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REDUCTION OF MATRIX WAVEFRONT FOR NASTRAN

Cordon C. Everstine
David W. Taylor Naval Ship Resezrch and Development Center

SUMMARY

1ha chree grid point resequencing algorithmswmost often run by NASTRAN
users are compared for their ability to‘?ﬁduce matrix root-mean-seguare {rms)
wavefront, which is the most critical parameter in determining matrix decompo-
sition time in NASTRAN, The three algorithms are Cuthill-McKee (CM), Gibbhs-
Poole-Stockmeyer (GPS), and Levy. The tirst two (CM and GPS) are in the BANDIT
program, ana the Levy algorithm is in WAVEFRONT. Results are presented for a
diversified collection of 20 test pr.vlems ranging in size from 59 to 2680
nodes, It is concluded that GPS is exceptionally fast and, for the conditlons
under which the test was made, the algorithm best able to reduce rms wavefront
consistently well.

INLAIDULCTION

A central feature of structural analysis with NASTRAN is the factoring (or
decomposition) of a matyrix into upper and lower triangular forms. NASTRAN's
current triangular decomposition algorithm is an active column routine similar
to a varlable band or wavefront approach. As such, the computer time required
to perform a matrix decomposition depends strongly on the sequence assigned to
the grid point labels.

vor real, symmetric decomposition, for example, the time T required can be
estimated from the relation (ref. 1)

1
T 5 T

c,? (1)

where N = matrix order,
ey = number of active columns in matrix row i, and

T = time for multiply-add operation (an experimentally determined
machine time constant).

The time T is sequence-dependent since the c,;'s are sequence-dependent.

L

Since c; is sometimes referred to as the row wavefront for row i, equation
{1) can alternatively be written in terms of the root-mean-square (rms) wave-
front, Wrms:
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T = %'1‘ Nw_ 2 (2)
]
Because of the large silze of Eciz in equation (1) for many problems, this
latter form of the timing equation is often the more convenient one to use in
practice. Tor reference purposes, typical values for the machine constant T

are listed in Table 1 for several computers.

Core storage requirements for matrix decompesition are also dependent on
the nodal sequence, the most critical parameter being the maximum matrix wave-
Eront Wygay, which is the maximum value of any ey

Thug, for most efficient matrix decomposition, the user would like to
assign gﬁ&d point labels sc as to minimize both Wypys and Wy,,, with the former
probably the more important. Unfortunately, it is often difficulr for users
to know how to sequence the nodes to effect a good numbering, particularly for
large complicated meshes or those generated automatically on a computer, As a
result, many users turn to NASTRAN preprocessors which automate the labeling
process. The two mest often run by NASTRAN users are BANDIT (refs. 2-~4), which
contains the Cuthill-McKee (CM) (ref, 5) and Gibps-Poole-Stockmeyer (GPS)
(refs. 6-~7) schemes, and WAVEFRONT (ref. 8), which contains the Levy
resequencing alporithm (refs. 9-10). Both preprocessors read NASTRAN data
decks as input, resequence ihe nodes, and generate NASERAN SEQGP bulk data
cards (which tell NASTRAN what the new internal seﬁhgpﬂ% should be).

The questions qhihh then naturally arise are: How do these three
resequencing algoritfhmg?(CM, GPS, and Levy) compare for their ability to reduce
rms wavefront? What areﬁﬁh time and core requirements of the three
algorithms? ;-

These questions were addressed recently in another paper (ref. 11), in
which the alporithms were also compared for matrix profile reduction. fomplete
deseriptions of the test problems used for the comparison were presented. The
purpose of this paper, which is adapted from reference 11, is to summarize for
the NASTRAN user community the rms wavefront results obtained.

Subsequent sections of this paper present precise definitions of the rele-

vant terms, a brief description of the three algorithms to be iested, the
ground rules of the test, and the test results,

DEFINITIONS

Although the definitions given here are reasonably standard (at least in
finite element circles), uniformity of definitions and notation among the
various workers in the field does not yet exist,

Given a symmetric square matrix A of order N, we define a "row bandwidth"
by for row i as the number of columns from the first nonzero in the row to the
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diagonal, inclusive. Numerically, b; exceeds by unity the difference between i1
and the column index of the first nonzero entry of row 1 of A. Then the matrix
bandwidth B and profile P are defined as

max

B = ey by 3
P g b (4)
i=1 *

Let cq denote the number of active columns in row i. By definition, a
column j is active in row i if j 2 i and there is a nonzero entry in that
column in any row with index k 2 1, The matrix wavefront W is then defined as

W= ey o (5)

Sometimes cq is referred to as the row wavefront for row L. BSince the matrix A
1s symmetric,

P= % b,= % ¢ (6)
4=1 T 4=1 T

The wavefront W is sometimes called the maximum wavefront wmax to distinguish
it from the average wavefront wavg and root-mean-square wavefront Wyng defined
as

N P
Mavg "W 5 G147 W )

_.f1 X 2
rms YN E ¢ (8)

From these definitions, it follows that, for a given matrix,

W iw zw SBEN (9
b4

The first two inequalities would be equalities only for uninteresting special
cases such as diagonal matrices.

We define the degree d; of node i as the number of other nodes to which it
is connected; i.e., more precisely, dj is the number of nonzero off-diagonal
terms in row 1 of the matrix A. (This implies, for example, that all nodes in
the same finite element are ''comnected" to each other.) Hence, the maximum
nodal degree M is

max
M=

= qcN 44 (10)
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The number of unique edges E is defined as the number of nonzerc off-diagonal
terms above the diapgonal. Hence, for a gymmetric matrix,

N _
L d (L1)

E =
=1 *

Mo i

Thus the total number of nonzeros in A is 2E+N, and the density p of the matrix
A ils

p = (2LEHN) /N2 (1.2)

Note that, In these definitions, the diaponal entries of the matrix A are
included in bj and cy (and hence in B, P, Wyax, wavgs and Wppg) . These
definfvrions make it easy to coavert the various parameters from one counvention
(including the diagonal) to the other (not including the diagonal).

Also note that, in chis context, the ovder N of the matryix A 1ls sometimes
taken to be the same as the number of nodes. In general finite element usage,
however, each node {grid point) has several degrees of freedom (DOF), not just
one. Tor structures having, say, six DOF per node, the actual DOF values of B,
Wnax: Wayps Or Wipe would be (in the absence of constraints) six times their
corvesponding grid point values,

Example

Definitions (3)-(l2) can be illustrated by the following simple example.
Congider the makbrix shown below, in which nonzeros are indicated by X's.

by i O S
1 X X 3 9 2
1 X ] 5 25 2
3 X 4 16 3
3 2 3 9 1
4 X X X 2 4 2
6 b % ¢y 1 1 2
i=18 L A I=18 I=64 I=12

In each row and column a line is drawn from the fivst nonzero to rthe diagonal.
Thus b; is the number of columns traversed by the solid line in vow i.
Similarly, the number of active columns c; in vow 1 is the number of vertical
lines in row i to the wight of and including the diagonal., Thus, from the

definitions, B=6, W ,.=5, P=l18, Wavg=3'0’ Wemg=3.3, M=3, E=6, and p= 30.0%.
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THE RESEQUENCING ALGORITHMS TESTED

The three algorithms tested are Cuthill-MeKee (CM) (vef. 5), Gibbs-Poole-
Stockmeyer (GPS) (refs. 6~7), and Levy (refs. 9-10). In this section each
algovithm is described hriefly, with detalls concerning the specdfic implemen-—
tation used. Tt is recognized that one cannot really evaluate algorithms per
se, but only speciflc implementations of algovithms.

Cuthill-McKee {CM) (vef. 5)

The original version of CM operated generally according to the following
procedure: Amoug the nodes of low degree, select as potential starting nodes
those which can voot a graph of minimal width. (The term "starting node”
refers to a node which is assigned the label 1 in the new sequence.) TFor each
potential starting node, assign the labels 2 Chrough N by numbering those
adjacent to new label T (and unnumbered) in order of ilncreasing degree,
starting with I=1 and continulng with inereasing I until all nodes are
sequenced, Of the sequences attempted, select the one having tre smallest band-
width.

The ilmplementation of CM used in these tests is that appearing in the
BANDIT computer program, version 8 (rels. 2-4), which contains a version of CM
differing From the original algorithm in two ways. UPirust, the new sequence
obtalned is veversed (by setting I to N+1-I for each I), since it was observed
by George {(ref. 12) and proved by Liu and Sherman {(velf. 13} that such a
reversal (which preserves matrix bandwidth) will often vreduce the matrix
profile and never increase it. Second, of all sequences attempted, the one
with the smallest rms wavefront Js the one selected. Except for these two
changes, the CM computer code is that eriginally written by Cuthlll and McKee.

The data structure originally used by CM required about (M+-B)N words of
core stovage for the problem-dependent arrays, where N is the number of grid
points and M is the maximum nodal degree. In the BANDIT implementation of CM,
word packing is used to rveduce the storage requivements to (M/L48)N, where L,
the packing density, is an integer (between 2 and 6, inclusive) which depends
on the problem size and the computer being used. On a CDC 6400, for example,
the CP time penalty for sacking is about 80 psec per pack ox unpack.

Gibbs-Poole-Stock ncyer (GPS) (refs. 6-7)

The GPS algerithm differs from CM priwarily in the selection of starting
nodes. In GPS, ovly one starting node is selected, and it 1ls an endpoint of a
pseudo~diameter of the graph associated with the matrix. Thus, the structure
need be numbered only once, using a procedure which is similar to the CM
numbering algoxrithn,

The storage requlrements of GPS are ldentical to those of CM, including
the use of integer packing in the BANDIT (version 8) implementation, which is
the form of GPS used for the testing. The original GPS code was written by
the developers (ref. 7).
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Levy (refs, 9-10)

Unlike CM and GPS, which were developed to reduce matrix bandwiath and
profile, the Levy algorithm was designed specifically to reduce the maximum
matrix wavefront, Wy,x. The algorithm operates generally according to the
following recursive procedure: Given the first I nodes of a new sequence, the
node selected as I+l 1s the one for which the inerease in the row wavefront
between rows I and I+l will be minimum, Levy calls this a "minimum growth'
method.

This procedure is followed for one or more trial starting nodes, and the
sequence yielding the smallest wavefront Wy, is selected. The first sequence
attempted uses as the starting node either a user-selected node or a node of
minimum degree, The latter optlon was chosen for these tests since it was felt
that, for a production mode program, the uger ocught to be relieved of the
burden of specifying a starting node, The second and succeedling sequences
attempted by the Levy algerithm select starting nodes vandomly, The numbexr of
new sequences Lo be attempted must be specified by the user. After some
preliminary experimentation to estimate the speed of the algorithm, it was
declded to request ten sequencing attempts for each test problem, Clearly a
different number would yield different results.

The fmplementation used for the tests was that obtalned by the author from
Levy in 1973, the only change being that the sequence selected as best is the
one yielding the smallest rmws wavefront Wp;g. Since the Levy algorithm aborts
any resequencing attempt in progress once it determines that it cannot reduce
the previous best Wy, the sequence finally selected will be the one among
those carried to completion yielding the smallest Wpyg.

The Levy data structure requires about 6N+10E words of core storage for
the problem-dependent arrays, where N is the number of grid points and E is the
number of unique edges. The code was not rewritten to use word packing for the
tests.

TEST RESULTS AND DISCUSSION

The three grid point resequencing algorithms described in the preceding
section were tested on a collection of 30 finite element meshes. These
problems were collected over a period of several years from NASTRAN users
representing various U.S. Navy, Army, Air Force, and NASA laboratories. Since
these meshes are described in detail and plotted elsewhere {ref. 11}, that
information need not be repeated here. In general, however, the collection is
probably large enough and diversified encugh to provide a good test of nodal
resequencing algorithms.

The nodes for the 30 test problems were resequenced using the three algo~

rithms, the objective being to reduce rms wavefront, All computer runs were
made on a CDC 6400 cowputer under the NOS/BE operating system. The source code
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was compiled using the FIN compiler, OPT=1l. TFor reference purposes, a CDC 6400
1s about one-third as fast as a CDC 6600.

The results of the tests appear in Table 2. In addition to the rms wave-
front obtained by each alporithm, Table 2 also lists, for each algorithm, the
CP time expended and the storage requirements for the problen-dependent arrays.
In the case of CM and GPS, which use word packing, the worst-case of half-word
packing is assumed. The CP times listed do not include basilc setup of the
arrays.

The first conclusion to be drawn from Table 2 is that, for most problems,
all three algorithms achieve about the same reduction in rms waveflront, 'This
ig, perhaps, somewhat unexpected since CM and GPS were designed primarily to
reduce matrix bandwidth, whereas tke Levy scheme was desipned to reduce matrix
wavefront, Tor Lhe 30 problems, Levy achieved the best reduction in rms
wavefront 13 times, GPS 11l times, and CM 5 cimes. However, oun four occasions
(N=503, N=607, N=878, and N=918) Levy did significantly worse than the best
achieved; on three occasions (N=209, N=245, and N=1242) GPS did significantly
worse; and on two occasions (N=245 and N=592) CM did signiflcantly worse.

The second, and perhaps most striking, conclusion to be drawn from Table 2
is that GPS is exceptionally fast. In all cases, CM is second fastest, the
Levy algorithm slowest. The user, of course, has some control over the running
time of the Levy program (but not of CM and GPS) through his specification of
the number of resequencing attempts.

The third conclusion te be drawn fLrom Table 2 is that the Levy algorithm,
as is, requires considerably more array storage than either CM or GPS, which
use the same data structure. In fact, for the Levy program, one problem
(N=2680) was too big for a CDC 6400 and could not be run. Clearly, the prog: ..
could be rewritten to use word packing (as CM and GPS do}, but this may be a
nontrivial task, since the programmer has to decide which arrays to pack to
yield the best compromise between storage and CP time, (Word packing, of
course, saves core at the expense of CP time.)

Table 2 indicates that Levy's wavefront reduction performance was
generally best for the smaller problems and GPS's was generally best for the
larger problems. This is probably due to the author's choice of ten saquencing
attempts for the Levy algorithm. As the problems get larger, the probability
of Levy's selecting a good starting node at random goes down, One can infer
that the algorithm's performance would improve if the program were allowed to
run longer. However, whether the expenditure of more computer time is justi-
fied would be a matter for each user to decide. One issue that enters into
such a decision 1is the number of times a given matrix problem is to be solved.
If a given problem is to be solved wany times (as, for example, in nonlinear
analysis), or if many right-hand sides are involved (as, for example, in time-
dependent problems), the time spent in sequencing becomes less important.

One might also infer that the performance of the Levy algorithm would

improve if trial starting nodes were selected using a strategy such as that
used in CM or GPS, vather than at random. While this may be true sometimes, it
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was not true for the test problem on which Levy performed the worst (N=918),
because for this problem the first trial starting node selected by Levy (which
uses a node of minlium degree for the first attempt) was the same startinpg node
selected by GPS. This same problem (N=918) was also run by Gibbs with his
profile algorithm (ref. 14) (which is a hybrid of GPS and King (ref. 15), the
latter being similar to Levy) with good results. This would indicate that
Gibbs' modification to the King numbering approach {(given a starting node) has
a significant effect for some problems,

Overall, GPS's combination of speed and consistency probably rate it the
best algorithm of the three for rms wavefront reduction. Previous testing
(ref. 3) has already shown it to be an excellent algorithm for matrix bandwidth
reduction, for which it was designed.

Finally, the three algorithms tested were selected because of their heavy
use by NASTRAN users. However, it would be interesting to see how other
strategies, including Gibbs-King (ref. 14) and Snay (ref. 16), would perform
on the same data. Both give good results for profile reduction and hence would
probably also do well in rms wavefront reduction.
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TABLE 1.-MULTIPLY-ADD TIME CONSTANTS (Tm)
(Double precision for IBM and Univac, single precision for CDC)

Computer Tm (microseconds)
CDC 6400 16
6600 4.5
7600 0.6
Cyber 173 8.2
174 8.2
175 1.1
176 0.7
IBM 360/370 - 50 100
65 20
75 12
85 2
91,95 1.7
155 25
165
195 0.5
Univac 1108 14
1110 4

Source: NASTRAN level 17 block data deck NTMXBD
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TABLE 2 - RS WAVEFRONT TEST RESULTS

NJ. OF RMS WAVEFRONT CP TIME (SEC.) STORAGE (WORDS)
GRID
POINTS AFTER| AFTER] AFTER CHEGPS LEVY
{N) 3EFORE CH GPS LEVY CH GPS LEVY (4/72+3) N} BN+10E
59 B.2{* 5.5 Bol Bal 0.5 8.2 2.7 620 1394
66 11.3 3.21* 2.9 3.0 0.6 0e2 1.5 6593 1566
72 3.5 NI NI NI 0.3 0.2 1.2 720 1182
87 29.40* 8.3 8.9 8403 1.5 0ot bel 1218 2792
182 19.0 10.3} 10.56]* 8.6 2.8 0.8 13.4 1344 6072
133 43.8 2640 271|* 2u.7 11.9 6.6 36.2 4343 17553
138 30.9 7.3l 7.1 7.2 2.7 1.5 23.1 2673 7158
209 50.3 19.9] 24.5]* 18.4 6.0 1.3 37.5 3344 8g92¢
221 GO.al* 10.2 10.4] 13.3 5e7 1.5 38.0 2984 B366
234 9,k 7.3 To1l* 5.1 1.5 0.9 14.9 2925 44 0L
245 18.5) 17.5] 18.4)* 13.5 4,5 1.b 2644 3430 7550
307 274 NI NI {* 25.7 10.7 1.9 73.7 35684 12922
310 9.9 NI NI |* 9.7 16.2 2.2 32.0 4030 12551
346 27.1 22.8 24.3|* 21.8 18.0 2.7 61«5 5882 16476
361 15.4 14.31*% 1u.2 14.3 11.3 1.8 38.7 4332 15126
419f 107.1 225 22.2]* 13.8 18.5 2.5 155.1 5866 18234
492 79.5| 14.5] 413.0}* 10.6 13.3 2.9 145.7 65396 16272
503 73.6)% 33.1 3.6 u1.9 3.3 4.2 294,3 10060 30538
512 14.5 12.7] 12.50* 12.4 10.1 4.5 161. 0 7680 18022
592 55.2f 25.6|* 20.5 21.3 5643 5.2 133.1 8880 26112
607 55.4) 29.2|* 28.3] 38.0 37.6 4.0 362.5 8802 26262
758 37.3] 15.9]* 12.1 15.2 93 4 6.2 306.7 9354 30728
869 25.10 204 20.7{* 19.8 132.2 10.4 450.2 12601 27234
874 31.3 23.7]* 22.9 NI 46. 0 12.2 311.2 10375 358118
918 131.1 25.7|* 24.3 51.1 95,2 9,7 745.7 12852 37838
932 302.0 35.9|% 34.7| 38.8 141.2 34.8 801.8 16368 Bu712
18085 137.7f* 43.5 4943 4l .5 252.6 7.0 10108.0 21105 441140
1807 25.3] 2u.5]® 22.9 NI 4246 14.6 300.3 12588 43882
1242] 105.2 62.3] 48.6{* 38.7 12442 16.9 1270.9 16767 53372
2680] 234.4) L0.4}% 33.3 # 342.3 23.5 # 45560 127810
¥ = GREATEST REDUCTION, NI = NO IMPROVEMENT, & = NOT RUN



