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SUMMARY

An extension of the Tridiagonal Reduction (FEER) method in Level 17 of
NASTRAN for complex eigenvalue analysis is described. As in the case of real
eigenvalue analysis, the eigensolutions closest to a selected point in the
eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix
whose order is much lower than that of the full-size problem. The reduction
procass is effected automatically, and thus avoids the arbitrary lumping of
masses and other physical quantities at selected grid points. The statement
of the algebraic elgenvalue problem admits mass, damping and stiffness
matrices which are unrestricted in character, i.e., they may be real, symmetric
or unsymmetric, singular or nonsingular.

The basic concepts underlying the method are summarized and special
features, such as the estimation of errors and default modes of operation are
discussed. In addition, the new user-information and error messages, and
optional diagnostic ocutput relating to the complex Tridiagomal Reduction method,
are presented.

Some numerical results and initlal experiences relating to usage in the

NASTRAN enviromment are provided, including comparisons with other existing
NASTRAN methods for complex eigenvalue extractionm.

INTRODUCTICN

The complex Tridiagonal Reduction method is an extension of the FEER
algorithm (Fast Elgenvalue Extraction Routine) for real eigenvalue analysis to
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complex, algebraic elpenproblem formulations. A specified number of eigen-
values lying closest to a selected point in the complex plane are sought, as
well as the associated elgenvectors. As in the case of real eigenvalue
anulysis (ref. 1), these eigensolutions are extracted from a symmetric, tri-
diagonal elgenmatrix whose order is much lower than that of the full-size
problem. In fact, the size of this canonical, reduced matrix is of the same
order of magnitude as the number of desired roots, even if the discretized
system model possesses thousands of degrees of freedom. The reduction procass
is carried out via an automatic algorithm requiring a finite number of steps.
Thus, a basic weakness of methods requiring the lumping of masses and other
physical quantities at arbitrarily selected degrees of freedom (refs. 2-4) is
aveided in redueing the problem size.

With regard to computational speed, the complex Tridiaponal Reduction
method is somewhat slower than the Hessenberg method (refs. 5 and 6) for
small problems (on the order of one hundred or less degrees of freedom), if
all the existing eigensolutions are to be calculated. However, it becomes
more efficient than the Hessenberg method when the number of requested elgen-
solutions is much less than the full problem size. Moreover, for much larger
problems, the central memory requirement of the Hessenberg method exceeds the
capabilities of wmost large computers, so that it becomes unavailable as a
solution option. This limitation does not exist in the case of the Tri-
diagonal Reduction Method.

The complex Tridiagonal Reduction method employs a single initdial shift
point, and hence only one matrix decomposition 1s required for each neighbor-
hood chosen in the complex plane, It therefore is more efficient than the
complex Inverse Power method, which typically performs many shifts and de-
compositions for each region selected. In addition, both the complex Inverse
Power method and the complex Determinant method require that the user supply
the length and width of rectangular regions in the complex plane, within which
the eigenvalues are desired, as well as the number of estimated roots in each
region. This can be burdensome to the user, who usually does not have
enough advance insight to select these parameters intelligently. An improper
choice (e.g., & strip too wide, or too small an estimate on the number of
roots within the strip) can lead to an inordinately large number of compu-
tations or fallure to extract any roots at all wilthin the allotted machine
time. These disadvantages are eliminated in the complex FEER method, where
the user is only required to select points, closest to which a specified
number of eigensolutions are desired.

The theory and computational procedures for complex analysis depart from
those of real analysis in the following major respects:

1. Both left and right bi-orthogonal vectors must be created in the
process of constructing the reduced tridiagonal matrix.

2. The reduced tridiagonal matrix, while symmetric in form, is, in
general, complex rather than real,

3. The calculated theoretical errors in the computed eigenvalues are
estimates rather than uppexr bounds,
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4, Eigensolutlons closest to one or mare specified points (shift points)
in the complex plane are found. All elgensolutions obtained for
previous shift points are swept out of the problem to prevent their
regeneration yvhen dealing with the current shift point,

AN OVERVIEW OF THE COMPLEX TRIDIAGONAL REDUCTION METHOD

A detalled development of the aralytical and computatlonal procedures,
including programming aspects and flow charts can be found in the NASTRAN
Level 17 Theoretical and Programmer's Manuals., The following is a summary of
the baslc features of the cemplex Tridiagonal Reduction Scheme,

The general complex eigenvalue problem is stated in the form
2
[Mp© -+ Bp + K]{u} = 0 , (1)

where [M], [B], and [X] may be real, complex, symmetric ov unsymmetric,
singular or non-singular. A specified number of eigenvalues, p , lying
closest to a specified point, A5 , (called a shift point) iv the complex
plane are to be found, as well as the associated eigenvectors {u} . The
eligenvalues may include multiplicities. By a suitable transformation, the
above can be expressed in the standard inverse form,

[Al{x} = Alx} , (2)
where [A] is double the size of the sciffness, mass and damping matrices, and
R (3)
o

In the special case where [B] is null (e.g., no damping), the double-size
eigenvalue problem can be aveoided by considering the mathematical eigenvslues
te be p2 and defining

1
2.2
P=A

A=

(4)
in equation (2).

Since the eigenmatrix, [A] , is, in general, unsymmetric, the eigenvectors,
{x} , are orthogonal to the eigenvectors, (X}, of the transpose eigenproblem

TR = AR, (5)
so that for Ai # Aj R
CANCRERIEL 6
The above relationship is a biorthogonality condition and the associated
eigenvectors, [xi} and {¥.} , are called right and left eigenvectors,

respectively. J

A reduction of the order of the eigenvalue problem, equation (2), is
effected through the transformaticn

421



nxl nxm ixl

(7a)

and

A = o
{x} = (V] {Y} s

nxl nxm mxl (7b)
where {x} and {%} are approximations of {x} and {x} , respectively,
n i1is the order of the unreduced problem, and m « n . The above trans-
formation matrices are chosen to be bilorthonormai, so that

W1ty = (11 . (8)
From equations (2), (7), and (8), it is seen that
mi{y} = Ky} , (D
where
ml = (M1%a1m (10)
mixm

and A is an approximation of the eigenvalue, A .

Thus, equation (9) is an mth order eigenvalue problem, where m € n .
The value of m Is astablished according to the criteria given later.

As in the case of real eigenvalue analysis (ref. 1), the Lanczos
algorithm is used to construct the transformation watricesg vector by
vector, i.e.,

[v] = [{vl}, vdooonnnlv 11, (11a)
nxm
V) = [y}, 50,4 1, (11b)
nxm

such that the reduced mxm matrix, [K], is tridiagonal and its eigenvalues
accurately approximate the roots of equation (2) having the largest

magnitude (or, equivalently, the physical roots, p , closest to the specified
point of interest, A; , in the complex plane), Using symmetry arguments
similar to those employed for real eigenvalue analysis, it can be shown

that the transformed, reduced eipgenmatrix in equation (9) is tridiagonal and
symmetric, having the form,
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The matrix coefficients are theovetically given by the simplified recurvence
formulas
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where the sequence is initialized by choosing random, biorthonormal starting
vectars for {vl}, {Gl} and by setting d1=0;{v0}={?°}= {o} .

The final off~diagonal term, dm , glven by equations (13) is used in
establishing ervor sstimates for the cimputed eigenvalues, as described below.
In addition, the above algorvithm is modified in the computational scheme as
follows:

1. Each pair of vectors {vi l] {v +l}’ calculated in equations
(13b}), is reorthogonalizei to al} previously computed pairs,
before re-entering equations (13a).

2, 7The size, m , of the reduced problem is a function of the number of
accurate eigenvalues requested by the user and is limited to the num-
ber of finlte phvsical eilpenvalues available.
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The elgenvalues, X , and eigenvectors, {y}, of equation (9) are ex-
tracted using the Q-R iteratilon alpgorithm and eigenvector computational
scheme degcribed in connection with the Upper Hessenberg method in NASTRAN
{(vef, 5). They are then convertad to physical form.

CRITERIA FOR THE S51ZE OF THE
REDUCED EIGENVALUE PROBLEM

The maximum number of finite eigensolutions, including any existing
rigid body modes, is equal to the rank, r , of the elpenmatrix, [A], in
equation (2). Thus, for example, massless degrees of freedom, appearing as
zero diagonal terms in the [M] matrix, will result in singularities {(rank
reduction), which imply infinite physical eigenvalucs, These spurious roots
are swept out of the problem in the complex FEER process, with a consequent
reduction in the available eigensolutions.

A& further consideration in limiting the maximum problem size is that the
user has the option of requesting eigensolutions in the neighborhood of
several shift points (Ap1,A02,...) din the complex plane. In the Tri-
diagonal Reduction method, all eigensolutions, f , obtained for previous
shift polnts are swept out of the problem to prevent theilr re-genera ion when
dealing with *he current shift point. This implies that the maximum possible
size, m , of the reduced problem is further liumited to

Moax =T~ £ . (1L4)
On the basis of rumerical experiments, similar to those cited in
reference 1 for real eigenvalue analysi=x, it has been found that when
m << m , a first grouping of more than m/2 computed eigenvalues closest
me
to the shift point ave in accurate agreement with the corresponding number
of exact eigenvalues, provided that 7 € m € mgpyx . The remaining reduced-
system roots are spread across the remzining exact eigenspectrum. To enhance
the accuracy of the asgociated elgenvectors, the minimum problem size is
further increased teo twelve, again assuming that m<<mg,, .

Thus, if the user requests a total of q eigenvalues closest to a
specified point in the complex plane, the order of the reduced problem is
initiall~ set to

{ =min[(2q+10), (2n-£)1; B]#[0] , (15a)
m

=min{(2q+10},{n-£)] ; [Bl=[0] . (15b)

Although the total number of eigensolutions requested should not exceed

Mpax » there is usually no simple way to discern this upper limit in complex

eigenvalue problems. However, the reorthogonmalization tests are designed to

automatically establish this upper limit. If the latter tests fail for some
vector pair {vi+l} , {Gi+1} , this is an indication that a null vector has
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been generated because mpgx linearly Iindepaendent vectors have already been
obtained. The recurrence algorithm, equations (13), is then terminated and
the order of the eigenprobliem is further reduced to m =1 ,

ERROR ESTIMATES TOR THE
COMPUTED ELGENVALUES

Following a development gimilar to that of reference 1 for real eigen-
value analysis, 1t can be shown that

IIAiI - |Ai|| ~ |dm+lymi‘ . (16)

The above shows that the absolute value of the difference between the com~
puted and true eigenvalue magnitudes 1s proportional te the magnitude of
dp+1  (which is the next off-diagonal term that would be generated had the
reduced triddiagonal matrix, [H] , been increased from order m to order

mtl ) and ypi , (which is the last term im the reduced-system eigenvector
associated with A )

Converting equation (16) to physical eigenvalue form, using equations
(3) and (4), yields,

232, 1443 |
= - Ll = —=3 {o N 17
Ei —Wizsjz;r 1 IR [B] # {0] (17a)
7222 ld oy ]
%ﬁ’ - ‘*—%‘%]%;tmﬂm. (17b)
lpi"AOI i

The use of the above error estimates as criteria for acceptable eigensolutions
is as follows:

(a) If the physical eigenvalue, Ei , corresponds to a zero root (e.g., a
rigid body mode), the above computational scheme 1s invalid and there-~
fore bypassed. Denoting t as the number of digits carried in the
computations, a zero root 1s assumed to occur whenever

L;—iS‘ < 137t3 (18)
where
ris = 2 [[52] + [52] + ..... + B2t (19)
and is denoted by setting the error § to zero.
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(b) The eigenvalues are listed in order of increasing distance from the shift
point, Ao , to determine whether theilr assoclated estimated errors, &y ,
meet an acceptable relative error tolerance set by the user on the EIGC
bulk data card (the default value is 0.10/n, where n is the order of
the stiffness matrix). The first eigenvalue not neeting the tolerance
test, as well as all subsequent elgenvalues further removed from the
center of interest, are considered to lack sufficient accuracy and are
therefore discarded.

(c) Acceptable aigenvalues obtained in the above manner are reordered
according to the magnitude of the imapinary part, with positive values
considered as a group ahead of all negative values.

NASTRAN USER'S INSTRUCTIONS

Figure 1 shows modifications of the EIGC card in the NASTRAN bulk data
deck which accommodate user implementation of the Tridiagonal Reduction method
for complex sigeuvalue analysis. The modifications consist of additions to
the standard user instructions and are underscored for ease in ldentification.

When the complex Tridiagonal Reduction method is invoked, the E
parameter on this card represents the maximum allowable value of the com-
puted absolute relative error in a physical eigenvalue. If this value is
exceeded, the assoclated eigensolution is not accepted for further processing
by NASTRAN. A detailed list of the maximum relative errors computed by com~
plex FEER can be obtained by requesting DIAG 12 in the NASTRAN Executive
Control Deck.

USER MESSAGES AND OPTIONAL DIAGNOSTICS

Functional Module User Messages

The following is a description of the NASTRAN user messages which may
be generated by NASTRAN during the execution of the Complex Tridiagomal
Reduction method and which are unique to this method. Explanatory infor-
mation is provided following the text of each message and, in the case of
a fatal message, corrective action is Indicated. Refer to the NASTRAN
Users' Manual, Section 6 for & complete listing of other syszstem and user
messages.

Fatal messages cause the termination of the execution following the
printing of the message text. These messages will always appear at the
end of the NASTRAN output. Warnine and information messages will appear at
various places in the output stream. Such messages convey only warnings or
information to the user. Consequently, the executlon continues in a normal
manner following the printing of the message text.
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Message List

3149 #%%  USER WARNING MESSAGE 3149, USER SPECIFIED NEIGHB@RHAGD CENTERED
AT @RIGIN N@T ALL@WED, CENLER SHIFTED T@ THE RIGHT .0OL.

Point: of interest in the complex plane (ug{,Wa1), closest to
which the eipenvalues will be computed, was input ag (0.0, 0.0)
on an EIGC bulk data continuation card. 8ince this is an in-
admissible choice, the point automatically used was (.001, 0.0).

3150 #%%  USER WARNING MESSAGE 3150, DESIRED NUMBER @F EIGENVALUES
k%% INVALID. SET = 1.

Number of accurate roots desired Ng1 , was omitted, input as zero
or negative on an BIGC bulk data continuation card. The number
actomatically used was 1.

3151 #%% USER WARNING MESSAGE 3151, DYNAMIC MATRIX I5 SINGULAR
(PCCURRENCE #%#*%) TN NEIGHB@RH@@ID CENTERED AT ##%¥k kikk

Point of interest im the complex plane (Q,q,wa{), closest to
which the eigenvalues will be computed, was input too close to
an eigenvalue on an EIGC bulk data continuatien card. The point
is automatically shifted by adding .02 to both the r=al and
imaginary parts. If the dynamic matrix is still singular, the
next neighborhood, 1if any, is searched.

3152 #¥uk USER.INF¢RMA' #¥ MESSAGE 3152, SUBR@UTINE AﬂLMAT PuUTPUT
EIGENVALUE *n.«% IS NULL.

When an eigenvalue output from subroutine ALLMAT is exactly zero,
the formula for computing the associated theoretical error test
fails. The magnitude of the eigenvalue is considered to be 10-10
for use in that formula.

3153 *%%  USER WARNING MESSAGE 3153, ATTEMPT T¢ NPRMALIZE NULL
VECT@R IN SUBR@UTINE CFEER4. N@¢ ACTION TAKEN.

An eigenvector ocutput f£rom subroutine ALLMAT is a zero-vector.

3154 *%%  USER WARNING MESSAGE 3154, SIZE @§F REDUCED PRUBLEM
DECREMENTED #NCE (N@W #**%*)} DUE T@ NULL ERRPR ELEMENT.

If subroutine CFEER4 receives a reduced tridiagonal matrix having
error element dyyy exactly (0,0), it is impossible to compute
meaningful theoretical error estimates for any of the eigenvalues.
The size of the vreduced problem is reduced by one, so that dp
becomes the new error element.
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USER WARNING MESSAGE 3155, REDUCED PREBLEM HAS VANISHED.,
N@ REA@ETS TOUND,

If decrementing the size of the reduced problem (see message
3154) causes the size to become zero, the program continues to
the next neighborhood, if any.

USER WARNING MESSAGE 3156, SIZE @F REDUCED PR@BLEM
REST@RED T¢ *#%%% BECAUSE NEXT ERR@R ELEMENT WAS ALS@
NULL. ERB@R ELEMENT SET = ##&¥& &k¥#

This message follows message 3154. If d,, is also exactly zero
(in additdon to dpyy) being exactly zero), then the original re-
duced problem size is restored and dp4; is set toe (£,0) where
€ = E/100 and E 4is the error tolerance on acceptable eigenvalues
input on the EIGC bulk data card.

USER WARNING MESSAGE 3157, FEER PR@CESS MAY HAVE
CALCULATED FEWER ACCURATE M@DES **#% THAN REQUESTED
IN THE NEIGHBRH@PD @F #ikk &iki

The desired number of eigenvalues specifled on the EIGC bulk
data continuation card exceeds the additional number that can
be calculated by the Complex Tridiagonal Reduction (Complex
FEER) method in the current neighborhood.

USER WARNING MESSAGE 3158, N@ ADDITI@UNAL M@DES CAN BE
FEUND BY FEER IN THE NEIGHB@RH@PD @F #dhsr dkkk

An initial pseudo-random vector cannot be made orthogonal to
the existing set of orthogonal vectors {(which come frow Restart
and from all prior-neighborhcod sets of eigensolutions}.

USER INFJRMATIPN MESSAGE 3159, ALL S@LUTI@NS HAVE BEEN
F@uND .

The TEER method has solved the entire problem. Any addiiional
neighborhoods (1s specified by the presence of EIGC bulk data
continuation cards) are ignored.

USER INFERMATTION MESSAGE 3160, MINIMUM #PEN CORE NYT
USED BY FEER #*%% W@HRDS (**** K BYTES).

This message indicates the amount of open core, in both bytes
and woids, not used by TFEER.

USER WARNING MESSAGE 3161, DESIRED NUMBER @F EIGENS@LU—
TIPNS ##%#% FPR NEIGCHB@RHIED *k#% T *&k* CENTERED AT

®&kk% Kk¥% EXCEEDS THE EXISTING NUMBER #%%%, 6 ALL FEIGENS¢LU-
TI@NS WILL BE S@UGHT.



3162 %%

3163 #*¥%

3164 ik

3165 ##%

3166 #wk

The desired number of eilgenvalues specified on the EIGC bulk data
continuation card exceeds the size of thea elpenmatrix, which is
the maxinum possible number of existing elgenvalues.

USER WARNING MESSAGE 3162, ATTEMPT T@ N@RMALIZE HULL
VECT@R. N@ ACTI@N TAKEN.

The general vector normalization routinc (CFN@RL or CFN@RZ) has
a zero-vector input to it,.

USER WARNING MESSAGE 3163, ALIL #*¥%%% SPLUTIGNS HAVE FAILED
ACCURACY TEST. N RPPTS FEUND.

The number of eigensolutions pasgsing the relative error test is
Zzero. The maximum allowable error for the relative error test
is specified In [ileld 7 of the EIGC bulk data card. A detailed
list of the computed error bhounds could have been obtained by
requesting DIAG 12 in the Executive Contrel Deck.

USER INTHRMATI@N MESSAGE 3164, ALL #¥%% SPLUTIONS ARE
ACCEPTABLE.

All the eigensolutions obtained in the reduced problem correspond-
ing to the point of interest pass the relative error test. The
maximum allowable error for the relative error test is specified
in field 7 of the EIGC bulk data card. A detailed list of the
computed error estimates could have been obtalned by requesting
DIAG 12 dn the Executive Control Deck.

USER INFPRMATIPN MESSAGE 3165, *##% SELUTIPNS HAVE BEEN
ACCEPTED AND **%% SPLUTI@NS HAVE BEEN REJECTED.

Some eilgensolutions passed the relative error test and some
did not.

USER INFERMATI@N MESSAGE 3166, ***% MJRE ACCURATE EIGEN-
SPLUTI@NS THAN THE #*%%% REQUESTED HAVE BEEN F@UND F@R
NEIGHBPRH@@D *#*k (F *%¥%x CENTERED AT ##%k% #%kid%x, USE DIAG
12 T¢ DETERMINE ERR@R ESTIMATES.

The number of elgensolutions passing the relative error test is
greater than the number requested on the corresponding EIGC bulk
data continuation card. The maximum allowable error for the
relative error test is specifiled din field 7 of the EIGC bulk
data card. A detailed list of the computed error estimates
could have been obtained by requesting DIAG 12 in the Executive
Control Deck.
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The Eigenvalue Summary Table

The following summary of the &igenvalue analygis performed, using the
complex Tridiagonal Reduction (FEER) method, is automatically printed:

1. Nunber of eigenvalues extracted.
2. Number of starting points used.

This corresponds to the total number of random starting and restart
vectors used by the complex FEER process for all neighburhoods.

3. Number of starting point moves.
Not used in FEER (set equal to zero).

4, Number of triangular decompositions.
Always equal to the number of points of interest (neighborhoods)
in the complex plane processed by FECR, since ordinarily only
one triangular decomposition is required by FEER for each point of
interest, unless the dynamic matrix is singular at a given point
of interest, in which case an additional decomposition is required
(obtained by moving the point of interest slightly).

5. Total number of vector iterations,

The total number of reorthogonalizations of all the trial vectors
employed.

6. Reason for termination.

(0) All, or more soluctions than the number vegquesited by the user,
have been determined (normal termination).

(1) All neighborhoods have been processed, but FEER has nct obtained
the desired number of roots in each neighborhood, possibly be-
cause they have already been found in cother neighborhoods.

(2) Abnormal termination - either no roets found or none pass the
FEER error test,
Optional Diagnostic Output
The user can obtain special detailed information relating to the
generation of the reduced problem size, the elements of the reduced tri-

diagonal matrix, vector recrthogonalization iterstions, computed error
estimates, order of eigenvalue extraction, and distance of extracted
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elpenvalue from the center of interest by requesting DIAG 12 in the NASTRAN
execubtive control deck,

The meaning of this informacion is explained below in the order in which
it appears in the DIAG 12 output.

RRFAPEERA Y% (FAST EIGENVALUE EXTRACTI@N RAUTINE)*#&%
This header is always prini.-d first.

*FAASTINGLE PRECISI@N W@RDS $F @PEN CPRE NPT USED (SUBRAUTINE XXXX)

*%%% -  Open core not used by subroutine XXXX, in single-precision wards,
AXXX - Either CFCHNTL, CFEER3, or CFEER4. This message appears

three times.

CFCNTL ACCURACY CRITERI@N * (INPUT VALUE#*%)

* — Accuracy criterion, used for rejecting eigensolutions (expressed
as a percentage).

*k ~ Value of accuracy criterion input by the user on the EIGC bulk
data card.

CFCNTL NEICHB@RH@@D * CENTER = #% %% N@.DES.RES. = *¥%% NPNSYM = *kk#

* - Positive integer indicating which neighborhoed, or center of
interest, is currently belng processed.

#% &% ~  Center of interest in the complex plane.

KAk — Number of desired roots for the current neighborhood, input by
the user on the corresponding EIGC bulk data continuation card,

#%%% -~ Indicator which, when nonzevo, forces the program to consider

the matrices as non-symietric, even though they may actually
be symmetric. This is input by the user in field 7 of each
EIGC bulk data continuation card. This input was used during
program checkout of the complex FEER process, and it should
have no affect on the solution. However, the user should leave
fleld 7 blank on each EIGC continuation cavd,

REPRTUACHNALTZATIPN ITERATI@UN * TARGET VALUE = *®%
ERRORS = *&% sk hkk &xd

* — The reorthogonalization iteration-number. This messapge will
appear many times, as the FEER process "cleans up' each trial
vector by forcing it to be as orthogonal as possible to the set
of vectors already computed.

&% - Convergence tolerance, such that the errors must be smaller than
this value. 1In order to avoid taking square roots, the tolerance
and errors are all squared.

Fadk kkk kkd k%%~ Four reorthogomalization errors, the first two of
which correspond to the orthogounality of the current right and
left handed trial vectors, respectively, with respect to all
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previously computed vectors in the current neighborhoed, and the
latter twe of which correspond to the orthogonality of the same
vectors with respect to all elgenvectors previously computed
(restart and prior neighborhoods).

REDUCED TRIDIAGENAL MAT'RTX ELEMENTS RgW *
@FF DIAGENAL = %% %%
DIAGUNAL = *%k Kk

* - The vow number of the (reduced) tridiagonal matrix.
*% *% - Value of the off-diagonal element for that row.
*hk kk% - VYglue of the diagonal element for that row.

Following the printing of several lines contalning reorthogonalization
information and reduced tridiagonal macrix elements, when the FEER process
has finished its computations for the current polnt of incerest, the header
(see above) is printed once again, followed by a table which summarizes all
the elgznsolutions found by FEER. This table has seven columns, as follows:

(1) Solution number. This 1z simply a positive integer 1,2,3,... .

(D Order of extraction. These numbers ifindicate the order in which
the tridiagonal matrix was constructed,

(3) Distance from center. This 1s the distance from the extracted
eligenvalue to the neighborhood center (which is printed above
the table) in the complex plane., The tabular values are sorted
according to increasing distance from the center.

(4) Real part of the extracted eigenvalue.
(5) Imaginary rart of the extracted eigenvalue.

(6) Theoretical error estimate. This value must be smaller than the
Accuracy Criterion (see above) for the eigensolution to be
acceptable.

(7) Status. A single word, "accept" or "reject', to indicate the
result of the accuracy test. A minus sign (-) is added to
"reject" so that the eye can more rapidly distinguish between
the two words.

Finally, this table is printed a second time, but with the rejected
eigensolutions deleted.

For very small problems, there is a Very Detailed Printout (VDP)} option.
This option was originally used to debug the complex FEER logic, and is no
longer required. DIAG 12 must be specified in the executilve control deck to
invoke the VDF option, and furthermore, field 6 of a given EIGC bulk data
continuation card must have a (floating point) value equal to or greater than
the size of the stiffmness matrix. Thus, field 6 of each EIGC continuation
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card should ordinarily be left blank, so that the VDP option will be
suppressed, The actual printed output of this option consists of all
vectors for each step of the complex FEER process, which is too extensive and
detalled for normal user purposes.

NUMERLCAL RESULTS AND COMPARISON WITH
EXLISTING NASTRAN EIGENVALUE METHODS

Test Problem

During the developmental stages of the complex Tridiagonal Reduction
method, a simple three degree of freedom model consisting of the rod and
dashpot system shown in flgure 2, was employed for experimental and check-
out purposes. The elgenvalues of thls system consist of one complex-~
conjugate pailr, one pure imaginary and three zero roots,, the latter
corresponding to rigld-body wmodes.

A comparison of the pevformance of the complex Tridiagonal Reduction
method, the complex Determinant method and the complex Tnverse Power method,
is summarized for this example in table I. In run 1, all six eigensolutions
were successfully found using complex FEER and a single shift point in the
second guadrant of the complex plane; only one triangular decomposition of
the dynamic matrix was vequired. In run 2, using the complex Determinant
method, 29 triangular decompositions were performed and only two, non-zero,
elgenvalues were found, in spite of the fact that wmultiple search regions
were used, including one region encompassing the ovigin. The reason given
for termination in the eigenvalue summary table was that “all predictions
for eipoenvalues are outside the regions specified", even though this was
not the case,

Runs 3-5 were with the complex Inverse Power method, which did not fare
too well in this exercise. A large number of iteratlions were performed, re-
sulting in relatively high CPU and I/0 times., In addition, the first run
yielded only two roots and the remaining two, none at 'L, even thaugh
the seavrch regions selected, while differing from run to run, encompassed
the known eigenvalues.

All the above runs, and those reported below, were performed on the
NASA/GSFC IBM 360/95 computer,

Tidal Frequencies and Modes in Closed, Shallow Basins

Coy survent with the complex FEER development, an independent study was
conducted (ref. 7) to estimate the tidal frequencies and mode shapes in two
of the Great Lakes, namely, Lake Erile and Lake Superior. It was decided to
use a finite-element displacement formulation and the complex eigenvalue
extraction capabilities in NASTRAN for this purpose. The mathematical model-
ing was based on the following assumptions:

fa) Negligible convective accelerations and other nonlinear effects,
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(b) Inviscid, incompressible flow,.
{c)} Negligible vertical veloecity compared to lateral velocities.
(d) The Boussinesq hypothesis of hydrostatic pressure variations,

(e) Sufficilent shallowness to permit integration-averaging through
the depth.

As a consequence of the above simplifications, the Navier-Stokes equations
reduce to the two-dimensilonal form,

By 5o (208)
g-‘;i+gg§+fa=o (20b)
L+ L (i) +-3§§ ) =0 (20¢)
where
u,v = integrated average velocities in the x and y (horizontal)

directions

e = local water height, measured from the mean surface

h = local depth of water, measured from the mean surface

f = the Coriolis parameter, 2Qsin¢ , with ¢ the latitude, and
§ the earth's rotational rate

g = acceleration due to gravity.

Using the Galerkin method, a finite element representation of the above
equations was developed, in which the nodal variables are u , v and [ .

A data-generator code was then written, which generated DMIG card images for
use as NASTRAN input.

The two lakes are shown in figures 3 and 4 and their finite-element
meshes are given In figures 5 and 6. The mesh of Lake Erie contains 8l nodes
and 204 unconstrained degrees of freedom, while the representation of Lake
Superior involves 124 nodes and 299 unconstrained degrees of freedom. These
selections were based on numerical convergence studies with successively
finer meshes, and represent the fineness needed tc abtain two or three
accurate modes,

In the early stages of the study, the complex Inverse Power method was
used, but had to be abandoned because of inconsistencies in the results;
the roots obtained seemed to depend on the search region selected and false
roots were almost always calculated very close to the starting polnt in the
region. A tightening of the convergence criterion "E" on the EIGC bulk data
card was attempted, but this did not resolve the difficulties.
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Some limited success was achieved using the complex Derermi: ..t methed,
but here again, difflculties were encountered, Unless the search region
could be rather carefully and precisely defined, the chances of finding roots
was somewhat remote. The method is apparently quite sensitive in its search
pattern, and does not home-in on a root if there is an extensive search area
to work on,

At some point epproximately nid-way in the study the complex FEER
capability was completed and integrated into NASTRAN, whereupon it was
applied to the tidal mode problem for the lakes. The results obtained were
consistently good. To check their accuracy, changes were nade in the shift
points, mathematical scaling and the number of requested elgensolutions
(i.e., the truncated size of the problem). These variations had only a
negligible effect on the calculated frequencies and mode shapes.

Some timing results for Lake Erile, using complex FEER and the Determinant
method are given in table II. As noted ahove, the Determinant method was
viable only 1f the search vegions were made very small, implying that the
locations of the roots were vether well known in advance.

The Upper Hessenberg method could not be used for these models, since
the maximum region available on the TBM 360/95 was 900K, which would only
permitc a 43 node mesh with this method.

CONCLUDLNG REMARKS

Initial experlences with the complex Tridiapecunal Reduction (FEER)
method indicate that it is very effective in extracting .ny desired number
of accurate complex elgensolutions in the nelghborhood of A selected shift
point on the complex plane. The method automatically computes complex
roots at increasing distances from the selected point until the requisite
number, specified by the user, is obtained. In this respect, a disad-
vantage of the complex Determinant and complex lnverse Power methods,
namely, a very careful delineation of search regions, is eliminated. 1In the
case of multiple shift points, it has been fuund that complex FEER success-
fully sweeps-out elgensolutions obtained for previous shift points and
prevents their regeneration when dealing with the current shift point.

Since the mathematical properties and characteristics of complex
eigenvalue problems are very broad and varled, it should be recognized that
the results reported herein with vegard to computational efficlency and
timing, are only indlcative of a small class of problems. A fuller assess-
ment of the capabilities of this new method can only be obtained followlng
extensive application experiences within the user community.
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TABLE I. COMPARISON OF EIGENVALUE METHODS
FOR ROD-AND-DASHPOT TEST PROBLEM

- e —n
e —

Time, minutes | Region

Run Method CPU 1/0 (X) Comments

Eigensolutions Found: All 6

No. of Triangular Decompositions: 1

Search Reglons: OQne point in Znd
quadrant of complex plane

Reason [or Termination: All solutions
found.

1 Complex |0.151 | 2.262 300
TEER

Eigensolutions Found: 2 (3 vigid body
modes at origin missed)

2 Complex |0.174 2.858 320 [No. of Triangular Decompositions: 29

Determinant Search Regions: 3, around known roots,
including origin

Reason Given for Termination: All
predictions are outslde regions
specified

Eigensolutions Found: 2 (3 rigid
body modes missed)

3 Complex |(0.271 8.997 320 |No., of Triangular Decompositions: 1

Inverse in last search region

Power Search Regions: 3, around known
roots, including oyigin

Reason Given for Termination: Number
of desired roots have been [ound

Eigensolutions Found: None

4 Complex [0.238 4,100 320 |No. of Triangular Decompositions: 4

Inverse in last search region

Power Search Regions: 1, encompassing all
5 existing roots on and above real
axis

Reason Given for Termination: Four
starting point moves while track-
ing a single root

Eigensolutions Found: None

5 Complex |0.149 1.566 320 No. of Triangular Decompositions: 2

Inverse Search Regions: Around origin, in

Power attempt to find rigid-body modes

Reason Given for Termination: Two
successive singularities found
while performing triangular
decomposition
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TABLE IX.

TIMING RESULTS FOR LAKE ERIE TLDAL MODE
CALCULATIONS ~ 81 NODE MODEL

' Time, minutes| Region

Run| Method CPU 1/0 ) Comments
6 accurate modes requested

1 Complex 2.164 | 5.,886)] 700 4 obtained

- FEER

15 accurate modes requested

2 2.425 | 8.5931 350 12 obtained
50 accurate modes requested

3 7.576 (27.,751) 560 54 obtained

4 Complex 6.572 | 8.618] 700 K} @odes obtained; ingufficient time

for more
5 Determinant 5.315% 7,489 700 6 modes obtained; insufficlent time

for more

*Less time used due to a more careful choice of the search region.
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Input Data Card EIGC

Description:

A

BULK DATA DECK

Complex Eigenvalue Extraction Data

Defines data needed to perform complex eigenvalue analysis

ORIGINAL PAGE IS
OF POOR QUALITY

al b2
%, /‘ /. //
y, / " o
a2 > _]4-%
— N
bl
Format and Example:

1 2 3 4 8 9 10
ELGC SID METH@ED N@RM G C j0 +abc
ELGC 14 DET P@INT 27 1l.-8 ABC
+abc o1 w1 Y1 Wy Jll Nel Ndl P +def
+BC 2.0 5.6 2.0 -3.4 2.0 4 4 DEF

T
tdef ) @o | Ya Y ESY: ) Neo | N4
+EF -5.5 -5.5 5.6 5.6 1.5 6 3
(etc.)
Figure 1. Modifications to the EI3C bulk data card for the Tridiagonal

Reduction Method.
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Field
51D

METH@$D

NORM

N
el

449

Contents
Set identification number (unique integer > Q)

Method of complex eigenvalue extraction, one of the BCD values,
"Inv'", "pET", "HESS” or "FEER"

INV -~ 1Inverse power method

DET - Determinant method

HESS - Upper Hessenberg method

FEER - Tridiagonal Reduction Method

Method for normalizing eigenvectors, one of the BCD values
"MAX" or "P@INT"

MAX - Normalize to a unit value for the real part and a
zero value for the dimaginary part, the component
having the largest magnitude

PPINT - Normalize to a unit value for the real part and a
zero value for the Imaginary part the component de-
fined in fields 5 and 6 ~ defaults to '"MAX" if the
magnitude of the defined component is zero.

Grid or scalar point identification number (Required if and
only if N@RM=P@INT) (Integer>0)

Component number (Requirzd if and only if N@RM="PPINT" and G
is a geometric grid point) (O<integers6)

Convergence criterion (optional) (Real0.0)

For method = "FEER'", error-tolerance on acceptable eigenvalues
in percent (default value is .1l0/n, where n is the order of
the stiffness matrix)

Two complex points defining a line in the complex plane (Real)
For method = "FEER", (uaj’ w,:) _1is a point of interest in the
complex rplane, closest to which the eigenvalues are computed;

ajl + ‘wajl >0 . The point (abj’ wbj) is ignored.

Width of region in complex plane (Real>0.0)
Blank for method = "FEER".

Estimated number of roots in each region (Integer>0)
Ignored for method = "FEER",

Figure 1. Continued



N Desired number of roots in each reglon (Default is 3N )

d} (Integer>0) Desired number of accurate roots for method =
"FEER" (Default dis 1).
Remarks:
1. Each continuation card defines a rectangular search region. For
method = "FEER", the card defines a circular search region, centered

éﬁ (aaj, waj) and of sufficient radius to encompass Ny roots.
Aoy number of repgions may be usea and they may overlap. "Roots in
overlapping regions will not be extracted more than once.

2. Complex eigenvalue extraction data sets must be selected in the Case
Control Deck (CMETH@D=SID) to be used by NASTRAN.

3, The units of o, w and % are radians per unit time.
4, At least one continuation card is required.
5, For the determinant method with no damping matrix, complex conjugates

of the roots found are not printed.

6. See Section 10.4.4.5 of the Theovetical Manual for a discussion of
convergence criteria,

7. For the Upper Hessenberg method, Ny; controls ti .ber of wvectors
computed. Only one continuation card is considere. =ud the (o, w)
pairs, along with the parameters £&§ and Ng1 , are ignored. In-
sufficient storage for HESS will cause the program to switch to INV.

8. The error tolerance, E , for the "FEER" method is with regard to

151_(a€1j ] mai) l

Ipi—(aaj H waj) I

1 for [B] # [0] and

-2
b [pym(a s v )

2
|pi—(aaj ¥ waj)

-1 | for [B] = [O] ,

where Bi is a computed elgenvalue and p, an exact eigenvalue,

Figure 1. Concluded.
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Figure 3.

I1lustration of Lake Erie and the adjacent geography.



N0

wo0d 40

r
v

1

ALy nd

-~
-

1H¥d W

d’a4

Figure 4.

Tllustration of Lake Superlor and its local geography.



Sy¥

Figure 5.

K

\VAVAVA

81 Node Finite Element Model for Lake Erie.



finite element model for Lake Superior.
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