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ACCURACY OF RESULTS WITH NASTRAN MODAL SYNTHEGSIS

D. N. Herting
Universal Analytics, Inc.

SUMMARY

A new method for component mode synthesis has been developed for installa-
tion in NASTRAN Level 17.5. An introduction and summary of the method was
presented at the 1977 NASTRAN Colloquium [Ref. 1], but actual results were
unavailable at that time. This paper serves as a continuation to Reference 1
by presenting results obtained from the new methoe and comparing these re-
sults with existing modal synthesis methods.

INTRODUCTION

The modal synthesis system developed by Universal Analytics, Inc. (UAL) for
NASTRAN is a new development which provides for the benefits imherent in
existing methods but eliminates the restrictisns and computational drawbacks
associated with other methods. In Reference 1 it was postulated that the new
method was sufflciently general to duplicate the results of other, more re-
stricted, methods simply by choosing different types of normal medes or
vector recovery procedures. The test problems described herein have been
selected for direct comparison with other published results. The goal of
this effort was to determine the relative accuracy of the UAI method with its
different options.

The use of structural modes as generalized degrees of freedom in dynamic models
priginated in the analog computer field where structures were combined with
aeroelastic and control system models. The first applications to digital com-
puters were simple extensions of the analog techniques. This so-called clas-
sical approach proved both highly restrictive and limited in accuracy. Many
different approaches have been developed in recent years having increased
accuracy and more generality in solving large-order structure dynamics pro-
blems.

Although the previous methods used in component mode synthesis vary consider-
ably in both approach and application, they may be grouped into two distinct
categories. The first category contains all of the methods using a Rayleigh-
Ritz approach in which the componeént degrees of freedom represent the deflec-
tions of normal modes and static deflection shapes. The second category
contains methods in which the component degrees of freedom are actual
physical displacements plus a set of modal coordinates. Here, the classical
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method has been improved by adding flexibility coefficients to the matrices to
account for the effects of a truncated set of modes.

The theoretical development of the NASTRAN modalsynthesis system 1s being
issued in Reference 2, the Level 17.5 Theoretical Manual. In this develop-
ment the "residual flexibility" approach is used as a starting point but the
end results become very similar to the Rayleigh-Ritz approach. The new
method, in effect, is related to both categories of modal synthesis and shows
that the differences between chem are more related to computational proce-
dures than in theoretical basis.

The two test problems described below were selected for comparison with several
advanced mode synthesls methods. The problems alse provide a comparison of

the various options that will be available in the NASTRAN system which are
summarized below:

1. The boundary conditions used to obtain component modes are not restricted.
Free, constrained, and partially free modes may be used,

2. TImertia relief displacement shape functions may be included as degregs of
freedom as a user option. These provide for exact static response of
free bodies and more accuracy for low frequency response.

3. In the vector recovery process, after a system solution has been obtained,
a '"'mode acceleration" procedure which calculates "Improved" displace-
ments is available.

4. A full set of error check procedures are available to assess the acturacy
of the results. These include printout of the equilibrium forces, energy
checks of truncated modes, and direct evaluation of the participation of
the modal coordinates.

The test problems and their results are summarized below, followed by a
summary of the conclusions which follow from the evaluation of the tests.

NOMENCLATURE

- Physical Displacement

~ Guyan Reduction Transformation Matrix
- Stiffness Matrix

Mass Matrix

- Length

e 2 AR O
|

- Spacial Coordinates

— Xinetic Energy

< 3
t

Potential Energy
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£ - Brvor Ratio

£ - Generalized Displacement of a Mode
p ~ Density

¢ - Eilgenvector

w - Radian Frequency

EXACT ROD PROBLEM

A convenient test problem for wodal synthesis evaluation was used by Rubin
{Ref. 3] te compare various methods, including his own new method. The prob-
lem, 1llustrated in Tigure 1 consists of a single rod with extenslonal motion.
Rather than solve the problem with finite elements, a set of closed form in-
tegral solutions may be used to obtaln the modal synthesis matrix coefficilents.
In effect, the results willl simulate a problem with an infinite number of
alements. This procedure will elminate the finite element errors and will
allow analysis of errors resulting only from the modal synthesis formulation.

The prablem solved by Rubln uses the free-free modes of the rod to fomulate
a component mode substructure. The solution matrix is then constrained to
obtain cantilever modes. If the end degree of freedom were included in the
notmal Formulation 1t could be attached to another structure directly. The
errors in the results will occur because the sine wave solutlons for the
cantilever rod must be approximated by the dissimilar cosine waves of the

free rod.
In the UAT method, the displacement shapes are

Static Displacements

N LT W
Inertial Relief:
ui(x) = Lk -1 [M + M G] ¢ £
2 il ib ii 0o
2 2
- (X )k (2)
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Normal dModes:

w G = by - Gy JE
- TRx = .
= ( cos —g l) Ek k 1,2,...@ (3)

After normalizing the unlts, the total displacement at any point on the rod is:

ulx) = + 1 X - 53 E + EE: cos Thx 1) E (4)
S T 28/ % T " T T Y

Instead of performing matrix transformations the stiffness, [K], and mass, [M],
matrices are obtained using the TLa Grange formulation which states:

2
d 3 T
M,, = == irei— (5)
i3 dt quaqj
2
37V
d = b6
an Kij 3qia qj ]ql = Ul,gos El L ’ ( )
where the potential energy, V, and the kinetic energy, T, are:
v = 4 EA {3u 2 ax (7)
2 ox
L
T o= J 2 ofax (8)
o}

After evaluating the integrals, the stiffness matrix produced by the new
method is:

392



0 0 0 0 0
1 -1 -1 -l
3 3 3 3
fixd 0 0
2
EA
(K] = 3
% b 0 3
2
sym 9“2
2\
Y
\\
*(em)
i 2
The mass matrix is:
-y —1 -
1 3 -1 -1 -1
-1 2 (1 l) (1 1 ) (1 1 )
= = -lsr =) o 2= - 2+——
3 15 3 “_2 3 4“2 3 (kﬂ)z
[(M] = PAL 3 L L (10)
5
3
b ‘2 '-I

Since the first row corresponds to the displacement at x = 0, the boundary

constraint, u, = 0, requires that the first row and column be deleted for
calculation “of the cantilever modes.

The results of the modal solution ave the frequencies w, and generalized dis-

i
placements goi, gki’ k=1, 2 ... . The actual mode shapes may be obtained

from equation (4). However, a mode acceleration method (UIMPROVE) available
in NASTRAN and also used by Rubin will enhance the vectors, Transforming
the matrix equations into equivalent integrals results in the equation:



X )
P(x) = u(0) + j [% J - ﬁ(x)dx] dx (11}
o

X

where u(x) is obtained by multiplying the displacement u(x) in Equation (4)
by -m%. This results in the mode shape:

-2
M [E ~«§ + —k 5 (1 - cosﬂkQ)J Ek (12)

where x = x/% is used For simplicity.

The exact solutions for the cantilever rod problem modal frequenciles are:

(2n_ - Liw /‘j_':l_
P

Wax = 2% 13
The exact mode shapes are:
_ (2n - L)ux '
¢ex = sine 7T (14)

The calculated natural frequencies for the synthesized system produce an error
ratio g, defined by the equation:

w - mEX
. - (15)
ex

(3]
]

The resulting errors in natural frequency are tabulated in Table 1. These
errors match Rubins results for his method exactly. HNote that, except for
the single degree of freedom problem, the error in the last mode for any

matrix size is nearly constant and that the convergence rate for a given
order matrix is nearly uniform,

An order of magnitude fit of the frequency errors is produced by the equation:

€n v 0.01 2,2 3 {16)
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where Wy, is the frequency of the lowest truncated mode shape. The equation

is not accurate [or the lower modeg of the large order matrices due to compu-
ter round-off, Single precision arithmetic produced numerical errors of the

order 107",
The RMS errors for the calculated elgenvectors are shown 1in Table 2 for the

same order synthesized matrices. Both first and second methods for calecu-
lating the vectors were used. The equations used for the vector errors are:

1 1 1 2
% T 3 */;J () = By dx (7)

max o

[
and Ei = %- V/(% [ (¢2 _ ¢ex)2dx (18)

max o]

Both vectors were normalized to unit modal mass,

Note rhat the improved displacement calculations(¢2) praduce much better re-

sults when the first order errors are between 10_2 and 10—6.

In other words, a good first approximation will produce a better improved so-
lution. A poor first solution, such as the last mode in a set, will result
In little improvement. A nearly exact first solution will not improve due

to numerical round-off.

The results of ihis test are nearly identical te Rubin's [Ref. 3] results
for his method. The frequency errors fall exactly on the published curves.
The displacement ervors for the UAIL method appear to be better than Rubin's
results. However it 1s suspected that differences in numerical procedures
produced these changes. Also the first order displacement results compare
with the referenced results for the modified Bamford method used in Ref-
erence 3.
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TWO COMPONENT TRUSS PROBLEM

This problem has nearly beccme a standard for the evaluation of modal syn-
thesis methods. It has been used in References 4, 5, and others for com-
parison between different formulations and procedures. A large quantity
of dara 1s available for validation of any new method. The basic problem,
shown in Figure 2, consists of two truss substructures. Each gubstructure
is reduced to its normal modes plus any additional shape functions used by
a partlcular method. The trusses are combined at the three common grid
points and the unconstrained modes of the combination are obtained.

This problem was solved directly on the UAXlmodal synthesis system implemented
on L16 NASTRAN. Several different options and matrix sizes were tested. The
parameters of the test cases are shown in Table 3. The matrix sizes were
chosen tn provide direct comparison with the results in Reference 4.

The results were compared with a single-structure NASTRAN execution to obtain
the percentage errors of the frequencies. These errors are shown in Tables 4
and 5 along with results from Hintz [Ref. 4]. 1In all cases an excellent cor-
relation was obtained between the NASTRAN results and the results of the
equivalent formulations used by Hintz The only deviation occurred when the
errors became too small te caleulate when the NASTRAN printout truncated the
difference in results. In each case the results are not shown where the
eipgenvector became unrecognizable and/or the natural frequencies changed in
sequence.

It is dmportant to note that the cases using free component modes, with no
inertia rellef effects, produced very poor results. This 1s due to the fact
that the free modes approximate half waves while the cantilever modes appro-
ximate quarter waves. The shapes of the first modes of the combination
apparently are difficult to approximate by a set of higher order shapes.

The inertia relief shapes supply these smooth functions. Their contribution
is most significant in the lower frequency modes.

Also indicated in the tables, by dashed lines, are the lowest truncated fre-
quencies for the component modes used in the analysis. The results indicate
that in the inertia relief cases, this frequency 1s a geod indication of the
limit for valid resuvlts. When only normal and constraining modes are used,
this frequency has some significance, but does not indicate possible errors
due to poor approximation of the actual mode shapes.

As a further check the problem was executed using 36 elastic degrees of free-
dom (case 9). This case also correlated with the Reference 4 results,

having 29 modes with a frequency error of less than 5%. MNearly all of the
first 15 modes were calculated to values exXact to the last digit of the print-
out. However this case should not be considered 2% a tvypical example since
only 60 degrees of freedom existed in the original structure. The typical
application of modal synthesis would result in a matrix size with a much
smaller fraction of the original matrix size.
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CONCLUSIONS

As was postulated in Reference 1, the new modal synthesis method to be avail-
able in NASTRAN is capable of simulating the results and accuracy of any of
the current state-of-~the-art modal synthasis methods., The differences in the
results occur from selecting different types of component modes and types of
solution vector recovery processing. Furthermore, it was cbserved from these
tests that the frequencies of the truncated component normal modes are a
glgnificant indicator of the upper limit of valid combination modes.

Although the new system provides accuracies equal to or better than any other
advanced method, it also eliminates the restvictions that are imposed by the
other [ormulations. The UAT method does not require unconstralined modes
required by the Rubin and McNeal [Ref. 6] formulations. The method conven-
lently uses the actual boundary grid points as degrees of freedom (as in the
Rubin and MacMNeal methods) as op 1sed to the conventional Raylejgh-Ritz
methods, in which an actual bounaary displacement coordinate must be expressed
as a combinatlion of mode displacements. Furthermore, it allows any choice of
mode shapes, including modes fixed at non-boundavy points, partially free
nodes, and user supplied vectors.

The results for both test problew . indicate that the inertia relief option
is recommended for most cases. The number of calculations to obtain these
shape functions is small relative to the modal calculations. A maximum

of six extra degrees of freedom per component are added te the system.
Regsults from the second test problem indicate that one should not replace
modal coordinates with the inertla relief cowponents since this will lower
the effective frequency range.

The use of the '"improved displacement" options in the solution vector re-
covely process appears to be less dramatic in its effectiveness., This option
will be most effective when the first order vectors .re reasonably valid and
accurate stress data are required.
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TABLE 1. MODE FREQUENCY ERRORS, €W, VERSUS
MATRIX ORDER - FREE ROD PROBLEM

\ODE MATRIX ORDER
NO. 1 2 3 4 6 8 12
1 6.6-3  9.5-5  8.5-6  1.21-6 6.1 -7 5.5 -6 3.0-6
2 3.1~2  1.1-3  1.88=4  1.78-5  -1.21-6  =2,1-5
3 bo4=2 2.4 =3 1.73~4 3.4 -5 =2,1-5
4 5.2 ~2  B.9 -4 1,5 ~4  -3,3-5
5 4.1 =3 5.1 <4 =2.9-5
6 5.9 -2 1.5 =3 =4.4=6
7 4.8 -3 7.4-5
8 6.2 -2 2,84
9 7.5-4
10 1.8-3
11 4.8~3
12 5.9-2
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TABLE 2.

MATRIX ORDER -~ FREE ROD PROBLEM

EIGENVECTOR RMS ERRORS VERSUS

MODE MATRIX ORDER
NO. 1 2 3 4 6 8 12

1 1.31-2 3.18-5 3.06-6 6.16~7 1.81~7 1.35-7 2.23-7

(2.69=2)* (4.70-4) (9.76-5) (3.25-5) (6.97-6)  (2.32-6) (6.52-7)

2 9,81-3 1.03~3 1.66~5 1.87-5 g,71~6 5.00-6

(2.78-2) (3.79-3) (1.05-3) (2.01-4) (6.72-5) (1.25-5)

3 2.15-2 3.36-3 2.16-4 5,44-5 5,50-5

(4.30-2) (7.81-3) (1.11-3) (3.27-4) (6.00-5)

4 3.19-2 1.65-3 2.77-4 1.11-4

(5.37-2) (4.10-3) (1.039-3) (1.73-4)

5 9.19-3 1.12-3 2.04-4

(1.51~2) (2.76-3) (4.05-4)

6 4.79-2 4.06-3 5. 46-4

(6.79-2) (8.91-3) (8.34-4)

7 1.56-2 9.55-4

(2.12-2  (1.62-3)

8 E 6.01-2 2.01-3

() (1.34-2) (3.06-2)

9 3.96~3

(5.96-3)

10 9.12-3

(1.21~2)

11 i 2.46-2

(2.93-2)

12 7.57-2

(8.20-2)

*( ) without UIMPROVE
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TABLE 3.

TEST CASE PARAMETERS

FOR THE TWG COMPONENT TRUSS PROBLEMS

CASE NUMBER'OF NUMBER OF TNERTIA TYPE OF Eﬁiggtc

MODAL COORDINATES RELIEF COORDINATES COMPONENT MODE DOF
1 9 0 Free 12
2 3 G Free 12
3 17 0 Free 20
!l 11 6 Free 20
5 Y 0 Cantilever 12
6 3 6 Cantilever 12
7 17 0 Cantilever 20
8 Ll 6 Cantilever 20
9 27 6 Cantilever 36
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TABLE 4.

PERCENT FREQUENCY ERRORS WITH 12 ELASTIC DEGREES OF FREEDOM

TWO COMPONENT TRUSS PROBLEM

NASTRAN CASE REF. 4 RESULLS
ELASTIC
MODE 1 2 5 6 Frea Cant
NO. Free Free Cant. Cant. JT.R Hurty /T ﬁ
Mudes w/I.R. Modes w/I.R., | ¥/ ™% Wi R,
1 24,27 .006 0Ll .00039 .006 .011 .00067
2 3.28 .021 .013 ;124, .019 .013 . 187
3 10.41 ,737 .031 . 137 074% .031 743
4 4.51 147 .150 2,93 .150 155 2.94
5 2.47 1.82  .197 10.83 | 1.68  .190 10.3
6 4.50  0.45 184 17.06 6.55 .184  16.9
7 1.00 16.02 6£.49 16.8 7.39
8 45,87 6.44
9 0.75 L
10 indicates freq. of
first truncated
11 mode

*Suspected typo error
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TABLE 5. PERCENT FREQUENLCY ERRORS WITH 20 ELASTIC DEGREES OF FREEDOM
TWO COMPONENT TRUSS PROBLEM

‘ NASTRAN CASE REF. 4 RESUTTS
ELAST}C
I‘.;IOOD-L Fr3ee Fr&ee Ca;t . Cagt . free Fc?i:rntg. Cant.
Modes w/I.R. Modes w/I.R. w/I.R. Modes) w/T.R.

1 §8.92 .00034 .00043 ,00034 .000017 .00074 9x10~?
2 1.21 .00902 .0017 0 .000061 .0018 3x10—6
3 7.67 .0135 .0098 .0061 .0138 .0096 .00584
4 1.08 .00023 .00906 .00002 .00024 .0092 .00002
5 6.00 .00083 .033 0 .00081. .034 L0014
6 0.85 .0020 .0098 .00060 .0020 .0103 .00054
7 0.6l .080 .947 .268 .083 .941 264
3] 1.58 .0071 122 .021 .0068 117 .018
9 .084 .00098 .59 .54 .00053 .80 .69

10 .030 .0041 .36 .40 . 0045 .20 .25

11 .90 .021 .33 _.98_ .022 .30 1.03
12 3.30 .428 .49 12.3 .134 .28 11.1
13 {4.01 5.35_ .16 5.33 .14

14 244 7,87 .77 7.15 .72

15 1.10 2.37 2.63

16 -.59 12.15 11.4

17 |89 .

<::I;;:;ﬂtes freq. of
first truncated made
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FIGURE 1. FEXACT ROD PROBLEM
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Figure 2. Nine-cell truss basic substructures.




