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MODELING STRUCTYRAL DAMPING FOR SOLIDS
HAVING DISTINCT SHEAR AND DILATATIONAL
LOSS TACTORS
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SUMMARY

For steady state time harmonic problems (rigid format 8), the NASTRAN pro-
gram as currently configured treats internal structural damping through the
introduction of a singlr structural element damping coefficient that typically
is viewed as the ratlo of the complex to real modulus of elasticity (Ei/Er).
For problems dealing with two or three dimengsional dynamic linear viscoelastic-
ity (e.g. a Kelvin-Voigc viscoelastic model), the present NASTRAN capability
cannot directly handle this situation whereln twe independent damping coeffici-
ents are required to properly model the dissipation phenomenon. A technique is
presented whereby the user can adapt the standard versions of NASTRAN (without
resorting to either DMAP and/or FORTRAN coding changes) for the purpose of
treating this class of problem.

INTRODUCTION

This paper is concerned with the solution to 1, 2, or 3 dimensional steady
state (time harmonic) structural response problems wherein part or all of the
structure is comprised of a linear viscoelastic material. In particular,
attention is focused on the representation of the viscoelastic dissipation (or
equivalently sound absorption) properties of this class of materials. ‘TTypi-
cally, rubber-like materials fall into the category of interest. In situations
where the driving frequencies of the applied loading is large, the effect of
the energy dissipatlon characteristics on the overall dynamic response (partic-
ularly in wave propagation problems) can be significant. £onsequently, it dis
important that the material physical properties are modeled as accurately as
possible. In this paper, the Kelvin-Voigt viscoelastic model is selected
wherein the corresponding continuous field equations are given by (ref. (1))
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where Ar,ur are the usual Lame” elastic constants: ii, Qi are their viscous
counterparts; p denotes the mass per unit volume, U is the displacement vector;
t is time and V is the vector "del" operator (8/8x, 3/3y, 8/9z). The steady
state harmonic version of equation (1) is obtained by substituting

- = . .
u=ue WL nto equation (1) which results in the form
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where Es and c, are the complex wave speeds given by the expressions
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In equations (3), cy and cq ave the usual elastic shear and dilatational wave

speeds, and ns and N4 are the associated sherr and dilarational dissipation

constants; these four constants are related to the constants originally employed
in equation (1) through the relaciowns:

—
e, = Vu/p g = VT + )0 (4)
ng = wi/t 2w 0+ a0 + a® (5)

where Ai and .i are two independent fresuency dependent viscoelastic constants
which are determined experimentaliy. The A%, pi constants are velated to the

-~

A ﬁi constants of Eq (1) through the relations AF = w i and i = o jt.

Depending on one's viewpoint, the pair of parameter Ai, ui (or alternatively
Ng» nd) can be viewed as the two independent parameters which describe the

dissipation characteristics of the viscoelastic media. TFurther, the independ-
ent constants Ar, ur {or alternatively cp, cs) can be viewed as the two

independent constants which define the elastic characteristics of the media.

The current version of NASTRAN can treat a solid media governed by
equation (2) by using 2 and 3 dimensional elements (e.g. CTRMEM, GCQDMEM,
CTRAPGR, CTETRA, CTRIARG to name a few) in conjunction with both rigid format 8
and the introduction of a loss factor (e.g. the GE input variable on a MATL or
MAT2 card; this is referred to as the "structural element ¢ :mping coefficient"
in the NASTRAN mauual). Unfortunately, however, the user can introduce only one

independent loss facter. A single, rather than two, independent loss factor can
properly represent the Kelvin-Voigt model if the relation

Ai ui
T ®

is met. BSubstituting equation (6) into equations (5) in conjunction with the

fact that the Young's modulus, E, is related to p, A through E = p(3:321)/ (M)
yields the relations i, r
=n, =n, =E/E (7)
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Thus, the more limited single parameter loss factor case can directly be
implementated in NASTRAN by assuming equation (6) holds and setting GE =
a MAT 1 or MAT 2 card as appropriate.

Ny on

The remalnder of this paper is concerned wilth the situation wherein the
vigcoelastiec physical _onstants are such that nd # g (i.a. the special case

implied by equations {6) are not satisfied). A technique is presented which
permits the user to treat thils more general case without having to resvst to
either DMAP instrucilons and/or modified FORTRAN coding modifications to the
original NASTRAN program. DBecause of this general type "fix", the avproach
also has applications to other finite element programs having the same one
parameter type dissipation limitation found in NASTRAN,

IMPLEMENTATION OF TWO PARAMETER L0SS FACTORS

Here we consider finite elements representing equations (2} for the case
Ng # g The finite element formulation representing equations (2) leads to a

complex set of simultaneous equations to be solved of the form (ref. (2})
[K}{u}={P} (8)
where [K]=[-w? M]+ie[B]+[K]] (9)

where {U} is the vector of nodal displacement amplitudes, {P} i1s the vector of
applied forces, [M], i1z the assembled mass matrix, [B] is the assembled damping
matrix and {K] is the elastic stiffness matrix. The formation of the mass,
stiffness and non-structural damping portion of the matrvices In Eq. {(8) Ffol ow
exactly the same process used in modeling elasticity type problems, hence willl
not be commented on here (e.g. see refs. (2,3). Attention is consequently
focused on the formation of the structural damping part of the [K] matrix; let

us define [K]z as the individual element structural damping portion due to the
cont: ibution of the eth element. NASTRAN currently forms [ﬁ]z from the
relation \
[K)] = in [K] = i/ [c1™n 1617 [c:lxdydz (10)
e a e Jy B e 7J

where {K]e is the individual element elastic stiffness matrix, [C] is the
T
corresponding displacement-strain matrix and [G]e 1s the elastic stress-strain

T
law matrix. For isotropic materials, [G]e 1s of the form:
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where Ull’ 022 ... and €112 Egg to* are the element stresses and strains.

So far we have described, via equations (l0) and (11), the form currently
in NASTRAN. Next we consider the form of [K]g we would like to have in order

to implement the two independent parameter formulation. By comparing what we
have to what we would 1like to have, the "fix" to NASTRAN will become evident.
We start by making the important observation that the desired general continu-
ous viscoelastic form of equation (2) can be derived from the ususl elastic
derivation for the dynamiec equations of elasticity (ref. (4)). This is
accomplished by following the elastic derivation of ref., (4) with the modifica-
tion that, in place of the usual Ilsotropic stress-strain law (i.e. Eq. (11)),
we use

to)=(161% + 1[6111(e) (12)

where [G]i 1s the same expression as [G]z except all r superscripts are replaced
with 1 superscripts for the A, p entries. Similarly, in the finite element
formulation, all we need do is replace the usual [G]Z matrix in the stiffness

derivation with [G];+i[G]i Thus, the element stiffness becomes

o
Tria X i
[Kl, = Jr[C] ([6] +i[G] l[Cldxdydz (12)
Vv
e
T r . T i
= [c] [G]e[C]dxdydz + i [Cc] [G]e[C]dxdydz {12b)
J
Vv v
e e
Term 1...Usual elastic stiffness Term 2,.,viscoelastic dissipation
contribution to [K] of Eq. (8). contribution to [K] of equation (8).
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Now we are in a posttion to bulld the desired two independent pavamater visco-
elagtic finlte element. The total complex element conttibution, [K]e, to the

assewbled [K] matrix in cquation (9) is formed in two parts through the creation
of an overlapping double viscoelastiec element. This double element 1s shown
schematically {n Figuros (3) (o two dimensional element is shown only for
convenlence). It conslsts of two Ldentically shaped element occupying the game
physical space and having the same nodal numbers but dilferent element numbers
and difverent wmaterial identifilcation cavds (MAT1L for 3-d elements and MAT2

for 2-d elements), Our goal ds to let one of the overlapping elements LForm the
Terw-1 elastic countvibution of Eg. (12b) and the other [orm the Term~2 visco-
elastie dissipation contribution., 1In agreement with the unotation of Figure (3),
we vefer to the [irst overlapping element as the "elastlic element" and the
second as the "massless dissipation element". The only part that remalns is to
define the input constants on the MAT1 (or MAT2 ) cards so that Term-1 and
Term=-2 in equations (l2b) ave properly formed. DMove specifilcally, the ratilonale
for the salection of the MATI (or MAT2 ) constants follows frow seeking out a
set of pavameters for the nF[G]

'z matrix in equation (10), {(namely the N and

compouents of the elastic [C]g matrix which are controlled by the user through
selection of the input variables on the appropriate MATiL cards) that will
result in the desired IG]i matrix in Term-2 of aquation (12b). The treatment

Is slightly different for three or two dimensiounal elements, consequently we
treat them one at a time.

Three Dimensioual Viscoelastic Blements

® The elastic element cantribution is obtained by setting the followlng
parametars on a MATL card:

1)} set wass density (RHO) = actual mass density of viscoelastic
material

(13)
2) set loss factor (GE) = 0.0

1) set &= GAT+2u5)y /0 FR5)
r

G M

@ The massless dissipation element cortribution is ebtained by setting the
following parameters on another MAT1I eavd specially earmarked for this
second overlapping element:

1) set mass density (RHO) = 0.0 (zero to avoid double counting)

2) set loss [actor g (GE) = Ai/E (14)

ﬂE
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3) aet E = eR(3+2R)/ (1+R)
G = eR {14) cont'd)
with R = ui/li

where € is an arbitrary parameter that is selected small as desired (but not
zero). The swall ¢ parameter removes the elastic contributlion of the masslass
dissipation element. A suggested value for e is that it is on the order of
10,000 times smaller than the larger of the resl components AT or ut.

The interested reader 1s invited to back substitute the ahove values for E,
G, and GE (e.g. nE) into the nE[G]g matrix formed by NASTRAN in conjunction

with equation (1) where it can be easily verified that the results reduce
(independent of the £ choice) exactly to the desired two independent parameter

matrix [G]i employed in Eq., (12b). The smallness of ¢ only effects the unwanted

elastic stiffness contribution of the massless dissipation element already
accounted for in the "elastic element'.

Two Dimensional Elemants
® The elastic element contribution is obtained by setting the following

parameters on a MAT2Z card:

1) set mass density (RHQ) = actual mass density of visceoelastic
material

2) set loss factor (GE) = 0.0

3) set 611 = A +2p"
c12 = A" (15)
613 = 0.0
@22 = At
G23 = C.0
G33 = pu*

® The massless dissipation element contribution is obtained by setting the
following parameters on another MAT? card speclally earmarked for this second
overlapping element:
1) set mass density (RHO) = 0,0

2) saet loss factor ng = (GE) = Ai/e (16)
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3) set 611 = e(+2pt/aty (16) cont'd
Gl2 = ¢
e13 = 0.0
G22 = ¢
623 = 0.0
633 = epi/at

where as with the three dimensional element, the € 1s an arbitrary para-
meter that is selected small as desired (but not zero). See 3-d element write-
up for a sugpgested € value,.

DEMONSTRATION PROBLEM

Next we consider a demonstration problem to illustrate the implementation
and accuracy of the two independent parameter loss factor viscoelastic elements
described in the previous sectién. The problem is to determine the scattered
and transmitted pressures for a water-submerged steel plate, (covered with a
constant thickness layer of viscoelagstic material), subject to an incident
plane wave normal to the plate as illustrated in flgure (1), The problem is
tractable from a closed form solution point of view, consequently, an independ-
ent check on the NASTRAN solution is available. Furthermore, experimental
results are also available to further back vp the accuracy of the physical
representation of the viscoelastic materdial.

FExact Solution

The exact solution to this problem can initially be treated as an ovxdinary
one dimensional, small deformation wave propagation problem. The effegt of
visceoelasticity can be introduced by replacing the wave speed 4 with cy =

1

3
<y (l+ind) ;
our exactly like the problem given in ref. (5), page 136, except that two finite
thick plates (rather than one) is submerged in the fluid. The origin {(at x =0)
is located at the right face of the viscoelastic layer (+x to the left), The
back side fluid is denoted as media (4), steel plate as (3), the viscoelastic

layer as (2) and the front side fluid as (l). The thickness of the steel plate
is 23 and the viscoelastic layer is & The following relations défine the

The solution to the problem illustrated in figure (1) is carried

9
various waves present ip the problem:
(p,); = A ot (wE=kyx) Incident wave in (1)
i‘l 1
(17)
-+ T i
(ps)l - Bl ei(mt klx) Scattered wave in (1)
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ei(mt—kzx) Transmitted wave in (2)

(g = Ay

(p ). = B oL (wttk,yx) Scattered wave in (2) (17 cont'd)
Pgia T %2

(pt)3 = A, ei(Wt“k3(x”£2)) Transmitted wave in (3)

(ps)3 = B, ei(wt+k3(x—£2)) Scattered wave in (3)

(pt)A = 4, ei(wt~k4(x—22_33)) Transmitted wave in (4)

where in the fluld p is pressure and in the solid, p is the nepgative of the
stress o, in the x direction. The k quantities are defined as:

1
kl = m/cdl
k, = w/[ec,, (14 )%]
2 d2 g2
ky = w/ey,
k, = /ey,

where C41r Cq20 Cq3 C4q4 ATE the real dilatational wave speeds of the four
materials and g2 is the dilatational, losas factor (equation (5)) of the visco-
elastic layer. The six unknown Bl’ Az, BZ’ A3, B3, A4 can be determined from

equating pressure and particle velocities at the three interfaces., thus pro-
viding six equations to balance the six unknowns. All response variables are
referred to the incident wave amplitude Al, thus Al is not considered an
unknown in the problem.

The quantities of interest are the scattered pressure in the incident side
fluid (media 1) and the transmitted pressure in the back side fluid (media 4).
After algebralcally solving for the constants we obtain

= = - ! -
Scatter pressure amplitude = BllAl (C2Al2 ClAzz)f(AZIAlz AllAZE) (19)

Transmitted pressure amplitude = AA/Al = (A21A3291—A32A1102)/(AZlAlzuAllAzz)

where C

1 —cos(k2£2)+i T

12580 (ky 20} 5 1y =040 P e 415 TauP4C047 P4Cys

%

]

Cy = Togl Sinlkyly)-r,gry, cos(kyly) i £)3=P3Cq4/PoCy05 Cqp=Cqq (IHing,)
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12 = ([l+r34][ccs(2k323)+i Sin(2k3z3)]/[l—r34})~l

91 = —r231 Sin(kzﬁz)—r23r12 cos(kzzz)

e
f

cos(k2£2)+i r Sin(kzﬂz)

11 12

99 = 1+ [l+r34][cos(2k3£3)+i Sin(2k323)]/[l—r34]

32 = ~2r34[c09(k3£3) + 4 Sin(k3£3)]/[l—r34]

Finite Element Solution

The finite clement representation of the figure (1) problem is shown in
flgure (2). The procedure for representing the infinite domain of fluid on the
frout and back side of the submerged plate is given in detail in ref. (6).
Briefly, it consists of using a plane wave boundary condition at the mesh
termination of the form p=pcdﬁ where 0 is the normal particle velocity and p is

the total pressure at the mesh termination. The nodes aleng the outer bound-
aries are constrained to move only in the direction of wave propagation. The
figure (2) sketch is drawn to scale and represents the actual number of elements
used in the problem. All elements employed in the model are comprised of CQDMEM
quadralateral elements. The viscoelastic zone is made up from the overlapping
double elements described earlier in the paper (e.g. a typical wviscoelastic
element is f1llustrated in figure (3)).

Comparative Results

The demonstration problem (both analytical and finite element) was evaluated
with the following set of physical constants

Table 1 - DEMONSTRATION PROBLEM PHYSICAL CONSTANTS

MATERIAL AE nt At wr N 4
psi psi psi psi lb-sec /in
Water 345,600, Q.0 6.0 0.0 . 000096
Steel 17,307,000.] 11,538,000, 0.0 0.0 .000735
Viscoelastic
Material 86,703. 115.9 41,736.8 1l.6 .0003599

The viscoelastic constants were evaluated by W. Madaigosky at NSWC. TFor the
NASTRAN computer run, the water and steel plate properties were entered on a
MAT2 card, The elastic entries Gll, Gl2, ete. correspond to the column and
row data in the first, second and sixth (columns and rows) of the [G]g matrix
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of equation (11). The viscoelastic data were entered on two separate MATZ
cards corresponding to the procedure described by equations (153} and (16). An
€ parameter of ¢ = 4.16 was used in the actual run. The non-dimensional results
are shown in Table 2.

The significance of the added viscoelastic layer on the scattered and
transmitted pressure is seen by comparing the results of Tables 2 and 3, where-
in the viscaoelastic layer has the effect of absorbing a significant amount of
the incident energy. The accuracy of the NASTRAN results for both the case
with the viscoelastic layer and without the layer are quite good. As expected,
the finite element solutlon accuracy falls off as the incident frequency
increases. As pointed out by rvef. (7), for problems of this type, at least 8
elements per wave length are needed to accurately model elastic waves in the
media. Note in Table 2 that as the incldent frequency approaches the 8
elements per wave length limit, the accuracy is starting to deteriorate. The
8 element per wave length limit suggested by ref. (7) was in the absence of
structural damping; perhaps the results presented here suggests that mere than
8 elements per wave length are required for structural damping (e.g. 12
elements per wave length).

CONCLUDING REMARKS

The procedure outlined here provides the NASTRAN user with an expanded
structural damping capability, thus permitting the user to specify two independ-
ent loss factors ng» My via the construction of the "overlapping double wvisco-

elastic element” process described in this papeir. The demonstration problem
thows good accuracy of the procedure relative t. the exact sclutilon for the
same problem, It is acknowledged that there is some added solution time due to
the added calculation time for the formation of the stiffness of the second
overlapping element; however, this is a relatively insignificant amount in
comparison to the overall solution time of the problem. The double element
uses the same node numbers for both the "elastic element' and the superimposed
"massless dissipation element', consequently, the matrix size or bandwidth
properties are not affected at all,
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Table 2 - COMPARATIVE SOLUTION RESULTS
layer present)

(with viscoelastic

Nondimensional NASTRAN Exact NASTRAN Exact Experimental} Elements per
frequency; Scattered| Scattered transmitted| transmitted{ Scattered wave length
m23/cd1 Pressure | Pressure ratio prassure pressure pressure in elastomerx
ratio (equation (19))| ratio ratio
L6545 .40L .398 .273 .273 - 158.

3.272 .191 .190 .028 .028 - 31.6
6.545 .108 104 . 006 . 007 - 15.8
9.817 .122 .113 .003 .003 2 10.5
13.089 .133 .113 . 002 .003 .12 7.9

Note that 23/12 = 2,2727 (ratio of steel plate-to-viscoelastic layer thickness)

Table 3 - COMPARATIVE SOLUTION RESULTS
(without viscoelastic layer present)

Nondimensional NASTRAN Exact NASTRAN Exact Experimental
frequency; Scattered| Scattered transmitted | transmitted| Scattered
w23/cdl Pressure Pressure ratie pressure pressure pressure
ratio (equation (19))| ratio ratio
. 654 .930 .928 374 .373 -
3.27 . 995 .996 .020 .090 -
6.54 .398 . 998 .067 . 067 -
8.82 . 996 . 994 .113 113 -
13.09 . 957 .952 .306 .307 -
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Figure 1. Submerged Plate With Viscoelastic Layer
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Figure 2. One Dimensional Finite Element Model

MASSLESS DISSIPATION ELEMENT (Pn=0)

Note:
Elements n and m Have
Distinct Element Numhers

ELASTIC ELEMENT (vaﬁO)

Figure 3. Overlapping Double Viscoelastic Element
(Quadralateral Element Example)
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