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FEATURE SELECTION FOR BEST MEAN SQUARE APPROXIMATION OF CLASS DENSITIES

ABSTRACT. A criterion for linear feature selection is proposed which is

based on mean square approximation of class density functions. It is

shown that for the widest possible class of approximants, the criterion

reduces to Devi •jver's Bayesian distance. For linear approximants the

criterion is equivalent to well known generalized Fisher criteria.

Pattern recognition 	 Feature selection

Discriminant : ► LIalysi,	 Pattern class separability
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Feature Selection for Best Mean Square

Approximation of Class Densities

1. Introduction

The purpose of this note is to describe a general mean square approach

to linear feature selection which connects certain generalized Fisher criteria

in discriminant analysis with a measure of pattern class separation intro-

duced by Devijvet (3) . The former are typical of those criteria which

utilize only low order information about the pattern class distributions,

while the latter requires that the class distributions be known, or at

least accurately estimated.

Let X denote a random vector in real n-space Rn which arises from one

of m pattern classes H i ,	 Ilm having known prior probabilities
m

ai , ...	 am, where a i > 0 and E a  - 1. Let F (x) denote the j th class
•	 i=1	 j	 m

conditional distribution function of X and let F(x) - Ea i Fi (x) denotel 

the mixture distribution. For a given measureable transformation T:R n Rk

let Gj (y, T) and G(y, T) denote, respectively, the j Lh class conditional

distribution and mixture distribution of the random variable Y - TX. We

let fj (x) (reap. gj (y, T) ) denote the class conditional densities of X

(reap. Y) with respect to their corresponding mixture distributions; i.e.,

dF	 dG
j
 (. , T)

fj	 dF and Rj (., T)	 dG(., T) .

We will restrict our attention to the set of linear transformations T of

rank k, and assume that each pattern class Il i has a mean 
W  

and positive de-
m

finite covariance matrix 2 1 . Let u = E aiu i and let
i-1

C4



M
SW = E a  Q 

iml

and	 S = SW + S 

denote the between class scatter matrix, the average within class scatter

matrix, and the total scatter matrix respectively.

A number of interesting feature selection criteria can be formulated

using only the parameters P. U i , Qi , S, SW, S B ; e.g., the criteria proposed

by Kittler and Young (8) , Foley and Sammon (4) , Fukanaga and Koontz(6),

and the discrete analogue of the modified Karhunen-Loewe expansion of Chien

and Fu (1 .. The modified K-L expansion minimizes an entropy function, and

also best represents the pattern vector X in an overall least squares

sense; however, its value for discrimination has been questioned by several

authors (see Kittler (7) ). Fukanaga (5) considers several criteria of the

generalized Fisher type, including

ik (T) = tr(TTSWT)-1(TTSBT).

Thus, according to this criterion, the best k x n matrix T of rank k is one

which maximizes J  M. The solution is any T which is row equivalent to a
k x n matrix whose rows are linearly independent principal eigenvectors

(i.e., corresponding to the largest eigenvalues) of S W 1 S B . We also consider

a modification
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J k ' (T) = tr (T
T
 ST)

-1 (TT SBT)_

which admits the same maximizing T.

The Bayesian distance corresponding to the pattern classes NJ, ..., Hm,

as defined by Devijver (3) , is

B  = E ai E [fi(X)2)

i=1

m
= Z ai 

JRn 
f i (x) 2 dF(x).i 

Its transformed value is

Bk(T) = 

E 

ai2 Jk gi (y . T) dG (y . T)•
i=1	

R

Devijver proves a number of interesting inequalities relating B  to the

Bayes probability of misclassification, the Bhattacharrya coefficient, and

ether measures of class separation. In addition, he notes that Cover and

Hart 
(2) 

have shown that 1-B
n 

is the asymptotic error rate of the nearest

neighbor classifier.

2. Mean Square Optimality_ of BaYesian Distance

For a given k x n matrix T of rank k, let L 2 (T) denote the set of all

measureable functions T : R  _, R 1 such that fRk Y(y) 2 dG(y, T) < m and let

CT be a given closed linear subspace of L 2 (T). Our general approach to

'linear feature selection is to choose that T, if possible, which minimizes

• 	 - 	 t 	 t 	 t 	 y

` 	 Cl
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R (T) =

	

M	
17

 E 
B  

min 1 n Lcp i (Tx) - f i (xW dF (x) ,
	i =1	 cpicCT	 R

where the 
B  

are positive weights. That is, we attempt to find a T which

produces a set of approximations T i (Tx) to the class densities fi (x) which

is best in an overall mean square sense. Civen such approximations we may

classify observations of X according to the pseudo-Bayes rule: decide that

X is from class n  if a  W i (TX) > a  9 j (TX) for each j 0 1. Since we are

interested in classification accuracy, it seems appropriate to choose weights

Si which reflect the relative importance of the classes in the mixture

distribution; e.g., Ri ai for all i or Bi = ai fo r all i. For the

remainder of this section we choose Si = ai and CT = L
2
 (T).

Proposition 1: For Bi = ai, i = 1, ..., m and CT = L,,(T) for each T,

R(T) = B  - Bk(T).

Proof: Observe that g
1
 (y, T) e L2 (T), since it is bounded by ail. Moreover,

for each V a L2 (T) ,

!Rn V(Tx)'g i (Tx, T) - f i (x)I dF(x)

= 1Rn cp(Tx) g i (Tx, T) dF(x) - jRn tP(Tx) dFi(x)

V
IRk <P(Y) g i (Y. T) dC (y , T) - JRk 40(Y) d C i ( y , T)

= 0.



Therefore,

min j	 [V(Tx) - f (x)l 2 dF(x)
WL2 (T) Rn	 i

jRn Cg i (Tx, T) - f i (x))2 dF(x)

JRn f i (x) 2 dF(x) - JRn gi (y, T) 2 dG (Y, T)•

The assertion of the proposition follows on multiplying by ai and sunning

over i.

We may summarize by saying that if there exists a k x n matrix TO of

rank k which maximizes Bk (T), then the functions g 1 (T0x, T0),	 gm(Tox, TO)

constitute the best mean square approximation to the class densities

f1 (x),	 fm(x) attainable through a linear compression of the data into

k dimensions. Since Bk(QT) - Bk (T) for each nonsingular k x k matrix Q and

each k x n matrix T of rank k, Bk (T) has a maximum if and only if it has a

maximum on the compact set {T i TT T - Ikxk ). In particular, if Bk (T) is

continuous, it has a maximum.

3. Best Linear Approximation of Cl ass Densities

In this section we let CT be the set of functions ;p(y) - w + bTy, where

w is a real number and b c Rk . For simplicity, we use the notation

cp(y) - aTv(y), where a	 (b) c Rk+l and v(y) _ (y)Rk+1. For given T.
W

ai (bi ) minimizes
i

S.
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f in CaTv(TX) - fi(x) )z dF(x)

a  Cfnv (Tx)v(Tx)T dF(x)]a
R

-2J 
fRn 

v(Tx) dFi (x) + !Rn f i (x) 2 dF(x)

aT(
IT
1 )ITT T) a
u i ,WT 1

— 2(1 I. Vi TT)a

+ f in f i (x) 2 dF(x)

if and only if

	

1 uT TTwi 	 1

	

X
TO ,^T bi 	 Tu i

where W - E CXXTI - S + 1IUT . Solving this system gives

wi - 1 - UTTT (TSTT )-1 TO  - U)

and

bi a 11(TSTT)-1 T(Ui ' - 11).

The corresponding squared error of approximation is

-1- (ui - U)T TT (TSTT)-1 T( ui - P) + J 
n 

f I W 2 dF(x).
R

-	 s



Therefore, the criterion to be minimized is

R(T) _ - E 6 1 (Pi - u)T T (TSTT)-1 T(Wi - U)
i=1

t terms independent of T.

That is, we want to maximize.

R(T) - trace (TSTT)
-1
 TSSTT,

vl#ere

TSB = E Pi (Ui — v) (ta i — u).
i=1

The solution is T - QTO , where TO is a k x n matrix whose rows are linearly

independent principal eigenvalues of, 
S-1SB 

and Q is an arbitrary nonsingu-

lar k x k matrix. In particular, for 8, - a  we obtain the same solution

given by Fukanaga's criterion,

trace (TS STT) -1 (TS STT).

4. Concluding Remarks

M equivalent set of criteria for feature selection are expressions

such as

R(T) = E Bi min f	 (9(Tx) - a f (x)3 2 dF(x)
i=1	 YCCT R

n	 i i

7.
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in which the posterior probabilities CL f i (x) of the classes are approximated.

If each S i is chosen to be 1	 R(T) is the same as R(T) with ai a ail.

This, together with Proposition 1 and the relationship between Bayesian

distance and the probability of error, seems to indicate that the choice

Si a 
ail 

is a good One.

In some cases it ►nay be numerically feasible to use Bk (T) as a feature

selection criterion when assumptions about the parametric form of the class

distributions are made. For example, if each class distribution F  is

multivariate normal, then B k (T) reduces to an expression which is continu-

ously differentiable in T and which, moreover, can be approximated by

sample averages over an unlabeled sample from the mixture distribution.

Thus descent algorith!^s might be successfully employed in maximizing Bk(T).

Finally, we remark that there is no reason in principle why Bk(T)

cannot be rzgarded as a criterion for nonlinear feature extraction. Indeed,

Proposition 1 remains true when T is any measureable transformation from

Rn	konto R.
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