D12-32 N78-30463

LOW LOSS, FLEXIBLE, LIGHTWEIGHT CORPORATE RF FEED SYSTEM FOR SAR ANTENNA APPLICATION

FRANK SCHIAVONE SENIOR MEMBER OF TECHNICAL STAFF BALL BROTHERS RESEARCH CORPORATION POST OFFICE BOX 1062 BOULDER, COLORADO 80306

SUMMARY

Mechanical and electrical efficiency constraints imposed by the SEASAT-A Synthetic Aperture Radar (SAR) Antenna posed difficult design problems. After consideration of available standard cable and waveguide systems, it was determined that an optimum design could be obtained from a suspended substrate [1] RF feed system. Size and mechanical flexibility constraints forced the design of a flexible, suspended substrate section capable of 180-degree flexure. Original design goal for insertion loss over power division was 1 dB; measured results indicated 0.6 dB maximum across the band. Multipactor testing of system components indicated system breakdown capability in excess of 4 kW compared to a specification input maximum of 1500 W.

1.0 SEASAT SAR STRUCTURE

The basic SEASAT SAR structure is depicted in Figure 1 in an exploded view showing the essential elements. The expandable support structure provides a locking truss capable of holding the eight, 2.16m x 1.34m, lightweight, honeycomb, micros.rip antenna panels flat to within 0.63cm (0.25 inch) over the entire 10.75m length. When folded, the panels are separated by 3.43cm (1.35 inches) to provide an overall package volume of 2.16m x 1.34m x 25.4cm exclusive of the tripod structure. To fit the confines of the closed package, the RF feed system lines were constrained to 1.4cm (0.55 inch) in height to allow for thermal blanketing. When the SAR is folded, the connecting RF lines between panels must be capable of 180-degree flexure without any performance degradation for at least 10 cycles. Actual tests provided confidence in performance by flexing over 200 cycles without degradation.

1.1 MICROWAVE FEED SYSTEM FORMATS

During the initial stages of fabrication, approaches using commercial components were considered and tradeoff estimations compared. The tradeoff comparison given in Table 1 was used as the basis for deciding to design a suspended substrate. Four

ORIGINAL PAGE IS OF POOR QUALITY

IV-5-2

TABLE 1 Microwave Peed system tradeopps	
--	--

		COAX	SYSTEMS				
	2,2,2 Corporate	2,4 BI-PUS	8 OCTOPUS	W/ROTARY JOINT	UNSHIELDED MICROSTRIP	SUSPENDED SUBSTRATE	REDUCED HEIGHT WAVEGUIDE
ELECTRICAL							
Loss Budget	1.15	1.10	.95	.85	1.70	.55	-90
Phase Sensitivity (PPM/C)	Good	Good	Good	0000	Good	Good	Good
Phase Stability	Fair	Fair	Poor	Good	Good	Good	Good
Multipactor Spacing	Poor	Poor	Poor		Excellent	Excellent	Excellent
Phase Length Trimability	Fair	Fair	Pair	Fair	Good	Good	Good
Temp. Insertion Loss Sens.	Poor	Poor	Fair	Good	Excellent	Excellent	Excellent
Transition Loss Level	Poor	Pair	Good	Good	Excellent	Excellent	Excellent
MECHANICAL							
Comolexity	Poor	Poor	Poor	Pair	Good	Good	Poor
Hinge Toolie	Door	Doo -	Pais				Dei.
Doctorian L Dee Competibility			rau Poio				
rackaging a rass compatibility	1001	1001 2001	rair 20	rair	rxcerrent	89.	
weight (ID)	C7	C7	02	20	2	20	Ś
Thermal Expansion Loading	Poor	Poor	Poor	Pair	Excellent	0000	Good
Vibration Loading	Poor	Poor	Poor	Pair	Fxcellent	2000	0000
Vacuum Venting	Fair	Pair	Fair	Fair	Excellent	Excellent	Excellent
Mechanical Assembly							
THERMAL							
Power Dissination	Door	Door	Door	Reir	- Party	Cond	Preallant
Thermal Cveling Distortion	Poor	Poor	5 G	Pair			Excellent
Predicted RFM Temp. Profile	Poor	Poor	Fair	Good	00000	0000	Good
FROUKAM							
Mechanical Design Risk	Fair	Fair	Poor	Fair	poog	Good	Fair
Electrical Design Risk	Poor	Fair	0000	600	Good	Excellent	Excellent
Material Availability	Poor	Poor	Poor	Poor	Excellnnt	Good	Good
Impact on Mechanical Layout	Poor	Poor	Poor	Poor	Excellent	Good	Pair
Impact on Thermal Layout	Good	Fair	Poor	Good	Excellent	Good	Fair

IV-5-3

variations of coaxial feed systems were considered with different power split configurations (i.e., 2,2,2 giving 3 levels of 3 dB power splits) along with a microstrip feed system on the panel, and a reduced height waveguide. Within the mechanical, electrical and thermal constraints derived, the suspended substrate system appeared to be the optimal solution.

1.2 FEED SYSTEM REQUIREMENTS

Analysis of system requirements imposed stringent insertion loss and phase error requirements along with difficult mechanical specifications. The required low bellows torque to minimize expandable support system stress was met with considerable margin. Comparison of measured performance with required minimum specification, predicted performance, and measured results shows good agreement (Table 2). The power division tolerance was exceeded during test but not corrected because analysis of effect on antenna performance was shown negligible even with ± 2 dB amplitude deviation. Power balance within original specification could be achieved by balancing the output terminal mismatches with tunable output connectors.

1.3 FEED SYSTEM LAYOUT

The system layout is shown (Figure 2) with the power divider sections, bellows interconnection points (both valley and apex positions), and the 0.95cm (3/8 inch) airarticulated coaxial cables feeding the microstrip panels. The flexible input section ends in a TNC female connector interface specified by the customer; the outputs are TNC male.

Coaxial cable output lines were chosen to allow bending underneath the truss members to avoid mechanical interference when the SAR is folded.

1.4 MULTIPACTOR CONSIDERATIONS AND TEST RESULTS

Multipactor in high vacuum between electrodes with an RF potential between is a function of the peak field potential, the electrode spacing, and the transit time of the free electrons affected by the RF potential. The sinusoidally varying electric field accelerates the free electrons between electrodes in response to the field to cause collision with the electrodes and subsequent secondary emission. Since the phenomena is transit time induced, regions of multipactor occur dependent on the RF field period and electrode spacing. Thus, very high fields with small spacing relative to a half cycle may not lead to sustained multipactor. The best general rule for design use

IV-5-5

TABLE 2 SUSPENDED SUBSYSTEM FEED SYSTEM - FUNCTIONAL REQUIREMENTS

PARAMETER	REQUIREMENT	EXPECTED PERF.	MEASURED PERF.
Insertion Loss—Input Port to Center of Panel	0.9 dB	0.84 dB	.60 dB
Input VSWR Rel. 50Ω With Panels Installed With Ports @ 50Ω	1.5:1 1.3:1	1.5:1 1.2:1	1.5:1 1.2:1
Power Division to Ports	-9 + 0.5 dB	-9 <u>+</u> 0.5 dB	-9 + 1.0 dB
Bandwidth (Basis for all Elect. Perf.)	+11 MHz	+11 MHz	+11 MHz
Center Frequency	1275 MHz	1275 MHz	1275 MHz
Input Power - Peak @ D.S. = .045 Average	1500 W 90 W	ОК	ОК
Phase Error (Between Panel Ports)	+5°	+5°	+4°
Weight	15 lbs	12 lbs	-
Input Connector Type	TNC Female Rocep.	ОК	ОК
Panel Termination	3/8" Dia. Alumspline Coax	ОК	ОК
Temperature Range Storage Stowed Cyerating Test-Stowed-Qual Test-Operating-S/S Acceptance	-31 .3 +140°F -40 to +100°F -40 to + 80°F -66 to +176°F -40 to + 80°F	 OK OK	OK OK
Envelope-Rel. to 1/4" thick Panels Back-to-Back Panel Spacing- Stowed Front-to-Front Panel Spacing- Stowed Protrusion Beyond Panel Edges	1 3/8" Max 1/8" Max 1'1 Max	OK OK	OK OK
Flex Joint Torque - Per Hinge (Max)	1 ft-lb	1/2 ft-lb	1/30 ft-lb

a plies a criteria based on the lowest power-spacing combination required to initiate multipactor. This is a function of the geometry used and is illustrated in curves of multipactor regions for air-loaded coax lines and parallel plate configurations [2]. Multipactor can be cured by interposing high quality dielectric provided that care is used in filling the void. This is the case where coax cable is used on spacecraft at levels above the critical multipactor ievel. Other ionization phenomena can occur if partial gas entrapment occurs in the RF structure; caution should be exercised if dielectric or foam-filled RF systems are employed.

The most useful general formula found for design was provided by Lockheed Aerospace and is given below: $\frac{1}{2}$

$$P_{BRK} = 6.124 \cdot 16^4 \cdot \frac{Fo^2 \cdot S^2}{Zo}$$
 (1)

Fo = operating frequency (GHz)

S = electrode spacing (cm) -3.951+10⁵ fsi⁻S (IN)

This equation has been used on previous multipactor test measurements made on earlier SEASAT-suspended substrate components and appears conservative. Test results are given in Table 3.

Testing is most easily performed by monitoring RF pulse reflected or transmitted power. Reflected power is slightly easier to monitor for breakdown than insertion is variation but not significantly different. Where power division components are tested, multipactor in the output arms would be more evident in the insertion loss monitoring because of the masking effect of the power division.

2.0 REFERENCES

- Dennis L. Gish, "Characteristic Impedance and Phase Velocity of a Dielectric-Supported Air Strip Transmission Line with Sidewalls," IEEE Trans. Vol. MTT-18, No. 3, March 1970.
- [2] R. Woo, "Final Report on RF Voltage Breakdown in Coaxial Transmission Lines," Tech. Report 32-1500, Jet Prooulsion Laboratory, 1 October 1970.

TABLE 3	MULTIPACTOR TEST RESULTS - DEVELOPMENTAL COMPONENTS
---------	---

	Pwr. Level Applied	> 2-5w No Bkdwn.	>1500w No Bkdwn.	>1200w No Bkdwn.
JPL (Par Plate)	Multipactor	~1000w	~2700w	~2700w
Lockheed Form	Multipactor	~ 800w	1214w	· 1214w
	Spacing Zo	. 250"/25Ω	.3075"/500	.3075"/50Ω
Matched	Exp. Pk. Pwr.	1.46w	750w	750w
	Element	Antenna (2 x 2)	High Power (.625")	Hi Po Divider (.625")

RF FEED PREDICTED BREAKDOWN LEVELS - BASELINE CONFIGURATION

o Bkdwn.	o B',dwn.	o Bkdwn.	o Bkdwn.
>4500w N	>4500W N	>4500W N	>4500W N
~4500w	~4700w	~4500w	~4700w
1300w	1687 w	863w	1687 w
. 270"/36Ω	.3075"/36Ω	. 220"/36Ω	.3075"/36Ω
750w	1500w	750w	1500w
Main Lines (.550")	Input Line (.625")	Panel Mtd. Bellows (.445")	Input Bellows (.625")

IV-5-8