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LARGE EDDY SIMULATION OF INCOMPRESSIBLE TURBULENT CHANNEL FLOW



Abstract



The three-dimensional, time-dependent primitive equations of motion



have been numerically integrated for the case of turbulent channel flow.



For this purpose, a partially implicit numerical method has been devel


oped. An important feature of this scheme is that the equation of con


tinuity is solved directly. The residual field motions were simulated



through an eddy viscosity model, whereas the large-scale field was ob


tained directly from the solution of the governing equations. 16 uniform



grid points were used in each of the streamwise and spanwise directions,



and 65 grid points with non-uniform spacings in the direction normal to



the walls. An important portion of the initial velocity field was ob


tained from the solution of the linearized Navier-Stokes equations. The



pseudospectral method was used for numerical differentiation in the hori


zontal directions, and second-order finite-difference schemes were used



in the direction normal to the walls.



It has been shown that the Large Eddy Simulation technique is capable



of reproducing some of the important features of wall-bounded turbulent



flows. The overall agreement of the computed mean velocity profile and



turbulence statistics with experimental data is satisfactory. The resolv


able portions of the root-mean square wall pressure fluctuations, pressure



velocity-gradient correlations, and velocity pressure-gradient correlations



are documented.
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Chapter I



INTRODUCTION



1.1 Historical Background



It has been known for some time that any turbulent flow contains



structures ("eddies") in a wide range of spatial as well as temporal



scales. It is also generally recognized that large eddies differ



markedly from one flow type to another (e.g., jets vs. boundary layers),



while the small eddies are quite similar in all flows.



Unfortunately, in the numerical simulation of (high Reynolds number)



turbulent flows, we find that due to computer limitations one cannot



resolvp all the scales. It is this deficiency which provides the primary



inducement for the utilization of the large eddy simulation (L.E.S.)



approach.



The foundation on which this approach relies concerns the contrast



between large and small eddy modeling. More specifically, one finds that



large eddies cannot and should not be modeled, whereas with small eddies



successful modeling is possible.



The large eddy simulation method is initiated by the introduction of



a procedure which separates the small and large scale structures. The



large scale structures will then be computed explicitly, while the small



scales are necessarily modeled.



The problem of decay of homogeneous isotropic turbulence has been



the subject of extensive study at Stanford University (Kwak et al.
 


(1975), Shaanan et al. (1975), Mansour et al. (1977), Ferziger et al.



(1977)). These studies have shown that with the use of algebraic models



and a relatively small number of mesh points (16 x 16 x 16 or



32 x 32 x 32), homogeneous turbulent flows can be simulated reasonably



well.



The first application of the method to problems of engineering



interest was made by Deardorff (1970) who treated the channel flow



problem. In his pioneering work, Deardorff showed that a three dimen


sional numerical simulation of turbulence is feasible. He was able to





predict some of the features of turbulent channel flow with a fair amount



of success. However, as will be clear in the next section, neither



Deardorff nor the followup work of Schumnan (1973) treated the most



importantpart ofthe flow, namely the -region very neaf the wall. It is



in this region that virtually all of the turbulent energy production



occurs. By introducing artificial boundary conditions, they, in effect,



modeled the turbulence production mechanism in the wall region.



Finally, we note that, concurrent with the present work, Mansour



et al. (1978) simulated a time developing turbulent mixing layer. They



showed that essentially all the features of a turbulent mixing layer can



be reproduced using the L.E.S. approach.



1.2 Experimental Background



Many early studies of the structure-of turbulence consisted of



measurments of the root-mean square and spectra of the turbulent velocity



fluctuations. Among the measurements that were primarily concerned with



turbulent boundary layers were those of Townsend (1951), Klebanoff



(1954), Willmarth and Wooldridge (1963), and for flow near the wall (in



a pipe) Laufer (1954).



Willmarth made a single, unpublished attempt, in 1960, to bring



together the then existing results of turbulence-intensity profiles


of the layer-,on a single plot see Willmarth, 1975). The



curves of u 2 /u1 , Tu,,, and w 2/u , as a function of



yw/6 (or y = ywu /V) did not agree very well (not within 50%).


Here, Yw is the distance to thewall, uT is the shear velocity,



and 6 is the boundary layer thickness. Part of the lack of agree

ment was attributed to freestream disturbances or differences in the 

methods used to trip the boundary layers. However, in spite of the 

differences between various measurements of turbulence intensity, it 

is definitely established that within a turbulent boundary layer, 

/U> w U > /U. These differences between the root

mean-square velocity fluctuations become larger as one approaches
 


the wall. Furthermore, the profiles u and w have pro


nounced local maxima very near the wall.
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From the measured distributions of turbulence kinetic energy,



turbulence shear stress, and dissipation, it is possible to obtain a



turbulence energy balance. Townsend (1951) and Laufer (1954) (among



others) made such a balance in a boundary layer and pipe flow respec


tively. From these data, it can be seen that the production and dissipa


tion terms are nearly equal but opposite to each other, and so are the



terms representing diffusion by turbulence of kinetic energy and of



pressure energy. Furthermore, it may be noted that the turbulence



kinetic energy, its production and its dissipation, all show sharp maxima



in the buffer region (y+ 110) near the wall. On the basis of energy



measurements, Townsend (1956) proposed a two-layer model for the energy



transformation process. According to this model, the whole layer is



arbitrarily divided into two parts: (i) an inner layer which is nearly



in energy equilibrium but within which most of the turbulence production



takes place, and (ii) an outer layer whose Reynolds stresses retard the



mean flow but whose principal source of turbulent energy comes from the



inner layer.
 


The level of turbulent intensity in the outer two-thirds of the
 


flow is maintained by transport of energy from the inner region since the



production of energy in the outer region is too small tb balance the



viscous dissipation and transport losses. Townsend concluded that the



interaction between the inner and outer layers of the flow may be con


sidered as two distinct processes: (i) the transfer of mean-flow energy



from the outer region to the inner layer at a rate controlled by the



gradient of Reynolds stresses in the outer layer, and (ii) the transport



of turbulent energy from the inner layer to the outer layer.



To gain insight into the mechanics of turbulence production a



thorough study of the structure of the inner layer was required.



Runstadler et al. (1959), (1963) advanced a model for the inner layer



based on visual observations using dye and hydrogen bubbies. Their



studies revealed new features of turbulent boundary layers. In partic


ular, they demonstrated that the wall layer is not two dimensional and



steady; rather it consists of relatively coherent structures of low and



high speed streaks alternating in the spanwise direction over the entire
 


wall. The non-dimensional mean spacing between the low speed streaks
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was shown to have a universal correlation for fully turbulent layers



based on wall layer parameters; this is given by the relation



- -%+ ALIT 
A = -1 I00 

The streak pattern is not stationary in space. It migrates and displays



strong intermittent motion. These intermittent motions involve primar


ily the movement of low speed streaks away from the wall. When the



streak has reached a point corresponding to y+ < 8-12 , it begins to 

oscillate. The oscillation grows in amplitude and it is followed by



breakup. The region where most of the low speed streak breakups are



observed to occur, i.e., the inner edge of the buffer zone, is the



region where a sharp peak is seen to occur in the production curve
 


(Klebanoff 1954). Kline et al. (1967) and Clark and Markland (1970)



observed U shaped vortices occasionally in the inner region. In the
 


studies of Clark and Markland, an average spanwise spacing of these U



shaped vortices of X= 100 and streamwise spacing of X of 440 was

3 1



found.



Kim et al. (1971) studied bursts using motion pictures of the tra


jectories of hydrogen bubbles. From their analysis, they concluded that



in the region 0 < y+ < 100 essentially all the turbulence production



occurs during bursting. They also observed that during gradual liftup



of low-speed streaks from the sub-layer, unstable (inflectional) instan


taneous velocity profiles were formed. One of the important findings of



Kim et al. was that, while the bursting process indeed contributes to



the turbulent energy, its main effect is to provide turbulence with u'



and v' in proper phase to give large positive Reynolds stresses as



required for the increase in production.



The findings of Kline and his colleagues were largely confirmed and



supplemented by the visual studies of Corino and Brodkey (1969). One of



their observations was that, after formation of low speed streak a much



larger high speed bulk of fluid came into view and by "interaction"



began to accelerate the low speed fluid. The entering high speed fluid



carried away the slow moving fluid remaining from the ejection process;



this they called the "sweep" event.
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The above experimental investigations of the structure of turbulent



boundary layers are by no means the only ones reported. The number of
 


publications on the subject is already very large. Among these is the



work of Narahari, Rao, Narasimha, and Badri Narayanan (1971), where the



frequency of occurrence of bursts was studied. Their investigation



showed that the mean bursting frequency scaled with the outer rather
 


than inner flow variables. This was also reported by Kim et al. (1971).



The recent experimental investigation of Blackwelder and Kaplan (1976)



studied the near wall structure of the turbulent boundary layer using



hot-wire rakes and conditional sampling techniques. Among their find


ings was that, the normal velocity is directed outwards in the regions



of strong streamwise-momentum deficit (with respect to the mean velocity),



and inwards in the regions of streamwise-momentum excess. This was also



reported by Grass (1971). For further details and description of other



works on the structure of turbulent boundary layers the reader is



referred to the review articles of Willmarth (1975) and Laufer (1975).



An entire meeting was recently devoted to review of the state of knowl


edge in this area (Abbott 1978).



1.3 Motivation and Objectives



The present study is one in a systematic program investigating large



eddy simulation of turbulence. In order to extend the available tech


nology of the L.E.S. approach to wall-bound flows, we chose to study



incompressible turbulent channel flow. Due to the simplicity of its



geometry and some experimental advantages, channel flow has been a par


ticularly attractive reference flow for both theoretical and experimental



investigations. As a result, there is a considerable amount of experi


mental as well as theoretical findings available for a detailed evalua


tion of the large eddy simulation technique. In addition, this flow
 


possesses important features of the flows of practical interest. This,



in turn, allows the evaluation of the L.E.S. approach from a practical
 


point of view.



The specific objectives of this work may be stated as follows:
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a) 	 To develop a numerical method for long time integration of the



three-dimensional governing equations for the large scale field



in a turbulent channel flow;



b) 	 To carry out numerical solution of these equations using a



simple subgrid scale model;



c) 	 To evaluate the performance of the Large Eddy Simulation tech


nique in reproducing some of the laboratory observations and



measurements described above, and to compute quantities such as



pressure velocity gradient correlations that cannot be measured.



1k4 Summary



The contributions of the present work include:



a) 	 Demonstration of the inherent numerical problems associated with



the explicit numerical solution of the dynamical equations of



motion in primitive form.



b) 	 Derivation of consistency conditions for the initial velocity



field such that the Neumann and Dirichlet problems for the pres


sure have the same solution.



c) Development of a new semi-implicit numerical scheme for the



solution of dynamical equations in primitive form.



d) Development and use of a new subgrid model in the wall region



of the turbulent flow.



e) 	 Development and use of a solution of the Orr-Sommerfeld equation



for a three-dimensional disturbance as an important part of the



initial velocity field.



f) 	 Demonstration that the Large Eddy Simulation technique is



capable of reproducing many of the important features of the



turbulent boundary layer.
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Chapter II
 


MATHEMATICAL FOUNDATIONS



2.1 Definition of Filtered and Residual Fields



In the large eddy simulation approach, the first and most



fundamental step is defining the large-scale field. To accomplish this



task, each author has adopted a slightly different approach, but they



can be treated within a single conceptual framework as shown by Leonard



(1974). If f is some flow variable, we decompose it as follows:



f = f+f' (2.1) 

where f is the large-scale component and V is the residual field.



Leonard defined the large scale field as:



f(x) = fG(x-x') f(x') dx' (2.2) 

where G(x-x') is a filter function with a characteristic length A



and the integral is extended over the whole flow field. It is to be



noted that the above form of G (a function of (x-x') ) is most



suited for filtering in the directions in which the flow is homogeneous.



In other words, we point out that the filter function need be neither



isotropic nor homogeneous and there are many flows (or directions in a



given flow) in which neither of these properties are desirable. In the



present work we use the Gaussian filter,



n 
G(x-x') = j 2 exp 6(xi-x!)2 (2.3)

iIi=l 
 

where A. = 2h. , b. is the mesh size in the i-direction, and n = 1, 

2, or 3, is the number of dimensions in which the flow is homogeneous.



Thus in the simulation of the decay of homogeneous isotropic turbulence,



n = 3 , while in the simulation of turbulent channel flow, we have used
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n = 2 . A convenient property of a homogeneous filter, G(x-x') , is 

its commutivity with partial differentiation operators; using integra

tion by parts one can show (Kwak et al. (1975)): 

af a. 	 (2.4) 
1 1 

Due to variation of the physical length scale of turbulence in the



direction in which the flow is homogeneous, one should not use homoge


neous filters in that direction. This is particularly true in turbulent



boundary layers. Instead, one should use a filter with variable width



A(r) , where r is the direction in which the flow is inhomogeneous.



On the other hand, using a filter with variable width causes some mathe


matical difficulties; in particular (2.4) will no longer hold. In



Appendix A, we explore filters with nonuniform width in some detail.



Finally, we note that, in the numerical simulation of turbulent



channel flow, we filter only in the directions in which the flow is



homogeneous, (streamwise and spanwise directions) i.e., we do not formal


ly filter in the direction perpendicular to the walls. The justifica


tion for this choice is twofold:



a) We are using a second order finite difference scheme to



approximate partial derivatives in the inhomogeneous direction,



and finite difference shcemes in general have inherent filter


ing effect.



b) 	 The Leonard term is fairly well represented by the truncation



error of the second order central differencing scheme. (See



Shaanan (1975)).



The main disadvantage of this choice is that we do not have a formal



closed mathematical expression relating the filtered to the unfil


tered field.



2.2 	 Dynamical Equations in Primitive Form



Now let us derive the primitive dynamical equations for the large


scale flow field. Starting with the incompressible Navier-Stokes equations,
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au. a2U. 

at ax. ij = p ax. 9x.3x.3 1 3 3



we can apply the operation (2.2) to get the dynamical equations of large



scale field,



+ u - - - - T. + N) 2- (2.5) 
. ui xi x. i1i ax ax 

where we have decomposed ui as in (2.1) and:



Ti= 3R..1313 Rkk 6ij/3 

= p/p + Rkk/3 

R.. = u!u' + u'u. + u!u.13 I 31 13 

The T.. represents the (negative) subgrid scale stresses and must be13


modeled. We can write (2.5) in the following equivalent form:



2
au. n7i a.. 
a \ax ix. a ax.Tij + Vx.x. (2.6)

S 3 3 3 

where 

+ 1 (-


2 jj 

The rationale for using this form of the equation will be explained



in Section 3.5.



In order to calculate the second term on the left-hand side of (2.6), 

we use (2.2) to write:
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ua.


(qU. af)G(-_ 

=~ 	 jx- ') i.ax i dx ' 

Note that, here, the filtering and the corresponding integration is



performed only in the directions in which the flow is homogeneous. Let



us Fourier transform the above equation (in the homogeneous directions)
 


to 	 get:



( Bu. F 3u. 
 Suu. 	
 

(2. L 	 (2.7) 

where ^ denotes a Fourier-transformed quantity; a ^ over a bracket



means the transform of the bracketed quantity. Thus, given a velocity



field, ui , one can compute the term in the bracket6 on the right-hand



side of the above equation, Fourier-transform it, multiply it by G



and invert the transform to obtain the desired term.



2.3 Residual Stress Model



An 	 eddy viscosity model is used for Tij:



T. 	 = -2v S (2.8) 

ij T ii 

where



~1ua=1p1/ 9u. 

is the strain rate tensor and VT is an eddy viscosity associated with 

the residual field motions. In the remainder of this section, we 

present the models used for VT . Throughout, we assume that the sub

grid scale production and dissipation of turbulent kinetic energy are 

equal.
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Production of the subgrid scale turbulent kinetic energy is given



by:



6P = 2v Si Sij (2.9) 

Inclusion of the experimental observation that, remote from the wall,



dissipation is controlled only by the largest subgrid-scale eddy param

2



eters such that D = D(q ,k) , coupled with dimensional analysis,



produce the result first found by Kolmogorov in 1942 that D q3 /P1



Here, q and . are the characteristic velocity and length scale of



subgrid scale eddies respectively. Using Prandtl's assumption for eddy 

viscosity, VT = Clqt , and equating the subgrid production and dissipa

tion, we get:



- - 3
2CIq Sij Sij = q / (2.10)



From (2.10), we readily obtain:



q = C32 /2s..S . 

Again, using Prandtl's assumption, we get:



VT = (C ) 2 . .§. (2.11) 

This is Smagorinsky's (1963) model, and is to be used in the regions



away from the solid boundaries.



On the other hand, very near the wall, the size of the eddies is



inhibited, and the eddies are of such a size that viscosity can be a



dissipative agent for the largest eddies. In fact, at the wall, the



eddy viscosity as well as its gradients should vanish. Under such con


2 
ditions viscosity is a factor and D = D(V,q ,P) . Application of 

dimensional analysis to this condition produces the result that



D (vq2 )f(qZ/V). Moreover, at the wall the subgrid scale dissipa/2 

tion is given by:
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D =VII-I + I 2 

2 2
Thus, in the vicinity 6f the wall we assume that D=Vq /Y. Equating



subgrid scale production and dissipation, we obtain for the inner region



of the boundary layer:



VT = (C2z4/V) (2S..S..) (2.12) 

where C2 is a constant.



In order to determine the value of C2 , we assume that Cs 


Smagorinsky's constant, is known from some other calculation e.g.,



simulation of the decay of isotropic turbulence. Strictly speaking,



there is no rigorous justification that the constant obtained from the



simulation of a totally homogeneous flow is applicable in the simulation



of a wall-bounded turbulence with mean shear. Furthermore, in order to 


determine the value of C2 , several known characteristics of turbulent 

boundary layers will be applied. Among these characteristics is that, 

in the logarithmic section of the layer, the slope of the mean velocity 

profile in the semilogarithmic wall coordinates is 1/K , where K is 

the von Karman constant. Hence, in what follows, we give only a rough 

estimate of the value of C2 , which will be used throughout our simula

tion of turbulent channel flow. 

At the edge of the logarithmic section of the boundary layer, (say


y += 27) , we demand that the inner and outer layer models have the same 

planar mean value. If we nondimensionalize all the velocities by the 

shear velocity, uT , and the lengths by the channel half width, , 

we have in the logarithmic region:


2S..S. . 31U13 ic3 By icy (2.13)
w



where yw is the distance to the lower wall (the lower wall is located



at y = -1 and the upper wall at y = +1 ). Note that here, we have
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assumed that the mean velocity gradient is much larger than all the other
 

+



velocity gradients. Equating the two models at y = 27 , we obtain:



C2 C2 

S s (2.14)
2 y+ 27K



where we have assumed that X = Ky . Thus, the actual model used for 

the eddy viscosity at each time step in the calculation is: 

C2 ReT Y,4(2Sij Sij Yy Yc
y
 

VT = 	 (2.15) 

(Csp ) 2 A i jY > Ye 

Here 	 y is the coordinate of the first computational grid point away



from the wall at which the planar average of the two models are closest



to each other. It is to be noted that, yc can vary in time and in



general it does. The same relation as (2.15) is used in the upper half



of channel (0 < y < 1) . Finally, we turn our attention to the specifi

cation of t .



Due to the no-slip boundary condition, P must vanish at the walls.



Furthermore, due to lack of spatial resolution in the homogeneous direc


tions (see Section 3.1), and with no further reasoning, we have used the



following expression for k in the simulation of turbulent channel flow:



= min Al min ( •3)min(h2)1l3 (2.16) 

where ' is the Prandtl's mixing length:



0.1 y > .1/K 

= 	 Yw 

KYW y 1/ 
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and are the nondimensionalized filter widths in stream-
A1 A3 
 

wise and spanwise directions respectively, and h2 is the local grid



size in the vertical direction. Two remarks are in order. First,_due



to-the particulat grid sizes chosen (see Section 3.1), we have the



following global inequalities:
 


h2 (y) < .1 

A1 > A3 > .1



(Note that all the lengths are nondimensionalized with respect to



channel half width 6 ). Second, we should mention that the expression



(2.16) for k is strictly speaking, based on ad hoc foundations and 

more work in this area is strongly recommended (see Chapter V). This 

expression was chosen initially on a trial basis; nevertheless, we did 

not find any alteration of it necessary. Thus, we emphasize that in 

obtaining the computational results presented here, no fine adjustments 

of either Cs or P were made. In spite of this, the numerical 

results (see Chapter IV) are satisfactory. It is believed however, that 

an optimum choice for C and P, would somewhat improve the quantitas 

tive results.



2.4 Governing Equations for the Large Scale Field



In the numerical simulation of turbulent channel flow, all the 

variables are nondimensionalized by turbulent shear velocity, uT , and 

the channel half width, 6 . In this case, we solve the following 

equations numerically: 

2


U(...1 ar + 6 + --I (2+ Re axax'- @x 3x1 - ax ii az '"Tij 

(2.19)
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and 

u. 0 (2.20) 

where ReT is the Reynolds number based on shear velocity, u. , and 

channel half width, 6 . Note that the second term on the right-hand 

side of equation (2.19) is the mean pressure gradient imposed on the 

flow.
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Chapter III



NUMERICAL METHODS



3.1 Grid Selection



For a given number of grid points, N , one has to choose the grid



size(s) based on the physical properties of the problem at hand. In the
 


simulation of the decay of homogeneous isotropic turbulence, for



example, it is desirable to select the grid size, h , such that the



filtered field contains as much of the turbulence energy as possible



(Kwak et al., 1975). On the other hand, the length of the side(s) of



the computational box in the direction(s) in which periodic boundary



conditions are used should be long enough to include the important large



eddies (Ferziger et al., 1977).



In the grid size selection process for the numerical simulation of
 


turbulent channel flow, one has to consider the average spanwise and



streamwise spacing of the turbulent structures in the vicinity of the



wall (see Section 1.3) as well as the integral scales of turbulence. In



addition, quantities such as the thickness of the viscous sublayer should



be taken into consideration. With this in mind we proceed to specify



our grid system:



In the vertical direction (-1 < y < 1) , a nonuniform grid spacing 

is used. The following transformation gives the location of grid points 

in the vertical direction (Mehta, 1977). 

whr -tanh[~ tanhil a)J (3.1)


where



= -1 + 2(j-2)/(N-3) j=l,2,...,N 

and N is the total number of grid points in the y direction. Here, a



is the adjustable parameter of the transformation (0 < a < 1) ; a
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large value of a distributes more points near the boundary. In our
 


computation we have used a = .98346 , and N = 65 . Table 3.1 shows



the distribution of the grid points in the vertical direction with the



corresponding values of y+ = ywqu/v . Note that in reference to the 

vertical direction, index (or subscript) 1 and N refer to grid points 


just outside the lower and upper walls respectively.



For the grid selection in the streamwise, x , and spanwise, z



directions, one needs to consider the experimentally measured two point



correlation functions



R°. (r,0,0) = < u.(x,y,z) ui(x+ryz) >



and



Rii(0,0,r) = < ui(x,y,z) ui(x,y,z+r) >



Here < > denotes the average over an ensemble of experiments.



The use of periodic boundary conditions in a given direction can be



justified if the length of the side of the computational box in that



direction is at least twice the distance r , at which the appropriate



R.. vanishes.



Experimental data of Comte-Bellot (1963), indicates that



X1 = 6.46 

and



X = 3.26
3 
 

where X1 and X3 are twice the distance, r , beyond which



R1 1 (r,0,0) and R11(0,0,r) respectively, are negligible. Here 6



is the channel half width.



For a complete simulation of the important large scale field, one



has to select the number of grid points in the streamwise, x , and



spanwise z , directions with careful consideration to laboratory



observations. We assume that L and L , the lengths of the computa
x z 

tional box in the streamwise and spanwise directions, are fixed in



accordance with the above considerations. As was mentioned in Chapter I,
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5 

10 

15 

20 

25 

30 

Table 3.1 

GRID DISTRIBUTION IN THE VERTICAL, y , DIRECTION 

n y Y"= +1=ji+yj Y+ 

1 -1.002 .002 

2 -1.000 .000 0.000 

3 - .997219 .00278 1.78 

4 - .993983 .00602 3.85 

- .99022 .00978 6.26 

6 - .985847 .01415 9.06 

7 - .980767 .01923 12.31 

8 - .974871 .02513 16.09 

9 - .968035 .03197 20.47 

- .960117 .03988 25.53 

11 - .950956 .04904 31.40 

12 - .940372 .05963 38.18 

13 - .928164 .07184 45.99 

14 - .914109 .08589 54.99 

- .898 .102 65.33 

16 - .879 .121 77.47 

17 - .858 .142 90.91 

18 - .834 .166 106.28 
19 - .807 .193 123.57 

- .776 .224 143.42 

21 - .741 .259 165.82 

22 - .702 .298 190.79 

23 - .659 .341 218.32 

24 - .611 .389 249.06 

- .559 .441 282.35 

26 - .502 .498 318.84 

27 - .440 .560 358.54 

28 - .374 .626 400.80 

29 - .304 .696 445.61 

- .231 .769 492.35 

31 - .156 .844 540.37 

32 - .078 .922 590.31 

33 .0 1.000 640.25 

*For Re = 640.25. 
T 
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experimental data indicate that the average (spanwise) streak spacing



corresponds approximately to A3= 100 and the average streamwise
 


spacing of the U shaped vortices corresponds to X+ 440 .Therefore,



1


for the channel flow under consideration (see Chapter IV), the average



dimensionless distance between the spanwise and streamwise structures
 


are:



Az 100/Re = 0.156



and



Ax 440/Re = 0.687 

6



respectively. Here ReT is the Reynolds number based on shear velocity,



uT and channel half width, 6 and is 640 in our simulation.



Using the above values of X1 and X3 , and assuming that, at



least four grid points are needed to resolve one wavelength (structure),



we arrive at the following requirements for the number of grid points in



x and z directions:



N = 37

X 

N = 82


z 

It is emphasized that the above values for N and N are based on

x z 

ensemble averaged spacing of the structures. Hence for an adequate



simulation of the important large scales, the following values for N
x 

and N are recommended (with due consideration to the capability of



present computers):


N = 32



x 

N = 128


z 

In the present numerical simulation of turbulent channel flow, we



have chosen the following values for the nondimensionalized streamwise



and spanwise computational box lengths:



19





L = 27 
x 

4L 
z 3 

The value of Lz = N is somewhat bigger than the above value for 
z 3 

X/ . This choice was made with due consideration to stability and 

resolution requirements of linear hydrodynamic stability theory (see 

Section 4.3). In addition, due to computer cost and storage limitations, 

we have used 16 grid points with uniform spacing, in each of the stream

wise and spanwise directions. Therefore, the actual grid spacing used 

in these directions corresponds to h+ = 251 and h+ = 168 respec

tively. Hence, it is clear that we have inadequate resolution, partic

ularly in the spanwise direction. 

3.2 Numerical Differentiation



In the vertical direction, central differencing is employed with



variable grid spacing yj+ 1 = yj + hj+l where h. = yj - yj-I and



j = 1,2,...,N (see Section 3.1). The partial derivatives for this case



are the following expressions with the first truncation error term



included:



( ) hj+l +jh - 1 (h+ (-hj)f + 0(h (3.2) 

/f ~ _ +hjf- f + + 
ay.2j +h h h2hj+I h jI 

h.3-h Im + 0(h) (3.) 

- 33 

Note that the second term of the right-hand side of Eq. (3.2) and



(3.3) is the "extra error" introduced by the use of a nonuniform grid.



In general, however, this term is very small if the grid size varies
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slowly (Blottner, 1974) (this is the case with 3.1). It can be easily



shown (Blottner 1974) that a variable grid scheme is equivalent to a



coordinate stretching method if a relation of the form of Eq. (3.1) is



used to specify both the grid spacing in the variable grid method and



the relationship between the coordinates for the stretching method. In



both cases the derivatives are second order accurate in terms of AE



i.e.,



I+ h + 1 + OCAE ) (3.4)'
2y j hj+l + bj 

and



h20 f-1 f_ + fj+ 1 (A2) 
LhYjh+. 1 )hi j+l i +OAC 

(3.5) 

In the streamwise and spanwise directions the pseudo-spectral method 
D D D2 

is used for the calculation of partial derivatives ' z 11 7 , etc.x I 57 
For a given number of grid points, the maximum accuracy is achieved by



using this method (see Moin et al., 1978, for a discussion of the



accuracy of numerical differentiation operators in terms of modified wave



number concept). For periodic boundary conditions, which are of interest



in x and z directions, we can represent a flow variable such as u



by a discrete Fourier expansion



U(x1lx 2,x3) u(k1,x2,k3) 1133 (3.6)


n In



where



2'z 

k = 2 n7 wave number in the x. direction
i (Nh). j 

N. number of mesh points in the j direction


J
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N. N. 
- -i2 . ... ni - . .,0,L, ... 2 -I 


h. = mesh size in the x. direction. 

J - - -_-- - -

The sum extends over all n1 and n3 . Suppose we wish to compute 

-u/axI ; we may regard (3.6) as an interpolation formula, treating 
x1



as a continuous variable, and differentiate to obtain



^ 
 i(k x +k 3X3 )
 


_-- 1Z, ;(klxu 2 ,k3ik e (3.7) 

n1 
 .3



Multiplying both sides of (3.7) by exp(-ik'x - ikx , summing over 
1 1 i 3 )3



all x1 and x3 , and using orthogonality, we get: 

A 

D ik U(klx 2 ,k3) (3.8)



Thus, in order to compute -u/3xI , we simply have to Fourier 

transform u in the x1-direction, multiplying it by ikI , and take 

the inverse transform of the result; this is called the "pseudo


spectral" approach (Orszag (1972), Fox and Orszag (1973)). The use of



pseudo-spectral method in x and z directions, partially addresses



the grid resolution problem in these two directions.



For a limited number of problems with nonperiodic boundary condi


tions we can use some other set of orthogonal functions rather than



{eikx} (see Orszag, 1971). For completeness and for later use in this



report, we conclude this section by describing the numerical differ


entiation using Chebyshev polynomials.



I We can express a variable such as f(y) by a discrete Chebyshev



expansion



N 

f(y) = an T (y) (3.9), 
n0
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where Tn(y) is the nth order Chebyshev polynomial of the first kind,



and double prime denotes that the first and last terms are taken with



factor . Similarly, we can express the derivative of f , which is a 

polynomial of degree N-i , in terms of Tn(y) . 'We then write 

N-1,



f= E b Tn(y) (3.10) 
aY n-0nO 

and seek to compute.the coefficients b in terms of a . It can be 
n n 

easily shown (see Fox and Parker, 1968) that the coefficients b are


n 

given by the following recurrence relations:



bn_1 - b n+ = 2n an n=1,2,...,N-2



bN-2 2 (N-l)aNl 

bN- 1 N aN-1 (3.11) 

Finally, we note that



T (cos 0) = cos n6 (3.12)n 

Thus, the transformation (y = cos 0) which is roughly adequate for



boundary layer coordinate stretching, renders the evaluation of the



Chebyshev expansion coefficients, an , particularly simple with the



use of FFT routines.



3.3 Fundamental Numerical Problem



In this section we describe an inherent numerical problem associ


ated with the fully explicit solution of the dynamical equations in



primitive form in a bounded domain. Consider the momentum equations



- P + H. 
(3.13)


3x. I
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where H. contains the viscous and convective terms. In the fully

1



explicit (time advancing) numerical solution of (3.13) one normally 

specifies an arbitrary initial solenoidal velocity field satisfying the 

no~slip-cond-ition. -T en, one Proceeds 'to solve the appropriate 

Poisson equation for pressure obtained from the application of the 

divergence operator to the momentum equations to ensure that 

V7u = 0 . The resulting pressure is then used together with the com

puted H. in (3.13) to advance u. in time. The Neumann boundary 

condition, 

-P 
 vn • Vtu (3.14)n ~



is normally used in conjunction with the Poisson equation for pressure.



Here n is a unit vector normal to the solid boundary. This condition



is obtained from the normal momentum equation evaluated at the solid
 


boundary.



With regard to the boundary treatment, one has two choices:



a) Enforce the no-slip condition, and time advance the velocity



field via (3.13) only in the interior domain (not at the boundaries);



b) Time advance the velocity field throughout (interior domain as



well as boundaries).



If one chooses (a); for the tangential momentum equations to be



satisfied at the boundaries, the initial field would have to be such



that the p it generates satisfies the Dirichelet condition



1p = VT . V2u (3.15)
DT



(T is a unit vector tangent to the solid boundary). The momentum equa


tions in the directions tangential to the solid boundary will not



necessarily be satisfied if the only constraints on the initial field



are that it be solenoidal and satisfy the no-slip condition. Since the



tangential momentum equations are not in general 'atisfied at the solid



boundary, the Poisson equation will not be satisfied there either, and



24





hence we conclude that in case (a) the continuity equation will not be 


satisfied at the boundary, (C (n'u) # 0) . This can cause serious 

numerical instability.


On the other hand, if one chooses case (b), continuity will be


satisfied everywhere, but the no-slip condition may not be satisfied,


and this is unacceptable.



It should be noted that, if one uses the Dirichlet condition (3.15)



as the pressure boundary condition then the Neumann condition (3.14)



will not necessarily be satisfied and hence similar problems will arise



in either approach (a) or (b).



In Appendix B we formally demonstrate the numerical problems



addressed in this section. In addition, in Section 3.6 it will be



shown that the numerical problems discussed here can be avoided if one



uses three-point finite differences to approximate partial derivatives



in the direction normal to the boundaries.



3.4 Consistency Conditions for the Initial Velocity Field



In this section, we present a set of consistency conditions* for



the initial velocity field of the channel flow such that the Neumann and



Dirichlet problems for the pressure have the same solution, i.e., we



solve the problem addressed in Section 3.3.



Fourier transforming the Poisson equation in the streamwise and



spanwise directions, we get:



2"



(3.16)
d 2 kp = Q 

The consistency condition requirements conflict with the proven


existence and uniqueness theorems for the Navier-Stokes equations.


Therefore, we emphasize that the problems addressed in the previous sec

tion are purely numerical and mathematically there is no difficulty.


Saffman (P. G. Saffman, 1978, private communication) points out that


the fact that the Neumann problem does not satisfy the Dirichlet condi

tion appears in the nonanalyticity of V2u on the boundary at t = 0 ,


which can be interpreted physically as an-initial vortex sheet diffusing


from the boundary.
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where k2 = k12 + k , and k and k are the wave numbers in


1 3 '1 3



streamwise and spanwise directions respectively. Here,



q(klY'k3) axi x iij



For k 2 0 , the general solution of (3.16) is: 

P - (y) + cI sinh ky + c2 cosh ky (3.17) 
I 

where:



C(y) = [ cosh kn d sinh ky f Q sinh kn dn] cosh ky


In kyk
-1k 
 

and, cI and c2 are constants. Thus, for the Dirichlet and Neumann



problems, we can determine cI and c 2 separately to get PD and PN 

which are the solutions of Dirichlet and Neumann problems respectively.



Note that for the Dirichlet problem to have a solution, we must have



2 2p 

x3z y=-l zxY=±



2The above condition is equivalent to n-V W = 0 on the boundaries



(y = ±1) , or 

F_2u 2 

ax~ 2 y=1j(3.18)
k 
or 

ik3 H1 (±l) = ik1 H 3 (±l) 
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where



@ = and H 3H1 
 y2 3Dy2 

and w is the vorticity vector. 

Equating PD and PN (after some algebra) we arrive at the follow

ing constraints for the initial velocity field: 

H 3(1) - H3(-) -) - tanhk [ 2(1) + 2(-) - (] (3.19) 

ik 3 k 

H3(1) + H3(-l) - cothk [H(1) - H12(-1) - 0(1)] (3.20)
ik 3 ()= k 21 2-)- () (.0 

Therefore, for a successful, fully explicit numerical simulation, the



initial velocity field must satisfy the following conditions:



e it must be solenoidal,



* it must satisfy the no-slip condition, and



* it must satisfy (3.18), (3.19), and (3.20).
 


Note that for k3 = 0 and k1 # 0, one can use (3.19) and (3.20) with 

the subscript 3 replaced by 1. 

3.5 Conservation Properties



As was pointed out by Phillips (1959), numerical integration of the



finite-difference analog of the Navier-Stokes equations may introduce



nonlinear instabilities if proper care is not taken. Differencing the



transport terms in the form of (2.5) will automatically conserve momentum



in an inviscid flow. However, in general, the computation becomes un


stable and the kinetic energy increases. This can happen in spite of the



dissipative nature of Tij and the viscous terms. The nonlinear insta


bility arises because the momentum conservative form does not necessarily



guarantee energy conservation (in the absence of dissipation), and the



effect of truncation errors on the energy is not negligible.



Moin et al. (1978) have shown that writing the dynamical equations
 


in the form of (2.6) results in vorticity, momentum, and energy conser


vation for a large class of differencing schemes. Therefore, in all the
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calculations reported here, we use the dynamical equations in the form



shown by Eqn. (2.6).



3-; 6- Explicit Time Advancing-....... . ......



By introducing one plane of grid points just outside of each bound


ary, one is able to obtain some degree of freedom. With proper use of



this freedom, one can avoid the problem discussed in Section 3.3 (case a).



The reader should be cautioned that here we are strictly referring to the



explicit numerical solutions in which three point finite differences are



used for the numerical differentiation. (However, the latter statement



does not apply, for example, to the cases in which Chebyshev polynomials



are used in a finite series expansion to represent a flow variable and



its derivatives in the normal direction (see Sec. 3.2).) In practice,



one can determine the normal velocity at the exterior point such that



the continuity equation evaluated at the wall,



3V7y = 0 (3.21) 
3yIy=±l 

is identically enforced. This velocity, in turn, is used in obtaining



the Neumann boundary condition for pressure. For the proper choice of



V2
the numerical operator for the Poisson equation, the reader is re


ferred to Moin et al. (1978).



For ,explicit time advancement, a second-order Adams-Bashforth method 

was used. It has been shown by Lilly (1965) that this method is weakly 

unstable, but the total spurious computational production of kinetic 

energy is small. The Adams-Bashforth formula for u.
1 

at time step 

n-l( is 

u = u + At r-2-Z. + O(At) (3.22) 

where



u- 3u.) a T ' .. 1 2a2u.
--U.P- + xx 

1lx ax. ax. + Re,, ax.ax. 
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Using the above method, we have successfully integrated the governing



equations for the numerical simulation of turbulent channel flow (not



reported here). However,, due to the presence of a very fine mesh near



the boundaries, one is forced to use extremely small time steps. This



stringent requirement is caused by the well-known numerical stability



criterion of the diffusion equation.



3.7 	 A Semi-Implicit Numerical Scheme



As was mentioned in the previous section, due to the presence of



diffusion terms in the governing equations, the time-step requirement of



a fully explicit method becomes severe. To circumvent this difficulty,



we have devised a semi-implicit algorithm. All the results reported here



were obtained using this method. Thus, in what follows, we outline a



method which treats part of the diffusion terms and pressure in the dy


namical equations implicitly, and the remaining terms explicitly. The



equation of continuity is solved directly.



Let us start with Eqn. (2.19), written in the following form:



ui P- 1 12u 

au. 	 H. .Li . 

H i- x-- + T + R-- 2 (no summation)
1 T 3
x2 	 (3.23) 


where 


+ -Y= u -. -	 2
H. u. (3u @u + 1 (31 1 

1 	 11 Re 3x2 x32 

+{ 	 T~ 1 SuiQ 	 4T+3)] 
+ Sx.V] ax3[(x 


+~~ (Du (.5-vt~ 2)+
.k(i± auI+v i 

T) 1)± 2u 2 


Qi= 	T 2 -xi di (no summation)



C. +6



i2
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d. = 1 -6 
1 6i2



VT = < VT(xx 2 3) >xr" 3 

< > indicates the average of bracketed quantity in xl-x plane,xl,x3 3 
 

VTT = V) -V -
T T -T 

The rationale for this decomposition of V T will be explained later in 

this section. For time advancing, we are going to use the Adams-

Bashforth method (see Sect. 3.6) on H., and the Crank-Nicolson method 

(Richtmyer and Morton, 1967) on 3P/x. and a2u , in the right
u i x2 

hand side of Eqn. (3.23). For convenience, we evaluated vT at time 

step n. Thus, we have: 

= u+At f 2 - ' a x +xil 

( 2-n+l 2-n 
+ 1 ( + \ At a 'i + a _ -i (3.24) 

T T ax2 ax ( 

2 (no summation) 

Let



2/At
Bi(x2) = 2
21 + C)v (x



rearrangement of Eqn. (3.24) yields:



2-n+l


+
I2_+_+l At ap ' - ( n 1n-,

2 +8u. + . = S*u. + B iAt 2-H - i 

2 a1 
2-n 

At ar (3.25) 
i 2 ax. ax2 

1 a2 
(no summation) 

Finally, we write the continuity equation at time step n + 1: 

1 0 (3.26)
ax. 
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Now let us Fourier transform Eqns. (3.25) and (3.26) in and
x1 
 

x3 directions. This transformation converts the set of partial differ


ential equations (3.25) and (3.26) to a set of ordinary equations for



every pair of Fourier modes k1 , k3 with x2 as the independent vari


able. Note that the dependent variables have superscript n+l. In the



remainder of this section all the dependent variables are to be inter


preted as two-dimensional Fourier transformed quantities. Fourier trans


forming equations (3.25) and (3.26) results in the following set of



ordinary differential equations for the dependent variables:



2 n+l
 

U1 n+1 ik l l At n+1 = n 
 At (3H Hn-l\ 

2n



tikn Sx 1 (3.27a)


ax2



n + l 2 u	n+l 
2__ + +1+l 	 A 3Pn~ Ln* 
 A t 3H nBn-l\ 

22 2 2 2 ( "2- 2)ax + S2 u 2 + 2 2 3x2 
2n



n
At , a u 2


2 
At 2 an
 2 (3.27b)
a22Dx 2 

2



2 n+l


anu3 n+l k ,2n+ 
 n A Ln n


ax2 33 32 \3 3


22



At n a32c



e 3 2, 2
T 3

 ax


2



u3 ,2,+k 3 nd 1 3 - as unkno+s NotItha,1ithn



1kUu1 + ax2 + ik3u3n = 0 	 (3.27d) 

Thus, for every pair of k1and k3we have four coupled linear ordi


nary differential equations with unj (k1 ,x2,k3) u+lkl,x2 ,k3) 
n+l n+l 123'u ) 
u 3 (k2,x2'kQ3 and P (kIx2,k3) as unknowns. Note that, with no 

fur 2ecomplications, one can treatmr em nEn (2.19) (e.g., 
a21 a 1 

ReT x2 Re z , etc.) implicitly. 
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Finally, it should be mentioned that, in order to avoid evaluating



complicated convolution sums, we have decomposed VV to its planar



average, VT(Y) and "fluctuating" component vT(x1 'x2 x3). We have used



expTitcft time advancing for v' (92u./3x2), w T is



advanced by a partial implicit scheme. This decomposition of VT may



not be an optimum one from the standpoint of numerical stability and



accuracy. Other choices are possible. For example, one can decompose



VT as follows:



VT(X l ,x2,x3) = max (VT) + (xlX2,x3) 
x1 ,x2,X 3 

Although we did not incorporate any other decomposition than the one used



here, relatively simple numerical e.periments with the diffusion equation



may result in a better decomposition for VT"



3.8 Finite-Difference Formulation and Boundary Conditions
 


In order to solve Eqns. (3.27) numerically, we use the finite dif
2 2 

ference operators (3.2) and (3.3) to approximate a/x2 and a /ax2 

Having done this, we shall have a set of linear algebraic equations for 

the Fourier transform of the dependent variables. This system of alge

braic equations is of block tri-diagonal form and can be solved very 

efficiently. However, in order to close the system we must provide a 

set of boundary conditions, i.e., we have to specify the values of Ul, 

u2' u3, and P at the solid boundaries. 

Implementation of velocity boundary conditions poses no problem; we 

simply set the value of the velocity vector at zero on the walls. In 

order to obtain the pressure boundary conditions, we note that evaluation 

of Eqn. (3.27b) at the solid boundaries yields: 

F 2un+l n 2 n 
an 2u ax na2 At n+ 

Ata2~ 2 21x2±22 L2 2 2 2x22 ] 
 

Consider the following Neumann boundary condition for pressure:



a_ 1 2 (3.28)



a2x2 l 
 T,ax2 x2 ±
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Equation (3.28) was obtained from the Fourier transform of Eqn. (2.19,



i = 2), and evaluated at the solid boundaries. It is clear that this



equation is consistent with the numerical analog of that equation (3.27b)



evaluated at the walls. Note that



w = - Re 
22x2=l 
 1T



Thus, we formally use Eqn. (3.28) as the pressure boundary condition.



However, for closure the finite-difference equations require the value



of pressure at the boundaries, not its normal derivative. For this we



use the following difference relation in conjunction with the difference



analog of Eqn. (3.28):



1 2 1 3j Pj+a + O(h2 ) (3.29) 
22 j=- hj=2 

where h x2 - x2 . j = 2 indicates the grid point on the lower 
i j-iwall. 
 

Substituting the finite-difference analog of Eqn. (3.28) into the



left-hand side of Eqn. (3.29) and using the finite-difference form of



the continuity equation at the wall, we obtain:
r! 2u2]/Li3 
P2 2P3 P4 - 2 32 (3.30)

2 Lh 3 (h 3 + h4) Re 2h 3 j / h4 + h3 

An analogous relation is used for the value of the pressure at the



upper wall (j = N - 1). Note that the pressure is still indeterminate



by a constant, as it should be due to the use of Neumann boundary condi


tions; i.e., we are not using Dirichlet boundary conditions.



In the case k, = k3 = 0, a special solution technique must be un


dertaken. First observe that in this special case Eqns. (3.27a) and



(3.27c) are independent of each other and Eqns. (3.27b) and (3.27d).



Furthermore, the former two equations are of simple tridiagonal form and


can be solved directly to yield uI+l(Ox 0) and un+ (0,x20). Second,



112'3 (, 2 '0)


the continuity equation together with the boundary conditions for 
 u2



yield
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u2 (0,x 2 ,0) = 0 (3.31) 

Since pressure is indeterminate by a constant, let



r(Ox 2 0)I = 0 (3.32) 

Using Eqns. (3.30), (3.31), and (3.32) in conjunction with the finite 

difference analog of Eqn. (3.27b) allows one to solve for Pn+l (o,x2,O), 

j = 3,4,...,N+l. 

Before concluding this section, we emphasize that, in obtaining the 

pressure boundary conditions, we used a momentum equation evaluated at



the boundary. We were able to do this because the finite difference



equations are generally enforced inside the spatial domain and not on its



boundaries. Consequently, we did not use a redundant equation. Consider



for a moment a hypothetical case in which we have the means to integrate



the governing equations of motion analytically. In this case, the equa


tions of motion are and should be valid at the boundaries as well as in


side the domain (we do not have any singularity at the boundaries). So,



in this case, use of momentum equations for the pressure boundary condi


tions will not provide any new information. The roots of this apparent



dilemma lie in the basic physics of fluid mechanics. The fact is that



physics does not provide a priori boundary conditions for pressure.



A manifestation of this dilemma will appear if, for example, Cheby


shev polynomials are used in a finite series expansion to represent a



flow variable in the y direction (see Section 3.2). However, since



the equation of continuity is solved directly, it appears that the numer


ical problems which were addressed in Section 3.2 will not cause any dif


ficulty if one uses Chebyshev polynomials in conjunction with the semi


implicit scheme developed here.



3.9 Computational Details



The numerical solution of the equations described here (see also the



next chapter) were carried out on the CDC 7600 computer at NASA-Ames Re


search Center. The dimensionless time step, during most of the
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calculations, was set at At = 0.001. Throughout the computations re

ported here, the values of the following quantities, 

c W(t)= Max At h- + vhY) + 

and



c2 (t) = Max At VT 

did not exceed 0.3 and 0.08, respectively. In addition, the numerical 

stability was checked by a 200-step numerical integration in which the 

value of At = 0.0005 was used. The computer-generated results of this 

run agreed (within two significant figures) with the corresponding numer


ical integration in which the value of At = 0.001 was used. Comparison



was made at the same total time of integration.



The computer time per time step was approximately 20 seconds (CPU



time). However, the present computer program is not an optimum one, and



we believe that at least a 25% savings in computer time can be achieved



by some modifications of this program.



Finally, it should be noted that, in the present computation, approx

imately 80% of the small-core memory and only 50% of the available large

core memory of the CDC 7600 was used. Therefore, a computation with 

twice as many grid points as the present one is possible using the avail

able core memory of the CDC 7600. 
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Chapter IV



INCOMPRESSIBLE TURBULENT CHANNEL FLOW



4.1 Physical Parameters



In order to solve Eqns. (2.19), we need to specify Ret, Reynolds 

number based on channel half-width 6 and shear velocity u . In the 

present numerical simulation of turbulent channel flow, Re. 640.25 

was used. In their experimental investigation of the mechanics of orga

nized waves, Hussain and Reynolds (1975) considered a channel flow with 

the same Reynolds number. The mean flow parameters of their experiment 

are listed below. 

Re = 13800



u 
T = 0.0464 

U 
0 

U 
m = 0.881 
U 

0 

U = 21.9 ft/sec (6.67 m/sec) 

o 

where Re is the Reynolds number based on channel half-width, 6, and



the centerline velocity, U0 ; Um is the mean profile average velocity,



and uT is the shear velocity.



4.2 Initial Condition



A number of initial velocity fields were explored. With the simple



sub-grid scale model used, it is important that the initial turbulence



field be able to continually extract energy from the mean flow in order
 


that a statistically steady solution develop. For this purpose, we em


ployed the governing equations of small disturbances used in hydrodynamic



stability theory (other choices are possible) to obtain a velocity field



with negative Reynolds stress. 

The equations for a small wave disturbence ui on a parallel mean 

flow U(y) are (Lin, 1955, Eqn. (1.3.9)): 
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i(ctx+BZ-act) +~(.a



ui ui(y ) ei z t + conj (4.1a)

1 1 

iau1 + i=u3 + Du2 0 (4.1b) 

mu I ± Urnu - k)U (4.lc)A +fU•u A 2 = - icP +-ee1 2 2 A
 

iU1 1 2 Re 1, 

A A" 
 2 2



(D
iu 2 + Uiau2 - P + -- - k2) u (4.1d)
2 2 Re 2



A 1 2 2) ^

iu 3 + Uiau3 = - +-L+iP (D -k) u3 (4.e)
 

Here w = - ac is the (complex)frequency, and D = d/dy. 

The Squire transformation (Lin, Eqn. (3.1)), 

k = 2 + 52 (4.2a) 

V 
A 

u
A 

2 (4.2b) 

cu1 + Su^ = ku (4.2c)
3 
 

permits reduction to a single fourth-order equation for v, the Orr-


Sommerfield equation (Lin, Eqn. (1.3.15)):



2 _2 2 2 2)A _2- A 
(D -k2)v iRe(U - c) (D - k) v -D (4.3) 

For a given set of a, Re, , and U(y), (4.3) is solved numerically



using the algorithm of Lee and Reynolds (1967).



After final calculation of v, u is calculated from (4.1b), and



P is calculated from (4.1c) and (4.1e). The results are then used to



solve for ul, via (4.1c). Solution of (4.1c) is carried out numeri


cally using a second-order algorithm. Starting at the centerline of the



channel, two solutions, each satisfying the centerline boundary condi


tions (here we are primarily concerned with symmetric G and anti


symmetric U
AA

1 and u3 ) are constructed using the Kaplan filtering tech


nique to maintain linear independence. These two solutions are then
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combined to satisfy the wall boundary conditions. The eigenvalues are



automatically adjusted until an eigensolution is obtained.



For the Reynolds number under consideration (Re. = 640.25) and



with proper choice of a, , and U(y), one can obtain a set of u


u2' and u3 such that the corresponding Reynolds stress has the same



sign as - fu. This corresponds to an unstable disturbance from the view



of hydrodynamic stability theory. The resulting three-dimensional dis


turbance extracts energy from the mean flow in a continuous fashion. In



the present study we have used a = 1.0, 3 = 1.5, and the mean velocity



profile:



U(y) = I0(1 + cos Try) 

for the generation of initial disturbances.



This profile was chosen with due consideration to the proper repre

sentation of the resulting disturbances on the grid system in the normal 

direction. In addition, note that the above mean velocity profile has 

inflection points (at y = ± I) which produces Kelvin-Helmholtz type 

instability. 

In order to avoid a net momentum in the spanwise direction, one can 

add two oblique waves with the same amplitude that are traveling in the 

directions which are at angles of 4 and - 4 with the streamwise, x, 

direction. Combining two oblique waves in this fashion yields a set of 

streamwise vortices (roll cells). Thus, the following velocity field was



used as the major part of the initial disturbance (initial large eddies):



iax

U1 (X,y,z) = A[u(y) cos Sz e + conj] 

iax


u2 =(xyz) cos az e + conji
A[u2 (y) 
 

u3(x,y,z) = A[u 3 (y) sin Sz e iax + conj] 

Here, A is a constant, a = 1.0, 8 = 1.5, and ui(y) (i = 1,2,3) are 

the eigensolutions of the linearized equations. In order to allow the 

development of all the waves that can be resolved on the grid system, a 
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solenoidal velocity field with random phase was added to the above veloc


ity field. Furthermore, to ensure the initial dominance of the ui



field, the amplitude of random field was about 10% of the maximum apli


tude of u.. Finally, in order to avoid a very long time numerical in


tegration, the measured mean velocity profile of Hussain and Reynolds



(1975) was used as the initial mean velocity.



4.3 Preliminary Numerical Experiments



In the following three sections we shall present and discuss various



calculated quantities pertinent to turbulent channel flow. The results



will consist of running time averaged mean velocity profile and turbulence



statistics, horizontally (xz plane) averaged turbulent quantities, and



some instantaneous velocity profiles. However, first, it is instructive



to discuss some of our initial numerical experiments (failures).



In our first integration attempt, we observed that the absolute



value of the horizontally averaged Reynolds stress, < uv > , decreased



continuously in time. This vanishing trend occurred in spite of the fact



that the Reynolds stress profile was below the expected value. The total



time of integration was approximately 1 nondimensional unit, and the



value of eddy viscosity constant, Cs, was specified to be 0.2 (see Moin



et al., 1978). It is interesting to note that the profiles of


- - 2>1/2

< (u - < u > ) > were generally increasing, and the corresponding


-2 >1/2


profiles of < v > were decreasing slightly. In other words, the



correlation between (u - < u > ) and v, and not the respec


tive intensities, had a rapid vanishing trend. At this point it was de


termined that the effective Reynolds number (taking the eddy viscosity



into account) was probably too small for a small amplitude disturbance to



grow. With this in mind, and noting that the production of Reynolds


-2



stress is directly proportional to < v > , the existing turbulent vel

ocities were multiplied by a factor of two (and the Reynolds stress was 

amplified by a factor of four). Note that no changes were made to the 

final mean velocity profile, < u > . In fact, at this time < u > was 

deviated considerably from its original profile.
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Using the resulting velocity field as a new initial condition (in


what follows, we shall call this velocity field "field A"), we carried



out two parallel computations, one with 
 C = 0.44 and the other with

s 
Cs = 0.2. In the former case, the Reynolds stress profile grew contin
uously for a nondimensional time, t, of 0.3. However, during a further 

integration period (t = 0.7), it decayed drastically to a vanishing 
level. Thus, it was concluded that the value of 0.44 for the subgrid 
scale model constant is too large, causing turbulent motions to damp out. 

The results to be presented in the following sections were obtained 
using the value of 0.2 for C . This value is probably not the omptimum5


one 
 (more likely the optimum value is between 0.2 and 0.3); however, in


the absence of a more rigorous subgrid scale model formulation, further


adjustments of Cs seem to be unjustified.



4.4 A Time History of the Horizontally Averaged Turbulent Quantities



As was pointed out in the previous section, we use the velocity field


A as the new initial condition. Fig. 4.1 shows the horizontally averaged


resolvable shear stress < uv > 
 of this field. For purposes of discus

sion, we concentrate on the lower half of the channel in this section.


Furthermore, due to the relationship between the materials to be discussed



herein and the bursting process in a turbulent boundary layer, virtually all


of our discussion will be concerned with the region near the (lower) wall.



Figure 4.2 shows the 
 < uv > profile at the non-dimensional time


t = 0.45. It can be seen that the resolvable shear stress profile has


increased considerably. In particular, near the wall it has increased


significantly beyond the expected equilibrium (time-averaged) value. Figs.


4.3, 4.4, and 4.5 show the profiles of the same quantity (< uv >) 
 at


three later times (t = .65, .85, 1.05, respectively). It is clear that,


especially in the region -.95 < y < -.7, a dynamic process exists which


nearly repeats itself in time. If
we carry out the integration still


further, we see the same behavior (almost cyclic) in the 
 < uv > profile.



One nondimensional time unit corresponds approximately to the time

in which a particle moving with centerline velocity travels 22 channel


half-widths.
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Figs. 4.6 and 4.7 show the vertical distribution of < uv > obtained 

at two later times corresponding to t = 1.425 and t = 2.025, respec

tively. 

Since the production of the resolvable turbulent kinetic energy is 

directly proportional to < nv > , it should be interesting to study the 
/22 

effect of the cyclic behavior of < uv > on < (u - < u > ) > 

Figs. 4.8, 4.9, and 4.10 show the profiles of < (u - < u > )2 >1/2 in 
y+

the vicinity of the wall (y < 128). They correspond to the < uv > 

profiles presented in Figs. 4.5, 4.6, and 4.7, respectively. Examination



of these figures shows clearly the effect of production on the 
-< - 2 1/2

< (n_ < u > ) > profile. It can be seen that, during the times at 

which < uv > has a relatively high value, the corresponding 
- < > 2 1/2< (u - > profile possesses a pronounced local maximum. It 

is interesting to note that, during the quiescent (low < uv > ) periods, 

the turbulence energy level is still quite large. In fact, a close exami

nation of Figs. 4.9 and 4.10 reveals that, during these times, the energy 

that gave rise to the local maxima is distributed throughout the 
-<- > 2 1/2

< u > profile. This results in a wide maximum (in con

trast to a sharp local one) in < ( - < u > )2 >1/2. 

During their investigation of the "bursting" process in a turbulent



boundary layer, Kim et al. (1968) showed that, while the bursting process



indeed contributes tci the turbulent energy, its main effect is to provide



turbulence with u' and v' in proper phase to give the large turbulence



stress required for an increase in production. This is precisely what is



observed here. To clarify this point, consider, for example, Figs. 4.6


+



and 4.7. If we focus out attention on the vicinity of y+ 64 (y = -.90),



we see that the value of < uv > in Fig. 4.6 is about twice the corres


ponding value in Fig. 4.7. On the other hand, the corresponding value 
- - 2 1/2

of < (u - < u > ) > in Fig. 4.9 is only 6% higher than the one in 
-2 1/2

Fig. 4.10. And the corresponding values of < v > (Fig. 4.11) and 

<w2 >1/2 (Fig. 4.12) show no significant change during this period.


-2 1/2


This is expected, since the governing equations of < v > and


-2 1/2
< w > do not contain direct production terms. These quantities can 

only be fed by the inter-component transfer mechanism, which is generally 

a slow process. 
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We conclude this section by considering, once again, our initial 

numerical experiment (see Section 4.3). Recall that, during the first 

integration attempt, < uv > had a rapid vanishing trend while the in

diidalcmpnet - - )2 >1/2 ,-2 1/2dividual components < (u - < u-- ) > -and- -< v- > -did-not (the -

latter had a slight decreasing trend). With this and the discussion of 

the present section in mind, one can see the importance of the phase re

lationship between (U - < u > ) and v. Indeed, the correlation between 

(u - < u >) and v is the essential factor for the maintenance of tur

bulence. We believe (on the basis of a cursory scan) that the increase in 

< uv > is also highly localized in space. 

It should be noted that, in a computation with a large number of



mesh points in the horizontal planes, the transitory behavior of < uv >



described in this section, will not occur. In this case, the horizontal



averaging is approximately equivalent to long-time averaging; and in order



to study the relationship of the bursting process to the turbulence stress,



one should study the time history of the (u - < a > ) v profile at one 

(x,z) location. Such a study, in turn, would yield the-mean bursting



frequency.



4.5 Detailed Flow Structures



In this section we examine some of the detailed flow patterns. Par


ticular attention will be given to instantaneous velocity profiles. Fig.



4.13 shows typical instantaneous streamwise velocity profiles, u. These



profiels are obtained at the same location (x = 0, z = 13 h3), but at



two different times (t = 1.625, t = 1.825). For comparison, the mean



velocity profile is also included. Fig. 4.14 shows the corresponding



normal velocity profiles, obtained at the same location and times. Exam


ination of these figures reveals that the profile with a momentum defect



(with respect to the mean) corresponds to a case in which fluid is being



ejected from the wall (J > 0), while the profile'with excess momentum



corresponds to a case where the flow is toward the wall (v < 0). In



addition, both pairs (((u- < u >) > 0, v < 0) and ((u- < u>) < 0,



v > 0)) have positive contributions to the resolvable Reynolds stress



and, hence, they contribute to the production of turbulence.
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The velocity profiles presented here are in good qualitative agree


ment with the flow visualization data of Kim et al. (1968) and Grass (1971).



In their study of the bursting process in a turbulent boundary layer, Kim



et al. observed that during the gradual lift-up of low speed streaks from



the sublayer, inflectional instantaneous velocity profiles were formed.



In fact, the appearance of the inflectional profile was used as one of



their criteria for the detection of the bursts.



Using the terminology of Grass, the u profile with momentum defect



corresponds to the ejection phase of the bursting process while the profile



with excess momentum corresponds to the inrush phase (sweep). In the



lower left-hand corner of Fig. 4.13, we have included the ihstantaneous



velocity profiles from the measurements of Grass (1971) in a flow over a



smooth flat plate. In Figs. 4.15 and 4.16, the same quantities as in Figs.



4.13 and 4.14 are plotted, but they are obtained at a different location



and at different times (x = 10 hi, z = 10 h3, t = 1.05, 1.275). The



same behavior (qualitatively) as in Figs. 4.13 and 4.14 are displayed by



Figs. 4.15 and 4.16. Fig. 4.17 shows the instantaneous streamwise veloc


ity profiles obtained at time t = 2.025, but at two different (x,z)



locations. This figure, together with Figs. 4.13 and 4.15, clearly demon


strate the highly three-dimensional and unsteady nature of this flow.



The reader is cautioned against establishing a direct relationship



between the times, t, at which the instantaneous profiles are presented



here, and the corresponding times at which < uv > assumes a relatively



high or low value (see the previous section). Recall that in this section



instantaneous velocity profiles were presented at one (x,z) location,



while in the previous section we were concerned with the planar averages



of < uv > . At most we can say that, during the times at which < ; >



has a relatively high value near the wall, there are more locations where



the relationship between the n and v profiles are the same as those



shown in Figs. 4.13 and 4.14 (((u - < u >) > 0, v < 0) or ((u - < 1 >) 

< 0, v > 0)). This is in contrast to the times at which < uv > has a



relatively low value.



At this point, let us consider the spanwise instantaneous velocity



profiles. Figs. 4.18 and 4.19 show a typical spanwise variation of the



streamwise velocity u in the vicinity of the lower wall (second grid
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point away from the wall, y 3.85) at eight consecutive streamwise



locations. The profiles presented here are obtained at time t = 1.05.



These figures demonstrate distinct regions of high-speed fluid located



adjacent to the low-speed ones. In addition, these profiles clearly show



the long streamwise extent of the high- and low-speed streaks. In their



visual studies, Runstadler et al. (1959, 1963) (see Section 1.2) demon


strated that the viscous sublayer consists of relatively coherent struc


tures of low- and high-speed streaks alternating in the spanwise direction



over the entire wall. "It appears, therefore, that at least there is a



qualitative agreement between the calculated results and the laboratory



observations. Figs. 4.20 and 4.21 show the spanwise profiles of u at



the same locations as in Figs. 4.18 and 4.19, but at time t = 1.425.



Once again, these profiles show the coherent structures of alternating



low-and high-speed streaks. Note that the profiles shown in Figs. 4.20



and 4.21 are generally different in magnitude and details of structures



from those presented in Figs. 4.18 and 4.19 (see, for example, the pro


files at (x = 0, and x = 4 hi). Fig. 4.22 shows typical spanwise vari


ation of v and w, obtained at y + = 3.85, t = 1.05, and x - 4 h
 


The rapid spanwise variations of v and w clearly show the lack of grid



resolution in the z direction (see the following discussion). Neverthe


less, these profiles demonstrate, once again, that the viscous sublayer is



the region of high flow activity, and it is three-dimensional. In addi


tion, the spanwise variations of v indicate the distinct presence of



secondaiy longitudinal vortices in the wall region.



Before concluding our present discussion of the spanwise velocity



profiles, it is appropriate to make a comment about the grid resolution.



Examination of the spanwise velocity profiles, in particular v and w,



seems to show that a better resolution in the z direction is required



(see Section 3.1 and also note that our streak spacings are far larger



than experimental observations). In other words, more grid points in the



spanwise direction are necessary to represent the relatively rapid varia


tions of the velocities (streaks) properly. This is necessary in spite



of the fact that the pseudo-spectral method is used for numerical differ


entiation in the z direction. However, since the eddies away from the



boundaries are larger than the ones near the walls (see Fig. 4.23),
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it is probably sufficient to have more grid points just in the vicinity



of the walls. This requires a non-rectangular grid system (conical),



which is generally accompanied by computational difficulties. Finally,



Fig. 4.24 shows typical streamwise variations of v and w which are
+ 
obtained at t = 1.05, y = 3.85, and z = 8h Note that, in spite 

of the fact that these profiles are obtained at the same plane as those 

in Fig. 4.22, the streamwise grid resolution seems to be adequate. How


ever, it appears that the streamwise extent of the computational box,



L , is too small. 

4.6 Running Time Average of Mean Velocity Profile and Turbulent Statistics
 


In this section, we shall present the calculated mean velocity pro


file and turbulence quantities, averaged over horizontal planes and in



time. The total averaging time is about one dimensionless time unit, which



is much smaller than corresponding time intervals commonly used in labora


tory measurements. However, the horizontal averaging should somewhat im


prove the overall statistical sample. In addition, note that, during the



time interval used for the averaging (1.05 < t < 2.025), the resolvable



shear stress profile < uv > traversed (roughly) one cycle (see Sect. 4.4).
 


Vertical profiles of the resolvable mean Reynolds stress, < uv >



(unless otherwise stated in this section, < > indicates horizontal as



well as time averaging), and the total Reynolds stress



< >.a<- Iai-+ w
<uv>+<VT k(a ij 

are shown in Figs. 4.25 and 4.26a. These profiles indicate that an approx


imately steady mean velocity is obtained. In other words, the average



Reynolds stress profile has nearly attained the equilibrium shape which



balances the downstream mean pressure gradient in the regions away from



the walls. In the vicinity of the walls, the viscous stresses are signi


ficant, and they, together with the total Reynolds stress, balance the



mean pressure gradient. Moreover, it should be noted that the subgrid



scale cobtribution to the total Reynolds stress is significant only in



the vicinity of the walls (see Figs. 4.25, 4.26a, and 4.26b).
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Figure 4.27 shows the profile of < u >, the mean velocity, aver


aged over both halves of the channel. The latter averaging was performed

* 

in order to improve the overall statistical sample . The calculated mean 

velocity profile shows a distinctlogar-ithmic region. In addition, the 

agreement with experimental data is satisfactory. 

Figures 4.28, 4.29, and 4.30 show the profiles of the resolvable and



total turbulent intensities averaged over both halves of the channel



The contribution of the subgrid scale motions to the turbulent intensi


ties is obtained from Eqn. (2.8) and from



1< -,-,> =<22 / 2
1 i -v I c.) > (4.4) 

C = .094 

(see Moin et al., 1978, or Lilly, 1967).



It should be noted, however, that due to the presence of a rela


tively coarse grid and the high degree of anisotropy in the channel flow,



the validity of Eqn. (4.4) is questionable, especially in the vicinity of



the walls. For comparison, we have also included some of the available



experimental data in Figs. 4.28, 4.29, and 4.30. Examination of these


-2 1/2
figures reveals that, aside-from a relatively high -alue of < v > 

in the vicinity of the channel centerline, the qualitative behavior and 

the relative magnitudes of the turbulent intensity profiles are in accord



with the experimental measurements. The quantitative agreement of calcu


lated turbulent intensities with experimental measurements is good for



< (u - < u >)2 >1/2 and < w2 >1/2 and fair for <v 2 >1/2. 

-One may note that the subgrid scale contribution to the total stream


wise and spanwise turbulent intensities is relatively small. However,



Fig. 4.30 shows that, especially in the vicinity of the walls, a large


2 1/2
fraction of the vertical turbulent intensity component < v > lies 

The maximum deviation of the calculated mean velocity profile in each


half of the channel from the one presented in Fig. 4.27 is less than 5%.



The maximum deviation of the calculated turbulent intensities in each


half of the channel from the ones shown in Figs. 4.28, 4.29, and 4.30 is


less than 12%.
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in the subgrid scale motions. The deficiency in the contribution of the


-2 1/2resolvable motions to < v > suggests that a subgrid scale model



-2 1/2
which extracts less energy from < v > might be required. This, in 

turn, may necessitate the use of transport equations for the subgrid 

scale Reynolds stresses (Deardorff, 1973). 

For many problems in fluid mechanics, a knowledge of pressure fluc


tuations is desired. For instance, the generation of noise by turbulence
 


is related to the distribution of pressure fluctuations. In addition,



information about the structure of turbulence in the vicinity of the wall
 


may be gained from the knowledge of pressure fluctuations at the wall.



Unfortunately, due to experimental difficulties, direct measurements of



pressure fluctuations within a turbulent flow are not possible. However,



from experimental measurements and theoretical considerations, a number



of investigators have obtained values for the root-mean-square wall pres


sure fluctuations in a turbulent boundary layer (see Willmarth and Wool


ridge, 1962, and Lilley, 1960).



In our computer runs, we neglected to calculate the running time



average of the RMS wall pressure fluctuations. However, we had stored



the pressure and velocity fields at several dimensionless times. Table



4.1 shows a time history of root-mean square value of the resolvable wall

-2 1I/2/w 

pressure fluctuations, < p > /1 . Here, < > indicates the aver

age of the bracketed quantity over all the grid points on a wall.



Table 4.1



RMS Value of Wall Pressure Fluctuations
 


Dimensionless < -2 >1/21Tw < >I21P1/2 W
 
Time, t Lower Wall Upper Wall 


(y = -1) (y = +)



1.05 2.04 2.01



1.275 1.78 2.81



1.425 1.87 2.50



1.625 2.13 2.00



1.825 2.00 1.95



2.025 1.72 2.01
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The average value of the entries in this table (an approximation
 

for the running time average), < 2 >1/2T w - 2.07, is in accordance



with experimental measurements (see Wilimarth and Wooldridge, 1962, for



the data from several measurements) and theoretical estimates (Lilley,



1960).



A quantity of particular interest to turbulence modelers is the 

pressure work term, - < LPv > , which appears in the governing equa

tion for the turbulent kinetic energy (Hinze, 1975). This term is some

times neglected, partly because it cannot be measured and partly because 

pressure tends to be poorly correlated with velocities, except near the



wall (Townsend, 1956, and Tennekes and Lumley, 1972). Fig. 4.31 shows



the profile of the resolvable pressure work term, - < Pv >. It can
 


be seen that in the regions away from the wall (y > -.8), - < Pv > 

is much smaller than its corresponding values in the vicinity of the wall. 

In addition, the general shape of - < pv > is in accordance with the ay 
estimates of Laufer (1954) and Townsend (1956). These estimates were ob


tained from the turbulent energy balance in a pipe flow (see Chapter I).



The average resolvable pressure velocity-gradient correlations


ax > a<y >,ad z > arsh(pressure-strain terms), < a >, < >, and <P2-> are shown 

in Fig. 4.32. These terms govern the exchange of energy between the 

three components of resolvable turbulent kinetic energy. Note that since 

the sum of the above pressure velocity-gradient correlations is zero, 

these terms only transfer energy from one component to another, without 

changing,the total energy. Moreover, the negative sign for < r(a4/axo > 
< (u - < >)2 1/2 

(no summation) indicates transfer 
of energy from 

to other components (loss), whereas a positive sign denotes energy gain. 

The profiles of < > and < i > show that throughout the channelax az 
the averaged streamwise component of resolvable turbulence intensity



transfers energy to the other components, while the spanwise component



receives energy. It is interesting to note that in the vicinity of the
 


wall there is a large transfer of energy from the vertical component of



turbulence intensity to the spanwise component. This is consistent with



the deficiency of the resolvable portion of the < v2 >1/2 profile in



the region close to the wall shown in Fig. 4.28.



In order to gain better insight into the flow of energy caused by



the fluctuating pressure gradients, one might consider the governing
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equations for each component of the resolvable turbulence energy. In



these equations, the only terms where pressure appears explicitly are:



- < u 3ip > ' - < V ap>, and - < w > for x, y, and z compo

nents of turbulence energy, respectively. Note that 


< u > = <F > 
ax 
 a



and



-< w T> = < 2W 
az



but



-<V ay> # < a > 

The average resolvable velocity pressure-gradient correlations are 

shown in Fig. 4.33. Examination of the < v > profile reveals that, ay

aside from some energy loss in the region -.95 < y < -.83, the vertical



component of the resolvable turbulent energy receives energy via - < v 
-- /Thus, - < v > is primarily the source of energy for < v > 
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Chapter V



CONCLUSIONS AND RECOMMENDATIONS



In this work, we have numerically integrated the three-dimensional,



time-dependent primitive equations of motion for the case of turbulent



channel flow. To accomplish this task, a new, partially implicit algo


rithm and a new subgrid-scale model for the inner region of the boundary



layer were developed. An important feature of this partial implicit



scheme is that the equation of continuity is solved directly. This, in



turn, allows one to abandon the use of the Poisson equation for pressure.



In addition, the stringent requirement on the time step caused by the



numerical stability criterion for the diffusion equation is largely eased.



The present computation has shown that many of the important fea


tures of wall-bounded turbulent flows can be reproduced using the Large



Eddy Simulation approach. The overall agreement of the computed mean



velocity and turbulence statistics with experimental data is satisfactory.



In the present formulation of the subgrid scale model, the specifi


cation of the SGS length scale is not based on a well-definted foundation.



There are several choices available for this quantity which warrant sys


tematic study in this area.-It would be desirable, for example, to in


corporate a Reynolds number dependence in the function defining the SGS



length scale. This function, in turn, should allow for the vanishing of



the subgrid scale model in a laminar flow. The profiles of total turbu


lent intensities indicate that, with the present grid resolution, a sub


grid scale model which allows anisotropy of SGS energy components is



desirable. This modification of the subgrid scale model may not be nec


essary, if better grid resolution could be utilized. Nevertheless, the



performance of the subgrid scale model used here is encouraging.



In the light of our discussions about the grid resolution, a simula

tion with 32 X 65 x 128 mesh in x, y, and z direction, respectively, 

is strongly recommended. We believe that such a calculation will consid

erably improve the results obtained here and will provide the means for 

an objective evaluation as well as improvement of the subgrid scale model.



It should be noted that this computation can presently be performed on
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the ILLIAC IV computer. In addition, the use of a computer graphic sys


tem in conjunction with this simulation is highly desirable. This would



provide the means for an efficient and a relatively convenient study of



the detailed structures in the flow. Such a study, in turn, can consid


erably increase our knowledge of the structure and the mechanics of tur


bulent boundary layers.



Based on the experience gained in our initial numerical experiment



(Section 4.3), the following recommendations are made for the numerical



simulation of laminar-turbulent flow transition:



" 	 Using an eddy viscosity model, the numerical simulation of transition



from laminar to fully turbulent flow may be possible, provided that



finite amplitude disturbances are added to the laminar flow.



* 	 However, if one wants to study the time evolution of small distur


bances, the eddy viscosity model should be used only after breakdown.



Prior to breakdown, the use of any subgrid scale model may not be



necessary.



In extending the method to other flows, an important numerical prob


lem which must be resolved is the handling of inflow-outflow boundary



conditions. In addition, an efficient numerical method should be devised



which can be used in calculating flows that are inhomogeneous in more



than one direction. Fully developed turbulent flow in a straight duct



with a rectangular cross section is an example of such a flow. In simu


lating this flow, one can use periodic boundary conditions in the stream


wise direction.



An important problem to study would be the case of turbulent flow



over a smooth, flat plate. This flow is homogeneous only in one direc


tion. Moreover, its numerical simulation involves the handling of inflow


outflow boundary conditions. In addition, a suitable coordinate trans


formation should be used to map the infinite physical domain to a finite



computational box. It is believed that the numerical simulation of this



flow is an essential step towards the utilization of the Large Eddy Simu


lation approach in problems of engineering interest.



It will be some time before the Large Eddy Simulation technique can



be used in calculating flows of practical interest. However, in the in


terim, much information on the structure of turbulence can be obtained
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by applying the method to simple but basic flows. 
 The information, in


turn, can be used in developing turbulence models in a simpler method


for complex flows.' A knowledge of the pressure-velocity gradient corre


lationQ, for example, is of considerable value to the turbulence model

ers. As 
 was shown in this study, using the Large Eddy Simulation ap

proach 
one can compute their large-scale components. 
 Moreover, with the


Large Eddy Simulation technique one can simultaneously obtain detailed


quantitative information about the large-scale structures of the flow at


thousands of spatial locations (grid points) throughout the flow field.


This information cannot be gained from laboratory measurements. On the


other hand, in the laboratory, one is capable of obtaining a long time


history of the flow at relatively few spatial locations with minor ex

pense. 
 With the present computers, this latter information about the


flow can be gained only at high cost. 
 Thus, at present, combined efforts


of measurements and Large Eddy Simulation of turbulence seems to be an


attractive approach to a better understanding of turbulent flows.



The Large Eddy Simulation of turbulence is just beginning to emerge


from its infancy, but it has already demonstrated a great potential in



supplementing laboratory measurements.
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Fig. 4.2. 	 The resolvable portion of turbulence stress in the


lower half of the channel at t = 0.45.
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Fig. 4.7. The resolvable portion of turbulence stress in the 
lower half of the channel at t = 2.025. 
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Fig. 4.9. 	 Planar average of the resolvable portion of the stream

wise turbulence intensity in the vicinity of the lower


wall at t = 1.425.
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Fig. 4.27. 	 Mean velocity profile. The experimental data of Laufer, Comte-Bellot, and Hussain


and Reynolds are included.
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Fig. 4.28. 	 Time-averaged streamwise turbulence intensity in the vicinity of the wall (A) and



away from the wall (B).
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Fig. 4.29. 	 Time-averaged spanwise turbulence intensity in the vicinity of the wall (A)and



away from the wall (B).
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of the wall (A) and away from the wall (B).
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Appendix A



FILTERING WITH NON-UNIFORM FILTER WIDTH 

In this appendix, we briefly discuss non-uniform width filtering 

and demonstrate its mathematical disadvantages. The use of such fil


ters (non-uniform width) is desirable in the directions in which the



flow is inhomogeneous (see Section 2.1). For demonstration, we consider



only simple box averaging as the filtering operation.



Let



1 x+A+ (x) 
f(x) = (A+(x) + A(x))f _ f( ) d (A.l) 

where A+ and A- are the distances from x to its adjacent grid points. 

They will be treated as continuous variables. Note that here we consider 

only a one-dimensional case. Differentiating f yields: 

at _ d (A + A ) - x+A+ 
_ 
 

x (A+(x) + A (x))2 J -A f(C) d 

+ 1 Fx j dA+ A)(A dA_


+-(A + + A-) If +)1 ]-fx dxj 

or



df d-a++A) f(x++ A)f (-A.)



dx (A+ + A-) (A+ +A) (A.2) 

____dA+ dA
(A+A_) (x + + f(x - A_)
+ (A+ + A) If A+ dx fxA) dxj 

Using the definition (A.1), we have:



- 1 x+A+ af 1



a-x = (A+ + A_) Jx_ 3-d = ++A+ Lf(x + A+) - f(x - A_) 

(A.3)



Substitution of (A.3) in (A.2) yields:
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f +Jd (A+ + A)Aaxf -- ax + (A+ + A_) T (A++ A_) If(x +)+ x - x 

-(A. 4)-

Thus, it -isclear that, in'general,



a5X a 

The The above inequality and the presence of unfiltered quantities in



(A.4) renders the use of explicit nonuniform width-filtering extremely



difficult.
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Appendix B



THE NUMERICAL DIFFICULTY WITH EXPLICIT TIME ADVANCING



OF EQUATIONS OF MOTION



In this appendix, we formally demonstrate the numerical difficulty



associated with the fully explicit numerical integration of the Navier-


Stokes 	 equations (see Section 3.3). Chebyshev polynomials and Fourier



series 	 are used to represent the flow variables in the vertical and



horizontal difections, respectively. Consider the governing equations:



(B.1)
i = - +HI 
i 

where 	 H. contains the transport and diffusion terms and a - over a


1 

variable denotes time derivative. Let


,,_ i~k~~~
N2 	 3



P = 	 F2 T a (k,k 3 ) T(x 2 ) e (kIx 1+k3x3 (B.2) 
a__ 0O 1 k3 

ui = bin(kl,k3 ) Tn(X2) e 	 (B.3) 

" 	Fa_	 i(knX3Ik 3x3) 

H. 	 = . Cn(kl,k3) Tn(x2)e (B.4) 

n--o 1n 3k 
2



and



N2		 ) i(k1x1+k3x3)



ax2 E n 3 ) n(x 2)ak, 


where Tn (x 2) is the nth-order Chebychev polynomial of the first kind 
and the double primes indicate that the first and last terms in the ser

ies are to be taken with factor 1/2. Eqns. (B.1), (B.2), (B.4), and



(B.5) yield



ikia	 1 ' i(k'Xl+k'x 3 )1 k3)j 

= + Ci Tm(x 2) e 13 

1I=° 3 k (B.6) 

Other 	 choices are possible.
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From (B.3) we readily obtain:



N I 

3 ) 2 N E E£j Iu(xcos 6.lkx3)
bi(kk 1 

1 
- cos nO . e -kIx1 k3x3(B.7) 

where x2 = cos 8. (see Eqn. (3.12)) and 0. = J/N2' j = 0,1,2,...,N 2. 

Note that here we have enforced the no-slip boundary conditions, i.e., 

ui(xl1,jx 3) = 0
j=O,N2



Substituting (B.6) into (B.7), we get:



-Ikj l' 3
N2
2 N-il 
1in(klk 3) = 2 z i"m 

NIN 2N3 xI W-03 ikamk k. .


cos nifj ei(kjxl+kx 3-klXl-k3x3 )


+ C cos m 

N2N2 
 
.8)
iml N2(B N2 

The use of orthogonality of the expansion functions yields:


+ - N k 
am(kl,k3


(k ,(k,k) L3 2 1 m
~ 
3)  
 Zin 1l3) Cin 3



\ _ik3an (k, k3) -\-ik3am (klk 3)).



+ im[(-l)nim + i](B.9)



The last term in (B.9), which is the result of enforcing the no-slip



boundary conditions, is the source of trouble. To make this clear, con


sider the above equation for i = 1:



bln = - iklan(klk3) + Cln + a(kl,k 3 ) + (-I)n S(klk 3 ) (B.10) 

where



N9



(kk3) = - 2 E (-ikam(k1,k 3 ) + Clm) 
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M l 3) (-iklam(kl,k3 ) + Cl)(_l)m 

N2 m-o 3 m 

Multiplying (B.10) by Tn(cos 0.) and summing over all n yields: 

Ul(klx 2 ,k3) - iklP(k1 ,x2 .,k3 ) + Hl(klX 2 ,k3 ) 

N2


+ c(kI,k3) Z cos nO. + (k,k93)E (-I)n cos nO. 

n=o n=o 

where ^ over a variable denotes two-dimensional Fourier transform of



that variable. But 0. 

N2" 2sin N cot- I 0 , j 0 

cos nO = (B.11) 

- I, j 0
N2 
 

and



N2 n 20j tan 2 0 2



E (-1) cos nO. = (B.12)



N2 1 
 j = 2

Note



j N 0,1,2,...N 2 

Hence, it has been shown that, unless



a(k1,k3 ) = 0 and 0(k1 ,k3) 0 , (B.13) 

the two-dimensional discrete Fourier transform of is discontinuous
u1 
 

at the walls. It should be noted that (B.13) is equivalent to



-x =-x2=l Hix2=



which is the streamwise momentum equation evaluated at the walls (see



Eqn. (3.15)). Similarly, the two-dimensional discrete Fourier transform



of or is discontinuous unless
u2 u3 
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Y ix2=±l 2x2=±l
ap2 H 

or



x2=l 
 x2=±



respectively. Therefore, if Neumann boundary condition is used for the



Poisson equation, the Fourier transforms of uI and u3 will have dis


continuity at the boundaries. On the other hand, if Dirichlet boundary



condition is used, the Fourier transform of will be discontinuous
u2 
 

at the walls. In practice, the presence of discontinuity in the depen


dent variables results in non-convergent expansions which render a mea


ningless computation. A remedy for this problem is presented in Section



3.4.
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Appendix C 

LISTING OF THE COMPUTER PROGRAM



FOR THE CALCULATION OF TURBULENT CHANNEL FLOW 
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C)~XX)EE)EEnCOMDECKS MW N3E 
C XX BY CALLING A COMDECK THE DIMENSION OR COMMON STATEMENT 
Cmxxl?(EB FOLLOWING THE COMDECK WILL BE PLACED IN THE CALLING ROUTINEX 

NCOMDECK Cl


DIMENSION XB(16),YB(fr)



3COMDECK C2


COMMON/AVEDY/RMIU(65)



XCOMDECK C3


COMMON/WV/WAVEX(16),WAVEY¢16),WAVEXS(16),NAVEYS(16)



3COMDECK C4


DIMENSION BETA1(65),BETA2(65)



XCOMDECK C5


DIMENSION RHSVC4,61),AMB(4,4,61),AB(4,4,61),APB(4,4,61),AAUX(4,q,


161),AMAUX(4,4,61),APAUX(4,4,61)



XCOMDECK C6


COMMON/SECOND/AP2(65),BP2(65),CP2(65)



iCOMDECK C7


COMMON/LAGRNG/APC65),BP(65),CP(65),APR(65),BPR(65),CPR(65),DPR(65)


1,EPR(65)


COMDECK C8


DIMENSION Z1(I6,16),ZMI(16,16),D2(62)



COMDECK C9


DIMENSION BC1R(16,16),BCII(16,16),BCMIR(16,16),BCMIIC16,16)



MCOMDECK CIO


COMMON/DAT21/XRC16),XIC16)


MCOMDECK cl


DIMENSION HR(16,16,65)
 

LEVEL 2,HR



iCOMDECK Al


COMMON/DATA7/FR(16,16),FI16,16)


ECOMDECK A2


COMMON DUDX(16,16,65)



3COMDECK A3


COMMON/LCM4/DIVC(16,16,65)


LEVEL 2,DIVC


3COMDECK A4


COMMON/LARGE2/P(16,16,65)


LEVEL 2,P



XCOMDECK A5


COMMON/LARGEl/G(16,16,65)


LEVEL 2,G



XCOMDECK A6


COMMON/LCM2/U(16,16,65),VC16,16,65),W(16,16,65)


LEVEL 2,U,V,W



XCOMDECK A7


COMMON/LCMI/HI(16,16,65),H2(16,16,65),H3(16,16,65)


LEVEL 2,H1,H2,H3



3COMDECK A8


COMMON/LCM3/RU(16,16,65),RV(16,16,65),RW(16,16,65)


LEVEL 2,RU,RV,RW



MCOMDECK A9


COMMON/STR/ZETA(65),Z(65)RL(65),RM(65),E2,F2,EN,FNR2,RNA(65),


1C(65),D(65),RR2,RRN



3COMDECK AIO


DIMENSION G(16,16,65)


LEVEL 2,G



XCOMDECK All


DIMENSION UI(16,16,65),U2(16,16,65),U3(16,16,65)


LEVEL 2,U1,U2,U3


XCOMDECK A12


DIMENSION U(16,16,65),V(16,16,65),W(16,16,65)


LEVEL 2,U,V,W


XCOMDECK A13


DIMENSION USUM(65),VSUM(65),WSUM(65)


3COMDECK BI


COMMON/FLT/FILTX(16),FILTY(16)


XCOMDECK B2


COMMON/EDDY/CV(63)



HCOMDECK BS



94





COMMON/RECOVER/FACTOR(65)


XCOMDECK B4



COMMON/HORIAV/U2S(65),V2S(65),W2S(65),SSUM(65),EDYVI(65)


XCOMDECK B5



COMMON/AVEDY/MIU(65)

XCOMDECK B6



DIMENSION U2ST(65),V2ST(65),W2ST(65),UWT(65)

*COMDECK B7



COMMON/SECOND/AP2(65),BP2(65),CP2(65)


XCOMDECK B8



COMMON/PENTA1/Al(65),BI(65),CI(65),Dr(65),EI(65),FI(65)

XCOMDECK B9



DIMENSION U(16,16,65)


LEVEL2,U



XDECK MAIN


PROGRAM MAIN(INPUT,OUTPUT,TAPE8,TAPE9,TAPE1O,TAPE11)



CX6X(XTHIS SUBROUTINE MONITORS THE OVERALL SEQUENCE OF THE COMPUTATION


Cxxx4N U,V,W ARE THE VELOCITIES IN STREAMWISE,X,SPANWISE,Y,AND VERTICAL,


GBBxxx Z DIRECTIONS.



COMMON/LTA1/USUM(65),UTSUM(65),STSUM(65),UZSMT(65),V2SMT(65)


1,W2SMT(65),PVT(65),PUT(65),PUNST(65),PVNST(65),PWNST(65),PWTC65)

2,TCONT


COMMON/LTA2/PDUT(65),PDVT(65),PDWT(65),PDUNT(65),PDVNT(65),PDWNT



1(65)

COMMON/SGTT/SGST(65),ETED(65),U2STT(65),V2STT(65),W2STT(65)


1,TSHGS,TSCNT


COMMON/COUNT/IICONT


COMMON/SING/IMR,JMR,IMI,JMI


COMMON/ADV/NTIME


DIMENSION A3(61),B3(61),C3(61),D3(61),E3(61)


COMMON/TINC/DT


COMMON/PENTA2/XI,QI,GI,YI,QJGJ,XH,QIN,GIN,YN,QJN,GJN,Q2,Q3,RC,


1RC2,RPI,RP2,RP3,RP4


CALL Cl


%CALL B5



REAL MIU


DIMENSION VAUX(4,61)


DIMENSION AX(3,3,61),APX(3,3,61),AMX(3,3,61),AXX(3,3,61),


1APXX(3,3,61),AMXXC3,3,61),VH(3,61)


NCALL C3


NCALL C4


iCALL C5


4CALL B7


XCALL C7



COMMON/BC/CEI,CE2,CE3,CE4,CE5,CE6


COrMON/IDENTN/CODE


NCALL Al


NCALL A2


*CALL A3


4CALL 	 A4


*CALL 	 A5



COMMON/CONST/CIOOCIOI,IJK,IJ,NHP1,HALF


COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY


COMMON/SCM2/LMAXPI,DI,D2,D9,D4,D5,D6



XCALL 	 A6


XCALL A7


XCALL A8


XCALL A9



COMMON/SCM3/DELTA1,DELTA2,RE,E


INTEGER TIME,TEND


TEND=200


COF=1.5


DT=O.O01


NTIME=O


CODE=2.


CALL INITIAL


CALL TRANS


CC=1./(IMAXXJMAX)


TP=O.5


C1=2.0
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C4=1. 0


LMAXM2=LMAX-2


LMAXM3=L1AX-3


LHP1=LMAX/2+1


ICONT=O


LCONT=O


LMAXM1=LMAX-1


-CALL INICON


NTIME=l


CALL INITIAL


DO 300 TIME=I,TEND


NTIME=TIME


ICONT=ICONT+1


IICONT=ICONT-20


CALL COURANT(DTNTIMETEND)


CALL DIVG


CALL RHS


IF(NTIME.EQ.1) GO TO 360


IF(IICONT.NE.0) GO TO 350


ICONT=O



360 	 CONTINUE


CALL STAT



350 CONTINUE 
C)()EE(M DEFINE THE WAVE NUMBER INDEPENDENT ELEMENTS OF THE BLOCK -

CMK)ETRIDIAGONAL MATRIX 
DO 600 K=2,LMAX


BETA1CK)=-CI/CDTMCE+MIU(K)))



"BETA2(K)=-CI/CDT(E+2.MMIU(K)))


600 	 CONTINUE



C**K(M DEFINE THE ELEMENTS OF THE TRIDIAGONAL MATRIX FOR THE CASE K1=K2=0.


DO 800 K=I,LMAXM3


KP2=K+2


B3(K)=BP2KP2)+BETAI(KP2)


A3(K)=AP2CKP2)



800 C3(K)=CP2CKP2)


T=(Z(3)-Z2)))O.5


AK=I./(TP)EDTBETA2(3))



CimEm AMB,AB,APB ARE THE ELEMENTS OF THE BLOCK TRIDIAGONAL MATRIX.


DO 640 M=1,4


DO 640 N=1,4


DO 640 K=I,LMAXM3


AB(M,N,K)=O.

AMB(M,N,K)=O.


APB(M,N,K)=O.



640 	 CONTINUE


DO 645 K=I,LMAXM3


KP2=K+2


AB(I,1,K)=BP2(KP2)+BETA1CKP2)


AB(2,2,K)=AB(1,1,K)


AB(3,3,K)=BP(KP2)


AB(4,4,K)=BETA2(KP2)BP(KP2)fDTMTP


AB(4,3,K)=BP2aKP2)+BETA2(KP2)



645 	 CONTINUE


ABC(44,1)=CE2)(BETA2(3)MDTHTP



AB(4,4.LMAXN3)=CE5MBETA2(LMAXM1)EDTXTP


AB(4,3,1)=BP2C3)+BETA2(3)HCE1


AB(4,3,LMAXM3)=BP2(LMAXMI)+BETA2(LMAXMI)MCE6


DO 650 K=I,LMAXM3


KP2=K+2


APB(1,1,K)=CP2(KP2)


APB(2,2,K)=APB(1,1,K)


APBC3,3,K)=CPCKP2)


APB(4,4,K)=CPCKP2)BETA2(KP2)*DTETP

APB(4,3,K)=CP2(KP2)


AMB(1,1,K)=AP2(KP2)


AMB(2,2,K)=AP2(KP2)


AMB(4,3,K)=AP2(KP2)


AMB(4,4,K)=AP(KP2)EBETA2(KP2)DTETP


AMBC3,3,K)=AP(KP2)



650 	 CONTINUE
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CF POOR QUALITy 

AMB(4,4,LLMAXMr3)=CE4BETA2(LMAXM1)MDT*TP


APB(4,4,1)=CE3xBETA2(3)EDTMTP



C)(Xxx* DEFINE THE ELEMENTS OF THE,Kl=O,BLOCK TRIDIAGONAL SYSTEM


DO 750 M=1,3


DO 750 N=1,3


DO 750 K=1,LMAXM3


AX(M,N,K)=Q.


APX(M,NK)=O.


AMX(M,N,K)=O.



750 	 CONTINUE


DO 752 K:ILMAXM3


AX(2,2,K)=AB(4,3,K)

APX(2,2,K)=APB(4,3,K)


AMX(2,2,K)AMB(4,3,K)


AX(3,1,K)=AB(2,2,K)


APX(3,l,K)=APB(2,2,K)

AMX(3,1,K)=AMB(2,2,K)


AX(2,3,K)=AB(4,4,K)


APX(2,3,K)=APB(4,4,K)

AMX(2,3,K)=AMB(4,4,K)


AX(1,2,K)=AB(3,3,K)


APX(I,2,K)=APB(3,3,K)


AMX(1,2,K)=AMB(3,3,K)



752 CONTINUE


Cxx DEFINE THE RHS OF THE BLOCK TRIDIAGONAL SYSTEM



CALL VISCOSCU)


DO 610 K=3,LMAXMI


DO 610 J:I,JMAX


DO 610 I:I,IMAX


U(I,J,K)=BETACK)(U(I,J,K)+DTH(COFKHI(I,J,K)-O.5NRUCI,J,K)))-


IDUDX(I,J,K)AC4


610 	 CONTINUE



CALL VISCOS(V)


DO 615 K=3,LMAXMI


DO 615 J=1,JMAX


DO 615 I=1,IMAX


V(I,J,K)=BETAl(K)(V(I,J,K)+DTx(COFH2(I,J,K)-0.5iRV(I,J,K)))-


IDUDX(I,J,K)XC4


615 CONTINUE



CALL VISCOS(W)


DO 620 K=3,LMAXMI


DO 620 J=I,JMAX


DO 620 I=,IMAX


W(I,J,K)=BETA2(K)X(W(I,J,K)+DTM(COFH3(I,J,K)-O.5mRW(I,J,K)))-

1DUDX(I,J,K)MC4



620 CONTINUE


Cxxxxx FOURRIER TRANSFORM



DO 625 K=3,LMAXM1


CALL MOVLEV(U(1,1,K),FR(1,1),IJ)


CALL FFTX(I.O)


CALL FFTY(.O,CC)


CALL MOVLEV(FR(1,1),U(1,1,K),IJ)


CALL MOVLEV(FI(1,1),RU(1,1,K),IJ)


CALL MOVLEV(V(I,1,K),FRCI,I),IJ)


CALL FFTX(I.O)


CALL FFTY(I.0,CC)

CALL MOVLEV(FR(,1),V(ll,K),IJ)


CALL MOVLEVCFI(,1),RV(I,I,K),IJ)


CALL MOVLEV(W(1,1,K),FR(1,1),IJ)


CALL FFTX(1.O)


CALL FFTY(l.0,CC)


CALL MOVLEV(FR(1,1),W(1,1,K),IJ)


CALL MOVLEV(FI(1,1),RW(1,1,K),IJ)



625 	 CONTINUE


CmmiOOE THE REAL AND IMAGINARY PARTS OF THE FOURIER TRANSFORM OF THE RHS


Cxmmxmm OF THE BLOCK TRIDIAGONAL MATRIX IS COMPUTED .


CXXNXN NOW DEFINE THE MATRIX ELEMENTS FOR EACH KI AND K2.



NHP1X=IMAX/2+1


NHPIY=JMAX/2+1


NHP2X=NHP1X+1
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NHP2Y=NHPY+1


DO 630 J=1,JMAX


DO 630 I=I,IMAX


WAV=AVEXS(I)+WAVEYS(J)


IF(I.EQ.1.AND.J.EQ.1) GO TO 662


IF(I.EQ.1) GO TO 410


I-F(J.EQ.I) GO TO 420
 

IF(J.GE.NHP2Y) GO TO 430



410 IF(J.LT.NHP2Y) GO TO 630
 

GO TO 722



420 IF(I.LT.NHP2X) GO TO 630


GO TO 440



430 IF(I.EQ.1.OR.I.EQ.NHP1X) GO TO 630


440 CONTINUE



DO 635 K=I,LMAXM3


KP2=K+2



C)0XXX FIRST SOLVE FOR IMAGINARY PART OF UV,AND REAL PART OF W AND P.


RHSVCI,K)=RU(I,J,KP2)


RHSV(2,K)=RV(I,J,KP2)


RHSV(3,K)=O.


RHSV(4,K)=W(I,J,KP2)



635 	 CONTINUE


DO 647 K=I,LMAXMS


KP2=K+2


AB(3,1,K)=-WAVEX(I)XIMAX


AB(3,2,K)=-WAVEY(J)MJMAX


AB(1,4,K)=-AB(3,1,K)HBETA1(KP2)WDTMTP


AB(2,4,K)=-AB(3,2,K)iBETAI(KP2))EDTTP



647 	 CONTINUE


C*iM*i REARRANGING THE ROWS FOR CENTRAL DIFFERENCING



DO 655 M=1,4


DO 655 K=1,LMAXM3


AAUX(I,M,K)=AB(3,M,K)

AAUX(4,M,K)=AB(1,M,K)


AAUX(5,MK)=AB(4,M,K)


APAUX(I,M,K)=APB(3,MK)


APAUX(4,MK)=APBCIMK)


APAUX(3,M,K)=APB(4,M,K)


AMAUXCiMK)=AMB(3,M,K)


AMAUX(4,MK)=AMB(I,MK)


AMAUX(3,M,K)=AMB(4,M,K)


AAUX(2,M,K)=AB(2,M,K)


AMAUX(2,M,K)=AMB(2,M,K)


APAUX(2,M,K)=APB(2,MK)



655 CONTINUE


DO 310 M=1,4


DO 310 K=I,LMAXM3



310 	 VAUX(M,K)=RHSV(M,K)


DO 315 K=I,LMAXM3


RHSV(1,K)=VAUX(3,K)


RHSV(4,K)=VAUX(1,K)


RHSV(3,K)=VAUX(4,K)



315 CONTINUE


IMR=I


JMR=J


CALL MTDAG(AMAUX,AAUX,APAUX,RHSV,4,LMAXMS)


DO 660 K=3,LMAXMI


KM2=K-2


RU(I,J,K)=RHSV(IKM2)

RV(I,J,K)=RHSV(2,KM2)

W(I,JK)tRHSV(3,KM2)


G(I,J,K)=RHSV(4,KM2)



660 CONTINUE


CE)(E)E COMPUTE THE REAL PART OF PRESSURE TRANSFORM AT THE WALL.
G(I,J,2)=QI*G(I,J,S)+GIHG(I,J,4)-(2.N¢I.-CE1)/(AP(5)*DT))3(W(I,J,3)



G(I,J,LMAX)=QINiGCI,JLMAXM1)+GINXG(I,J,LMAXM2)-(2.EI.-CE6)/


I(CP(LMAXM1)MDT))iW(I,J,LMAXM1)


GO TO 630



662 CONTINUE


G(I,J,3)=TW(I,J,3)KAK
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OF pOOR QUALITY,O(I,J,4)=(1.-TEBP(3))MGCI,J,3)/(TMCP(3))
G(I,J,2)=O.


G(I,J,1)=-CP(2)MGCI,J,3)/AP(2)


DO 663 Kz4,LMAX


AK=I./(TP*DTMBETA2(K))
G(I,J,K+1)=(W[IJ,K)) AK-AP(K))G(I,J,K-1)-BP(K)*G(I,J,K))/CP(K)



663 	CONTINUE


DO 664 K=2,LMAX

W(I,J,K)=O.


RU(I,J,K)=O.

RV(I,J,K)=O.



664 CONTINUE


GO TO 630



Cmx*()E SOLVE WHEN K1=O


722 CONTINUE



CXXXXX FIRST SOLVE FOR U, SIMPLE TRIDIAGONAL
 

DO 724 K=I,LMAXM3



724 	 D3(K)=RU(I,J,K+2)


CALL TRIB(A3,B3,C3,ES,D3,LMAXM3)


DO 726 K=3,LMAXMI



726 	 RUCI,J,K)=D3(K-2)


CXXX SOLVE FOR V,W,AND P,BLOCK TRIDIAGONAL 

DO 728 K=I,LMAXM3 
KP2=K+2 
VH(I,K)=O.
VH(2,K)=W(I,J,KP2)


VH(3,K)=RVCI,J,KP2)



728 CONTINUE


DO 730 K=I,LMAXM3


KP2=K+2


AX(I,I,K)=-WAVEY(J)*JMAX


AX(3,3,K)=-AX(l,1,K)BETA1(KP2)*DTETP



730 CONTINUE


DO 732 M=l,3


DO 732 N=l,3


DO 732 K=I,LtIAXMS


AXX(M,N,K)=AXCM,N,K)


APXX(M,N,K)=APX(M,N,K)

AMXXCM,N,K)=AMX(MN,K)



732 CONTINUE


IMR=I


JMR=J


CALL MTDAG(AMXX,AXX,APXX,VH,3,LMAXM3)


DO 734 K=3,LMAXMI


KM2=K-2


RV(I,J,K)=VH(1,KM2)


WCI,J,K)=VH(2,KM2)


GCI,J,K)=VH(3,KM2)



734 CONTINUE


CXXXXX COMPUTE THE REAL PART OF PRESSURE TRANSFORM AT THE WALL.
 


GCI,J,2)=QIIG(I,J,3)+GIMG(I,J,4)-C2.(1.-CEI)/(AP(3)DT))iE(I,J,3)

GCI,J,LMAX)=QINNG¢I,J,LMAXMI)+GINXG(I,JLMAXM2)-(2.X(l.-CE6)/


1(CP(LMAXM1)MDT))XW(I,J,LMAXMI)



630 	 CONTINUE


DO 665 J=I,JMAX


DO 665 I=I,IMAX


IF(I.EQ.I.AND.J.EQ.1) GO TO 810


WAV=WAVEXS(I)+WAVEYS(J)

IF(I.EQ.1) GO TO 510
 

IF(J.EQ.1) GO TO 520


IF(J.GE.NHP2Y) GO TO 530



510 IF(J.LT.NHP2Y) GO TO 665


GO TO 736



520 IF(I.LT.NHP2X) GO TO 665


GO TO 540



530 IF(I.EQ.I.OR.I.EQ.NHP1X) GO TO 665


540 CONTINUE



CXXXXXX NOW SOLVE FOR REAL PART OF U,V,AND IMAGINARY PART OF W AND P.


DO 670 K=1,LMAXM3


KP2=K+2
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RHSV(1,K)=U(I,J,KP2)


RHSV(2,K)=V(I,J,KP2)


RHSV(3,K)=O.

RHSV(4,K)=RW(I,JKP2)



670 	 CONTINUE


DO 677 K=I,LMAXM3


KP2=K+2


Af(f3,,K)=WAVEXCI)XIMAX


AB(3,2,K)=WAVEYCJ)*JMAX


AB(1,4,K)=-AB(3,l,K)XBETAI(KP2)DTETP


AB(2,4,K)=-AB(3,2,K)NBETAI(KP2)*DT*TP



677 	 CONTINUE


C*EKmm REARRANGING THE ROWS FOR CENTRAL DIFFERENCING



DO 649 M=l,4


DO 649 K=I,LMAXM3


AAUX(1,M,K)=AB(3,M,K)


AAUX(4,M,K)=AB(l,M,K)


AAUX(3,M,K)=AB(4,M,K)


APAUX(I,M,K)=APB(3M,K)


APAUX(4,M,K)=APB(lM,K)

APAUX(3,M,K)=APB(4,M,K)


AMAUX(I,M,K)=AMB(3,M,K)


AMAUXC4,M,K)=AMB¢I,M,K)


AMAUX(3,M,K)=AMB(4,M,K)


AAUX(2,M,K)=AB(2,M,K)


ANAUX(2,M,K)=AMB(2,M,K)


APAUX(2,M,K)=APB(2,M,K)


649 	 CONTINUE


DO 320 M=1,4


DO 320 K=I,LMAXM3



320 	 VAUX(M,K)=RHSV(M,K)

DO 325 K=1,LMAXM3


RHSV(I,K)=VAUX(3,K)


RHSV(4,K)=VAUX(i,K)


RHSV(3,K)=VAUX(4,K)


325 	 CONTINUE


IMI=I


JMI=J


CALL NTDAG(AMAUX,AAUX,APAUX,RHSV,4,LMAXM3)


DO 690 K=3,LMAXM1


KM2=K-2


U(I,JK)=RHSV(1,KM2)


VCIJ,K)=RHSV(2,KM2)


RW(I,J,K)=RHSV(3,KM2)


DUDXCI,J,K)=RHSV(4,KM2)


690 CONTINUE


CE)i3 COMPUTE THE IMAGINARY PART OF PRESSURE TRANSFORM AT THE WALL.



DUDX(I,J,2)=QIDUDX(I,J,3)+GIEDUDX(I,J,4)-(2.(l.-CE1)/(AP(3)DT


1))XRWCIJ,3)

DUDX(I,J,LMAX)=QINtDUDX(IJ,LMAXM1)+GIN3DUDX(I,J,LMAXM2)-(2.


I(1.-CE6)/(CP(LMAXM1)XDT))*RW(I,J,LMAXM1)


GO TO 665



CflOX* SIMPLE TRIDIAGONAL SOLUTION WHEN KI=O AND K2=0.


810 CONTINUE



DO 820 K=l,LMAXM3


820 	 D3(K)=U(I,J,K+2)



CALL TRIB(A3,B3,C3,E3,D3,LMAXM3)


DO 825 K=3,LMAXMI



825 	 U(I,J,K)=D3(K-2)

DO 830 K=I,LMAXM3



830 	 D3(K)=V(IJ,K+2)


CALL TRIB(A3,B3,C3,E3,D3,LMAXM3)


DO 835 K=3,LMAXMl



835 V(I,J,K)=D3(K-2)


GO TO 665



CX*eXX SOLVE WHEN KI=


736 CONTINUE



CX)XE* FIRST SOLVE FOR U, SIMPLE TRIDIAGONAL


DO 738 K=!,LMAXM3



738 D3(K)=U(IJK+2)
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CALL TRIB(A3,B3,C3,E3,D3,LMAXM3)

DO 740 K=3,LMAXMI



740 U(I,J,K)=D3(K-2)

Cxxxxxx SOLVE FOR V,W,AND P,BLOCK TRIDIAGONAL ORIGINAT pAGE 18



DO 742 K=l,LMAXM3 
KP2:K+2 OF POOR( QUALITY 
VH(I,K)=0.


VH(2,K)=RW(I,J,KP2)


VH(3,K)=V(I,J,KP2)



742 	 CONTINUE


DO 744 K=l,LMAXM3


KP2=K+2


AX(1,1,K)=WAVEY(J)MJMAX

AX(3,3,K)=-AX(I,I,K)BETA1(KP2))DTNTP



744 CONTINUE


DO 746 M=1,5


DO 746 N=1,3


DO 746 K=I,LMAXM3


AXX(M,N,K)=AX(M,N,K)


APXX(MN,K)=APX(M,N,K)


AMXX(M,N,K)=AMX(M,N,K)


746 	 CONTINUE


IM=1


JMIJ


CALL MTDAG(AMXX,AXX,APXX,VH,3,LMAXM3)


DO 748 K=3,LMAXMI


KM2=K-2


V(I,J,K)=VHCI,KM2)


RW(I,J,K)=VHC2,KM2)

DUDX(I,J,K)=VH(3,KM2)



748 CONTINUE


DUDXtI,J,2)=QIhDUDX(I,J,3)+GIDUDX(I,J,4)-(2.(.-CEl)/(AP(3)NDT


l))XRW(I,J,3)

DUDX(IJ,LMAX)=QINDUDXCI,J,LMAXM1)+GINNDUDX(I,J,LMAXM2)-(2.


)I(I.-CE6)/(CPCLMAXM1)(DT))RW(I,J,LMAXMI)



665 CONTINUE


DO 704 J:I,JMAX


DO 704 I=I,IMAX

WAV=WAVEXS(I)+WAVEYS(J)


IFCWAV.GT.O.00001) GO TO 704


DO 694 K=1,LMAXP1


RW(I,J,K)=O.



694 	 DUDX(I,J,K)=0.


704 CONTINUE



Cmmxmx USE THE FACT THAT THE FLOW VARIABLES ARE REAL TO OBTAIN THE REMAI


CXXXXM -NING FOURIER COEFFICIENTS.



DO 627 K=2,LMAX


DO 627 I:I,IMAX


U(I,NHPIY,K)0O.


V(I,NHPIY,K)=O.


W(I,NHPlY,K)=0.


RU(I,NHP1Y,K)=O.


RV(I,NHPlY,K)=O.


RW(I,NHPIY,K)=O.


G(I,NHP1Y,K)=O.


DUDX(I,NHP1YK)=O.



627 	 CONTINUE


DO 629 K:2,LMAX


DO 629 J=1,JMAX


UCNHPlX,J,K)0.

VCNHPIX,J,K)=O.


W(NHP1X,J,K)=O.


RU(NHPlX,J,K)=O.


RV(NHPlX,J,K)=O.


RW(NHPlX,J,K)=O.

G(NHPIX,J,K)=O.


DUDX(NHPIX,J,K)=O.



629 CONTINUE


DO 550 K:2,LMAX


DO 550 J=NHP2Y,JMAX
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JJ=JMAX-J+2


DO 550 I=NHP2X,IMAX


II=IiAX-I+2


U(II,JJ,K)=U(I,J,K)


VCII,JJ,K)=V(I,J,K)


W(II,JJK)=W(I,JK)


G(-I-I, J-J,K=G(I,J,K)


U(I,JJ,K)=U(II,J,K)


V(I,JJ,K)=V(II,J,K)
W(I,JJ,K)=W(II,J,K)


O(I,JJ,K)=G(II,J,K)


RU(IIJJ,K)=-RU(I,JK)


RV(II,JJ,K)=-RV(I,J,K)


RW(II,JJ,K)=-RW(I,J,K)


DUDX(II,JJ,K)=-DUDX(I,J,K)


RU(I,JJ,K)=-RUCII,J,K)

RV(I,JJ,K)=-RV(II,J,K)


RW(I,JJ,K)=-RWCII,J,K)


DUDX(I,JJ,K)=-DUDXCII,J,K)


550 	 CONTINUE


DO 560 K=2,LMAX


DO 560 INHP2X,IMAX


II=IMAX-I+2


U(II,1,K)=U(I,1,K)


V(II,1,K)=VC1,l,K)

W(II,I,K)=W(I,1,K)
W(II,1,K)=G(I,I,K)



RU(II,I,K)=-RU(I,I,K)



RVCII,I,K)=-RV(I,1,K)
RW(II IK)=-RW(I,I,K)


DUDX(II,I,K)=-DUDX(I,I,K)



560 	 CONTINUE


DO 570 K=2,LMAX


DO 570 J=NHP2X,JMAX


JJ=JMAX-J+2


U(I,JJ,K)=U(I,J,K)


V(1,JJ,K)=V(I,J,K)
14(1,JJ,K)=W¢I,J,K)



G(I,JJ,K)=G(I,J,K)

RU(l,JJ,K)=-RU(l,J,K)


RV(I,JJ,K)=-RV(l,J,K)


RW(I,JJ,K)=-RW(l,J,K)


DUDX(1,JJ,K)=-DUDX(l,J,K)


570 	 CONTINUE


C*)E X INVERSE TRANSFORM



DO 695 K=,LMAXM1


CALL MOVLEV(U(l,l,K),FR(l,l),IJ)


CALL MOVLEV(RU(1,,K),FI(1,1hIJ)

CALL FFTX(-I.0)


CALL FFTY(-l.0,CC)


CALL MOVLEV(FR(C,l),U(I,I,K),IJ)


CALL MOVLEVCFI(l,l),RU(U,l,K),IJ)


CALL MVLEV(V(1,1,K),FR¢l,1),IJ)

CALL MOVLEV(RV(I,I,K),FICI,I),IJ)


CALL FFTX(-1.0)


CALL FFTY(-l.0,CC)

CALL MOVLEV(FR(l,l),V(,I,K),IJ)


CALL MOVLEVCFI(l.,),RV(I,I,K),IJ)


CALL MOVLEV(W(1,l,K),FR(l,1),IJ)


CALL MOVLEV(RW(1,1,K),FI(1,1),IJ)


CALL FFTX(-l.0)


CALL FFTY(-1.O,CC)


CALL MOVLEV(FR(,1),W(1,l,K),IJ)

CALL MOVLEV(FI(l),RW(1,1,K),IJ)



695 CONTINUE


DO 702 K=I,LMAXP1


DO 703 J=,JMAX


DO 703 I=,IMAX


FR(I,J)=G(I,J,K)


FICI,J)=DUDX(I,J,K)
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703 	 CONTINUE 	 ;IM 
CALL FFTX(-1.0) 	 - nUALITY 
CALL FFTYC-1.O,CC) PjDO Q 
DO 705 J=I,JMAX 
DO 705 I=I,IMAX


G(I,J,K):FR(IpJ)


DUDXCI,J,K)=FICI,J)


705 CONTINUE


702 CONTINUE



CxmmxX STORE DATA CRU,RV-,AND RW) FOR NEXT TIME STEP ORIGINAL PAG IS


CALL PARTIAL(1,G)


DO 710 K=I,LMAXPI 1 POOR QUAfLITYj 
DO 710 J=I,JMAX 
DO 710 I=I,IMAXRU(I,J,K)=HI(I,J,K)+DUDX(I,J,K)



710 CONTINUE


CALL PARTIAL(2,G)


DO 715 K=1,LMAXPI


DO 715 J=1,JMAX


DO 715 I=I,IMAX


RV(IJ,K)=H2(I,J,K)+DUDX(IJ,K)


715 	 CONTINUE


CALL PARTIAL(3,G)

DO 720 K=I,LMAXP1


DO 720 J=I,JMAX


DO 720 I=I,IMAX


RW(I,J,K)=H3(1,J,K)+DUDX(I,J,K)



720 	 CONTINUE


CALL LTAVG


LCONT=LCONT+1


LLCONT=LCONT-20


IF(LLCONT.NE.0) GO TO 450


LCONT=


CALL LTPR



450 	 CONTINUE


TP=0.5


C4=1.0


C1=2.0



200 FORMAT(IX,IP9E14.5)


COF=1.5


CALL EXTERN(3,1,R2,RR2)


PRINT 400,TIME


NHT=TEND/2


IF(NTIME.EQ.NHT) CALL STAT



400 	 FORMAT(3X,N TIME STEP=m,I3)
 

IF(NTIME.NE.TEND) GO TO 300


WRITE(9) U,V,W


WRITE(9) UTSUM,U2SMT,V2SMT,W2SMT,STSUM,PUT,PVT,PWT,PUNST,PVNST,


1PWNST,SGST,ETED,U2STT,V2STT,W2STT,TCONT,TSHGS,TSCNT


2,PDUT,PDVT,PDWT,PDUNT,PDVNT,PDWNT


CALL STAT


CALL LTPR


STOP



500 	 CONTINUE


STOP


END



XDECK PARTIAL


SUBROUTINE PARTIALCM,U)



C THIS SUBROUTINE COMPUTES THE PARTIAL DERIVATIVE OF U . M=l CORRESPONDS 
C TO DERIVATIVE IN THE X-DIRECTION ,M=2 CORRESPONDS TO THE DERIVATIVE 
C IN THE Y-DIRECTION ,AND M=3 CORRESPONDS TO THE DERIVATIVE IN THE Z-DIRECN 

COMMON/IDENTN/CODE

COMMON/DATA9/IMAX,JMAXLMAX,NHALFX,NHALFY


COMMON/CONST/CGOOC1O1,IJK,IJ,NHP1,HALF


xCALL A2


NCALL A9


NCALL C7


NCALL B9
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iCALL C3 
MCALL Al 

LMAXPI=LMAX+1 
DO 20 J=I,JMAX 
DO 20 I=I,IMAX 
DUDX(I,J,1)=O. 
DUDX(I,J,CMAXP1)=0. 

20 CONTINUE 
IF CM.EQ.2) GO TO 30 
IF (M.EQ.3) GO TO 70 

CKKNN3E DERIVATIVE IN THE X-DIRECTION 
DO 10 L=2,LMAX 
SIGN=1.0 
CALL MOVLEV(U(1,1,L)sFR(1,1)pIJ) 
CALL FFTX(SIGN) 
DO 15 J=,JMAX 
DO 15 I=I,IMAX 
DUM=FI(I,J)
FI(IpJ)=WAVEX(I))(FR(IsJ) 
FR(IJ)=-WAVEX(I)NDUM 

15 CONTINUE 
SIGN=-1.0 
CALL FFTX(SIGN)
CALL MOVLEVCFR(1,1),DUDX(1,1,L),IJ) 

10 CONTINUE 
GO TO 300 

30 CONTINUE 
C)EXKDERIVATIVE IN THE Y-DIRECTION 

CC=l.0 
DO 35 L=2,LMAX 
SIGN=1.0 
CALL MOVLEV(U(1,1,L),FR(I,I),IJ) 
DO 32 J=I,JMAX 
DO 32 I=lIMAXFI(IJ)=O.O 

32 CONTINUE 
CALL FFTY(SIGN,CC) 
DO 40 J=1,JMAX 
DO 40 I=1,IMAX 
DUM=FI(I,J)
FI(I,J)=WAVEY(J)XFR(I,J) 
FR(IJ)=-WAVEY(J)EDUM 

40 CONTINUE 
SIGN=-I.O 
CALL FFTY(SIGN,CC)
CALL MOVLEV(FR(1,1),DUDX(l,1,L)PIJ) 

35 CONTINUE 
GO TO 300 

70 CONTINUE 
C3OEE3OFIRST DERIVATIVE IN THE Z-DIRECTION 

DO 82 J=lJMAX 
DO 82 I=1,IMAX 
DO 82 K=2,LMAX 
KPI=K+! 
KMl=K-1 
DUDX(I,J,K)=AP(K)NUCI,J,KM1)+CP(K)EU(I,J,KP1) 

82 CONTINUE 
90 CONTINUE 

300 CONTINUE 
RETURN 
END 

KDECK FFT 
IDENT FFT (A,B,N,ISH)
ENTRY FFT 

FFT2C 
FFT2C 

2 
3 

X RADIX 2 COMPLEX FAST FOURIER TRANSFORM, COMPUTED IN PLACE. 
K SEE aON COMPUTING THE FAST FOURIER TRANSFORM,@ R. SINGLETON, 

FFT2C 
FFT2C 

4 
5 

COMM. ACM, V.10, N.1O, PP.647-654, OCT. 1967. 
" ARRAY A CONTAINS THE REAL COMPONENT OF THE DATA AND RESULT,
" ARRAY B CONTAINS THE IMAGINARY COMPONENT. 

FFT2C 
FFT2C 
FFT2C 

6 
7 
8 

" N, THE NUMBER OF COMPLEX DATA VALUES, FFT2C 9 
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10

20

30

40

50

60

70

,[RIGINAE PAGE -m 

,QE POOR QUALITY 

m MUST BE A POWER OF 2 AND GREATER THAN I FFT2C 
 
m THE SIGN OF ISH IS THE SIGN OF THE EXPONENTIAL IN THE TRANSFORM. FFT2C 11


A THE MAGNITUDE OF ISH IS THE INCREMENT SIZE FOR INDEXING FFT2C 12


m A AND B, AND IS ONE IN THE USUAL CASE. FFT2C 13


x DATA MAY ALTERNATIVELY BE STORED FORTRAN COMPLEX FFT2C 14


N IN A SINGLE ARRAY, IN WHICH CASE THE MAGNITUDE FFT20 15


X OF ISH IS TWO AND ADDRESS B IS A(2), I.E. FFT2C 16



CALL FFT2(A,A(2),N,2) FFT2C 17


x INSTEAD OF FFTC 18


X CALL FFT2(A,B,N,1) FFT2C 19


m PROGRAM CONTAINS SINE TABLE FOR MAXIMUM N OF 32768 FFT2C 
 
* 6400 TIME FOR N=1024, 220 M.SEC. FFT2C 21


m 6400 TIME FOR N=2mmM IS 21.5NM MICRO-SEC. FFT2C 22


m 6600 TIME FOR N=1024, 44 M.SEC. FFT2C 23


m 6600 TIME FOR N=2mNM IS 4.3NNM MICRO-SEC. FFT2C 24


X RMS ERROR FOR TRANSFORM-INVERSE IS LESS THAN 1.3E-13 FFT2C 25


X FOR N=32768 OR SMALLER. FFT20 26


x FORTRAN 2.3 SUBROUTINE FFT20 27


x BY R. C. SINGLETON, STANFORD RESEARCH INSTITUTE, NOV. 1968 FFT2C 28


L100 SXO B3 NH FFT2C 29



SB4 BO KK=O FFT2 
 
S5B B3-B7 NN=NN-INC FFT2C 31


AXO 1 KSPAN=NN/2 FFT2C 32


SB5 BO K2=O FFT2C 33


SB6 XO FFT2C 34


SX B5 K2=K2 FFT2C 35


EQ B6,B7,FFT IF(KSPAN .EQ. INC) RETURN FFTC 36



L110 SB4 B3-B4 KK=NN-KK FFT2C 37


SBS 33-B5 K2=NN-K2 FFT2C 38


SA2 B1+B4 EXCHANGE A(KK),A(K2) AND B(KK),B(K2) FFT2C 39


SA3 B1+85 FFT2C 
 
SAM 32+B4 FFT2C 41


NX7 X2 FFT2C 42


SAS B2+B5 FFT2C 43


NX6 X3 FFT2C 44


SA7 A3 FFT2C 45


SA6 A2 FFT20 46


NX7 X4 FFT20 47


NX6 X5 FFT2C 48


SA7 A5 FFT2C 49


SA6 A4 END OF EXCHANGE FFT2C 
 
LT B6,B4,LIO IF(KSPAN .LT. KK) GO TO L110 FFT2C 51



L120 SB4 B4+B7 KK=KK+INC FFT2C 52


SB5 B6+B5 K2=KSPAN+K2 FFT2C 53


SAZ BI+B4 EXCHANGE A(KK),A(K2) AND B(KK),B(K2) FFT2C 54


SAS B1+B5 FFT2C 55


SA4 B2+B4 FFTC 56


NX7 X2 FFT2C 57


SAS B2+B5 FFT20 58


NX6 X3 FFT2C 59


SAY A3 FFT2C 
 
SA6 A2 FFT2C 61


NX7 X4 FFT2C 62


SXO B6 K=KSPAN FFT2C 63


NX6 X5 FFT2C 64


SA7 A5 FFT2C 65


SA6 A4 END OF EXCHANGE FFT2C 66



L130 AXO 1 K=K/2 FFT2C 67


ixi X1-XO K2=K2-K FFT2C 68


PL Xl,L130 IF(K2 .GE. 0) 00 TO L130 FFTC 69


LXO 1 K=K+K FFT2C 
 
SB4 B4+B7 KK=KK+INC FFT2C 71


IXi X1+XO K2=K2+K FFT2C 72


SB5 XI K2=K2 FFT2C 73


GE B5,B4,L1IO IF(K2 .GE. KK) GO TO L110 FFT2C 74


LT B4,B6,L120 IF(KK .LT. KSPAN) GO TO L120 FFT2C 75



FFT FFT2C 76


SB1 X1 INSR1 I


SAl A1+1 INSR1 2


SB2 X1 INSR1 3
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SAI Xi+1 
 
SB3 XI 
 
SAI A1+1 
 
SB4 XI 
 
SA4 B4 
 
MX2 1 
 
SA5 L60 
 
SA B3 
 
LX2 57 
 
PX7 X3 
 
BX6 -X2iX5 
 
PL X4,LlO 
 
BX6 X2+X5 
 
BX4 -X4 
 

LO 	 LX3 32 
 
SA6 AS 
 
NXO B5,X3 
 
PX2 X4 
 
SB7 X4 
 
DX7 X2iEX7 
 
SAI B5+S 
 
SB3 X7 
 
SB6 X7 
 
EQ L40 
 

L20 SA3 CD 
 
RX4 X2*X1 
 
RX7 X2KXO 
 
RX5 X3)(XO

RX6 X3XXI 
 
RX4 X4-X5 
 
RX6 X6+X7 
 
NX5 X4 
 
RX7 X1-XS 
 
RXO XO+X5 
 
NX1 X7 
 

L30 	 SB5 B6+B4 
 
5A2 B1+B4 
 
SA3 31+B5 
 
SA4 B2+B4 
 
RX6 X2+X3 
 
SA5 B2+B5 
 
RX2 X2-XS 
 
SA6 A2 
 
RX7 X4+X5 
 
RX3 XlEX2 
 
RX4 Xq-X5 
 
SA7 A4 
 
RX5 XOXX4 
 
RX2 XOX2 
 
RX6 X3-X5 
 
RX4 XlI4X4 
 
SA6 A3 
 
RX7 X2+X4 
 
SB4 B6+B5 
 
SA7 A5 
 
LT B4,B3,L30 
 
SB5 B4-B3 
 
Bxi -Xl 
 
SB4 B6-B5 
 
LT B5,B4,L30 
 
SB4 B4+B7 
 
SA2 SD 
 
LT B4,B5,L20 
 

L40 	 SB4 BO 
 
SX5 B6 
 
AX5 1 
 
SB6 X5 
 

L50 	 SB5 B6+B4 
 
SA2 B1+B4 
 
SA3 B1+B5 
 

ISN 
 
MASK 
 

N 
 

IF(ISN .GE. 0) GO TO L10 
 

INC=-INC 
 

SCM) 
 
NN=INCMN 
 
KSPAN=NN 
 
GO TO L40 
 

SDMCN 
 
SDxSN 
 
CDnSN 
 
CONCH 
 

K2=KSPAN+KK 
 
A(KK) 
 
A(K2) 
 
B(KK) 
 

B(K2)

RE 
 
A(KK) 
 

CNRE 
 
IM 
 
B(KK) 
 
SNHIN 
 
SHOERE 
 

CNEIM 
 
A(K2) 
 

KK=KSPAN+K2 
 
B(K2)

IF(KK .LT. NN) GO TO L30 
 
K2=KK-NN 
 
CN=-CN 
 
KK=KSPAN-K2 
 
IF(K2 .LT. KK) GO TO 130 
 
KK=KK+INC 
 

IF(KK .LT. K2) 00 TO L20 
 
KK=O 
 

KSPAN=KSPAN/2 
 

KZ=KSPAN+KK 
 
ACKK) 
 
A(K2) 
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INSRI 4 
INSR1 5 
INSRI 6 
INSR1 7 
FFT2C 77


FFT2C 78


FFT2C 79


FFT2 80


FFTC 81


FFT2C 82


FFT2C 83


FFT2C 84


FFT2C 85


FFT2C 86


FFT2C 87


FFT2C 88


FFT2C 89


FFT2C 90


FFT2C 91


FFT2C 92


FFT2C 93


FFT20 94


FFT2C 95


FFT2C 96


FFT2C 97


FFT2C 98


FFT2C 99


FFT2C100


FFT2C101


FFT2C102


FFT2C103


FFT2C104


FFT2CI05


FFT2C106


FFT2CI07


F.FT2CI08


FFT2CIO9


FFT2C110


FFT2011


FFT2C112


FFT2C113


FFT2C114


FFTC115


FFT2C116


FFT2C117


FFT2C118


FFT2C19


FFT2C120


FFT2C121


FFT2C122


FFT2CI23


FFT2C124


FFT2C125


FFT2C126


FFT2C127


FFT2C128


FFT2C129


FFT2C130


FFT20131


FFT2C132


FFT2C133


FFT2C134


FFT2C135


FFT2C136


FFT2C137


FFT2C138


FFT2C139


FFT2C140


FFT2CI41


FFT2C142





SA4 B2+B4 
 B(KK) FFT2CI43


RX6 X2+X3 
 FFT2C144


SAS B2+B5 
 B(K2) FFT2C145


RX7 X2-X3 
 FFT2CI46


SA6 A2 
 A(KK) FFT2C147


SA7 A3 
 AK2) FFT2C148


RX6 X4+X5 
 FFT2C149


SB4 B6+B5 
 KK=KSPAN+K2 FFT2C150


RX7 X4-X5 
 FFT2C1S1


SA6 A4 
 B(KK) FFT2C152


SA7 AS 
 B(K2) FFT2C153


LT B4,B3,L50 
 IF(KK LT. NN) GO TO L50 FFT2CI54


EQ B6,B7,L100 
 IF(KSPAN .EQ. INC) GO TO L100 FFT2CI55


SAI Al 
 S(M) FFT2C156


SB4 B7 
 KK=INC FFT2C157


RX6 XIXI 
 FFT2CI58


SAI AI+1 
 M=M+I, S(M) FFT2CI59


FX6 X6+X6 
 FFT2CI60


SA3 ONE 
 FFT2CI61


SA6 CD 
 CD=2XS(M)K2 FFT2C162



L60 	 BXO XI 
 SN=SD FFT2C163


RX6 X3-X6 
 CN=1.O-CD FFT2C164


BX7 XO 
 FFT2C165


NXI X6 
 FFT2Cl66


SA7 SO 
 FFT2C167


EQ L30 
 GO TO L30 FFT2C168



S 	 DATA 9.5873799095977346E-5 FFT2C169


DATA 1.9174759731070331E-4 FFT2CI70


DATA 3.8349518757139559E-4 FFT2C7l1


DATA 7.6699031874270453E-4 	 FFT2C172


DATA 1.5339801862847656E-3 FFT2C173


DATA 3.0679567629659763E-3 FFT2C174


DATA 6.1358846491544754E-3 FFT2Cl75


DATA 1.2271538285719926E-2 FFT2C176


DATA 2.4541228522912288E-2 FFT2C177


DATA 4.9067674327418014E-2 FFT2C178


DATA 9.8017140329560602E-2 FFT2C179


DATA 1.9509032201612827E-1 FFT2C180


DATA 3.8268343236508977E-1 FFT2CIO1


DATA 0.7071067811865475 FFT2C182



ONE DATA 1.0 FFT2C183


CD FFT2C184


SD FFT2C185



END FFT2C186


)DECK FFTX



SUBROUTINE FFTX(SIGN)



C FAST FOURIER TRANSFORM IN X-DIRECTION



COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY

MCALL Al


XCALL CIO



ISN=-SIGN


IF (SIGN .LT. 0.) GO TO 3


DO 2 J=I,JMAX


DO 1 I=I,IMAX


FICIJ)=O.



1 CONTINUE


2 CONTINUE


3 CONTINUE



DO 100 J=1,JMAX


DO 110 I=I,IMAX


XR(I)=FR(IJ)

XI(I)=FI(I,J)



110 CONTINUE


CALL FFT(XR,XI,IMAX,ISN)


DO 120 I=1,IMAX


FR(I,J)=XRCI)

FICI,J)=XI(I)



120 CONTINUE
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C 

100 	 CONTINUE


RETURN


END



KDECK 	 FFTY


SUBROUTINE FFTY(SIGN,COEF3)



C FAST FOURIER TRANSFORM IN YaDIRECTION



XCALL 	 Al


XCALL 	 CIO



COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY


ISN=-SIGN


Y-TRANSFORM


DO 100 I=1,IMAX


DO 110 J=I,JMAX


XR(J)=FR(I,J)

XI(J)=FI(I,J)



1-10 	 CONTINUE


CALL FFT(XR,XIJMAX,ISN)


IF(SIGN.LT.O.) GO T0 200


DO 120 J=I,JMAX


FR(I,J)=XRJ)

FI(I,J)=XICJ)



120 CONTINUE


GO TO 100



200 	 DO 130 J=I,JMAX


FR(I,J)=XRCJ)XCOEF3


FI(I;J)=XICJ)XCOEF3



130 CONTINUE


100 CONTINUE



RETURN


END



XDECK 	 INITIAL


SUBROUTINE INITIAL



CM THIS SUBROUTINE COMPUTES THE VARIOUS NECESSARY ARRAYS AND CONSTANTS


CEFOR SGS,PARTIAL,POISON,AND FILTER SUBROUTINES



XCALL 	 Al


COMMON/ADV/NTIME


XCALL 	 BI


COMMON/DATA9/IMAXJMAXLMAXNHALFX,NHALFY

COMMON/SCM2/LMAXP1,D1,D2,DD4,D5,D6


COMMON/SCMS/DELTAI,DELTA2,RE,E


COMMON/SCM4/CI,CJ,CKCJK,CIK,CIJ


*CALL 	 C3


COMMON/CONST/CIOO,C1OI,IJK,IJ,NHP1,HALF


REAL NAVG


C=O.4


5=2./3.

PAI=ACOS(-I.)



CXXXXX DELTAl AND DELTA2 ARE THE MESH SIZES IN X AND Y DIRECTIONS 
DELTA1=PAI/8. 
DELTI2=PAI/12. 
IMAX=I6 
JMAX=I6 
LMAX=64 
IJ=IMAXMJMAX 
LMAXP1=LMAX+1 
IJK=IMAXMJMAXXLMAXP1 
CI=1./IMAX 
CJ=!./JMAX


CK=./LMAXP1


CJK=I./(JMAXXLMAXPI)

CIK=I./(IMAXXLMAXPI)


CIJ=1./(IMAXXJMAX)

RE=640.25


E=I./RE

NHALFX=IMAX/2

NHALFY=JMAX/2
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http:RE=640.25


NHPIX=NHALFX+1 	 U 
NHPlY=NHALFY+l


CIO=2.O0PAI/(IMAXfDELTA1)


C10=2.ONPAI/(JMAXMDELTA2)



CIOI=CIO0/IMAX


Cll=CIO/JMAX



CwmmB) DEFINE WAVE NUMBERS.


C xxx) NOTE THAT LAVEX AND LAVEY ARE SMALLER THAN THE ACTUAL WAVE NUMBERS


CXXXX BY FACTOR OF IMAX AND JMAX RESPECTIVELY.
 


DO 100 I:1,IMAX


MM=I/NHPIX


M=MMMIMAX+1


WAVEX(I)=CI01M(I-M)


WAVEXS(I)=CCI0OO(I-M))mX2



100 	 CONTINUE


WAVEX(NHPlX)=B.


WAVEXS(NHPIX)=B.


DO 130 J=1,JMAX


MM=J/NHPlY


M=MMXJMAX+1


WAVEY(J)=ClI (J-M)


WAVEYS(J)=(CIOM(J-M))N2



130 	 CONTINUE


WAVEY(NHPIY)=O.

WAVEYS(NHPIY)=O.



1000 FORMAT(1PSEI5.7)


NAVG=2


IF(NTIME.EQ.0) NAVG=6


NHP2X=NHP1X+1


NHP2Y=NHPIY+1



CM*iE*XCOMPUTE THE NORMALIZED FOURIER TRANSFORM OF THE FILTER FUNCTION IN X-DIREC


DO 300 J=I,JMAX


DO 300 I:1,NHPIX


FR(I,J)=EXPC-6.*FLOAT(I-I)NM2/(NAVGXM2))



300 	 CONTINUE


DO 310 J=1,JMAX


DO 310 I=NHP2X,IMAX


II=IMAX-I+2


FR(I,J)=FRCII,J)



310 CONTINUE


Cx)4E COMPUTE THE NORMALIZATION CONST,AREA.



AREA=O.


DO 320 I=I,IMAX


AREA=AREA+FR(I,1)



320 	 CONTINUE


DO 330 J=I,JMAX


DO 330 I=1,IMAX


FR(I,J)'FRCI,J)/AREA


FI(I,J)=O.



330 	 CONTINUE


CALL FFTX(I.0)


DO 340 I=1,IMAX


FILTX(I)=FRCI,I)



340 	 CONTINUE


C*)4B)ECOMPUTE THE NORMALIZED FOURIER TRANSFORM OF THE FILTER FUNCTION IN Y-DIREC



DO 400 J=1,NHPIY


DO 400 I=1,IMAX


FR(I,J)=EXP(-6.fFLOAT(J-1))*2/(NAVGWE2))



400 	 CONTINUE


DO 410 J=NHP2Y,JMAX


DO 410 I=l,IMAX

JJ=JI4X-J+2


FR(I,J)=FR(I,JJ)



410 CONTINUE


AREA=O.


DO 420 J:IJMAX


AREA=AREA+FR(,J)



420 	 CONTINUE


DO 430 J=I,JMAX


DO 430 I=1,IMAX
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FRCI,J)=FR(I,J)/AREA


FICI,J)=.



430 	 CONTINUE


CALL FFTY(I.O,1.0)


DO 440 J=I,JMAX


FILTY(J)IFR(1,J)



440 CONTINUE


FILTX(NHP1X)=O.


FILTY(NHP1Y)=O.

PRINT 1000,(CAVEX(L),L=IIMAX)


PRINT 1000,(WAVEY(L),L=,JMAX)


PRINT 1000,(WAVEXS(L),L=l,IMAX)


PRINT lOOO,(LAVEYS(L),L=I,JMAX)


RETURN


END



DECK INICON



MCALL A8



SUBROUTINE INICON 

CM THIS SUBROUTINE GENERATES THE INITIAL FIELD FOR THE COMPUTATION X 
CX COMO DATA9/AXJM LM 

COrlrON/DATA9/IMAX,JMAX, LMAX,NHALFX,t4HALFY 
N MXNXXXNALFm 

DIMENSION G(161),Y(161),F(65) 
COMMON/SCM3/DELTA1,DELTA2,REE 

COMMON/CONST/CIOO,C1OI,IJKIJNHP1,HALF

MCALL Al


XCALL A13



COMrON/SCM4/CI,CJ,CK,CJK,CIK,CIJ


MCALL All



EQUIVALENCE (UI,H1),(U2,H2).(U3,H3)

MCALL A2


XCALL A6


MCALL A7


XCALL A9


PAI=ACOSC-1.)


LMAXP=LMAX+l


LMAXMI=LMAX-l


DO 210 J=I,JMAX


DO 210 I=I,IMAX


UI(I,J,2)=O.


U2(I,J,2)=O.


U3(I,J,2)=O.


Ul(I,J,I)=O.


U2(I,J,L)=O.


U3(I,J,I)=O.


UICI,JLMAX)=O.


U2(1,J,LMAX)=O.


U3(I,J,LMAX)=O.
UI¢I,J,LMAXP1)=O.


U2¢1,J,LMAXPI)=O.


U3(I,J,LMAXPI)=O.


U(I,J,2)=O.


V(I,J,2)=O.


W(I,J,2)=O.


U(I,J,I)=O.


V(I,J,I)=O.
W(I,JI)=O.



U(I,J,LMAX)=O.


V(I,J,LMAX)=O.
W(I,J,LMAX)=D.


U(I,J,LMAXPI)=O.


VCI,J,LMAXP1)=O.


WCI,J,LMAXP1)=0.



210 CONTINUE
C N N MMMM MMM MM 	 MNMMMMMMMM MMMMMMN MM MNMM MMM MN MM 
Cm THE VELOCITY FIELD FOR THE INITIATION OF THE PROGRAM IS OBTAINED m 
Cm FROM THE DISK. THE ORIGINAL VELOCITY FIELD IS GENERATED FROM A X 
CM SEPARATE PROGRAM (SEE SECTION 4.2 IN THE TEXT). X 
CM U1,U2,U3 ARE THE COMPONENTS OF THE VELOCITY FIELD AT TIME STEP N x 
Cm RU,RV,AND RW ARE THE INFORMATION AT TIME STEP N-l,NECESSARY FOR X 
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ORIGINA PAUZ 14 
A-P-EQR QUALI~y 

Cm 	 ADAMS BASHFORTH METHOD. 	 m



READ(8) U1,U2,U3,RU,RV,RW


DO 25 K=2,LMAX


DO 25 J=I,JMAX


DO 25 I=I,IMAX

U(I,J,K)=Ul(I,J,K)



V(I,J,K)=U2(I,J,K)

W(I,J,K)=U3(I,J,K)



25 CONTINUE


CALL EXTERN(3,1,R2,RR2)


CALL EXTERN(31,33,RN,RRN)


PRINT 2000



1000 	 FORMAT(1P8E15.7)

2000 	 FORMAT(lH1, VELOCITY IN THE X-DIRECTION ACCROSS THE CHANNEL X)


PRINT I000,(U(10,I0,K),K=1,LMAXP1)


RETURN


END



NDECK CURL


SUBROUTINE CURLCU,V,W)


CXXXXX THIS SUBROUTINE COMPUTES THE VORTICITY FIELD


COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY


COMMON/CONST/CIOO,CIO1,IJK,IJ,NHP1,HALF



XCALL All


EQUIVALENCE (UI,H1),(U2,H2),(U3,H3)



*CALL A12


XCALL A7


3CALL A2



LMAXPI:LMAX+I


CALL PARTIAL(2,W)


CALL MOVLEV(DUDX(1,1,J),U1(1,1.l),IJK)

CALL PARTIAL(3,V)


DO 10 K=I,LMAXP1


DO 10 J=1,JMAX


DO 10 I=IIMAX


UI(I,J,K)=UII,J,K)-DUDX(I,J,K)



10 CONTINUE


CALL PARTIAL(3,U)

CALL MOVLEV(DUDX(1,1,1),U2(1,l,1),IJK)


CALL PARTIAL(1,)


DO 15 K=1,LMAXP1


DO 15 J=I,JMAX


DO 15 I=1,IMAX


U2(I,J,K)=U2(I,J,K)-DUDX(I,J,K)


15 	 CONTINUE


CALL PARTIAL(I,V)


CALL MOVLEV(DUDX(1,1,1),U3(1,1,1),IJK)


CALL PARTIAL(2,U)


DO 20 K=I,LMAXP1


DO ZO J=,JMAX


DO 20 I=IIMAX


U3(IJ,K)=U3(I,J,K)-DUDX(I,J,K)



20 CONTINUE


RETURN


END



KDECK RHS


SUBROUTINE RHS



Cm 	THIS SUBROUTINE COMPUTES THE RIGHT HAND SIDE OF THE GOVERNING


CMEQUATIONS,EXCLUDING THE PRESSURE.



COMMON/DATA9/IMAX,JMAX,LMAXNHALFX,NHALFY


COMMON/CONST/C100,C1O1,IJK,IJNHP1,HALF


COMMON/SCM2/LMAXP1,DI,D2,D3,D4,D5,D6


COMMON/SCM3/DELTA1,DELTAZ,RE,E



3CALL A2


3CALL A5


3CALL A6


XCALL 	 A7



CALL SGS
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C 

CCUOXiMOMENTUM EQUATION IN THE X-DIRECTION


CALL PARTIAL(1,V)

DO 10 K=1,LMAXPI


DO 10 J=I,JMAX


DO 10 I=I,IMAX


G(I,JK)=V(I,J,K))EDUDXCI,J.K)



10 	 CONTINUE



CALL PARTIAL(I,W)

DO 20 K=I,LMAXPI


DO 20 J=I,JMAX


DO 20 I=1,IMAX


G(I,J,K)=G(I,JK)+W(I,J,K)XDUDXIJK)



20 CONTINUE


CALL PARTIAL(2,U)


DO 30 K=I,LMAXP1


DO 30 J=I,JMAX


DO 30 I=I,IMAX


G(I,JK)=G(I,J,K)-V(I,JK))EDUDX(IJ,K)



30 CONTINUE


CALL PARTIAL(3,U)


DO 40 K=I,LMAXPI


DO 40 J=1,JMAX


DO 40 I=I,IMAX

G(I,J,K)=G(I,J,K)-W(I,J,K)NDUDX¢I,JPK)



40 CONTINUE


CALL FILTER(G)


DO 45 K=I,LMAXP1


DO 45 J=I,JMAX


DO 45 I=I,IMAX


HI(I,J,K)=G(I,J,K)+HI(I,J,K)+.



45 CONTINUE


C9XX3XCOMPUTE THE VISCOUS TERMS IN THE X-MOMENTUM EQUATION



CALL PARTIAL(1,U)

CALL MOVLEV(DUDX(1,1,1),G(1.1,1),IJK)


CALL PARTIAL(1,G)


DO 50 K=I,LMAXP1


DO 50 J=1,JMAX


DO 50 I=I,IMAX


HI(I,J,K)=H1(I,J,K)+EMDUDX(I,J,K)



50 	 CONTINUE


CALL PARTIAL(2,U)

CALL MOVLEV(DUDX(1,1,1),G(1,1,1),IJK)


CALL PARTIAL(2,G)


DO 55 K=I,LMAXPI


DO 	 55 J=IJMAX


DO 	 55 I=I,IMAX

HI(I,J,K)=HI¢I,J,K)+E*DUDX(I,J,K)



55 CONTINUE


CX*34BMOMENTUM EQUATION IN THE Y-DIRECTION



CALL PARTIAL(2,U)


DO 65 K=I,LMAXPI


DO 65 J=1,JMAX


DO 65 I=I,IMAX


G(IJ,K)=U(I,J,K)KDUDX(I,J,K)



65 CONTINUE


CALL PARTIAL(2,W)


DO 70 K=1,LMAXP1


DO 70 J=1,JMAX


DO 70 I=1,IMAX

G(I,J,K)=G(I,J,K)+(I,J,K)DUDX(I,JK)



70 CONTINUE


CALL PARTIAL(3,V)


DO 75 K=I,LMAXPI


DO 	 75 J=I,JMAX


DO 	 75 1=,IMAX

G(I,J,K)=GCI,J,K)-W(I,J,K)NDUDX(I,J,K)



75 CONTINUE


CALL PARTIAL(1,V)


DO 80 K=I,LMAXP1
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-2 Qnog tPLA 

DO 	 80 J=1,JMAX 	 Q 
DO 80 I=I,IMAX


G(I,J,K)=G(I,J,K)-U(I,J,K)MDUDXCI,J,K)



80 CONTINUE


CALL FILTER(G)

DO 	 85 K=I,LMAXP1


DO 85 J=I,JMAX


DO 85 I=I,IMAX


H2(I,J,K)=H2(I,J,K)+G(I,J,K)



85 CONTINUE


CXXEXCOMPUTE THE VISCOUS TERMS IN THE Y-MOMENTUM EQUATION



CALL PARTIAL(,V)


CALL MOVLEV(DUDX(1,1,1),G(1,,),IJK)


CALL PARTIAL(1,G)


DO 90 K=1,LMAXPI


DO 90 J=1,JMAX


DO 90 I=IIMAX
H2(I,J,K)=H2(I,J,K)+EXDUDX(I,J,K)



90 	 CONTINUE


CALL PARTIAL(2,V)


CALL MOVLEV(DUDX(1,1,1),G(l,1,1),IJK)


CALL PARTIAL(2,G)


DO 95 K=I,LMAXP1


DO 95 J=I,JMAX


DO 95 I=I,IMAX


H2(I,JK)=H2(I,J,K)+E*DUDX(I,J,K)



95 	 CONTINUE


Cxmx4)MOMENTUM EQUATION IN THE Z-DIRECTION



CALL PARTIAL(3,V)


DO 105 K=I,LMAXPI


DO 105 J=I,JMAX


DO 105 I=I,IMAX


G(I,J,K)=V(I,J,K)MDUDX(I,J,K)



105 	 CONTINUE


CALL PARTIAL(3,U)


DO 110 K=I,LMAXPI


DO 110 J=I,JMAX


DO 110 I=I,IMAX


G(I,J,K)=G(I,J,K)+U(I,J,K)DUDX(I,J,K)



110 	 CONTINUE


CALL PARTIAL(2,W)


DO 115 K=I,LMAXP1


DO 115 J=I,JMAX


DO 115 I=I,IMAX
G(I,JK)=G(I,J,K)-V(I,J,K)KDUDX(I,J,K)



115 	 CONTINUE


CALL PARTIAL(1,W)


DO 120 K=1,LMAXPI


DO 120 J=I,JMAX


DO 120 I=I,IMAX


GCI,J,K)=G(I,J,K)-U(I,J,K)DUDXCI,J,K)



120 	 CONTINUE


CALL FILTER(G)


DO 125 K=1,LMAXPI


DO 125 J=1,JMAX


DO 125 I=1,IMAX


H3(I,J,K)=H3(I,J,K)+G(I,J,K)



125 	 CONTINUE


CiEEAfCOMPUTE THE VISCOUS TERMS IN THE Z-MOMENTUM EQUATION



CALL PARTIAL(1,W)


CALL MOVLEV(DUDX(1,1,1),G(,1,1),IJK)


CALL PARTIAL(1,G)


DO 130 K=I,LMAXPI


DO 130 J=I,JMAX


DO 130 I=I,IMAX


H3(I,J,K)=H5(I,J,K)+ENDUDX(I,J,K)



130 	 CONTINUE


CALL PARTIAL(2,W)


CALL MOVLEV(DUDX(1,1,1),G(1,1,1),IJK)


CALL PARTIAL(2,G)
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DO 	 135 K=I,LMAXP1


DO 135 J=1,JMAX


DO 135 I=1,IMAX


H3(I,J,K)=H3(I,J,K)+EDUDX(I,J,K)



135 CONTINUE


RETURN


END



)DECK SGS


SUBROUTINE SOS



CXTHIS SUBROUTINE COMPUTES THE EDDY VISCOSITY AND THE SUBGRID SCALE X


CXTERMS WHICH ARE ADDED TO THE RIGHT HAND SIDE OF THE GOVERNING MOMEN *


CX-TUM EQUATIONS.THE EDDY VISCOSITY IS SET EQUAL TO ZERO AT THE WALL. x



COMMON/ADV/NTIME


COMMON/SGTT/SGST(65),ETED(65),U2STT(65),V2STT(65),W2STT(65)



1,TSHGS,TSCNT


COMMON/TINC/DT


REAL MIU


COMMON/COUNT/IICONT


COMMON/CONST/C1OO,CIOI,IJK,IJ,NHPl,HALF


COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY


COMMON/SCM2/LMAXP1,DI,D2,D3,D4,D5,D6

COMMON/INNERC/CVINR(65)


DIMENSION EDVO(65),EDVI(65)


*CALL A2


XCALL A9


NCALL B2


NCALL B3


CALL B4


CALL B5



XCALL A4


XCALL A7


MCALL A6


*CALL A5



LMAXMI=LMAX-1


IF(NTIME.NE.1) GO TO 5


TSCNT=O.


TSHGS=O.


DO 2 K=ILMAXP1


SGST(K)=O.


ETED(K)=O.


U2STT(K)=O.

V2STT(K)=0.


W2STT(K)=O.



2 CONTINUE


5 CONTINUE



LHP1=LMAX/2+1


CXE*eii FIRST COMPUTE THE EDDY VISCOSITY,G.



CALL PARTIAL(1,U)


DO 10 K=3,LMAXMI


DO 10 J=I,JMAX


DO 10 I:1,IMAX


G(I,J,K)=DUDX(I,J,K)M2



10 	 CONTINUE


CALL PARTIAL(2,V)


DO 15 K 3,LMAXMI


DO 15 J=IJMAX


DO 15 I=,IMAX


G(I,J,K)=G(I,J,K)+DUDXCI,J,K)fl2



15 	 CONTINUE


CALL PARTIAL(3,W)


DO 20 K=3,LMAXMI


DO 20 J=I,JMAX


DO 20 I=I,IMAX


G(I,J,K)=G(I,J,K)+DUDX(I,J,K)X2


20 	 CONTINUE


CALL PARTIALC2,U)


CALL MOVLEV(DUDX(1,1,1),PC1,1,1),IJK)


CALL PARTIAL(,V)
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DO 25 K=3,LMAXM1 
DO 25 J=I,JMAX 
DO 25 I=I,IMAX 
G(I,J,K)=2.MG(I,J,K)+(DUDX(I,J,K)+P(I,J,K))W)E2



25 CONTINUE


CALL PARTIAL(2,W)


CALL MOVLEV(DUDX(1,1,1),P(I,,1),IJK)


CALL PARTIAL(3,V)


DO 30 K=3,LMAXM1


DO 30 J=1,JMAX


DO 30 I=1,IMAX


G(I,JK)=G(I,J,K)+(DUDX(I,J,K)+P(I,J,K) )KN2



30 	 CONTINUE


CALL PARTIAL(1,W)


CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)


CALL PARTIAL(3,U)


BMAX=O.


DO 35 K=3,LMAXM1


DO 35 J=I,JMAX


DO 35 I=,IMAX


CCC=GCI,J,K)+(DUDX(I,J,K)+PI,J,K))f2


H2(I,J,K)=CVCK)NSQRT(CCC)


HI(I,J,K)=CVINR(K)*CCC



35 CONTINUE


CC=./(IMAXEJMAX)



Cxmmxm COMPUTE THE PLANAR AVERAGE OF INNER AND OUTER LAYER MODELS.


DO 900 K=3,LMAXMI1


EDVO(K)=O.


EDVI(K)=O.


DO 910 J=IJMAX


DO 910 I=lIMAX


EDVO(K)=EDVO(K)+H2(I,J,K)

EDVI(K)=EDVI(K)+HI(I,JK)



910 	 CONTINUE


EDVO(K)=EDVO(K)MCC


EDVI(K)=EDVI(K)RCC



900 	 CONTINUE


CR=1.0


MMM=O


DO 915 K=3,LHPI


IF(EDVI(K).GT.EDVO(K)) MMM=2


IF(MMM.EQ.2) GO TO 915


IF(EDVI(K).LT.EDVO(K)) KCROSI=K



915 CONTINUE


MMM=O


DO 920 K=LHP1,LMAXMI


KK=LMAXMI-K+LHP1


IF(EDVI(KK).GT.EDVO(KK)) MMM=2


IF(MMM.EQ.2) GO TO 920


IF(EDVI(KK).LT.EDVO(KK)) KCROS2=KK



920 CONTINUE


PRINT 925,KCROS1,KCROS2



925 FORMAT(5X,* CROSS OVER POINTS OF INNER AND OUTER LAYERN,2IS)

PRINT 930



930 	 FORMAT(/,20X,x PLANE AVERAGE OF INNER LAYER MODEL M) 
PRINT 200,(EDVI(K),K=,LMAXMI) 
PRINT 935 

935 	 FORMAT(/,ZOX,x PLANE AVERAGE OF OUTER LAYER MODEL X)

PRINT 200,(EDVO(K),K=3,LMAXM1)


DO 940 K=3,KCROS1


DO 940 J=I,JMAX


DO 940 I=I,IMAX


G(I,J,K)=H(I,J,K)HCR


940 	 CONTINUE


KCROS3=KCROSI+1


KCROS4=KCROS2-1


DO 945 K=KCROS3,KCROS4


DO 945 J=I,JMAX


DO 945 I=I,IMAX


(I,J,K)=H2(I,J,K)
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945 	 CONTINUE


DO 950 K=KCROS2,LMAXM1


DO 950 J=,JMAX


DO 950 I=I,IMAX


G(IJ,K)=H1(I,JK)KCR


950 	 CONTINUE


DO 4.0 J=,JMAX


DO 40 I=I,IMAX


G(I,J,I)=O.


GCI,J,2)=O.


G(I,J,LMAX)=O.


G(I,J,LMAXPI)=O.



40 CONTINUE


200 FORMAT(IX,IP9EI4.5)


CXXX COMPUTE THE AVERAGE OF EDDY VISCOSITY IN X-Y PLANES


DO 600 K=I,LMAXP1


MIU(K)=O.


DO 610 J=I,JMAX


DO 610 I=I,IMAX


MIU(K)=MIU(K)+G(IJK)



610 	 CONTINUE


MIU(K)=MIU(K)/(IMAXXJMAX)


600 CONTINUE


PRINT 190



190 FORMAT(1OX,X AVERAGE EDDY VISCOSITY X)


PRINT 200,(MIU(K),Kz2,LMAX)


CflE(3 COMPUTE THE VISCOUS INSTABILITY CRITERION.


BMAX=O.


DO 400 K=3,LHP1


KM1=K-1


DO 400 J=I,JMAX


DO 400 I=I,IMAX


VIS=((Z(K)-Z(KM1))l2)/(ABS(GCI,J,K)-MIU(K)))


VIS=DT/VIS


IF(VIS.LT.BMAX) GO TO 400


BMAX=VIS


IDUM2=I


JDUM2=J


KDUM2=K



400 	 CONTINUE


DMAX=O.


DO 500 K=LHP1,LMAXNI


KP1=K+1


DO 500 J=1,JMAX


DO 500 I=1,IMAX


VIS=((Z(KPI)-Z(K))i2)/(ABS(GI,J,K)-MIU(K)))


VIS=DT/VIS


IF(VIS.LT.DMAX) GO TO 500


DMAX=VIS


IDUM1=I


JDUMI=J


KDUMI=K



500 CONTINUE


PRINT 510,BMAX,IDUMI,JDUMI,KDUMI,DMAXIDUM2,JDUM2,KDUM2



510 FORMAT(IX,X VIS INSTABILITY K,PE14.5,515,5X,lP1E14.5,315)

C9(MNEDDY VISCOSITY IS COMPUTED,NOW COMPUTE THE SUBGRID SCALE TERMS



CALL PARTIAL(1,U)


DO 60 K=ILMAXPI


DO 60 J=1,JMAX


DO 60 I=I,IMAX

P(I,J,K)=2.KG(I,J,K)NDUDX(I,J,K)



60 CONTINUE


CALL PARTIAL(1,P)

DO 62 K=I,LMAXPI


DO 62 J=1,JMAX


DO 62 I=I,IMAX


HI(I,J,K)=DUDX(I,J,K)



62 CONTINUE


CALL PARTIAL(2,U)


CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)



116





oRIGINAL PAGE IS 

DE 	 R04)R-F QUALIY 

CALL PARTIAL(1,V)


DO 64 K=I,LMAXP1


DO 64 JZI,JMAX


DO 64 I=I,IMAX


P(I,J,K)=G(I,J,K)(P(I,J,K)+DUDX(I,J,K))


64 	 CONTINUE


CALL PARTIAL(2,P)


DO 66 K=1,LMAXP1


DO 66 J=1,JMAX


DO 66 I=,IMAX


HI(I,JK)=HI(I,J,K)+DUDX(I,J,K)



66 	 CONTINUE


CALL PARTIAL(3,U)


CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)


CALL PARTIAL(1,W)


DO 68 K=1,LMAXPI


DO 68 J=1,JMAX


DO 68 I=I,IMAX


P(I,J,K)=P(IJ,K)+DUDX(I,J,K)



68 	 CONTINUE


CNXX*E) CALCULATE SOS CONTRIBUTIONS TO REYNOLDS STRESS AND INTENSITIES.


CXM3Emx ALSO AVERAGE THEM IN TIME.



TSHGS=TSHGS+1


DO 92 K=1,LMAXP1


SSUM(K)=O.


DO 94 J=I,JMAX


DO 94 I=I,IMAX


SSUM(K)=SSUM(K)+P(I,J,K)MG(I,J,K)



94 	 CONTINUE


SSUM(K)=-SSUM(K)/CIMAX3JMAX)


SGST(K)=SGST(K)+SSUM(K)



92 	 CONTINUE


IF(NTIME.EQ.1) GO TO 360


IF(IICONT.NE.O) GO TO 350



360 	 CONTINUE


DO 98 K=1,LMAXP1


EDYVI(K)=O.


DO 102 J=I,JMAX


DO 102 I=I,IMAX


EDYVICK)EDYVI(K)+G(I,J,K)XX2



102 CONTINUE


EDYVI(K)=EDYVI(K)iFACTOR(K)/(IMAXMJMAX)



98 CONTINUE


CALL PARTIALCI,U)

DO 104 K=I,LMAXPI


U2S(K)=O.


DO 106 J=1,JMAX


DO 106 I=1,IMAX


U2SCK)=U2S(K)+G(I,J,K)EDUDX(I,JK)



106 	 CONTINUE


U2S(K)=U2S(K)*2./(IMAX*JMAX)



U2S(K)=EDYVI(K)-U2S(K)


104 CONTINUE 1



CALL PARTIAL(2,V)


DO 108 K=1,LMAXPI


V2S(K)=O.


DO 110 J=I,JMAX


DO 110 I=I,IMAX


V2S(K)=V2S(K)+G(I,J,K)EDUDX(I,J,K)



110 	 CONTINUE


V2S(K)=V2S(K)x2./(IMAX*JMAX)


V2S(K)=EDYVI(K)-V25(K)



108 	 CONTINUE


CALL PARTIAL(3,W)

DO 112 K=I,LMAXPI


W2S(K)=O.

DO 114 J=I,JMAX


DO 114 I=I,IMAX


W2S(K)=W2S(K)+G(IJ,K)DUDX(I,J,K)



114 CONTINUE
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W2S(K)=W2S(K)m2./(IMAXJMAX)

W2S(K)=EDYVI(K)-W2S(K)



112 CONTINUE


TSCNT=TSCNT+1


DO 220 K=3,LMAXMI


ETED(K)=ETED(K)+EDYVI (K)


U2ST-T-K)=U2STT(K)4tU2S(K)


V2STT(K)=V2STT(K)+V2S(K)


W2STT(K)=W2STT(K)+W23(K)



220 	 CONTINUE


350 	 CONTINUE



CALL PARTIAL(3,P)


DO 70 K=I,LMAXP1


DO 70 J=1,JMAX


DO 70 I=I,IMAX
HI(I,J,K)=HI(I,J,K) (GCI,J,K)-MIU(K))HDUDX(I,J,K)



70 	 CONTINUE


CALL PARTIAL(3,G)


DO 71 K=I,LMAXPI


DO 71 J=I,JMAX


DO 	 71 I=I,IMAX


HI(I,J,K)=HI(I,J,K)+DUDX(I,J,K)XP(I,J,K)



71 	 CONTINUE


CALL PARTIALCX,N)


CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)


CALL PARTIAL(3,P)


DO 715 K=I,LMAXP1


DO 715 J=1,JMAX


DO 715 I=I,IMAX


HI(I,J,K)=NI(I,JK)+MIU(K)MDUDX(I,J,K)



715 	 CONTINUE


CKNi(0 Y-MOMENTUM EQUATION.



CALL PARTIAL(1,V)


CALL MOVLEV(DUDX(1,1,1),P(I,1,I),IJK)


CALL PARTIAL(2,U)


DO 72 K=I,LMAXPI


Do 72 J=1,JMAX


DO 72 I=I,IMAX


P(I,J,K)=G(I,J,K)(P(I,J,K)+DUDX(I,J,K))



72 CONTINUE


CALL PARTIALC1,P)

CALL MOVLEV(DUDX(1,I,1),H2C1,1,1),IJK)


CALL PARTIALC2,V)


DO 74 K=I,LMAXP1


DO 74 J=1,JMAX


DO 74 I=I,IMAX


P(I,J,K)=2.MG(I,J,K)KDUDX(I,J,K)



74 CONTINUE


CALL PARTIAL(2,P)


DO 76 K=1,LMAXPI


DO 76 J=I,JMAX


DO 76 I=1,IMAX


H2(I,J,K)=H2(I,J,K)+DUDXCI,J,K)


76 	 CONTINUE


CALL PARTIAL(3,V)


CALL MOVLEV(DUDX(1,1,1),P(l,1,1),IJK)


CALL PARTIAL2,)


DO 78 K=1,LMAXPI


DO 78 J=I,JMAX


DO 78 I=I,IMAX


P(I,J,K)=P(I,J,K)+DUDXCI,J,K)


78 CONTINUE


CALL PARTIALC3,P)


DO 80 K=I,LMAXP1


DO 80 J=I,JMAX


DO 80 I=I,IMAX


H2(I,J,K)=H2(I,J,K)+(G(I,J,K)-NIU(K))XDUDX(I,J,K)



80 	 CONTINUE


CALL PARTIAL(3,G)

DO 81 K=I,LMAXP1
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DO 81 J=I,JMAX


DO 81 I=I,IMAX


H2(I,J,K)=H2(I,JK)+DUDX(I,JK)EP(I,J,K)



81 CONTINUE


CALL PARTIAL(2,W)

CALL MOVLEV(DUDX(I,1,1),P(l,1,1),IJK)


CALL PARTIALC3,P)


DO 815 K=,LMAXP1


DO 815 J=I,JMAX


DO 815 I=,IMAX


H2(IJ,K)=N2(I,J,K)+MIU(K)XDUDX(I,J,K)



815 CONTINUE


C*XXXXX Z-MOMENTUM EQUATION.



CALL PARTIALC1,W)


CALL MOVLEV(DUDX(l,1,1),P(l,1,1),IJK)


CALL PARTIAL(3,U)


DO 82 K=I,LMAXP1


DO 82 J=1,JMAX


DO 82 I=UIMAX

P(I,J,K)=G(I,J,K)X(P(I,J,K)+DUDX(I,J,K))



82 	 CONTINUE


CALL PARTIAL(1,P)


CALL MOVLEV(DUDX(1,1,1),H3(1,1,1),IJK)


CALL PARTIAL(2,W)


CALL MOVLEV(DUDX(1,1,1),P(1,1,1),IJK)

CALL PARTIAL(3,V)


DO 84 K=1,LMAXPI


DO 84 J=I,JMAX


DO 84 I=I,IMAX

P(I,J,K)=G(I,J,K)H(P(I,J,K)+DUDX(I,J,K))



84 CONTINUE
 

CALL PARTIAL(2,P)

DO 86 K=I,LMAXPI


DO 86 J=1,JMAX


DO 86 I=1,IMAX


H3(1,JK)=H3(I,J,K)+DUDX(I,J,K)



86 	 CONTINUE


CALL PARTIAL(3,W)


DO 88 K=I,LMAXP1


DO 88 J=1,JMAX


DO 88 I=1,IMAX


P(I,J,K)=2.NDUDX(I,J,K)



88 	 CONTINUE


CALL PARTIAL(3,P)

DO 90 K=I,LMAXP1


DO 90 J=I,JMAX


DO 90 I=I,IMAX


H3(I,J,K)=H3(I,J,K)+(G(I,J,K)-MIU(K))*DUDX(I,J,K)



90 	 CONTINUE


CALL PARTIAL(3,G)


DO 91 K=I,LMAXP1


DO 91 J=1,JMAX


DO 91 I=1,IMAX


H3(I,J,K)=H3(I,J,K)+DUDX(I,J,K)EPCI,J,K)



91 	 CONTINUE


DO 100 J=1,JMAX


DO 100 I=I,IMAX


Hl(I,J,2)=O.



H2(I,J,1)=O.


H2(I,J,2)=O.


H3(I,J,1)=O.


H3(1,J,2)=C.


H1(I,J,LMAX)=O.

H2(I,J,LMAX)=.


H3(I,J,LMAX)=O.


Hi(I,J,LMAXP1)=O.


H2(I,J,LMAXP1)=O.


H3(I,J,LMAXP1)=O.



100 CONTINUE
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RETURN


END



XDECK 	 FILTER


SUBROUTINE FILTER(HR)



CK 	 THIS SUBROUTINE FILTERS A THREE DIMENSIONAL ARRAY IN X AND Y DIRECTIONS



COMMONDATA9/IMX,JMAX,LMAX,NHALFX,NHALFY


COMMON/SCM2/LMAXPI,D1,D2,D3,D4,D5,D6

COMMON/CONST/ClOO,ClOI,IJK,IJNHP1,HALF



NCALL Cli


NCALL Al


NCALL BEl



CC=I./(IMAXNJMAX)


DO 20 L=I,LMAXPl


CALL MOVLEV(HR(X,l,L),FR(l,1),IJ)


CALL FFTX(I.O)


CALL FFTY(1.0,1.0)


DO 30 I=l,IMAX


DO 30 J=1,JMAX


FR(I,J)=FRCI,J)XFILTX(I)NFILTY(J)


FI(I,J)=FI(I,J)XFILTX(I)NFILTY(J)


30 	 CONTINUE


CALL FFTYC-I.O,CC)


CALL FFTX(-I.O)


CALL MQVLEV(FR(l,l),HR(l,lL),IJ)



20 	 CONTINUE


RETURN


END



MDECK STAT


SUBROUTINE STAT



CM 	 THIS SUBROUTINE COMPUTES THE STATISTICS OF THE FLOW FOR OUTPUT.



COMMON/CONST/CIOO,ClOl,IJK,IJ,NHPl,HALF


COMMON/SCM2/LMAXPI,DI,D2,D3,D4,D5,D6


COMMON/SCM4/CI,CJ,CK,CJK,CIK,CIJ


COMMON/DATA9/IMAX, JMAX,LMAX,NHALFX,NHALFY
 


NCALL B4


NCALL B6


XCALL A6


MCALL 	 A9



PRINT 2000


2000 FORMATC1H1)



PRINT 1100


1100 FORMAT(IX,N UAVG IN X-YN,4X,XVAVG IN X-YM,3XNWAVG IN X-YN,lX,N



IU2AVG IN XYN,3X,NV2AVG IN XYN,3X,NW2AVG IN XYN,3X,XQ2AVG IN XY*


1,3X,NTURB SHEARN,7X,NZM)


UTOT=O.


VTOT=O.


WTOT=O.
U2TOT=O.


V2TOT=0.


W2TOT=O.


QTOT=O.


PAI=ACOS(-1.)

DO 100 K=1,LMAXP1


USUM=O.


VSUM=O.


WSUM=O.


DO 110 J=I,JMAX


Do 110 I=I,IMAX


USUM=USUM+U(I,J,K)


VSUM=VSUM+V(IJ,K)


WSUM=WSUM+W(I,J,K)


110 	 CONTINUE


USUM=SUMCIJ


VSUM=VSUMMCIJ


WSUM=WSUMCIJ


SHEAR=O.
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U2SUM=O.


V2SUM=O.


W2SUM=O.


DO 120 J=I,JMAX


DO 120 I=I,IMAX


U2SUM=U2SUM+(U(I,J,K)-USUM)*m2


V2SUM=V2SUM+(V(I,J,K)-VSUM)MM2


W2SUM=W2SUM+(W(I,J,K)-WSUM)mx2


SHEAR=SHEAR+(U(I,J,K)-USUM)h(W(I,J,K)-WSUM)



120 CONTINUE


Q=(U2SUM+V2SUM+2SUM)KCIJH.5


U2SUM=SQRT(U2SUMCIJ)


V2SUM=SQRT(V2SUMNCIJ)


W2SUM=SQRT(W2SUMXCIJ)


SHEAR=SHEARXCIJ


PRINT 1000,USUM,VSUM,WSUMU2SUMV2SUM,W2SUMQ,SHEAR,Z(K)


U2ST(K)=SQRT(U2SUMNM2+U2S(K))


V2ST(K)=SQRT(V2SUMEM2+V2S(K))


W2ST(K)=SQRT(W2SUM*%2+W2S(K))


UWT(K)=SHEAR+SSUM(K)


UTOT=UTOT+USUM


VTOT=VTOT+VSUM


WTOT=WTOT+WSUM


U2TOT=U2TOT+U2SUM


V2T0T=V2TOT+V2SUM


WTOT=W2TOT+2SUM


QTOT=QTOT+Q



100 CONTINUE


UTOT=UTOTNCK


VTOT=VTOTMCK


WTOT=WTCTxCK


U2TOT=U2TOTXCK


V2TOT=V2TOT*CK


W2TOT=J2TOTNCK


QTOT=QTOTKCK


PRINT 1200



1200 FORMAT(///,IX,X UTOT IN X-Y VTOT IN X-Y WTOT IN X-Y U2TOT


1 IN X-Y V2TOT IN X-Y W2TOT IN X-Y TURB ENERGY K)


PRINT 1000,UTOT,VTOT,WTOT,U2TOT,V2TOT,W2TOTQTOT



1000 FORMAT(IP9E14.5)


PRINT 200



200 FORMAT(//,5X,x INSTANTENEOUS U)


PRINT 210,(U(8,8,K),K=1,LMAXP1)



210 FORMAT(IX,IP9E14.5)

PRINT 300



300 FORMAT(////,30X,m 3GS CONTRIBUTIONS ADDEDX)

PRINT 310



310 FORMAT(IX,m SGS ENERGYH,4X,x TOTALU2S N,5X,m TOTAL V2S ),3X,M TOT


IALW2S *,3X,*TOTAL SHEAR,3X,X PLANEK)


LMAXMI=LMAX-1


DO 320 K=3,LMAXM1


PRINT 330,EDYVI(K),U2ST(K),V2ST(K),W2ST(K),UWT(K),K



320 CONTINUE


330 FORMAT(X,1P5E14.5,I6)



RETURN


END



XDECK TRANS


SUBROUTINE TRANS



Cm THIS SUBROUTINE COMPUTES THE VARIOUS TRANSFORMATION QUANTITIES



COMMON/DATA9/IMAX,JMAX,LMAX,NHALFX,NHALFY

COMMON/LENGTH/LSCALE(65)


REAL LSCALE


COMMON/INNERC/CVINR(65)


COMMON/SCM/DELTA1,DELTA2,RE,E


COMMON/RANGE/LMAXM1,LMAXM2,LMAXM3,LMAXM4,LMAXM5


COMMON/TINC/DT


COMMON/BC/CEX,CE2,CE3,CE4,CE5,CE6



XCALL B2
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XCALL B3


MCALL A9


9CALL C7


iCALL B7


3CALL B8



COMMON/PENTA2/XI,QI,GI,YI,QJ,GJ,XNQI,GIN,YN,JN,GJ,Q2-,Q3,

IRC1,RC2,RPI,RP2,RP3,RP4


COMMON/ZERO/C3,C4


COMMON/IDENTN/CODE


LMAXMI=LMAX-1


LMAXM2=LMAX-2


LMAXM3=LMAX-3


LMAXM4=LMAX-4


LMAXM5=LMAX-5


LMAXPI=LMAX+I


LHPI=LMAX/2+1



CX(MXO MESH STRECHING TRANSFORMATION


P=0.98346


TANIP=O.5*ALOG(CI.+P)/(I.-P))


PINV=l./P


P2=PM*2


DO 5 J=I,LMAXP1


ZETA(J)=-1.+2.X(J-2)/CLMAX-2)"


DUMI=ZETA(J)iTANIP

Z(J)=PINVTANH(DUMI)


RL(J)=(2.MP2/TANIP)(CCOSHDUM))O3)X(SINHCDUMI))


RM(J)=P2E((COSH(DUMi))M4)/(TAHIPB2)



5 CONTINUE


DELTA3=ZETA(2)-ZETA(1)


E2=RL(2)/(2.MDELTA3MRE)


F2=RM(2)/((DELTA3X2)NRE)

EN=RL(LMAX)/(2.fDELTA3xRE)


FN=RMCLMAX)/((DELTA3iB2)mRE)


R2=(F2+E2)/(F2-E2)


RN=(FN-EN)/(FN+EN)


RR2=l./CE2-F2)

RRN=-l./(EN+FN)


PRINT 20



20 	 FORMAT(6X,XZETAM,12XZ,14X,ERL*,14X,XRM)


DO 30 K=E,LMAXP1


PRINT 40,ZETACK),Z(K),RL(K),RM(K)



30 CONTINUE


40 FORMAT(IX,1P4EI5.7)



PRINT 50,E2,F2,EN,FNR2RNDELTA3


50 	 FORMAT(1X,//,1P7E14.5)



CC=0.2


C)XX COMPUTE THE LENGTH SCALE FOR THE SGS MODEL



VONK=O.4


DFILTI=2.XDELTAl


DFILT2=2.MDELTA2


POWER=1./3.


DO 300 K=3,LHPI


KM1=K-1


DW=(Z(K)-Z(2))HVONK

GRID=Z(K)-Z(KMl)


LSCALE(K)=(AMINI(DW,O.I,DFILTI))*(AMIN1(DW,O.I,DFILT2))(AMINI



I(DW,O.1,GRID))


LSCALE(K)=LSCALE(K)NFPOWER



300 CONTINUE


DO 310 K=LHPI,LMAXMI


KK=LMAXM1-K+LHP1



KKPI=KK+1


DW=(ZCLMAX)-Z(KK))NVONK


GRID=Z(KKP1)-Z(KK)


LSCALE(KK)=(AMINI(DW,O.I,DFILTI))M(AMINI(DW,O.1,DFILT2))K(AMINI



I(DW,O.I,GRID))


LSCALECKK)=LSCALE(KK)HNPOWER



310 	 CONTINUE


CINER=(CCKM2)/CVONKX27.)


DO 320 K=3,LMAXM1
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og
 
U



CV(K)=(CCLSCALE(K))KX2


CVINR(K)=CINERREM(LSCALE(K))(i4



320 CONTINUE


PRINT 330



330 	 FORMAT(//,2OX,X COEFFICIENT OF INNER SGS)


PRINT 120,(CVINR(K),K=3,LMAXM1)


PRINT 340



340 	 FORMAT(//,20X,x SUBGRID LENGTH SCALEX)


PRINT 120,(LSCALE(K),K=3,LMAXM1)


PRINT 110



110 FORMAT(2OX,m COEFFICIENT OF SGS X)


PRINT 120,(CV(K),K=3,LMAXMI)



120 FORMAT(1X,1P9E14.5)


FAC=226M(CCX2)/3.


FACTOR(1)=O.


FACTOR(2)=O.


FACTOR(LMAX)=O.


FACTOR(LMAXPI)=O.

DO 100 K=3,LMAXMI


FACTOR(K)=FAC/CV(K)



100 CONTINUE


DO 12 J=2,LMAX


H1=Z(J)-Z(J-1)


H2=Z(J+1)-Z(J)



CXXXXX ARRAYS FOR FINITE DIFFERENCE IN Z-DIRECTION


AP(J)=-1./(Z(J+1)-Z(J-1))


BP(J)=O.


CP(J)=-AP(J)



Cxxxxxxxxxx DEFINE THE COEFFICIENTS FOR SECOND DERIVATIVE IN Z DIREC


AP2(J)=2./(HI%(H1+H2))


BP2(J)=-2./(HlHH2)


CP2(J)=2./(H2(HI+H2))

PRINT 80,AP(J),BP(J),CP(J), AP2(J),BP2(J),CP2(J)



12 CONTINUE


Cx CONSTANTS FOR THE BLOCK TRI-DIAGONAL MATRIX IN THE MAIN PROGRAM



T=O.5(Z(3)-Z(2))


CE1=1.-AP(3)TEDTO.5(CP2(2)-AP2(2)MCP(2)/AP(2))/1.+TEAP3))


CE2=BP(3)+AP(3)(I.-TMBP(3))/(.+ThAP(3))


CE3=CP(3)-AP()3ThCP(3)/(I.+T(AP(3))


T=0.5(Z(LMAX)-ZCLMAXMI))


CEq=AP(LMAXM1)+CP(LMAXM1)TAP(LMAXMI)/(1.-T*CPCLMAXM))


CE5=BPCLMAXM1)+CP(LMAXMI)X(.+TBP(LMAXMI))/C1.-TCP(LMAXM1))

CE6=I.+CP(LMAXMI)KTXEXDTHO.5K(AP2(LMAX)-CP2(LMAX) AP¢LMAX)



I/CP(LMAX))/(I.-THCP(LMAXM1))


T=O.S(Z(3)-Z(2))


C3=(I.-TiBP(5))/CP(3)

C4=(TCP(3)/(1.-TNBP(3)))


Q=./(I.+TMAP(3))


XI=-T*Q


QI=(.-TNBP(3)))EQ


GI=-T)(CP(3))4Q

YI=(I.+BP(2)NTmQ)/AP(2)


QJ=(BP(2)CTMBPC3)-1.))*Q-CP(2))/AP(2)


GJ=BP(2)KT*CP(3)xQ/AP(2)


T=0.5(Z(LMAX)-ZCLMAXM1))


Q=I./(C.-TXCP(LMAXM1))


XN=TXQ


QIN=(1.+TMBP(LMAXMI))mQ

GIN=TmAP(LMAXMI)HQ

YN=(.-BP(LMAX)TMQ)/CP(LMAX)


QJN=-(BP(LMAX)N4I.+TiBP(LMAXMI))Q+APCLMAX))/CP(LMAX)


GJN=-TXAP(LMAXM1)MBPCLMAX)KQ/CP(LMAX)



80 	 FORMAT(IX,P3E15.7,5X,IP3E15.7)


90 	 FORMAT(IX,1P5EI5.7)



RETURN


END



MDECK VISCOS


SUBROUTINE VISCOS(U)



C)(64N THIS SUBROUTINE COMPUTES THE SECOND DERIVATIVE OF U IN THE Z-DIRECTION


COMMON/DATAS/IMAX,JMAX,LMAX,NHALFX,NHALFY
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XCALL A2


XCALL B7


)CALL B9


XCALL A9



LMAXP1=LMAX+1


DELTA3=2./(LMAX-2.)


DO 20 J=1,JMAX-

DO 20 I=I,IMAX


DUDXCI,J,1)=O.


DUDX(I,J,LMAXPI)=O.



20 	 CONTINUE


DO 30 Kz2,LMAX


DO 30 J=1,JMAX


DO 30 I=,IMAX


KPI=K+1


KM1=K-1


DUDXCI,J,K)=AP2(K)EU(I,J,KMI)+BP2(K)U(I,JK)+CP2(K)(U(IJ,KPi)



30 	 CONTINUE


RETURN


END



)(DECK EXTERN


SUBROUTINE EXTERN(LI,L2,R,RR)



C X THIS SUBROUTINE FIXES THE EXTERNAL VALUES OF THE U AND V AND W


C X NOTE THAT THE EXTERNAL VALUES OF U AND V WILL NOT ENTER INTO THE


C X COMPUTATION. AND THEY ARE UNNECESSARY



COMMON/CONST/CIOO,ClOI,IJK,IJ,NHPI,HALF

COMMON/SCM3/DELTA1,DELTA2,RE,E


COMMON/DATAg/IMAX,JMAX,LMAX,NHALFX,NHALFY



*CALL Al


XCALL C3


XCALL A6


XCALL C7



LMAXP1=LMAX+1


LMAXM1=LMAX-l


DO 90 J=1,JMAX

DO 90 I=I,IMAX


W(I,J,l)=-CP(2)XW(I,J,3)/AP(2)



90 	 1(I,J,LMAXPI)=-AP(LMAX)XW(I,J,LMAXMI)/CP(LMAX)


DO 97 J=1,JMAX


DO 97 I=1,IMAX


U(I,J,1)=O.


V(IJl)=O.


U(I,J,LMAXPI)=O.


V(I,JLMAXPI)=O.



97 CONTINUE


95 CONTINUE



RETURN


END



*DECK MTDAG


SUBROUTINE MTDAG(AM,A,AP,V,N,K)


C SOLVES COUPLED TRI-DIAGONAL ALGEBRAIC EQUATIONS 4.


C AM(I,J,L)X(J,L-1)+ACI,J,L)X(J,L)+AP(I,J,L)X(J,L+l)=Y(I,L) 5.


C (SUM OVER J IN EACH EQUATION) 6.


C (I,J,L) I IS EQUATION TYPE, J IS VARIABLE TYPE, L IS NODE 7.


C AT CALL V(I,L)=X(I,L) Y(J,L) IS RETURNED IN V(J,L) 8.


C THE AM,A,AP ARRAYS ARE RETURNED AS GARBAGE 9.



REAL AM(N,N,K),A(N,N,K),AP(N,N,K),V(N,K) 10.


COMMON/SING/IMR,JMR,IMI,JMI


C ELIMINATE TO OBTAIN A SEQUENTIALLY SOLVABLE FORM 11.


DO 20 LX=I,K 12.


L=K-LX+l 13.


LM=L-1 14.


DO 18 J=,N 15.


C=A(J,J,L) 16.


IF (C.EQ.O.) GO TO 80 17.



C ELIMINATE X(J,L) FROM ALL EQUATIONS OTHER THAN ITS OWN 18.


DO 16 I=1,N 19.



C ELIMINATE X(JL) FROM THE EQUATION FOR THE NODE L-1 20.
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IF (L.EQ.1) GO TO 12 21.


F=APCI,J,LM) 22.


IF (F.EQ.O.O) GO TO 12 23.


F=F/C 24.


DO 6 Jl=I,N 25.


A(I,J1,LM)=A(I,J1,LM)-FMAM(J,J1,L) 26.



6 AP(I,J1,LM)=AP(I,J1,LM)-FNA(J,J1,L) 27.


V(I,LM)=V(I,LM)-FMV(J,L) 28.



C ELIMINATE X(J,L) FROM OTHER EQUATIONS AT THIS NODE L 29.


12 IF (I.EQ.J) GO TO 16 30.



F=A(I,J,L) 31.


IF (F.EQ.0.O) GO TO 16 32.


F=F/C 33.


DO 14 Jl=l,N 34.
A(I,JI,L)=A(I,JI,L)-FNACJ,J1,L) 	 355.



IF (L.EQ.1) GO TO 14 36.


AM(I,JI,L)=AM(I,J1,L)-FAMJJ1,L) 37.



14 CONTINUE 38.
V(I,L)=V(I,L)-F*V(J,L) 	 39.



16 CONTINUE 40.


18 CONTINUE 41.


20 CONTINUE 42.



C CARRY OUT THE BACK SOLUTION 43.


DO 30 L=I,K 44.


LM=L-1 45.


DO 28 I=1,N 46.


C=A(I,I,L) 47.


IF (C.EQ.O.O) GO TO 80 48.


F=V(I,L) 49.


IF (L.EQ.1) GO TO 28 50.


DO 24 JI:I,N 51.



24 F=F-AM(I,J1,L)MV(JI,LM) 52.


28 V(I,L)=F/C 53.


30 CONTINUE 54.



RETURN 55.


80 PRINT 90



PRINT 10,IMR,JMR,IFI,JMI


10 FORMAT(4X,4I5)



RETURN


90 FORMAT(///,IOX,)E MTDAG MATRIX IS SINGULAR X)



END 59.


?EDECK DIVG



SUBROUTINE DIVO


C THIS SUBROUTINE COMPUTES THE DIVERGENCE OF VELOCITY FIELD



COFMON/DATA9/IMAX,JMAX,LMAX,NHALFXNHALFY

COMMON/CONST/CIOO,C1O1,IJK,IJ,NHP1,HALF



XCALL A2


XCALL A6


MCALL 	 AS



CALL PARTIAL(1,U)


CALL MOVLEV(DUDXI,1,1),G(1,1,1),IJK)


CALL PARTIAL(2,V)


DO 10 K=2,LMAX


DO 10 J=I,JMAX


DO 10 I=I,IMAX


G(I,J,K)=G(I,J,K)+DUDXCI,J,K)



10 CONTINUE


CALL PARTIAL(3,W)


DO 20 K=2,LMAX


DO 20 J=I,JMAX


DO 20 I=1,IMAX
G(I,J,K)=G(I,J,K)+DUDX(I,J,K)



20 CONTINUE


BMAX=O.


DO 30 K=2,LMAX


DO 30 J=I,JMAX


DO 30 I=1,IMAX


IF(ABS(G(I,J,K)).GT.BMAX) BMAX=ABS(G(I,J,K))



30 CONTINUE


PRINT 	 40,BMAX
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40 	 FORMAT(2X, MAX DIVERGENCE=X,1P1E15.7)
 

RETURN


END



mDECK COURANT


SUBROUTINE COURANT(DT,NTIME,TEND)



C3EEE( THIS SUBROUTINE MONITORS THE COURANT NUMBER


CALL A9



NCALL A6


COMMON/SCM3/DELTAIDELTA2,REE


COMMON/DATAV/IMAX,JMAX,LMAX,NHALFX,NHALFY


LMAXM1=LMAX-1


LHPI=LMAX/2+1


BMAX=O.


DO 51 K=3,LHP1


KMI=K-I


DO 51 J=1,JMAX

DO 51 I=1,IMAX


CMAX1=ABS(W(I,J,K))/(Z(K)-Z(KMI))+ABS(U(I,J,K)/DELTAI)+ABS(V(IJ,



1K))/DELTA2


IF(CMAXI.LT.BMAX) GO TO 51


BMAX=CMAX1


IDUMI=I


JDUMI=J


KDUM1=K



51 	 CONTINUE


DMAX=D.


DO 56 K=LHP1,LMAXMI


KP1=K+1


DO 56 J=I,JMAX


DO 56 I=I,IMAX


CMAX2=ABS(W(I,J,K))/(Z(KP1)-Z(K))+ABS(U(I,J,K))/DELTA1+ABS(



1V(I,J,K))/DELTA2


IF(CMAX2.LT.DMAX) GO TO 56


DMAX=CMAX2


IDUM2=I


JDUM2=J


KDUM2=K



56 	 CONTINUE


BMAX=BMAXMDT


DMAX=DMAXDT


PRINT 61,BMAX,IDUr1,JDUM1,KDUM1,DMAXIDUMZ,JDUM2,KDUM2



61 	 FORMAT(2X,m COURRANT K,P1E14.5,3I5,1P1E14.5,3I5)


IF(BMAX.GT.O.35.OR.DMAX.GT.O.35) NTIME=TEND


RETURN


END



MDECK LTAVG


SUBROUTINE'LTAVG



CXEflX THIS SUBROUTINE COMPUTES THE RUNNING TIME AVERAGE OF VARIOUS


CXXEMX STATISTICAL QUANTITIES.



COMMON/SCM4/CI,CJ,CKCJK,CIK,CIJ


COMMON/DATA9/IMAXJMAX,LMAX,NHALFX,NHALFY



*CALL A2


CALL A3



KCALk A4


KCALL A5


XCALL A6



COMMON/RANGE/LMAXMI,LMAXMZ,LMAXM3,LMAXM4,LMAXM5


COMMON/SCM2/LMAXPI,DID2,D9,D4,D5,D6


COMMON/LTA1/USUM(65),UTSUM(65),STSUM(65),U2SMT(65),V2SMT(65)


1,W2SMT(65),PVT(65),PUT(65),PUNST(65),PVNST(65),PWNST(65),PWTC65)


2,TCONT


COMMON/LTA2/PDUT(65),PDVT(65),PDWT(65),PDUNT(65),PDVHT(65)bPDWNHT



1(65)


COMMON/ADV/HTIME


IF(NTIME.NE.1) GO TO 5


TCOHT=O.


DO 2 K=3,LMAXMI


UTSUM(K)=O.


U2SMT(K)=O.


V25MT(K)=O.
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http:IF(BMAX.GT.O.35.OR.DMAX.GT.O.35


W2SMT(K)=O.



STSUM(K)=O.

PUT(K)=O.


PVT(K)=O.

PbT(K)=O.


PUNST(K)=O.


PVNST(K)=O.


PWNST(K)=O.


PDUT(K)=O.

PDVT(K) =O.


PDWT(K) =O.


PDUNT(K)=O.


PDVNT(K)=O.


PDWNT(K)=O.



2 CONTINUE


5 CONTINUE



TCONT=TCONT+1


DO 10 K=3,LMAXM1


USUN(K)=O.


DO 15 J=1,JMAX


DO 15 I=I,IMAX


USUM(K)=USUM(K)+U(I,JK)



15 	 CONTINUE


USUMrK)=USUM(K)MCIJ


UTSUM(K)=UTSUM(K)+USUM(K)



10 	 CONTINUE


DO 	 20 K=3,LMAXMI


U2SUM=O.


V2SUM=O.


W2SUM=O.


SSUI=O.


DO 25 J=I,JMAX


DO 25 I=I,IMAX


U2SUM=U2UM+(U(I,J,K)-USUM(K))MX2


V2SUM=V2SUM+V(IJ,K)Em2


W2SUM=NW2SUM+W(I,J,K)M*2

SSUM=SSUM+W(I,J,K)*(U(I,JK)-USUM(K))



25 CONTINUE


U2SUM=U2UMXCIJ


V2SUM=V2SUMNCIJ


W2SUM=W2SUMWCIJ


SSUM=SSUMMCIJ


U2SMT(K)=U2SMT(K)+U2SUM


V2SMT(K)=V2SMT(K)+V2SUM


W2SMT(K)=W2SMT(K)+W2SUM

STSUM(K)=STSUM(K)+SSUN



20 	 CONTINUE


DO 30 K=I,LMAXP1


DO 30 J=1,JMAX


DO 30 I=I,IMAX


P(I,J,K)=(U(I,J,K)EE2+V(IJ,K) mi2+W(I,J,K)42)/2.



30 CONTINUE


CALL FILTERCP)


DO 35 K=I,LMAXPI


DO 35 J=I,JMAX


DO 35 I=1,IMAX

DIVC(I,J,K)=G(I,J,K)-P(I,J,K)



35 	 CONTINUE


CALL PARTIAL(1,DIVC)


DO 40 K=3,LMAXM1


PU=O.


DO 45 J=I,JMAX


DO 45 I=I,IMAX


PU=PU+DUDX(I,J,K)MUCI,J,K)



45 	 CONTINUE


PU=PUXCIJ


PUT(K)=PUT(K)+PU


40 	 CONTINUE


CALL PARTIALC1,G)


DO 50 K=3,LMAXM1
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PUNS=O.


DO 55 J=I,JMAX


DO 55 I=,IMAX


PUNS=PUNS+DUDX(I,J,K)fU(I,J,K)



55 	 CONTINUE


PUNS=PUNSECIJ


PUNSTK-)=PUNST(K)+PUNS



50 CONTINUE


CALL PARTIAL(2,DIVC)


DO 60 K=3,LMAXM1


PV=O.


DO 65 J=I,JMAX


DO 65 I=1,IMAX


PV=PV+DUDX(I,J,K)3V(IJK)



65 	 CONTINUE


PV=PVCIJ


PVT(K)=PVT(K)+PV



60 	 CONTINUE


CALL PARTIAL(2,G)


DO 70 K=,LMAXM1


PVNS=O.


DO 75 J=1,JMAX


DO 75 I=I,IMAX


PVNS=PVNS+DUDX(I,J,K)V(I,J,K)


75 CONTINUE


PVNS=PVNSNCIJ


PVNST(K)=PVNST(K)+PVNS



70 CONTINUE


CALL PARTIAL(3,DIVC)


DO 80 K=3,LMAXM1


PW=O.


DO 85 J=I,JMAX

DO 85 I=I,IMAX


PW=PW+DUDX(I,J,K)*W(I,J,K)



85 	 CONTINUE


PW=PkUCIJ


PWT(K)=PWT(K)+PW



80 	 CONTINUE


CALL PARTIALC3,G)


DO 90 K=3,LMAXM1


PWNS=O.


DO 95 J=,JMAX


DO 95 1=1,IAX


PWNS=PWNS+DUDX(I,J,K)XW(I,J,K)


95 	 CONTINUE


PWNS=PWNSNCIJ


PWNST(K)=PWNST(K)+PWNS



90 	 CONTINUE


CALL PARTIAL(1,U)


DO 100 K=3,LMAXMI


PDU=O.


PDUN=O.


DO 105 J=1,JMAX


DO 	 105 I=I,IMAX


PDU=PDU+DUDX(I,J,K)XDIVC(I,J,K)


PDUN=PDUN+DUDX(I.J,K)KG(I,J,K)



105 CONTINUE


PDU=PDUMCIJ


PDUN=PDUNMCIJ



PDUN=PDUNXCIJ


PDUT(K)=PDUT(K)+PDU


PDUNT(K)=PDUNT(K)+PDUN



100 	 CONTINUE


CALL PARTIAL(2,V)


DO 110 K=3,LMAXM1


PDV=O.


PDVN=O.


DO 115 J=I,JMAX


DO 115 I=1,IMAX
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PDV=PDV+DUDX(I,J,K)NDIVC(I,J,K)



PDVN=PDVN+DUDX(I,J,K)MG(I,J,K)


115 	 CONTINUE



PDV=PDVKCIJ


PDVN=PDVNXCIJ


PDVT(K)=PDVT(K)+PDV


PDVNT(K)=PDVNT(K)+PDVN



110 CONTINUE


CALL PARTIAL(3,W)

DO 120 K=3,LMAXM1


PDWN=O.


PDW=O.


DO 125 I=I,IMAX


DO 125 J=1,JMAX


PDW=PDW+DUDX(IJ,K)MDIVC(I,J,K)


PDWN=PDWN+DUDX(I,J,K)9G(I,JK)



125 	 CONTINUE


PDW=PDWmCIJ


PDWN=PDWNHCIJ


PDWT(K)=PDWT(K)+PDW


PDWNT(K)=PDWNT(K)+PDWN



120 CONTINUE


RETURN


END



MDECK 	 LTPR


SUBROUTINE LTPR



C3mmmxx THIS SUBROUTINE PRINTS LONG TIME AVERAGES AT DESIGNATED INTERVALS


COMMON/RANGE/LMAXMI,LMAXM2,LMAXM3,LMAXM4,LMAXM5


COMMON/LTA1/USUM(65),UTSUM(65),STSUM(65),U2SMT(65),V2SMT(65)

1,W2SMT(65),PVT(65),PUT(65),PUNST(65),PVNST(65),PWNST(65),PWT(65)


2,TCONT


COMMON/LTA2/PDUT(65),PDVT(65),PDWT(65),PDUNT(65),PDVNT(65),PDWNT


1(65)


COMMON/SGTT/SGST(65),ETED(65),U2STT(65),V2STT(65),W2STT(65)


1,TSHGS,TSCNT


PRINT 10,TCONT,TSHGS,TSCNT



10 	 FORMAT(//,IOX,4 COUNTERS ,P3E14.5)


F1z1./TCONT

F2=1./TSHGS


F3=1./TSCNT


DO 20 	 K=3,LMAXMI


AI=UTSUM(K)mFl

A2=U2SMT(K)HFI


A3zV2SMT(K)xFl

A4zW2SMT(K)lF


A5zSTSUM(K)mFl

A6=PUT(K)*F1


A7::PVT(K)*FI


A8PWT(K)FI

PRINT 30,A1,A2,A3,A4,A5,A6,A7,ASK



20 CONTINUE


PRINT 40



40 	 FORMAT(/////)


DO 50 K=3,LMAXM1


AI=PUNST(K)NFI

A2=PVNST(K)mFl


A3=PWNST(K)1F


A4zSGST(K)XF2


A5zETED(K)MF3

A6=U2STT(K)MF3


A7=V2STT(K)XF3


AS4W2STT(K)MF3


PRINT 30,A1,AZ,A3,A4,A5,A6,A7,A8,K



50 CONTINUE


30 FORMAT(3X,1PSE14.5,I5)



PRINT 40


DO 60 K:3,LMAXM1


A1zPDUT(K)mF1

A2zPDVT(K)XF1


A3tPDWT(K)xFl



129





A4=PDUNTK)xF1


A5=PDVNT(K)KFI

A6=PDNT(K)*FI


PRINT 70,A1,A2,A3,A4,A5,A6,K



60 CONTINUE


70 FORMATC1P6E14.5,I5)



RETURN


END - -

EIUINN; PAGE IS 
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