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Abstract

The Mean Spherical Approximation for fluids is extended to treat the case

of dense systems interacting via soft-potentials. The extension takes the

form of a generalized statement concerning the behavior of the direct correla-

tion function c(r) and radial distribution function g(r). From a detailed

analysis that views the hard core portion of a potential as a perturbation

on the whole, a specific model is proposed which possesses analytic solutions

for both L - .. . umb and Yukawa potentials, in addition to certain other remarkable

properties. A variationai principle for the nedel leads to a relatiiely

simp le method for obtaining nu.;nericai solutions.
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I. INTRODUCTION

'lie mean spherical approximation (MSA) has been applied 
1
almo-t exclusively

to dense liquids whose intermolecular potentials u(r) possess a hard core o:

range J. For such potentials the MSA is specified by the equations

c(r) + au(r) - 0 ,	 r > C ,	 (lb)

($ - 1/k BT)

g	 -ogether with the Ornstein Zernike (OZ) relation, which for a system of average

density p is written

h(r) - c(r) + p , dr'h(Ir-r )c(r') .
	 (2)

Here g(r) is the radial distribution function and c(r) the direct correlation

function for which (2) is the defining relacic,-.

The mean spherical approximation is not a satisfactory model for low

density fluids since it normally fails to give the correct value for the second

virial coefficient. An exception to thii however is the system of hard

spheres, where the MSA i.s equivalent to Elie Percus-Yevick (PY) approximation.

Another exception is the dense Coulomb gas (u(r) - r -1 ) where the MSA gives

the known Debye-Huckel limit ` in a first order "inverse range" expansion: it

also leads to results that satisfy the Stillinger-Lovett conditions 3 . The

major interest in the model, however, can be traced to the tact that it yields

interesting analytic solutions for a fairly wide class of systems providing

they possess, in their interparticle potentials, the fundairantal hard-core

property as represented in(lal On the other hand, the evident disadvantage

of the model has been an apparent lack of any systematic basis for its extension
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to nun-hard core potentials. The purpose of this paper is to provide such a

basis which is being proposed more for the qualitative insight it gives in the

theory of liquid structure than its quantitative numerical predictions. Though

founded -n a more general Statement of the MSA, (to be given in the next

section), its practical realization is very similar. In particular a version

applicable tc: soft potentials (the "soft" mean spherical approximation) is

introduced, and in section III is compared to the modified hype rnetted chain

appro"ch ` . Some thermodynamic results are considered 'n section IV, and a

variational principle for the model is given in section V. Finally, -pplica-

tions and attendant procedures are given for the one-component plasma in

section VI. Some conclusions are drawn in section VII.

II. THE CF14ERALIZED `1G\N SPHERICAL APPROX12MATION

Analysis '` of a large bony of computer simulation data compiled for a

variety of disparate but mainly soft interparticle potentials has led to a

conclusion that from the standpoint of its thermodynamic consequences, a

replacement of (lb) by

,
-1
dr g(r)[c(r) + au(r)] - O	 (3)

constitutes s relatively accurate reformulation of the approximation, and

one which in the dense fluid regime of low compressibility is -valid for any

potential. The meaning of (3) is most easily gauged by recalling the exact

relations

C(0)- r3('p/3P)T + 2(^U/N) - P C dr 3(r )[ c ( r ) + 3 u ( r )]	 (+)

where p is the pressure, also satisfying

3 ( .: p /?P) T = 1 - p dr c (r) (5)
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and U/ y , the internal energy per particle, is given by

(aU/.1) - ^P g (r) 3u (r)dr	 (6)

(We observe at this point that

this system, however, the pres

requires us to replace c(r) in

The general i zed mean spherical

by the equations

(4) holds for the one component plasma. For

ance of a compensating uniform background

(5) by c(r) + Ou(r) and g(r) in (6) by h(r).)

approximation (GMSA) is therefore specified

g(r) - 1 + h(r) - 0,	 (r r ;),	 (la)

Cdr g(r)(c(r) + -u(r) = 0, 	 (lc)

whose solution w.11 deter-mine app roximations to c(r) and S(r). For potentials

with a hard coma 7 is just the hard core diameter. For soft core potentials

7 can be a parameter (see below). Clearly the model can only be considered

useful if the exact functions c(r) and g(r) satisfy

P g(r) [c(r) + Bu(r)] dr << c(0)	 (7)

However, is already noted, condition (7) appears to be well satisfied in

many dense systems of interest.

The implication of (3) is that the structural property c(0) (and indeed,

c(r) for a small range of r where g(r) is itself practically zero) is deter-

mined almost entirely by therrnodynami,: functions. The generalized mean

spherical approximatiot: is therefore a model which demands ( la ) and (lc)

and in ccnsequer.^e sets
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CQMSA(0) s -a(3P/3P) T + 2(3U/:V) .	 (8)

It is then clear that the usual -lean spherical approximation is but

one possible realization of (3). Its range of applicability is normally

constrained by the condition

Q. Op/3P) T >> 213U/N i	 (9)

which might be compared with (7),the condition governing the range of

applicability of the generalized mean spherical ap p roximation. Condition

(9), in turn is compatible with those u(r) n s characterized beyond the hard

core by either a weak long range tail, or by a stronger tail but with restricted

range. For the former, the tail has only minor effects on the structure of

the underlying hard core system and the application of the MSA is then very

much in the spirit of thermodynamic perturbation theory l . But the exact

g(r) reflects, of course, the entire potential and if the hard core portion

is to play any physical role at all, it is necessary that g(r - (7 ) — 5,

where b is significantly different from zero. In fact, of course, the MSA

leads to jump discontinuities in the solutions for g(r) and e(r) across

r i J whose magnitudes depend on ?, u(r), and P. We shall need to take this

into account in what follows, and shall introduce an approximation one of

whose purposes is to eliminate such discontinuities.

In proposing ar. extension to the MSA for non hard-sphere systems we

r-

cannot be guided by the usual arguments found,

realizations that might emerge must be sought

summarized by equatioi (3). Such an argument

consider a real physical potential possessing

short range repulsion (examples might be r n,

ad on (9). Instead any practical

from the G.MSa postulate as

can be given as follows:

not a hard core but a soft

(Ar -1z - br - b ) and so forth).

^	 E^
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As is well known, such systems behave at high densities as if their pair

potentials actually possess an effective hard core of diameter 7e ff , defined

operationally by g(r - .7eff ) - J << 1. But though hard-core like, g(r) for

these real systems is certainly devoid of discontinuities, and the same is

true for c(r).

The GMSA models this real physical problem by taking the u(r) of equation

s.	 (1) to be just the portion of the real potential that lies beyond an assumed

hard core of dimension Cr (this s often being close_, on physical grounds, to

eff 	
The problem is then solved and as noted, the pproximate g(r) and

c(r) :nay exhibit jump discontinuities. Let us compare these solutions (which

obviously depend on the choice of ? being made) with another approach:

suppose we return to the Ilginal problem and augment the soft potential u(r)

with a genuine interior hard core whose diameter 3 is chosen so that J < ?eff'

Physically (not analytically) such an addition can have 'ittle Lnfluence either

in the structural properties (g(r) or c(r.), for instance,) or on the high

density thermodynamic functions. An example of this can be seen in figure 1

where the results of introducing a hard core into the Coulomb potential, ac

high densit y , are displayed. :Vote the small change in c(r), and remember that

c(0 ) reflects the thermod} rnamics. (To appreciate the difference between this

and when the tail serves as a perturbation see Fig. 29 of ref. 1.) Talus again

from the physical viewpoint, we may even choose to regard the results of

existing Monte Carlo calculations for soft-potentials as in fact equivalent

to the results of similar calculations, were such calculations actually carried

out with an interior hard core (diameter a < 'eff ) present in ;.he potentials.

Even though I may be quite close to 
7eff 

we are evidently approaching a picture

where the addition of an interior-hard-core is :manifested only as a r--ther

mild perturbation, d view lv a ch Ls Q1"^° ^^^rrnry	rhn	 ..q1 nnti Inc onvnrnino

the application of the MSA

I
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Clearly we can extend this argument and state that any sciution of the

MSA, (equation (1)) which satisfies

g(r) - 0,	 r < Q ,

g(r = _+) = 0 ,

(i.e. no discontinuity at r a Q) can therefore also represent a MSA result

for a soft-potential u(r). Such a model can be termed 'a soft-mean spherical

approximation (SMSA) and simply takes the view that for a dense fluid c(r) i

-^u(r) (the simplest realization of (3)) whenever 5 departs from zero. As

will become clear later, solutions for g having this character are not grnaran-

teed, but if a solution of SMSA does exist and vields a physically acceptable

a, this solution should be very similar to the results tiowing from the IVC

approximation (see below). In fact there is an analytic solution of the SMSA

for the one component plasma l . For the Yukawa potential an analytic solution

can also be obtained, the starting point being the solution of the MSA as aug-

mented with Yukawa closure$.

In ooth of these cases the SMSA range is deter-mined by expanding c(r)

around r = 0 in powers of r, and establishing through the choice of ' where

the coefficient of the linear term vanishes. This then guarantees that the

discontinuity in the MSA solution for g(r) actually vanishes k i.e. g (r = Q+) = 0).

Since Moth Coulomb and Yukawa potentials possess Fourier transforms, it is

possible to obtain solutions of the SMSA which can be extended to the limit

of low densities, where I -• 0. 4m important potential in the same general

class 
4

is u(r) — erfc(ar)/r whose study by simulation techniques can be of

some benefit in assessing Monte Carlo results for the OCP via the Ewald image

mathod 9 . %nal-jt4C solutions of the SMSA for this potential will be particu-

larly useful.
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III. MU"N SPHERICAL AIND HYPERNETTED CHAIN APPROACHES

If we take literally the view that we have a system with a hard core

but the physical conditions are such that the hard core is not playing a major

role,then we lack the important support of the random phase argument so

essential to the usual application of the KSA. It necessarily follows that

any approximations of the mean spherical character must be established by a

rather different argument. To this end we consider the familiar expansion

of the total correlation function h(r), given by the diagrammatic method10,

namely

g(r) i exp [-?u(r) + 8(r) - b(r)]
	

(10)

where

A(r) - h(r) - c(r)
	

(11)

and b(r) (the bridge function) is the negative of the stun of all elementary

diagrams. The hypernetted chain approximation takes b(r) = 0, so that (10),

(11) and (2) (the OZ relation) provide together an integral equation that can

be iteratively solved for a given potential u(r). To make comparison with the

MSA, we observe tha: (10), (11), and (1) also imply a specific choice for the

bridge function, namely 

bMEA(r)	 (r < cr)

(12)

bMS'ei(r) - h(r) - ern g(r) , (r > (7) .

Now '_n the SMSA limitin g form,

g (r)	 0 ,	 (r < ^)

g ( r )	0	 (r	
+)
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which can still be satisfied by a choice of b(r) of the form ( 12). For later

use however, we shall find it convenient to replace ( 12) by the single

statement

bSMSA	
h(r)	 .n g(r)	

(13)

	

11 	 which formally continues the definition of b into the region where g(r)

	

y	 vanishes. As noted however,this region, by definition of the model, plays

no physical role. The utility of (13) lies rather in the following: any

statement on the behavior of the bridge function is entirely equivalent to

the specification of an effective interparticle potential for use in a

hypernetted chain approach. We may refer to this type of presentation of the

problem as a modified FfiVC scheme 4 . It is apparent that the SMSA introduced

above can therefore be cast into a well defined integral equation method.
n

For potentials possessing Fourier transforms (the OCP provides a clear

example) this integral equation has the interesting feature that it can dis-

play two classes of solutions that branch from the low density limit. One is

the "Debye-Ccke l." class characterized by c(r) _ -?u(r) for all r. The other

has the desired high density behavior in g(r), namely a range where g(r) = 0

which is made self ccnsistently possible by virtue of the correspo-uding

behavior in b(r). A numerical method for finding the desired solution will

be based on a variational principle for the SMSA (see section V).

For numerical treatment the SMSA(eq. (13))should still be viewed in the

context of the limit g(r - i ) - 0 imposed on the modified HNC equation with

the bridge function of eq. (12). Observe also that the Percus-Yevick equation

is characterized within the modified 0C scheme by the choice

bPX(r) - g(r) - 1 - .^n g(r) - (c (r) + ^u(r) l
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and as is well known can be cast into a well defined diagrammatic expansion.

The non-Debye-Huckel branch of the SMSA (eq. (13)) cannot however be cast

into a diagrammatic expansion.

As with all integral equations so far introduced, it is not possible to

say a priori whether any physically arceptable solution will in fact emerge

for an arbitrary potential. But in contrast to other methods, we can show

T.	 that the SMSA solution (provided of course it exists) has very interesting

physical features for the class of potentials u(r) whose Fourier transforms

likewise exist.

W. THER.`lODYMUMIC FUNCTIONS IN THE SOFT. HEAN SPHERICAL APPROXLNIATION

We consider a system of particles interacting via a pair potential that

is regular (i.e. lacks a hard-core). If the potential for one additional

particle is scaled by X (0 < ^ < 1), and g(r,i') : 1 + h(t,a) is the pair

distribution function relative to this particular particle when the potential

i Lhus scaled, the excess chemical potential for the system can be vritten11

1	 n

- ^eY = ^^	 d^ A dr g(r,X)pu(r)
V	 V v
o	 O

let y(r,X) be the difference between 4%u(r) (the potential) and the potential

of mean force for scaling ^. "Dien

g(r,X) ` exp[-3%u(r) + y(r,X)
	

(15)

and according to the diagrammatic expansion 10

y(r;X) s, h(r,k) - c(r,X) - b(r,k)	 (16)

where, ag-y in, b(r,i') is the negative of the sum of all elementary graphs.

(14)

k
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In these equations, we have g(r,% - 0) - 1, h(r,% - 0) - 0, e(r,% - 0) - 0,

and b(r,X - 0) - 0. 	 It is also understood that g(r,% - 1) - g(r), h(r,X - 1) -

h(r), and so on.

We now differentiate (15) with respect to % and obtain

Ou(r) g(r,%)	 -	 g(r,%) + g(r,%)	 Y(r,X)	 (17)

which we insert into (14). With the aid of (16) we then find that

auex	
P c(r)dr + P^ ldx^dr Ii(r,^)-^n Ih(r,%) - c(r,a)]

0
(18)

- 0^ 1d%Jdr g0	 4- b(c,^)
o

which is a simple generalization of

,,ex T -Pc(r)dr + P 'ldCdr h(i,%) 3 (h(r,%) - c(r,%)]
0

which in turn is a well known 
12,13 

expression for the excess chemical poten-

tial in INC. We can therefore repeat the standard manipulations 
12,13 

on the

first three terms of (18) to arrive at

1

^4eY = -pfc(r)dr + ^_P jjdr h(r)[h(r) - c(r)] - PS d), dr g(r) ^-^b(r.^). 	 (19)
o

In the HNC approximation (b - 0) the chemical ..utential can be calculated

directly; it is not necessary to integrate the energy equation of state.

Notice that for any approximation, expression (19) will be equivalent to the

energy equation of state.

We now write (19) in a form that is slightly more general and will later
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permit us to make an application to the OCP.

4,auivalents for the OCP) and find after a lit

a" ex ' 3\aP' - 17 + 'L - P."g(r)(c(r) +
T

+ p j h2 (r)dr - p^ 1a4 dr g(r,k)-1
o

13U
N (23)

which so far remains exact. We next consider the consequences in (20) of

the approximations flowing from the statement (13) of the SMSA. (It must

be noted that in any approximate theory, 3(^p/3p) T and OWN)  in (20) should

be taken from the compressibility and energy equations of state, respectively.)

For the SMS.? a take (13) in its scaled form

bSMSA(r,X) ' h(r,%)- &n g(r,%)	 (21)

which is compatible with (3), and insert this into (20). Then using (3)

we obtain

	

ex 	 (^\	 I =u
SU

SMSA	 `L^\aP) T- 1^ + N	 (22)

a relation which holds however only fcr potentials that possess Fourier

-1
	transform 

14
s	 One such is the Coulomb interaction (u(r)	 r ) for which,

as is well known

Thus for the OCP (22) can be rewritten in terms of the Helmholtz free energy

L-
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(012)	'	 )	 z f	 (24)

This last expression demonstrates .i unique property of the model: the energy

equation of state and the corLpre•.sibility equation of state are completely

given one in terms of th:, other. It is not necessary to know any structurrAi

details of the solutijn. Further, if

1.

a - (3/4rP) 1/3
	(25)

is the Wigner-Seitz radius for the plasma, and

- (Ze) 23/a	 (26)

is the standard plasma parameter, then in terms of 7

- -- d (.3F
ex

/N)-	 (27)

Equations (7), (24) and (27) then constitute a compact and relatively

simple set of equations connecting the four quantities (3U/N), OF 
ex 

IN),

30p/)0) T and c(0), and are useful notwithstanding the relative simplicity

of the analytic expressions for the OCP.

V. A VARIATIONAL APPROACH TO THE SMSA

We start with the usual coupling constant expression for the excess free

15enero:

aFex
/,, - ^P dr g(r,X)3u(r)
	

(28)

where g(r,X) is the radial distribution function for isochoric systems of

particles in which the pair potential is %u(r). Following the procedure of
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Morita an.l Hiroike lU , and using cquatton (13) (the SMSA statement on the bridge

function) we obtain

Fex
/N)SMS?- - ^P rc(r)dr + 2p	 1 

3 
fdk[pc(k) +.nt(1-pc(k))) 	 (29)

( err )

an approximate form for the free energy equivalent to that obtained fry n

integrating the energy equation of state. In (29) c(k) is the Fourier

transform of the direct correlation function c(r). From (28) we can deter-

mine the excess entropy

(S `x
/NkB ) - -(^F

ex
/N) + 2- ' dr g(r)3u(r)dr	 (30)

But notice that the basic assumption of the g-neralized mean spherical

approximation (equation (3)) allows us to write an approximate form for the

excess entropy

(Sex/Nk
B ) SM5..,- -^P dr h(r)c(r)- 2p (2 T)3 J dk[oc(k) +rnt(1 -pc (k))I

(31)

1	 1	
k"d(ph(k))pc(k) + ^dk- -	 J .r	 ^ ,v [pc (k)^zin(1-oc (k)) J^ .

20 (2.,)3

We now observe that a functional derivative

6 (Sex
/Nk B )

5c (k)

of tae right hand side of (31) will vanish, provided h and c are connected by

Ph(k) - pc(k)/(1 - pc(k)) . 	 (32)
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But (32) is precisel y the Fourier transform of the Ornstein-Zernike relation

(oquation (2)). It there ore follows that though intrinsically approximate

the entropy functional (31) provides an expression for the excess entropy of

the system (via the energy equation) that is exact for the SMSA model. The

exact solution for the corresponding e(r) is that direct correlation function

maximizing the entropy functional unde r the restrictions of the model:

The functional given b y the right hand side of (31) is already known 16

to possess the property that at the extremism, the Ornstein-Zernike relation

will be satisfied. This suggests, in turn, a numerical procedure for obtaining

a solution to the SMSA which i5 expected to be valid for any potential. This

procedure is: (i) choose a value for 7 and start with :in assumed form for

c(r), for example

c(r) - c> (r)	 -Su(r)	 (r > 7)
m

c(r) - c< (r)	 a + b(1 - r/,) + (1 - r/C) 71 a n Pn (2r/J - 1)
n-0

(r < Q),	 (35)

where the Lan f are all variational parameters, and the P 11 are Legendre poly-

nomials. The quantities a and b are fixed by the requirements of continuity

on c(r) (and its first derivative) at r - C .

(ii) Solve (for a n ) the set of equations resulting from the variational

conditions

7ENkBi

(iii) :.alter the value of J and repeat these steps until

g(r) = 0
	

(r < s)

to the desired numerical accuracy, and g(r > ^,) > 0.
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to be a smooth function

it in a practical case

The existence of an

offers an opportunity

and its utility.

Observe that since the func^ion e,(r) is expected

(and one that is not far from linear) we can expect th

a modest set of {an ) (say 5) will be quite sufficient.

analytic solution of the MSA for the Coulomb potential

to check both the validity of this mimerical procedure

VI. :APPLICATION TO THE ONE COMPONENT PLASMA

}

	

	 17
The analytic solution of the SMSA for the OCP is given parametrically

Let a be the relevant inner hard core diameter, and 17 = 6 p? 3 the associated

packing fraction. Then we define

1+2-) 2 f (F (1+^ r)24f^ +

2(1-V)3 
l L(1+2r)-

F l+kr
Q _ -	 2 24TI] ,	 (39)

( I - TI)
and

x 3 K2 /24TI .	 (40)

In terms of these we have the solution for the corresponding equivalei,t

plasma parameter

r - 2MT1 
1/3 	 (41)

Further

3U	 1
- [ (1 +	 - 5,2 kL - C + "1) a ]	 (42)

IN

and

c (0) _ -
 (1+2-n) + ^ - 1̂  - 5+ 1h	

(43)
(1-n)4	

4(l-T9-
	 12-^	 bU('1)

Finally,

a(^p/)p) T = 2(4U/N) - c(0 )
	

(44)
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The energi e s given by (42) can be represented exceedingly well by the

interpolation is

_ -0.90057 + 0.29971-^ + 0.0007	 (45)
V

which for	 a 1 has an accuracy of better than 0.17".. For large r, on the
s.

► :-	 other hand, the asymptotic form of the analytic solution gives

which although only a two term result is actually in remarkable agreement with

the results of the complete expansion for r values as low as r	 1. It follows

that if we take the energy to have the form

Y
= a7 + bra + c	 (47)

th5r, the solutions of (7) (24) and (27) are readily obtained:

u
3Fe%/N-ar+2b^2+ c yin 7+ d ,

C (0 ) 3 7 - ^ i - 2c iin r + 
C 3 - 

2d -)	 (48)

r(
 \	 ?	 '2	 '

A! _ 
3a, + 3b7^ + 2c Ln 7 + - 3 +2d+^)	 (49)

T

The values of a, and b corre..gponding to (46), then give, in particular

c(0) _ -1.27 - 
3^ z + .. .
	 (50)

and

k
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and

0OP/W T ' -0.67 + 493	 - ...	 (51)

In general the OCP energies given by the SMSA are in good ? 6reetnent with

the Monte Carlo results. But from (24) we then see that the requirements of

thermodynamic consistency :rust be badly violated (since we expect, for large
16

V_	
r, that a(ap /ap, T — -0.47). It is a unique property of the SMSA model that

knowledge of its equation of state alone enables us to draw such a conclusion.

It is not necessary t^j appeal to any details of the solution.

Finally it iQ Instructive to compare the 'SMSA and OC results 19 for the

OCP, particularly at ^ a 1. As a rule, the two solutions give nearly identical

results for nearly all quantities of interest, but particularly for (aU/y),

3(jp /3p) T , and c(o). In comparison with HNC, however, the SLMSA results are

slightly shifted towards the MC data. This observation suggests an interesting

possibility for constructing a crucial test of a general point made  in the

:3ntext of the modified HNC scheme: It has been stated that since b(r) enters

this scheme as an effective potential, we then may expect that so long as two

different theories diverge one from the other only in a statement governing

the long; range nature of b(r), the consequent differences in their respective

results must be quite small. It follows that the emphasis will focus rather

naturall y on the short range nature of b(r), especially its behavior in the

region of r corresponding to the first peak of g(r). But in just this region do

we find in the SMSA a rather weak "potential" (i.e. b(r), since 	 a hard-core

is playing no role) that indeed shifts the HNC (b(r) = 0) results in the

right direction, as we expect (see Fig. 1).
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VII. CONCLUSION

A common approach in the theory of classical fluids has been to apply

perturbation theory from a hard sphere reference system for all potentials that

possessed a Lard core part. It is clear from the discussion in the present

paper, that the physical role of the hard core part of the potential has

not always been interpreted correctly. It is true that the gross structure

of dense fluids is determined by excluded volume effects and for that matter

all g(r)'s of dense fluids look very much the same. (The proper context of

incorporating this first order universality of g(r) is, however, provided by

the statement of universality of the bridge function- 4 .) But this need not imply

that the hard core part of the potential will always serve as a good reference

system. To paraphrase the statement made at the end of ref. 6, a successful

perturbation theory in the presence of strong Coulomb interactions can be

obtained only if the hard core part will serve as a perturbation. We see here

a systematic approach to this situation.

ACIQIOWLEDGEMENTS

This work has been supported in part by the National Science Foundation

through the Materials Science Center at Cornell University (Grant DMR76-81083),

technical report # 4009, and in part by the National Aeronautic and Space

Administration, Grant NGR-33-010-188. One of us (Y.R.) also wishes to acknow-

ledge with gratitude the support of tr? Chaim Weizmann Foundation.

L.



Figure Caption

Fig. 1 The pair distribution function, g(r), and the direct correlation

function c(r), for the 0CP at r - 10 via various choices of the

bridge function b(r) as employed in the modified HNC equation.

1 - dashed line, corresponds to b(r)	 0 (i.e. pure HNC). 2 -

full line corresponds to the SMSA. 3 - dotted line, corresponds

to., b(r [ 1.4) - m, b(r > 1.4) - 0. 4 - dot-dashed line, corres-

ponds to b(r) - b IIS (r; TI - 0.4), and actually reproduces quite well

the Monte Carlo results for the OCP at r - 70.

On the scale of this plot, c(r) for all cases considered above, is

indistinguishable from	 /r for r > 1.5. Case 3 features a jump

discontinuity of about 1 for g(r) and c(r), which is barely detect-

able on the scale of c(r).
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