turn [AD-AOR982]	N78-19123
[AD-A0483701	1970-19002	[AD-A048882] WANG, C. D.	
Ü		Adaptive phased arrays for tactical commun systems	
Octimal aperture-shape for an antenna arra		Wang, K. C.	A78-27040
	A78-27406	Boundary layer over spinning blunt-body of revolution at incidence including magnus [AD-A049199]	

	" b
WANG, K. K.	WILLIAMS, W. R. Comparison tests on the 100-GPM electrokinetic
Aerodynamic computer code for computing pressure loading on complete missile for structural	fuel decontaminator and a 100-GPM military
analysis	standard filter/separator
[AD-A048840] N78-19065	[AD-A048655] N78-18226
WARD, D. W.	WILSON, R. G.
Concorde noise-induced building vibrations John F. Kennedy International Airport	Today's non-metallic composite airframe structure - An airline assessment
[NASA-TM-78660] N78-18873	A78-25196
WASCE, R. B. A.	WINNER, R. B.
Determination of antenna radiation patterns, radar	Liquid crystal airborne display
cross sections and jam-to-signal ratios by	[AD-A048198] N78-18062
flight tests [NLR-MP-76023~[] N78-18289	WINSA, E. A. Predicted inlet gas temperatures for tungsten
[NIR-HP-76023-U] N78-18289 WASKOWSKI, W.	fiber reinforced superalloy turbine blades
The Aerospatiale helicopter factory at Marignane	[NASA-TM-73842] N78-19157
A78-28194	WISLICKI, B.
WATERS, K. T.	Temperature characteristics of the speed of sound
Research requirements to reduce maintenance costs	and compressibility of standard fuels and
of civil helicopters [NASA-CR-145288] N78-17990	petroleum oils A78-26756
WAZYNIAK, J. A.	WITT, R. H.
Effectiveness of an inlet flow turbulence control	Flight qualification of titanium F-14A airframe
device to simulate flight fan noise in an	components manufactured by Hot Isostatic
anechoic chamber	Pressing (HIP)
WRAL, K. I.	[AD-A048485] N78-18055 WITTHAW, R. B.
Modification of an ambient air quality model for	V/STOL hover stability impact on hover control task
assessment of N.S. naval aviation emittants	N78-19102
A78-28273	WOLFE, R. A.
WRCK, N.	The US Army UTTAS and AAH programs
Experimental determination and comparison with	N78-19131
theory of thrust, noise and driving weight of propeller drives	WOLFSON, G. Development of a programmable panel
[BMVG-FBWT-77-16] N78-18072	[AD-A048469] N78-19098
WEILAND, B.	WOODWARD, R. P.
Long term experience with a hingeless/composite	Effectiveness of an inlet flow turbulence control
rotor N78-19137	device to simulate flight fan noise in an anechoic chamber
WELL, K. H.	P78-24880
Optimal level controls of high performance aircraft	WOOLARD, H. W.
[DLR-IB-552-77/20] W78-18059	Cambered jet-flapped airfoil theory with tables
WRHK, A. P.	and computer programs for application
F-4E avionics update	[AD-A048528] N78-18006
[AD-A047949] N78-18061	WU, J. C.
[AD-A047949] N78-18061 WERNICKE, K. G.	
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role	WU, J. C. Prospects for computational aerodynamics N78-19795
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow
[AD-A047949] N78-18061 WERNICKE, R. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow
[AD-A047949] N78-18061 WERNICKE, R. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. B.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS)	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] YAO, S.
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A0486151 Y YAO, S. Composite hub/metal blade compressor rotor
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NSSA-CR-135343]
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A0486151 Y YAO, S. Composite hub/metal blade compressor rotor
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WHITAKER, A. B. V/STOL hover stability impact on hover control task	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Pluid Dynamics (CFD): Future role and requirements as viewed by an applied
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A048615) Y YAO, S. Composite hub/metal blade compressor rotor (NASA-CR-135343) YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamics.
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Pluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report (AD-A048615) Y YAO, S. Composite hub/metal blade compressor rotor (NASA-CR-135343) YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamics.
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WHITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Pluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades (NASA-TM-73842) N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation (AD-A048988) N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings (NAL-TR-498T) N78-19054	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. B. Sensory mechanism modeling [AD-A049278]
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. E. A lifting surface theory for wings experiencing	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR.
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades (NASA-TM-73842) N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation (AD-A048988) N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings (NAL-TR-498T) N78-19054	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. B. Sensory mechanism modeling [AD-A049278]
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] WIDHALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, F. H., JR.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Pluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. B. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WHITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WHITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. B. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] N78-19061 WILLETT, F. H., JR. High-attitude area navigation (RNAV) enroute	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. B. Sensory mechanism modeling [AD-A049278] YOUNG, W. H, JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040]
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] N78-19061 WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-19088	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. B. Sensory mechanism modeling [AD-A049278] YOUNG, W. H, JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040]
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, P. B., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. HSP/ITWL airborne measuring system
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-Th-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDHALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049333] N78-19073	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. M. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. NSP/ITML airborne measuring system
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] N78-19061 WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-19088 WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049343] N78-19073 WILLIAMS, J. R.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. MSP/ITWL airborne measuring system A78-28196
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, P. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-1908 WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049343] N78-19073 WILLIAMS, J. R. Adaptive tracking filter for maneuvering targets	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. B. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. HSP/ITWL airborne measuring system A78-28196 ZEDAN, H. P. Potential flow around axisymmetric bodies - Direct
[AD-A047949] N78-18061 WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role N78-19142 WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] N78-19157 WHEATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] N78-19085 WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] N78-19061 WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-19088 WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049343] N78-19073 WILLIAMS, J. R.	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] N78-18131 YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. MSP/ITWL airborne measuring system A78-28196
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, F. B., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-19088 WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049313] N78-19073 WILLIAMS, J. R. Adaptive tracking filter for maneuvering targets	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, E. B. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. HSP/ITWL airborne measuring system A78-28196 ZEDAN, H. F. Potential flow around axisymmetric bodies - Direct and inverse problems A78-26230
[AD-A047949] WERNICKE, R. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] N78-19054 WIDHALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, F. H., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] N78-19088 WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049313] N78-19073 WILLIAMS, J. R. Adaptive tracking filter for maneuvering targets A78-26167 V/STOL flying qualities requirements in the UK N78-19103	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. M. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, L. R. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TN-74040] ZABKOWICZ, W. MSP/ITML airborne measuring system A78-28196 ZEDAN, M. F. Potential flow around axisymmetric bodies - Direct and inverse problems A78-26230 ZUBKOFF, M. J. Naval Emergency Air Cargo Delivery System (NEACDS)
[AD-A047949] WERNICKE, K. G. Evaluation of the tilt rotor concept: The XV-15's role WESTFALL, L. J. Predicted inlet gas temperatures for tungsten fiber reinforced superalloy turbine blades [NASA-TM-73842] WREATLEY, T. E. Naval Emergency Air Cargo Delivery System (NEACDS) feasibility tests and evaluation [AD-A048988] WRITAKER, A. B. V/STOL hover stability impact on hover control task N78-19102 WRITEHEAD, A. H., JR. Technical and economic evaluation of advanced air cargo system concepts A78-24900 WICK, B. H. Calculation of the lift of partially-stalled wings [NAL-TR-498T] WIDMALL, S. E. A lifting surface theory for wings experiencing leading-edge separation [AD-A048439] WILLETT, P. B., JR. High-altitude area navigation (RNAV) enroute simulation [AD-A049315] WILLIAMS, J. C., III Lift hysteresis of an oscillating slender ellipse [AD-A049343] WILLIAMS, J. R. Adaptive tracking filter for maneuvering targets A78-26167 V/STOL flying qualities requirements in the UK N78-19103	WU, J. C. Prospects for computational aerodynamics N78-19795 WU, J. H. Fundamental studies of subsonic and transonic flow separation. Part 2: Second phase summary report [AD-A048615] Y YAO, S. Composite hub/metal blade compressor rotor [NASA-CR-135343] YOSHIHARA, H. Computational Fluid Dynamics (CFD): Future role and requirements as viewed by an applied aerodynamicist N78-19789 YOUNG, H. R. The Advancing Blade Concept (ABC) rotor program N78-19143 YOUNG, E. B. Sensory mechanism modeling [AD-A049278] YOUNG, W. H., JR. Laser velocimeter survey about a NACA 0012 wing at low angles of attack [NASA-TH-74040] ZABKOWICZ, W. HSP/ITWL airborne measuring system A78-28196 ZEDAN, H. F. Potential flow around axisymmetric bodies - Direct and inverse problems A78-26230

ZUCHOWICZ, K. PERSONAL AUTHOR INDEX

ZUCHOWICZ, R.
Static electricity in aviation and methods for preventing its effects. II
A78-

A78-27568

CONTRACT NUMBER INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Suppl 97)

JUNE 1978

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified in either the IAA or STAR section.

PF PROJ. 1366	PAA PROJ. 154-451-110
N78-19062	#78-18021
AP PROJ. 1367	704701-77-C-0078 ,
N78-19121	N78-19064
PP PROJ. 2051	P19628-76-C-0002
N78-18063	N78-19090
AP PROJ. 2052 N78-18065	P19628-78-C-0002
PP PROJ. 6114 N78-19362	P33615-73-C-1221
A RGC-F70/17452	F33615-74-C-5141
A78-26229	N78-19125
A78-26238	F33615-75-C-1206
ARPA ORDER 2731	N78-18065
A78-26157 DA PROJ. 1L2-62209-AH-76	F33615-75-C-1269 W78-18321
N78-19084 DA PROJ. 2MQ-61102-B-53B	F33615-75-C-2053 A78-26793
N78-19080	P33615-75-C-3136
DA-ARO(D)-31-124-72-G134	N78-19121
N78-19073	r 33615-75-C+5218
DA-ERO-75-G-021	N78-18063
N78-19080	F33615-76-C-0039
DAAA09-74-C-2077	N78-19170
N78-19517	F33615-76-C-0040
DAAG39-76-C-0129	N78-19362
N78-19163	F33615-76-C-0507
DAAJ02-74-C-0036	N78-19849
N78-19084	P33615-76-C-0528
DAAJ02-75-C-0028	N78-19164
N78-19124	P33615-76-C-1182
DAAJ02-76-C-0028	N78-18064
N78-18054	P33615-76-C-1306
DAHC04-75-G-0007	N78-18319
N78-19073 DASG60-76-C-0020 A78-26784	F33615-76-C-1340 N78-18061
DWA001-77-C-0012 N78-18272	P33615-76-C-2092 N78-18071 P33615-76-C-5072
DOT-FA67NF-AP-21	N78-18138
N78-18158	F33615-77-C-3008
DOT-PA70WA-2448	A78-26791 P40600-74-C-0009
พ78-18037 พ78-18038	N78-18007
DOT-PA72WAI -621	N78-19072
W78-19090	NASW-2790 N78-19156
DOT-PA74WAI-448	NASW-2791 N78-18041
N78-18264	N78-19053
DOT-FA75WA-3688	NAS1-13500 N78-17994
N78-18069	NAS1-13624 N78-17990
DOT-FA76 WAI -589	NAS1-14307 N78-19801
A78-28147	NAS1-14409 A78-25200
DOT-FA77FA-3872	NAS1-14644 N78-18797
N78-19081	NAS1-14797 N78-18874
DOT-FA77#AI-727 N78-18027	NAS1-14859
PAA PROJ. 034-241-012	NAS2-9456 N78-19050
N78-19090	N78-19051
PAA PROJ. 044-326-080	NAS2-9457 N78-19052
N78-19088	NAS2-9640 N78-19049
PAR PROJ. 052-241-04	NAS2-9748 N78-19094
N78-18027	NAS3-16732 A78-24902
PAA PROJ. 073-320-100 N78-19089	NAS3-17866 N78-17991 NAS3-18926 N78-18131 NAS3-20608 N78-18070
•	

NAS3-20620 NAS4-2272 NAS4-2378	N78-19326
WAS4-2272	N78-19326 N78-19166
NAS4-2378	N78-18000
NAS7-100	N78-19898
NGL-05-020-0	
NCD-10-001-0	A78-26785
NGR-14-001-0	N78-18024
NGR-33-018-1	
	A78-28439
NGR-39-009-2	
	N78-18068
NIVR-1754	N78-18009
NOAF-04-4-15	
	N78-18024
NRC A-2746 NRC A-8927	A78-25777
WRC A-8927	A78-27542
NSG-1046 NSG-1261	N78-17993 N78-19801
NSG-1261	N78-19801
NSG-2170	N78-19082
NSG-2170	A78-26599
NSG-2171 NSG-3012	A78-26599 N78-17995
NSG-4003	A78-26795
NSG-4003 NSG-7172	N78-18086
N00014-75-C-	0257
	ท78-19061
N00014-76-C-	0182
	N78-19068
N00014-76-C-	
#00010 76 G	N78-19791
N00019-76-C-	บ143 พ78-18055
N00019-76-C-	
1100013 70 C	N78-19067
N00383-73-C-	3318
	N78-18441
N61339-74-C-	0141
	N78-18087
₩62269-75-C-	
	N78-19097
N62269-75-R-	
#60060-76 C	N78-19098
N62269-76-C-	บ362 พ78-18008
N62269-76-C-	0464
	N78-19075
T/RP-41/RP-4	10/41110
	N78-18072
T/RF-41/RF-4	10/51082
	N78-18057
T/RF-41/RF-4	10/51106
0DE7E74000	N78-18013 N78-19162
ZP57571004	N/8-19162
505-01-11 505-06-33-09	N78-19778 N78-18085
505-09-13-11	N78-18877
505-09-13-11 505-10-13-01	N78-18873 N78-18044
505-10-14	N78-18042
505-10-14 505-11-16-07	₩78-17993
513-53-05	N78-18025
743-05-04-01	N78-18459
992-21-01-90	
	N78-18043

1 Report No NASA SP-7037 (97)	2 Government Access	ion No	3 Recipient's Catalog	No
4. Title and Subtitle			5 Report Date	
AERONAUTICAL ENGINEERING		-	June 1978 6 Performing Organiz	ation Code
A Continuing Bibliograph	y (Supplement	97)	6 Ferrorming Organiz	ation Code
7 Author(s)			8 Performing Organiza	ation Report No.
9. Performing Organization Name and Address			10. Work Unit No.	
National Aeronautics and Space Administration Washington, D. C. 20546		seración .	11. Contract or Grant No	
12 Sponsoring Agency Name and Address	* * * * * * * * * * * * * * * * * * *		13. Type of Report an	d Period Covered
openioning riginity rights and riedical		1		<u> </u>
			14. Sponsoring Agency	Code
15 Supplementary Notes		· · · · · · · · · · · · · · · · · · ·		
16 Abstract				
This bibliography l	ists 420 repo	rts. articles. a	and other doc	uments
This bibliography l introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments
This bibliography l introduced into the system in May 1978.	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a fic and technica	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a	and other doc al informatio	uments n
introduced into the	ists 420 repo NASA scienti	rts, articles, a	and other doc	uments n
introduced into the system in May 1978.	ists 420 repo NASA scienti	fic and technica	al informatio	uments n
introduced into the system in May 1978. 17 Key Words (Suggested by Author(s))	ists 420 repo NASA scienti	rts, articles, a fic and technica	al informatio	uments
introduced into the system in May 1978. 17 Key Words (Suggested by Author(s)) Aerodynamics	ists 420 repo NASA scienti	fic and technical	al informatio	n
introduced into the system in May 1978. 17 Key Words (Suggested by Author(s)) Aerodynamics Aeronautical Engineering	ists 420 repo NASA scienti	fic and technical	al informatio	n
introduced into the system in May 1978. 17 Key Words (Suggested by Author(s)) Aerodynamics	ists 420 repo NASA scienti	fic and technical	al informatio	n
introduced into the system in May 1978. 17 Key Words (Suggested by Author(s)) Aerodynamics Aeronautical Engineering Aeronautics	ists 420 repo NASA scienti	fic and technical statement Unclass	al informatio	n

PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to ten special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

CALIFORNIA

University of California, Berkeley

COLORADO

University of Colorado, Boulder

DISTRICT OF COLUMBIA

Library of Congress

GEORGIA

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

MASSACHUSETTS

Massachusetts Institute of Technology, Cambridge

MISSOURI

Linda Hall Library, Kansas City

NEW YORK

Columbia University, New York

PENNSYLVANIA

Carnegie Library of Pittsburgh

WASHINGTON

University of Washington, Seattle

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries

CALIFORNIA

Los Angeles Public Library

San Diego Public Library

COLORADO

Denver Public Library

CONNECTICUT

Hartford Public Library

MARYLAND

Enoch Pratt Free Library, Baltimore

MASSACHUSETTS

Boston Public Library

MICHIGAN

Detroit Public Library

MINNESOTA

Minneapolis Public Library

MISSOURI

Kansas City Public Library

St Louis Public Library

NEW JERSEY

Trenton Public Library

NEW YORK

Brooklyn Public Library

Buffalo and Erie County Public Library

Rochester Public Library

New York Public Library

OHIO

Akron Public Library

Cincinnati Public Library

Cleveland Public Library

Dayton Public Library

Toledo Public Library

OKLAHOMA

Oklahoma County Libraries, Oklahoma City

TENNESSEE

Memphis Public Library

TEXAS

Dallas Public Library

Fort Worth Public Library

WASHINGTON

Seattle Public Library

WISCONSIN

Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in STAR European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from ESRO/ELDO Space Documentation Service, European Space Research Organization 114, av Charles de Gaulle, 92-Neuilly-sur-Seine, France

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER

If Undeliverable (Section 158 Postal Manual) Do Not Return

NASA CONTINUING BIBLIOGRAPHY SERIES

NUMBER	TITLE	FREQUENCY
NASA SP-7011	AËROSPACE MEDICINE AND BIOLOGY	Monthly
	Aviation medicine, space medicine, and space biology	
NASA SP-7037	AERONAUTICAL ENGINEERING	Monthly
٨	Engineering, design, and operation of aircraft and aircraft components	
NASA SP-7039	NASA PATENT ABSTRACTS BIBLIOGRAPHY	Semianniially
	NASA patents and applications for patent	
NASA SP-7041	EARTH RESOURCES	Quarterly
	Remote sensing of earth resources by aircraft and spacecraft	
NASA SP-7043	ENERGY	Quarterly
	Energy sources, solar energy, energy conversion, transport, and storage	
NASA SP-7500	MANAGEMENT	Annually
	Program, contract, and personnel management, and management techniques	

Details on the availability of these publications may be obtained from

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546