NASA Technical Paper 1316

Wind-Tunnel Investigation at Supersonic Speeds of
 a Canard-Controlled Missile With Fixed and Free-Rolling Tail Fins

A. B. Blair, Jr.

NASA Technical Paper 1316

Wind-Tunnel Investigation at Supersonic Speeds of
 a Canard-Controlled Missile With Fixed and Free-Rolling Tail Fins

A. B. Blair, Jr.
Langley Research Center
Hampton, Virginia

National Aeronautics
and Space Administration
Scientific and Technical Information Office
\qquad
(

 －

${ }^{\prime}$ uәtqoid sṭ \ddagger

NOIむDODOZむNI

- Toxquos mek paeues pue

$$
\begin{aligned}
& \text { (て7ま 0<89と0*0) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •प7биәт Kpoq əoนəォә }
\end{aligned}
$$

STOEWXS

 －

$\partial C_{m} / \partial C_{L} \quad$ static longitudinal stability parameter

Canards

$$
\phi_{\mathrm{C}}=0^{0}
$$

Rear view

Sketch (a)

APPARATUS AND TESTS

Wind Tunnel

The investigation was conducted in the low Mach number test section of the Langley Unitary Plan wind tunnel, which is a variable-pressure, continuous-flow facility. The test section is approximately $2.13 \mathrm{~m}(7 \mathrm{ft})$ long and 1.22 m (4 ft) square. The nozzle leading to the test section is of the asymmetric sliding-block type, which permits a continuous variation in Mach number from about 1.5 to 2.9. (See ref. 7.)

Model

Dimensional details of the model are shown in figure 1 (a) and a model photograph is shown in figure 2. The model was a cruciform missile configuration that consisted of a cylindrical body with canards, aft tail fins, and a tangent ogive nose of fineness ratio 3.0. The complete model body had a fineness ratio of 15 . The canards and tail fins had slab cross sections with beveled leading and trailing edges. In order for the model to have a freerolling tail-fin assembly, the tail-fin afterbody was mounted on a set of lowfriction ball bearings and was free to rotate through 360° (lock screw out). For the fixed-tail configuration (lock screw in), the tail fins were locked in line with the canards. For both the fixed and free-rolling tail configurations, the canards were deflected to provide roll control and yaw control. The tail fins were not deflected (zero cant angle) and the tail-fin assembly had no braking system.

Test Conditions

Tests were performed at the following tunnel conditions:

Mach number	Stagnation temperature		Stagnation pressure		Reynolds number	
	K	O°	kPa	$p \leq f a$	per meter	per foot
1.70	339	150	56.4	1178	6.6×10^{6}	2.0×10^{6}
2.16	339	150	68.5	1430	6.6	2.0
2.36	339	150	75.7	1580	6.6	2.0
2.86	339	150	98.4	2056	6.6	2.0

The dewpoint temperature measured at stagnation pressure was maintained below $239 \mathrm{~K}\left(-30^{\circ} \mathrm{F}\right)$ to assure negligible condensation effects. All tests were performed with boundary-layer transition strips measured streamwise on both sides of the canards and tail fins and located $3.05 \mathrm{~cm}(1,20 \mathrm{in}$,) aft of the body nose and $1.02 \mathrm{~cm}(0.40 \mathrm{in}$.$) aft of the leading edges. The transition$ strips were approximately 0.157 cm wide (0.062 in .) and were composed of No. 50 sand grains sprinkled in acrylic plastic. (See ref. 8,)
d
l reference body length, $99.060 \mathrm{~cm}(39.000 \mathrm{in}$.)

Mach number
free-stream dynamic pressure, N / m^{2} (psfa)
angle of attack, deg
differential deflections of two canards (canards 2 and 4, shown in sketch (a)) for roll control; individual canards are deflected indicated amount; negative to provide counterclockwise rotation when viewed from rear, deg
$\delta_{\text {yaw }}$
ϕ_{C}
$\dot{\phi}_{\text {tail }}$
yaw-control deflection of two canards (canards 1 and 3, shown in sketch (a)); positive for leading edge right when viewed from rear, deg
model roll angle; positive clockwise when viewed from rear (for $\phi_{C}=00$, canards are in vertical and horizontal planes), deg
roll rate of tail-fin afterbody; positive clockwise when viewed from rear, rpm
$\partial C_{m} / \partial C_{L} \quad$ static longitudinal stability parameter

Canards

$\phi_{C}=0^{\circ}$
Rear view

Sketch (a)

APPARATUS AND TESTS

Wind Tunnel

The investigation was conducted in the low Mach number test section of the Langley Unitary Plan wind tunnel, which is a variable-pressure, continuous-flow facility, The test section is approximately 2.13 m (7 ft) long and 1.22 m (4 ft) square. The nozzle leading to the test section is of the asymmetric sliding-block type, which permits a continuous variation in Mach number from about 1,5 to 2.9. (See ref, 7.)

Model

Dimensional details of the model are shown in figure 1 (a) and a model photograph is shown in figure 2. The model was a cruciform missile configuration that consisted of a cylindrical body with canards, aft tail fins, and a tangent ogive nose of fineness ratio 3.0 . The complete model body had a fineness ratio of 15. The canards and tail fins had slab cross sections with beveled leading and trailing edges. In order for the model to have a freerolling tail-fin assembly, the tail-fin afterbody was mounted on a set of lowfriction ball bearings and was free to rotate through 360° (lock screw out). For the fixed-tail configuration (lock screw in), the tail fins were locked in line with the canards. For both the fixed and free-rolling tail configurations, the canards were deflected to provide roll control and yaw control. The tail fins were not deflected (zero cant angle) and the tail-fin assembly had no braking system.

Test Conditions

Tests were performed at the following tunnel conditions:

Mach number	Stagnation temperature		Stagnation pressure		Reynolds number	
	K	OF_{F}	kPa	psfa	per meter	per foot
1,70	339	150	56.4	1178	6.6×10^{6}	2.0×10^{6}
2.16	339	150	68.5	1430	6.6	2.0
2,36	339	150	75.7	1580	6.6	2.0
2.86	339	150	98.4	2056	6.6	2.0

The dewpoint temperature measured at stagnation pressure was maintained below $239 \mathrm{~K}\left(-30^{\circ} \mathrm{F}\right)$ to assure negligible condensation effects. All tests were performed with boundary-layer transition strips measured streamwise on both sides of the canards and tail fins and located $3.05 \mathrm{~cm}(1.20 \mathrm{in}$.) aft of the body nose and 1.02 cm (0.40 in .) aft of the leading edges. The transition strips were approximately 0.157 cm wide (0.062 in .) and were composed of No. 50 sand grains sprinkled in acrylic plastic. (See ref. 8.)

The primary method for controlling tail-fin rotational speed was by limiting the model angle of attack. In the early stages of this test program, tailfin rotational speed was nominally limited to 200 rpm as a safety precaution; however, this limit was extended to 500 rpm as more confidence was gained. In order to satisfy these limits, only small canard deflections were made.

Measurements

Aerodynamic forces and moments on the model were measured by means of a six-component electrical strain-gage balance which was housed within the model. The balance was attached to a sting which was, in turn, rigidly fastened to the model support system. Balance-chamber pressure (base pressure) was measured by means of a single static-pressure orifice located in the vicinity of the balance. One light-emitting diode with a photo-transistor receiver pick-up mounted on the sting was used in conjunction with a color-coded ring at the base of the model to record tail-fin afterbody revolutions. The accuracy of this recording system was $\pm 20 \mathrm{rpm}$. No attempt was made to measure the afterbody torque that was produced by the internal ball-bearing friction, viscous-layer skin friction, or aerodynamic damping.

Corrections

The angles of attack have been corrected for deflection of the balance and sting due to aerodynamic loads. In addition, angles of attack have been corrected for tunnel-flow misalignment. The drag and axial-force coefficient data have been adjusted to free-stream static pressure acting over the model base. Typical measured values of base axial-force and drag coefficients are presented in figure 3.

PRESENTATION OF RESULTS

Figure

Effect of free-rolling tail on longitudinal aerodynamic characteristics of model with zero control deflection at -

$$
\begin{aligned}
& \phi_{\mathrm{c}}=00 \text {. } 4 \\
& \phi_{C}=450 \text {. } 5
\end{aligned}
$$

Effect of canards on longitudinal aerodynamic characteristics of model
with free-rolling tail at $\phi_{C}=0$
Effect of free-rolling tail on lateral aerodynamic characteristics of model with zero control deflection at -

Figure

Effect of canards on lateral aerodynamic characteristics of model with
free-rolling tail at $\phi_{C}=00$. 10
Roll-control characteristics of model with fixed and free-rolling tail at -
$\phi_{C}=0^{\circ}$ 11
$\phi_{C}=45^{\circ}$ 12
Yaw-control characteristics of model with fixed and free-rolling tail at $\phi_{C}=0^{\circ}$ 13
Table
Summary of test data from free-rolling tail configuration with -
Zero control deflection I
Canard off IITwo canards differentially deflected 0.5° each for negative rollcontrol . IIIVertical canards deflected 5° for positive yaw control IV
DISCUSSION

Longitudinal Aerodynamic Characteristics

The longitudinal aerodynamic characteristics of the model with zero control deflection are presented in figures 4 and 5 for $\phi_{C}=0^{\circ}$ and 450 , respectively. In general, at low angles of attack ($\alpha \leqq 4^{\circ}$), both the fixed and free-rolling tail configurations have about the same lift-curve slope $C_{L_{\alpha}}$ and stability
level $\partial C_{m} / \partial C_{L}$. At the higher angles of attack for $\phi_{C}=00$, the free-rolling tail configuration has more nonlinear pitching-moment coefficient characteristics with a slight pitch-up tendency and, in general, less restoring moment than the fixed-tail configuration. These aerodynamic differences between the two configurations for the $\phi_{C}=450$ case (fig. 5) are less pronounced, with the pitching-moment curves becoming more nearly linear with increases in Mach number for the free-rolling tail configuration. However, the fixed-tail configuration now exhibits the pitch-up tendency that characterized the freerolling tail configuration at $\phi_{C}=00$. This pitch-up trend is typical for a missile with cruciform tail fins in the x-position ($\phi_{C}=45^{\circ}$) at supersonic speeds. Flow-field effects, in conjunction with adverse panel-to-panel interference between the windward and leeward tail-fin surfaces, result in a small overall reduction in tail lift capability. This loss of lift for the fixed-tail configuration ($\phi_{C}=45^{\circ}$) can be seen in the lift-coefficient curves presented in figure 5 and for the free-rolling tail configuration at $\phi_{C}=0^{\circ}$ in figure 4. Visual observation has shown that for $\phi_{C}=0$, the free-rolling tail fins are generally interdigitated to the canards (x-position) when rotation stops and are therefore in a similar flow environment as the fixed-tail case when $\phi_{C}=450$. This loss in tail lift would account for the pitch-up tendency.
yaw-control capability than the fixed-tail configuration. Again, the aero lockup is delayed to higher angles of attack. (See table IV.)

CONCLUSIONS

A wind-tunnel investigation was made at free-stream Mach numbers from 1,70 to 2.86 to determine the effects of fixed and free-rolling tail-fin afterbodies on the static longitudinal and lateral aerodynamic characteristics of a cruciform canard-controlled missile model. The effect of small canard roll- and yaw-control deflections was also investigated. The results of the investigation are as follows:

1. The fixed and free-tail configurations have about the same lift-curve slope and longitudinal stability level at low angles of attack.
2. For the free-rolling tail configuration, the canards provide conventional roll control with no roll-control reversal at low angles of attack.
3. The free-rolling tail configuration reduced induced roll due to model roll angle and canard yaw control.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
August 9, 1978

REFERENCES

1. Sawyer, Wallace C.; Jackson, Charlie M., Jr.; and Blair, A. B., Jr.: Aerodynamic Technologies for the Next Generation of Missiles. Paper presented at the AIAA/ADPA Tactical Missile Conference (Gaithersburg, Maryland), Apr. 27-28, 1977.
2. Schult, Eugene D.: Free-Flight Measurements of the Rolling Effectiveness and Operating Characteristics of a Bellows-Actuated Split-Flap Aileron on a 60° Delta Wing at Mach Numbers Between 0.8 and 1.8. NACA RM L54H17, 1954.
3. Regan, Frank J.; and Falusi, Mary E.: The Static and Magnus Aerodynamic Characteristics of the M823 Research Store Equipped With Fixed and Freely Spinning Stabilizers. NOLTR 72-291, U.S. Navy, Dec. 1, 1972. (Available from DDC as AD 751 658.)
4. Regan, F. J.; Shannon, J. H. W.; and Tanner, F. J.: The Joint N.O.L./R.A.E./W.R.E. Research Programme on Bomb Dynamics. Part III. A Low-Drag Bomb With Freely Spinning Stabilizers. WRE-Report-904 (WR\&D), Australian Def. Sci. Serv., June 1973.
5. Darling, John A.: Elimination of the Induced Roll of a Canard Control Configuration by Use of a Freely Spinning Tail. NOLTR 72-197, U.S. Navy, Aug. 16, 1972.
6. Mechtly, E. A.: The International System of Units - Physical Constants and Conversion Factors (Second Revision). NASA SP-7012, 1973.
7. Schaefer, William T., Jr.: Characteristics of Major Active Wind Tunnels at the Langley Research Center. NASA TM X-1130, 1965.
8. Stallings, Robert L., Jr.; and Lamb, Milton: Effects of Roughness Size on the Position of Boundary-Layer Transition and on the Aerodynamic Characteristics of a 55° Swept Delta Wing at Supersonic Speeds. NASA TP-1027, 1977.
9. Spahr, J. Richard; and Dickey, Robert R.: Wind-Tunnel Investigation of the Vortex Wake and Downwash Field Behind Triangular Wings and Wing-Body Combinations at Supersonic Speeds. NACA RM A53D10, 1953.
10. Dillenius, Marnix F. E.; and Nielsen, Jack N.: Prediction of Aerodynamics of Missiles at High Angles of Attack in Supersonic Flow. NEAR TR 99 (Contract No. N00014-74-C-0050); Nielsen Eng. \& Res., Inc., Oct. 1975. (Available from DDC as AD A018 680.)
11. Hardy, Samuel R.: Subsonic Wind Tunnel Tests of a Canard-Control Missile Configuration in Pure Rolling Motion. NSWC/DL TR-3615, U.S. Navy, June 1977. (Available from DDC as AD A044 957.)

TABLE I.- SUMMARY OF TEST DATA FROM FREE-ROLLING TAIL CONFIGURATION
 WITH ZERO CONTROL DEFLECTION

M	α,	ϕ_{C},	Tail-fin roll rate, rpma	Remarks
	deg	deg	Counterclockwise	
1.70	-1.9	0	115	
	-. 8		122	
	0		115	
	1.2		127	
	2.2		97	
	4.4		88	
	6.6		80	
	8.9		0	Stopped rolling
	11.1		0	Aero lockup
	13.5 \downarrow		0	Very small oscillation angle
	17.9		0	
1.70	-2.0	26.6	108	
	-. 5		133	
	-. 1		121	
	1.1		127	
	2.1		116	
	4.5		12	Rotated very slowly
	6.6		116	Roll rate apparently increasing with α
1.70	-2.4	45	105	
	-. 9		112	
	0		123	
	. 9		112	
	2.2		124	
	4.4		0	Stopped rolling
	6.5		0	Very small oscillation angle
	8.8 \downarrow		21	Rotated very slowly
	17.8		0	Aero lockup
2.16	-1.2	0	120	
	. 1		114	
	1.0		112	
	2.2		110	
	3.3		96	
	5.5		75	
	7.7		0	Stopped rolling; aero lockup
	$\stackrel{\downarrow}{24.7}$		0	

M	$\left\lvert\, \begin{aligned} & \alpha, \\ & \mathrm{deg} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \phi_{c}, \\ & \text { deg } \end{aligned}\right.$	Tail-fin roll rate, rpma	Remar ks
			Counterclockwise	
2.16	-1.0	26.4	121	
	-. 1		122	
	. 9		130	
	2.1		107	
	3.2		96	
	5.4		0	Stopped rolling
	7.5		0	
	7.8		199	Roll rate apparently increasing with α
2.16	-1.4	45	100	
	-. 1		104	
	1.0		99	
	2.1		100	
	3.2		87	
	5.4		0	Stopped rolling
	7.5		0	
	9.9		114	Started rolling
	12.0		128	
	14.1		195	Roll rate increasing with α
2,36	-1.5	0	143	
	-. 2		129	
	. 9		83	
	2.0		78	
	2.9		72	
	5,2		37	
	7.3		27	
	9.6 \downarrow		0	Stopped rolling; aero lockup
	23.7		0	Large oscillation angle
2.36	-1.5	26.6	80	
	0		94	
	. 9		98	
	2.0		61	
	3,1		0	Stopped rolling
	5.3		0	
	7.4		194	Roll rate apparently increasing with α

awhen viewed from the rear,

TABLE I.- Continued

M	$\left\lvert\, \begin{aligned} & \alpha, \\ & \mathrm{deg} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \phi_{C}, \\ & d e g \end{aligned}\right.$	Tail-fin roll rate, rpma	Remarks
			Counterclockwise	
2.36	-1.0	45	56	
	. 3		70	
	1.3		100	
	2.4		56	
	3.5		54	
	5.6		0	Stopped rolling
	7.7		33	Started rolling
	9.9		118	Roll rate increasing with α
	12.0		161	
	14.4		167	
	16.5		122	
	18.7 4		0	Stopped rolling; aero lockup
	23.8		0	
2.86	-2.9	0	23	Low roll rates
	-1.6		71	
	-. 5		64	
	. 7		62	
	1.8		36	
	3.8 +		0	Stopped rolling; aero lockup
	22.0		0	
2.86	-2.8	26.5	33	
	-1.5		49	
	-. 6		51	
	. 6		0	Oscillated; 2 or 3 revolutions
	1.8		50	Started rolling
	3.7		0	Stopped rolling
	5.9		0	
	8.0		131	Started rolling
	10.0		0	Stopped rolling
	11.5		230	Roll rate apparently increasing with α

```
TABLE I.- Concluded
```

M	$\left\lvert\, \begin{aligned} & \alpha, \\ & \mathrm{deg} \end{aligned}\right.$	$\begin{aligned} & \phi_{C}, \\ & \mathrm{deg} \end{aligned}$	Tail-fin roll rate, rpma	Remar ${ }^{\text {s }}$
			Counterclockwise	
2,86	-2.5	45	27	Low roll rates
	-1.5		51	
	-. 5		93	
	. 7		50	
	1.7		0	Stopped rolling
	3.9		0	Small oscillation angle
	5.9		0	
	8.1		75	Started rolling
	10.3		120	Steady rolling
	12.6		124	
	14.6		0	Stopped rolling
	17.0		0	
	19.1		0	
	20.2		157	Started rolling

awhen viewed from the rear.

TABLE II,- SUMMARY OF TEST DATA FROM FREE-ROLLING TAIL CONFIGURATION WITH CANARD OFF

M	α,	ϕ_{C},	Tail-fin roll rate, rpma	Remarks
	deg	deg	Clockwise	
1.70	-2.0	0	54	Very low roll rates
	-. 9		37	
	0		39	
	1.0		46	
	2.1		47	
	4.0		31	
	6.0		31	
	8.0		0	Stopped and started to roll
	10.0		0	
	12.1		30	
	14.2		28	
	16.4		26	Aero lockup
2.16	-1.6	0	33	Very low and steady roll rates
	-. 9		34	
	-. 1		31	
	1.0		47	
	2.0		20	
	3.0		30	
	5.0		23	
	7.0		0	Stopped rolling
	9.1		0	Stopped; started for several revolu-
	11.3		0	tions at a very slow rate
	13.4		26	Stopped; started; oscillated
	23.2		27	Rolled hesitantly and irregularly

awhen viewed from the rear.

TABLE II.- Concluded

M	$\begin{aligned} & \alpha, \\ & \text { deg } \end{aligned}$	$\begin{aligned} & \phi_{\mathrm{C}}, \\ & \mathrm{deg} \end{aligned}$	$\frac{\text { Tail-fin roll rate, } \mathrm{rpm}^{\mathrm{a}}}{\text { Clockwise }}$	Remar ks
2.36	-1.2	0	74	Low roll rates
	-. 3		47	
	. 8		86	
	1.8		52	
	2.8		102	
	4.9		88	
	6.9		45	Stopped; started; and oscillated
	9.0		0	Rolled hesitantly and irregularly
	23.0		42	
2.86	$\begin{gathered} -2.5 \\ \downarrow \end{gathered}$	0	39	Low roll rates
	5.6		28	
	7.8		0	Stopped rolling
	$\begin{aligned} & 9.8 \\ & \downarrow \end{aligned}$		0	Oscillated through small angle
	21.6		0	

WITH TWO CANARDS DIFFERENTIALLY DEFLECTED $0,5{ }^{\circ}$

EACH FOR NEGATIVE ROLL CONTROL

[M	αdeg	$\begin{aligned} & \phi_{C}, \\ & \mathrm{deg} \end{aligned}$	Tail-fin roll rate, $\mathrm{rpm}^{\text {a }}$ \|	Remarks
			Clockwise	
$[1,70]$	-2.2	0	98	
	-1.1		96	
	0		90	
	1.2		100	
	2.4		114	
	4.5		123	
	6.6		131	
	8.9		97	
	11.1 \downarrow		0	Stopped rolling; aero lockup
	17.9		0	Small oscillation angle
$[1.70$	-2.3	45	102	
	-1.3		81	
	-. 1		83	
	1.3		105	
	2.2		104	
	4.3 ψ		128	
	10.8		207	$\begin{aligned} & \text { Roll rate increasing with } \alpha ; \\ & \alpha>110 ; r p m>500 \end{aligned}$
$[2,16$	-1.2	0	93	
	0		97	
	1.1		109	
	2.2		122	
	3.3		136	
	5.5		154	
	7.6 \downarrow		164	Steady rolling
	16.7		138	
	18.9 \downarrow		0	Stopped rolling; aero lockup
	24.8		0	

$a_{\text {When }}$ viewed from the rear.

M	$\begin{aligned} & \alpha, \\ & \text { deg } \end{aligned}$	$\begin{aligned} & \phi_{c}, \\ & \mathrm{deg} \end{aligned}$	Tail-fin roll rate, rpma	Remar ks
			Clockwise	
2.16	-1.3	45	82	
	0		84	
	1.0		95	
	2.1		95	
	3.3		104	
	5.4		150	
	7.6 \downarrow		207	Steady rolling
	12.0		151	
	$\underset{\downarrow}{14.3}$		0	Stopped rolling; aero lockup
	24.5		0	
2,36	-1.3	0	109	
	$-.1$		121	
	. 8		103	
	2.0		95	
	3.1		147	
	5.2		123	
	7.3		110	
	$\begin{aligned} & 9.6 \\ & \downarrow \end{aligned}$		0	Stopped rolling; aero lockup
	24.4		0	
2.36	-1.0	45	88	
	. 4		71	
	1.3		105	
	2.3		93	
	3.4		108	
	5.6		168	
	7.8		178	
	10.0		156	
	12.2 \downarrow		0	Stopped rolling; aero lockup
	24.2		0	

awhen viewed from the rear.

TABLE III.- Concluded

M	α,	$\phi_{\text {c }}$,	Tail-fin roll rate, rpma	Remarks
	deg	deg	Clockwise	
2.86	-2.7	0	51	
	-1.5		67	
	-. 4		87	
	. 7		104	
	2.1		80	
	3.8		99	
	5.9		123	Steady rolling
	\downarrow			
	14.7		133	
	17.0		0	Stopped rolling; aero lockup
	$\stackrel{\downarrow}{22.6}$		0	
2.86	-2.6	45	84	Low roll rates
	-1.5		58	
	-. 5		65	
	. 6		71	
	1.7		73	
	3.8		105	Steady rolling
	\downarrow			
	10.3		42	
	12.5		0	Stopped rolling; aero lockup
	\downarrow 22.5		0	

$a_{\text {When }}$ viewed from the rear.

TABLE IV. - SUMMARY OF TEST DATA FROM FREE-ROLLING TAIL CONFIGURATION
WITH VERTICAL CANARDS DEFLECTED 50 FOR POSITIVE YAW CONTROL

[^0]

[^1]
(b) Ball-bearing spindle assembly and sting support.

Figure 4.- Effect of free-rolling tail on longitudinal aerodynamic characteristics of model with zero control deflection at $\phi_{C}=0^{\circ}$.

(a) Concluded.

Figure 4.- Continued.

Figure 4.- Continued.

Figure 4.- Continued.

(c) $M=2.36$.

Figure 4.- Continued.

Figure 4.- Continued.

Figure 4.- Continued.

Figure 4,- Concluded.

Figure 5.- Effect of free-rolling tail on longitudinal aerodynamic characteristics of model with zero control deflection at $\phi_{C}=45^{\circ}$.

(a) Concluded.

Figure 5.- Continued.

Figure 5.- Continued.

Figure 5.- Continued.

Figure 5.- Continued.

(c) Concluded.

Figure 5.- Continued.

Figure 5.- Continued.

Figure 6.- Effect of canards on longitudinal aerodynamic characteristics of model with free-rolling tail at $\phi_{C}=0^{\circ}$.

(a) Concluded.

Figure 6.- Continued.

(b) $M=2.16$.

Figure 6.- Continued.

(b) Concluded.

Figure 6.- Continued.

(c) $M=2,36$.

Figure 6.- Continued.

(c) Concluded.

Figure 6.- Continued.

Figure 6.- Continued.

(d) Concluded.

Figure 6,- Concluded.

(a) $M=1.70$.

Figure 7.- Effect of free-rolling tail on lateral aerodynamic characteristics of model with zero control deflection at $\phi_{C}=00$.

Figure 7.- Continued.

Figure 7.- Continued.

Figure 7.- Concluded.

Figure 8.- Effect of free-rolling tail on lateral aerodynamic characteristics of model with zero control deflection at $\phi_{C}=26.6^{\circ}$.

Figure 8.- Continued.

Figure 8.- Continued.

Figure 8.- Concluded.

Figure 9.- Effect of free-rolling tail on lateral aerodynamic characteristics of model with zero control deflection at $\phi_{C}=45^{\circ}$.

Figure 9.- Continued.

Figure 9.- Continued.

Figure 9.- Concluded.

Figure 10.- Effect of canards on lateral aerodynamic characteristics of model with a free-rolling tail at $\phi_{C}=0^{\circ}$.

(b) $\quad M=2.16$.

Figure 10.- Continued.

(c) $\quad M=2.36$.

Figure 10.- Continued.

Figure 10.- Concluded.

(a) $M=1.70$.

Figure ll.- Roll-control characteristics of model with fixed and free-rolling tail at $\phi_{C}=0^{\circ}$. Two canards deflected.

Figure 11.- Continued.

Figure 11.- Continued.

Figure 11.- Concluded.

(a) $M=1.70$.

Figure 12.- Roll-control characteristics of model with fixed and free-rolling tail at $\phi_{C}=45^{\circ}$. Two canards deflected.

Figure 12.- Continued.

Figure 12.- Continued.

Figure 12.- Concluded.

Figure 13.- Yaw-control characteristics of model with fixed and free-rolling tail at $\phi_{C}=0^{\circ}$. Vertical canards deflected.

Figure 13.- Continued.

Figure 13.- Continued.

Figure 13.- Concluded.

$\frac{\square}{?}$

*For sale by the National Technical Information Service, Springfield, Virgına 22161

Abstract

National Aeronautics and
THIRD-CLASS BULK RATE Space Administration

Washington, D.C.
20546
Official Business
Penalty for Private Use, $\$ 300$
$8 \quad 1$ 1U, 090878 S 00903 DS
DEPT OF THE AIR FORCE
AF WEAPONS LABORATORY
ATTN: TECHNCAL LIBRARY (SOL)
KIRTLAND AFB NM 87117

[^0]: $a_{\text {When }}$ viewed from the rear.

[^1]: (a) Complete model.

 Figure 1.- Model details. All dimensions are in centimeters (inches) unless otherwise indicated.

