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I. INTRODUCTION

In the study of structural integrity for electronic packages under thermal
cycles, an important consideration is the distortion due to the differential
thermal expansions of multilayer dissimilar materials. A simple antecedent for
such cases Is the classical bimetallic beam analysis by S. Timoshenko. In the
application of NASTRAN, such structural members are usually represented by
bar elements with multi-point constraint cards to enforce the interface conditions.
While this is a very powerful method in principle, one finds that in practice
the process for specification of constraints becomes tedious and errcr prone,
uniess the geometry is simple and the number of grid points low., An alterna-
tive approach has been found within the framework of the NASTRAN program.
This approach makes use of the idea that a thermal distortion in a multilayer
beam may be similar to a homogenous beam with a thermal gradient across the:
cross section, This paper contains the exact mathematical derivation for the
equivalent beam, and all the necessary formulae for the equivalent parameters
in NASTRAN analysis. Some numerical examples illustrate the simplicity and
ease of this approach for finite element analysis such as NASTRAN.

Il. ANALYSIS

Consider an n-layer compasite beam of dissimilar materials at constant
temperature T, having an external loading N_ as the axial force, and M_ as
the bending moment. The cross section is shown in Figure 1. Y
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t;= Thickness of ith layer

z;= Coordinate of interface

Fig. 1 - Cross Section of n layer Composite Beam
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ty, tz..t. are the thicknesses of various layers and zy..z, are the coordinates
at the interface. With the coordinates as specified,

i
= t.
zi ?_- i
=1

Strain at any point can be written as

XX - o (1)

where e = elastic strain
XX

e = average axial strain of composite

z = coordinate of the point

d = composites neutral axis

r = radlus of curvature

oT = thermal strain

¢ = thermal coefficient of expansion of the layer
Oox = E € x

The axial force N, and bending moment My are given by

Nx=f o dA

M, =f (z-d) o, dA

Let Ei’ Qs ti be the Young's modulus, thermal coefficient of expansion
and thickness of ith layer with uniform width b.

(2)

Define z, = 0 and .
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then
Nx = f UXXd.A
zZn
= b f (Ee + E (z-d) - ch) dz
o —
"
= ﬂe + _'.Y...__ESE. - NT (B)

r

Simitarly NIy can be shown as

& - vd
M = S B
y ve r —

-My - dfpe + - Pd N )

From Equation (3), since Nxshould be independent of r,

therefore
Pd -y =0

d= —%—- = distance of neutral axis.

substituting this in Equaticns (8} and (9) we get

N, = Be - Nt (10)

M=5"'¥’2)1 -(M__LN) (11)
y( — 1 — T B T
B r

Thus the external force and moment have been derived for n layer structure.
Expression §-y? is simply area stiffness [in which E is lncluded:] momernit of

P

inertia about centroid, and can be proved as follows.
5 = Area Stiffness M.l. about coordinawe axis[as defined by Equation 5] .

Mi about centrotd [using parallel axis theorem]:

.8 - Area Stiffness x d?
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Consider now an equivalent homogenous beam of area A, centrold moment of
inertia |, Young's modulus E, thermal coefficient of expansion having thermal

gradient dT .
dz
Then

= Z dT
exx‘e+ (“'".—“‘Z—CT;.(I)-(IT

where the coordinate axes are the neutral axes of the beam. By using the
previous formulation it can be derived that

NX = AEe - AEaT (12)
|
M, = - laT ()
dz

Comparing Equation 10 to 12 and 11 to 13, the following parametric relation-
ships can be written for equivalency.

AE = B (14)

AEdT = N (15)

=5 - 1o (16)
B

la j: =P - —%— N, (17)

Thus assuming E for the equivalent beam, Area A, «, |, dT can be calculated
from Equations 14 through 17. dz '

Thus a nonhomogenous beam [speciﬁed as a finite element in NASTRAI\D
at constant temperature can be seolved by a mathematical equivalent homogenous
beam with temperature gradient at the cross section.

. TIMOSHENKO'S BIMETALLIC BEAM

it can further be proved that for two layer structure, in the absence of
external forces, Equation 9 degenerates to Timoshenko bimetallic beam,

Consider now a bimetallic beam of thickness t;= tz= t, and therefore
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From Equations 3, 4, 5, 6 and 7

5= 20 (E 4By
2
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_ b 3
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Np = bT o (Eror + Ezap)
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3
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Substituting in Equation 11, we get

P

3 3 E bt? E,E
M S _l_)_t_.. {E1+E2]+£t— Elz- - —— T {o; -a3) 173
Y r 96 8 E.+E; 4 E 4+ Eg
. b2 BB 4y (grE) (< +g -;
4 E+E bt? E 3
- (ag - ay)} T

r

In the absence of external force, the expression in parentheses is zero, which
is identical to Timoshenko's bimetallic beam.
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IV. EXAMPLE

For the purpose_of illustration, the example in Strength of Materials
Part | by Timoshenko|1| will be discussed. To model a bimetallic beam
section, one defines four grid points and two bar elements. For each pair of
grid points, continuity of the interface displacements must be specified.
Multipoint constraints or MPC cards must be used to relate the displacements
and rotation of one bar element to the other of the following form

Uy + hy @y = ug + e G,

It should be noted that this could become quite complicated when many elements
are used to represent a curved beam n space.

An equivalent beam with the same mechanical response will now be
constructed. The bending curvature of the bimetallic beam will now be induced
by the TEMPRB Bulk Data card. The bending stress in the original bimetallic
beam due to differential expansion will now be replaced by the thermal moment

thermal gradient defined by the TEMPRB card for each bar element. In the
example in reference [1] , page 219, we shall use

b=h=1, Ef =1x 107, Eg = 1.1 x 107, ay = 1 x 10, a3 =2 x 10 °
Then it turns out that the equivalent beam should be

A = 1.8695, | = .62091, E = 1.15 x 107, « = 1.5348 x 10 *;

with 100 degree rise in temperature, the gradient should be 48.8.

V. DISCUSSION

The methed proposed in this paper has been found to be very useful in
analysis dealing with deformation associated with multi-layered curved beam
structures undergoing thermal loads. The main advantages are {1) elimination
of the time-consuming task in specifying multipoint constraints, and (2)

reduction in number of grid points.
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