General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ES78-MSFC-2241

Final Report

STS PAYLOAD DATA COLLECTION AND ACCOMMODATIONS ANALYSIS STUDY

Volume II - Payload Data Collection

(NASA-CR-150816)STS PAYLOAD DATAN78-32175COLLECTION AND ACCOMMODATIONS ANALYSISSTUDY.VOLUME 2: PAYLOAD DATA COLLECTIONFinal Report (Teledyne Brown Engineering)Unclas82 p HC A05/MF A01CSCL 22A G3/16 31594

Ø

August 1978

Cummings Research Park • Huntsville, Alabama 35807

ES78-MSFC-2241

STS PAYLOAD DATA COLLECTION AND ACCOMMODATIONS ANALYSIS STUDY

FINAL REPORT

VOLUME II

PAYLOAD DATA COLLECTION

AUGUST 1978

PREPARED FOR

INTEGRATED PAYLOAD AND MISSION PLANNING OFFICE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER

CONTRACT NO. NAS8-32711

PREPARED BY

SPACE SYSTEMS DEPARTMENT ENGINEERING SERVICES DIVISION TELEDYNE BROWN ENGINEERING HUNTSVILLE, ALABAMA

FOREWORD

This report summarizes the results of the Space Transportation System Payload Data Collection and Accommodations study (Contract NAS8-32711) performed by Teledyne Brown Engineering Company for the MSFC Integrated Payload and Mission Planning Office from August 24, 1977 to August 25, 1978. This study consisted of two basic tasks:

Task 1 - Payload Data Collection

Task 2 - Spacelab Payload Accommodations Analysis.

This report consists of the following:

Volume I - Executive Summary Volume II - Payload Data Collection Volume III - Accommodations Analysis.

The results of this study can be found in greater detail in various other reports published during the term of the study. These reports are:

Task 1 - ES78-MSFC-2251, OSTA Payload Planning Data, Volumes I and II, August 1978

Task 2 - ES77-NASA-02168, Accommodations Versus Space Payload Requirements, December 1977

> ES77-NASA+2168, Assessment of Launch Site Accommodations Versus Spacelab Payload Requirements, December 1977

Launch Site Processing Requirements, April 1978

Presentation to NASA JURG Spacelab Payload Accommodations Assessment from User's Viewpoint, May 1978

ES78-MSFC-2213, Spacelab Payload Planners Handbook, May 1978

Spacelab Accommodations Assessment for Earth Observations, Combined Astronomy, and Dedicated Life Sciences, August 1978

TABLE OF CONTENTS

			Page
1.	INTRO	DUCTION	1
2.	FORMA	T REFINEMENT	4
	2.1 2.2	Format Description	4 14
3.	DATA	COLLECTION PROCESS	15
4.	MISSI	ON PLANNING ACTIVITIES	19
	4.1 4.2	Flight Requirements Model (1980-83)	19 20
5.	RESUL	TS	21
	5.1 5.2	Data Volumes	21 24
APPEND	IX A	PAYLOAD DESCRIPTIONS	A-1
APPEND	IX B	PAYLOAD MODEL REQUIREMENTS	B-1
APPEND	IX C	SUMMARY DATA FOR QUICK REFERENCE	C-1
APPEND	IX D	PERTINENT PARAMETER BAR CHARTS	D-1

LIST OF FIGURES

Figure	Title	Page
	Objectives	1
2	Summary Format for Sortie and Free-Flyer Payloads	5
3	Detailed Format for Sortie Payloads	6
4	Detailed Format for Free-Flyer Payloads	8
5	Data Collection Process	16

LIST OF TABLES

Table	Title	Page
I	Data Collection Cycle	17
II	Inventory Summary	22
III	Status Summary	23

ABSTRACT

The results of the STS Payload Data Collection study are presented in this volume. The objectives of the study and the approach toward the accomplishment of the objectives are presented. The study dealt with the development of a format for payload data collection and a process for collecting the data. It resulted in payload data volumes and a data deck to be used as input for the Marshall Interactive Planning System. The format is presented and summary matrices of the data generated are included for reference. Detailed data are published in separate volumes and are addended to this report.

APPROVAL:

Project Manager

1. INTRODUCTION

The objective of the Payload Data Collection Study is to develop and maintain a data base, in suitable format, for use in OSTA mission planning activities. As shown in Figure 1 data are gathered from existing documentation and through the principal contacts at the various NASA Field Centers, compiled into volumes and keypunched into computer input format for mission planning purposes.

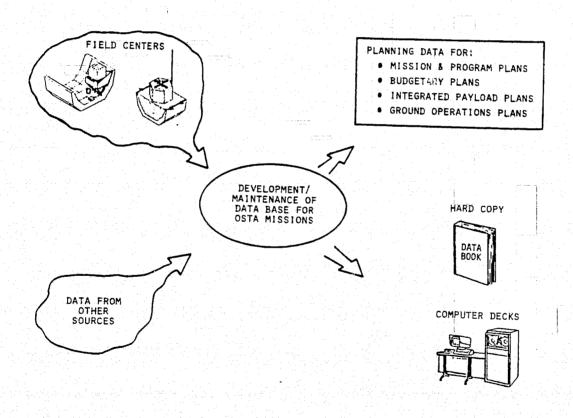


FIGURE 1. OBJECTIVES

ORIGINAL PAGE IS OF POOR QUALITY

f

The Space Transportation System Payload Data Collection activities of Contract NAS8-32711 began in September 1977 with the development of a format suitable for use in the study and gathering of data for support of immediate planning requirements for OSTA missions. The format development was necessary because of the cumbersome effort to generate and use the computer-entry oriented formats developed earlier. A format was needed which was simple to complete and use, but which would contain all data actually necessary for mission planning activities.

Format development was complemented by initial data collection activities which were driven by the need for quick response in support of mission planning activities at the Marshall Space Flight Center early in the contract period. This resulted in an activity timeline in which format development and preliminary data collection took place concurrently. Thus, the two aspects of this effort were supportive of each other since they offered the opportunity for involvement in the use of the format as the format was actually being developed.

Discipline inventories of investigations/instruments have been fluid and additions/deletions have changed requirements somewhat during the study. This, coupled with the fact that several investigations are in their infancy of development have made it impossible to complete the data base on some of these investigations to the depth desired. However, a broad data base has been developed and delivered which will greatly enhance future mission planning activities. Additions to the OSTA inventory was also necessary to develop a 5-year mission plan. In addition, 26 OAST experiments were brought into consideration for flight in OSTA missions. Preliminary data have been collected on all these investigations/instruments and will be incorporated into the books when all data are verified.

The data books are published with the available up-to-date data. Additional data as they become available with further development of the STS program can be readily added to this base. In addition to these data books, computer decks compatible with input requirements of the Marshall

Interactive Planning System (MIPS) at MSFC have been generated and delivered for use. These input data can also be readily updated either with added investigations or with superseding data.

The data books present the data collected for 82 investigations/ instruments and are divided in two volumes. Volume I contains OSTA Payload Planning Data Summary and presents summary level information for use in program, budgetary, and preliminary mission planning. Volume II contains detailed OSTA Payload Planning Data on those investigations/instruments which were identified by OSTA for inclusion in this activity and are at a stage of development which will allow this level of collection. This volume is intended for use in detailed mission planning/definition activities. Out of these 82 investigations/instruments 72 were in the initial OSTA inventory. The remainder which were considered in the 5-year mission plan, were subsequently assigned to the data collection activity.

The procedure for accomplishing this task required the cooperative and coordinated effort of personnel in NASA Headquarters, Marshall Space Flight Center's Spacelab Payload Project Office, and Field Center Principal Investigators/Contacts as well as Teledyne Brown Engineering Company discipline specialists. The involvement of high levels of NASA management personnel early in the program was highly contributive to the success of this project.

2. FORMAT REFINEMENT

Between the time of release of the RFP for this study and authorityto-proceed serious resistance had developed to the use of the format specified in the RFP for data collection. This resistance stemmed from three levels of data required, difficulty of completion on the part of the scientific community, and readability problems for the user. These objectives outweighed the convenience of direct input of data from the computer-oriented format.

TBE study personnel were assigned the task of developing a format which would satisfy the requirements of the mission developer and yet retain the degree of simplicity required for ease of completion by the scientific community.

Numerous consultations with experienced Science and Engineering and Program Development personnel, who had for some time been engaged in the processes of mission planning, identified the needs from one point of view. Discussions with NASA Headquarters personnel who had direct contact with Field Center Principal Contacts were instrumental in developing criteria for the format from another point fo view. In addition, the concurrent acquisition of data for use in an on-going mission planning activity at MSFC gave our personnel further insight into data requirements. This combined experience led to the following criteria for format development:

- Compatibility with other requirements documents (e.g. ERD's)
- Modular construction for multiple uses
- Ease of completion and use.

2.1 FORMAT DESCRIPTION

Using the criteria discussed above, the formats shown in Figures 2, 3, and 4 were developed for both Spacelab and free-flying investigations/ instruments. Only one level of data is collected, and a summary sheet for management use is generated from these data.

The formats were organized into four major sections - general information, experiment equipment description, physical characteristics

ORIGINAL PAGE IS OF POOR QUALITY

Page 1 of 2

OFFICE OF SPACE AND TERRESTRIAL APPLICATIONS INVESTIGATION/INSTRUMENT/FACILITY PLANNING DATA SUMMARY

1-GENERAL INFORMATION

ane/Acronym		Code No.	
iscipiine		Rev. Date	
uppitted by		MASA Ho Approvi	
cntact	uenter	Phone	
ontact	Center	Phone	
biective			
Description (Physical Packa	ge, Experiment Act cialist, etc.)	ivities, On Orbit Ope	rations,
			
			· ·
Deta Sources			
Development Status		710	W (MDI.)
Plenning Definition Studies	Modify/Upgrs Hardware		
AAFE Development Existing dardware		for Filght	
Flight Schedule (Circle No.	If Approved for Fl	igne)	
CY179180 18	1182183 84 85 861 8	1 981 991 901 91	
No. of Flights			

Identification/Fun	iction Qt	y Wt (kg)	Jimens	00	Location
			┝╼╍┝┙		
			<u>┼──</u> ┼─		
	1		1		
					· · · · · · · · · · · · · · · · · · ·
				+	
				1	
	1.			1	·
Operating Power 1	y	Operat Peak F	ing Power	Duratio	on
Peak Power I in Characteristics	Coera	Operat Peak F tions Orbit Minimum Max	ower Durat	ion	on
Operating Power Peak Power	2001-20070	Peak F	ower Durat	ion	
Operating Power 1 Peak Power 1 it Characteristics Altitude	2001-20070	Peak F	ower Durat	ion	
Operating Power 1 Peak Power 1 <u>it Characteristics</u> Altitude	2001-20070	Peak F	ower Durat	ion	
Operating Power Peak Power it Characteristics Altitude Inclination, deg	2001-20070	Peak F	ower Durat	ion	

3-PHYSICAL/OPERATIONAL REQUIREMENTS

Page 2 of 2 Code No.

Page 2 of 2

Page 1 of 2

OFFICE OF SPACE AND TERRESTRIAL APPLICATIONS FREE-FLYING PAYLOAD SUMMARY

I-GENERAL INFORMATION

ame/Acronym			Code No. Orig. Date	
UDMITTED by CONTACT		Center Center	Rev. Date VASA Hg Approvai Phone Phone	Ξ
bjective				·.· ·
escription (Physic	al Peckage,	On Orbit Operatio	ns, Control)	
		<u></u>		<u></u>
etë Saurces				-
<u>tta Saurces</u>				
elive-y				
elive-y Shuttle	Shurtle/Uop	ier Støge 🗍	Expensable Launch Vehicle	
evelopment Status Planning Definition Stud Development Existing Hardwai	-	New Developmen Modify/Ubgrade Hardware Prepare/Refurb Hardware fo	t Existing Ish Existing r Flight	
elivery Shuttle Planning Definition Stud' Development Existing Harowan light Schedule (C	e	New Developmen Modify/Uograde Mardware Propare/Refurd Hardware fo Approved for F31g	t Extisting Ish Existing Flight ht)	
elivery Shuttle Planning Definition Stud' Development Existing Harowan light Schedule (C	e	New Developmen Modify/Uograde Mardware Propare/Refurd Hardware fo Approved for F31g	t Existing Ish Existing r Flight	

1

Service

		Della	tery :	Service	Retr	ievi
*						
Total P/L Weight at Total P/L Landing W	Launch	kg)			خصت ا	
Satellite Weight		ka)				-
P/L.Length/Width/he	ight	(m)				
Satellite Length/Wi	dth/Ht.	(a)				-
ower						
		0 541	e11128		3	
Power		Church 1	From Jope	e 51300	1	
	- From	SUULTIE	Attachec_	Detacher	2	
	W L			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	1	
	r ;	1				
Duration n					1	
ascert/Descent		<u> </u>	_		1	
		1990 - E. 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 19				
Altitude km Inclination deg		+				_
			1.1	1		
Satellite Mission Char	acteristi	<u>cs</u>				
		Operatio	mel Orbit			
	.	Destrea !	War. I Wi		erational	
Altitude Apogee	kan [U	fetime 🔔	
Altitude Perigee	- km [u		
Altitude Perigee Inclination Spin at Separation	deg [
Altitude Perigee Inclination	deg [
Altitude Perigee Inclination Spin at Separation	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					
Altitude Perigee Inclination Spin at Separation	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					
Altitude Perigee Inclination Spin at Separation Longitude, 2	deg (rom)					

SUMMARY FORMAT FOR SORTIE AND FREE-FLYER PAYLOADS FIGURE 2.

ORIGINAL PAGE 18 OF POOR QUALITY

Page 1 of 8

Page 2 of 3 Code No.

OFFICE OF SPACE AND TERRESTRIAL APPLICATIONS INVESTIGATION/INSTRUMENT/FACILITY PLANNING DATA 1-GENERAL INFORMATION

Code No. Drig, Date Rev. Date MASA HG APDroval Phone Phone hame/Acronym Discipline Superities by Contact Contact Center Center Objective

<u>Description</u> (Physical Package, Experiment Activities, On Orbit Oberations, Control, Use of Payload Specialist, etc.;

ats Sources avelopment Status Time (mos.)		19	·	New Devi	loomenc	
ata Sources	evelopmen	nt Status				Time (mos.)
ata Sources						
	ats Source	:es				sau s
		17.1				
	·····					

Definition Studies Nodify/Upgrade Existing Hardware Prepare/Refurbish Existing Hardware for Flight Flight Schedule [Circle No. If Approved for Flight] CY179 80 81 82 83 84 85 86 87 88 89 90 91 No, of Fights + 1

	Telescope Ty	Pe	Operating Temp.	
	Camera: Radiometer:	Yisible Extinction Correlation	Infrared D Cavity D Other	
	Photometer: Interferomet	er: Hicnelson	Other	
	Spectrometer	Febry-Perot	Other	
		Grazing		
	Lidar:	Ē	*ype	
Hicrowave:	Yes No E Radar (Radinmeter)	Frequency Send	Antenna Type	<u> </u>
	Imaging	T Type		
Processing/	Manufacturing	: Yes 🗋 No 📄	•	
	Material:	Zone Refining	Temp, Range	
		Alloying Purification		
	Biological:	Electrophoresis Other Type Separation Others		
	Fluid Phenom			
		Migration Multiphase		
Additional (escriptions (Specific Instrument Ch	eracteristics):	

2-EXPERIMENT COULPMENT DESCRIPTION

Page 3 of 8 Code No.

3-PHYSICAL CHARACTERISTICS

Mass and Geometry

- Andrews

Í

ĺ

Total Launch weight kg Landed weight rg Pressurized Equipment kg Unpressurized Equipment kg Payload Volume cu m Pressurized Equipment cu m Unpressurized Equipment cu m Control & Display Area so m

Major Mission Equipment

Ľ	Identification/Function	Qty	ist (kg)	1	H In Orbiter
L			1	1 1 1	
L					
L					
Ľ					
Ŀ					
L					
Ľ					

Succort/Integration Equipment Requires in the Orpiter (If Known)-

			1000	VIDEC EV
	9:7	Lesar DI'On/Location	1.6.10	SILL ST
LARYDOGRO/Date Display unit	1		1	111
Computer for Data and/or Exp.	1.			11
Remote Acquisition Unit			111	10
High Rate Dicital Recorder		,	111	
closed incust Ty			111	
Cold Plater			017,	- 11
Thermal Blangers			ł	10
LND. nest tachanger	1		111	110
Single Racks	1		11.	
Louple Packs			111	22
ATTICE		(112	111
Pointing Subsystem	1		1	1
Camera				1.10
Remote Manipulator with	1		111	<u></u>
Uptical Window			111	NV.
			t	
			1	
			· · · ·	

		Page 4 of 3 Come No.
Power		
	Pallet Mocule	
Standby Power Deersting Power Operating Power Duration Pask Power Peak Power Duration		- - - - - - - - - -
Environment		
Temo., Hin/Hax (K) Humidity, Min/Max (2) Inst. Gutges Rate (g/hr) Inst. Rad. EMI Level (dBW/m ²)	Tolerable EMI L Tolerable Rad. Tolerable Acous (dBDA) Tolerable Conta (partfole	Rate (J/ko-sec) tics Level
Potential Mazaros		
High Pressure Pyrotecnnics Radiation	Cryogenics Probellants Corrosives]
Dtner		

ments, Specific Component Cooling, Power/Data Connector Locations)

Installation Constraints (Scan/Deployment Clearances, Orientation, etc.)

FIGURE 3. DETAILED FORMAT FOR SORTIE PAYLOADS

	Code No.
	4-OPERATIONAL REQUIREMENTS
moit Characterist	tics
	Desired 1 Minimum ; Maximum
Altitude, inclination, or	
ATTRCE OF PRESERVE	ons in Orbit Characteristics on Objectives
Launch Window [Ti	me of Day and/or Sesson)
arget Viewing Re	
Orientation Re-	
	Limo 🛄 'Actir 🗔 Solar Occult through Limo
	Other
Targets C	ONUS All Land Masses
	pecific Tergers
_	• • •
Constraints	Look Angle from Nagir (deg)
	Sun Elevation Angle (deg) to
Shacow/Sunlit i	Portion of Orbit Shadow Reduirements
	Sunlit Recuirements Not Service
	Recuirements
	Requirements
	Requirements
Other Viewing 7	Accuirements
Other Yiewing 7 Number of Observ	Recuirements
Other Viewing 7 Number of Obser Observation Dur	Recuirements
Other Viewing 7 Number of Obser Observation Dur	Recuirements
Other Viewing 7 Number of Obser Observation Dur	Recuirements Desired rections: Minimum Desired ration dr/Dzs Mission Duration wr Par Mission Per Observation

Total P/L Personnel Tim	nsonnel	
Describe How Personnel	Used	
	الم المراجعة الم ادية المراجعة ا	
me per Experiment Cycle	Observation	
	Avg Time hr) Crew Time (hr.)	
Setup Operating/Monitoring		
Shutdown		
Otner		
Total		
2		
Specific Background Ree	guired of instrument Operator:	
	r Instrument has a General Discipline Competence.	
it the uperator of you	would you Anticipate to Familiarize the Operator	
with your instrument a	na Research? hr	
imagy fontrol of the In-	strument During Orbital Operations:	
	strument During Orbital Operations:	
Aft Flight Deck 🔲 Mo	strument During Orbital Operations: duleReal Time from POCEOther	
Aft Flight Deck 🔲 Mo Description	dule 🗍 Real Time fram POCC 🗍 Other 🗍 .	
Aft Flight Deck A Mo Description	aule Real Time from POCS Other	
Aft Flight Deck A Mo Description	auleReal Time from POCCOther	
Aft Flight Deck Wo Description <u>ta/Communications Sundo</u> Direct P/L-to-Gnd RF C	cule Real Time from POCC Other	
Aft Flight Deck Vo Description <u>ts/Communications Suppo</u> Direct P/L-to-Gnd RF C Voice	auleReal Time from POCCOther	
Aft Flight Deck Wo Description <u>ts/Communications Sundo</u> Direct P/L-to-Gnd RF C	auleReal Time from POCLOther TL omm Reg'd?Real TimekDos Near Real Timekb/orbitkb/orbitkb/orbit	
Aft Flight Deck Vo Description <u>ts/Communications Suppo</u> Direct P/L-to-Gnd RF C Voice	auleReal Time from POCCOther	
Aft Flight Deck Vo Description <u>ts/Communications Suppo</u> Direct P/L-to-Gnd RF C Voice	auleReal Time from POCLOther TL omm Reg'd?Real TimekDos Near Real Timekb/orbitkb/orbitkb/orbit	
Aft Flight Deck Vo Description <u>ts/Communications Suppo</u> Direct P/L-to-Ond RF C Voice	auleReal Time from POCLOther TL omm Reg'd?Real TimekDos Near Real Timekb/orbitkb/orbitkb/orbit	
Aft Flight Deck No Description	auleReal Time from POCLOther TL omm Reg'd?Real TimekDos Near Real Timekb/orbitkb/orbitkb/orbit	
Aft Flight Deck "O Description <u>ts/Communications Suobo</u> Direct P/L-to-Gnd RF C Voice TY 34W Color ta Acoustition	cule Real Time from POCC Other .	
Aft Flight Deck No Description	auleReal Time from POCLOther TL	
Aft Flight Deck "0 Description	cule Real Time fram POCC Other .	
Aft Filgnt Deck Vero Description <u>trayCommunications Sundo</u> Direct P/L-to-Gnd RF C Voice C TY 3& Color C <u>tra Acoustition</u> Digital Mate. (mex), Digital Date. (mex), Digital Date. (mex), Analog Sanowidth, (mex)	ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
Aft Flight Deck Web Description ta/Communications Suppo Direct P/L-to-Gnd RF C Voice Control TV Baw Color Digital Aca, (max), Digital Oty, Total, Analog Burstion, Total TV Baewidth, (max)	cule Real Time fram POCC Other ctime	
Aft Flight Deck Vero Description <u>ta/Communications Sundo</u> Direct P/L-to-Gnd RF C Voice C TY 3& Color C <u>tra Acoustition</u> Digital Mate. (mex), Digital Day, Total, Analog Sandwidth, (mex	ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	

Page 7 of 8 Lode No.

Page 5 of 8 Code No.

.

L

<u>Statch</u> (Indicate Viewing Direction, Mounting Surface, Orientation in Rack, Pallet, or Cargo Bay, Approximate c.g. Location, Other Critical Constraints)

> ORIGINAL PAGE IS OF POOR QUALITY

	Space Envi und Monito	ring Regula 2 - Perio		Initiation Command: / Trajectory Experiment	History	Printout
Leound	Orieration	s Foxicon	ent. and Ci	onstraints	Describe	Function ar
ITTE H	hen heesed	1				
Ten		ontrol Reau d?				Vdc Vac
Exe File	idity Cont Tolerable eriment Ac ids Servic poenics Se	cess	d?			3 R.H.
				· · · · · · · · · · · · · · · · · · ·		
Launch	/Landing G	round Suppo	rt <u>% Eouio</u>	nent		
·		· · · ·				

Other STS Accommodations

Page 3 of 5 Code No.

A CONTRACTOR OF A DESCRIPTION OF A DESCR

Figure 3 - Continued

OFFICE OF SPACE AND TERRESTRIAL APPLICATIONS FREE-FLYING PAYLOAD

1-GENERAL INFORMATION

Piscipline			Unite. Cat	e	1.
		ter	Phone		
Contact			Phone .		
Objective					
Description (Physical Pac	ckape, On Orbi	t Operations,	Control)		
Data Sources				-	
Jelfvery					
	le/Upper Stag	П в	pendab i e	Launch Veh	icie 🗖
		· u · ·			
<u>Planning</u> Planning Definition Studies Development Existing Heroware	Modi	Development fy/Ungrade Ex lardware are/Refurbis/ laroware for F	Existing	T1me (/	

Flight Schedule (Circle No. 17 Approved for Flight)

Hissions / CT	79	80	1 81	82	23	54	1 95	66	87	88.1	89	90 9	ŋ
Delivery		t	(۱.		1		t	. i		- 1	
Retrieval		<u>.</u>		i .						1		1	
Service									1				

Instructing function with a second se	Setellite weight	+ 12700	and and and	
Sublyatemi reight			the state of the s	·
Sublyatemi wight Source <		10.00000	Contraction of the second second	
Subsystem: wight Subsystem: wight<		1115115		
Subsystems weight Constraints of the constraints of		11. 61004	12-138 CM	
Sublyatem: weight		V	Y/A * 2010	1 2 2 2 1
SUBSYSTEMS SETTING SUBSYSTEMS SETTING STORE ANY LOGINAL SALISANSE		Martin	100 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V 1. N.G.A.
SUBSYSTEMS SETTING SUBSYSTEMS SETTING STORE ANY LOGINAL SALISANSE		1.11	A	1. C. C. C.
SUBSYSTEMS SETTING SUBSYSTEMS SETTING STORE ANY LOGINAL SALISANSE		-4444	- this way	LIZEA.
SUBSYSTEMS SETTING SUBSYSTEMS SETTING STORE ANY LOGINAL SALISANSE			- Herrichter	-1-4-4-
200911001 ang gat Frobulsion Attives Control Attives Control Attives Control Pathing Sontrol Pathing Sontrol Pathing Sontrol Upper Stage of gat Interstage Stage Propulsion Stage Adjust Control Control Stage Sontrol Control Stage Sontrol Control Stage Sontrol Control Sontrol Stage Sontrol Control Sontrol Stage Sontrol Control S			- fifthe	- And the second
200911001 ang gat Frobulsion Attives Control Attives Control Attives Control Pathing Sontrol Pathing Sontrol Pathing Sontrol Upper Stage of gat Interstage Stage Propulsion Stage Adjust Control Control Stage Sontrol Control Stage Sontrol Control Stage Sontrol Control Sontrol Stage Sontrol Control Sontrol Stage Sontrol Control S			- And the state of	
Propulsion 222/22 222/22 222/22 Structure 222/22 222/22 222/22 Aussing Sourcel 222/22 222/22 222/22 Aussing Sourcel 222/22 222/22 222/22 Aussing Sourcel 222/22 222/22 222/22 Presult Sourcel 222/22 222/22 222/22 Presult Sourcel 222/22 222/22 222/22 Iterritel 222/22 222/22 222/22 Interritel 222/22 222/22 222/22 Interritel 222/22 222/22 222/22 Interritel 222/22 222/22 222/22 222/22 Interritel 222/22 222/22 222/22 222/22 222/22 Interritel 222/22	Subsystems weight	- And the second second	and the second second	- Anton and a second
Actuatives Control Actuatives Control Actuation Control Pressing Source Control Control Pressing Source Control Control Pressing Source Control Cont	Probuision	Sugar	the second	China Star
Alignie Auftralium	Structure	12.21.2.4	C. Mars	- Carlo
Alignie Auftralium	Istitude Control	SILVIN	Y APAY FAN	1. 1111
harmal Control	Suldance/Nevioation		VI. GIA	100000
rating i gerang Electrical Sper Jores Stage eright Interritage Stage Propulsion Cradia Service Asgenters Mighting Negula Asgente Negula Asgente Stage Stage Stage Service Asgente Negula Asgente Stag	thermal control	Ster Star	1	1200 64
Jprer Stage erignt	FACKING 5 GMMANS	Sec. 1. 1. 1. 1. 1. 1.	YA . 4413	1. 1. Y. H. A.
Jpre- Stage eright	Electrical Power		Y/24	17719-19
Jpre- Stage eright		VIII X	- Pres 2017	1000 10
Dur lige argni () () () () () () () () () () () () ()		- State State State	- Arteria	Marca.
Interitage Stage Propultion Propultion Propultion Plupositioning Platform Woule icnange Machanian Nogule Accase Accase Accase Accase Nogule Accase Ac	Innes Tenne		بالمتركب والمستهم والمراكبة	and the Star
Slags Procylision Crails Grunce/Matriaval (guip, Wt, Crails, Crails		-	high a find the	- the state of the
Propulsion C22 222 222 222 222 222 222 222 222 22	Stane	6.29	Grand Comment	بمغ مستعمر الم
Cradia Gradia Gradia FU Cost Cioning Riactorm Module Istemania Nasola Nagatha Cost	Propulsion	- 6/21		And the
Arvice/Nerieval Gould. Mt. Constrained Con	uradie	202	and the second second	11-11- F
Arvice/Nerieval Gould. Mt. Constrained Con		12-2-58	The Contractor	1
Worule ischange Machanian 2020/2020/2020/2020/2020/2020/2020/202		10000000	11 M. S. M.	1000000000
Nogula Nagatine Control Contro		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1.1	A. 61. 8
	Module Exchange Mechanism		2010 B 102	(A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
F 7552257223 222223 22	Module hagazine		and the second secon	1.44
netry			CALL LE	121 E
wsry (a)		- 1. N. C	Carrent and	1940 - F.
	WSTY (•)		

3-PHYSICAL CHARACTERISTICS

Page 2 of 2 Come No.

Power To Upper Stage from Orbiter 0 34181111 Pawer Attacne From Shuttle Upper State Stindby Duretio Ascent-Descent Satellite Solar Array: Area m⁰ Primary Power Level at Hission Start Shuttle Environment Tolerable Dil tevel (dBw/m²) Tolerable Rad. Rata (d/kg-sec) Tolerable Acoustics Level (dBOA) Tolerable Contamination Level (particles/m²) Temp., Hin, Max. K) Humidity, Min. Max. (1) Potential Hezards E High Pressure Pyrotecnnics Ramiation Cryopenics Propellants Corrosives Other Special Reguirements (Integration Handling Edulament, Mounting Requirements, Specific Component Cooling, Installation Constraints, etc.)

Page 1 of 7 Cone No. Page 1 of 7 Code No. <u>Sietch</u> to Include: Dimension, Shutzle Attacmment/Stage Inferface, Orientation in Carpo Day, and c.p. Location

> ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 4. DETAILED FORMAT FOR FREE-FLYER PAYLOADS

ORIGINAL PAGE IS OF POOR QUALITY

Í

ige 5 of 7	
------------	--

ttle Orbit Charact	eristics		1.000				
F .		Tivery Or			etmeva!	Americ	
		Haz.	1 910	1 Jatin	CUITERS		
Altitude im	1.00				ور ب ب	. , .	
Inclination deg				· · · · · ·			
ellite Mission Cha	racterist	tics	i i				
					-		
	4	JDe-1	(isnort	<u>1915</u>	4 .		
Andrews Andrews	km l	Gestred	Max.	1 41n.		stiona)	
lititude Apagee Lititude Perigee	kon i		+	÷		time	
Inclination	dec		1.	+	-		
Spin at Separation	(may				-i .		
ongitude. W	aea l			ومصروبه			
ongroups a	449 6		. .				
lewing Program							
						_	-
Atte Activation	and Check	LOUT: ATT	iched to	Groiter			
Activation and Che	ckout Tin	N	h	r	·····.		
Activation and Che Deactivation and C	ckout Tin	N	h	r	 		
Activation and Che Deactivation and C Electrical Energy	ckout Tin Neckout 1	line -	h k	r	·····		
Activation and Che Deactivation and C Electrical Energy	ckout Tin Neckout 1	line -	h k	r		-	
Activation and Che Deactivation and C Electrical Energy	ckout Tin Neckout 1	line -	h k	r		-	
ectivation and Che Deactivation and C Dectrical Energy	ckout Tin Neckout 1	line -	h k	r			
Activation and Che Deactivation and C Clectrical Energy Hescribe Activation	ckout Tin heckout I n and Che	ne Fime Hokout Act	h k	r		-	
Activation and Che Deactivation and C Clectrical Energy Hescribe Activation	ckout Tin heckout I n and Che	ne Fime Hokout Act	h k	r			
Activation and Che Deactivation and C Clectrical Energy Hescribe Activation	ckout Tin heckout I n and Che	ne Fime	h h k			perati	
Activation and Che Deactivation and C Clectrical Energy Hescribe Activation	ckout Tin heckout I n and Che	ne fime ickout Act <u>Support</u> Shut	h h ivity	r kih	calita.		112
Activation and Che Deactivation and C Clectrical Energy Hescribe Activation	ckout Tin heckout I n and Che	ne fime ickout Act <u>Support</u> Shut	h h k	r kih	calita.	Satell	112
Activation and Che Deactivation and C Clectrical Energy Describe Activation Plite Data/Commun	ckout Tin heckout I n and Che ications	ne fime Eckout Act Support Shut Dalink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and C Intertical Energy Mescribe Activation willite Data/Commun Mirect P/L-to-End J	ckout Tin heckout I n and Che ications	ne fime ickout Act <u>Support</u> Shut	h h ivity	r Kh Uper Si Daltak U	carða, 👘	Satell	112
Activation and Che Deactivation and C Clectrical Energy Describe Activation 2011te Data/Commun 2011te Data/Commun 2011te Data/Commun 2012te P/L-to-End J 2012te P/L-to-End J	ckout Tin heckout I n and Che ications	ne fime Eckout Act Support Shut Dalink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and Che Intertical Energy Mescribe Activation allite Data/Commun Allite Data/Commun Activation Activation Regider V SAM	ckout Tin heckout 1 n and Che ications	Support Shut Chink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and Che Intertical Energy Mescribe Activation Mescribe Activation Minect P/L-to-Gand J Regid? TV Seation.	ckout Tin heckout 1 n and Che <u>ications</u> RF Comm	support Support Shut Dalink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and Che Intertical Energy Describe Activation ellite Data/Commun Pirect P/L-to-Gnd J Regidz Tata, (max VV Data) Stata Act, (max	ckout Tin heckout 1 n and Che <u>leations</u> RF Comm	Support Shut Chink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and C Intertial Energy Describe Activation Pilite Data/Communic Pilite Data/Communic Pilite Data/Communic Pilite Data/Communic Pilite Data/Communic Pilite Data/Communic V Duration, (max.),	ckout Tin heckout I n and Che <u>ications</u> RF Comm	Support	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and Che Deactivation and Che Intertical Energy Describe Activation ellite Data/Commun Prest P/L-to-Gnd J Reg 42 Yr Ouration. Upital Rate, (max.) Digital Oty, Total	ckout Tin heckout 1 n and Che <u>ications</u> RF Comm .), kt	support.	tle uplink	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and C Electrical Energy Describe Activation ellite Data/Commun Prect P/L-to-End J Regids TV BAW TV BAW TV Digital Rate, (Max.) Digital Oty, Total Weil-Ime Maior Bandwidth.	ckout Tin heckout I n and Che <u>ications</u> RF Comm .), kt	support Support Shut Dolink	h h ivity	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
Activation and Che Deactivation and C Electrical Energy Describe Activation ellite Data/Commun Prect P/L-to-End J Regids TV BAW TV BAW TV Digital Rate, (Max.) Digital Oty, Total Weil-Ime Maior Bandwidth.	ckout Tin heckout I n and Che <u>ications</u> RF Comm .), kt	support Support Shut Dolink	tle uplink	r Kh Uper Si Daltak U	o)tnik Or	Satell	112
alite Activation Activation and Che Deactivation and C Electrical Energy Describe Activation Describe Activation C ellite Data/Communication Reo'd2 Treo'd2 Two Junation, (max.), Duration, (max.), Noital Oty, Total Weil-Ime Mailog Bandwiczh, Mailog Deration, The Survey Contexton, Survey Contexton, The Survey Contexton, Survey Contexton, The Survey Contexton, Survey	ckout Tin heckout I n and Che <u>ications</u> AF Comm .), kt (max.), otal,	Support Shut Dalink hr Dos Ht Hz Hz	tle uplink	r Kh Uper Si Daltak U	o)tnik Or	Satell	112

Data/Communications Support (Conclude	d)	
Special Requirements (Explain)	-	
· · · · · · · · · · · · · · · · · · ·		
Payload Personnel	P/L Specialist	Mission Specialist
Estimated No. of Personnel Personnel Time, Man hr/msn		
EVA		
No. of Planned EVA per Min	EVA Dura	tion
Payload Operations Control Center (PO	<u>:</u> ()	
POCC Location		
Gesired Qutput Form Tabe: Strip Chart Tabular Report Digital TY		
Remote Site Support		
Command Initiation Display Printout		
Real-Time Data Processing and Displ	47 🗖	
Ground Omerations, Environment, and Co Time when Reeded)	ntraints (Describe	Function and/or
Clean Room Environment Required? Temberature Control Required? Power Required?	Class	
Humidity Control Required? Tolerable Level Experiment Access Hr Sefore Launch Fluids Servicing	: R.H.	

Page 7 of 7 Code No.

Other Launch/Landing Ground Support Ecuipment

......

And a second sec

Π

NOTES (IDENTIFY BY SECTION NO.)

					_		_							·			
							1.1										
1.1.1										10.0			11		-		
a 16 (j.					_												۰,
								1.1				1		1.1		-	-
				سبعصده												<u>.</u>	•
1.1											1.1						۰.
							-		• • •							<u>منيت</u>	-
						1.1			-		-				÷		5
-			_					· · ·				-	1.		÷		÷
						÷											•
					·					-		-					•
		_				÷								-	÷.,		
													-		<u>.</u>		÷.,
		-						÷	÷		<u>.</u>				÷		•
<u> </u>								ښ	-			÷÷÷		÷	÷	÷	<u>-</u>
	-	÷			~~~		<u> </u>		÷		÷						•
÷	_				-		<u>سب</u>								÷.,	-	÷
ني ،		<u> </u>							-		÷	-	<u>.</u>			<u>مېن</u>	•
	<u> </u>		<u>-</u>	<u> </u>			سننتب	·			-	<u></u>			<u>.</u>	÷	
	÷	÷		<u> </u>				_	-			<u> </u>					
				-		مېنې	_	بنب		_						_	
			بمنعد			÷		يبنح		÷			<u>.</u>	-		<u>.</u>	÷
_												_	÷			<u> </u>	
					<u></u>	_					<u>.</u>		_		1271		÷
								<u>.</u>									
<u> </u>						_							<u></u>		<u> </u>	·	•
1.11	1.1.1		<u> </u>		<u>.</u>				_		29 - 14 1		_				

Figure 4 - Continued

of the equipment/facility, and operational requirements. The section on experiment equipment description is deleted from the free-flying payload format simply because mission planning does not require this information. Moreover, science information on most shuttle experiments that are carried by free-flyer for long-term use can be obtained from shuttle payload data sheets. The items that are included in the detailed formats are:

1. General Information

<u>Name/Acronym</u> - Complete name of the Investigation/Instrument/Facility and the acronym by which it will be known.

<u>Code Number</u> - Assigned code number of the I/I/F. Blank if form is being used as a fact sheet.

<u>Originating Date</u> - The date of first use of the form for data submittal on a particular I/I/F.

<u>Revision Date</u> - If form is used for an I/I/F after original submission to update data or for another application.

<u>Discipline</u> - Discipline of planned use of the I/I/F or multiple disciplines when used in a fact sheet.

<u>Submitted By</u> - Name of responsible organization which is submitting the data sheets for planning use.

<u>Contact</u> - Name of individual responsible to NASA for development, scheduling, and use of the I/I/F.

<u>Objective</u> - Concise statement of the science/applications objective of the I/I/F in its planned use.

<u>Description</u> - Brief description of the I/I/F, the activities and operations to be performed, its components, and how it is operated and controlled.

<u>Data Sources</u> - Sources of information used in completing the data sheets.

Development Status - Current status of the development of the I/I/F.

<u>Time (mos.)</u> - Lead time necessary from approval-to-proceed till flight readiness can be attained, or time from submittal of form till flight readiness if I/I/F is currently in an approved development program. <u>Flight Schedule</u> - Number of planned flights for each year. If approved circle number. If one flight is approved and another planned for the same year use two number 1's and circle one, e.g., / [81] \setminus .

2. Experiment Equipment Description

Type of equipment by major classification. If I/I/F cannot be fully defined by use of these descriptions, then additional data in space provided. This section not included for free-flyer format.

3. Physical Characteristics

Mass and Geometry

Total Launch Weight - I/I/F plus all flight support equipment mass charged to the experiment and consumables.

Landed Weight - Items mentioned above except consumables or jettisoned equipment or retrieval equipment for free-flyers.

<u>Pressurized/Unpressurized Equipment</u> - This item separates the equipment which is carried in the Spacelab from that located in the cargo bay.

<u>Payload Volume</u> - This item not included in free-flyer refers to the volume in the stowed mode. However, if the equipment on the pallet requires space (e.g., for transversing scan arc) which it does not occupy in the stowed mode, but which is restricted from use by other equipment, then this space in the total volume.

<u>Control and Display Area</u> - Minimum area of control panel necessary for carrying out experimental control and monitoring of I/I/F.

Major Mission Equipment

Identifies each piece of major equipment - subsystem, upper-stage for free-flyer - by name or function and indicates quantity of each, weight, dimensions, and location.

Support/Integration Equipment

Identifies items of support required for the proposed I/I/F including experiment furnished. Common available items are tabulated. Blank spaces identify required items of equipment, other than the standard items listed.

<u>Power</u> - The levels of power required and approximate durations for standby, operating and peak performances.

<u>Environment</u> - Temperature and humidity limits for the external environment, EMI tolerance level, radiated energy, acoustic energy and particulate contamination from its external environment. I/I/F emission levels of EMI and radiant energy for use in assessing impact on other equipment in the proximity.

<u>Potential Hazards</u> - A list of hazardous conditions that exist in the I/I/F.

<u>Special Requirements</u> - Specialized equipment or procedures necessary for handling or mounting the I/I/F. Also indicates any special requirements for component cooling/heating or restrictions for locations of power and data connectors.

<u>Installation Constraints</u> - Indicates clearances required in the proximity, the physical location of I/I/F for deployment of antennas, scanning of optical systems, etc.

<u>Sketch</u> - Sketch of the major components of the I/I/F giving approximate dimensions and orientation in the x, y, and z directions in the rack, pallet, or cargo bay including approximate center of gravity location when in the launch/landing mode.

4. Operational Requirements

<u>Orbit Characteristics</u> - Indicates desired and max. min. altitude and inclination including free-flyer mission.

<u>Target and Viewing Requirements</u> - Indicates the target of the I/I/F, orientation, angles, elevations, sunshine, etc., required for measurements. Number of observations for experiment and the minimum below which results would be meaningless or incomplete. Also indicates the duration of each observation and the mission duration required to complete the experiment objective.

<u>Pointing, Stability, and Control</u> - Indicates the pointing and stability accuracy required in order that the experiment can be successfully carried out in shuttle mission.

<u>Primary Control</u> - Location from which the shuttle I/I/F will be controlled.

<u>Payload Personnel</u> - Number of payload/mission specialists necessary to operate the I/I/F under peak working conditions.

<u>Time per Experiment Cycle/Operation</u> - Indicates average experiment time and corresponding crew time.

<u>Data/Communications Support</u> - Indicates operational mode of communication between orbiter and ground necessary to direct the activities of the experiment or satellite. Also indicates if data required are in real-time or near real-time, if both then how much each.

<u>Data Acquisition</u> - Indicates the maximum rates and total data necessary to accomplish the goals of the experiment.

<u>Other STS Accommodations</u> - Any other accommodations, than those specified, are required for the experiment.

<u>Payload Operations Control Center</u> - Indicates by the approximate box the data, command, communications, display monitoring, and remote site requirements.

<u>Ground Operations Environments and Constraints</u> - Indicates the functions required for the experiment during ground operations, including integration, test and checkout, and the times or points in the flow at the launch site at which these functions are needed. <u>Launch/Landing GSE</u> - Delineates any special requirements the I/I/F will have for handling at the launch/landing site. Summary data sheets for both Spacelab and free-flying payloads, which are suitable for top-level mission planning, were also formulated, These formats are also used for investigations which are not yet well defined and for which data required by the detailed format are consequently not available. The general information for these summary forms is the same as for the detailed form. Pertinent information on physical and operational characteristics necessary for top-level mission planning and executive use are extracted from the detailed sheets for inclusion on the summary sheets.

2.2 FORMAT USE

Experience in the study is extensive enough to draw definite conclusions concerning the utility and acceptability of the format. Data have been collected on approximately 100 investigations/instruments. Two five-year mission plans have been developed during the course of the study using data collected on the formats. This experience has shown that:

- The format is in sufficient detail for mission planning use.
- The data are organized conveniently for mission planning.
- The collection process is convenient for responsible Field Center personnel.
- Summary sheets serve well for overview purposes.

In using the format some items have been found to be superfluous (e.g., EVA requirements). One item of data originally omitted because it could be derived from format data, i.e., total energy, was found to be desirable on the part of the user. These and other minor modifications have been made in the formal data books. Further study of the format should be made in order to enhance its usefulness and acceptability.

3. DATA COLLECTION PROCESS

The process for the Data Collection activity is shown in Figure 5. The process began with the establishment by NASA Headquarters of the active inventory of investigations/instruments for consideration in mission planning activities. Headquarters, in turn named a responsible individual, at one of the various NASA Field Centers, for each investigation/instrument.

MSFC personnel established the requirements for data necessary for their mission planning activities. Teledyne Brown Engineering in contact with NASA Headquarters and MSFC personnel developed a format for use in the activity.

The steps in the data collection cycle are listed in Table I. An important consideration in the data collection effort was to elicit the cooperation of the principal contacts in working with TBE. In this regard a procedure was developed whereby initial contact with the principal contacts was to be made by the appropriate NASA offices. Specifically, for the OSTA payloads the Office of Space and Terrestrial Applications sent a letter to the principal contacts announcing the data collection effort, introducing TBE, and explaining TBE's role in the effort. This letter from OSTA was followed up by a phone call from the Spacelab Payload Project Office (SPPO) at MSFC reiterating the points of the letter and alerting the contacts to expect the arrival of the The data format which was sent out by SPPO was accompanied data format. by a cover letter in which the particular TBE specialist assigned to the payload was introduced. Also, since an important consideration in this data collection effort was to minimize the impact on the activities of the principal contact, the principal contact was presented with the option of working with TBE in one of three modes: (1) to fill out the format himself; (2) to have TBE fill out the format based on resource materials provided to TBE by the contact; or (3) to provide the information via telephone conversations and/or a personal visit to the contact's facility.

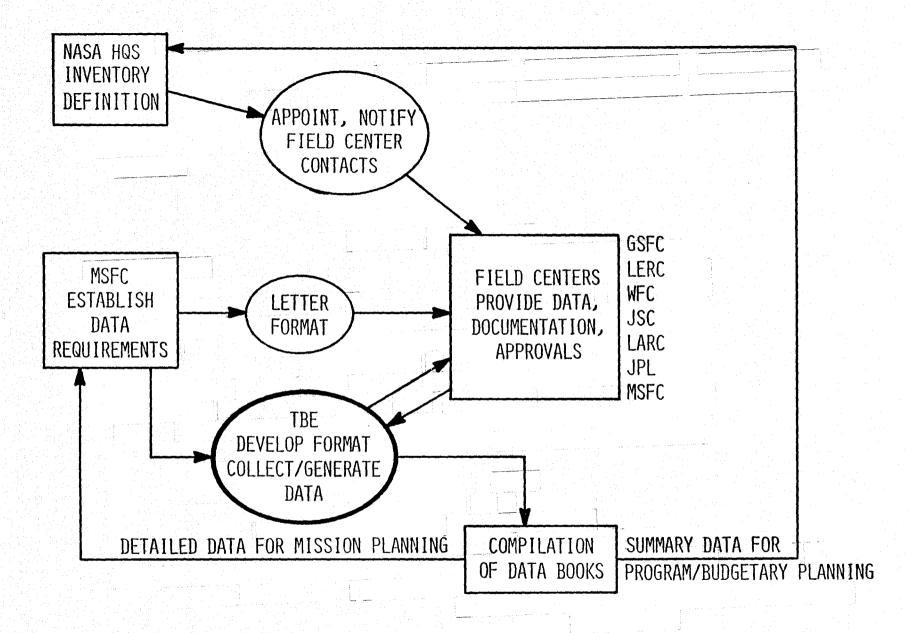


FIGURE 5. DATA COLLECTION PROCESS

1б

TABLE I. DATA COLLECTION CYCLE

	Action	<u>Organization</u>
1.	Introductory letter	NASA HQ
2.	Initial phone contact	MSFC SPPO
3.	Send data forms	MSFC SPPO
4.	Check on receipt and form clarification	TBE
5.	Receive forms from contact	TBE
6.	Review forms and identify other data needs	TBE
7.	Follow up on missing data	TBE
8.	Contact review of data	TBE
9.	Receipt of updates	TBE
10.	Complete data form	TBE
11.	Identify outstanding items	TBE
12.	Update form data as required	TBE

Approximately two weeks after the formats were mailed out a follow-up call was made by a TBE specialist which represented the first contact by the specialist with the principal contact. During the course of the conversation the specialist introduced himself, inquired about the arrival of the data format, answered any questions the contact might have had regarding the format, and emphasized the options open to the contact regarding completion of the format. Most contacts subsequently responded by completing the format themselves or by providing resource materials. Personal visits were arranged to establish a better working relationship and obtain additional data which the principal contact had not provided, or where clarification of existing data was required. Consequently, most OSTA contacts were visited during the data collection effort.

After initial completion of the format via one of the three options the emphasis of the effort then shifted to data refinement. Additional data needs were identified and the missing data was acquired where available. The data formats were then sent back to the principal contacts for examination, updating, and approval. After the approved forms were returned by the contacts those essential data items which were still missing were estimated by the specialist to complete the format to the extent possible. Items not subject to estimation were identified as outstanding.

The OAST data collection effort was initiated at a somewhat later date than the OSTA effort. Since it was necessary to compile a preliminary summary data base quickly, the initial steps in the OAST data collection cycle differed from those of the OSTA cycle. Further efforts in collecting OAST data will follow the procedure outlined above.

4. MISSION PLANNING ACTIVITIES

In the course of the development and maintenance of the OSTA data base, support was also rendered to two mission planning activities through data compilation during the contract period. This activity, although on a very tight schedule, greatly contributed to our insight into data requirements as well as to MSFC's mission planning activities.

4.1 FLIGHT REQUIREMENTS MODEL (1980-83)

A summary data book on 28 investigations/instruments in the OA flight requirements listing was generated for MSFG in connection with Flight Requirements Model Development. This was achieved concurrently with the format development activity. The format used for this book is a 2-page predecessor of the 2-page summary format currently being used. The collected data included:

- Investigation objective
- Instrument description
- Flight schedule
- Mass and volume
- Power
- Orbit
- Target

The data and information were obtained through research into the available documents in the form of NASA reports, experiment requirement documents, fact sheets, industry documents, proposals, etc., and telecons with investigators.

A summary matrix of objective/description and requirements of each investigation/instrument was generated for "easy reference." This is presented in Appendix A.

4.2 PAYLOAD MODEL (1980-85)

Activities for the development of the 1980-85 Payload Model at MSFC required data for the 61 investigations/instruments considered for OSTA missions. Included in this requirement were 16 OSTA and 26 OAST investigations/instruments which were not, at that time, included in the active inventory for data collection. The experience gained during the routine data collection activities was instrumental in enabling TBE to satisfactorily respond to this data requirement on a quick turn-around basis. In addition to providing summary data sheets on these payloads, TBE specialists provided consultation to MSFC Program Development personnel to expand on and clarify the data on all investigations/instruments considered in the mission planning exercise.

A summary matrix of significant parameters on each investigation/ instrument in the payload model which will facilitate "quick-look" in the mission planning exercise also resulted from this activity. This summary is presented in Appendix B.

5. RESULTS

The results of the data collection process are contained in several separate documents. The chief outputs, of course, are the detailed data book on all investigations/instruments for which this level of data is available, and the book of summary sheets on these investigations/instruments plus those in the active inventory for which data are more limited. Preliminary copies of the OSTA detailed data book and summary level book to be used as working copies were delivered in June 1978. Formal publications of these two books are addended to this final report.

In addition a working copy summary level format book for the OAST investigations/instruments which were considered for flight in the latest OSTA mission plan was delivered. Formal publication of this book and additions to the OSTA book of the additional requirements cited in the introduction will be accomplished at a later date. A summary of the inventories for which data were collected is presented in Table II.

The status of the overall collection process including late additions is presented in the Status Summary in Table III. It can be seen that the official submittals column is behind the anticipated schedule for the original inventory. The data books are being published formally without approval of principal contacts when necessary.

5.1 DATA VOLUMES

The data volumes include detailed data, for payloads for which data are available, in Volume II and summary sheets for all active inventory investigations/instruments in Volume I.

A quick reference summary of these data was prepared and is included in matrix form in Appendix C. A series of parameter bar charts useful for pointing out major drivers and for compatibility analyses of investigations/instruments for mission planning studies are presented in Appendix D.

21

TABLE II. INVENTORY SUMMARY

OSTA DISCIPLINE	NUMBER OF PAYLOADS INVESTIGATIONS/INSTRUMENTS/ FACILITIES	FREE Flying
RESOURCES OBSERVATIONS		
EARTH RESOURCES	11	4
EARTH DYNAMICS		3
ENVIRONMENTAL OBSERVATIONS		
WEATHER AND CLIMATE	12	5
ENVIRONMENTAL QUALITY	15	11 1
OCEAN CONDITION	2	2
MATERIALS PROCESSING	18	
SPACE COMMUNICATIONS	5	3
OSTA TOTALS	67	18
OAST PAYLOADS	24	2
TOTALS	91	20

TABLE III. STATUS SUMMARY

ACT ION OSTA SHUTTLE PAYLOADS	DATA FORMS SENT TO PRINCIPAL CONTACT BY MSFC	INITIAL TBE PHONE CONTACT	TBE PERSONAL CONTACT WITH PRINCIPAL CONTACTS	RECEIPT BY TBE OF FILLED IN FORMATS	DATA SENT TO PRINCIPAL CONTACT FOR REVIEW AND SUBMITTAL	DATA SUBMITTED BY PRINCIPAL CONTACT	INCLUSION OF FORMAT IN DATA PACKAGE
RESOURCES OBSERVATIONS EARTH RESOURCES (15) EARTH DYNAMICS (7)	15 7	15 7	15	15	15 6	9	15 6
ENVIRONMENTAL OBSERVATIONS WEATHER AND CLIMATE (17) ENVIRONMENTAL QUALITY (16)	17	17 16	13 16	10 16	15 16	10 12	15 16
OCEAN CONDITION (4) MATERIALS PROCESSING (18)	4 18	4 18	4	2 1	2 10	2	2 10
SPACE COMMUNICATIONS(8)OSTA PAYLOADS(85)	8 85	85	8	1 50	8 72	5	8 72
OAST PAYLOADS (26) TOTAL (111)	0 85	26 111	5 82	0 50	23 95	0 47	26 98

These two volumes - Volume I, "OSTA Payload Planning Data Summary" and Volume II, "OSTA Payload Planning Data" - are addended to this report.

5.2 COMPUTER DECKS

In addition to the books and data matrices mentioned above, all format data have been entered into a computer bank for input into NASA/ MSFC mission planning program.

The data for 82 OSTA payloads for which data are available were keypunched in a format suitable for entry into the MIPS data base. These data were entered into the MIPS data base and the cards are also delivered as backup data.

The MIPS data duplicate the printed data exactly except for the following constraints:

 Any data item is either always numeric or always alphanumeric.
 The only exception to this occurs because MIPS initializes storage to (TBD). Therefore any item for which no data were entered will contain (TBD). In a few cases for which a narrative explanation was used in a numeric data item, the narrative was placed with the notes.

2. MIPS is limited to a maximum of 20 cards per data item. In two cases this required changes in the notes section.

3. Cross references between data items and notes are contained in four additional data items rather than in the notes themselves.

4. An additional data item is used for a list of data items that were estimated by TBE.

5. An additional data item is used for the cognizant NASA center abbreviation.

6. Alphanumeric data items are entered in multiples of 54 characters, so formated that displays of 54 characters per line are easily readable.

The MIPS data base can be updated by entering new data which will overwrite old data. This method was used to enter changes to the data. Therefore the order of cards in the card deck is significant if the data are reloaded. A list of the card deck (approximately 10,000 cards) is delivered with the deck.

Suggested page formats for computer display of the data in a form similar to the printed data were also delivered. These are suitable for a 58 line per page 121 character per line, and incorporate the constraints listed above.

APPENDIX A. PAYLOAD DESCRIPTIONS

SUMMARY DATA ON INVESTIGATIONS/INSTRUMENTS IN THE 1980-83 OSTA FLIGHT REQUIREMENTS MODEL

PAYLOAD NAME	CODE NO.	ACRONYM
Adaptive Multibeam Phased Array	CN-16-S	АМРА
Large Deployable Antenna Shuttle Experiment	CN-07-S	LDASE

OBJECTIVE/PURPOSE/DESCRIPTION

Demonstrate the possibility of low power point-to-point communications. Active/passive microwave system operating on 1.5 GHz and 1.6 GHz frequencies.

Demonstrate technical feasibility of large deployable mesh antennas and measure antenna performance by making mechanical RF measurements in space under actual operating conditions.

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DE
Shuttle Geodynamics Ranging System	ED-15-S	SGRS	Measurement of 1 to 5 centime crustal motions, and phenome and plate motion which will solid earth dynamics and ear
			SGRS is a frequency doubled will generate signal pulses. detectors will monitor trans reception. High speed digit electronics will measure tim
			Retroreflector targets will
Shuttle/Tethered Satellite (Operational)	ED-13-S	TETHER	Applications involving deplo payload, requiring low altit magnetic mapping, and plasma to deploy science payload aw orbiter to avoid orbiter ind including contamination and
			It is a tether system with c controls capable of supporti module suspended from the sh

meter level earth help understand rthquake events.

Nd:YAG system that Photoemissive . smission and tal and analog me-of-flight.

be viewed.

oyment of science tude performing a physics. Also way from the duced environment EMI.

closed loop ing a payload huttle bay.

	PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION
	Large Format Camera	ER-02-S	LFC	It is a film camera system which operates in the visible and near-IR portion of the spectrum and will provide precision, wide area, high resolution, steroscopic and cartographic/imagery of the earth's land masses, coastal shoals, and shallows. Its primary objective is remote sensing of the land resources.
	Shuttle Imaging Radar-A	ER-14-S	SIR-A	Evaluate the applicability of spaceborne imaging radars for geological mapping, mineral and petroleum exploration, and fault mapping.
				A synthetic aperture imaging radar that operates at 1275 MHz.
A-4	Shuttle Multispectral Infrared Radiometer	ER-12-S	SMIRR	To obtain 10-channel radiometric data from a significant sample of geological units world- wide in the spectral region of 0.5 to 2.4 μ m to determine (a) spectral bands for geological mapping use, (b) correlation between radiance measured from orbit and reflectance obtained through field instruments, (c) value of the spectral bands chosen in the separation of lithologic units (d) effect of variable atmospheric absorption on the radiance value.
	Ocean Color Experiment	ER-13-S	OCE	Mapping of open ocean phytoplankton on a global basis to evaluate the ecology of marine algae. This mapping will be done with a 8-channel scanning radiometer which will receive reflected solar radiation from a 12.7 cm Dall-Kirkham telescope scanning a 90° field.

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTION/PURPOSE/DESCRIPTION				
Shuttle-Imaging Radar-B	ER-15-S	SRI-B	Understanding the radar signature of geological surfaces, measurement of soil moisture, and identify crops on a global basis. Thereby develop the basis for application of spaceborne radar imagers for earth resources study.				
			SIR-B consists of a single frequency, dual polarization, L-band synthetic aperture radar, control/display, on-board processor, and support equipment.				
Passive Microwave	ER-16-S	PASS MICRO	Study development and evolution of storm systems, map ice boundaries in lakes and oceans, determine sea surface temperature, determine soil moisture, investigate possibility of measuring subsurface features. Reflector antenna, 10 radiometers. Rotating shaft data encoder, data processing unit, data recorder.				

<u>PAYLOAD NAME</u>	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION
Composite Stratospheric Test on Spacelab	EQ-19-S	COMP STRAT	Measure stratospheric profile of O_3 , NO_2 , N_2O_4 , HNO_3 , halogens, and aerosols. Compare data from instruments with common view angle but different spectral range.
			The payload consists of HALOE, SER, LIMS, ATMOS, LACATE, SOSU, MFR, HIRS.
Atmospheric Trace Molecules	EQ-01-S	ATMOS	To determine concentration profile of known and newly discovered molecular species through stratospheric altitudes (20-80 km) at a vertica resolution of 2 km, by viewing sun through stratosphere.
			The instrument consists of three parts (a) the optical sensor mounted in Spacelab airlock, (b) the electronics mounted in the standard rack, and (c) gas bottle inside module.
Halogen Occultation Experiment	EQ-02-S	HALOE	To measure stratospheric profiles of Halogens. Equipment used will be an Extinction Radiometer which will work in 8 spectral bands in the range 2 to 11 µm.
Solar Extinction Radiometer	EQ-10-S	SER	Measure stratospheric profiles of ozone and aerosols.
			This is an extinction radiometer working in 6 bands between 0.38 and 1.0 μm and will view sun at horizon.
Advanced Limb Infrared Monitoring of Stratosphere	EQ-03-S	LIMS	Measure stratospheric profile of constituent species and aerosol using a scanning spectral radiometer working in 6 bands between 6.1 and 17.5 µm. The instrument will view earth's limb.

Citt

Line

Phate in

433

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION					
Standard Ozone Sounding Unit	EQ-06-S	SOSU	Measure solar irradiance in 12 spectral bands between 160 and 400 μ m to map vertical and spatial ozone distribution. Equipment will be a spectral radiometer working in the ultra- violet region of the spectrum.					
Composite Tropospheric	EQ-24-S	COMP TROP	Measure the temperature and humidity profile of troposphere. Also to measure the atmospheric, CO, CO ₂ , CH ₄ , SO ₂ , N ₂ O, NH ₃ , and O ₃ .					
			The payload consists of CIMATS, VTPR, THIR, and MAPS.					
Correlation Interferometric Measurement of Atmospheric Trace Species	EQ-14-S	CIMATS	Provide measurements of vertical burden of the atmospheric species CO, CH_4 , SO_2 , N_2O , NH_3 , etc., in the spectral ranges of 2 to 3 μm and 4 to 9 μm .					
Measurement of Air Pollution	EQ-23-S	MAPS	Determine the global distribution of tropo- spheric CO as a function of latitude, longi- tude, and season, and to observe the extent of interhemispheric air mass transport in the troposphere.					
			MAPS is a gas filter correlation infrared radiometer analyzer, which looks at the earth to collect the energy emitted.					
Temperature Humid <u>it</u> y Infrared Radiometer	EQ-25-S	THIR	Measure cloud cover and temperatures of the cloud tops, land, and ocean surfaces. Also measure moisture content of the upper trop- osphere and stratosphere, and location of jet streams and frontal systems.					

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION
Temperature Humidity Infrared Radiometer	EQ-25-S	THIR	It is a two-channel scanning radiometer designed to measure earth radiation. The two channels are 6.7 and 11.5 μm . THIR consists of an optical sensor and an electronics module.
Vertical Temperature Profile Radiometer	EQ-26-S	VTPR	To measure the vertical profile of the atmospheric temperature and humidity and distribution of CO_2 using a radiometer.
Shuttle Atmospheric Lidar	EQ-28-S	SAL	To measure vertical, horizontal, and temporal extent of aerosols and cirrus clouds by elastic backscattering technique.
			Consists of Nd-YAG, dye or CO_2 laser trans- mitting and receiving system which will use nadir-viewing and limb-scanning for data collection. Includes 1.0 meter class telescope and control electronics.

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION
Space Processing Application - Module	SP-36-S	SPA-M	Research on bio-separation by electrophoresis and effect of low gravity. Static and continuous flow electrophoresis units, centrifuge, UV detector, fraction collection unit, supply and storage tanks. Fluid phenomena system, "shadow box."
Space Processing Application - Pallet	SP-37-S	SPA-P	Research on materials processing involving crystal growth, metallurgy, glass forming, alloy forming, liquid phase sintering, etc. Equipment used will include gradient and isothermal furnaces, a crystal growing facility, an acoustic levitator, and a splat cooling device.
Materials Experiments Assembly	SP-40-S	MEA	To provide, as early as possible, precursory data for the materials processing in space and testing of automated space processing concept. This will provide an early shuttle experiment capability in materials processing in space that will not be limited by the capability of SPAR.
			MEA consists of isothermal and gradient furnaces, single-axis levitator, a latex reaction chamber, and own power supply. These equipments will be automatically programmed and controlled by micro- processor. Data will be recorded on recorder.
Molecular Wake Shield Facility	SP-39-S	MWS	To provide a scientifically beneficial ultra- high vacuum facility to accomplish a wide variety of scientific experiments like purifi- cation, transport, epitaxy, etc., that will need the highly clean environment offered by MWS. Experiment types include vapor deposition, metal purification, and molecular beam epitaxy.
			It is a 3 m diameter hemispherical shell which can either be shuttle or power module attached, or free flyer.

PAYLOAD NAME	CODE NO.	ACRONYM	OBJECTIVE/PURPOSE/DESCRIPTION
Active Cavity Radiometer	WC-02-S	ACR	Measurement of total solar irradiance with state-of-the-art accuracy and precision to determine the magnitude and direction of possible variations in the output of total solar optical energy. This information is useful for earth's climatology and behavior of sun.
			Continuous operation. Payload specialist used for on/off only.
Atmospheric Cloud Physics Laboratory	WC-01-S	ACPL	The primary goal of the ACPL is to develop and provide for the scientific community a unique multipurpose laboratory facility for conducting atmospheric cloud physics research that will complement and/or supplement cloud physics research on earth, and significantly increase the level of knowledge of atmospheric cloud microphysical processes.
			One double and one single rack mounted facility consisting of experiment chamber, aerosol generator, etc. Real-time payload specialist support needed.

PAYLOAD REQUIREMENTS

ORIGINAL PAGE IS OF POOR QUALITY

AMPA 0.53 7.8 423 300/750/800 1.0 400/57 Total angular coverage of 270 with <i>LFW of 5t</i> . LDASE 1.3 Requires body and the set of	NÄME	PRESSURIZED VOLUME (m ³)	PALLET AREA (m²)	WEIGHT (kg)	POWER (W) Sb/ope/peak	POINTING (deg)	ALTITUDE/ INCLINATION (km/deg)	VIEWING REQUIREMENTS
Variation in sun illumination SGRS 0.25 0.47 216 50/500/500 0.0047 400/50 Line-of-sight elevation from should exceed 20°. ETHER (Operational) 0.017 5.22 705 0/12/1128 40.5 190-210/My NA LFC 0.43 1.57 439 192/262/700 s2 222/57 Earth viewing the sum elevation should exceed 20°. SIR-A TBD 0.34 280 /900/ s2 222/57 Earth viewing the sum elevation off. Ned muth and iteration off.	AMPA			423	300/750/800	1.0	-	Total angular coverage of $\pm 70^{\circ}$ with IFOV of 5°,
SRKS 0.25 0.47 215 50/500/500 0.0047 400/50 Line-of-sight elevation from ground arget to shuttle shudd exceeded. TETHER (Depertion) 0.017 5.22 705 0/121/1128 ±0.5 190-210/Any MA LFC 0.43 1.57 439 192/262/700 ±2 222/57 Earth viewing vin sum eleved another with a fDV of 67. SIR-A TBD 0.34 280 /900/ ±2 200/40 Earth viewing in a direction off. Madine with sum eleved angle from 10 to 200 SIR-B 0 0.53 86 53/82/120 ±5 280/57 Genter of FOU 158 way from s with sum eleved angle betweet and scan of 455 SIR-B 1.9 -9 -800 100/200/TBD 2.5 225/57 View angle selectable 15, 47, 60 ⁻⁰ from and ir. DCE 0.33 0.92 124 50/1800/TBD 2.5 225/57 View angle selectable 15, 47, 60 ⁻⁰ from and ir. DRED 0.66 9.3 964 TBD/930/MA TBD 340/55 Total angular coverage of 160 crost strakt an 17 ⁻⁰ along ttrakt an 17 ⁻⁰ from bi	LDASE	1,3	two	1483	40/204/395	0.5	400/Any	Space viewing to obtain variation in sun illumination.
Coperational) Construction	SGRS	0.25		216	50/500/500	0.0047	400/50	ground target to shuttle
LFC 0.43 1.57 439 192/362/700 ±2 222/57 Earth viewing with sun elevot angle from 10 to 90". SIR-A TBD 0.34 280 /900/ ±2 200/40 Earth viewing with a fOU of 6". SMIRR 0 0.53 86 53/ 82/120 ±5 280/57 Center of 700 15" away from a with sun elevot in angle betw 0-90". FOW a South angle betw 0-90". OCE 0.33 0.92 124 50/180/192 ±5 280/38 Earth viewing with FDW of 0.2 and scan of 45". SIR-B 1.9 -9 -800 100/2000/TBD 2.5 225/57 View angle selectable 15, 47, 60" from naft". PASS 0.06 9.3 994 TBD/930/NA TBD 340/55 Total angular coverage of 160 cross track and 17" along the selectable 15, 47, 60" from naft". COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir, 1inb. sun at sunrise/ sunrise and sunset. ATNOS 1.0 0 195 30/335/435 ±5 Any/Any FOV of 10", sun centered duri sunrise and sunset.		0.017	5.22	705	0/121/1128	±0.5	190-210/Any	NA CONTRACTOR
SMIRR 0 0.53 86 53/82/120 ±5 280/57 Center of FOV 15° away from some devation angle between on some devices and scan of ±45°. OCE 0.33 0.92 124 50/180/192 ±5 280/38 Earth viewing with FOV of 0.2 and scan of ±45°. SIR-B 1.9 -9 -800 100/2000/T8D 2.5 225/57 View angle selectable 15, 47, 50° from andir. PASS 0.06 9.3 984 TBD/930/NA TBD 340/55 Total angular coverage of 160 cores track and 17° along tracking is natire. COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir, 11mb, sun at sumrise/ sumsteic duri sum		0.43	1.57	439	192/262/700	±2	222/57	Earth viewing with sun elevation angle from 10 to 90°.
DCE 0.33 0.92 124 50/180/192 ±5 ZB0/3B Earth viewing with FOV of 0.2 SIR-5 1.9 -9 -800 100/2000/TBD 2.5 225/57 View angle selectable 15, 47, 60° from nadir. PASS 0.06 9.3 984 TBD/930/NA TBD 340/55 Total angular coverage of 160 cross track and 17° along traveling is nadir. COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir, linb, sun at sunrise/ming is nadir. ATMOS 1.0 0 195 30/335/435 ±5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. MALOE 0 0.32 37 8/ 40/70 1.0 200/57 Solar view at horizon 1FOV of 0.2° x 0.4°. SER TBD TBD 35 16/ 32/38 0.5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. SOSU 0.002 0.14 20 4/10/24 1.0 c500/Any Nadir, viewing with sector 4.5° elevation, +45° azimuth, eS of elevation, +45° azimuth,	SIR-A	TBD	0.34	280	/900/	±2	200/40	Earth viewing in a direction 50° off. Nadir with a FOV of 6°.
SIR-B 1.9 -9 -800 100/2000/TBD 2.5 225/57 Go from nadir. PASS MICRO 0.06 9.3 984 TBD/930/NA TBD 340/55 Total angular coverage of 160 cross track and 17" along tra with a FW between 0.09"-17.0" The viewing is nadir. COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir., 1mb, sun at sunrise/ sunset through 1imb. ATMOS 1.0 0 195 30/335/435 ±5 Any/Any Solar view at horizon 1F0V of 0.2" x 0.4". ALOE 0 0.32 37 8/ 40/70 1.0 200/57 Solar view at horizon 1F0V of 0.2" x 0.4". SER TBD TBD 35 16/ 32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of 4"6" coverage of 7" or 2" with a coverage of 7" or 2" with a fov or 7". SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	SMIRR	0	0.53	86	53/ 82/120	±5	280/57	Center of FOV 15° away from sun with sun elevation angle between 0-90°, IFOV = 360 ur.
SIR-B 1.9 -9 -800 100/2000/TBD 2.5 225/57 View angle selectable 15, 47, 60° from nadir. PASS MICRO 0.06 9.3 984 TBD/930/NA TBD 340/55 Total angular coverage of 160 cross track and 17° along trae with a FOV between 0.09-17.0° The viewing is nadir. COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir. limb, sun at surrise/ sunset through limb. ATMOS 1.0 0 195 30/335/435 ±5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. HALDE 0 0.32 37 8/ 40/70 1.0 200/57 Solar view at horizon JFOV of 0.2° x 0.4°. SER TBD TBD 35 16/ 32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/50 Total angular coverage of 46° -5° elevation, 455* az(muth. SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	OCE	0.33	0.92	124	50/180/192	±5	280/38	Earth viewing with FOV of 0.2° and scan of ±45°.
MICRO cross track and 17° along tra- with a FOV between 0.09-17.0° The viewing is nadir. COMP STRAT 1.56 >1.0 451 78/527/697 0.5 max. 200/Any Nadir, 1imb, sun at sunrise/ sunset through 1imb. ATMOS 1.0 0 195 30/335/435 ±5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. HALOE 0 0.32 37 8/40/70 1.0 200/57 Solar view at horizon 1FOV of 0.2° × 0.4°. SER TBD TBD 35 16/32/38 0.5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. SER TBD TBD 35 16/32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of +6° -5° elevation, +45° azimuth, SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	SIR-B	1.9	~9	~800	100/2000/TBD	2.5	225/57	View angle selectable 15, 47, 60° from nadir.
ATMOS 1.0 0 195 30/335/435 ±5 Any/Any FOV of 10°, sun centered duri sunrise and sunset. HALOE 0 0.32 37 8/40/70 1.0 200/57 Solar view at horizon IFOV of 0.2° x 0.4°. SER TBD TBD 35 16/32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of +6° -5° elevation, +45° azimuth. SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any		0.06	9,3	984	TBD/930/NA	TBD	340/55	Total angular coverage of 160° cross track and 17° along track with a FOV between 0.09-17.0°, The viewing is nadir.
HALDE 0 0.32 37 8/40/70 1.0 200/57 Solar view at horizon IFOV of 0.2° x 0.4°. SER TBD TBD 35 16/32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of +6° SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	COMP STRAT	1.56	>1.0	451	78/527/697	0.5 max.	200/Any	
SER TBD TBD 35 16/32/38 0.5 Any/Any LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of +6° -5° elevation, +45° azimuth, SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	ATMOS	1.0	0	195	30/335/435	±5	Any/Any	FOV of 10°, sun centered during sunrise and sunset.
LIMS 0 0.42 68 11.5/110/120 0.01 500/90 Total angular coverage of +6° -5° elevation, +45° azimuth. SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	HALOE	0	0.32	37	8/ 40/70	1.0	200/57	
SOSU 0.002 0.14 20 4/10/24 1.0 <50 elevation, +45° ázimuth. SOSU 0.002 0.14 20 4/10/24 1.0 <500/Any	SER	TBD	TBD	35	16/ 32/38	0.5	Any/Any	
FOV of 6°.COMP TROP2.098147TBD/328/TBDTBDAny/TBDNadir.CIMATS00.63100100/160/TBD0.008Any/AnyNadir viewing with angular coverage of 7° or 2° with a FOV of 7°.MAPS0.00150.56280TBD/95/130 ± 5 Any/AnyNadir viewing with FOV of 2.2'THIRNA0.099.1TBD/7.5/TBDAny/TBDNadir.VTPR0.12514.0TBD/25/TBDAny/TBDNadir viewing and 1imb scannin FOV of 0.057.ATMOS LIDAR0.1271.6122150/700/700 dc 100/600/600 ac ± 2 280/50-20Nadir viewing and 1imb scannin FOV of 0.057.SPA-M3.4NA1345TBD/2000/TBDNANANASPA-PNATBD3000TBD/4300/TBDNANANAMEANA1.869090/0/0NANANAMWSTBDTBD3543TBD $\pm 1^{\circ}$ along vector200-500/NANAACRNA0.122810/10/13 ± 2.5 200/NAFOV of 8°, sun centered.	LIMS	0	0.42	68	11.5/110/120	0.01	500/90	Total angular coverage of +6°, -5° elevation, +45° azimuth.
CIMATS 0 0.63 100 100/160/TED 0.008 Any/Any Nadir viewing with angular coverage of 7° or 2° with a FOV of 7°. MAPS 0.0015 0.562 80 TBD/95/130 ±5 Any/Any Nadir viewing with FOV of 2.2° THIR NA 0.09 9.1 TBD/7.5/TBD Any/TBD Nadir. VTPR 0.125 14.0 TBD/25/TBD Any/TBD Nadir viewing and limb scannin FOV of 0.057. ATMOS LIDAR 0.127 1.6 122 150/700/700 dc 100/600 ac ±2 280/50-20 Nadir viewing and limb scannin FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA TBD 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	SOSU	0.002	0.14	20	4/10/24	1.0	<500/Any	Nadir viewing with instantaneous FOV of 6°.
MAPS 0.0015 0.562 80 TBD/95/130 ±5 Any/Any Nadir viewing with FOV of 2,2' THIR NA 0.09 9.1 TBD/7.5/TBD Any/TBD Nadir. VTPR 0.125 14.0 TBD/25/TBD Any/TBD Nadir. ATMOS LIDAR 0.127 1.6 122 150/700/700 dc 12 280/50-20 Nadir viewing and 1imb scannin FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA TBD 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	COMP TROP		2.098	147	TBD/328/TBD	TBD	Any/TBD	Nadir.
THIR NA 0.09 9.1 TBD/7.5/TBD Any/TBD Nadir. VTPR 0.125 14.0 TBD/25/TBD TBD/25/TBD Nadir viewing and limb scannin FOV of 0.057. ATMOS LIDAR 0.127 1.6 122 150/700/700 dc 100/600/600 ac ±2 280/50-20 Nadir viewing and limb scannin FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA T6D 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	CIMATS	0	0.63	100	100/160/TBD	0.008	Any/Any	coverage of 7° or 2° with a
VTPR 0.125 14.0 TBD/25/TBD ATMOS LIDAR 0.127 1.6 122 150/700/700 dc ±2 280/50-20 Nadir viewing and limb scanning FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA TBD 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	MAPS	0.0015	0.562	80	TBD/95/130	±5	Any/Any	Nadir viewing with FOV of 2.2°.
ATMOS LIDAR 0.127 1.6 122 150/700/700 dc 100/600/600 ac ±2 280/50-20 Nadir viewing and limb scannin FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA TBD 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	THIR	NA	0.09	9.1	TBD/7.5/TBD		Any/TBD	Nadir.
100/600/600 ac FOV of 0.057. SPA-M 3.4 NA 1345 TBD/2000/TBD NA NA NA SPA-P NA TBD 3000 TBD/4300/TBD NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	VTPR		0.125	14.0	TBD/25/TBD			
SPA-P NA TED 3000 TED/4300/TED NA NA NA MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° älong velocity velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	ATMOS LIDAR	0.127	1.6	122			280/50-20	Nadir viewing and limb scanning. FOV of 0.057.
MEA NA 1.86 909 0/0/0 NA NA NA MWS TBD TBD 3543 TBD ±1° along velocity velocity velocity vector 200-500/NA NA ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	SPA-M	3.4	NA	1345	TBD/2000/TBD	NA	NA	NÁ
MWSTBDTBD3543TBD±1° along velocity vector200-500/NANAACRNA0.122810/10/13±2.5200/NAFOV of 8°, sun centered.	SPA-P	NA	TED	3000	TBD/4300/TBD	NA	NA	NA
velocity vector ACR NA 0.12 28 10/10/13 ±2.5 200/NA FOV of 8°, sun centered.	MEA	NA	1.86	909	0/0/0	NA	NA	NA
주변 전 방법과 가지 않는 소프로 한 것을 가지는 것을 많은 것은 것이 것 같아요. 지원은 것이라는 것은 것은 것은 것은 것이다. 것은 것은 것이 것은 것이 같아요. 것이 같아요. 것은 것이 같아요. 것이 같아요. 것은 것이 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	MWS	TBD	TBD	3543	TBD	velocity	200-500/NA	NA
ACPI 2 55 NA 550 0/501/814 NA NO VIONING REQUINTENTS	ACR	ŅA	0.12	28	10/10/13	±2.5	200/NA	FOV of 8°, sun centered.
THE A REAL REAL REAL REAL REAL REAL REAL R	ACPL	2.65	NA	550	0/591/814	NA	>200/NA	No viewing requirements.

APPENDIX B. PAYLOAD MODEL REQUIREMENTS

50

SUMMARY DATA ON OSTA AND OAST INVESTIGATIONS/INSTRUMENTS CONSIDERED IN THE 1980-85 OSTA PAYLOAD MODEL

RESOURCES OBSERVATIONS

			Sortie	Mission	Free Flyer	Payload	Operational Altitude (km),	Shuttle Orientation.	Operational Power From	
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)	Inclination (deg)	Pointing (deg)	Shuttle (W)	Other
Shuttle Imaging Radar-A (SIR-A)	Antenna for studies in geology and oceanography.	All land masses	OFT-2			480	200, 70	Earth, 0.25 deg	-800	
Measurement of Air Pollution from Satellite	Measures carbon monoxide concentra- tion in the troposphere and its distribution.	Earth	OFT-2			80	any, any	Nadir, orbiter pointing adequate	95	Continuous operation preferred
Ocean Color Experiment (OCE)	To map distribution of chlorophyll-A bearing phytoplankton in the open ocean.	Cloud-free, open ocean	0FT-2			124	280, 38	Nadir, orbiter pointing adequate	180	
Feature Identification and Locating Expt. (FILE)	Remote sensing of earth resources using video and color IR imagery.	Land masses	OFT-2			20	160/480, any	Nadir, orbiter pointing adequate	40	
Large Format Camera (LFC)	Photography of earth's surface for cartography and renewable resources analysis.	All land masses especially CONUS	12			439	200/250, High KSC inclination	Nadir, orbiter pointing adequate	262	Needs, velocity and altitude information real time
Shuttle Imaging Radar-B (SIR-B)	Mineral and petroleum exploration and water resources studies.	CONUS, South and Central America, Africa	75	100		808	225, High KSC inclination	Nadir, orbiter pointing adequate	2000	Deployed antenna
Shuttle Imaging Radar-C (SIR-C)	Vegetation ident- ification, mineral and petroleum explo- ration and water resources studies.	CONUS, South and Central America, Africa	75	100		1000	325, High KSC inclination	Nadir, orbiter pointing adequate	3500	Deployed antenna

B-2

ORIGINAL PAGE IS OF POOR QUALITY

RESOURCES OBSERVATIONS (CONCLUDED)

			Sortie	Mission	Free Flyer	Payload	Operational	Shuttle	Operational	an a	
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)	Altitude (km), Inclination (deg)	Orientation, Pointing (deg)	Power From Shuttle (W)	Other	
Passive Microwave	Microwave imaging of earth for meteorology, geophysics, ship routing, etc.	Earth	100	10		984	340, High KSC Inclination	Nadir, orbiter pointing adequate	930		
Tethered Magnetometer	To deploy payload away from orbiter environ- ment to map true magnetic field.	None	100			705	200, any	Nadir, orbiter pointing adequate	121	Control in aft flight deck	
Shuttle Goed. Ranging Sys. (SGRS)	Measure cm level motions on earth's surface to predict earthquake.	San Andreas Fault, CA	Very small	28		216	400, High KSC inclination	Nadir, 0.005°	500	Pointing system provided	
STEREOSAT	Stereoscopic imaging of land masses for exploration geology and cartography.	Earth	-		n	3545	580, 97.7 (VAFB launch)	Space, orbiter pointing adequate	100	AEM data used	OF
GRAVSAT	Improved earth's gravitational yield mapping.	None			n	4500	300, Polar	Space, orbiter pointing adequate		Program at very early stage	POOR
Adv. Geologic Mapping <u>Sat.</u>	Land mass mapping for geological studies and resource observations.	Earth			11	3545	580, 97.7 (YAFB launch)	Space, orbiter pointing adequate	100	Stereosat data used	QUALITI
Thermosat	Map thermal inertia of earth's surface for use in geological and agricultural studies.	ATI land masses			25	3000	700, 98 (VAFB launch)	Space, orbiter pointing adequate		Assume MMS	
Multispectral Linear Array + Bus (MLA)	Earth imaging for earth resources studies.	All land masses			25	3000	700, 98 (VAFB launch sun synchro- nous)	Nadir, orbiter pointing adequate	75	Assume MMS BUS	

В-З

ORIGINAL PAGE IS OF POOR QUALITY

ENVIRONMENTAL OBSERVATIONS

			Sortie Mission		Free Flyer	D14		Shuttle	Operational	
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Payload Weight (kg)	Altitude (km), Inclination (deg)	Orientation, Pointing (deg)	Power From Shuttle (W)	Other
llalogen Occultation Experiment (HALOE)	Measure stratospheric profiles of halogens and their inter- actions with ozone.	Solar occultation through limb	40			37	200, High KSC inclination	Nadir, orbiter pointing adequate	40	
Atmospheric Trace Molecules Observed by Spectroscopy (ATMOS)	Measure infrared spectrum of the stratosphere to determine the abundance and vertical profile of trace species.	Solar occultation		170		195	any, any	Solar occultation through limb. Orbiter pointing adequate	335	Instrument uses scientific airlock
Measurement of Air Pollution From Satellites (MAPS)	Measure carbon monox- ide concentration in troposphere and its distribution. Also observe interhem- ispheric air mass transport.	Earth	50	10		80	any, any	Nadir, orbiter pointing adequate	95	Needs coordinate surface and airborne observation
Atmospheric Cloud Physics Laboratory (ACPL)	Conduct cloud micro- physics research for better weather pre- diction. One double and one single rack mounted equipment.	Low-g		300		550	> 200, any	any, any	591	
Pallet Equivalents	Environmental observation using atmospheric scanning.	Earth	100			TBD	TBD	TBD	TBD	ORIGINAL OF POOR (
Earth Radiation Budget Satellite-A (ERBS-A)	Measure earth radiation budget and distribution of startospheric compo- nents for studies of climate. IY, SAGE, and ERBI.	Earth			15	2000	600, High KSC inclination	Space, orbiter pointing adequate	400	OR QUALITY

B-4

ENVIRONMENTAL OBSERVATIONS (CONCLUDED)

			Sortie	Mission	Free F1yer	Payload	Operational Altitude (km), Inclination (deg)	Shuttle	Operational	
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)		Orientation, Pointing (deg)	Power From Shuttle (W)	Other
GOES	Provide day and night cloud cover, earth radiance, and space environment data. A spin stabilized cylindrical space- craft.	Earth and its atmo- sphere			13	660	Geosynchronous with 1° inclination	Space, N/A	150	Data from NSSDC Sept. 1977 very preliminary
Seasat follow-on	Global observation of ocean surface condi- tions. Upper stage will be used for orbit insertion.	Earth			77	10,000	700, 87 (VAFB launch)	Space, N/A	200	Program in planning stage only
System 85	Weather monitoring and prediction. Four satellites - 2 polar, 2 geosync. work together.	Earth		-	12 each	500-1500 each	Goesynchronous and polar	Space, N/A	200	Program in very early planning stage
STORMSAT	Improved detection and forecasting of severe storm. MMS mounted payload. IUS will be used for orbit.	Earth			63	5550	Geosynchronous	Space, N/A	600	OF
ICESAT	Global observation of ice budget and ice movement. Upper stage will be used.	Earth		-	77	10,000	700, 87 (VAFB launch)	Space, N/A	200	Seasat follow-on data use
COASTSAT	Global coastal zone observation. Upper stage will be used.	Earth	-	-	77	10,000	700, 87 (VAFB launch)	Space, N/A	200	Seasat follow-on data use

ORIGINAL PAGE IS OF POOR QUALITY

MATERIALS PROCESSING

Identification	Objective	Target	Sortie Pallet Area (%)	Mission Rack Volume (%)	Free Flyer Bay Length (%)	Payload Weight (kg)	Operational Altitude (km), Inclination (deg)	Shuttle Orientation, Pointing (deg)	Operational Power From Shuttle (W)	Other
Materials Experiment Assembly (MEA)	Provide testing of automated space processing concept, facility, and early materials processing data.	Low-g	17	-		909	any, any	any, any	None	
Pallet	Facility for prep- aration of improved materials using containerless technique.	Low-g	100				any, any	any, any		
Module	Facility for improved processing of bio- materials, metallic and semiconducting materials.	Low-g		400 to 600			any, any	any, any		

SPACE COMMUNICATIONS

•			Sortie	Mission	Free Flyer	، نیا ا فرو البیون	Operational	Shuttle	Operational	
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Payload Weight (kg)	Altitude-(km), Inclination (deg)	Orientation, Pointing (deg)	Power From Shuttle (W)	Other
Adaptive Multi- beam Antenna Experiment AMPA CN-16-S	Operate in space orbit a communications phased array capable of producing multiple simultaneous transmit and recieve beams as an electronically steerable antenna	Earth stations	69	100		423	400, High KSC inclination	Nadir, orbiter pointing adequate	750	
lideband 30/20	Provide a wideband uplink and downlink from a geostationary satellite for point to point exchange of information within the U.S.	Wideband Communica- tion Ground Stations in the U.S.			60	18,220	Geosynchronous	Space		
larrow Band Intenna	Perform structural tests of a paraboloid antenna capable of automatic unfurling and refurling from the orbiter.	Four sun 111 umination angles and RF beacon	200	150		1483	any, any	Space and RF beacon in near proximity to orbiter, orbiter pointing adequate	20	Star tracker used to measure pointing angle
larrow Band System Test	Verify the operation of a large antenna for use later as a free flyer.	Mobile and fixed ground stations on earth	263	150		2300	any, any	Nadir, orbiter pointing adequate	5000	
Varrow Band Comm Satellite	Provide a Multibeam Communications Satellite capable of relaying messages from earth trans- ceivers.	Geographic sectors in the U.S.			72	4142.8	Geosynchronous	Space		A solar electric propulsion engine is used to move the satellit from low ear orbit to a ge syn. position

```
ORIGINAL PAGE IS
```

OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY-PAYLOADS

			Sortie	Mission	Free Flyer	Pavload	Operational	Shuttle	Operational	
Identification Objective	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)	Altitude (km), Inclination (deg)	Orientation Pointing (deg)	Power From Shuttle (W)	Other
Drop Dynamics Module (DDM)	Measure figures of free floating liquid drops under rota- tional or vibrational excitation.	Low-g		200		309	any, any	any, any	660	Acceleration limits apply
Induced Environment Contamination Monitor (IECM)	Measure gaseous and particulate contam- inants in shuttle environment.	None	10			363	àny, any	any, any	300	Continuous operation preferred
Laser Heterodyne Spectrometer (LHS)	Measure trace atmo- spheric species with passive optical heterodyne receiver.	Sun	18	3		133	300, High KSC inclination	Solar occultation through limb, 0.125	1000	Pointing system provided
SEP Solar Array	Demonstrate solar array technology for solar electric propulsion.	Sun	75	2	-	300	any, any	Sun, orbiter pointing adequate	TBD	Deployed wing
Thermal Canister Experiment (TCE)	Demonstrate heat pipe thermal control system in a space environment.	None	15	-		250	any, any	any, any	100	
Semiconductor Mat. Growth in Low-G Environment (O-G SMG)	To grow semiconductor crystals by three methods in a low-g environment.	Low-g	TBD	2		TBD	any, any	any, any	TBD	Acceleration limits TBD
Microwave Radiometer Technology Experiment (MRTE)	To make meteorolog- ical measurements with a passive micro- wave heterodyne radiometer.	Oceans, north and south galactic poles	100	2		300	250, 80-90 (VAFB launch)	Nadir and space, orbiter pointing adequate	230	Antenna scanned in yz-plane

B-8

MULUINAL PAGE IS

OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY PAYLOADS (CONTINUED)

			Sortie I	Mission	Free Flyer	Payload	Operational	Shuttle	Operational		Ĺ
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)	Altitude (km), Inclination (deg)	Orientation Pointing (deg)	Power From Shuttle (W)	Other	ł
Modular Instru- ment Pointing Technology Laboratory (MIPTL)	To provide test bed for pointing and control technology development.	Earth, Solar, stellar	TBD	TBD		TBD	any, any	TBD	TBD		
Propulsion Contamination Effects Module (PCEM)	Measure rocket engine plume characteristics in space environment.	None	37		-	500-1000	any, any	any, any	100-200		
Superfluid Helium Experiment (SFHE)	Investigate thermal and dynamic properties of superfluid He in zero gravity.	Low-g	10			250	any, any	any, any	60	Acceleration <10 ⁻⁴ g required	
Feature Identification and Locating Experiment (FILE)	Demonstrate FILE capabilities for remote sensing of earth resources.	Earth	4			34	300, any	Nadir, TBD	24	Pointing system provided OF POOR POOR	
ASPS Gimbal System (AGS)	To provide a stable platform to meet general use pointing requirements.	Governed by expt.	35			303	TBD	TBD	320	OR QUALITY	2
Ion Thruster Character (ITC)	Obtain particle transport data.	None	3	-		43	any, any	any, any	205		6
Cryogenic Fluid Management Experiment (CFME)	Demonstrate sub- critical cryogen orbital storage and transfer.	None	25			162	any, any	any, any	TBD		
NASA End-to-End Data System DDS (NEEDS-DDS)	Demonstrate digital data reduction sys- tem for general experiment support.	None		TBD		TBD	any, any	any, any	TBD	Interfaces with other payloads	MUT SEA .

B-9

OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY PAYLOADS (CONCLUDED)

			Sortie	Mission	Free Flyer	Payload	Operational	Shuttle	Operational		
Identification	Objective	Target	Pallet Area (%)	Rack Volume (%)	Bay Length (%)	Weight (kg)	Altitude (km), Inclination (deg)	Orientation Pointing (deg)	Power From Shuttle (W)	Other	
Solar Cell Calibration Facility (SCCF)	Measure performance of solar cells in a space environment	Sun	3			34	any, any	Sun, orbiter pointing adequate	24	Pointing within 2° of sun required	
Two-Phase Heat Transfer (20HT)	To provide facility for fluid mechanics and heat transfer experiments in low-g environment.	None		125	-	580	any, any	any, any	TBD		
Gallium Arsenide Solar Cell Test (GASCT)	Test GaAs solar cells for radiation/tempera- ture damage in space environment.	Sun			TBD	TBD	any, any		TBD	Program dormant	
Combustion Experiment Facility (CEF)	Provide facility for low-g combustion process experiments.	Low-g	28	200	• • •	981	any, any	any, any	908	Acceleration <10-4 g required	00
Geophysical Fluid Flow Cell (GFFC)	Conduct fundamental convective fluid flow experiments in zero gravity.	Low-g	-	35		60	any, any	any, any	103	Acceleration <10 ⁻³ g required	OHIGINAL OH POOR
Tribological Experiments in Zero Gravity (TEZG)	Examine static and dynamic behavior of liquid lubricants in zero gravity.	Low-g		1. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-	58	any, any	any, any	54	Acceleration <10 ⁻³ g required	QUALITY
Shuttle SAR Processing Experiment (SSPE)	Demonstrate capability to meet data process- ing requirements for space-based synthetic aperture radar.	Earth		100		100	TBD	TBD	1,100	Will interface with radar transceiver of another payload	₩ 0-
MESA Low-G Acceleronneter (MLGA)	Evaluate Spacelab 2 orbital environment and calibrate MESA.	Low-g	0.7			8	any, any	any, any	20	Acceleration <10 ⁻² g required	

B-10

APPENDIX C. SUMMARY DATA FOR QUICK REFERENCE

SUMMARY DATA ON ALL INVESTIGATIONS/INSTRUMENTS IN THE OSTA ACTIVE INVENTORY

ORIGINAL PAGE IS OF POOR QUALITY

EARTH RESOURCES PAYLOAD DESCRIPTION

PAYLOAD NAME SCIENCE OBJECTIVE AND PAYLOAD SHUTTLE ACCOMMODATION (ACRONYM) TYPE OF SENSOR USED DEVELOPMENT STATUS Single frequency, synthetic aperature radar for geologic Shuttle Imaging Radar-A Nadir viewing, low orbit. In development on (SIR-A) Pallet mounted antenna OFT-2. and oceanographic. Observaoccupies half of 3 1/3 ER-14-5 tions at microwave frequency. pallets. Tape recorder and 1982-83. optical recorder in module. High power. Payload specialist familiar with radar. Location and orientation data needed real time. Large Format Camera (LFC) Photographic camera for mapping Nadir viewing, low orbit. In development. geological exploration and Occupies 1/2 pallet. Low ER-02-5 renewable resources analysis. power. Minimal attention from payload specialist. Stellar view required at least once per flight. Nadir viewing, medium altitude orbit. High Thematic Mapper (TM) High spatial resolution, visible and infrared multisnectral ER-03-S scanner for geological, agriinclination preferred. cultural, and water resources Pallet mounted. Small, low studies. Filter spectrometer, power instrument. Minimal mechanical scanner. payload specialist duties, Shuttle Multispectral Infrared, filter radiometer for Nadir viewing, low orbit. High inclination preferred. geologic mapping. Infrared Radiometer Pallet mounted. Small, low (SMIRR) power instrument. Minimal ER-12-5 payload specialist duties. Visible light scanner to map Nadir viewing, low orbit. Ocean Color Experiment Low inclination. Pallet mounted. Small, low power (OCE) distribution of microscopic marine life. Multichannel grating spectrometer. instrument. Minimal payload ER-13-5 specialist duties. beginning 1980. Shuttle Imaging Radar-B Single Frequency, synthetic Earth viewing, low altitude, high inclination orbit. (SIR-B) aperture radar for vegetation identification, water resources Full pallet, high power. studies, mineral and petroleum ER-15-5 Antennae deploy across exploration. Complementary to orbiter. Payload specialist SIR-A. Later addition of second operates instrument. frequency converts this to SIR-C. Earth viewing, low altitude. high inclination orbit. Shuttle Imaging Radar-C Two frequency, synthetic aperature radar for vegetation (SIR-C) identification, water resources studies, mineral and petroleum Full pallet, very high power. ER-17-5 Three antennae deploy across exploration. Complementary to orbiter. Payload specialist SIR-A. operates instrument. Multispectral Linear Array High spatial resolution, Nadir viewing, polar sun Imaging System (MLA) visible and infrared multisynchronous orbit preferred, spectral radiometer for earth resources studies. Electronic, Small, low power instrument. ER-05-S Minimal payload specialist not mechanical scanning. duties.

> High spatial resolution, multi-Nadir viewing, low altitude, frequency microwave radiometer high inclination orbit. for meteorological, geophysical, Full pallet. High power. water resources and polar

Desires flights in

Will be ready to fly in 1980. May be on SL-3, 1981.

In development on Landsat-D. Possible flights after 1981.

Definition studies on OFT-2. Desires annual flights beginning 1980.

Existing airborne instrument modified for OFT-2. Desires annual flights

Planning. Proposing 1980 new start. Could be ready for flight in 1983.

Planning. Proposing 1980 new start. Could be ready for flight in 1983.

Laboratory version exists. In develop-ment for Landsat-D'. Could be ready for flight in 1983.

Planning. May be ready for flight in 1983.

C-2

studies.

Passive Microwave Imager

ER-16-5

(PASS MICRO)

EARTH RESOURCES PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Landsat D'

ER-09-A

High Resolution Microwave Imager (HRMI)

ER-18-5

Synchronous Earth Observatory Satellite (SEOS)

ER-02-A

Soil Moisture Radiometer (Fixed Parabolic) (SMR)

ER-07-A

Soil Moisture Radiometer (Phased Array) (SMR)

ER-08-A

Advanced Heat Capacity Mapping Mission (Adv HCMM)

ER-03-A

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Continues Landsat series of earth resources observations with improved sensors,

Ten frequency, high resolution scanning passive microwave radiometer for meteorological, geophysical, water resources and polar studies.

High spatial resolution earth sensing satellite for applications in earth resources, meteorology, pollution and disaster warning.

Microwave radiometer to determine feasibility of soil moisture measurement from space for crop yield prediction, watershed management and climate studies.

Dual frequency microwave radiometer to make soil moisture measurements for crop yield predictions, watershed management and climate studies.

High spatial resolution, visible and infrared scanner for geological and agricultural applications. SHUTTLE ACCOMMODATION

Polar orbit, satellite to go to sun synchronous orbit. Full pallet.

Nadir viewing, low altitude, high inclination orbit. Full pallet. Moderate power.

Launch vehicle - Titan III-E Too heavy to reach geosynchronous orbit from shuttle.

Large payload, 1/4 of bay length, carried on MMS which has its own cradle, Polar orbit preferred, other high inclinations acceptable.

Large payload, 60% of bay length, carried on MMS which has its own cradle. Polar orbit preferred, other high inclinations acceptable.

Planned for expendable launch vehicle. Sun synchronous orbit. PAYLOAD DEVELOPMENT STATUS

Definition studies, Rack-up unit for Landsat D. Will fly on shuttle in 1982 if Landsat D is successful.

Definition studies. Could be ready by 1983. Planned for free flyer after shuttle tests.

Flanning. May be ready for flight after 1990.

Planning. Could be ready for flight in 1982.

Planning. Could be ready for flight in 1985.

Initial planning, no schedules set.

EARTH RESOURCES

SPECIAL CONSIDERATIONS	PAYLOAD ACRONYM
HIGH POWER	SIR-B
FIELD OF VIEW OBSTRUCTION	SIR-B
PAYLOAD BAY ENVELOPE CONSTRAINT	SIR-B
MASS OR VOLUME	SEOS, SMR, SIR-A
DATA RATE	TM
ORBIT RESTRICTIONS	LFC

C-4

ORIGINAL PAGE IS

EARTH DYNAMICS PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Shuttle Geodynamics Ranging System (SGRS)

ED-10-5

Geomagnetic Field Measurement-Tethered System (GFM/TS)

ED-13-5

Laser Altimeter/Profilometer Experiment (LAP)

ED-06-5

Satellite Altimeter Land Profiling (SALP)

ED-14-5

Gravity Field Satellite (GRAVSAT)

ED-04-A

Vector Magnetometer Satellite (MAGSAT-B)

ED-05-A

Global Surveyor Satellite (GSS)

ED-10-A

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Earth motion study for earthquake prediction.

The sensor is a combination of laser transmitter and telescope receiver.

Facility to deploy science payload away from orbiter environment.

The sensor is a magnetometer.

Ocean current mapping, oil spill and pollution, and marine studies. The sensor is a combination of

laser transmitter and receiver.

Information to terrain mapping satellite altimeter design. The sensor is a radar.

Improved earth's gravitational field mapping. The sensor is satellite with accelerometers.

Update of earth's magnetic field.

The sensors are magnetometers,

SHUTTLE ACCOMMODATION

Earth orientation with high shuttle altitude. Launch with high KSC inclination. Medium power consumption. Will occupy very small pallet and module volume.

Earth orientation with low shuttle altitude. No specific inclination, Low power consumption. Will occupy moderate pallet volume.

Earth orientation with no specific altitude and inclination. Will occupy small pallet volume.

High power consumption.

Earth orientation with high shuttle altitude. Launch with high KSC inclination. Low power consumption. Will occupy very small pallet and module volume.

Low shuttle altitude with high VAFB launch inclination. Payload will occupy large bay volume.

High shuttle altitude with high VAFB launch inclination.

PAYLOAD DEVELOPMENT STATUS

Definition study only. Plans to fly in 1982.

Definition study only. Plans to fly in 1983.

AAFE. Plans to fly in 1981.

Hardware exists. Plans to fly in 1981.

Study under planning. Planning to fly in 1984.

Study under planning, Planning to fly in 1984.

C~5

EARTH DYNAMICS_

SPECIAL CONSIDERATION

PAYLOAD ACRONYM

GFM/TS

ALTITUDE

OF POOR QUALITY WEATHER AND CLIMATE PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Atmospheric Cloud Physics Laboratory (ACPL)

WC-01-S

Active Cavity Radiometer (ACR)

WC-02-5

Advanced Meteorological Temperature Sounder (AMTS)

WC-07-S

Solar Irradiance Monitor (SIM)

WC+18-S

Microwave Pressure Sounder (MPS)

WC-19-5

Calibration Facility (CF)

WC-16-S

Lidar Temperature Sensor (LTS)

WC-12-5

Lidar Pressure Sensor (LPS)

WC-11-5

Cloud Climatology Experiment (CCE)

WC-08-S

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Facility for atmospheric cloud research to better predict the weather. The sensor is a combination of

nucleation chamber, aerosol generator, and saturator. Camera and particle counter are used as data collection devices.

Total solar optical irradiance outside the terrestrial atmosphere.

The sensor used is an optical radiometer. Solid state detectors are used as data probes.

Development of all weather sounder for atmospheric temperature of humidity profiling.

The sensor is a spectrometer. Cooled solid state detectors are used as data gathering devices.

Monitoring of solar total irradiance over a 22 year magnetic reversal cycle of sun.

The sensor is a radiometer.

Atmospheric Pressure at the surface of the Earth for meteorological studies.

The sensor is a combination of microwave antenna transmitter f receiver.

Spacelab mounted calibration instrument for calibration of instruments on free flying pavloads.

Temperature profiling of troposphere.

The sensor is a combination of laser transmitter and receiver.

Pressure profiling of troposphere. The sensor is a combination of laser transmitter and receiver.

Global cloud mapping for meteorology.

The sensor consists of telescope. Cooled solid state detectors will gather data.

SHUTTLE ACCOMMODATION

ORIGINAL PAGE IS

This experiment does not require specific altitude, inclination, or orientation. It requires low and stable g-level." The experiment will occupy one double rack. Low power consumption.

The experiment desires low shuttle orbit with no specific inclination, and requires solar orientation. The equipment is on the pallet occupying very small area. Very low power consumption.

The experiment desires medium shuttle orbit with inclination suitable for KSC launch. Requires a nadir orientation. It occupies very small pallet volume. Lower power consumption.

Solar orientation with no specific altitude and inclination. Will occupy very small pallet volume. Low power consumption.

Nadir orientation with low altitude. Will occupy very small pallet volume. Low power consumption.

Nadir orientation with low orbit and inclination adequate for KSC or VAFB launch. Will occupy small pallet volume. High power consumption.

Nadir orientation with low orbit and inclination adequate for KSC or VAFB launch. Will occupy small pallet volume. High power consumption.

Nadir orientation with no specific altitude and inclination. Will occupy small pallet volume. Moderate power requirement.

PAYLOAD DEVELOPMENT STATUS

The payload hardware is in development and is scheduled to fly in 1981.

The payload definition study only.

The payload is in existence and is scheduled to fly in 1980:

Plans to have first flight in 1982.

Hardware exists. Plans to fly in 1979.

Definition study only. Plans to fly in 1982.

Definition study only. Plans to have first flight in 1981.

Definition study only. Plans to have first flight in 1981.

Hardware exists. Plans to fly in 1981.

WEATHER AND CLIMATE PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Shuttle Microwave Instrument Technology Experiment (SMITE)

WC-20-5

Shuttle Atmospheric Lidar (SAL)

WC-13-S

Spaceborne Meteorological Radar (SMR)

WC-03-5

Earth Radiation Budget Satellite-A (ERBS-A)

WC-03-A

Advanced Climsat Observation System (ACOS)

WC-04-A

System 85 Operational Satellite - Polar (85-P)

WC-05-A

System 85 Operational Satellite - Geosynchronous (85-G)

WC-06-A

Geosynchronous R&D Weather Satellite (Geosyn R&D)

WC-07-A

Tropospheric and stratospheric water, atomic species, and pollutant flow study for weather.

SCIENCE OBJECTIVE AND

TYPE OF SENSOR USED

The sensor is a combination of laser transmitter and telescopic detector.

Three-dimensional precipitation data for natural disaster prediction.

The sensor is a microwave antenna transmitter and receiver.

Earth radiation budget data to understand climate.

The sensors are optical radiometers and spectrometer.

Long range weather and climate prediction.

Sensors not defined - probably radiometer type.

Weather satellite for climatology and water budget. Sensors not defined.

Weather satellite for climatology. Sensors not defined. Nadir orientation with very low altitude and KSC launch inclination. Will occupy moderate pallet volume. High power consumption.

SHUTTLE ACCOMMODATION

Nadir orientation with low shuttle altitude.

Will occupy moderate pallet volume. High power consumption.

Moderate shuttle altitude with KSC launch inclination will occupy large pallet volume. Medium power requirement.

Shuttle altitude and inclination TBD. Large payload weight. Power consumption not defined.

Shuttle altitude and inclination TBD. Large payload weight. Power consumption not known.

Shuttle altitude and inclination TBD. Moderate payload weight. Power TBD,

PAYLOAD DEVELOPMENT STATUS

Definition study only. First flight planned in 1984.

Definition study only. First flight planned in 1985.

Definition study only. Plans to fly in 1982-83-

Definition study only. Plans to fly in 1984.

Planning study only. First flight planned in 1985.

WEATHER AND CLIMATE

SPECIAL CONSIDERATIONS	PAYLOAD ACRONYM
VOLUME	SAL
POWER	LPS
	LTS
	SAL SMR
LOW-G	ACPL

C-9

ORIGINAL PAGE IS OF POOR QUALITY

ENVIRONMENTAL QUALITY PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Atmospheric Trace Molecules Observed by Spectroscopy - Airlock Version (ATMOS-A) E0-01-S

Halogen Occultation Experiment (HALDL)

EQ-02-5

Limb Infrared Monitor of the Stratosphere (LIMS)

EQ-03-5

Measurement of Air Pollution form Shuttle (MAPS)

EQ-23-5

Standard Ozone Sounding Unit (SOSU)

EQ-06-5

Temperature Humidity Infrared Radiometer (THIR)

EQ-25-5

Vertical Temperature Profile Radiometer (VTPR)

EQ-26-5

Laser Absorption Spectrometer (LAS)

EQ-08-5

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Measures stratospheric distribution of atmospheric trace species. High resolution, infrared interferometer spectrometer.

Measures stratospheric profiles of halogens and other gases important to ozone chemistry. Combination filter and gas filter correlation, infrared spectrometer.

Measures temperature and density profiles through stratosphere of gases important in ozone chemistry. Infrared filter radiometer.

Measures distribution and movement of carbon monoxide in troposphere. Gas filter correlation, infrared radiometer.

Measures vertical distribution of ozone to calibrate ozone monitors on free flyers and to supplement coverage of free flyers. Combination ultraviolet filter photometer and grating spectrometer.

Measures water content of troposphere and stratosphere, temperatures of clouds and images cloud cover. Scanning infrared filter radiometer.

Measures vertical profile of atmospheric temperature, humidity and carbon dioxide. Scanning infrared filter radiometer.

Measures atmospheric trace gases by absorption of laser beam reflected from earth's surface. Uses one meter diameter telescope. SHUTTLE ACCOMMODATION

Solar occultation viewing, any altitude, high inclination preferred. Solar and cold space views required. Small, low power, scientific airlock mounted. Payload specialist may install and remove from airlock.

Solar occultation viewing. Low altitude, high inclination orbit. Solar view required, cold space view desired. Small, low power, pallet mounted. Payload specialist duties minimal.

Limb viewing, low to medium altitude, high inclination orbit preferred. Small, low power, pallet mounted. Payload specialist duties minimal.

Nadir viewing, low to medium altitude, low inclination orbit preferred. Small, low power, pallet mounted. Payload specialist duties minimal.

Nadir viewing. Low altitude, any inclination orbit. Small, low power, pallet mounted. Payload specialist duties minimal.

Nadir viewing, any altitude and inclination orbit. Small, low power, pallet mounted. Payload specialist duties minimal.

Nadir viewing, any orbit. Small, low power, pallet mounted. Payload specialist duties minimal.

Nadir viewing, low altitude, high inclination orbit. Large, medium power, pallet mounted. Fayload specialist duties minimal. PAYLOAD DEVELOPMENT STATUS

In development on SL-1, 1980.

In development. Can be ready for flight in 1980. On ERBS-A (1982).

Existing hardware. Can be ready to fly in 1980.

Existing hardware on OFT-2

Existing hardware available for flight 1981.

Existing instruments are in use on NIMBUS satellites.

Existing instruments belong to NOAA.

Definition studies. Airborne instrument exists. Ready for flight 1982.

ENVIRONMENTAL QUALITY PAYLOAD DESCRIPTION

PAYLOAD

PAYLOAD NAME SCIENCE OBJECTIVE AND SHUTTLE ACCOMMODATION (ACRONYM) TYPE OF SENSOR USED DEVELOPMENT STATUS Correlation Interferometric Measures vertical distribution Nadir and/or solar occulta-Existing AAFE Measurement of Atmospheric Trace Species (CIMATS) of atmospheric trace species. tion viewing. Any orbit acceptable. Small, low instrument. Infrared interferometer power, pallet mounted. radiometer. EQ-14-S Automated operation or ground control. Solar Extinction Radiometer Measures aerosol and ozone Solar occultation viewing. Definition studies. (SER) distribution in atmosphere. Any altitude, high inclina-Grating spectrometer. tion orbit. Small, low EQ-10-S power, pallet mounted. Payload specialist duties minimal. Stratospheric Aerosol and Measures aerosol and ozone Solar occultation viewing. In development. On AEM-B (1979) and ERBS-A (1982) Gas Experiment (SAGE) Medium altitude, high distribution in atmosphere. Grating spectrometer. inclination orbit. Small. EQ-29-5 low power, pallet mounted. Could be ready for Payload specialist duties flight in 1980. minimal. Shuttle Atmospheric Lidar Study transport, dissipation, Nadir viewing. Low altitude, Definition studies (SAL) excitation and chemistry of high inclination orbit. ready for flight Large, high power, pallet mounted. upper atmosphere. Laser and 1.0 meter class telescope. in 1983. EQ-28-5 Composite Stratospheric Package (COMP STRAT) Compare results of strato-Determined by instruments Planning. spheric measurements by being compared. instruments with different EQ-19-S spectral ranges. No new instruments. Planning. Could be ready for Measure concentration and Nadir and solar occultation Composite Troposheric Package (COMP TROP) distribution of atmospheric viewing. Cold space constituents. Integrated calibration view required. flight 1983. package consisting of CIMATS. VTPR, THIR and MAPS. Medium size, medium power. EQ-24-5 pallet mounted. Solar occultation viewing. In development. Laser Heterodyne Measures atmospheric profiles Low to medium altitude, high Airborne AAFE Spectrometer (LHS) of trace species. Infrared inclination orbit. Medium size, medium power, pallet heterodyne spectrometer. instrument exists. EQ-30-S mounited. Measures stratospheric distri-Solar occultation viewing, In development for Atmospheric Trace bution of atmospheric trace any altitude, high inclina-SL-3, 1981. Molecules Observed by tion preferred. Solar and species. High resolution. Spectroscopy - Pallet cold space views required. infrared interferometer Version (ATMOS-P) Small, low power, pallet spectrometer. mounted, Desires payload EQ-31-5 specialist to photograph mirage if occurs during observation. Definition studies. High inclination orbit. Earth Radiation Budget Measures earth radiation Planned for flight Satellite-A (ERBS-A) balance and distribution of Full pallet size, may use after NOAA-F aerosols, halogens and ozone own cradle. Development for climate studies. Includes SAGE, HALOE and ERBI on AEM or needed. Medium power. (1982). E0-02-A MMS spacecraft.

ENVIRONMENTAL QUALITY

SPECIAL CONSIDERATIONS

HIGH POWER

C-12

VAPOR CONTAMINATION

PAYLOAD ACRONYM

SAL

ATMOS, HALOE, LIMS, LAS, CIMATS, COMP STRAT, MAPS, COMP TROP, THIR, VTPR, LHS, SAL

ORBIT RESTRICTIONS

ASCENT AND DESCENT POWER

SOSU

LIMS, THIR

OCEAN CONDITION PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM) SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Ocean dynamics and condition.

SHUTTLE ACCOMMODATION

PAYLOAD DEVELOPMENT STATUS

Ocean Wave Spectrum Measurement (OWSM)

0C-01-S

Ocean Applications Laboratory (OAL)

00-02-5

Seasat Follow-on

0C-03-A

Coastal Monitoring Project (CMP) OC-05-A Ocean conditions, marine biology, and dynamics.

Global observations of ocean surface conditions. Various active and passive

sensors.

Monitoring of ice, environment, biocontent, and transport condition.

High shuttle altitude with high VAFB launch inclination. Will occupy very large bay volume.

High shuttle altitude with high VAFB launch inclination. Will occupy very high bay volume. Idea only.

In planning stage. Plans to fly in 1983.

In planning stage. Plans to fly in 1985.

ORIGINAL PAGE IS OF POOR QUALITY

OCEAN CONDITION

SPECIAL CONSIDERATION

PAYLOAD ACRONYM

VOLUME

C-14

SEASAT FOLLOW-ON CMP

ORIGINAL PAGE IS OF POOR QUALITY

MATERIALS PROCESSING PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Materials Processing Furnace System (MPFS)

SP-41-S

Acoustic Lavitation Processing Module (ALPM)

SP-42-S

Cell Aggregation Module (CAM)

SP-43-S

Multipurpose Fluid Phenomena Facility (MEPF)

SP-44-S

Polymer Particle Growth Module (PPGM)

SP-45-S

Vapor Crystal Growth Module (VCGM)

SP-46-5

Materials Experiment Assembly (MEA)

SP-40-S

Analytical Float Zone System (AFZS)

SP-47-S

Floating Zone Crystal Growth System (FZCGS)

SP-48-5

Bioprocessing System (BPS)

SP-49-5

Leased Industrial Materials Experiment Assembly (LIMEA)

SP-50-5

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

To grow high perfection crystals for nuclear detectors.

Facility for containerless processing of materials.

Sensor is an acoustic lavitator.

Intercellular attraction force and size relation to specific disease.

Sensor is a viscometer with camera as the data gathering device

Study fluid phenomena important for space processing.

Sensors are optical. Camera will gather most of the data.

Gravity effect on seeded emulsion polymerization. The sensor is a reaction chamber.

Production facility for growing crystals using vapor transport. Sensor is a high temperature furnace.

Materials processing and automated space processing facility concept. Sensors are furnances,

lavitator, and reaction chamber. Gravity effects on molten zones

that are important for space processing. Sensor is a furnace. Camera

will gather part of the data.

Materials processing and purification using the floating zone technique. Sensor is a high temperature

furnace. Process information on space

cell-culture system. The sensor is a reaction

chamber.

Facility to process various types of materials which are of industrial importance.

SHUTTLE ACCOMMODATION

Stable "low-g" only. Low power consumption. Will occupy part of a single rack in the module.

Stable "low-g" only Moderate power consumption. Will occupy a double rack volume.

Stable "low-g" only. Will occupy part of a single rack.

Stable "low-g" only. Will occupy one double rack.

Stable "low-g" only. Will occupy part of a single rack. Low power consumption.

Stable "low-g" only

Stable "low-g" only. Will occupy small pallet volume. No power required.

Stable "low-g" only. Will occupy part of a double rack. High power requirement.

Stable "low-g" only.

Stable "low-g" only. Will occupy a small portion of a single rack. Low power requirement.

Stable "low-g" only.

PAYLOAD DEVELOPMENT STATUS

Payload in development state.

Scheduled to fly in 1981.

Payload in development state.

Scheduled to fly in 1981.

Payload in development state. Scheduled to fly in

1981.

Payload in development state. Scheduled to fly in

Definition study only. Scheduled to fly in 1981.

1981.

Imagination only.

Payload under development. Scheduled to fly in 1980.

Definition study only. Scheduled to fly in 1981.

Idea exists.

Definition study only. Plans to fly in 1981.

Idea exists only.

MATERIALS PROCESSING PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)	SCIENCE OBJECTIVE AND TYPE OF SENSOR USED	SHUTTLE ACCOMMODATION	PAYLOAD DEVELOPMENT STATUS
Electromagnetic Container- less Processing System (ECPS)	Facility to produce high purity materials by contactless technique.	Stable "low-g" only.	Definition only. FYB1 new start.
SP-51-S	Sensor is a electromagnetic furnace.		
Cell Separation System (CSS) SP-52-5	Purification and fractionation of biological cells for pro- duction. The sensor is a electrophoretic	Stable "low-g" only. Will occupy part of a single rack. Moderate power consumption.	Definition only.
	chamber.		
Polymer Production Facility (PPF)	Facility for the production of polymers of various types.	Stable "low-g" only.	Idea only. FY83 new start.
SP-53-5	The sensor are reactive chambers.		
Molecular Wake Shield (MWS)	Facility with ultrahigh vacuum for ultraclean material production.	Stable "low-g" only. Will occupy a large shuttle bay volume.	Definition study only. Plans to fly in 1984.
SP-39-S	Sensors likely to be furnaces.		
Glass Shell Processing System (GSPS)	Facility for containerless processing of glassy materials.	Stable "low-g" only.	Definition only.
SP-54-5	Sensor is a lavitating device.		
Foamed Solid System (FSS)	Facility for production of metal	Stable "low-g" only.	Very vague idea
SP-55-S	and non-metal foams for industrial use.		only.
	The sensors will be furnaces.		
Counter Current Distribution System	Facility for separation and purification of biomaterials.	Stable "low-g" only.	Idea only with some demonstration.
(CCDS) SP-56-S	The sensor will be a counter current chamber.		

ORIGINAL PAGE IS OF POOR QUALITY

PAYLOAD

to be awarded in

Development of

special instrumen-

Definition studies

hardware development

ready to start

Definition study

Planning

Sept. 1978

tion

SPACE COMMUNICATIONS PAYLOAD DESCRIPTION

PAYLOAD NAME (ACRONYM)

Adaptive Multibeam Antenna Experiment AMPA CN-16-S

Large Deployable Antenna CN-07-S

Millimeter Wave communication experiment CN-09-S

Microwave Interferometer Navigation and Tracking Aid CN-12-5

Orbiting Standards Platform CN-24-5

Public Service **Communications** Payload CN-05-A

Coastal Zone Monitoring Satellite CN-09-A

Hazard Warning/ Communication Satellite CN-10-A

de La

SCIENCE OBJECTIVE AND TYPE OF SENSOR USED

Operate in space orbit a communications phased array capable of producing multiple simultaneous transmit and receive beams as an electronically steerable antenna (+ 70º circular).

Demonstrate and measure a 30 meter. diameter mesh antenna that can be automatically unfurled and refurled in space.

Evaluate advanced millimeter wave communications techniques for space applications and measure. propagation effects through a wide variety of atmospheric conditions.

Measure the performance of a spaceborne (low earth orbit) microwave interferometer for locating the position of multiple microwave sional sources.

Develop satellite techniques capable of calibrating broadband radio measurements from remote earth and snace sources.

Demonstrate the technology needed to implement satellite to mobile transceiver communications. Use an approach that makes use of already developed hardware and provides a future test source for a subsequent satellite with higher capacity.

Provide a Gatellite capable of making accurate pusition measurements on cooperative fishing and tanker vessels operating near and within the 200 n.mi. coastline of conus using a precision RF interometer.

Provide additional "daily business" communications for the national weather service and to enlarge their diaster warning capabilities on a cost effective basis.

SHUTTLE ACCOMMODATION DEVELOPMENT STATUS Contract for payload

Single pallet and a full vertical rack, earth orbit pointing in the nadir direction

Two forward pallets and 1.5 racks in low earth orbit pointing into space.

Single pallet and 1/5 rack in low earth orbit bay toward nadir.

Center pallet and 1/2 rack

Single pallet and rack operating in low earth orbit.

≈ 1/2 shuttle cargo length Planning

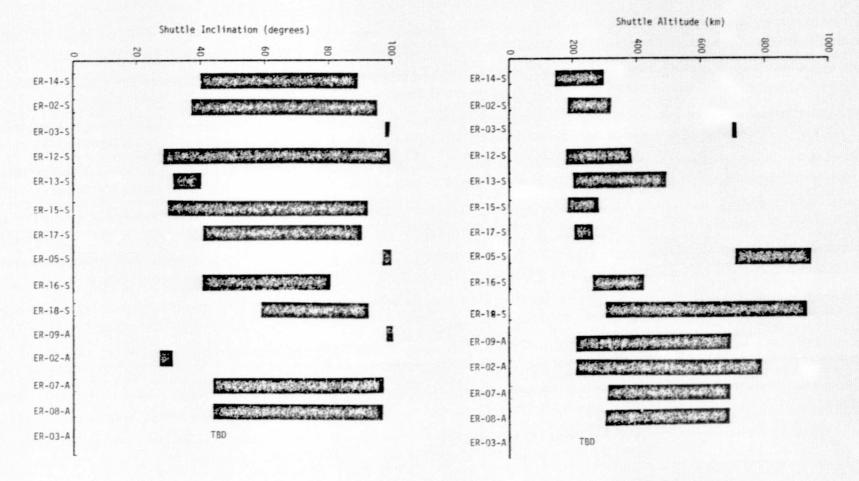
transported to an intermediate orbit before being placed into geostationary orbit.

Two pallets transported Planning to an intermediate orbit before being placed into geostationary orbit.

Two pallets transported to an intermediate orbit before being placed into a geostationary orbit.

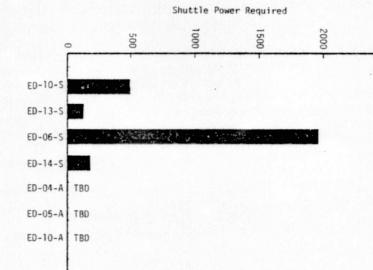
Definition Studies

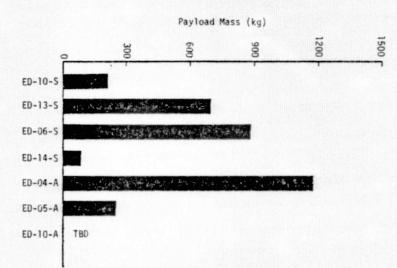
C-17


SPACE COMMUNICATIONS PAYLOADS

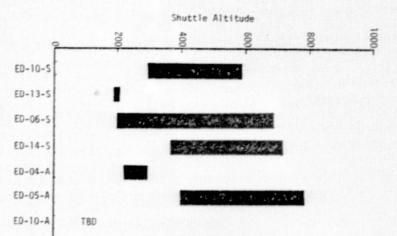
SPECIAL CONSIDERATION	PAYLOAD ACRONYM
LOW ACCELERATION ENVIRONMENT	LDASE MINTA
FIELD OF VIEW OBSTRUCTION OF CARGO BAY	LDASE
PAYLOAD BAY CONSTRAINT	LDASE

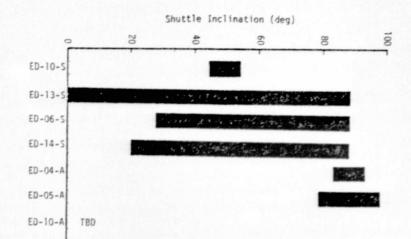
APPENDIX D. PERTINENT PARAMETER BAR CHARTS

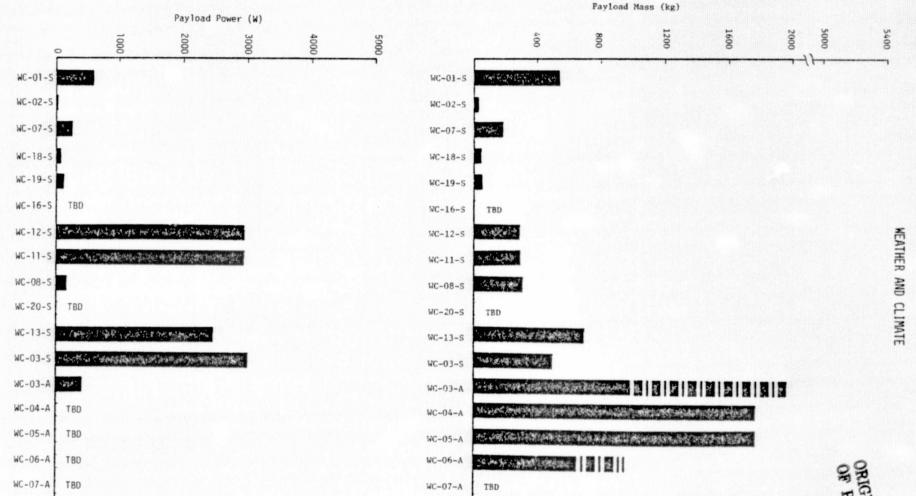

COMPARISONS OF MASS, POWER, ORBIT, AND INCLINATION REQUIREMENTS OF ALL THE INVESTIGATIONS/INSTRUMENTS IN THE ACTIVE OSTA INVENTORY

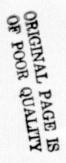


EARTH RESOURCES

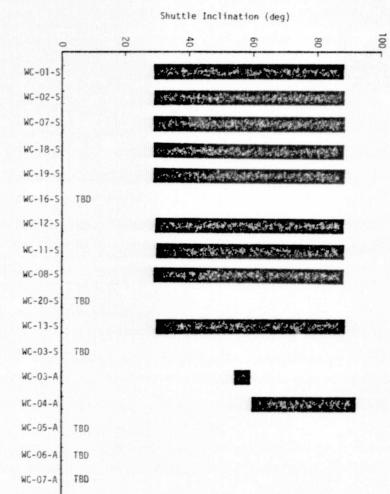

D-3

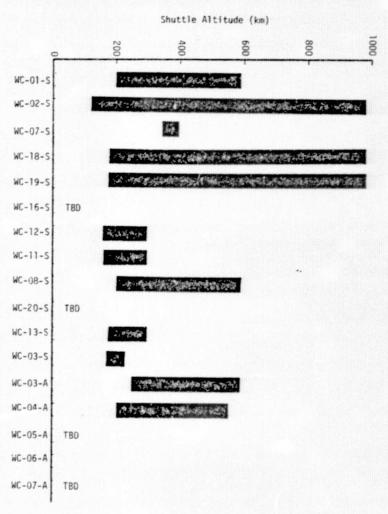




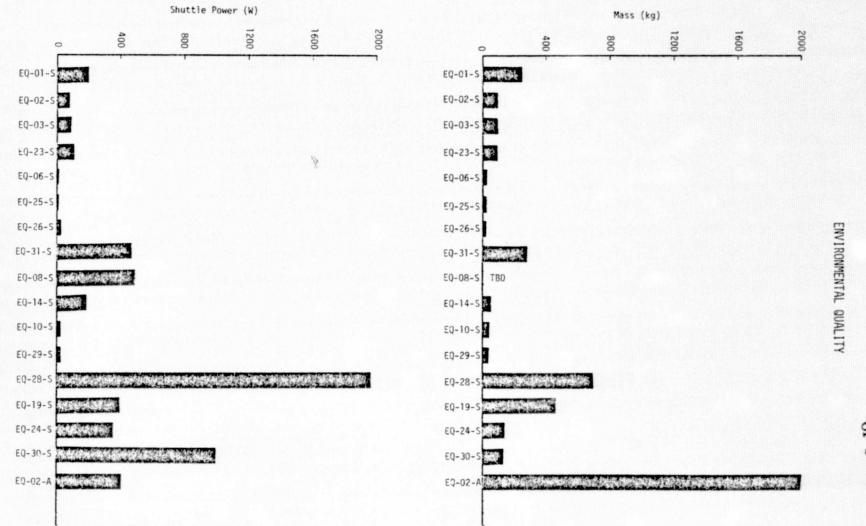

EARTH DYNAMICS

OF POOR QUALITY

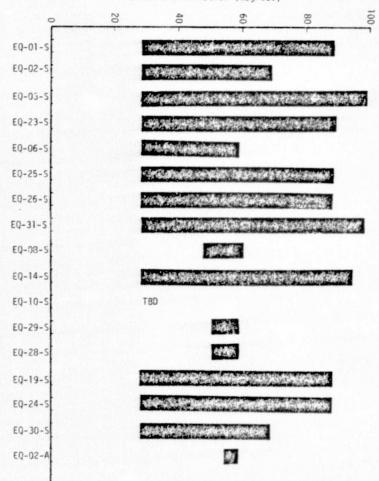


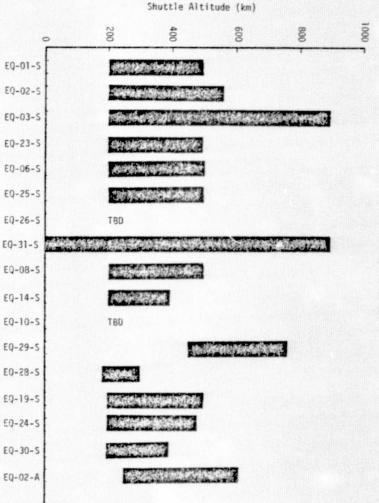

1

-


-

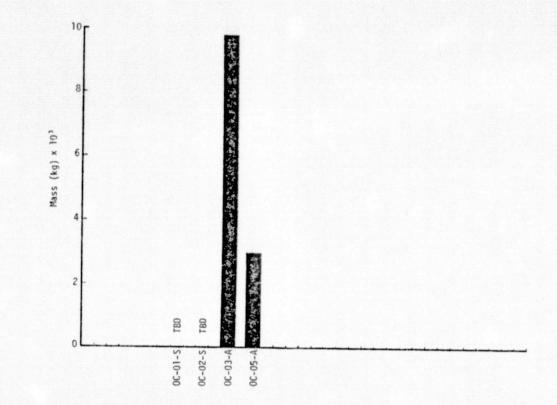
12

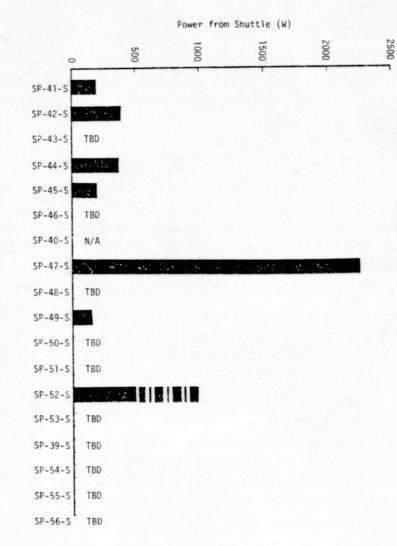

WEATHER AND CLIMATE

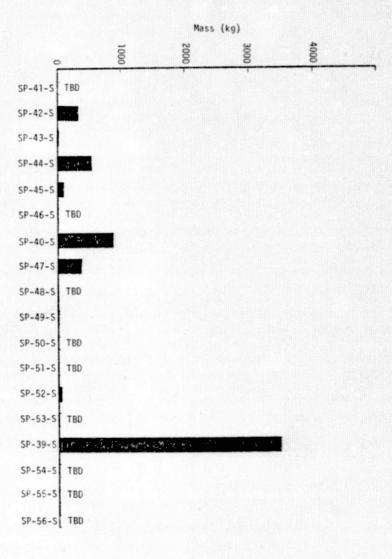


OF POOR QUALITY

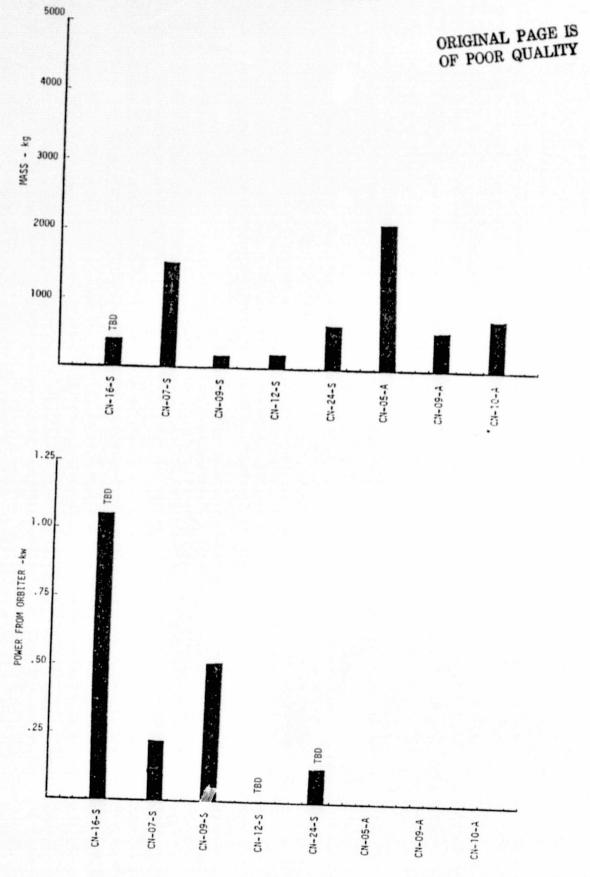
1

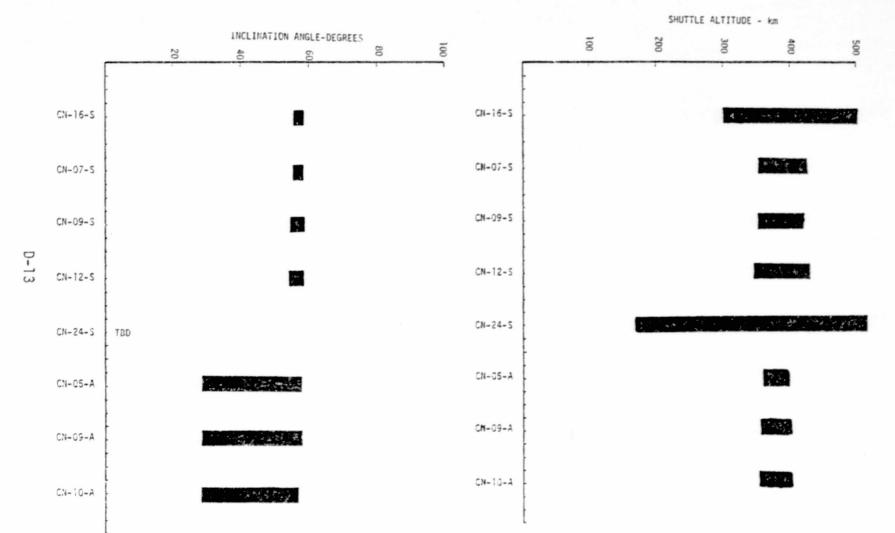

Shuttle Inclination (degrees)




ENVIRONMENTAL QUALITY

ORIGINAL PAGE IS OF POOR QUALITY




OCEAN CONDITIONS

MATERIALS PROCESSING

SPACE COMMUNICATIONS