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ABSTRACT

Linear least squares estimation and regression analyses continue to
rlay a major role in orbit determination and related areas. In this report
we document a library of FORTRAN subroutines that have been developed to
facilitate analyses of a variety of estimation problems. Our purpose is to
present an easy to use, multi-purpose set of algorithms that are reasonably
efficient and which use 3 minimal amount of computer storage. Subroutine
inputs, outputs, usage and listings are given, along with examples of how
these routines can be used. The following outline indicates the scope of
this report: Section I, iatroduction with reference to background material;
Section II, examples and applications; Section III, a subroutine directory
summary; Section IV, the subroutine directory user description with input,
output and usage explained; and Section V, subroutine FQRIRAW listings.

The routines are compact and efficient and are far superior to the normal
equation and Kalman filter data processing algorithms that are often used

for least squares analyses.
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1. Introduction

Techniques related to least squares parameter estimation play a
prominent role in orbit determination and related analyses. HNumerical
and algorithmic aspects of least squares computation are documented
in the excellent reference work by Lawson and Hanson, Ref. [1]. Their
algorithms, available from the JPL subroutine library, Ref. [2], are
very reliasble and general. Experience has, however, shown that in
reasonably well posed problems one can streamline the least squares
algorithm codes and reduce both storage and computer times. In this
report, we document a collection of subroutines most of which we have
written that can be used to solve a variety of parameter estimation

problems.

The algorithms for the most part involve triangular and/or
symmetric matrices and to reduce storage requirements these are stored

in vector form, e.g., an upper triangular matrix U is written as

—Ull Uy Uyg Vg i _U(l) U(2) u(&) w7 |
Uy, Uyy Uy, e | o U(3) UG U,

Usg  Ug, u(e) U9

U, U(10)

Thus, the element from row i and column j of U, 1 < j, is stored in
vector component j(j-1)/2 + i. We hasten to point out that the engineer,
with few exceptions, need have no direct contact with the wvector sub-
_scripting. By this we mean that the vector subscript related operations
are internal to the subroutines, vector arrays transmitted from one

1



subroutine to another are compatible, and vector arrays displayed

using the print subroutine TWOMAT appear in a triangular matrix format.

Aside: The most notable exception is that matrix problems are generally
formulated using doubly subscripted arrays. Transforming a double
subscripted symmetric or upper triangular matrix A(-»-) to a wvector

stored form, U{-) is quite simply accomplished in FORTRAN via
IJ=0
DO 1L J = 1,N

i DO1LI=1,7
IJ = I3+l

1 ©(LJ) = A(1,T)

Similarly, transforming an initial vector D(*) of diagonal positions of

a vector stored form, U(-), is accomplished using

JJ =0 JJ = N%(N+1)/2
DO 1J = 1,N or DO 1 J = N,1,=1
JJ = 33+ T(IT) = D(I)

1 U@I = D) 1 3 = J3-J

The conversion on the right has the modest advantage that D and U can
share common storage (i.e., U can overwrite D). These conversioﬂs

are too brief to be efficiently used as subroutines. It seems that when
such conversions are needed one can readily include them as %n—line code.

End of Aside

This package of subroutines 1s designed, in the main, for the analysis
of parameter estimation problems. ©One can, however, use it to solve problems
that involve process noise and to map {time propagate} covariance or infor-
mation matrix factors. 1In the case of mapping the storage savings associated

with the use of vector stored triangular matrices is, to some extent, lost.



Mathematical background regarding Householder orthogonal trans—
formations for least squares analyses and U-D matrix factorization
for covariance matrix analyses are discussed in references [1] and [3].
Qur plan is te illustrate, in Section II, with examples, how one can
use the basic algorithms and matrix manipulation to solve a variety
of important problems. The subroutines which comprise our estimation
subroutine package are described in Section III, and detailed input/

output descriptions are presented in Section IV.

Section V contains FORTRAN listings of‘the subroutines. There are
several reasons for including such listings. Making these listings
available to the engineer analyst allows him to assess algorithm
complexity for himself; and to appreciate the simplicity of the
routines he tends otherwise to use as a black box. The routines use
only FORTRAN IV znd are therefore reasonably portable (except possibly
for routines which involve alphanumeric inputs). When estimation ‘problems
arise to which our package does not directly apply (or which can be made
to apply by an awkward concatenation of the routines) one may be zble to
modify the codes and widen still further the class of problems that can be

efficiently solved.



iT.

some of the problems that cam be solved using this ESP.

APPLICATIONS AND EXAMPLES

Our purpose in this section is to illustrate, with a number of examples,

The eXamples, in

addition, serve to catalogue certain estimation techniques that are quite

useful.

1)
2)
3)
4)
5)
6)
7)
8)
£}
10)

11)
12)
13)
14)

15)
16)
17)

18)
19)

20)
21)

22)

23)

To begin, let us catalogue the subroutines that comprise the ESP:

AZ2A1
COMBO
COVRHO »
COV2RI
COV2UD
c2c¢
INFZR
HHPOST
PERMUT
PHIU

RA
RANK1
RCOLRD
RINCON

RIZCOV
R2A
RZRA

RUDR
SFU

TDHHT
THH

TTHH

TWOMAT

(A to A one)

{combo)

{cov rho)

{cov to RI)

{cov to U-D)

{(C to C)
(inf to R)
(HH POST)
(permut)
(PHI*U)

(R*®A)
{rank 1)
(R colored)

{(rin—con)

(R1 to cov)
(R to A)
(R to RA)

(rudder)
(S FW

(TDHHT
(T HH

(T T H H)

(two mat)

Matrix A to matrix Al

Combine R and A namelists

Covariance to correlation matrix, RHO

Covariance to R inverse

Covariance to U-D covariance factors

Permute the rows and columns of matrix C
Information matrix to (triangular) R factor
Householder triangularization by post multiplication
Permute the columns of matrix A

Multiplies a rectangular PHI matrix by the wvector
stored U matrix that has implicitly defined unit
diagonal entries.

R{upper triangular, vector stored)®A (rectangular)
Updated U-D factors of a rank-l modified matrix
(SRIF)R colored noise time-update

R inverse along with a condition number bounding
estimate

R inverse to covariance
Triangular R to (rectangular stored) matrix A

Transfer to triangular block of (vector stored) R
to a triangular (vector stored) RA

(SRIF)R to U-D covariance factors, or vice—~versa

Sparse F matrix % wvector stored U matrix with
implicitly defined unit diagonal entries

Two dimensional Householder matrix triangularization

Triangular vector stored Householder data processing
algorithm

Orthogenal triangularization of two triangular
matrices

Two dimensional labeled display of a vector stored
triangular matrix



24)

25)
26)
27)
28)
29)
30)

31)

TZERO

TMCOL
UDMEAS
uDn2cov
Un2sIG
UTINV
TUTIROW

WGS

(T zero)

{(U~D colored)
(U-D measurement)
(0-D to cov)

(U-D to sig)

(U T inverse)

(W G-8)

Zero a horizontal segment of a vector
stored triangular matrix

U-D covariance factor colored noise update
U-D covariance factor measurement update
U~D factors to covariance

U~D factors to sigmas

Upper triangular matrix inverse

Upper triangular inverse, inverting only
the upper rows

U-D covariance factorization using a weighted
Gram-Schmidt reduction

These routines are described in succeedingly more detail in sections III,

IV, and V.

The examples to follow are chosen to demonstrate how these

various subroutines can be used to solve orbit determination and other

parameter estimation problems. It is important to keep in mind that these

examples are not by any means all inclusiwve, and that this package of

subroutines has a wide scope of applicability.

IT.1

Simple Least Squares

Given data in the form of an overdetermined system of linear

eguations one may want a) the least squares solution; b) the estimate

error covariance, assuming that the data has normalized errors; and

c)

the sum of squares of the residuals. The solution to this problem,

using the ESP can be symbolically depicted as

Remarks:

® [Aiz] T [Riz], e

The array [A:z] corresponds to the eguations Ax = z—v, veN{0,I);

A A

-~ ~AoA

the array [R:z] corresponds to the triangular data equation Rx = z-v,

veN({0,I)} and e = l!z—A;II

Reﬁark:

A A

® (R:=z]

o -1

~ Eal
Xx =R Z

UTINV o~1 °
St

[R T:x]



One may be concerned with the integrity of the computed inyerse

and the estimate, If one uses subroutine RINCON instead of UTINY then
in addition one obtains an estimate (lower and upper bounds) for the
condition number R, If this condition number estimate is large the
computed inverse and estimate are to he regarded with suspicion. By
large, we mean considerable with respect to the machine accuracy (viz.
on an 18 decimal digit machine numbers larger than 1015). Note that the
condition number estimate is obtained with negligible additional compu-

tation and storage.
-1. RI2COV
O{R] —-[C]

Remarks: C = Rfl RfT = estimate error covariance. Some computation can
be avoided in RI2COV if only some {or all) of the standard deviations

are wanted.

I1.2 Least Squares With A Priori

If a priori information is given, it can be included as additional
equations (in the A array) or used to initialize the R array in subroutine
THH (see the subroutine argument deseription given in section IV). One is
sometimes interested in seeing how the estimate and/or the formal
statistics change corresponding to the use of different a prioeri
conditions. 1In this case one should compute [ﬁ:g] as in case II.1, and
then include the a priori [Rb:zo] using either subroutine THH, or

subroutine TTHH when the a priori is diagonmal or triangular, e.g.,

[R:z] .
TTHH %
. ——+IR Z]
[R:z ]
0 0

*
The new result overwrites the old. GE 1®

L P&
03«1%%:\% QU e



A~ A

It is often good practice to process the data and form [R:z] before

including the a priori effects. When this is done one can analyze

the effect of different a priori, [Rb:zo] without reprocessing the data.
If a priori is given in the form of an information matrix, A,

{(as for example would be the case if the problem is being initialized

with data processed using normal equation data accumulation*) then one

can obtain R0 from A using INFZR;

INF2R R
(¢}

A

If there were a normal equation estimate term, z==A;L, then z ==Rsz.
c ‘o

I1.3 Batch Sequential Data Processing

Prime reasons for batch sequential data processing are that many
problems are too large to fit in core, are too expensive in terms of core
cost, and for certain problems it is desirable to be able to incorporate
new data as it becomes available. Subroutines THH and UDMEAS are specially
designed for this kind of problem. Both of these subroutines overwrite
the a priori with the result which then acts as a priori for the next
batch of data. If the data is stored on a file or tape as Al, Zqs Az, Zosees
then the sequential process can be represented as follows:

SRIF Processing**

a) Indtialize [R:z] with a priori valués or zero

b) Read the next [A:z] from the file

T .~ T T
*i.e., solving Ax = b-v with normal equations, A Axo = A"b; A=ATA

is the information matrix.

%
The acronym SRIF represents Square Root Information Filter. The SRIF is

discussed at length in the book by Bierman, ref. [3].

' GE 18
7 ORIGINAL P&
oF POOR QUALITY



——[R:z}

c) [ﬁ:;} THH .~ ~.%
[A:Z]}

d) 1If there is more data go back to b)

e) Compute estimates and/or covariances using UTINV and RI2COV
(as in example 1I.1)

U-D** Processing

a”) Initialize [U~D:x] with a priori U-D covariance factors and the
initial estimate

b”) Read the next [A:z] scalar measurement from the file

¢’y [U-D:x]

} UDMBAS -0 D%

[Azz]
d”) If there is more data go back to b™)
e”) Compute standard deviations or covariances using UDZ2SIG ox
UD2Cov.
Note that subroutine THH is best (most efficiently) used with
data batches of substantial size (say 5 or more) and that UDMEAS processes
measurement vectors one component at a time. If the dimension of the
state is small the cost of using either method is generally negligible.
The UDMEAS subroutine is best used in problems where estimates are
wanted with great frequency or where one wishes to monitor‘the effects

of each update. In a given application one might choose to process

data in batches fora while and during critical periods it may be

*The new result overwrites the old.

fde

U-D processing is a numerically stable algorithmic formulation of the Kalman
filter measurement update algorlthm, cf reference [3]. The estimate error
covariance is used in its UDUT factored form, where U is unit upper triangular
and D is diagonal.

8



desirable to monitor the updating process on a point by point basis.

In cases such as this, one may use RUDR to comvert a SRIF array to U-D
form or vice-versa.

Remarks: Another case where an R to U-D conversion can be useful occurs
in large order problems (with say 100 or more parameters) where after
data has been SRLIF processed one wants to examine estimate and/or
covariance sensitivity to the a priori variances of only a few of the
variables. Here it may be more convenlent to update using the UDMEAS
subroutine.

1I.4 Reduced State Estimates and/or Covariances From a SRIF Array

Suppose, £or example, that data has been processed and that we have a
AA
triangular SRIF array [R:z] corresponding to the 14 parameter names, 2 8

ay, Xy ¥s Zs Voo vy, v, GM, CU41, 1041, CU43, LO43 (constant spacecraft
accelerations, position.and velocity, target body gravitational constant,
and spin axis and longitude station location errors).

Let us ask first what would the computed error covariance be of
a model containing only the first 10 variables, i.e., by 1gnoring the
effect of the station location errors. One would apply UTINV and RI2COV
just as in example IT.l, except here we would use N {the dimension of
thé filter ) = 10, instead of N=14.

Next, suppose that we want the solution and associated covariance

of the model without the 3 acceleration errors. One ESP solution is to

use



[ [f{:;] EZ:‘L{A]

NAME ORDER OF A
Xy ¥ 2y vx, Vys VZ’
GM, CU41, 1041, CU43, L043,

%
RHS , ar, a, ay,

Remark: One could also have used subroutine COMBO, with the desired

namelist as simply a2 ay. This would achieve the same A matrix

form.
o (a1 [x]
Remark: R here can replace the original R and z.
UTINV -1 RI2COV
® [R] [R Xest] [cov 'xest]
Remarks: Here, use only N=11, j.e., 11 variables and the RHS. x is

est

the 11 state estimate based on a model that does not contain acceleration
errors ar, ax, or ay.

Note how triangularizing the rearranged R matrix produces the
desired lower dimensional SRIF array; and this is the same result one
would obtain if the original data had been fit using the—ll state model.

As the last subcase of this example suppose that one is only
interested in the SRIF array corresponding to the position and velocity
yariables. The difference between this example and the one above is

that here we want to include the effects due to the other wvariables.

%
z is often given the label RHS (right hand side)

10



One might want this sub-array to combine with a position-velocity SRIF

array obtained from, say, optical data. One method to use would be,

“.‘ RZRA .
® [R:z] - [RA'ZA]
INPUT NAMES: OUTPUT NAMES:
ar, ax, ay, Xy, Vs 2. vx, v&, vz, GM X, Vs Zs vk, vy, vz, GM
CU41, 1041, CU43, LO43, RHS ’ CU41, L0O41, CU43, LO43, RHS

Remark: The lower triangle starting with x is copied into RA'

RZ2A

® {RA:ZA] [A :zA] (Reordering)

NAMES: GM, CU41, LO41, CU43, 1043,

' X, Vs 2 vx, vy, Vs RHS
T™HH ~ * . s s
® [A: zA] -——--[RA 'ZA] (Triangularizing)

A~ ~

R2ZRA
® [RA. zA]

[RX:ZX] (Shifting array)
NAMES: x, ¥, %, Vo vy, vz, RHS

Remark: The lower right triangle starting with x is copied into RX.
We note that one could have elected to use COMBO in place of the first
R2RA usage and R2A; this would have involved slightly more storage, but
a lesser number of inputs. The sequence of operations is in this case,

® [R:z] LOMBQ .. ,1

ORIGINAL NAMES DESIRED NAMES: x, ¥, Z, Vs vy, v, RHS

¢

BRemark: By using COMBO the columns of [R:zl], are ordered corresponding to
the names a2 ay, GM, CU41, LO41, CU43, and 1043, followed by-the

desired names list.

11



® [a:z]—fR:z]

Remark: The [R:z] array that is output from this procedure is

A A

equivalent but different from the [R:z] array that we began with.

~ o~

o [Riz] F2RA IR i ]
X X
Remark: As before, the lower right triangle starting with x is copied
into Rk'

To delete the last k parameters from a SRIF array, it is not
necessary to use subroutines R2A and THH. The first N - k = N colums
of the array already correspond to a square root information matrix of
the reduced system. If estimates are involved one can simply move the

z column left using:

R @*(N + 1)/2 + 1) = RON*(N +1)/2 + i), 1 = 1,...,k.

Remark: We mention in passing that if one is only interested in estimates
and/or covariances corresponding to the last k parameters then one can use
R2RA to transform the lower right triangle of the SRIF array to an upper
left triangle after which UTINV and RIZCOV can be applied.

1I.5 Sensitivity, Perturbation, Computed Covariance and Consider
Covariance Matrix Computation

Suppose that one is given a SRIF array

N N 1
R .
Rk %y Zx }Ni (I1.5a)
G R 2 N
y ¥ y

12



in which the NY varigbles are to be considered. (One can, of course, using
subroutines R2A and THH reorder and retriangularize an arbitrarily arranged
SRIF array so that a given set of variables fall at the end.) For various

reasons one may choose to ignore the y variables in the equation

Rxx + nyy =z " V., vxeN(O,I) (IL.5b)
and take as the estimate X, = R;l 2 It then follows that
_ -1 -1
x=-x, =-R, Rky y-R v (I1.5¢)

and from this one obtains

a(x—x) -1
Sen = ———— = -R "R (II.5d)
N X Xy
(sensitivity of the estimate error to the unmodeled y parameters)
Pert = Senﬁ*Diag(ay(l),...,cy(Ny)) (LI.5e)

where Gy(l),...,Uy(Ny) are a privri y parameter uncertainties.

(The perturbations are a measure of how much the estimate error could be

expected to change due to the unmodeled y parameters,)

P =Rt 2Ty sen P sent (II.5£)
con X X v

L

Pc + (Pert)(Pert)T if PY is diagonalT

where Pc is the estimate error covariance of the reduced model.
An easy way to compute Pc’ Pert and Pcon is as follows: Use subroutine

R2RA to place the y variable a priori [P?(O): ?o]iﬁ‘into the lower right

s %
Pert = Sen Py

The a priori estimate Yo of consider parameters is generally zero.

13



corner of (II.5a), replacing Ry and zy, i.e.,

[R : z] I—R R z
R2RA x ¥ X%

15 A pE A
[Py(O) : yO] 0 y(0) v,

Now apply subwroutine UTIROW to this system (with a -1 set in the lower right

corner*)
[ ] |"_ ]
- ®&
R R z R Pert X
x =y X pid c
1
o pioy §, |- 1o OB
0 0 -1 0 0 -1

Note that the lower portion of the matrix is left unaltered, i.e., the purpose
of UTIROW is to invert a triangular matrix, given that the-lower rows have
already been inverted. From this array one can, using subroutine RI2COV,

get both P and P
c con

[R;l] RI2C0V [PC] computed covariance
[R,;l : Pert] _RI2COV_ [Pcon] consider covariance

Suppose now that one is dealing with a U~D factored Kalman filter for-

mulation. 1In this case estimate error sensitivities can be sequentially

%

To have estimates from the triangular inversion routines one sets a -1 in the
last column (below the right hand side).

%k

Strictly speaking this is not what we call the perturbation unless QY(O) is
diagonal.

14 ORIGINAL PAGE IS
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T T .
¢alculated as each scalar measurement (z = a_x + ayy + v) 1is processed.

T T
Sen, = Sen, - X,(a_ Sen, + a
i i-1 3( X i-1 Y)
where Senj_l ig the sensitivity prior to processing this (j-th) measurement,

and Kj is the-Kalman gain vector.
In this formulation one computes Pcon in a2 manmer analogous fo that des-
cribed in section II.7;

Let Ul = Uj . Dl = Dj (filter U-D factors)

[sl,..., Sy 1= Senj (estimate error sensitivities)
¥

then recursively compute

= = 2 RANK1

0D, o) 5 ] k=1,..., 1

-D
k¥l kel y

For the final U-D we have

con o con
— , D ;

Usta = Vg 41 i+1 " a4
y y

If Py(o) = UyDyUg s+ instead of Py(O) = Diag (ci,..., ci ), then in the
y

U-D recursion one should replace the Senj columns by those of Sen,j*Uy and

G? should be replaced by the corresponding diagonal elements of Dy'

II.6 Combining Various Data Sets

In this example we collect several related problems involving data sets
with different parameter lists.

Suppose that the parameter namelist of the current data does not
correspond to that of the a priori SRIF array. If the new data involwves

a permutation or a subset of the SRIF namelist, then an application of

.;.

K = g/c where g and o are quantities computed in subroutine UDMEAS.

15



subroutine PERMUT will create the desired data rearrangement. If the data
involves parameters not present in the SRIF namelist then one could use
subroutine R2A to fiodify the SRIF array to include the new names and then
if necessary use PERMUT on the data, to rearrange it compatibly.

Suppose now that two data sets are to be combined and that each
contains parameters peculiar to it (and of course there are common para-
meters). For example let data set 1 contain names ABC and data set 2
contain names DEB, One could handle such a problem by noting that the list
ABCDE contains both name lists. Thus one could use subroutine PERMUT
on each data set comparing it to the master list, ABCDE, and then the
results could be combined using subroutine THH. An alternative automated
method for handling this problem i1s to use subroutine COMBO with data
set 1 (assuming it is in triangular form) and namelist 2. The result
would be data set 1 in double subscripted form and arranged to the name-
list ACDEB (names A and C are peculiar to data set 1 and are put first),
Having determined the namelist one could apply subroutine PERMUT to data
set 2 and give it a compatible namelist ordering.

The process of increasing the namelist size to accommodate new
variables can lead to problems with excessively long namelists, i.e.,
with high dimension. If it is known that a certain set of variables
will not occur in future data sets then these variables can be eliminated
and the problem dimension reduced. To eliminate a wvector y from a SRIF
array, first use subroutine R?A to put the y names first in the namelist;
then use subroutine THH to retriangularize and finally use subroutine R2RA

to put the y independent subarray in position for further use; viz.

16



y yX ¥y
[R] R2ZA [A] THH R2RA

The rows [RY:RYX:Zy] can be used to recover a y estimate (and its covariance)
when an estimate for x (and its covariance) are determined. (See example
I1.4).

Still another application related to the combining of data sets involves
the combining of SRIF triangular data arrays. One might encounter such prob-
lems when combining data from different space missions (that involve common
parameters) or one might choose to process data of each type* or tracking.
station separately and then combine the resulting SRIF arrays. Triangular
arrays can be combined using subroutine TTHH, assuming that subroutines

R2A, THH and RZRA have been used previously to formulate a common parameter

set for each of the sub problems.

II.7 Batch Sequential White Hoise

It is not uncommon to have a problem where each data set contains a
set of parameters that apply only to that set and not to any other, viz,

the data is of the form

Ax+ By, =2, —-v, i=1l,...,N
k| 373 h| A J e

where there is generally a priori information on the vector yj variables.
Rather than form a concatenated state vector composed of x, A AERERE Y
which might create a problem involving exhorbitant amounts of storage and
computation we solve the problem as follows. Apply subroutine THH to
{Blel:zl], with the corresponding R initialized with the v, @ priori, The

resulting SRIF array is of the form

S
o - st PAOE
viz. range, doppler, optical, etc. (ﬁ{ﬁ} IJAJA
17



Copy the top Nyl rows 1f one will later want an estimate or covariance of

the Yy parameters. Apply subroutine TZERO to zero the top Nyl rows and

using subroutine R2ZRA set in the ¥, @ priori*. This SRIF array is now

ready to be combined with the second set of data [B2zA2:2§] and the procedure
repeated.

A somewhat amaleogous situation is represented by the class of problems

that involve noisy model variations, i.e., the state at step j+l satisfies

X

. =x, + G, w,
j+i 3 3

where matrix Gj is defined sc that Wj is independent of Xj and szN(O,Qj).
Models of this type are used to reflect that the problem at hand is not
truly one of parameter estimation, and that some (or all) of the components
vary ina random {or at least unknown) manner that is statistically

bounded. To solve this problem in a SRIF formulation suppose that a priori

for xj and Wj are written in data equation form (cf ref. [3]),

R.x, =z, - v, s vjeN(O,I)

Q_.llzw. =0 - v.(w) : vgw)eN(O,I )
J ] J J nw
where Q?’z is a Cholesky factor of Qj that 1s obtainable from COV2RI. Combining

these two equations with the one for xj+1 gives

*
In this example it is assumed that all of the ¥4y variables have the same
dimension. This assumption, though not essential, simplifies our description
of the procedure.
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I R 0 v
n 3 J

k -3
-R.G.Q; R, X, . .
L %Y N 5+1 i i

1/\
where Q?Wj = Wj. This is the equation to be triangularized with subroutine

THH, i.e.,
Dim w Dimx 1
Dimw ] 1 0 ] R RO Y
Dim x {| -R.G d% R, =z 0 R, zZ,
3737 i3 i+ i+

When the problem is arranged so that Qj is diagonal one can reduce storage
and computation. Incidentally, the form of this algorithm allows one to use

singular Qj matrices.

When the a prieri for xj and Q. are given in U-D factored form,

]

one can obtain the U-D factors for xj+l as follows:

Let Q. = U(q) D(q) (U(q))T (use COV2UD if necessary)

3
- ( .
Set & =G U D [g15000s 8 1 p(@) . Diag(d;,...,d )
W W
Apply subroutine RANKln.W times, with ﬁo = ﬁj . 50 = Dj
- RANKL — -
. . . k=1,. ST
T.e. GO U + degegy = VgD V)
Then U, =7 . I, =3
jH n, i+ n
pu, 2OE5 o
(ﬁﬁ“gﬂ& R QU
oF P00
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Certain filtering problems involve dynamic models of the form

x, =&, x, + G, w.

bt S I | 33
Given an estimate for xj, §j’ the predicted estimate for xj+1? denoted
~ .. % ’
x3+1 is simply

X, = & X,

e S B
The U-D factors of the estimate error corresponding to the estimate §j+l
can be obtained using the weighted Gram-Schmidt triangularization subroutine

- cl: Di (@, WGs = ~
[éj Uj : G]; Diag (Dj,D ) -————+(Uj+1 Dj+1)

Subroutine PHIU can be used to construct Qj*Uj. Note that this matrix multi-
plication updates the estimate too, because it is placed as an addended column
to the U matrix.

When the w and asscciated x terms correspond te a colored noise model,
pj+l=1npj-+ wj, then it is easier and more efficient to uge the colored noise
update subroutine UDCOL. Note that here too the estimate is updated by the

subroutine calculation because the estimate is an addended columm of U.

II.8 Miscellaneous Uses of the Various ESP Subroutines

In certaln parameter analyzes we may want to reprocess a set of data
suppressing different subsets of variables. In this case the original data
should be left unaltered and subroutine A2Al uséd to copy A into Al’ which
then can be modified as dictated by the analysis.

Covariance analysis sometimes are initialized using a covariance
matrix from a different problem (or a different phase of the same problem).
In such cases it may be necessary to permute, delete or insert rows and
columns inte the covariance matrix; and that can be achieved using sub-
routine C2C.

If a priori for the problem at hand is given as a covariance matrix
then one can compute the corresponding SRIF or U-D initialization using

*
In statistical notation that is commonly used, one writes
x(3#113) = o, =(i|1)
20



subroutines COV2RI or COVZUD. Of course, if the covariance is diagonal
the appropriate R and U-D factors can be obtained more simply. To
convert a priori given in the form of an information matrix to a corres—
ponding SRIF matrix one applies subroutine INF2R. To display covariance
results corresponding to the SRIF or U-D filter one can use subroutines
UTINV, RI2COV and UD2COV. The vector stored covariance results can be
displayed in a triangular format using subroutine TWOMAT.

Parameter estimation does not, in the main, involve matrix multipli-
cation. Certain applications, such as coordinate transformations and time
propagation are important enough to warrant inclusicn in the ESP. For that
reason we have included RA (to post multiply a square root information
matrix) and PHIU to premultiply a U-covariance factor). Certainp time propa-
gation preoblems involve sparse transition matrices, and for this we have
included the subroutine SFU. Other special matrix products involving tri-
angular matrices were not included because we have had no need for other
products (to date), and they are gemerally not lengthy or complicated to
construct. We illustrate this point by showing how to compute z=Rx where

R is a triangular vector stored matrix and x is an N vector,

I7=0

D0 2 I=1,N

SUM=0. @SUM is Double Precision
TI=TT+1I @IT=(I,I)

TR=1T

B0 1 K=I,N

SUM=SUMIR(IK)*x(K} @IK=(I,K)

1 IK=IKHK

2 z{(I)=5TM @z can overwrite x if desired
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Note that the II and IK incremental recursions are used to circumvent

the N(¥+1)/2 calculations of IK=K(K-1)/2+I.
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III. SUBROUTINE DIRECTORY SUMMARY

1. A2A1 - (A to Al)

Reordgrs the columns of a rectangular matrix A, storing the
result in matrix Al. Colummns can be deleted and new columns added.
Zero columns are inserted which correspond to new column name entries.

Matrices A and Al cannot share common storage.

Example ITI,1

¢ B C B F 66 € H

1 5 9 5 0 0 9 0

. 6 10 | aza1 6 0 0 10 O
7 11 7 0 0 11 O

- § 12 § 0o 0 12 0O
A Al

The new namelist (BFGCH) contains ¥, G and B as new columns and deletes

the column corresponding to name o.

Example. ITT.2

Suppose one is given an observation data file with regression

coefficients corresponding to a state vector with components say,

Xy, Vs Z, Vs vy, vz and station location errors. Suppose further,
. R A A ¥

that the vector being estimated has components a., 2., 8y s

Xy Y5 Z5 Vo, vy, Vs GM and station location errors. A2Al can be used

to reorder the matrix of regression coefficients to correspond to the

state being estimated. Zero coefficients are set in place for the

accelerations and GM which are not present in the original file.

in track and cross track accelerations

23



2. COMBO - (combine R and A namelists)

The upper triangular vector stored matrix R has its columns
permuted and is copied into matriX A, The names associated with R
are to be combined with a second namelist.

The namelist for A is arranged so that R names not contained in
the second list appear f£irst (left most). These are then followed by
the second list. WNames in the second list that do not appear in the
R nmamelist have columns of zeros associated with them.

Example III.3

NAMZ list
e

1 4 N

o B c D C B E a F D
1 2 4 77 "4 2 0 L o0 7]
0 3 5 8 5 3 0 0 0 8
—

0 0 6 9 6 0 0 0 0 9
0 0 0 10 0 0 0 0 0 10
R~-Vector stored A-Double subscripted

A principal application of this subroutine is to the problem of
combining equation sets containing different variables, and automating
the process of combining name lists.

3. COVRHO - (covariance to correlation matrix)

A vector stored correlation matrix, RHO, is computed from an
input positive semi-definite vector stored matrix, P. Correlations
corresponding to zero diagonal covariance elements are zero, To econo-
mize on storage the output RHO matrix can overwrite the input P matrix.
The principal function of correlation matrices is to expose strong
pairwise component correlations (|RHO(IJ)|.LE.1, and near unity in magni-

tude). It is sometimes erromneously assumed that numerical ill-conditioning
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of the covariance matrix can be determined by inspecting the correlation
matrix entries. While it is true that RHO is better conditioned than is
the covariance matrix, it is not true that inspection of RHO is sufficient
to detect numerical ill-conditioning. For example, it is mot at all

obvious that the following correlation matrix has a negative eigenvalue.

1. 0.50001 0.50001

RHO 1. -0.50001

1.

— -

4, COV2RI - (Covariance to R inverse)

An input positive semi-definite vector stored matrix P is replaced
by its upper triangular vector stored Cholesky factor 5, P==SST. The name
RI is used because when the input covariance is positive definite, S==R—l.
5. COV2UD ~ (Covariance to U-D factors)

An dnput positive semi-definite vector stored matrix P is replaced
by its upper triangular vector stored U-D factors. P==UDUT.7447
6. C2C - (C to C)

Reorders the rows and columms of a square (double subscripted)

matrix € and stores the result back in €. Rows and columns of zeros

are added when new column entries are added.

Example III.4

A B T r P B Q
1 7 r{s o 6 o0
B|2 5 8|cwec P|{0o 0O 0 O
3 9 B|8 0 5 0
Qjo 0 0 o

¥Names P and Q have been added and name A deleted. An important appli-

cation of this subroutine is to the rearranging of covariance matrices.
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7. INF2R - (Information matrix to R)

Replaces a vector stored positive semi-definite information matrix
A by its lower tF¥iangular Cholesky factor R:; A= RTR. The upper tri-
angular matrix R is in the form utilized by the SRIF algorithms. The
algorithm is designed to handle singular matrices because it is a
common practice to omit a priori information on parameters that are

either poorly known or which will be well determined by the data.

8. HHPOST - (Householder orthogonal triangularization by post
multiplication)

The input, double subscripted, rectangular matrix W(M,N) (M.LE.N)
is triangularized, and overwritten, by post-multiplying it by an implicitly

defined orthogonal transformation, i.e.
[ W IT—[ 0]

This subroutine is used, in the main, to retriangularize a mapped covari-

ance square root and to include in the effects of process noise (i.e.

W= [0 %P /2 : BQ /2]) and to compute consider covariance matrix square
. 1/2 1/2 ‘
= . &
roots (i.e. W = [Pco puted’ Sen% P 1.

9. PERMUT

Reorders the columns of matrix A, storing the result back in A.
This routine differs from A2Al principally in that here the result over-
writes A. PERMUT is especially useful in applications where storage is
at a prenium or where the problem is of a recursive nature.

10. PHIU — (PHI (rectangular) * U(unit upper triangular))

{ PHI ] = [ PHIU ]

The matrices PHI and PHIU are double subscripted, and U is vector sub-

scripted with implicitly defined unit diagonal elements. It is not
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necessary to include trailing columns of zeros in the PHI matrix; they
are accounted for impliecitly. To economize on storage the output PHIU
matrix. can overwrite the input PHI matrix. For problems involving sparse
PHY matrices it is more efficient to use the sparse matrix multiplication
subroutine, SFU. When the last column of U contains the estimate, x, the

last column of W represents the mapped elements of PHEI*x. The principal

T

use of this subroutine is the mapping of covariance U factors, where P=UDU ,

and estimates,

11. RA -~ (R(triangular) * A(rectangular))

———] P

Square root information matrix mapping involves matrix multipli-
cation of the form indicated in the figure, i.e. with the bottom portion
of A only dmplicitly defined as a partial identity matrix. Features of
this subroutine are that the resulting RA matrix can overwrite the input
A, and one can compute RA based on a trapezoidal input R matrix (i.e. only
compute part of R*A).

12, RANK1 - (U-D covariance factor rank 1 modification)

Computes updated U-D factors corresponding to a rank 1 matrix
modification; i.e., given U-D, a scalar e, and vector v, U and D are
computed so that U D ﬁT =UD UT +cv vT. Both ¢ and v are destroyed during
the computation, and the resultant (vector stored) U-D array replaces
the original one. Uses for this routine include (a) adding process
noise effects to a U-D factored Kalman filter; (b) computing consider
covariances (cf Section II1.5); (c¢) computing "actual" covariance
factors resulting from the use of suboptimal Kalman filter gains; and

{(d) adding measurements to a U~D factored information matrix.

27



13. RCOLRD - (colored noise inclusion into the SRIF)

Includes colored noise time updating inte the square root infor-
mation matrix. Tt is assumed that the deterministic portion of the time
update has been completed, and that only the colored noise effects are
being incorporated by this subroutine. The algorithm used is Bierman's
colored noise one-component-at—a—-time update, cf ref. [3], and updates the

SRIF array corresponding to the model

‘xl“ I 0 0] “xl' 0]
P = 0 M 0 P + vy
p.4

Lz_j"'l _0 0 I_ _xz_j _0_

M is diagonal and w, € N(0,Q). Auxiliary quantities, useful for fixed Interval
J

smoothing, are also generated.

14, RINCON - (R inverse with condition number bound, CNB)

Computes the inverse of an upper triangular vector stored matrix R
using back substitution. To economize on storage the output result can
overwrite the input matrix. A Frobenius bound (CNB) for the condition
number of R is computed too. This bound acts as both an upper and a
lower bound, because CNB/N < condition number < CNB. When this bound is
within several orders of magnitude of the machine accuracy the computed
inverse is not to be trusted, (viz if CNBz:lOl5 on an 18 decimal digit
machine R is ill-conditioned).

15. RI2COV — {RI to covariance)

This subroutine computes sigmas (standard deviations) and/or the
covariance of a vector stored upper triangular square root covariance
matrix, RINV (SRIF inverse). The result, stored in COVOUT (covariance
output) is also vector stored. To economize on storage, COVOUT can over-—

write RINV,
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16. R2A - (R to A)

The columns of a vector stored upper triangular matrix R are per—
muted and variables are added and/or deleted. The result is stored in
the double subscripted matrix A. In other respects the subroutine is

like AZA1.

Example IIX¥.5

o B € D E E F C B
2 4 8 14 227 22 0 8 4
0 & 10 16 24 26 0 10 6
0 0 12 18 26 | R2A 26 0 12 O
—.
0 o 20 28 28 0 0
0 0 0 30 30 0 0
R A

R is vector stored as R = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30)
with namelist (¢,B,C,D,E) associated with it. Names o and D are

not included in matrix A, and a column of zeros corresponding to name

F is added.

One triwvial, but perhaps useful, application is to convert a
vector stored matrix to a double subscripted form:f R2A is used most
often vhen one wants to rearrange the columns of a SRIT array so that
reduced order estimates, sensitivities, etc. can be obtained; or so that

data sets containing different parameters can be combined.

.1..

see also the aside in the introduction
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17. R2RA - (Triangular block of R to triangular block of RA)

A triangular portion of the vector stored upper triangular matrix R
is put into a triangular portion of the vector stored matrix RA. The
names corresponding to the relocated block are also moved. R can coin-

cide with RA.

Examples III.6

Q Z Q Z
i
i
|

| - II"|

or

Note that an upper left triangular submatrix can slide to any lower
position along the diagonal, but that a submatrix moving up must go

to the upper leftmost corner. Upper shifting is used when one is

interested in that subsystem; and the lower shifting is used, for

example, when inserting a priori information for comsider analyses.

O0R
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18. RUDR - (SRIF R converted to U-D form or vice versa)

A vector stored SRIF array is replaced by a vector stored U-D
form or conversely. A point to be noted is that when data is involved
the right side of the SRIF data equation transforms to the estimate in
the U-D array.

19. SFU - (Sparse F * U(Unit upper triangular))

[Sparse F]

]
—

FU ]

A sparse F matrix, with only its nonzero elements recorded, multiplies
U which is vector stored with implicit unit diagonal entries. When the
input F is sparse this routine is very efficient in terms of storage and
computation. When the last column of U contains the estimate, x, the last
column of FU représents elements of the mapped estimate F * x.
20. TDHHT - (Two dimensional Householder Triangularization)

Tmplicitly defined Householder orthogonal transformations are used
to triangularize an input two dimensional rectangular array, S(M,N).

Computation can be reduced if S starts partially triangular;

S=10

~———
JSTART

Further, the algorithm implementation is such that (a) maximum trian-

gularization is achievable

when M.LT.N 5+10
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AN

when M.GT.N 5=
i 0

and finally when an intermediate form is desired

s> 0
'\-Y-’
JSTOP

This subroutine can be used to compress overdetermined linear systems of
equations to triangular form (for use in least squares analyses). The
chief application, that we have in mind, of this subroutine, is to the
matrix triangularization of a "mapped" square root informatiqn matrix.
This subroutine overlaps to a large extent the subroutine THH which
utilizes vector stored, single subscripted, matrices. This latter rou-
tine when applicable is more efficient. The triangularization is adapted
from ref. [1].

21. THH - (Triangular Householder data packing)

An upper triangular vector stored matrix R is combined with a
rectangular doubly subscripted matrix A by means of Householder orthogonal
transformations. The result overwrites R, and A is destroyed in the process.
This subroutine is a key component of the square root information sequential

filter, cf ref, [3].

The elements are not explicitly set to zero.
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22, TTHH - (Two triangular arrays are combined using Householder
orthogonal transformations)

This subroutine combines two singie subscripted upper triangular

SRIF arrays, R and RA using Householder orthogonal transformations. The

result cverwrites R.

K | R
T TTHH :
——————
\\EA ot

— -— e

23. THOMAT - (Two dimensional print of a triangular matrix)

Prints a vector stored upper triangular matrix, using a matrix

format.

Example TIT.7

R(10) = (2,4,6,8,10,12,14,16,18,20) with associated namelist
(A,B,C,D) is printed as

A B C D

A 2 4 8 14
B i0 16
C 12 18
D 20

(The numbers are printed as 7 columns of 8 significant

floating point digits or 12 columns of 5 significant floating
point digits.)

To appreciate the importance of this subroutine compare the vector

R(10) with the double subseript representation.

1.
The elements are not explicitly set to zero.
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24. TZERO - (Zero a horizontal segment of a vector stored upper
triangular matrix)
Upper triangular vector stored matrix R has its rows between ISTART
and IFINAL set to zero.

Example TIT.8

To zerorows 2 and 3 of R(15) of example IIIL.5

R(15) = (2,4,6,8,10,12,14,16,18,20,22,24,26,28,30) is transformed to

R(15)

(2,4,0,8,0,0,14,0,0,20,22,0,0,28,30) i.e.,

2 4 8 14 22 2 4 8 14 22
0 6 10 16 24 0 0 0
0 0 12 18 26 TZERO 0 0 0
0 0 20 28 0 0 0 20 28
0 0 0 30 0 0 0 0 130
R-~vector stored R-vector stored
25. UDCOL — (U~D covariance factor colored noise update)

This subroutine updates the U-D covariance factors corresponding

to the model

- - - - - — -
X I 0 0 x; 0
P = 0 M 0 D + Wj
X 0 0 1 X 0

L 2_j+1 L 1 L2 i L

where M is diagonal and WjEIN(O,Q). The special structure of the transi-

tion and process noise covariance matrices is exploited, cf Bierman, [3].
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26. UDMEAS ~ (U-D Measurement Update)

Given the U-D factors of the a priori estimate error covariance
and the measurement, z = AX + V this routine computes the updated estimate
and U-D covariance factors, the predicted residual, the predicted residual
variance, and the normalized Kalman gain. This is Bierman's U-D measure-

ment update algorithm, <f [3].

27. TUD2COV - (U-D factors to covariance)
The input vector stored U-D matrix (diagonal D elements are stored
as the diagonal entries of U) is replaced by the covariance P, also vector

T . ,
stored, P = UDU"., P can overwyrite U to economize on storage.

28, 1UD28IG - (U-D factors to sigmas)

Standard deviations corresponding to the diagonal elements of the
covariance are computed from the U-D factors. This subroutine, a restricted
version of UD2COV can print out the resulting sigmas and a title. The

input U-D matrix is unaltered.

29. UTINV - (Upper triangular matrix inversion)

An upper triangular vector stored matrix RIN (R in) is inverted
and the result, vector stored, is put in ROUT (R out). ROUT can overwrite
RIN to economize on storage. If a right hand side is included and the
bottommost tip of RIN has a -1 set in then ROUT will have the solution in

the place of the right hand side.
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30. UTIROW - (Upper triangular inversion, inverting only the upper rows)

INPUT OUTPUT
- - -1
R R Rt g R
X Xy X x xy ¥
——————————— UTIROW -
-1 -1
n 0 R 0 R
y Yy ¥y

An input vector stored R matrix with its lower left triangle assumed to
have been already inverted is used to construct the upper rows of the
matrix inverse of the result, The result, vector stored, can overwrite
the input to economize on storage.

If the columns comprising ny represent consider terms then taking
R;l as the ddentity gives the sensitivity on the upper right portion of
the result. If R;l = Diag(oy,...,dn } then the upper right portion of

¥
the result represents the perturbation. Note that if z (the right hand

side of the data equation) is included in ny then taking the corres-
ponding R;l diagonal as -1 results in the filter estimate appearing

as the corresponding column of the output array. When ny is zero this
subroutine is algebraically equivalent to UTINV. The subroutines differ
when a zero diagonal is encountered. UTINV gives the correct inverse
for the columns to the left of the zero element, whereas UTIROW gives

the correct inverse for the rows below the zero element.
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31. WES - (Weighted Gram-Schmidt U-D matrix triangularization)
An input rectangular (possibly square) matrix W and a diagomal

weight matrix, Dw’ are transformed to (U-D) form; i.e,,

SD W = uput
W

where U is unit upper triangular and D is diagonal. The weights Dw are
assumed nonnegative, and this characteristic is dinherited by the

tresulting D.

37



iv.

SUBROUTINE DIRECTORY USER DESCRIPTION

1.

A2A1 (A to A1)

Purpose

To rearrange the columns of a namelist indeked matrix to

conform to a desired namelist.

[ CALL A2A1(A,TA,IR,LA,NAMA,AL,TAL,LAT,NAMAT) |

Argument Definitions

A(IR,LA) Input rectangular matrix

IA Row dimension of A, TA.GE.IR

IR Number of rows of A that are toc be
arranged

LA Number of columns in A; this also

represents the number of parameter
names associated with A

NAMA (LA) Parameter names associated with A
AL(IR,LALD) Qutput rectangular matrix

IA1 Row dimension of Al, TAl.GE.IR

LAl ¥Wumber of columns in Al; this also

represents the number of parameter
names associated with Al

NAMAL(LAL) Input list of parameter names to be
associated with the output matrix Al

Remarks and Restrictions

Al cannot overwrite A, This subroutine can be used to add
on columns corresponding to new names and/or to delete variables

from an array.

Functional Description

The columns of A are copied into Al in an order corresponding
to the NAMA] parameter namelist. Columns of zeros are inserted
.
in those Al columns which do not correspond to names in the input

parameter namelist NAMA.
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2. COMBO (Combine parameter namelists)
Purpose
To rearrange a vector stored triangular matrix and store
the result in matrix A. The difference between this subroutine
and R2A is that there the namelist for A is input; here it is

determined by combining the list for R with a list of desired names.

CALL COMBO (R,L1,NAM1,L2,NAM2,A,TA,LA,NAMA)

Argument Definitions

R(L1*(Li+1)/2) Input veector stored upper triangular matrix
L1 No. of parameters in R {and in NAM1)
NAM1(L1) Names associated with R

L2 No. of parameters in NAM2

NAM2 (L2) Parameter names that are to be combined

with R (NAM1 list); these names may or
may not be in NAMIL

A(L1,LA) Output array containing the rearranged
R matrix L1.LE.IA

TA Row dimension of A

LA No. of parameter names in NAMA, and the
column dimension of A. LA=T11+L12 -
No. names common to NAML and NAMZ; TA
is computed and output

NAMA (LA) Parameter names associated with the out-
put A matrix ; consists of names in NAML
which are not in NAM2, followed by NAM2

Remarks and Restrictions

The column dimension of A is a result of this subroutine.
To avoid having A overwrite neighboring arrays one can bound the

column dimension of A by LI +1Z.
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Functional Description

First the NAMI and NAM? lists are compared and the names
appearing in NAML only have their corresponding R columm entriés
stored in A (e.g. if NAMI(2) and NAMIL(6) are the only names not
appearing in the NAMZ list then columms 2 and 6 of R are copied
into colums 1 and 2 of A)., The remaining columns of A are
labeled with NAM2. The A namelist is recorded in NAMA. The
NAML list is compared with NAM? and matching names have their R
column entries copied into the appropriate columns of A. NAM2

entries not appearing in NAMI1 have columms of zero placed in A,
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COVRHO (Covariance to correlation matrix, RHO)
Purpose
To compute the correlation matrix RHO from an input covariance

matrix COV. Both matrices are upper triangular, vector stored and
the output can overwrite the input.

| CALL COVRHO(COV,N,RHO,V)

Argmment Definitions

COV(N*(N+1)/2) Input vector stored positive semi~definite
covariance matrix
N Model dimension, N.GE.1
RHO (M= (N+1)/2) Output vector stored correlation matrix
V() Work wvector
Remarks

No test for non-negativity of the input matrix is made.
Correlations corresponding to negative or zerc diagonal entries
are set to zere, as is the diagonal ocutput entry.

Functional Description

V(I). = 1//cOoV(I,I) if COV(I,I),GT.0 and O. otherwise
RHO(I,J) = COV(I,T)*V(I)*V(JI)

The subroutine employs, however, vector stored COV and RHO matrices.
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COV2RI (Covariance to Cholesky Square Root, RI)
Purpose

To construct the upper triangular Cholesky factor of a positive
semi-definite matrix. Both the input covariance and the output
Cholesky factor (square rocot) are vector stored. The output
overwrites the input. Covariance (input) = (CF)*(CF)*=*T
(output CF = Rinverse)}. If the input covariance is singular, the

output factor has zero columns,

CALL COV2RI(CF,N)

Argument Definitions

CF{N* (N+1)/2) Contains the input vector stored
covariance matrix (assumed positive
definite) and on output it contains
the upper triangular Cholesky factor

N Dimension of the matrices invelved, N.GE.2

Remarks and Restrictions

No check is made that the input matrix is positive semi-definite,
Singular factors (with zero columns) are obtained if the input is
(a) in fact singular, (b) ill-conditioned, or (c) in fact indefinite;
and the latter two situations are cause for alarm. Case (c). and
possibly (b) can be identified by using RI2COV to reconstruct the

input matrix.

Funetional Description

An upper triangular Cholesky reduction of the input matrix is
implemented using a geometric algorithm described in Ref. [3].

CF(input) = CF(output)*CF(output)T

At each step of the reduction diagonal testing is used and negative

terms are set to zero.
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COV2UD {(Covariance to UD factors)
Purpose

To obtain the U~D factors of a positive semi-definite matrix.
The input wvector stored matrix is overwritten by the output U-D

factors which are also vector stored.

[ CALL COV2UD(U,N)]

Argument Definitions

U(N*(N+1) /2) Contains the input vector stored covari-
ance matrix; on output it contains the
vector stored U-D covariance factors.

N Matrix dimension, N,GE,2

Remarks and Restrictions

No checks are made in this routine to test that the input U matrix
is positive semi-definite. 8ingular results (with zero columms) are
obtained if the input is (3) in faet singular, (b) ill-conditioned,
or (c) in fact indefinite:; and the latter two situations are cause for
alarm. Case (c) and possibly case (b) can be identified by using UD2-
COV to reconstruct the input matrix. Note that although indefinite
matrices have U~D factorizations, the algorithm1hggg applies only to
matrices with non—negative eigenvalues.

Functional Description

An upper triangular U-D Cholesky factorization of the input matrix
is implemented using a geometric algorithm described in Ref. [3].
U(input)==U*D*UT . U-D overwrites the input U

at each step of the reduction diagonal testing is used to zero negative

terms.
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6.

€2¢ (€ to C)

Purpose
To rearrange the rows and columns of G, from NAML order to NAM2

order. Zero rows and columns are associated with output defined names

that are not contained in WAMI.

CALL €2C(C,IC,L1,NAML,L2,NAM2)

Argument Definitions

c(L1,L1) Input matrix

IC Row dimension of C
IC.GE.L = MAX(L1,L2)

L1 No. of parameter names associated with
the input C

NaMl (L) Parameter names associated with C on input.
(Only the first Ll entries apply to the
input C)

L2 No. of parameter names associated with the
output C

NAM2 (1.2) Parameter names associated with the output C

Remarks and Restrictions

The NWAM2 list need not contain all the original NAM] names and
Ll can be .GE. or .LE. LZ. The NAMl list is used for scratch and
appears permuted on output. If L2.GT.L1 the user must be sure that
NAML has LZ entries available for scratch purposes.

Functional Description

The rows and columns of C and NAMl are permuted pairwise to get
the names common to NAML and NAMZ to coalesce. Then the remaining rows

and columns of C(1.2,1.2) are set to zero.
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7. HHPOST (Householder Post Multiplication Triangularization)
Purxpose
To employ Householder orthogonal transformations to triangularize
an input rectangular W matrix by post multiplication, i.e.
T

This zlgorithm is employed in various covariance square root updates.

CALL HHPOST(S,W,MROW,NROW,NCOL,V)

Argument Definitions

S (NROW* {(NROW+1)/2) Qutput upper triangular vector stored
square root matrix

W(NROW,NCOL) Input rectangular sgquare root covariance
matrix (W is destroyed by computations)

MROW Maximum row dimension of W

NROW Number of rows of W to be triangularized
and the dimension of 5§ (NROW.GE.2)

NCOL Number of column of W (NCOL.GE.NROW)
V{NCOL) Work vector

Functional Description

Elementary Householder transformations are applied to the rows of W
in much the same way as they are applied to obtain subroutine THH. The
orthogonolization process is discussed at length in the books by Lawson

and Hanson [1] and Bierman [3].
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INFZR (Information matrix to R)
Purpose

To compute a2 lower triangular Cholesky factorization of an
input positive semi-definite matrix. The result transposed, is

vector stored; this is the form of an upper triamgular SRIF matrix.

CALL INF2R(R,N)

Argument Definitions

R{N*(¥+1)/2) Input vector stored positive semi-
definite (information) matrix; on output
it represents the transposed lower

triangular Cholesky factor (i.e. the SRIF
R matrix)

N Matrix dimension, N.GE.2

Remarks and Restrictions

No checks are made on the input matrix to guard against negative
eigenvalues of the input, or to detect ill-conditioning. Singular
output matrices have one or more rows of zeros.

Functicnal Description

A Cholesky type lower triangular factorization of the input matrix
is implemented using the geometric formulation described in Ref. [3].
R{input) = [R(output)]T* [R(output)]
At each step of the factorization diagonal testing is used to zero columns
corresponding to negative entries. The result is véctor stored in the

form of a square root information matrix as it would be used for SRIF

analyses.
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PERMUT (Permute A)

Purpose

To rearrange the columns of a namelist indexed matrix to conform

to a desired namelist. The resulting matrix is to overwrite the input.

CALL PERMUT(A,IA,IR,L1,NAM1,L2,NAM2)

Argument Definitions

A(IR,1L) Input rectangular matrix, L=max(Ll,L2)

TA Row dimension of A, TA.GE.IR

IR Number of rows of A that are to be
rearranged

L1 Number of parameter names assoclated with
the input A matrix

NAMI (L) Parameter names associated with A on input
(only the first L1 entries apply to the
input A)

L2 Number of parameter names associated with

the output A matrix

NAM2 Parameter names associated with the output A

Remarks and Restrictions

This subroutine is similar to A2A)l; but because the output matrix
in this case overwrites the input there are several differences. The
NAM1 vector is used for scratch, and on ocutput it contains a permuta-
tion of the input NAMI list. The user must allocate L=max(Ll,L2)
elements of storage to NAMl. The extra entries, when L2 >Ll, are
uged for scratch.

Functional Description

The columns of A are rearranged, a pair at a time, to match the
NAM2 parameter namelist. The NAMI entries are permuted along with the
columns, and this is why dim (NAM1) must be larger than L1 (when L2>L1).
Columns of zerves are inserted in A which correspond to output names

that do not appear in NAMI.
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10.

PHIU (PHI-rectangular*U-unit upper triangular)

Purpose

To multiply a rectangular two dimensional matrix PHI by a unit

upper triangular vector stored matrix U, and store the result in

PHIU. The PHTIU matrix can overwrite PHI to economize on storage.

[PHI]<:::]= {PHIU]

CALL PHIU(PHI,MAXPHT,IRPHT,JCPHI,U,N,PHIU,MPHIU)

Argument Definitioms

PHI (IRPHI, JCPHT)
MAXPHT

IRPHI
JCPHT

U (2 (L) /2)
N
PHIU(IRPHL,N)

MPHIU

Remarks and Restrictions

Input rectangular matrix IRPHI.LE MAXPHI
Row dimension of PHI

number of rows of PHI

number of columns of PHI

unit upper triangular vector stored matrix
U-matrix dimenstion, JCPHI.LE.N

output result PHI*U,PHIU can overwrite PHIL

row dimension of PHIU

If JCPHI.LT.N it is assumed that there are implicitly defined

trailing columns of zeros in PHI. The unit diagonal entries of U

are implicit, i.e. the diagonal U entries are not explicitly used.

Functional Description

PHIU = PHI*U

48


http:IRPHI.LE

ORIGINAL PAGE IS
OF POOR QUALITY

11. RA (R-upper triangular*A-rectangular)

Purpose
To post multiply a vector stored triangular matrix, R, by a

rectangular matrix A, and if desired to store the result in A.

CALL RA(R,N,A,MAXA,TA,JA,RA,MAXRA,TRA)

d

Argument Definitions

R(N*(N+1)/2) upper triangular, vector stored input

N order of R

A(TA,JA) Input rectangular right multiplier matrix

MAXA Row dimension of input A matrix

1A Number of rows of A that are input

JA Number of columns of A

RA(TRA,JA) Output resulting rectangular matrix
RA can overwrite A

MAXRA Row dimension of RA

IRA Number of rows in the output result
(TRA.LE .MAXRA)

Functional Description

The first IRA rows of the product R*A are computed using the
vector stored iaput matrix R, and the output can, if desired,
overwrite the input A matrix. When N.GT.IA (i.e. there are more
columns of R than rows of A) then it is assumed that the bottom

N-IA rows of A are implicitly defined as a partial identity matrix, i.e.
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12. RANK]1 (Stable U-D rank one update)

Purpose
T
To compute the (updated) U-D factors of UDUT + CVV™.

CALL RANKL(UIN,UOUT,N,C,V)

Argument Definitions

UIN(N*(N+1)/2) Input vector stored positive semi-
definite U-D array (with the D entries
stored on the diagonal of U)

UQUT (N* (N+1)/2) Output vector stored positive (possibly)
semi~definite U-D result, UOUT=UIN is

allowed.
N Matrix dimension, N.GE.2
c Input scalar, which should be non-negative.

C is destroyed by the algorithm,.

V() Input vector for the rank one modification.
V is destroyed by the algorithm.

Remarks and Restrictions

If C negative is used the algorithm is numerically unstable,
and the result may be numerically unreliable. Singular U matrices
are allowed, and these can rgsult in singular output U Matrices.
The code switches from a 1-multiply to a 2-multiply mode at a key
place, based upon a 1/16 comparison of input to output D values.
Also, there is provision made to supply a machine accuracy epsilon
when single precision is specified.

Functional Description

This rank one modification is based on a result published by
Agee and Turner (1972), White Sands Missile Range Tech. Report
No. 38 and improved on using a numerical stabilization didea due

to Gentlemen (1973). The algorithm is derived in the chapter,
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"UDUT Covariance TFactorization For Kalman Filtering,' C. L. Thornton,
G. J. Bierman, Vol. XVI of Advances in Control of Dynamic Systems,

Academic Press, to appear 1979.
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13.

RCOLRD (Colored noise time update of the SRIF R matrix)

Purpose

To include colored noise time updating into the square root

information matrix.

It is assumed that the deterministic portion

of rhe time update has been completed, and that only the colored

noise effects are being incorporated by this subroutine.

CALL RCOLRD(S,MAXS,IRS,JCS,NPSTRT,NP, M,RW,ZW,V,SGSTAR)

Argument Definitions

S{IRS,JCS)

MAXS

IRS

JCS8

NPSTRT

NP

EM(NF)

RW (NP)

Input rectangular portion of the square

root information matrix corresponding to

the nonconstant paramters. It is assumed
that estimates are included, i.e. the last
column represents the "right hand side",Z,
(but see JCS description). S also houses the
time updated array, and if there is smoothing
there are NP extra rows adjoined to S.

Row dimension of 8. If smoothing calculations
are to be included then MAXS.GE.IRSHNP.

The number of rows of S5, i.e. the number of
nonconstant parameters (including colored
noise variables). IRS.GE.2

The number of columns of S. If the vector
ZW is zero, then the right hand side of
transformed estimates need not be included.

Location of the first colored process noise
variable.

The number of colored noise variables
contiguous to and following the first.

Vector of exponential colored noise multipliers
(EM = exp {-DT/TAU))

Vector of positive reciprocal colored process
noise standard deviations, i.e.

..., = exp(eDTfT)* p. + w,, Bw = 1/0
Py = ERIDT/OF By + vy /%
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ZW{NP) Vector of normalized process noise a priori
estimates., ZW is generally zero.

V(IRS) Work vector.

SGSTAR (NP) Vector of smoothing coefficients. Needed
only if smoothing is to be done.

Remarks and Restrictions

There are three lines of code associated with smoothing, and
these are commented out of the nominal case. Therefore, if smoothing
is contemplated the comments must be removed. The vector SGSTAR is
involved only with smoothing. Last note: for smoothing, be sure
that § has NP extra rows to houge the smoothing coefficients.

The ZW vector is generally zero. If ZW = 0 one has the option
of doing covariance only analyses and the last column of S (the
right hand side of normalized estimates) can be omitted.

Because of the large number of arguments appearing in this
subroutine, and because almost all of them are constant (i.e. with
succeeding célls only 5, and possible EM, RW, ZW and SGSTAR change)
for a given problem, it is suggested that one a) Introduce COMMON,
b) use this as an internal subroutine, or c¢) write in-line cede.

Functional Description

The model is

=
o
o
o

Xy 1 0 |INPSTRT-1

o
[l
=
o
e ]

+ Wj NP
2 0 2 0 |JN-(NPSTRT-1+N?P)
j+l k|

»
o
bt
»

where M is diagonal, with NP non~negative entries and Wj is a white
noise process with v, €EN(w, Q), Q = R;l R;T. The algorithm is based

on Bierman's one component—at—-a~time SRIF time update which economizes
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on storage and computation (see Bierman~Factorization Methods for
Discrete Segquential Estimation, Academiec Press 1977).

When smoothing is contemplated, there is output a vector o*(NP)
and a matrix S*(MP,N+1): S* occupies the bottom NP rows of the
output 8 matrix. Smoothed estimates of the p terms can be obtained
from the ¢% and S* terms as follows:

Let X* be the previously computed estimates of the N filter
parameters, then for J = NP, NP-1,...1 recursively compute

X% (NSTRT + J-1):= (8*%(J, N+1) - 3 8% (J,K)X*(K))/o*(J)

K=1
Note that the symbol ":=" means is replaced by, so that the old
values of X*, on the right side, are over-written by the new
smoothed colored noise estimates. Smoothed covariances can be

obtained from the 8% and o* terms as well, but we do not go into

detail here; the reader is directed to chapter 10 of the Bierman

K
'

reference.
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14. RENCON (R inverse with condition number bound)

Purpose

To compute the inverse of an upper triangular vector stored

triangular matrix, and an estimate of its condition number.

CALL RINCON(RIN,¥,ROUT,CNB)

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular matrix
N Matrix dimension, N.GE,2
ROUT (N# (N+1) /2) Qutput vector stored matrix inverse

(RIN= ROUT is permitted)

CNB Condition number bound. If k is the
condition number of RIN, then
CNB/N.LE.k,LE CNB

Remarks and Restrictions

The condition number bound, CNB serves as an estimate of the actual
condition number. When it is large the problem is ill-conditioned.

Functional Description

The matrix inversion is carried out using a triangular back
substitution. If any diagonal element of the input R matrix is
zero the condition number computation is aborted. When the first
zero occurs at diagonal k the matrix inversion is carried out only
on the first k-1 columns. The condition number bound is éomputed

as follows:

NTOT
F.NORM R = Z ()2
=1
NTOT
F.NORM R T = Z rL(n?
=1
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where NTOT = N#(N+1)/2 is the number of elements in the vector stored
triangular matrix. The condition number bound, CNB, is given by
CNB = (F.NORM R * ¥,.NORM R“l)l/2

F.NORM is the Frobenius norm, squared. The inequality
CNB/N =< condition number R < CNB

is a simple consequence of the Frobenius norm inequalities given in

Lawson-Hanson '"Solving Least Squares," page 234.
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15. RI2COV (RI Triangular to covariance)

Purpose

"To compute the standard deviations, and if desired, the

covariance matrix of a vector stored upper triangular square root

covariance matrix.

The output covariance matrix, also vector

stored, can overwrite the input.

Argument Definitions

CALL RI2COV(RINV,N,SIG,COVOUT,KROW,KCOL)

RINV(N* (N-+1) /2

N

SIG(N)

COVOUT (% (N+1) /2)

KROW 1

(.GT.O

.LT.0

KCOL

.EQ.0

Input vector stored upper triangular
covariance square root (RINV=Rinverse
is the inverse of the SRIF matrix).

Dimension of the RINV matrix
Output vector of standard deviations

Output wvector stored covariance matrix
(COVOUT = RINV is allowed)

Computes the covariance and sigmas
corresponding to the first KROW variables
of the RINV matrix

Computes only the sigmas of the first
(KROW) wvariables of the RINV matrix.

No covariance, but all sigmas (e.g. use
all N rows of RINV)

Number of columns of COVOUT that are
computed, If KCOL,LE.(0, then KCOL = KROW.

Remarks and Restrictions

Replacing N by {KROWI corresponds to computing the covariance

of a lower dimensional system.

Functional Description

COVOUT=RINV#RINV**T
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16. R2ZA (R to A)

Purpose

To place the upper triangular vector stored matrix R into the
matrix A and to arrange the columns to match the desired NAMA para-
meter list. Names in the NAMA list that do not correspond to any

name in NAMR have zero entries in the corresponding A columms.

CALL R2A(R,LR,NAMR,A,TIA,LA,NAMA)

Argument Definitions

R{LR*(LR+1)/2) Input upper triangular vector stored array
LR No. of parameters associated with R

NAMRE (LR) Parameter names associated with R

A(LR,1LA) Matrix to house the rearranged R matrix
IA Row dimension of A, IA.GE.LR.

LA No. of parameter names associated with the

output A matrix.

NAMA (LA) Parameter names for the output A matrix.

Functional Description

The matrix A is set to zero and then the columms of R are copied

into A.
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17. R2ZRA (Permute a subportion R, of a vector stored triangular matrix)

Purpose

A

To copy the upper left (lower right) portion of a vector stored

upper triangular matrix R into the lower right (upper left) portiom of

a vector stored triangular matrix RA,

CALL R2RA(R,NR,NAM,RA,NRA,NAMA)

Argument Definitions

R(NR*(NR+1) /2)
NR

NAM(NR)

RA(NRA* (NRA+1) /2)

NRA

NAMA (NRA)

Remarks and Restrictions

Input vector stored upper triangular matrix

Dimension.of vector stored R matrixT

Names associated with R.
Output wvector stored upper triangular matrix

If NRA=0 on input, then NAMA(1l) should have
the first name of the output namelist. In
this case the mumber of names in NAMA, NRA,
will be computed. Theé lower right block of
R will be the upper left block of RA.

If NRA = last name of the upper left block
that is to be moved then this upper block
is to be moved to the lower right corner

of RA., When used in this mode NRA=NR on

outputh

Names associated with RA. Note that NRA
used here denotes the output value of NRA.

RA and NAMA can overwrite R and NAM. The meaning of the NRA=0

option is clarified by the following example:

A B C D E

2 4 8 14 22]

6 10 16 24

(12 18 26

:, 20 28

R 30,
R

¢ D E INPUT
o - NR = 5
12 18 26 NAM = TA','B','C','D','E'
NRA = 0
20 28 NAMA(1) = 'C!
R
! 30 OUTPUT

NAWA = 'c', 'D', 'E'

Tsee the concluding paragraph of Remarks and Restrictions
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When NRA = 0 and NAMA(l) = 'C' we are asking that the lower triangular
portion of R, beginning at the column labeled C, be moved to form the
first (in this case 3) columns of RA, Incidently, RA could have )
additional columns; these columns and their names %ould be unaltered

by the subroutine,

The meaning of the other NRA option is illustrated by the following

example;
o I INPUT -
A 3 clp E A B (A B Cp NR = 5
s —‘ — - NAM = !A!,iBl,lcl,IBI’!El
2 & 8|14 22 2 4 8 14 22 NRA = 'C’
R
i 6 24
6 10 I16 24 6 1fi _J:_# + OUTPUT
NRA = 5
12118 264 W 2 4 8 NAMA(3-5) = 'A','B','C'
RA
20 28 : 6 10
L_ 30 | 1z
- - ' e
R R

When NRA = 'C' we are asking that the upper left block of R, up to the
column labeled C, be moved to the lower ¥ight poriton of RA and the cor-
responding names be moved too. If RA overwrites R, as in the example,
then the first two rows of R remain unchanged and since NAMA overwrites
NAM, the labels of the first two columns remain unaltered.

The remark that NRA=NR on output means, in this example, that the
column with name C in R is moved over to column 5. TIf one wanted to
slide the upper left triangle corresponding to names ABC of R to columns
7-9 of an RA matrix (of unspecified dimension, > 9), then one should set
WR=9 in the subroutine call. Thus NR, when used in this sliding down

the diagonal wmode, does not represent the dimension of R; but indicates

how far the slide will be.
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18.

18
RUDR (R to U-D or U-D to R) -E§n§A11P5“3E
Purpose

To transform an upper triangular vector stored SRIF array to U-D

form or vice versa.

CALL RUDR(RIN,N,ROUT,IS)

Argument Definitions

RIN(NBAR* (NBAR+1)/2) Input upper triangular vector stored SRIF
or U-D array; NBAR = ABS(N) + 1

ROUT (NBAR* (NBAR+1}/2) Output upper triangular vector stored
U-D or SRIF array (RIN = ROUT is
permitted)

N Matrix dimension, N.GT.0 represents an

R to U-D conversion and N.LT.0 represents
a U-D to R conversion. ARS(N).GE.?2

Is If 15 = 0 the input array is assumed not
to contain a right side (or an estimate),
and IS = 1 means an appropriate additional
column is included. In-the IS = 0 case
the last column of RIN is ignored and
NBAR = ABS(N) is used.

Subroutine used: RINCON

Functional Description

Consider the N>0 case. RIN=R is transformed to ROUT = R inverse
using subroutine RINCON with dimension N+ 1S. 1If IS=1 the subroutine
sets RIN((N+1) (N+2))/2) =-1, so that the N+lst column of ROUT will be

the X estimate followed by -1. Rfl = UD]'/2

go that the diagonals
are square root scaled U columms. This information is used to con-
struct the U-D array which is writtenm in ROUT.

If N<O the input is assumed to be a U-D array. This array is

converted to ROUT==UD1/2

and then using RINCON, R is computed and stored
in ROUT. 1If IS=1 the U-D matrix is assumed augmented by X (estimate),
and on output the right side term of the SRIF array is obtained. When
IS=1, the initial value of RIN((N+L1) (N+2)/2) is restored before exiting

the subroutine.
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19.

SFU  (Sparse F * unit upper triangular U)

Purpose

To efficiently form the product F*U so that only the nonzero

elements of F are employed and so that the structure of the U

matrix is utilized (upper triangular with implicit unit diag~

onal elements). When F is sparse there are significant savings

in storage and computaton. Note that since we deal only with

the nonzero elements of F we are saved the time associated with

computing unnecessary F matrix element addresses,

CALL SFU(FEL,IROW,JCOL,NF,U,N,FU,MAXFU,IFU,JDIAG)

Argument Definitions

FEL (NF)
TROW (NF)
JCOL (NF)

NF
U(N* (N+1)/2)

N
FU(IFU,N)
MAXFU
IFU

JDIAG (N)

Values of the non-zero elements of the ¥ matrix
Row indices of the T elements

Column indices of the ¥ elements

F(TROW(K), JCOL(K)) = FEL(K)

The number of non~zero elements of the F matrix

Upper triangular, vector stored matrix with
implicity defined unit diagonal elements. Note
that U(JJ) terms are not, in fact, unity,

Dimension of the U matrix
The output result
Row dimension of the FU matrix

Number of rows in FU. IFU,.LE.MAXFU, and IFU.GE.
Max (IROW(K), K=1,...,NF); i.e, FU must have at
least as many rows as does F. Additional rows of
FU could correspond to zero rows of F.

Diagonal element indices of a vector stored upper
triangular matrix, i.e. JDIAG(K)=K* (K+1)/2=JDTAG(K-1)+K.
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F(3,12) with: F(1,1) = .9, F(2,2) = .8, F(3,3) = 1.1,

F(1,7) = 1.7, F(2,8) =-2.8 and F(3,11)

3.11.

fl

In this case F has NF = 6 (nonzero elements); and one may

take
IROW(1) = 1 JCOL(1) = 1 FEL(1) = .9
IROW(2) = 2 JCOL(2) = 2 FEL(2) = .8
TROW(3) = 3 JCOL(3) = 3 FEL(3) = 1.1
IROW(4) = 1 JCOL(4) = 7 FEL(4) = 1.7
IROW(5) = 2 JCOL(5) = 8 FEL(5) =-2.8
IROW(6) = 3 JCOL(6) = 11 FEL(6) = 3.11

Remarks and’Restrictions

Comments regarding increased efficiency are included in the code.

Functional Description

We write

Fo= 2 R e el

1,3

where e, is the i-th unit wvector.

T
FU = Z Fij ey (er)

ij

The code is based on this equation.

Then
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20,

TDHHT (Twoe dimensional Householder triangularization)
Purpose

To transform a two dimensional rectangular matrix to a
triangular, or partially triangular form by Householder orthogonal
matrix pre-multiplication. This subroutine can be used to compress
overdetermined linear systems to triangular (double subscripted
form) in much the same way as does the subroutine THH (which outputs
a vector subscripted triangular result). For recursive applications
THH is computationally more efficient and requires less storage.
The chief application, that we have in mind, for this subroutine
is to the matrix triangularization of '"mapped"” square root

information matrices of the form S(m,n) with m less than n.

CALL TDHHT(S,MAXS,IRS,JCS,JSTART,JSTOP,V)

Argument Definitions

S(IRS,JCS) Input (possibly partially) triangular
matrix. The output (possibly partially)
triangular result overwrites the input.

MAXS Row dimension of S matrix

IRS Number of rows in S (IRS.LE.MAXS), and
IRS.GE.2.

JCS Number of columns in S

JSTART Index of first column to be triangularized.

If JSTART.LT.1 then it is assumed that the
triangularization starts at colummn 1.

JSTOP Index of last column to be triangularized.
When JSTOP is not between max(1l,JSTART)
and JCS then the triangularization is
carried out as far as possible (i.e. to IRS
if 5 has less rows than columns, or te JCS
if it has more rows than colummns).

V(IRS) Work vector
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Remarks and Restrictions

The indices JSTART and JSTOP are input for efficiency purposes.
When it is known that the input matrix is partially trianéular one
can by-pass the corresponding (initial) Householder reduction steps.
Further, for certain applications it is not necessary to totally

triangularize the input array. For example if S(m,n) and m is

less than n, the system is in triangular form after only m elementary

Householder reduction steps, i.e

The code is set up so that it defaults to the largest possible
upper triangularization.

Functional Description

JCS

s { 0 IRS

The dotted portion of the matrix and the block of zeros are not
employed at all in the computations. The input matrix is trans-
formed to (possibly partially) triangular form by premultiplication

by a sequence of elementary Householder orthogonal transformations,

S——=] 0 IRS




The method is described fully in the books by Lawson and Hanson -

Solving Least Squares Problems, and in Bierman - Factorization

Methods for Discrete Sequential Estimation.
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21,

THH (Triangular Householder Orthogonalization)
Purpose
To compute [R:z] such that
R 2 R =z
T = T - orthogonal
A =z 0 e

. This is the key algorithm used in the square root information batch

sequential filter,

CALL THH(R,N,A,IA,M,RSOS,NSTRT)

Argument Definitions

R{N*(N+3)/2) Input upper triangular vector stored
square root information matrix. If
estimates are involved RS0S.GE.O and R
is augmented with the right hand side
(stored in the last N locations of R).
If RSOS.LT.0 only the first N*(N+1)/2
locations of R are used. The result
of the subroutine overwrites the input R

N Number of parameters

A(M,N+1) Input measurement matrix. The N+lst
column is only used if RS0S.GE.Q, in
which case it represents the right side
of the equation v + AX = z, A is
destroyed by the algorithm, but it is
not explicitly set to zero.

TA Row dimension of A

M The number of rows of A that are to be
combined with R (M.LE.IA)

RS0S Accumulated residual root sum of squares
corresponding to the data processed
prior to this time. On exit RS0S repre-
sents the updated root sum of squares
of the regiduals [Ellz _AX |12]1/2

i1 THiest ?
summed over the old and new data. It
also includes the a priori term
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“Ro Xest - zo” 2. Because R30S cannot

be used if data, z, is not included
we use RSO0S.LT.0 to indicate when data
is not included.

NSTART First column of the input A matrix
that has a nonzero entry. In certain
problems, especially those involving
the inclusion of a priori statistics,
it is known that the first NSTRT-1
columns of A all have zero entries.
This knowledge can be used to reduce
computation. If nothing is known
about A, then NSTRT.LE.l gives a
default value of 1, i.e. it is assumed
that A may have nonzero entries in the
very first columm.

Remarks and Restrictions

It is trivial to arrange the code so that R output need not over-
write the input R, This was not done because, in the author's opinion,

there are too few times when one desires to have ROUT # RIN.

Functional Description

Assume for simplicity that NSTRT=1. Then at step j, j=1,...,N
(or N+l if data is present) the algorithm implicitly determines an
elementary Householder orthogonal transformation which updates row i
of R and all the columns of A to the right of the jth. At the
completion of this step column j of A is in theory zero, but it is
not explicitly set to zero., The orthogonalization process is discussed

at length in the books by Lawson and Hanson - Solving Least Squares

Problems and Bierman - Factorization Methods for Discrete Sequential

Estimation.
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ORIGINAL PAGE IS

22. 'TTHH (Two triangular matrix Householder reduction) OF POOR QUALITY

Purpose

To combine two vector stored upper triangular matrices, R and RA

by applying Householder orthogonal transformations. The result over-

writes R.

N

L. d

N

| CALL TTHH (R,RA,N) |

Argument Definitions

R(N*(N+1)/2)

RA(N*(N+1)/2)

Remarks and Restrictions

Input vector stored upper triangular
matrix, which also houses the result

Second input vector stored upper
triangular matrix., This matrix is
destroyed by the computation.

Matrix dimension
N less tham zero is used to indicate
that R and RA have right sides
(|Nl+l colums) and have dimension

[N]*(]n[+3)/2).

RA is theoretically zero om output, but is not set to zero.
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23,

TWOMAT (Triangular matrix print)

Purpose

To display a vector upper triapgular matrix in a two

dimensional triangular format. Precision output corresponds to a

7 column 8 digit, double precision format. Compact output corres-

ponds to a 12 column, 5 digit single precision format.

CALL TWOMAT(A,N,LEN,CAR,TEXT,NCHAR,NAMES)

Argument Definitions

A(N%EN+1) /2)

N

LEN

CAR(N)

TEXT (NCHAR)

NCHAR

NAMES

Vector stored upper triangular matrix (DP)
Dimension of A

Column format (7 or 12 columns). When LEN
is different from 7 or 12 the print defaults
to 12 columns.

Parameter names (alphanumeric) associated
with A. When NAMES is false, CAR is not
used.

An array of field data characters to be
printed as a title preceding the matrix

Number of characters (including spaces) that
are to be printed in text( )

ABS (NCHAR) .LE.114. If NCHAR is negative there
no page eject before printing. NCHAR positive
results in a page eject so that the print
starts on a fresh page.

A logical flag. If true then the names of
the parameters are used as labels for the
rows and columns. If false the output labels
default to numerical wvalues.

Remarks and Restrictions

Using NCHAR nonnegative, and starting the print at the top of a

new page makes it easier to locate the printed result and is
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especially recommended when dealing with large dimensioned arrays.
Page economy can, however, be achieved using the NCHAR negative
option. In this case the print begins on the next line. The
alphanumerics in this routine make it machine dependent; it is

arranged for implementation on a UNIVAC 1108.
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24. TZERD (Triangular matrix zero)

Pu;gose

To zero out rows IS(Istart) to IF(Ifinal) of the.vector. stored

upper triangular matrix R.

CALL TZERO(R,N,IS,IF)

Argument Definition

R(N#*(14-1) /2) Input vector stored upper triangular
matrix

N Row dimension of vector stored matrix

Is First row of R that is to be set to zero

IF Last row of R that is to be set to zero

Functional Descraption

IS
IF
R{input) R( output)
PAGE 1B
0
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25.

UDCOL (U-D covariance factor colored noise time update)
Purpose
To time update the U-D covariance factors so as to include

the effects of colored noise wvariables.

CALL UDCOL{(U,N,XS,NCOLOR,V,EM,Q)

Argument Definitions

U(N* (1) /2) Input vector stored U-D covariance factors.
The updated result resides here on output.

N Filter matrix dimension. If the last column
of U houses the filter estimates, then
N = number filter variables + 1.

K8 Location of the first colored noise variable
(KS.GE.1.AND.KS.LE.N)
NCOLOR The number of colored noise variables

contiguous to the first, including the
first. (NCOLOR.GE.L)

. V(KS-1+NCOLOR) Werk vector ((RS-L+NCOLOR).LE.N)

EM(NCOLOR) Input vector of colored noise mapping terms
(unaltered by program)

Q(NCOLOR) Input vector of process noise variances
(unaltered by program)

Remarks and Restrictions

When estimates are involved they are appended as an additional
column to the U-D matrix. When the subroutine is applied to the
augnented matrix the estimates are correctly updated. When the
colored noiseé terms are not contiguously located one can fill in
the gaps with unit EM terms and corresponding zero Q elements.

It ig preferable, however, to apply the subroutine repeatedly to

the individual contiguous groups.

73



Functional Description

The model equation corresponding to the time update of this

subroutine is

"
o
™

I
+
o H O
k3

g+ j

where M is diagonal, with NP terms, and v, €N{(0,Q) where Q is
diagonal with NP terms. The output U-D array associated with this
time update equation satisfies

ToT 4+ Boal

UDUT(output) = & UDU
where & and B are as above. The algorithm for obtaining U-D
(output) is the Bierman-Thornton one—component-at—-a-time update

described in Bierman - Factorization Methods for Discrete

Sequential Estimation", Academic Press (1977), pp -147-148,
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26.

UDMEAS (U-D measurement update)

Purpose

Kalman filter measurement updating using Bierman's U-D measure-

ment update algorithm, cf 1975 CONF. DEC. CONTROL paper. A scalar

.

T . .
measurement z = A'x + v 1s processed, the covariance U-D factors

and estimate (when included) are updated, and the Kalman gain and

innovations variance are computed.

Argument Definitions

CALL UDMEAS(U,N,R,A,F,G,ALPHA)

INPUTS

U(N* (1) /2)

A(N)

F (N)

ALPHA

OUTPUTS

ALPHA

Upper triangular vector stored input matrix.

D elements are stored on the diagonal. The

U vector corresponds to an a2 priori covariance.

If state estimates are involved the last column

of U contains X. 1In this case Dim U = (N+1)*(N+2)/2
and on output (U(MH1)*(N+2)/2= z-A**T*X(a priori est).

Dimension of state vector, N.GE.2

Measurement variance

Vector of Measurement coefficients; if data
then A(NH1) = =z

Input work vector. To economize on storage F
can coverwrite A

Tf ATPHA.LT.zero no estimates are computed
(and X and 2z need not be included).

Updated vector stored U-D factors. When
ALPHA (input) is nonnegative the (Ml)st
column contains the updated estimate and
the predicted residual.

Innovations variance of the measurement
residual.

Contains U%*T#A(input) and when ALPHA (input)
is nonnegative F(N+1) =(z-A**T*X(a priori est))/ALPHA.
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G(N) Vector of unweighted Kalman gains,
K = G/ALPHA :

Remarks and Restrictions

One can use this algorithm with R negative to delete a
previously processed data point. One should, however, note that
data deletion is numerically unstable and sometimes iIntroduces
numerical errors.

The algorithms holds for R = 0 (a perfect measurement) and
the code has been arranged to include this case. Such situations
arise when there are linear constraints and in the generation of
certain error "budgets".

Functional Description

The algorithm updates the columns of the U-D matrix, from
left to right, using Bierman's algorithm, see Bierman's
"Factorization Methods for Discrete Sequential Estimation,"

Academic Press (1977} pp 76-81 and 100-101.
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27.

ORIGINAL PAGE IS
OF POOR QUALITY:

upD2cov (U-D factor to covariance)
Purpose

To obtain a covariance from its U-D factorization., Both matrices
are vector stored and the output covariance can overwrite the input

U-D array. U-D and P are zelated via P = UDUT.

CALL UD2COV(UIN,POUT,N)

Argument Definitions

VIN(*(F+1) /2) Input vector stered U-D factors, with D
entries stored on the diagonal.

POUT (N* (N+1) /2) Qutput vector stored covariance matrix
(POUT = UIN is permitted).

N Dimension of the matrices involved (N.GE.2)
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28. UD2S81G (U-D factors to sigmas)

Purpose

To compute variances from the U-D-factors of a matrix.

CALL UD2SIG(U,N,SIG,TEXT,NCT)

Argument Definitions

U (N+1)/2) Input vector stored array containing
the U-D factors. The D (diagonal)
elements are stored on the diagonal

of T.
N Dimension of the U matrix (N.GE.2)
SIG(N) Output vector of standard deviations
TEXT ( ) Output label of field data characters,

which precedes the printed vector of
standard deviations.

NCT Number of characters of text,
0.LE.NCT.LE.126. TIf NCT = 0, no
sigmas are printed, i.e. nothing is
printed.

Remarks and Restrictions

The user is cautioned that the text related portion of this subroutine
may not be compatible with other computers. The changes that may be

involved are, however, very modest.

Functional Description

If U and D are represented as doubly subscripted matrices then

N

SIG(J) = (D(J,J) + Z D(K,X) [U(J,K)]z)ﬁ
K=J+1.

-

If NCT.GT.0 a title is printed, followed by the sigmas.
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29.

UTINV (Upper triangular matrix inverse)
Purpose

To invert an upper triangular vector stored matrix and store
the result in vector form. The algorithm is so arranged that the

result can overwrite the imput.

CALL UTINV(RIN,N,ROUT

Argument Definitions

RIN(N*(N+1)/2) Input vector stored upper triangular
matrix

N Matrix dimension

ROUT (N* (N+1)/2) Output vector stored upper triangular
matrix inverse (ROUT = RIN is permitted)

Remarks and Restrictions

I11 conditioning is not tested, but for nonsingular systems the
result is as accurate as is the full rank Euclidean scaled
singular value decompostiion inverse. Singularity occurs if a
diagonal is zero. The subroutine terminates when it reaches a
zero diagonal. The columns to the left of the zero diagonal are,
however, inverted and the result stored in ROUT.

This routine can also-be used to produce the solution to RX = Z.
Place Z in column N+l(viz. RIN(N*(W+1)/2+1) = Z(1), etec.), define
RIN((N+1) (N+2)/2) = -1 and call the subroutine using N+l instead
of N. On return the first N entries of column N+l contain the
solution (e.g. ROUT(N*(N+1)/2+1) = X(1), etc.). When only the
estimate is needed, then it is more efficient to use the code

described in section to IT.8 to obtain X, directly.
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Because matrix inversion is numerically sensitive we recommend
using this subroutine only in double precisiomn.

Functional Descriptioh

The matrix inversion is accomplished using the standard back
substitution methed for inverting triangular matrices, cf. the book

references by Lawson and Hanson, [1] or Bierman [3].
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30.

1S
ORIGINAL PAGE
OF POOR QUALITY

UTIROW (Upper triangular inverse, inverting only the upper rows)
Purpose
To compute the inverse of a vector stored upper triangular

matrix, when the lower right commer triangular inverse is given.

CALL UTIROW(RIN,N,ROUT,NRY)

Argument Definitions

RIN(N*(N+1) /2) Input vector stored upper triangular
matrix. Only the first N - NRY rows
are altered by the algorithm.

N Matrix dimension.

ROUT (N*(N+1) /2) Output vector stored upper triangular
matrix inverse. On input the lower
NRY dimensional right cornmer contains
the given (known) inverse. This lower
right corner matrix is left unchanged.

(ROUT = RIN is permitted.)

NRY Number of rows, starting at the bottom,
that are assumed already inverted.

Remarks and Restrictions

The purpose of this subroutine is to complete the computation
of an upper triangular matrix inverse, given that the lower right
corner has already been inverted. Part of the input, the rows to

be inverted, are inserted wvia the matrix RIN. The portion of the

matrix that bas already been inverted is entered yia the matrix ROUT.

It may seem odd that part of the input matrix is put into RIN and
part into ROUT. The reasoning behind this decision is that RIN
represents the input matri; to be inverted (it just happens that
we do not make use of the lower right triangular entries); ROUT
represents the inversion result, and therefore that portion of the

inversion that is given should be entered in this array.
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111 conditioning is not tested, but for nonsingular systems the
result is accurate. Singularity halts the algorithm if any of the
first N-NRY diagonal elements is zero. If the first zero encountered
moving up the diagonal (starting at N-NRY) is at diagonal i then the
rows below this element will be correctly represented in ROUT.

To generate estimates do the following: put N+l into the matrix
dimension argument; in the first N-NRY rows of the last column of
RIN put the right hand side elements of the equation Rxx + nyy =z,
(i.e., RX, ny, and Z. make up the first N-NRY rows of RIN); in the
next NRY entries of ROUT, beginning in the (N-NRY+l)st element, put

¥y (i.e., R;l and Yost make up rows N-NRY+1l,...,N of ROUT); and

est

ROUT ((W+1) (842)/2) = -1. On output, the last column of ROUT will

contain x and -1,
est’ Yest

st

When NRY = 0 this algorithm is equivalent to subroutine UTINV.

Functional Description

The matrix inversion is accomplished using the standard back
substitution method. The computations are arranged, row-wise, starting
at the bottom (from row N-NRY, since it is assumed that the last NRY

rows have already been inverted).

82



31.

WGS (Weighted Gram-Schmidt matrix triangularization) ORIGINAL PAGE IS
Purpose OF POOR QUALITY

To compute a vector stored U-D array from an input rectangular

matrix W, and a diagonal matrix Dw so that W Dw WT = UDUT.

CALL WGS (W, IMAXW, IW,JW,DW,U,V)

Argument Definitions

W(IW,JW) Input rectangular matrix, destroyed by
the computations
IMAXW Row dimension of input W matrix,
IMAXW.GE.IW
Iw Number of rows of W matrix, dimension of U
JW Number of columns of W matrix
DW(JW) Diagonal dnput matrix; the entries are

assumed to be nonnegative. This vector
is unaltered by the computations

T{IWws (TW1)/2) Vector stored output U-D array
V(W) Work vector in the computation

Remarks and Restrictions

The algorithm is not numerically stable when negative DW weights

are used; negative weights are, however, allowed. If JW is less than
IW {(more rows than columns), the cutput U-D array is singular; with

W-JW zero diagonal entries in the output U array.

Functional Description

A Dw—orthogonal set of row vectors, ¢l, ¢2,..., ¢IW’ are con-—
structed from the input rows of the W matrix, i.e., W=1TU ¢, , ¢DW¢T = D,

The construction is accomplished using the modified Gram-Schmidt

orthogonal construction (see refs. [1] or [3]). This algorithm is
reputed to have excellent numerical properties. Note that the ¢
vectors are not of interest in this routine, and they are overwritten;
The V vector used in the program houses vector IW-j+1 of ¢ at step j of

algorithm. The fact that the computed ¢ vectors may not be D orthogonal

is of no import in regard to the U and D computed results.
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V. FORTRAN Subroutine Listings

The subroutines use only FORTRAN IV, and are therefore essentially
portable. The one notable exception is subroutine TWOMAT, which prints
triangular, vector stored matrices, It employs FORTRAN V FORMAT state—
ments and six character UNIVAC alphanumeric wordlength, and thus 1s UNIVAC
dependent. Subroutine UD28IG also involves text, and it too is therefore
to some extent machine dependent. Comment statements appear occasionally
to the right of the FORTRAN code, and are preceded by a "@" symbol. The
subroutine user can, if necesgsary, transfer or remove such program
commentary.

A1l of the subroutines employ "implicit double precision' statements.
They are, however, constructed so as to operate in single precision, and
the user has only to omit or comment out the implicit statements. If the
subroutines are to be used in double precision on a machine that does not
have the implicit FORTRAN option one should explicitly declare all of the
non~-integer variable names appearing in the programs as double precision
variables.

If these subroutines are to be used in production code and computa-
tional efficiency is of major concern one should replace the somewhat
lengthy subroutine argument lists by introducing COMMON, and including
those terms in the COMMON that are redundantly computed with each sub-

routine call.
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OGO 00000000

60
70
80

99
100

SUBROUTINE A2A1 (A,TAsIR+LA/NAMASAL,TALLAL,NAMAL)
SUBROUTINE TO REARRANGE THE COLUMNS OF A(IReLA)» IN NAMA ORDER
AND PUT THE RESULT IN A1(IR,LA1) IN NAMAL ORDER. ZERO COLUMNS
ARE INSERTED IN Al CORRESPONDING TO THE NEWLY DEFINED NAMES,

ACIR?LA) INPUT RECTANGULAR MATRIX

IA ROW DIMENSION OF Ar IRJLELIA
IR NOe OF ROWS OF A THAT ARF TO BE REARRANGED
LA NOs COLUMNS IN Ar ALSO THE

NO. OF PARAMETER NAMES ASSOCTATED WITH A
NAMA (LAY PARAMFTER NAMES ASSOCIATED WITH A
AL(IRsLAL) OUTPUT RECTANGULAR MATRIY
A AND Al CANNOT SHARE COMMON STDRAGE
IAL ROW DIMENSION OF Alr IRLLE.TAL
LAl NO. COLUMNS IN Al ALSO THE -
NO«. OF PARAMETER NAMES ASSOCTATED WITH At
NAMAL(LAL1}Y INPUT LIST OF PARAMETER NAMES TO BE ASSOCIATED
WITH THE OUTPUT MATRIX Aj

COGNIZANT PERSONS: G+J.BIERMAN/MeW NEAD (JPL: SEPT. 1975)

DIMENSION A{IA»1)s MAMA(IY, AL(IAL1,1)/NAMALIL)
IMPLICIT DOUBLE PRECISION (A=Hr0=2)

ZERO=0,
0O 100 J=i.LA1L
DO &g I=1rLA —
IF (NAMA(I).EQ.NAMAL(J)) GO TO 80
CONTINUE
DG 7p K=1»IR
AL(K»JI=ZERO B ZERO COL. CORRES. TO NFW NAME
G0 To 100
DO 9p K=1r1IR
AL(Ks JIZA(K,I) @ COPY COL. ASS0C. WITH OLD NAME
CONTINUE

RETURN
END
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A2A10010
A2A10020
A2A10030
A2A10040
A2A10050
A2A10060
A2a10070
A2A10080
A2A100990
AZA10100
A2A10110
A2a10120
A2A10130
A2A10140
A2A10150
A2A10160
A2A10170
A2A10180
A2A10190
A2A10200
A2A10210
ARA10220
A2A10230
A2A10240
A2A10250
A2A10260
A2A10270
A2A10280
A2A10290
A2A10300
A2A10310
A2A10320
A2A10330
A2A10340
A2A10350
A2A10360
A2A10370
A2A10380
A2A10390
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ORIGINAL PAGE 1S
OF POOR QUALITY

SUBROUTINE COMBO (ReL1/NAML,LZ2sNAMZ,ArTAPLAFNAMA)

TO REARRANGE A VECTOR STORED TRYANGULAR MATRIX AND STORE
THE RESULT IN MATRIX A. THE DIFFERENCE BETWEEN THIS SUR
ROUTINE AND R2A IS THAT THERE THE NAMELTST FOR A IS TMPUT,
HERE IT IS DETERMINED BY COMRINTNG THE LIST FOR R WITH

A LIST OF DESIRED NAMES.

RIL1L*(L1+41)/2) INPUY VECTOR STORED UPPER TRTANGULAR MATRIY

L1 NOs. OF PARAMETERS IN R (AND TN NAMID

NAM1 (L1) NAMES ASSOCIATER WITH R

L2 NO. OF PARAMETERS IN NAM2

NAM2 (L2) PARAMETER NAMES THAT ARE TO RE COMBINED WITH R
(NAMY LIST). THESE MAMES MAY OR MAY NOT RE IN
NAM1 .

ACL1/LA) OUTPUT ARRAY CONTAINIMG THE REARRANGED
R MATRIXr L1.LE.TA,

1A ROW DIMENSION OF A

LA NOs OF PARAMETER NAMES In NAMAs AND THE
COLUMN DIMENSION OF A. LAZL1+L2=NO. NAMFS
COMMON TO NAM1 AND NAM2., LA IS COMPUTED AND
QUTPUT.

NAMA (LA) PARAMETER NAMES ASSOCIATED WITH THE OQUTPUT A

MATRIX. CONSISTS OF NAMES TN NAM1 WHICH ARE
NOT IN NAM2 FOLLOWED BY NAMZ,
COGNIZANT PERSONS? GeJ.BIERMAN/MsW,NEAD (JPLe SEPT, 1976)
IMPLICIT DOUBLE PRECISION (A~HeO=2)
DIMENSION R{1)s A(TA»1)s NaMI(1))» NAM2(1)» NAMA(1)

ZERO=0,0
K=1
bOo 100 I=1sL1
DO S50 J=1,L2
IF (NAM1(1}.EQ.NAM2(J)) GO TO 100
CONTINUE
NAMA (K)=NAM1(Y)
JUTI*(1=1)/2
DO 60 L=1,1
AQLPK)ZREJUHL)
IF (1.eQ.L1) GO TO a0
IP1 = 141
PO 70 L=IP1,L1
A{L(K) = ZERO
K=K+1
CONTINUE
NAMES UNIQUE TO NAM1 ARE NOW TN NAMA
DO 200 J=11L2
DO 150 IZ1,L1
IF {NAM2{J).EQ.NAM1{1)) GO TO 170
CONTINUE
NAMA (K)=NAM2( )
DO 1el L=1.L1
A(LK)ISZERD
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coMpongo

coMBON10
COMRO020
COMBOG30
coMBON40D
COMBOOSO
coMBONGD
CoMBOB70
COMRON80
coMBONSD
COMBO100
COMRO110
coMBo120
COMBO130
coMBO140
cCOoMBO1S0
coMBO160
COMRO170
COMB0180
COMBO190
coMB0200
coMBo210
coMBo220
COMB0230
COMBO24 D
coMB0o250
coMB0260
COMB0270
coMB0O280
CNMRO290
coMpo300
COMBO310
coMBo320
coMB0o330
COMBO340
coMBO350
COoMB0360
COMBO370
CoMRO380
COMBR0390
coMBouo
compoul0
coMBou20
coMBO430
COMBOLAD
COMBO4S50
COMBO#60
COMBROLTO
coMpousn
coMBousy
COMBOSO00
coMBOS510
COMB0O520
COMBOR3D



170
1gp

185 -
log
200

NAMES UNIQUE TO NAMZ2 ARE NOW IM NAMA

G0 To 1906
NAMA (K )Y=NAMZ2 (J) .
LOCATE DIAGONAL OF PRECEDING CoLUMp
JI=Ix{1~1)/2
DO 180 L=1,1
AL KIZR(JJHL)
IF (I.gQ.L1) GO TO 190
IPL=I+1
DO 185 L=IP1i,L1
A{L+K)=2EROD
K=K+1
CONTINUE
LAZK~1
NAMES MUTUAL TO NAM1 AND NAMZ ARE MOW TN NAMA
RETURN N
END
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COMBOSS50
COMBOS6D
COMBOS70
coMBoOS80
CoMBOS90
COMBOAO0
coMgosl0
coMB0620
COMB0O630
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coMBO&SO
COMB0O&60
CoMBO670
COMBO680,
COMB0£90
coMBo700
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SUBROUTINE COVRHO(COVrN»RHO,V)

T0 COMPUTE THE CORRELATYION MATRIX RHOr FROM AN INPUT COVARIANCE
MATRIX COV. BOTH MATRICES ARE UPPER TRIANGULAR VECTOR STORED,
THE CORRELATION MATRIX RESULT CAN OVERWRITE THE INPUT COVAPTANMCE
COVIN®(N+1)/2) INPUT VECTOR STORED POSITIVE SEMI-DFFINITE
COVARIANCE MATRIX )
N NUMRER OF PARAMETERS! NJ.GE.1
RHO(N(N+1}/2) OUTPUT VECTOR STORED CORRELATION MATRIX:
RHO(IT I ZCOVLIJ) /(SIGMALT)%SIGMA(U))
VIN) WORK VECTOR

COGNIZANT PERSONS: GoJ.BYERMAN/MsW.NEAD {JPLsFEB.1978)

IMPLICIT DOUBLE PRECISION (A—H20=Z)
DIMENSION COV{1): RHO(1)» V(1)

0NE=1 DO
2=0.D0

JJ=o0
DO 10 J=1!N
JusJdgtd
vidl=2Z
IF (COVI(JJY+GT«Z) VI(JI=ZONE/ SORT(COV(JJ))

*kx*k SOME MACHINES REQUIRE DS@RT FOR DOUBLE PRFCISION
CONTINUE

TJ=¢
Do 20 J=1!N
s=viiy)
DO 20 I=lrJd
YJ=IJ+1
RHO{TJ)=COV(IJ)%S*xv (T}
RETURN
END

89

COVRHO10
COVRHO20
COVRHO30D
COVRHO4O
COVRHOS0
COVRHO60
COVRHO70
COVRH080
COVRH090
COVRH100
COVRHI10O
COVRH120
COVRH130
COVRH140
COVRH160
COVRH160
COVRH170
COVRH180
COVRH190
COVRH200
COVRH210
COVRH220
COVRH230
COVRH240
COVRH250
COVRH260
COVRH270
COVRH288
COVRH290
COVRH300
COVRH310
COVRH320
COVRH330
COVRH340
COVRH3ED
COVRH360
COVRH370
COVRH380
COVRH390
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SUBROUTINE COV2RI{U,N)

_TO CONSTRUCT THE UPPER TRIANGULAR CHNLESKY FACTOR OF A
POSITIVE SEMI-DEFINITE MATRIX. BOTH THE INPUT COVARIANCE
AND THE OUTPUT CHOLESKY FACTOR {SQUARE ROOT) ARE VECTOR
STORED. THE OUTPUT OVERWRITES THE INPUT,

COVARIANCE (INPUT) =UXU*¥T

(U 1S OUTPUT) .

IF THE INPUT COVARIANCE 1S SINGULAR THE QUTPUT FACTOR HAS

ZERO COLUMNS.,
UINx(N+1}/2)

N

COGNIZANT PERSONS?

CONTAINS THE INPUT VECTOR STORFD COVARIANCE
MATRIX (ASSUMED POSITIVE DEFINITE) AND ON OUTPUT
IT CONTAINS THE UPRER TRIANGULAR SOUARE ROOT
FACTOR,

DIMENSION OF THE MATRICES INVDLVED

GeJ.BIERMAN/MW . NEAD (JPL» FFBe 1977

IMPLICIT DOUBLE PRECISION (A~Hr0=2Z)

DIMENSION U(1)
ZERO=0,0
ONE=1.
JUSNx(N+1) /2

DO 5 J=Ns21=1

IF (U{JJ) oLT+ZERO) U(JJI=ZERD
UlJJi= SERTU(JIIY)

ALPHAZZERO

IF (UGJJ) «GT+ZERD) ALPHA=ONE/U(JJ)

KK=0
JUN=JJ=J
JMi=J=-1

R NEXT DIAGONAL

DO 4 K=1rJM1

UGJJIN+K) =

ALPHA®U (JUN+K) B JUN+K=K+ )

SSUGJUNHK)
D0 3 I=1+K

UIKK+TY=U(KK+T ) =S { JUN+T)

KK=KK+K
JJ=JJN

fd KK+1=(TK)

IF (U(1).LT«ZERO} U(1)=ZERD

U{1)= s@RT(U(1)})

RETURN
END

90

COV2R010
COV2R020
COV2RrR030
COV2R040
Cov2RrRNS50
COV2R060
CoOV2RrR070
COV2RNEB0
COV2RN90
COV2R100
COV2R110
coy2r120
COV2R130
COV2R140
COV2R1E0
COV2R160
COV2R170
COV2R180
COV2R190
Covar200
cov2zr210
CovV2R220
CoveR230
COV2R240
COV2R250
COV2R260
cay2r270
COV2R280
COV2R290
CoOV2aRX00
COV2R310
COV2R320
COV2R330
COV2R340
COV2R3SD
COV2R360
CNV2RITO
COVeR380
COV2R390
CnV2R400
COV2R410
cov2rRu20
COV2RL3D
COV2RL40
COV2RYS0
COV2RU60
CoOvV2RrRa70
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SUBROUTINE COV2UD (ureN)

TO OBTAIN THE U=D FACTORS OF A POSITIVE SEMI-DEFINITE MATRIX.
THE INPUT VECTOR STORED MATRIX IS OVERWRITTEM BY THE OUTPUT
U=D FACTORS WHICH ARE ALSO VECTOR STORED.

U(N*(N+1}/2)} CONTAINS INPUT VECTOR STORED COVARIANCE MATRIX.
ON OUTPUT IT CONTAINS THE VECTOR STORED U-D

COVARIANCE FACTORS.

N MATRIX DIMENSIONt MeGE.2

SINGULAR INPUT COVARIANCES RESULT IN OUTPUT MATRICES WITH ZERO

COLUMNS

COGNIZANT PERSONS! 6.,J.BTERMAN/ReA.JACORSON (UPLe FEB. 1677)

IMPLICIT DOUBLE PRECISION (A=HrO0=Z)

DIMENSION U(1}

2=0.D0
ONE=1.D0
NONE=1

JJ=N*({N+1) /2
NP2=N+2
DO 50 {=2¢N
J=NP2=L
ALPHA=Z
IF (UlJJ) «GE.ZY GO TO 10
WRITE (69100) JrU(JID)
Ut =2z
IF (UlJJ) +6T.2) ALPHASONE/ZU(JJ)
NNARLN
KK=0
KJ=JJ
JMi=g=-1
DO 4g K=1rJM1
KJz=KJ+1
BETA=U{KJ)
UIKJI=ALPHAXU{K )
TJ=Jdd
TK=KK
DO 30 I=1:K
IKZIK+1
IJd=1J+)
U{IK)=U(IK)~BETAXU(IY)
KKSKK+K
CONTINUE
Ir (U(1).GE.Z2} GO TO 60
WRITE (6¢100) NONE» U(1)
u{ii=z
RETURN

9L
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covzuolo
covauo2d
covaun3o
covauey0
covauns0
covaune0
covaua7l
covauoso
covauego
covauiol
covayuilo
covaui120
covau13o
cov2u140
covzauilso
covau160
covaulL7o
covau180
covaui90
covau200
covau210
covzu220
cov2u230
covayay0
covau250
covau260
covauz70
covau2s0
govau290
covausoo
cova2u310
covzu3a0o
covau3lo
covau340
covau3so
COV2U360
covay37o
cov2u3so
covau3on
covauuo0
covauyio
covauu20
covauy3o
covauuyd
COV2U4S0
covauseéd
covauu70
covauuso
covaus9ao
covauseo
covausio
covays20
covaus3o
covausyo
covauss0


http:ONE=l.DO

100 FORMAT (1HOs20Xs* AT STEP',TI4r'DIAGONAL ENTRY ='rE12.4) covause0
END cnvays70

92
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SUBROUTINE C2C (CeICrL1eNAMIPL2rNAM2) c2en0000
c2Cc00n10
SUBROUTINE TO REARRANGE THE ROWS AND COLUMNS OF MATRIYX c2c00n20
C{LirL1) IN NAM1 ORDER AND PUT THE RESULT 1IN c2c000390
C{L2sL2) IN NAM2 ORDER. ZFRO COLUMNS AND ROWS ARF c2c00040
ASSQOCIATED WITH oUTPUT DEFINED NAMES THAT ARE NOT CONTAINED c2c00050
IN NAML, C2CON060
ca2coonTo
ciLLrLl) INPUT MATRIX c2c00080
I1c ROW DIMENSION OF Cr IC.GE<L=mMAXIL1,L2) c2¢00090
L1 NO., oF PARAMETER NAMES ASSOCYIATED WITH THE IMPUT C C€2€00100
NAM1 (L) PARAMETER NAMES ASSOCTATED WITH £ ON INPUT. (@NLY C2C00110
THE FIRST L1 ENTRIES APPLY TO THE INPUT ) ca2co012n
iz NO. OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT CC2C00130
NAM2 (L.2) PARAMETER NAMES ASSOCIATED WITH THE OUTPUT ¢ c2c001ug
cC2Cc0015
COGNIZANT PFRSONS! G6,J.BIERMAN/M.W.NEAD (JPL» SEPT. 1676) czcon1a0
c2C00170
IMPLICIT DOUBLE PRECISION (A=H:D=2) c2C00180
DIMENSION C(ICs1)y NAMICL), NAM2({1) c2conion
caconend
ZERO=0, ¢c2c00210
L=MAX(L1:L.2) C2c00220
IF (L+LE.L1) 60 TO 5 czCco0230
NM=L1+1 cacno2u0
DO 1 K=NMrL - C2c00250
NAM1({K)= ZERQ f ZERO REMAINING NAML LOCNS C2C00260
DO 90 J=irL2 €2c00270
DO 1lg I=1.L c2c0n280
IF (NAM1(I).EQ.NAMZ{J)) GO TO 30 c2C00290
CONTINUE c2con3n0
60 To 90 c2¢c00%10
IF (I.EQed) GO To 90 c2c00320
DO 4p K=1,L C2C003T30
H=¢ (K eld) @ INTERCHANGE COLUMNS T AND J coco03sn
CIKrJI=C(K, 1) c2c00350
ClKrII=H ca20cn0360
DO 8p K=1ii cacooz7n
Hzc (JrK) A INTERCHANGE ROWS I AND J C2C00380
ClJrKIZC (] 2K) c2c0n390
Cl{TKI=H crcoouno
NM=NAM1{1) B INTERCHANGE LARELS I AND J crcoputo
NAML (I)=NAML () cacnnu20
NAML (J)=NM cocony3o
CONTINUE cocoou40
C2C00450
FIND NAMZ2 NAMES NOT IN NAM1 AND SET CORPESPONDING ROWS AND co2coou60
COLUMNS TO ZERO c2co0u70
CPCO04R0
DO 120 J=1sL2 c2c00490
DO 190 I=1,L czc00500
1F (NAM1(I).E@.nAM2{J}) GO TO 120 crco0510
CONTINUE C2¢00520
DO 110 K=1,L2 cPCconNs30
C{JrK)=ZERO cecoosun

93
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C{KrJI=ZERO
CONTINUE

RETURN
END

94

c2co0550
c2c005610
€2c00570
caco0580
€C2C00590
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SUBROUTINE HHPOST(S»WeMROWNPOWINCOLPV)

TRIANGULARIZES RECTANGULAR W BY POST MULTIPLYING IT BY AN
ORTHOGOMAL TRANSFORMATION Te THE RESULT IS IN S

SINROW* (NROW+1)/2) oUTPUT UPPER TRIANGULAR VECTOR STORED SQRT
COVARIANCE MATRIX

W{NROW,NCOL) INPUT RECTANGULAR SQRT COVARTANCE MATRIX
(W IS DESTROYED RY COMPUTATIONS)

MROW ROW DIMENSION OF W

NROW NUMBER OF ROWS OF W TO BF TRTANGULARIZED
AND THE DIMENSION OF S (NROW.GT.1)

NCOL NUMBER OF COLUMNS OF W (NCOL.GE.NROW)

V{NCOL) WORK VECTOR

COGNIZANT PERSONS! GeJ+BIERMAN/M.W.NEAD (JPL» NOV.1977)
IMPLICIT DOUBLE PRECISION
DOUBLE PRECISION SUM/BETA
DIMENSION S(1),W(MROWsNCOLY #VINCOL)

{A=H10D=2)

ZERO=0,D0
ONE=1.D0

JCOL=NCOL.
NSYM=NROW* {NROW+1) /2
JC=NROY+2
DO 150 L=2+NROW
IROW=JC~L
SUM=ZERO
DO tp0 K=1,JCOL
VIKI=W{TROWK)
SUM=SUM+Y (K ) *%2
SUM=DSQRT (SUM)
IF (V(JCOL}«GT+ZERO)} SUMz=SUM

S (NSYM)=SUM
NSYM=NSYM=IROW
V{JCoL)=V{JcoL)=suM
IF (SUMJNE.ZERO) RETAZ=ONE/{SUM*V(JCOL))
T(ORTHOG, TRANS,)=1=~BETA*VkVkxT
IROWM1=IROW=1
JCoLMl=JCoL~1
DO 140 I=1rIROWML
SUM=ZERO
DO 110 K=1,J4COL
SUMZSUM+Y (K ) *y (T 1K)
SUM=BETA*SUM
DO 120 K=1r.JCOLML
WlIPKI=W{ TP K)=SUMXY (K]
S{NSYM+II=W{IrIROW) «“SUM%V (IROW)
JCoL=JCoLM1

JC=NCOL-NROW+1

SUM=2ERO
UM=2ER 95

R DIAGOMAL ENTRY (JcolLeJCOL)

HHPOSN10
HHPOSN20
HHPOSN30
HHPOSN40
HHPOSN50
HHPOS060
HHPOS070
HHPOSN80
HHPOS090
HHPOS100
HHPOS 110
HHP0S120
HHPOS130
HHPOS140
HHPOS 150
HHPO0S160
HHP0S170
HHP0S180
HHP0S190
HHP0S200
HHP0S210
HHP0OS220
HHP0S230
HHPOS240
HHP0S250
HHP0S260
HHP0S270
HHPOS 280
HHP0S290
HHPOS300
HHPOS310
HHP0S320
HHPOS330
HHPOS 340
HHPOS350
HHPOS 360
HHPOS 370
HHPOS380
HHP0S390
HHPOS400
HHPOS410
HHPOSY20
HHPOS430
HHPOS440
HHPOS450
HHPOS460
HHPOSU70
HHPOSUB0
HHPOS490
HHPOS500
HHPOS510
HHPOS520
HHPOS%30
HHPOS540
HHPOS5E0


http:ZERO=O.DO

150

No 160 J=1+rJC
SUMZGUM+W{ T »J) ¥%2
S(1)=Ds@RT{SUM)

RETURN
END

96

HHPOS560
HHPOSS70
HHPOS580
HHPOS590
HHPOS600
HHP0OS610
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SUBROUTINE INF2R (ReN)

TO CHOLESKY FACTOR AN INFORMATION MATRIX

COMPUTES A LOWER TRIANGULAR VECTOR STOR
ED CHOLESKY FACTORIZATY
gF A POSITIVE SEMI-DEFINITE MATRIX. R=R(**T)R: R UPPER ?RIANGUEﬁR
OTH MATRICES ARE VECTOR STORED AND THE RESULT OVERWRITES '

THE TINPUT

RIN%(N+1)/2) ON INPUT THIS IS A POSITIVE SFMI-DEFINITE
(INFORMATION) MATRIX, AND ON OUTPUT IT IS THE
TRANSPOSED LOWER TRIANGULAR CHOLESKY FACTOR. IF THE
INPUT MATRIX IS SINGULAR THE OUTPUT MATRIX WILL

HAVE ZERO DIAGONAL ENTRIES

N DIMENSION OF MATRICES INVOLVED: NJ.GE.2

COGNIZANT PERSON: G,J.BIERMAN/M.W.NEAD
IMPLICIT DOUBLE PRECISION (A~H:r0-2)
DIMENSION R{1)

Z=0.D0

ONE=1.p0

JJ=0

NN=N*(N+1) /2

NMI=N=y

00 10 J=1,NM1
JJd=JJgtd N Jd=
IF (RIJJYGESLZ)Y 60O TO 5 JIE e
WRITE (6:20) JeRUJI
R{JIN=Z
R{JJI= SORT(R(JN))

ALPHA=Z
5§ égijd)-GT.Z) ALPHA=ONE/R (JJ)
=NN B JK=
Spim el JK=(JrK)
JIS=JUK o JIs={JrI) START

NPJP1=N+JP1
DO 1o L=JP1enN
K=nNPJP1=L
JK=JK=K
RIJKIZALPHAXR (JK)
BETA=R (JK)
KTI=NN+K
JI=JIS
NPK=N+K
DO 10 M=KsN
T=NPK=-M
KI=KI~I
JI=SJI=T
97

{JPL/FEB.1977}

ORIGINAL PAGE IS
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INF2R010
INF2R020
INF2RO30
INF2ROU0
INF2ROS0
INF2R060
INF2R070
INF2ROB0O
INF2R090
INF2R100
INF2R110
INF2R120
INF2R130
INF2RI140
INF2R150
INF2R160
INF2R170
INF2R180
INF2R190
INF2R200
INF2R210
INF2R220
INF2R230
INF2R240
INF2R250
INF2R260
INF2R2T0
INF2R280
INF2R290
INF2R300
INF2R310
INF2R320
INF2R330
INF2R340
INF2R350
INF2R360
IMF2R370
IMNF2R380
INF2R320
INF2RE00
IMF2RU1D
INF2R420
INF2RY 30
INF2RU40
INF2R450
INF2RU60
INF2R4TO
INF2R480
INF2R490
IMF2RS500
INF2R510
INF2R520
INF2R530
INF2R540
IMF2R550


http:ONE=I.DO

10 . RIKII=RAKTII=R(JI)*BETA - INF2RS60

c INF2RS570
IF (R{NN).GE.Z) 60 TO 15 IMF2R580

WRITE (6+20) NeRINN) INF2RE90
RINN)=Z INF2R600

15 R{NN}= SQRT(R(NN)) IMNF2RA10
RETURN INF2R620

c - INF2RA30
20 FORMAT (1H0,20Xr"' AT STEP'» T4 'DIAGONAL ENTRY ='sE12.U INF2R640

1 vy IT 15 RESET TO ZERO') INF2RE50

END ‘ IMF2READ

928
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SUBROUTINE PERMUT {ArTArIR,LIPNAMI,L2/NAM2)

SUBROUTINE TO REARRANGE PARAMETERS OF A(IR,L1)» NAM1 ORDER

TOo a{IReL2)» NAM2 ORDER.

ZERO COLUMNS ARE INSERTED

CORRESPOMDING TO THE NEWLY DEFINFD NAMES,

A(IRIL)
IA
IR
L1

NAM1 (L)

L2

NAM2

INPUT RECTANGULAR MATRIX» L=MAX(L1+L2)

ROW DIMENSION OF Ar TALGE.IR

NUMBER OF ROWS OF A THAT ARE T0 BE REARRANGED
NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE INPUT
A MATRIX

PARAMETER NAMES ASSOCIATED WITH A ON INPUT

{ONLY THE FIRST L1 ENTRIES APPLY TO THE INPUT A)
NAM1 15 DESTROYED RY PFRMUT

NUMBER OF PARAMETER NAMES ASSOCIATED WITH THE OUTPUT
A MATRIX

PARAMETFR NAMES ASSOCIATED WITH THE OUTPUT A

COGNTZANT PERSONS?

IMPLICIT DCUBLE PRECISION (A=H/»0=7Z)
DIMENSION A(IA»1}s NAMI(1), NAM2(1)

ZERO=0,

LEMAX{L1,L2)

IF (L+LE.L1) GO TO s0
NM=L 1+]1

-D0 40 K=NMeL

NAMI (X)=0
Do 100 J=ieL2
D0 6g I=1.L
IF (NAMI{(I).EG.nNAM2(J)) GO TO 65
CONTINUE
GO TO 100
CONTINUE
IF (1+EQ«J) G0 TO 100
DO 7p K=1rIR R INTERCHANGE CoLS I AND J
W=A(Krg)
Algs NZAKT)
AlKe I =W
NM=NAM1(T)
NAMICEY=NAMI LD
+ NAML(J)=NM
CONTINUE

R ZERC REMAINING NAMI LOCS

B INTERCHAMGE T AND J COL. LABFLS

REPEAT TO FILL NEW COLS
DO 2p0 J=1,L2
DO 160 I=1.L
IF (NAML1{I).,E0.NAM2{J}} GG TO 200
CONTINUE
DO 170 K=1.1IR
A{Ke J)=ZERO
CONTINUE

RETURN

END
99

GasJRIERMAN/MeW  NEAD (UPL» SFPT.: 1976)

PFRMUBLO
PERMUDB2D
PERMUQ30
PERMUN4D
PFRMUOS0
PERMUNGD
PERMURTO
PERMUNSO
PFRMUDSO
PFRMU100
PERMU110
PERMU1 20
PERMUL 30
PERMU140
PERMU150
PERMU160

‘PERMU170

PERMU180
PERMU190
PERMU20D
PFRMU210
PERMU220
PERMUZ30
PERMU2U4D
PERMU250
PERMUZ261D
PFRMU270
PERMU280
PERMU290
PFRMUIZ00
PERMU310
PERMU320
PERMU330

PERMU340

PERMU350
PERMU360D
PERMU370
PERMU380
PERMU390
PERMU4OU
PERMUL10

‘PERMUL20

PERMUL3E
PERMUL 40
PERMU4S0
PFRMULGD
PERMULTC
PERMULB0
PERMULS{
PERMUS00
PERMUSLO
PERMUS2C
PERMUS3D
PERMUSL0
PERMUSS0
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SUBROUTINE PHIU(PHI »MAXPHI ¢ TRPHI» ICPHY + U N PHIUYMPHIU)

PHIUODLD
PHIVBON20

THIS SUBROUTINE COMPUTES W=PHI*U WHERE PHI IS A RECTANGULAR MATRIXPHIUON3D

WITH IMPLICITLY DEFINED COLUMNS OF TRAILING ZEROS AND U IS A
VECTOR STORED UPPER TRIANGULAR MATRIX

PHI (IRPHI+ICPHI) INPUT RECTANGULAR MATRIX:» TRPHT +LE +MAXPHI

MAXPHI ROW DIMENSION OF PHI

IRPHI NO. ROWS OF PHI

ICPHI NO. COLS OF PHI

U{N*(N+1)/2) UPPER TRIANGULAR VECTOR STORED MATRIX
N DIMENSTION OF U MATRIX (ICPHI.LE«N)

PHIU(IRPHI#N} QUTPUT» RESULT OF 'PHI*Us PHIU CAN
OVERWRITE PHI
MPHIU ROW DIMENSION OF PHIU

COGNIZANT PERSONS: G.J.BIERMAN/M WNEAD (JPLe FEB.1978)
JMPLICIT DOUBLE PRECISION (A=He0~Z)

‘DIMENSION PHI(MAXPHI»1)rU(1) »PHTU(MPHIU, 1)

DOUBLE PRECISION SUM '

Do 10 31=1+IRPHI
PHIUCT,1)=PHI(1,1)

NP2=N+2
KJS=N*(N+1)/2

DO ‘40 L=2sN

CJENPa=L
KJISTKIS=J

AM1=J-1

.DO 30 1=1,IRPHI

SUM=PHT (s

' IF CJWLECICPHI) 60 TO 15

SUM=0.p0
JML=TCPHI
DG-20 x=1,JM1
SUM=SUMHPHI (T »K ) *¥U{KJS+K}
PHIU(I,J)=SUM

CONT INUE

RETURN
END

100

PHIUONAD
PHIUNDO5D
PHIUONGD
PHIUCO7O
PHIUGNAO
PHIUONGO
PHIUOL1NO
PHIUQ110
PHIUG120
PHIU0130
PHIUO14O
PHIU0150
PHIU0160
PHIL0170
PHIUG180
PHIU0190
PHIU0200D

“PHIUN21R

PHIU0220
PHIYD230
PHIU0240
PHIUO0250
PHTU0260
PHIU0270
PHIU0280
PHIU0290
PHIL0300
PHIUN310
PHIU0320

‘PHIUO33D

PHTUO340
PHIU0350
PHIU04%60
PHIUO370

© PHIUD380

PHILO390
PHIUO400
PHIUO410
PHIU0420

'PHIU0430
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SUBROUTINE RA {(ReNrArMAXA?TA+JAPRA/MAXRAINRA)

TO COMPUTE RA=R*A

RAOCOD10
RAC00020
RADOOO30
RAOROO40

WHERE R IS UPPER TRIANGULAR VECTOR SUBSCRIPTED AND OF DIMENSION NrRAD0DOSO

A HAS JA COLUMNS ANp IA ROWS.

IF IALT.JA THEN THE BOTTOM JA=IA

ROWS OF A ARE ASSUMED TO BE IMPLICITLY DEFINED AS THE
BOTTOM JA=IA ROWS OF THE Ja DIMENSION IDENTITY MATRIX.
ONLY NRA ROWS OF THE PRODUCT R*A ARE COMPUTED.,

R(N*(N+1)/2)

N
A(IA
MAXA
IA
JA
RA(N

MAXR
NRA

COGNIZANT PERSONS! Ge¢J.BIERMAN/M,W,.NEAD

sJA}

RAN)
A

UPPER TRIANGULAR VECTOR STORED INPUT MATRIX
DIMENSION OF R

INPUT RECTANGULAR MATRIX

ROW DIMENSION OF A

NUMBER OF ROWS IN THE A MATRIX (TA+LE.MAXA}
NUMBER OF COLUMNS IN THE A MATRIX

OUTPUT RESULTIMG RECTANGULAR MATRIX.

RA=A 1S5 ALLOWED

ROW DIMENSION OF RA

NUMBER OF ROWS OF THE PRODUCT R*A THAT ARE COMPUTED
{NRALE+MAXRA)

(JPLy» FER.1978)

IMPLICIT DOUBLE PRECISION (A-He0=2Z)
DIMENSION R(1)rA(MAXArL)rRA(MAXRA,L)
DOUBLE PRECISION SUM

IUSIA*(TA+1)/2

Do 3
I1

0 J=1lrJA
=0

B IJz=JJIA)

@ TO RE REMOVED IF JJ(I)} IS USED

DO 2p I=1:NRA

‘RA

IF (JeGT+IA) IJ=IJ+J

II=11+1

B II=(1.1)=4yJiT)

1T IS MORF EFFICIENT TO USE A PRESTORED VECTOR OF NIAGONALS
WITH JUCII=I*(TI+1)/2y AND TO SET IISJJ(I) AND IJ=Jud(J)

SUM=0.D0

IF (I.GT.IA) GO TO 15

IK=IT

DO 10 K=Y

IA

SUMZSUM4R{IK) %A (K )

IKZIK+K

IF {(JeGTWTALANDTWLEJ) SUMZSUMAR(TJHT)

(I,J)=SUM

RETURN

END

B IJ=JgJdi{J)

im

RADOOOBD
RANOONTO
RADOGDSO
RANOODS0
RAODOIOD
RADDBD11D
RADDO120
RAD0O0130
RADOD1&0
RABD0150
RADCO160
RADOO170
RADOD180
RADDOD1S0
RASOO20D
RADOD210
RADOO220
RADDO230
RADCO240
RADQO250
RANGO260
RAQOO27D
RAQNN280
RAOGO290
RAODO300
RAOGO3L0
RAOCO320
RAQGO330
RAQOOZ40
RAD00350
RAOOOZ60
‘RAQOOZTO
RAODOZAD
RADODOX90
RAOBO4OD
RAODOH1D
RAOOOUL20
RADONL3N
RAOOQLUD
RAGOOLSD
RADDOLAD
RAQOOLTO
RAOOO4AD
- RADDO490
+RAQODS00
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SUBROUTINE RANK1 (UIMrUOUTsN2CaV)
STABLE U=D FACTOR RANK 1 UPDATE
(UOUT) *DOUT* (UOUT ) #*  T={UIN) ¥DIN* (UIN) #xT+CRVRVE*T
UINI{N®:(N+1}/2) INPUT VECTOR STORED POSYITIVE SEMI=-DEFINITE Ul=D
ARRAY» WITH D ELEMENTS STORED ON THE DIAGONAL

UOUT (Nx(N+1)/2) QUTPUT VECTOR STORED POSITIVE (POSSIBLY) SEMI=
DEFINITE U=-D RESULT. UQUTSUIN 1S PERMITTED

N MATRIX DIMENSIONy N.GF.2
c INPUT SCALARe SHOULD BE NON=NESATIVF
C IS DESTROYFD DURING THE PROCESS
VIN) INPUT VECTOR FOR RANK ONE MODIFICATTION.

V IS DESTROYED DURING THE PROCESS
COGNIZANT PERSONS: G+JoBIERMAN/M,W,NEAD (JPL+SEPT.1977)

IMPLIC1T DOUBLE PRECISION (A-HrO0=Z)
DIMENSTION UIN{1)» vourt(il, V(1)
DOUBLE PRECISION ALPHA» BETA» S+ Dy EPS, TST

DATA EPS/0D0/¢ TST/40625D0/
IN SINGLE PRECISION EPSILON IS MACHINE ACCURACY

TST=1/16 IS USED FOR RANK1 ALGORITHM SWITCHING

2z=0.,D0

JUmNk{N+1) /2

IF (CepT+Z2) GO TO 4

DO 1 J=1rJJd
UOUT(JI=UIN(Y)

RETURN

NP2=N+2

DO 70 L=2'N
JENP2-L
s=viy)
BETA=C*S
D=UIN{JJ)+BETAXS
IF (D+GT«EPS) GO TO 30
IF {(D.GE+Z)Y GO TO 10
WRITE (6r100)
RETURN
Ja=dyg=~J
WRITE (60110)
DO 2p K=1:J
UCUT (JJ+K}=Z
G0 To 70
‘BETA=BETA/D
ALPHA=UIN(JLY /D
C=ALPHA*C
UouT (JJ)=D
Jd=Jdyg=J

JMiz =1 102

RANK1010
RANK 1020

" RANK19030

RANK104D
RANK1050
RANK1060
RANK1070
RANK1080
RANK1090
RANK1100
RANK1110
RANK1120
RANK1130
RANK1140
RANK11590
RANK1160
RANK1170
RANK1180
RANK1190
RANK1200
RANK1210
RANK1220
RANK1230
RANK12H0
RANK1250
RANK1260
RANK1270
RANK1280
RANK1290
RANK1300
RANK1310
RANK1320
RANK1330
RANK1340
RANK 1350
RANK1360
RANK1370
RANK1380
RANK 1390
RANK14090
RANK1410
RANK1420
RANK1430
RANK 1440
RANK1450
RANK 1460
RANK1470

"RANK 1480

RANK1490
RANK1560D
RANK1510
RANK1520
RANK1530
RANK1540
RANK 1550
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50

60
70

c

)KH}HQAlJPEJ}E-Ei
« poor QU

IF (ALPHAJLLT.TST) GO TO 50

DO &40 I=1lruMi
VI =vIY)=SkUIN(JJI+T)
UOUT(JJ+II=BETA*V{IY+UIN(JJ+T)

60 To 70

DO 6p I=1l,JMi1
=Y (1Y =SxUTNT{UJ4T)
UOUT(JJ+T I=ALPHA*UIN{JU+T)+BETAXV(T)
v(i)=D

CONTINUE

UoUT{LISUIN(LI+CkV (1) *%2
RETURN

RANK1560
RANK1S70
RANK 1580
RANK1590
RANK1600
RANK1610
RANK1620
RANK 1630
RANK1640
RANK 1650
RANK1660
RANK16TO
RANK1680
RANK1690

100 FORMAT (1H0O»10Xs'* % x ERROR RETURN DUE TO A COMPUTED NEGATIVE COMRANK1700

110 FORMAT (1HO#10X»'* % * NOTE: U~D RESULT IS SINGULAR * * *')

1PUTED DTAGOMAL IN RANK1 * % *t)
END
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RANK1710
RANK1720
RANK1730
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SUBROUTINE PCOLRD(S!MAXS!IRSPJCS!NPSTRTvNPvFMlRW'ZW!V!SGSTAR) RCOLROlg
RCOLRO2

TO ADD IN PROCESS NOISE EFFECTS INTo THE SQUARE ROOT RCOLRO30
INFORMATION FILTER» AND TO GENERATE WEIGHTING COFFFICIENTS RCOLRNLDO

FOR SMOOTHING. IT IS ASSUMED THAT VARIABLES X(NPSTRT): RCOLROSC
X{NPSTRTH+1) r s ey X{NPSTRT+*NP=1} ARE COLORED NOISE AND THAT RCOLRNGO
EACH COMPONENT SATISFIES A MODEL EQUATION OF THE FORM RCOLROTO
X(SUB)(J+1)=EM*X(SUB)(J)+W(SUB)(J). FOR DETAILS: SEE RCOLROSBO
tFACTORIZATION METHONS FOR NISCRETE SEQUENTIAL FSTIMATION', RCOLRDIO
GeJoBIERMANs ACADEMIC PRESS (1977) RCOLR10D

FOR SMOOTHING» REMOVE THE COMMENT STATEMENTS ON THE 3 LINES RCOLR110

OF *'SMOOTHING ONLY' CODE. THE SIGNIFICANCE OF THE SMOOTHING RCOLR120
MATRIX IS EXPLAINED IN THE FUNCTIONAL DESCRIPTION. RCOLR130

i RCOLR140

S{IRS*JCS) INPUT SQUARE RoOOT INFORMATION ARRAY. OUTPUT COLORED RCOLR150
NOISE ARPRAY HOUSERD HERE T00. IF THERE 15 SMOOTHING, RCOLR160

NR ADDITIONAL ROWS ARF IMCLUDED IN S RCOILR170

MAXS ROW DIMENSION OF S« IF THERE ARE SMOOTHING COMPUTA- RCOLR180
TIONS IT IS NECESSARY THAT MAXS.GE«IRS+NP BECAUSE RCOLR190

THE BOTTOM NP ROWS OF S HOUSE THE SMOOTHING RCOLR200

INFORMATION RCOLR210

IRS NUMBER OF ROWS oF S (.LE* NUMBER OF FILTER VARIARLES) RCOLR220
{IRS+GE.2) ACOLR230

JCS NUMBER OF COLUMNS OF S (EQUALS NUMBER OF FILTER RCOLR240
VARIABLES + POSSIBLY A RIGHT SIDE)s WHICH CONTAINS RCOLR250

THE DATA EQUATION NORMALIZED ESTIMATE (JCS.GE.1} RCOLR260

NPSTRT LOCATION OF THE FIRST COLORFD NOISE VARIABLE RCOILR270
(1., LE.NPSTRT.LF,JCS) RCOLR280

NP NUMBER OF CONTIGUOLUS COLORED NOTSE VARIABLES (MNP,GE.1)RCOLR290
EM{NP) COLORED NQISE MAPPING COEFFICIENTS RCOLR300
(OF EXPOMENTYAL FORM» EMSEXP(=DT/TAUY) RCOLR310

RW (NP} RECIPROCAL PROCESS NOISE STANDARD DEVIATIONS RCOLR320
{MUST BE POSITIVE) RCOLR330

ZW (NP) ZW=RWxy=-ESTIMATE (PROCESS NOISE ESTTMATES ARE RCOLR340
GENERALLY ZERO MEAN), WHEN ZW=p ONF CAN OMIT THE RCOLR350

RIGHT HAND SIDE COLUMN. RCOLR36D

VIIRS) WORK VECTOR RCOLR370
SGSTAR(NF) VECTOR oF SMOOTHING COEFFICIENTS. WHEN THE SMOOTWING RCOLR380
CODE IS COMMENTED OUT SGSTAR IS NOT USED. RCOLR390

RCOLRLOD

COGNIZANT PERSONS? GeJ.BIERMAN/M,W.NEAD (JPLe FFB,1978) RCOLR410
RCOLRL2O

IMPLIC1T DOUBLE PRECISION (A=H»D=Z) RCOLR43D
DIMENSTION S{MAXSrJCS) rEMINP) rRWINP) »ZW{NP)+ V{IRS)}»SBSTAR{L) RCOLRYYO
DOUBLE PRECISION ALPHA+SIGMA'BETA»GAMMA RCOLR4530
RCOL RY6E0

ZERO=0,D0 RCOLR4TO
ONE=1.Dn0 RCOLRuU&0
NPCOL=NPSTRT @ COL NO oF COLORED NOISE TERM TO BE OPERATED ON RCOLR49D
RCOLRS00

Do 70 JCOLRD=1,NP RCOLRS10
ALPHA==RW (JCOLRD) *EM(JCOLRD)} RCOLRS20
SIGMA=ALPHA®%? RCOLRS30
DO 1p K=1+IRS RCOLRS40
V(gI=S{K+NPCOL) @ FIRST IRS ELEMEMTS OF HOUSEHOLDER RCOLRBSN

104
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40

50

*
60
*

70

*x K * 4%

SGSTAR(JCOLRD)=SIGMA

* k X ¥

BETA=ONE/ (STGMA%ALPHA)

TGINAL
O P00

TRANSFORMATION VYECTOR
SIGMAZSIGMA+V (K) %%2
SIGMA=DSQRT{SIGMA)
ALPHA=ALPHA=SIGMA

PAGE 18
quAlJﬂﬁﬁ

B LAST ELEMENT OF HOUSEHOLDER
TRANSFORMATION VECTOR

® USED FOR SMOOTHING ONLY
B HOUSEHOLDER=I+RETA%V*Y*%T

RCOLRS60
RCOLRSTC
RCOLR580
RCOLRS90
RCOLR600
RCOLR&10
RCOLR620
RCOLR630
RCOLR640

HOUSEHOLDER TRANSFORMATION DEFINED, NOW APPLY IT TO S T.E.60 LOOPRCOLR6ESC

DO 60 KOL=1,JCS
IF (KOL.NE.NPCOL) 60 To 30
GAMMA= RW{JCOLRDY*ALPHAXRETA

* & * ¥

S{IRS+JCOLRD*NPCOL)I=RW (JCOLRD) +GAMMA *AL PHA

* k %k x

DO 20 K=1+IRS

S (KeoNPCOL)=GAMMARV (K}
60 TO 60

GAMMA=ZERO

IF {KOL.EQ+JCS) GAMMA=ZW(JCOLRD)*ALPHA

IF ZW ALWAYS ZERO»

DO 40 K=1,IRS
GAMMAZGAMMA4S (K2 KOL ) %V (K)
GAMMA= GAMMAXBETA

BO 50 K=1+IRS
SIK'KOLY=S (K KOL Y +GAMMAXVIK)

* ¥ Xk x

S{IRSHJCOLRD»KOL ) =GAMMA*ALPHA

*

* & %

CONTINUE

* Kk %

@ FOR SMOOTHING ONLY

COMMENT OUT THE ABOVE IF TEST

8 { TRS+JCOLRD * JCS) =S ( IRS+JCOLRN JCSI+2W { JCOLRD)
THE ABOVE IS FOR SMOOTHING ONLY

1F Z¥W IS ALWAYS ZERO, COMMENT QUT THE ABOVE STATEMENT

* ke ok oW

NPCOL=NPCOL+1

RETURN
END
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@ SMOOTHING ONLY

RCOLRE6D
RCOLR6TO
RCOLR&B0
RCOLR690O
RCOLR700
RCOLR710
RCOLR720
RCOLR730
RCOLR740
RCOLR7S0
RCOLR760
RCOLR770
RCOLR780
RCOLR790
RCOLR80O
RCOLRS10
RCOLR820
RCOLRB30
RCOLRBY40
RCOLR850
RCOLRB60
RCOLRAT0
RCOLRBBO
RCOLRB90
RCOLRIO0
RCOLR910
RCOLRG20
RCOLRA30
RCOLROUD
RCOLR9S0
RCOLRAED
RCOLRG70
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- SUBROUTINE RINCON (RINeNrROUT:#CNB}

TO COMPUTE THE INVERSE OF THE UPPER TRIANGULAR VECTOR STORED
INPUT MATRIX RIN:AND STORE THE RESULT IN ROUT. (RIN=ROUT IS
PERMITTED)} AND TO COMPUTE A CONDITION NUMBER ESTIMATE.
CNB=FROB«NORM(R) *FROB +NORM{R*%=1) ,

THE FROBENIUS NORM 1S THE SQUARE ROOT OF THE SUM OF SOUARES
OF THE ELEMENTS. THIS CONDITION NUMBER 8O0UND IS USED AS

AN UPPER BOUND AND 1T ACTS AS. A LOWER BOUND ON THE ACTUAL
CONDITION NUMBER OF THE PROBLEM. (SEE THE BOOK '"SOLVING LEAST
SQUARES's BY LAWSON AND HANSON)

IF RIN IS SINGULAR» RINCON COMPUTES THE INVERSE TO THE LEFT OF
THE FIRST ZERO DIAGONALes A MESSAGE IS PRINTED AMD THE CONDITION
NUMBER BOUND COMPUTATION IS ABORTED.

RIN(N*(N+1)/2) INPUT VECTOR STORED UPPER TPIAMGULAR MATRIX

N DIMENSION OF R MATRICES, N.GE,2
ROUT(Nx(N+1)/2) OUTPUT VECTOR STORED UPPER TRTIANGULAR MATRIX
INVERSE (RIN=ROUT IS PERMITTED)

CONDITION NUMBEPR ROUND. IF ¢ 1S THE CONDITION
NUMBER OF RIN» THEN CMB/NsLF.C+LE.CMRB

CNB

COGNIZANT PERSONS{ GeJeBIERMAN/M W ,MEAD (JPL!'FER,.1978)

IMPLICIT DOUBLE PRECISION ({A=~He0=Z)
DOUBLE PRECISION RNMeDINVrSUMsRNMOUT
DIMENSTON RIN(1)r ROUT(1)

Zz=0.D0
ONE=1.DO
NTOT=Nx{N+1}/2

RNM=2Z
DO 10 JU=1,NTOT
RNM=gNM+RIN(J) *%x2

REPLACE CALL UTINV (RINsN,ROUT} BY UTINV CODE

IF (RIN(1)sNE.Z) GO TO 20
J=1

WRITE (6:100) Jod

RETURN

ROUT (1) =ONE/RIN(1}

JJ=1
B0 50 J=2¢N
JJoLp=Jdd
JJzJygtd
IF (RIN(JJ).NE+Z} GO TO 30
WRITE (6¢100) Jrd
RETURN
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RTNCO010
RINCOD20
RINCON30
RTNCONLD
RINC0OS0
RINCONGQ
RINCOO70
RINCO0DAD
RINCODS0
RINCO100
RINCO110
RINCO120
RINCD130
RINCO1LD
RINCO150
RINCO16D
RTNCO170
RINC0O180
RINCD190
RINC020D
RINCO2170
RINCO220
RINCD230
RINCD2KD
RINC0O250
RINC0O260
RINC(270
RINC0O280
RINCO29D
RINCO300
RINCO310
RINCO320
RINCO330
RINCO34D
RINCO350
RINCO360
RINCO370
RINC0380
RINCO390
RINCO4LOO
RINCO#1D
RINCO420
RINCO430
RINCO4UO
RINCO450
RINCO460C
RINCO470
RINCO480
RINCO49N
RINCOS00
RINCOS10
RINCDS20
RINCOS3D
RIMNCOSUD
RINCOS50
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30 DINV=ONE/RIN(JJ)
ROUT {JJI=DINV
I1=0
IK=1
JMiz -1
DO S5p I=1l.JM1

TI=I1+1

IK=1I

Sum=2Z

DO 40 K=IrJMl
SUMSSUMHFROUT (IK Y xR IN(JJOLD4K)

40 IK=IK+K
50 ROUT (JJOLD4I Y z=gUMKN TNY
RNMOUT=2

DO 60 J=1+NTOT
60 RNMOUT=RNMOUT+ROUT {J) %2

RNM=DSQRT (RNM*RNMOUT?
CNB=RNM

WRITE {(6:110) RNM
RETURN

RINCO560Q
RINCOS70
RINCO580
RINCOS90
RINCO60DQ
RINC0610
RINC0620
RINCO630
RINCO&4O
RINCOS50
RINCO660
RINCOETO
RINCO680
RINC0690
RINCD700
RINCOD710
RINCG720
RINCO730
RINCO740
RINCO750
RINCOT60
RINCOTTO
RINCO780
RINCO790
RINCBD&00
RINCOSB1D

100 FORMAT (1HO,10Xr'* % % MATRIX IMVERSE COMPUTED ONLY UP TO BUT
NOT RINCDA20
1INCLUDING COLUMN®»T4»? % % % MATRIX DIAGONAL 'ell»' IS ZERO * * *'RINCOA30

2)

RINCOa4LO

110 FORMAT (1HO#»5Xs *CONDITION NUMBER ROUND=?,D18,10+2X» 'CNB/N«LE«CONDITRINCO8S50

1I0N NUMBEReLECNB*¢/)
END
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RINCO860
RINCOBTO
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" DOUBLE PRECISION SUM

SUBROUTINE RI2COV (RINVeN+SIG»COVOUT!KROWIKCOL)

R12C0O010
RY2C00N29

To COMPUTE THE COVARIANCE MATRIX AND/OR THE STANDARD DEVIATIOMSRIZ2C0030

- OF A VECTOR STORED UPPER TRIANGULAR SQUARE ROOT COVARIANCE
MATRIX. THE OUTPUT COVARIANCE MATRIX IS ALSO VECTOR STORFD,

RINY{N*{N+1)/2) INPUT VYFCTOR STORED UPPER TRIANGULAR
COVARIANCE SQUARE ROOT. [(RINVZRINVERSE
IS THE INVERSE OF THE SRIF MATRIX)
N DIMENSION OF THE RINV MATRIX» N.GE.2
SIG(N) QUTPUT VECTOR OF STANDARD DEVIATIONS
.COVOUTIN%:{N+1)/2) QUTPUT VECTOR STORED COVARIANCF MATRIX
(COVOUT = RINV IS ALLOWED)
KROW «GT.0 COMPUTES THE COVARTANCE AND SIGMAS
CORRESPONDING TO THE FIRST KROW VARIABLES
OF THE RINV MATRIX,
LTe0 COMPUTES ONLY THE SIGMAS OF THE FIRST KROW
VARTABLES OF THE RINV MATRIX.
RINV.
+yEQ0 MO COVARIANCE:» BUT ALL SIGMAS (F+G. USE

3 N ROWS OF RINV)e

+ KEoL NOs OF COLUMNS OF coVolUT THAT ARE COMPUTED
- IF KCOL.LE+D THEN KCOL=KROW. IF KROW.LE,O
THIS INPUT 15 IGNORED.

COGNIZANT PERSONS! G+J.RIERMAN/MeW.NEAD (JPLs MARCH 1978)
IMPLICIT DOUBLE PRECISION (A=Hr0-2) -
DIMENSION RINV(1)s SIG(1)s COVOUT(1)

ZERO=0,D0
LIM=N
KKOL=KcOL
IF (KKoL+L.LE«0) KKOL=KROW
IF (KROWWNE.Q) LIM=TARS(KROW)
*xx COMPUTE SIGMAS
IKS=0
DO 2 J=1+LIM
IKS=IKS+J
SUM=ZERO
IK=IKS
DO 1 K=JdoN
SUMSSUMFRINY {IK ) %x%2
IK=IK+K
SIG(J)=DSORTISUM)

IF (KROW.LE.0) RETURM
*xk COMPUTE COVARIANCE

JJ=0
NM1=LIM
IF (KRGW.EGQ N} NMl=pn-1
DO 10 J=1,NM1

JJUsJdg+d

CoOVouT U =S16(J) %x%2 108

RT2C0040
RTI2¢0NS50
RT2€0N60
RI2CONTO
RI2C0080
R12€0090
RT2€0100
R12C0110
R12€0120
R12€0130
RI2C0140
R12€0150
RI2¢0160
RT2C0170
RI2C0180
RI2C0190
R12€0200
RI2C0210
R12C0220
RI2C0230
RI2€0240
R12€0250
R12C0260
R12€0270
RI2C0280
RI2C0290
RI2C0300
R12C0310
RI2¢0320
R12€0330
RI2C0340
RI2C0350
RI2C0360
RI2C0370
RT2€0380
RT2C0390
RI2C0400
RTI2CO410
RI2C0420
RI2CO430
RT2CO440
RI2CO450
RTI2C0O460
RT2CO470
RI2CO480
RI2C0490
RI2C0500
R12€0510
R12C0520
RT2€0530
RI2CO540
RI2C0S50



IJs=gJ+d
JPlzg+l
DO 10 I=JP1 KKOL
IK=1JS
IMJ=I=J
SUM=ZERO
DO 5 K=I+N
TJK=IK+IM)
SUMSZSUM+RINV( TK) *RINY (IJK)
5 TK=IK+K
COVoUT(TJS)=SUM
10 TJg=IJS+]
IF (KROWEQsN) COVOUT(JUJ+N)=STGIN) **2

RETURN
END

109
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RT2COS60
RI2C0O570
RI2€0580
RT2C059¢0
RI2C0600
RIZ2c0610
RI2C0620
RI2C0630
RI2C0640
RI2C0R50
RI2C0660
RI2C0670
R12C0680
RI2C0690
RI2CO700
RY2C0710
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SUBROUTINE R2A{(R*LRs/NAMReA»TArLAINAMA)

TOo PLACE THE TRIAMGULAR VECTOR STORED MATRIYX R INTO THE
MATRIX A AND TO ARRANGE THE COLUMMS TO MATCH THE DESIRED
NAMa PARAMETER LLIST. MNAMES IN THE NAMA LIST THAT DO NOT
CORRESPOND TO ANY NAME IN NAMR HAVE 7ERD ENTRIES IN THE
CORRESPONDING A COLUMN. i

RULR*(LR+1)/2)
LR

NAMR (L)
A{LR*LA)

IA

LA

NAMa (LAY

INPUT UPPER TRIANGULAR VECTOR STORED ARRAY
DIMENSION OF R

PARAMETER MNAMES ASSOCTIATED WITH R

MATRIX TO HDUSE THE REARRANBED R MATRIX
ROW DIMENSION OF Ar TA«GF.LP

MO. OF PARAMETER NAMFS ASSOCTATED WITH THE
OUTPUT A MATRIX

PARAMETER NAMES EOR THE oUTPUT A MATRIX

COGNIZANT PERSONS! G J.BIERMAN/MeW.NEAD (JPLs SEPT, 1978)

IMPLICIT DOUBLE PRECISION (A=H:0=Z)
DIMENSION R{1)sNAMR(L)rA(IA»1) MAMA(L)

ZERO=D

DO 5 J=1.LA

DO 5 K=irLR

A(KrJ)=ZERO

DO 40 J=1:LA
DO 1p I=1+LR

B ZERO A{LRsLA}

1IF (NAMR(I).EQ.NAMALJ)) GO TO 20

CONTINUE
GO To 40
JI=Ik{1~1) /2
DO 3p K=1»I
AlKe IZRIJI+K)
CONTINUE

RETURN
END
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R2A00010
R2A00020

,R2A00030

RPAQONLD
R2A00050
R2A00NG0
R2A00070
R2A00080
R2A00090
R2ag0100
R2A00110
R2AOD120
R2A00130
R2ZA00140
R2A00150
R2ADO160
R2A00170
R2A00180
R2A00190
R2A00200
R?2A00210
R2AD0220
R2A00230
R2A00240
R2A00250
R2A00260
R2A00270
R2A00280
R2A00290
R2AO0300
R2A00310
R2A00320
R2A003390
R2A00340
R2A00350
R2200360
R2A0O370
R2A00380
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SUBROUTINE R2ZRA (ReyNR/NAMrRAPNRASNAMA) R2FPAONL0O
R2RAQNZ20O

TO cOPY THE UPPER LEFT (LOWER RIGHT) PORTION OF A VECTOR R2RADQ30
STORED UPPER TRIANGULAR MATRIX R INTO THE LOWER RIGHT R2RANOUC
(UPPER LEFT) PORTION OF A VECTOR STORED TRIANGULAR RZRADNST
MATRIX RA, R2RAD060
R2RANNTN

RINR*{NR+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX R2RAONSD
NR DIMENSION OF R R2RA0090
NAM({NR) NAMES ASSOCIATED WITH R R2RAD1OD
THIS INPUT NAMFLIST IS DESTROYED R2RA0110

RA(NRA*(NRA+1)/2) OQUTPUT VECTOR STORED UPPER TRIAMGULAR MATRIX R2RA0120
NRA TF NRA=0 ON INPUT, THEN NAMA{1) SHOULD HAVE R2RA0130
THE FIRST NAME OF THE OUTPUT NAMELIST. R2RAO1LO

IN THIS CASE THE NUMBER OF NAMES IN NAMA AND R2RANISO
NRA WItL RE COMPUTFD. THE LOWER RIGHT RLOCK R2PRAN160

OF R WILL BRE THE UPPER LEFT BLOCK nF RA, R2RAN170

IF NRA=LAST MAME OF THF UPPER LEFT BLOCWK R2RA01B0

THAT IS TO RE MOVEDs THEN THIS UPPER R2FRA0190

BLOCK 1S TO BE MOVED TO THE LOWER RIGHT R2RA0200

CORNER OF RA. WHEN USED IN THIS MODE NRAZNR R2RA0210

ON QUTPUT. R2PAQ22D

NAMA {NRA) NAMES ASSOCIATED WITH RA R2RA0230

RORAGOLO

IF NRA=0 ON INPUT» THEN NAMA(1) SHOULD HAVE THE FIRST NAME OF THE R2RA0250

OUTPUT NAMELIST AND THE NUMRER OF NAMES TN NAMA IS COMPUTED R2RA0260

THE LOWER RIGHT BLOCK OF R WILL BE THE UPPFR LFEFT BLOCK OF RA. R2RA02gg
RORAG2

IF NRA=LAST NAME OF THE UPPER LEFT BLOCK THAT IS TO BE MOVEM R2RA0290

THEN THE UPPER BLOCK IS TO BE MOVFD TO THE LOWFR RIGHT POSITION. R2RAQR00

WHEN UskED IN THIS MODE NRA=NR OM oQuTPUT, R2RA0310

R2RAD320

THE NAMES OF THE RELOCATED BLOCK ARE ALSO MOVED. THE RESULT R2RAD330

CAN COINCIDE WITH R AND NAMA WITH NAM,. R2RADAHO0

R2RADRSO

COGNIZANT PERSONS: G,J.BIERMANM/MsW NEAD {JPL» SEPT, 1976} R2RA036g

R2RAD3T7

IMPLICIT DOUBLE PRECISION (A~H,0~2) RZRA0380

DIMENSION R(LYsRA(1), NAMIL1), NAMA{1) R2RA0390

LOGICAL Is R2RAO400

R2RAOL10

IS=+FALSE. R2RA0420

LOCN=NAMA(1) R2RADE3D

ISSFALSE CORRESPONDS TO MOVING UPPER LFY. CORNER OF R To R2ZRAOLUOD

LOWER RTs+ CORNER OF RA R2RAD450

IF (NRA.EQa0) GO TO 1 RZRADA4K0

LOCN=NRA R2RAOLTO

IS=.TRUE, R2RADLBD

IS=TRUE CORRESPONDS To MOVING [ OWER LFT. CORMER OF R TO R2RA04S0

UPPER RT. CORMNER OF RA R2RAGS00

1 DO 3 I=1/NR R2RA0510

IF (NAM{I).EQ.LOCN) GO TO & R2RAGS20

3 CONTINUE RZRAG530

WRITE {(&6¢100) RZRAOSLO

100 FORMAT (1HD»20Xs 'NAMA{L1} NOT IN NAMELIST OF R MATRIX?') R2RAOBED
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RETURN

4 K=1
KM1=K=1
IF (1S) GO TO 15

TJS=K*(K+1)/2-1
NRA=NR=K+1

IJA=0

KOLA=0

DO 10 KOL=K'rNR
KOLA=KOLA+1

NAMA (KoL =-KM1)=NAM(KOL)

DO 5 IRT1/KOLA

. TJATIJA+L
5 RA(IJAI=R(TIJSHIR)
10 IJS=TJS+HKOL

RETURN

15 TJ=Kx(K+1)/2
IJA=SNR*{NR+1) /2
L=NR-KgM1
KoL=K

DO 25 KOLA=NReL =1
1Js=IJA
NAMA(KOLA):NAM(KOL)_
DO 20 IR=KOLA:L,~}1
RA{TJS)=R{IY)
TJS=IJs=1"

20 IJ=IJ~-1

1JA=TJA=KOLA

.25 KOoL=KOL-1
NRAZ=NR

. RETURN
END
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SUBROUTINE RUDR(RIN,NrROUT,1IS)

FOR N.GT.0 THIS SUBROUTINE TRANSFORMS AN UPPER TRIANGULAR VECTOR
STORED SRIF MATRIX TO U=D FORMs AND WHEN N.LT+0 THE U-D VECTOR

STORED ARRAY IS TRANSFORMED TO A VECTOR STORED SRIF ARRAY

RINC{N+1)*{N+2) /2)
ROUT (N1 *(N+2) /2)

INPUT VECTOR STORED SRIF OR U-D ARRAY
QUTPUT IS THE CORRESPONDING U-D OR SRIF
ARRAY (RIN=ROUT IS PERMITTED)

N ABS{N)= MATRIYX DIMENSION .GE.2
NeGTe0 THE (INPUT) SRIF ARRAY IS (OUTPUT)
IN U~D FORM
NeLTe0 THE (INPUT) U=D ARRAY IS louTPuT)

IN SRIF FORM

Is= ¢ THERE 1S NO RT, SIDE OR ESTIMATE STORED IN
COLUMN N+1r AND RIN NEED HAVE ONLY
N COLUMNS» T.E. RININ*(N+1)/2)

Is= 1 THERE 1S A RT. SIDE INPUT TO THE SRIF AND

AN ESTIMATE FOR THF U=D ARRAY, THESE RESIDE

IN COLUMN N+1,
THIS SUBROUTINE USES SUBROUTINFE RINCON
COGIZANT PERSONS G.:J«BIERMAN/M.W,NEAD (JPLe FER.1978)

IMPLTICIT DOUBLE PRECISION (A=Hr0-2)
DIMENSION RIN(1)r ROUT(L)

ONE= 1.DO
NP1= IS + TABS(N?
JJ=1 @ TNITIALIZFE DTAGONAL INDEX

IDIMR= NPI¥ (NP1 +1}/2
IF [(IS.,EQ«0) GO TO 5§
RNN=RIN{IDIMR)
RIN(IDIMR)==0ONE

IF (N.LT«0) 60 TO 30

CALL RINCON(RIN:NPI;ROUT-CNB)
ROUT (1)Y= ROUT (1) %*%2

Do 20 J=2!N

S=ONE/ROUT LJJ+J)

ROUT (JJ+JI= ROUT {UJ+J) %2
JM1=J=-1

DO 10 1=isJML

ROUT(UJ+I1)= ROUT(JJU+TI%S
Jdsdd+ J

GO TO 70

NN==N
ROUT(11= SQRT(RINI(1))

. NN=NMEGATIVE N

*%% SOME MACHINES REQUIRE DSORT FOR DOURLE PRECISION

00 50 J=2sNN
ROUT(JJ+J)= SQRT(RIN(JJHI))
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RUNRD010
RUDROO20
RUDROD3D
RUDROOLO
RUDRGOSC
RUDROOGD
RUDRODTO
RUDROGSB0
RUDRODOD
RUDRD100
RUDR0110
RUDRO120
RUDRO130
RUDRD140O
RUDRO150
RUDRD160
RUDRO170
RUDR0O180
RUDRG190
RUDRO200
RUDRO210
RUDRO220
RUDR0230
RUIDRO240
RUDRGO250
RUDRO26D
RUDRD270
RUDRO28D
RUDRO290
RUDRO 300
RUDRO310
RUDRG320
RUDRO330
RUDRO340
RUDR{3250
RUDRO360
RUDRDO3TO
RUDRO380
RUDR0O390
RUDRO4OO
RHDRO4L10
RUDRO420
RUDRO&30
RUDROU440
RUDROUSO
RUDRO4EO
RUDROUTO
RUDRO48D
RUDROU90
RUDR0OS00
RUDRNS10
RUDROS20
RHOROS30
RUNROS4O
RUDROSS0



49
60
70

STROUT (JJ+J)

JM1ZJ=1

DO 40 I=1,JM1

ROUTHJU+INI= RIN(JI+T)I*S
Jdzdd+y

CALL RINCON{(ROUT*NP1+ROUT»CNE)}

IF (15,EQ+1) RIN(IDIMR)=RNN
RETURN
END
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SUBROUTINE SFU(FELy IROWr JJCOL 'NFrUrMsFUsMAXFUr IFU» JDTAG)

TO COMPUTE FU{IFUsN)=F*U WHERE F IS SPARSE AND ONLY THF
NON=ZERO FLEMENTS ARF DEFIMED AND U IS VECTOR STORED»
UPPER TRIANGULAR WITH IMPLICITLY DEFINED UNIT DIAGONAL

ELEMENTS
FEL {NF} VALUES OF THE MON=ZERO ELEMENTS NF THE F MATRTX
IROW (NF) ROW INDICES OF THE F ELEMENTS
JCOL (NF) COLUMN INDICES OF THF F ELEMENTS

FIIROWI(K} v JCOL (K))=FEL (K

NF NUMBER OF NON=ZERO ELFMENTS OF THE F MATRIX

U(N*(N+1)/2) UPPER TRIANGULAR: VECTOR STORED MATRIX WITH
IMPLICITLY DEFINED UNIT OTAGONAL ELEMENTS
(UlJrJd) ARE NOT+ IN FACTe UNITY)

N DIMENSION OF U MATRIX

FUCIFU,N) OUTPUT RESULT

MAXFU ROW DIMENSION OF FU MATRIY

IFU NUMBER OF ROWS IN FU»
{IFULLE sMAXFULAND +TFULGE «MAX{IROW(K) ) » K=1r oo esNF2
1.E. FU MUST HAVE AT LEAST AS MANY ROWS AS DOF® F.
ADDITIONAL ROWS OF FU COULD CORRESPONN TO ZERD
ROWS oF Fo

JDIAG(N) DIAGONAL ELEMEMT INDICES OF A VECTOR STORED

UPPER TRIANGULAR MATRIX»
I.Ee JDIAGIK)=K*{K+1)/2=JDIAG(K=1)+K
COGNIZANT PERSONS?! GeJ BIERMAN/MsW,NEAD {JPLr FEB.1978)

IMPLICIT DCUBLE PRECISION (A=H»0=Z)
DIMENSION FELINFY »UlL1) v FUMAXFUSNY » IROWINF) r JCOL{NF) » JDTIAGIN)

ZERO=0,D0 -

* % INTTIALIZE FU -

DO 10 J=1!N

DO 1p I=1.1IFU

FULI»JYI=ZERO
IF MAXFU=IFU» TT IS MORE EFFICIENT TO REPLACE THIS LOOP BY

DO 10 TIJ=1+1FUN ? IFUNZIFU*N

ip FU{TIJr1)=ZERO

DO 30 NEL=1eNF
NEL REPRESENTS THE ELEMENT NUMBER OF THE F MATRIX
I=IROW (NEL)
J=JCOL (NEL)
FIJ=FEL (NEL)
FU(Y,JISFULT » D) +FTY
THIS ACCOUNTS FOR THE IMPLICIT UNTT DIAGONMAL U MATRIX
cLEMENTS. WHEN NON=UNIT DTAGONALS ARE USED» DFLETE
THE ABOVE LINF AND USE J INSTEAD oF JPi BFLOW

IF (J.EQsN) 60 TO 30
WHEN IT IS KNoWN THAT THE LAST COLUMN OF F IS ZERO
THIS *tIF' TEST MAY BE OMITTED

JP1=g+1

115

sFugoolion
SFU00020
SFUQ0030
SFUGON40
SFL00050
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SFU00070
SFUG0080
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SFU00300
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IK=JpIAGIJY+J

DO 2p K=JP1sN
FULI»KISFULTPKY+FTJRD(TIK)
IK=IK+K

CONTINUE

RETURN
END

ile
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SUBROUTINE TDHHT{(Ss)MAXS+IRS»JCSrISTART»USTOPI V) TDHHTO010
TNHHTO24

TOHHT TRANSFORMS A RECTANGULAR NDOCUBLE SUBSCRIPTED MATRIX S TOHHT0O30

TO AN UPPER TRIANGULAR OR PARTIALLY UPPER TRIANGULAR FORM TOHHTOUO

BY THE APPLICATYON OF HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS. TDHHTOSO

OO0 0O000O00000

IT IS ASSUMED THAT THE FIRST tJSTART*~1 COLUMNS OF & ARE TNHHT 060
ALREADY TRIANGULARIZED. THE ALGORITHM IS DFSCRIBED IN THHHUTNTO
'FACTORIZATION METHODS FOR DISCRETE SEQUENTTIAL ESTIMATIOM' TNHHTOBO

BY G.J«BIERMANy ACADEMIC PRESS: 1977 TOHHT090
TDHHTIO0O

S(IRSrJCS) INPUT (POSSIBRLY PARTIALLY) TRIANGULAR MATRIX. THE TPHHT110
OUTPUT (POSSIBLY PARTIALLY) TRIANGULAR RESULT TDHHT120

OVERWRITES THE INPUT, TPDHHT130

MAXS ROW DIMEMNSION OF S TDOHHT1440
IRS NUMBER OF ROWS IN & (IRS.LEMAXS.AND,IRS+GE.2) TDHHT150
JCS NUMBER OF COLUMNS IN § TDHHT160
JSTART INDEX OF THE FIRST COLUMN TO BE TRIANGULARIZED. IF TOHHT170
JSTART.1.Tel IT IS ASSUMED THAT JSTART=1,» I.F. TNHHT180

START TRIANGULARIZATTON AT COLUMN 1. TDHHT190

JSTOP INDEX OF LAST COLUMN TD BE TRIANGULARIZED. TDHHT200
IF JSTOP«LT+JSTART:OR«JUSTOP.6TJCS THEN TDHHT210

IF IRS+LE+«JCS JSTOP IS SET EQUAL TO IRS—1 TDHHT220

IF IRS«GTJCS JSTOP IS SET EQUAL TO JCS TNHHT23C

I.E. THE TRIANMGULARIZATION IS COMPLETED AS FAR TDHHT240

AS POSSIBLE THHHT 250

V(IRS) WORK VECTOR TDHHT260
‘ TOHHT270

COGNIZANT PERSONS?! G.J.RIERMAM/M.W,NFAD (JPLy FEB,1978) TOHHT280
TPHHT 290

IMPLICIT DOUBLE PRECISION (A=Hr0-Z) TNHHT300
DIMENSION SIMAXSeJCS)e VUIRS) THHHT310
DOUBLE PRECISION SUMt DELTA TDHHT320
TDHHT330

ONE=1.p0 TNHHT 340
ZERO=0,DD TPRHHT3S0
JSTT=JSTART TOHHT360
JSTP=JSTOP TDHHT 270
IF (JSTT.LT.1) JSTT=1 TRHHT380
IF (JSTP+GE+JSTT«ANDJSTPLE«JCS) GO TO 5 TNHHT390
IF {IRG+LE.JCS) JSTPZIRS=1 TNHHT4O00
IF {IRG«GT+JCS5) JSTP=UCS TNHHTL1D
TPAHHTH20

5 DO 40 J=JSTT»JSTP TNRHHTL30
SUM=ZERO TNHHTU40
DO 1p I=JrIRS TNHHTLSN
v(r)=s5{I,J) TNHHTLE0
S(1+J)SZERO TOHUTH70

10 SUMZSUM+Y (1 ) *%2 TDHHT480
IF (SUM.LEL.Z2ERO) 60O TO H4g TDHHT490
IF SUM=ZERO» COLUMN J IS5 ZERO AND THIS STEP OF THE TNHHTS00
ALGORITHM IS OMITTED TPHHTS10
SUMZDSART (SUM) TDHHTS20
IF (yi{J)+GT+ZERO} SUM==SUM TNHHTS30
s{JrJ¥=sUM TRHHTSY40
Vi) =V (J)=5UM TNHHTSS0

117



SUM=ONE/ (SUM*V (J)) TAHHTS560

THE HOUSEHOLDER TRANSFORMATIOM IS T'I'SUM*V*V**T TOHHTS70
JP1=J+1 TOHHTSE(

IF (JUP1.6T.JCS) GO TO 40 TDHHTSAN

PO 30 K=JP1,JCS TDHHT&E00
DELLTAZZERO TDHHTH10

DO 20 I=Js»IRS TDHHT620

20 DELTASDELTA+S (I KI*V(1) TDHHTE30
DEL TA=DELTA*SUM TOHHTELO

Do 30 I=JrIRS TDHHT650

30 S(IeK)=S{T7K)+DELTAXV(I} TOHMTEED
40 CONTINUE TRHHT&TO
TOHHTH80

RETURN THHHTAOO0
END TOHHT700
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oF POOR QU
SUBROUTINE THH(RsNrArIAsMrSOSeNSTRT) THHOOD10
THHODD20
THIS SUBROUTINE PERFORMS A TRIANGULARTZATION OF A RECTANGULAR  THHOON3D
MATRIX INTO A SINGLY=SUBSCRIPTED ARRAY BY APPLICATION OF THHOO040
HOUSEHOLDER ORTHONORMAL TRANSFORMATIONS. THHOOQSB0
THHOO 06D
RIN*(N+3)/2) VECTOR STOREDR SQUARE ROOT INFORMATION MATRIX THHOODTO
(LAST N LOCATIONS MAY CONTAIN A RIGHT HAND SIDE) THHOONBO
N DIMENSION OF R MATRIX THHOOQS0
AlMeN+LD) MEASUREMENT MATRIX THHOO10D
IA ROW DIMENSION OF A THHOO110
M NUMBER OF ROWS OF A THAT ARE TO BE COMBINED WITH R THHOOD120
{(MJLEIA) THHOO130
S0S ACCUMULATED ROOT SUM OF SQUARES OF THE RESIDUALS  THHOO140
SORT(Z=A*X (EST)**2), INCLUDES A PRIQRIY THHO0150
S0S MUST BE INPUT AS A VARIARLE? NOT AS A THHOD160
NUMERICAL VALUE, IF INPUT SOS5.LT.0r 80 SOS THHOO170
COMPUTATION OCCURS. THHON 180
NSTRT FIRST COL OF THE INPUT A MATRIX THAT HAS A NONZERO THH0O0190

ENTRYs IF NSTRTJLE.1+s IT 1S SET TO 1. THIS OPTION THHOO200

IS CONVENIENT WHEN PACKING A PRIORI RY BATCHES AND THHG0210

THE A MATRIX HAS LEADING COLUMNS OF ZEROS. THH00220

THHEO0230

THHEO24D

ON ENTRY R CONTAINS A PRINRY SQUARE ROOT INFORMATION FILTER {SRIF)THHOD250
ARRAYr» AND ON EXIT IT CONTAINS THE A POSTERIORT (PACKED) ARRAY.THHOD260

ON ENTRY A CONTAINS ORSERVATIONS WHICH ARE DESTROYED BY THE THHQO0270
INTERNAL COMPUTATIONS. THHOD280
ON ENTRY IF 505 IS LY. ZERO *PROGRAM WTLL ASSUME THERE IS N@& THHO0290
RIGHT HAND SIDE DATA ANpD WILL NOT ALTER S0S OR USE LAST N THHGO300
LOCATIONS OF VECTOR R, THHOG310
THHO 0320
COGNIZANT PERSONS GeJ.BIERMAN/N.HAMATA (JPLe» MARCH 1978) THHOOSEg
THHOO3
IMPLICIT DOUBLE PRECISION (A=Hr0=7} THHO0O350
DIMENSION A{IAs1)R(1) THHON360
DOUBLE PRECISION SUM» ONEr BETAr DELTA THHOO0370
THHOO380
EPS=-1,D=-200 R MACHINE DEPENDENT ACCURALY TERM THHOO0390
ZERO=0,D0 THHOOUND
ONE=1.D0 THHOOLID
NSTART=NSTRT THHOOU4 2O
THHOOL 30
IF (NSTART¢LE.0} NSTART=1 THHOO4HO
NP1=N+1 B NOe« COLUMNS OF R THHOOUS0
IF(S05,LT+ZERO) NP1=N R MO COLSe = N IF S05.LT.0 THHOOBED
KKZNSTART*(NSTART=1)/2 THHOO4TO
DO 100 J=NSTARTN B J=TH STEP OF HOUSEHOLDER REDUCTION THHOO480
KK=KK+y THHOD490
SUM=ZERO THHoOS500
DO 20 I=1eM THHNOS10
SUM=SUMFALT v J) %%2 THH00S20
IF{SUM,LE.ZERQ) GO TO 100 R IF J=TH COLs OF A«EQ«0 GO TO STFP J+1ITHHOOS30
SUMSSUM+R (KK ) %2 THHOOS4D
SUM=DSQRT (SUM) THHOOS60
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OO0

30

35

100
105

110

IF(R{KK) «GT+ZERD) SUM==SUM
DELTA=R(KK)=SUM

R(KK)=5UM

JPi=J+1

IF (JP1.GT.NP1) GO TO 105
BETA=SUM*DELTA

IF (BETAJGT.EPS) 60 TO 100
BETA=ONE/BETA

JJ=KK

L=J

** READY TO APPLY J-TH HOUSEHOLDER TRANS,

No 40 KSJPI/NPL

JU=JJFL

L=L+1

SUM=DELTA*R (UJ)

Do 30 1=1.M
SUM=SUM+A (T rJ)}*A{IsK)
IF(SUM,EQ.ZERGQ} GO TO 40
SUM=SUM*BETA

BETA DIVIDE USED HERE To AVOID OVERFLOW IN
PROBLEMS WITH NEAR COLUMN COLLINEARITY. IN THAT CASE
COMMENT OUT LINE 630 AND CHANGE % TO / IN LINE 740

R {JJI =R (JJ) +SUMDEL TA
DO 35 I=1:M
A{TrK)=A{TPK) +SUM*A (T J}
CONTINUE

CONT INUE

IF(S0S,LT+ZERO) RETURN

CALCULATE S50S
SUM=ZERO

00 110 I=1+sM
SUM=SUMHA(TI/NP1) *%2
S0S=DSERT {SOS**2+SUM)

RETURN
END
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SUBROUTINE TTHHIR/RAFN)

ORIGINAL PAGE IS
OF POOR QUALITY

THIs SUBROUTINE COMBINES TWO SINGLE SUBSCRIPTED SRIF ARRAYS
USING HOUSEHOLDER ORTHOGOMAL TRANSFORMATIONS

RIN®x(N+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX.

RESULT Ig IN R

RA(N®(N+1)/2) THE SECOND INPUT VECTOR STORED UPPER TRIANGULAR

MATRIX. THIS MATRIX IS DESTRUYED BY THE

COMPUTATION

N DIMENSION OF THE ESTIMATED PARAMETER VECTOR.
A NEGATIVE VALUE FOR N IS USED TO NOTE THAT
R AND RA HAVE RT. HAND SIDES INCLUDED AND
HAVE DIMzARS{NI*(ABS(N)+3)/2s

ON EXIT RA IS CHANGED AND R CONTAINS THE RESULTING SRIF ARRAY

COGNIZANT PERSONS G.J.BIERMAN/M.W,NEAD (JPLs JANW1076)

IMPLICIT DOUBLE PRECISION(A=H»0~Z}
DIMENSION RA(1)r R(1)

DOUBLE PRECISION SyM @ FOR USE IN SINGLE PRECISION VERSION

ZERO=O,
ONE=1,
NP1=N
IF (N.GT.0) GO TO 1p
N==N
NP1=N+1
1J5=1 R IJ(START)
KK=0
DO 100 J=1eN
KKzKK+J
SUMZR{KK) *%2
DO 20 I=IJS#KK
SUM=SyUM+RA (X ) *%2
IF (SUMLE.ZERO) GO TO 1p0
SUMZ=SqRT (SUM)
IF (R{KK)+6TZERD) SUM==SUM
DELTA=R (KK)=SUM
RIKK)=sUM
BETA=0ONE/ (SUMXDELTA)
JU=KK
L=J
JP12J+t
TKS=KK+1

R J=TH STEP oOF HOUSEHOLDER REDUCTION

* % * J=TH HOUSEHOLDER TRANS. DEFINED
40 LOOP APPLIES TRANSFORMe TO COLS. JH1 TO NP1

DO 40 K=JP1.NP1
JJ=JJ+L

L=L+1

IK=IKsS
SUM=DELTA¥R{JJ)

DO 30 I=IJS!KK
SUM=SyM+RA(IK )Y *RA{T)
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TTHHO0380
TTHHO390
TTHHO400
TTHHO410
TTHHO420
TTHHO430
TTHHO4 4O
TTHHOLSD
TTHHOUE0
TTHHOLTD
TTHHO480
TTHHO490
TTHHOS0D
TTHHOS10
TTHHOS20
TTHHO530
TTHHOS40
TTHHO550



30 IK=IK+1
IF (SUMJEQ.ZERO} GO TO 40
SUM=SUM*BETA
R({JJ) =R (JJI+SUM*DELTA
IK=IKS
PO 35 I=IJS#+KK
RACTK)SRA{IK)+SUM*RA(T)

35 IK=IK+1

40 IKSSIKSHK

100 IJS=KK+1

c

RETURN
END
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TTHHN560
TTHHOSTO
TTHHN®80
TTHHO590
TTHHO600
TTHHO610
TTHHOAR2D
TTHHO630
TTHHOS40
TTHHO650
TTHHOK60
TTHHOB7D
TTHHO680
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SUBROUTINE TWOMAT (A+N+LENsCAR+TEXT+NCHARYNAMES)

TO DISPLAY A VECTOR STORED UPPER TRIANGULAR MATRIX IN A
TWO~-DIMENSIONAL TRIANGULAR FORMAT

ANk (N+1)/2) VECTOR CONTAINING UPPER TRIANGULAR MATRIX (Dp)
N DIMENSION OF MATRIX (n)
LEN NUMBER OF COLUMNS To BE PRINTEDe 7 OR 12 {1)
CAR(N) PARAMETER NAMES (1)
TEXT( ) AN ARRAY OF FIFLDATA CHARACTERS TO BRE PRINTED AS
A TITLE PRECEDING THE MATRIY
NCHAR NUMRER OF CHARACTERS*® INCLUDING SPACES: THAT
ARE TO BE PRINTED IN TEXT( )
ABS(NCHAR) .LE«114. NCHAP NEGATIVE 1S USED
TO AVOID SKIPPING TO A NEW PAGE TO START
PRINTING
NAMES TRUE TO PRINT PARAMFTER NAMES

COGNIZANT PERSON?: MJW.NEAD (JPL? OCT.1077)
PARAMETER Jilg=12» J7=7

DOUBLE PRECISION A(N)

INTEGER CAR(N), TEXTI(1}» L(J12)» LIST(J12)

LOGICAL NAMES

INTEGER VI4) o VEMT(U12)»y7MT(JT) pvi2MT(JL2)

DATA W/t (2Xe " e tABe1Xstet 1, 'E10.5)10/p(VI2MT(TI)rI=1,12)
1 /%120, 010Xe 11,2010 '30X 20,0040 R rv050Xe TV,
2 '060X6Y 070X S 080X e 8,1 090X 31002 T110X 1Y/,
1 VIMT/tT 0 01T7Xe6 2 1034%»51,'051X 497 1068Xs31,1085X»270102X410/
DATA KONT/'Di7.811/» KON12/'E105) 1/

M1rm2 ROW LIMITS FOR £ACH PRIMT SEQUENCE °
N1rM2 COL LIMITS FOR EACH LINE OF PRINT
L(I} LOC OF EACH COLUMN IN A Row
KT ROW COUNTER

* % %« x  INITIALIZE COUNTERS

IF (LENEG+JD) GO TO 5
IF (LEN<EG.7) 60 TO 1
IF (LEN.EQ+12) GO TO 2
WRITE (6+230) LEN
LEN=12

G0 TO 2

1 VI4)=KONT? J0O=73 JOMI=J0=13 JOP1z=.p+1}

1 REPEAT I=1,J0% VFMT(I)}=Y7MTII)
GO TO 5

2 Viu)=KoN12} J0=12F JOM1=J0-1} JOP1=y041;

1 REPEAT I=1,J03 VFMT(I)=ViZ2MT(I)

5 Mi=t%

M2zJp

N1=1

KT=0

V(2)=tpABr1Xr?

IF (JNOT.NAMES) V(2)=115,2X"

123

TWOMOD10
TWoM0020
TWOMD0O30
TWOMOQLO
TWOMGOS0
TWOMOO60
TWOMONR70
TWOMDORO
TWOM0QSD
TWOMG100
TWOM0110
TWOM0120
TWOM0130
TWOMO0140
TWOMO0150
TWOMO160
TWOMO170
TWOMO0180
TWoMD190
TWOMD200
TWOM0210
TWOM0220
TWOM0230
TWOMO240
TWOM0250
TWoM0260
TWOM0270
TWOM0280
TWOM0290
TWOM0300
TWOM0310
TWOMO320
TWOM0330
TWOMO340
TWOMO350
TWOMO360
TWOM0370
TWOMO380
TWOMO390
TWOMOuNO
TWOMOH410
TWOMO420
TWOMO430
TwoMOL40
TWOMO450
TWOMO460
TWOMOU70
TWOMOu80
TWOMO4LO0
TWOM0S00
TWOMOS10

“TWOM0S20

TWOM0S30
TWOMOS40
TWOMOS50



10

20

30

50

60

70

80

‘30

i80
190

200
205

NC
IF

M=
L2
DO

IF
IF
co
*

=IABS(NCHAR) /6
(MOD (NCHAR#6) e NE. 0D} NC=NCH1
(NCHARGE,0) WRITE (6,200} {TEXT(I)/sT=1,NC)
{NCHARLT.0) WRITE (6+205) (TEXT(I)¢I=1,MC)
(M2,6T.N) M2=N
{ «NOT+NAMES) GO TO 20
(LEN+EQ«7) WRITE (6¢210) (CAR(TI))»I=N1sM2)
{LEN+EQ+12) WRITE (6¢211) (CAR(TI)}rI=N1+¢M2)
TO 4o
N1
=M2=pn1+1
30 1=1:L2
LIST(II=M
M=M+1
{LENCEQ.7) WRITE (6+220) (LIST(I)?I=1,L2}
{LEN.EQ+12) WRITE (6r221) (LIST(TI)sI=1sL2)
NTINUE
* kX % *

DO 190 IC=M1.M2

IF
N1
M2
KT
IF
IF
6o

Fo
Fo

K=1
IF {(1C.LE+ (KT*JB)) 60 TO &0
JJ=0
PO 5g J=1r,IC
JJz=JdJd+d
L{K)=JJ
I1=IC—=KT*J0
IF (I1.EQ.JQ) GO TO 90
G0 To 70
CONTINUE

I1=1

L{KI=LA{KY+1

CONTINUE

DO 8¢ I=I1l,JgMi
K=k +1
TI=I+KT*J0
LIKI=L IK=-1)+11

CONTINUE

@ oBTAIN CobL. INDEX FOR ROW

I2=MINO(JOPLy (M2+1~KT*J0) }=~T1
VI3)=VFMT(IL)
IF ( NOT.NAMES) GO TO 180
WRITE (6¢V) CAR(CIC)»(ALL{T))rI=1,12)
G0 To 190
WRITE (6¢V) ICr (A(L(T))}eI=1012)
CONTINUE
(M2 ,EQ.N) RETURN
=M2+1
=M2+90
SKT+s
{NCHAR«GE.0} WRITE (6:201)
INCHAR.LT.0) WRITE (6,206)
TO 10

(TEXT(I)rT=1sNC)
(TEXT(I) s 1=1,M0)

RMAT (1H1,2X+21A6)
RMAT (1HOr2Xe21A6)

@ TITLE
@M TITLE

124

TWOMOS6H0
TWOMOSTO
TWOMNSABD
TWOMO530
TWOMDRNO
TWOM0A10
TWOM06290
TWOMDG3D
TwoMOeL4D
TWOMDRS(
TWOMO&6D
TWOMGBRT7D
TWOMOA8N
TWOM0OG90
TWOMO 700
TWOMD710
TwWwoMo720
TWOMO730
TwoMn 740
TWOMO750
TWOMO760
TWOMOT7TO
TWOMO780
TWOMB730
TWOMDADO
TWwoM0810
TWOM0B20
TWOMDA30
TWOoMOSHD
TWOMDASD
TWoM0a60
TWOMOATO0
TWOMORAD
TWOMODR90
TWOMDSNO
TWOM0910
TWOM0920
TWoM0a30
TwoMoQuo
TWOMOGS0
TWOMO960
TWOMBOTO
TWOMD980
THOM0990
TwoMmion0n
TWOM1010
TWOM1020
TWoMiQ30
TWwOM1040
TWOM1050
TWOM1060
TWoM1070
TWOM1080
TWOM1090
TWOoM1108
TWOM1110
TWOoM1 120


http:Il.EO.JO
http:LEN.EQ.12
http:LEN.EQ.12

201
206
210
220
211
221
230

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

END

PAGE 18
ORIGINAL * 25 g

OF POOR QUAL

(1H1,2Xe *(CONTINUE) '+10A6) R TITLE
(1H0»2Xr * (CONTINUE) *r19A6) m TITLE
(1HO+SX»T(11XrA6)) f HORIZONTAL NAMES
(1HO»3X» 711X I6))

{1HOSX» 124X ABY) R HORIZONTAL NAMES
(1HO0e3Xe 124X 16))

{1H0»20X s *TWOMAT CALLED WITH LENGTH = '21I3),

125

TwoM1130
TwoM1140
TWOM1150
TWOML160
TWwoM1170
TWOoM1180
TWoM1190
TWoM1200
TWoM1210
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SUBROUTINE TZERO (ReNeISrIF)

TO0 ZERO OUT ROWS IS (ISTART) To IF iIFINAL) OF A VECTOR
STORED UPPER TRIANGULAR MATRIX

RINx{N*+1)/2) INPUT VECTOR STORED UPPER TRIANGULAR MATRIX

M DIMENSION OF R .
IS FIRST ROW 0F R THAT IS TO BE SET 70 ZERO
IR LAST ROW OF R THAT IS T0 BE SET TO ZERO

COGNIZANT PERSONS! G.J<RIERMAN/C«F,PETERS {(JPL» NOV, 1978)

IMPLICIT DOUBLE PRECISION (A~Hr0=Z}
DIMENSTON R(1)

ZER0O=0,D0

TJe=15%(15-1)/2
DO 1o I=IS!IF
IJS=1JS+I1
IJ=TJS
DO 1g J=IsN
R(1J)=ZERO
IJd=IJg+J

16 CONTINUE

RETURN
END

126

TZER000D
TZER0010

.TZEROD20

TZERO030
TZEROGYHD
TZERONSO
TZ2ER0060
TZEROO70
TZERODB0
TZERO090
T2ER0100
TZERO110
TZERO120
TZER0O130
TZERO140
TZERO150
TZER0160
TZERO170
T2ER0180
TZER0190
TZER0200
TZER0210
TZER0220
TZER0230
TZERO240
TZER0250
TZERO260
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SUBROUTINE UDCOL (UsrNsKSPNCOLORIVIEM,Q)

COLORED NQISE UPDATING OF THF U=D COVARTYANCE FACTORSt T.FEs
UkD* {U**T)=0UTPUTZPHI #U*D* {Uk* T} % (PHIx*xT) +Q
PHIZDIAGIO(KS=L1)rEM(1) v o,y tEMINCOLOR) + O (N=(KS=14+NCOLOR)))

GEDIAG(OIKS=1) Q1) ). serQINCOLOR)Y ¢ (N=(KS=14+NCDLOR) )

0{K) Is A VECTOR OF ZEROS

THE ALGORITHM USED IS THE BIERMAM=THORNTON ONE COMPONENT
AT-A=TIME UPDATE. CF.BIFRMAN BFACTORIZATION METHOD

;OﬂngsiRETE SEQUENTIAL ESTIMATIONN, ACADEMIC PRESS (1977)
P.147-148

UIN®(N+1}/2) INPUT U~D VECTOR STORED COVARIANCF FACTORS.
THF COLORED NOYSE UPDATE RESULT RESIDES
IN U ON OUTPUT

N FILTER DIMENSION. IF THE LAST COLUMN oF U
HOUSES THE FILTER ESTIMATES: THEN
N=MUMBER FILTER VARIARLES + 1

Ks THE LOCATION OF THE FIRST COLORED NOISE TERM
{KS'GEOJ-.AND.KS.LE.N) .

NCOLOR THE MUMBER OF COLORED NOISE TERMS (NCOLOR.GE.1)

V{KS«~1+NCOLOR) WoRK VECTOR

EM{NCOLOR) INPUT VECTOR OF COLORED MOISE MAPPING TERMS
{UNALTERED BY PROGRAM)

Q{NCOLOR) INPUT VECTOR OF PROCESS NOISE VARYANCES

{(UNALTERER BY PROGRAM)
SUBROUTINE REQUIRED! RANKL

COGNIZANT PERSON! G,J.BIERMAN {(JPlL» JAN. 197R)
DOUBLE PRECISION THMPeS

IMPLICIT DOUBLE PRECISION {(A=H:0=2)

DIMENSION U(1},v(1),EM(1)}+Q(1)

* # % x INITIALTZATION
NM1=N=1

KSMiz=Kg=1
JJOLD=KS*KSM1/2
KOL=KSM1

* kK % %

DO 50 KT1+NCOLOR
KOLMi=KOL
KOL=KOL+1
JJzJJOLDHKOL,
TMP=y{JJ)*EM(K)
c=a{g)*ulJn)
SETMP*EMIK) +6{K)
yiJ=s

@0{J) UPDATE

IF (KOLJGE«N) GO TO 20

Td=Jy

DO 1o J=KOLsNM1
Td=IJ+J

UnCoLN1o
uncoLp20
uncoLn3o
HpcoLnyo
uncoLnso
uncoLnen
uncoLa7o
UNcoLnso
uncoLos?
uncoL 109
upcoL110
uncoL120
upcoLt30
ubcoLiu0
yncoL1s0
uncoLted
UpcoL170
UNCoL180
UNcoL 190
uncoL200
upcoL210
upcoL22n
uncoL 230
uncoL2u0
uncotL.250
upcoL260
uncoL27¢
uncoL2a0
uncoL290
ubcoL300
uncoL3190
uncoLzan
UDCOL330
uncCol 340
uncoL3s50
uDcoL 360
upcol.-370
uncoL3zst
uncoL 390
yncoLano
upcoLul1o
upcoLua2n
uncoL.430
uncoLit0
uncoLas0
uncolLasn
uncoLu79
UncoLaan
upcoL490
UnCcoLR00
uUncoLs10
upcoLsz0
UncoLs30
upcol.5ul
UDCOLK50



10

20

30
40

45

U =U TS *EM(K) A UPDATING ROW KOL EMTRIES

IF (JJ+EQ+1) GO To 50 R (WHEN KS=1» N=1)
IF (5eLE+0.D0) GO TO 30
TMP=TMP/S 2 TMP=EM({K)=*D(KOL)~0LD/D{KOL }=NEW
c=c/s B C=Q(K)*D{KOL)~0LD/D (KOLY=NFW
DO 4g I=1lrkoLMl

v =u{JdJdoLp+1)

U(JJOLD+T1)=TMP*y (1)

IF (KOLM1.GT.1) GO TO u45

UGLI=Uu{i)+CxV {1y %2

60 TO 50

CALL RANKI(UeUsKOLMLoCeV)

JJoLb=JJ .

RETURN
END

128

uncoLs60
upcoLs70
upcoL 580
UDCOL 590
upcoLe&00
UncoLslo
upcoLe620
ubcoLe30
uncoLe4o
uncoLsso
upcoLeso
ubcoLe70
ubcoL &80

‘UncoL.90

upcoL 760
UncoL7L0-
upcoL720
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SUBROUTINE UDMEAS (UrNeReArFrGrALPHAY UDMEADLD
UNMEAD20

COMPUTES ESTIMATE AND U=D MEASUREMENT UPDATED UDMEAD 3O
COVARIANCE s P=U*D%U**T UDMEADLTD
UDMEABST

%k TNPUTS *x%x UDMEADGQ
UDMEADTO

U UPPER TRIANGULAR MATRIXy WITH p ELEMENTS STORED AS THF UDMEADBD
DIAGONAL.« U IS VECTOR STORED AND CORRESPONDS To THE UNMEADSO

A PRICRI COVARIANCEs IF STATE ESTIMATES ARE COMPUTER» UPMEA 100

THE LAST CoOLUMN OF U CONTAINS ¥X. UbMEA110

N DIMENSION OF THE STATE ESTIMATE. NJGTe1 UDMEA120

R MEASUREMENT VARIANCE UDMEA130

A VECTOR OF MEASUREMENT COEFFICIENTS: IF DATA THEN A(N+1)=ZUDMEA140
ALPHA IF ALPHA LESS THAN ZERO NO ESTIMATES ARE COMPUTED UDMEA1S0
(AND X AND Z NEED NOT BE INCLUDED) UDMEA160

UDMEAL170

*%kk QUTPUTS sx¥k UNMEA180
UDMEA190

U UPDATEDs VECTOR STORED FACTORS AND ESTIMATE AND UDMEA200
UCIN+1) (N+2)/2) CONTAINS (Z=A%kT*X) tUNDMEA210

UDMEA220

ALPHA INNOVATIONS VARIANCE OF THE MFASUREMENT RESIDUAL UDMEA230

G VECTOR OF UNWEIGHTED KALMAN GAINS., THE KALMAN UDMEA240
GAIN K IS FQUAL TO G/ALPHA UDMEA250

F CONTAINS U**T*A AND (Z~A%xT%X)/ALPHA UDMEA260
ONE CAN HAVE F OVFRWRITE A TO SAVE STORAGFE UDMEA270

UDMEA280

COGNIZANT PERSONS! Ge.Je BIERMAM/M,4. MFAD (JPL: FER.1978) UDMEA290
UDMEA3OD

IMPLICIT DOUBLE PRECISION (A=H»0=7) UDMEA310
DIMENSION U{1)s A(1)r F(1), 6(1) UDMEA320
DOUBLE PRECISION SUM»BETArGAMMA UNDMEAZ30
LOGICAL IEST UDMEA340
UDMEA3S0

ZERO=0,DO LUDMEA360
IEST=.FALSE. UBMEA37D
ONE=1.00 UPMEAZRD
NP1=N+) UDMEA390
NP2=N+2 UDMEA400
NTOT=N*NP1/2 UNMEA410
IF (ALPHA.LT.ZERO} GO TO 3 UDMEA420
SUM=A(NPL) UNRMEA4 30
DO 1 J=1N UDMFALA0
SUMSSUM=A (JY*UINTOT+Y) UDMEA450
UINTOT+NP1)=5UM fl ZmZ=A%kTHkY UDMEALED
TEST=« TRUE » UDMEAUTO
UDMEA4B0

JJUNENTOT UNMEALSD
DO 10 L=2+N UDMEASOD
J=NPe2-L UDMEAS10
JUzJIN=J UNMEAS20
SUM=A{J}) UDMEAS30
JM1=Jd=-1 UDMEASUO

DO & K=1,uM1L UNMEASSO0


http:ZERO=O.DO
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5 SUMZSUM+U{JU+K I %A (K)
; F{J)l=suM - T
G (J) =SyMxU{JIUN)
10 JUN=JJ
Fliy=a(1)
G{LIZUCLI4F (1)

SU*XT*A AND G=D* (U**T#®A)

SUM=R+G{1)*F (1)
GAMMA=(

IF {(SUM.GT+ZERO) GAMMAZONE/SUM
IF (F{1)NEWZERO) U{1)}=U{1)*REGAMMA

KJ=2
DO 20 J=2:N
BETA=SUM
TEMP=G(J)
SUM=SUM+TEMP*F (J)
P=aF (J) %GAMMA
JMi=0-1
DO 15 K=1,JMi
S=UKJ)
UIKJI=S+PxGIK)
GIKI=G{KY+TEMP*S
15 - - KJ=KJ+1 -
IF (TEMP.EQ.2ZEROD) GO TO 20
GAMMAZONE /SUM
. U{KJIZUIKJ) #BETAXGAMMA
20 KJ=KJ+1
ALPHA=SUM

28

2 SumM{1)

R FOR R=0 CASE
W FOR R=0 CASE
B D)

A BETA=SUM{J=~1) : -

® SuM(J)
A Pz=F(J)x(1/5UM(J=1)) EQM(21)

R EQN(22)
B EoN(23)

R FOR R=0 CASE
GAMMASL/SUM)
D(Jy EGN(1D)

! EQN. NOS. REFER TO BIERMAN'S 1975 ¢nC PAPER, PP, 337=346,

IF (JNOT.IEST) RETURN
FINP1)=U(NTOT+NP1)*GAMMA
DO 30 J=1N

30 UINTOT+J)I =UINTOT+I) 46 () xF (NP1

RETURN
END

130

UNMEAS60
UDMEARTO
UNMEASS0
UDMEAS9D
UNMEAGOD
UDMEA&1D
UDMEAS20
UDMEAS30
UDMEABLO
UDMEABSO
UDMEAGED
UDMEABTD
UDMEA&BD
UPMEAGA9D
UDMEATO0
UDMEAT710
UDMEAT720
UDMEA730
UNMEAT7H0
UDMEAT750
UNMEAT76E0
UDMEAT770
UDMEATA0
UDMEAT7ODN
UNMEARDD
UnMgAR10
UNMEAR20
UNRMEAR3Q
UDMEABLD
UNMEARSO
UDMEARGD
unMEABT70
URMEASAD
UDMEARSD
UNMEAQNT
UNMEADQLD
UDMEA920
UNMEAQ30
UNMEAQLD
UDMEA9S0
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SUBROUTINE UD2COV (UIN/POUT:N)

TO OBTAIN A COVARIANCE FROM ITS U=D FACTORIZATION, ROTH MATRYICES
ARE VECTOR STORED AND THE OUTPUT COVARIANCE CAN OVERWRITE THF
INPUT y~D ARRAY. UIN=U=D IS5 RELATFD TO £OUT VIA POUT=UDU (*#%xT)
UIN(N*(N+1)/2) INPUT U=D FACTORSs VECTOR STORFD WITH THE D
ENTRIES STORED ON THE DIAGONAL OF UIN
POUT{Nx (N+1)/2) OUTPUT COVARTANCEr» VYECTOR STORFD.

{(POUT=UIN IS PERMITTED)
N DIMENSION OF THE MATRICES INVOLVED: NeGT.1

COGNIZANT PERSONS: GeJeBIERMAN/M.W.NEAD (JUPLr FEB. 1977)

IMPLICIT DOUBLE PRECISION (A=Hr0=2Z)

UIN(L), POUT(1)
POUT(1Y=UINI({1)
Ju=1
DO 20 J=2!N
JJL=gd
Jh=dytd
POUT (JJ)IZ=UIN(JIDN
=POYT (JJ)
II=¢
JM1Z =1
00 2p I=1.JMi
TI=TI+1
ALPHAZSHUIN(JJL+T)
IK=11
DO 10 K=I,uml
POUT({IKISPOUT(IK ) +ALPHA®UTIN( M JL+K)
TK=IK+K
POUT{JJL+T)=ALPHA

B (J=1rd=1)

B LIz )

R JIL+K=(K))

RETURN
END

131

un2conlo
un2¢con20
un2co030
un2cooil
un2¢0050
un2cons0
up2c0070
un2conal
un2con90
UD2c0100
up2c0110
un2¢o120
un2co13o
up2co140
un2co150
unzce160
up2c0170
un2c0180
un2c04190
up2¢cnz00
un2c0210
un2cez220
un2co230
unaco240
un2c0250
up2co260
una2co270
up2co280
un2cH290
uDp2co360
un2co310
Un2co320
un2¢co330
up2co340
un2co03so
Up2Cco360
un2¢co370
up2c0380
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SUBROUTINE UD2SIG{U»NsSIGrTEXTeNCT)

COMPUTE STANDARD DEVIATIONS (SIGMAS) FROM U=D COVARTANCE FACTORS

U(N*(N+1)/2) INPUT VECTOR STORED ARRAY CONTAIMING THE U=D
FACTORS. THF D (DIAGONAL} ELEMENTS ARE STORED
ON THE DIAGONAL

N U MATRIX DIMEMSIONs N.GT.1

S1G(N) VECTOR OF OUTPUT STANDARD DEVIATIONS

TEXT( ) ARRAY OF FIELDATA CHARACTERS TO BF PRINTED
PRECEDING THE VECTOR oOF STGMAS

NCT NUMBER OF CHARACTERS IN TFXTr O.LESNCT.LE.126

IF NCT=0r NO SIGMAS ARE PRINTED

COGNIZANT PERSONS! G+J.BIERMAN/M,W,NEAD

IMPLICIT DOUBLE PRECISION (A~Hr0=Z)
INTEGER TEXT(1)
DIMENSION U{1), SIc(1)

Jus=1

SIG{1)Y=U(1)

DO 10 J=2N

. JJL=U)
JUzJJ+HJ
s=ulyd)
S1G6(4)=s
JMizg-1

DO 1o I=leuMa

SIG(IISSIGIT) +S*U{JJL+T) *%2

B (J=1sJd=1)

1

WwE NOW HAVE VARIANCES
DO 20 J=isN "
516(J)=SART(SIG(J))
IF (NCT+EQ«0) GO TO 30

. NC=NCT/6

IF (MOD(NC*6) +NE+0O) NC=NC+1
WRITE (6:40) (TEXT(I)¢I=1¢NC)
WRITE (6+50) (SIG{I)rI=1¢N)
RETURN

FORMAT (1HD!2X»21A6)

FORMAT (1HOr{(6D18.10})
END

132

(JPL» FEB. 1977)

up2siold
upa2s1o2n
UDp2sIN30
UD2S1040
up2sIn50
un2sIN6n
un2sin?o
un2s1080
up2s1090
UpasIiao
un2s111d
Up251120
un2s1130
uD2s1140
Un2s1150
un2s1160
up2sr117vo
un2s1180
un2sI1190
un2s1200
up2s1210
una2si220
un2s123n
up2s1240
up2sI2sn
UD2S1260
unasi27o
un2s12890
up2s1290
un2sr13oo
Un2s1310
UD2s1320
up2sI330
up2s513u0
UD2s1350
un2s1360
un2s1370
Up2s1380
Un2s1390
uUhasIuo0o
un2sI410
up2stu20
un2s1430
un2s1uyo
UD2sT1450
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SUBROUTINE UTINV(RIN*NsROUT)

TO INVERT AN UPPER TRIANGULAR VECTOR STORED MATRIX AND STORE
THE RESULT IN VECTOR FORMe THE ALGORITHM IS SO ARRANGED THAT
THE RESULT CAN OVERWRITE THE INPUT.

IN ADDITION TO SOLVE RX=Zr SET RIN{M*xI{N+1)}/2+1)=Z(1)y ETCs:»
AND SET RIN{(N+1)*{N+2)/2)==1, caAlLL THE SUBROUTINE USING N+i

INSTEAD OF Ne ON RETURN THE FIRST N ENTRIES 0OF COLUMN N+1
WILL CONTAIN X,

RIN{N*(N+1)/2) INPUT VECTOR STORED UPPER YTRTIANGULAR MATRYX
N MATRIX DIMENSION
ROUT(N*{N+1)/2} oQUTPUT VECTOR STORED UPPER TRIANGULAR MATRIX
INVERSE
COGNIZANT PERSONS! G.J.BIERMAN/M«W.,NFAD (JPL: JAN,1978)
DOUBLE PRECISION RIN(1)s ROUTI(1)}s ZERO, DINVe ONE, SUM
Z2ERO=0,D0
ONE=1.00
IF (RIN(1)+NE+ZFERO) GO TO B
J=1
WRITE (60100) JodJd
RETURN
ROUT{1)=ONE/RIN(1)
Ju=1
DO 20 J=2N
JJdoLp=Jdd
JUSJ e

IF (RIN(JU).NEZERO) 60 TO 10
WRITE (6r100) Jird
RETURN

DINV=ONE/RIN(JJ)}
ROUT (JJ)=DINV
II=Q
IK=1
JMIzZ =1
DO 29 I=1,JM1
IT=TI+I
IK=11
SUM=ZERO
DO 15 K=T,JMi
SUMZSUM+ROUT { IK I RN (JJOLD+K)
IK=TK+K
ROUT (JJOLD+I ) ==sUM*DTHY

RETURN

UTINVEL0
UTINVD20
UTINVN3O
UTINVALD
UTINVOSO
UTINVO6D
UTINVOTO
UTINVNBO
UTINVDI0
UTINVIOO
UTINVILO
UTINV120
UTINV130
UTINVIHO
UTINVISD
UTINVIEE
UTINVLITO
UTINVIAO
UTINVISO
UTINV20D
UTINV21D
UTINV220
UTINV230
UTINV240
UTTNV250
UTINV260
UTINV2TO
UTINVZ80
UTINV290
UTINV300
UTINV3LO
UTINV320
UTINV330
UTTNV3LO
UTINV3S0
UTINV3IED
UTINV3TO
UTINV380
UTINV3SD
UTINV4ON
UTINVE1D
UTINVE2D
UTINVG30
UTINVHSD
UTINVASD
UTINVAED
UTINV4TO
UTINV4AD
UTINV4OO0
UTINVSODN
UTINVRI1D
UTINVR20
UTINVR3D

100 FORMAT (1HO:10Xe'* * * MATRIX TNVERSE COMPUTED ONLY UP TO BUT NOT UTINVS4D

1INCLUDING COLUMN'rI4r? % * % MATRIX DIAGONAL *+Ilst IS ZERO % * *'UTINVRSO
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END
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UTINVEE0
UTINVST0
UTINVS80
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SUBROUTINE UTIROW (RINrNrROUTINRY)

To COMPUTE THE INVERSE OF AN UPPER TRIANGULAR [VECTOR STORED)
MATRIX WHEN THE LOWER PORTION OF THF INVERSE IS GIVFN

ON INPUT:
RX RXY * * RX RXY
RIN= ROUT= WHERE R=
* * 0 RY%%wl 0 RY
ON OUTPUT: RIN IS UNCHANGED AND ROUT=R**-1
THE RESULT CAN OVER=WRITE THE INPUT (I.F. RIN=ROUT)
RIN(N*®(N+1)/2) INPUT VECTOR STORFD TRIANGULAP MATRIX

THE BOTTGM NRY ROWS ARE IGNORED

N MATRIX DIMENSION

ROUT (N# (N+11/2) QUTPUT VECTOR STORED MATRIX. ON INPUT THE
BOTTOM MRY ROWS CONTAIN THE LOWER PORTION
OF R¥*¥wl, ON OUTPUT RNUT=R#*x=]

NRY DIMENSTION OF LOWER {ALREARY TNVERTED)
TRIANGULAR R+ TF NRY=0s ORDINARY MATRIX
INVERSION RESULTS,

COGNIZANT PERSONS! G o e BIERMAN/MaWeNEAD {UPL MARCH 1977}

DOUBLE PRECISIOM RIN(1)» ROUT(1)y SUMy ZEROe ONE» DINV

DATA ONE/l.D0/*» ZERO/0DO/

INITIALIZATION

NR=N%(N+1)/2

ISTRT=N=NRY

IRLST=ISTRTHL

TI=ISTRT*IRLST/2

DO 40 IROWSISTRTr1,-1
IF (RINCII).NE«ZERO) GO TO 10
WRITE (6¢50) IROW
RETURN
DINV=ONE/RIN(II)
ROUT(III=DINV
KJSENR+IROW
IKS=1I+IROW

M No. ELEMENTS IN R

R FIRST ROW TO BE INVERTED
f IRLSTZPREVIOUS TROW INDEX
R I1=DIAGONAL

R KJ(START)
R IK(START)

IF (IRLST.GT.N} 60 TO 35
00 30 J=N+IRLST:=~%
KJGS=KJS=J
SUM=ZERO
IK=IKS
KJ=KJS

DO 20 K=IRLSTiJ
KJ=KJ+1

SUM=SUM+RIN(IK)*ROUT (KJ} 135

UTTRONOD
uUTIRONLO
UTIRON20
HTIROGID
UTIROOLD
UTIRONSO
UTIRONGD
UTIRO070
UTIRONBO
UTIRONSD
UTIRO100
UTIRO110
UTIRO120
UTIR0130
UTIRO140
UTIRo150
UTIRO160
UTIROIT7O
UTIRO180
UTIR0O199
UTIRO200
UTIRO210
UTIR0220
UTIRO230
UTIRO240
UTIRO250
UTIRO260
UTIRQ274Q
UTIR0280
UTIR0290
UTIRO300
UTIRO310
UTIRO320
UTIRO330
UTIp0340
UTIRO3S0
UTIRO3E0
UTIRO3TD
UTIROZ&N
UTIRO390
UTIRO4OO
UTIRO410
UTIROG2D
UTIROU3D
UTIRO44D
UTIROLE0
UTIROLED
UTIROLTO
UTIROUSD
UTIROLIO
UTIROS00
UTIROS1D
UTIROS20
UTIRO530
UTIROS4O


http:ZERO/O.DO
http:ONE/1.DO

20

30
35
49

50 FORMAT (1HO+10X»'RIN DIAGONAL'»If4»71S ZFROY)

IK=IK+K

ROUT (KJS) ==SUM*nINV,
IRLST=IROW
II=11-IROW
RETURN

END
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UTIRO550
UTIROS60
UTIRO570
UTIROS580
UTIR0590
UTIR0600
UTIR0610
UTIR0620
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SUBROUTINE WGS (WrIMAXWrIWsIWrDWUY)

WeS00010

MODIFIED GRAMM=SCHMIDNT ALGORITHM FOR REDUCING WDW(*xT) 1O UDU{**T)W5S00020

FORM WHERE U IS A VECTOR STORED TRTANGULAR MATRIX WITH THE WwGS00030
RESULTING D ELEMENTS STORE ON THE DIAGONAL Wssonos0
WGS00050

WlIwWedy) INPUT MATRIX YO BE REDUCED TO TRIANGULAR FORM, WGS0D060
THIS MATRIX IS DESYROYED BY THE CALCULATION W5500670

TWelLE s IMAXW, AND . TW.GT» 1 WGS00080

IMAXW ROW DIMENSION OF W MATRIY W5S00090
14 NO. ROWS OF W MATRIXs DIMENSION OF U Weso0100
Jw NC. CcOLS OF W MATRIX W6S00110
Dw (T W) VECTOR OF NON=NEGATIVE WEIGHTS FOR THE WGS00120
ORTHOGONALIZATION PROCESS. THE D'S ARF UNCHANGED  WGSG0130

. RY THE CALCULATION. W6S00140
UlzWx(TW+1)/2) oUTPUT UPPER TRIANGULAR VECTOR STORED OUTPUT WGS00150
vV (JwW) WORK VECTOR WGS00160
WGS00170

{SEE BOOK:! W5500180

' FACTQRIZATION METHODS FOR DISCRETF SEQUENTIAL ESTIMATION '» WGS00130
BY G.J.BIERMAN) WGS00200

ESTIMATION W6S00210
wGs00220

COGNIZANT PERSONS! GeJsBIERMAN/M.W.NEAD (JPL» FEB.1978) W6500230
WGs00240

IMPLICTT DOUBLE PRECISION (A=Hr0=2) WGS00250
DOUBLE PRECISION SUM»ZeDINV WES00260
NIMENSTON W(IMAXW:1)r DW(1), U(1), v(D) W6S00270
WEe500280

Z=0.D0 W6S00290
ONE=1.D0 W6S00300
Iwp2=Iy+2 WGS00310
DO 100 E=2»1IW WGS00320
JEIWp2-L Ws500330
SUMzZ W6SDDIL0
00 Ug K=1l,rJW WGS00350
vIigI=w(JrK) W6500360
U{KI=DWI{K) xy (K) AU HERE IS USED AS A WORK VECTORWGSN0370

40 SUM=V (K) *U{K ) +SyUM WesSo0380
wldryg)=suM @ EQe(4+9) OF BOOKe NEW DWIJ) WES00390
DINV=SUM w6s00400
JMizg-1 wesS00410
IF (SUM.GT«Z} GO TO 45 W6s00420
WlJdre)t=0s WHEN NINV=0 (DINV=MORM(W{Jr.)%*2)) Wwes00430
DO 44 K=1pJM1 WGSo04u0
Ly W(JeKI=Z W5S00450
G0 Yo 100 WGS0G460
4% DO 7o K=1l,uM1 Wesoeoy70
sum=2 Wes00u80

Do 50 I=teJwW WGS00490

50 SUMSW{K T} ®UCYI+SUM WGS00500
SUMSSUM/DINY WG500510
DIVIDE HERE (IN PLACF OF RECIPROCAL MULTIPLY) TN AVOID W6S00520

137


http:ONE=Z.DO

(e NeNel

POSSIBLE OVERFLOW i Wes00530

wesoosan
DO 60 I=1euW WGS00550
60 WIKe 1YW (K 1) =SUMKV(T) Wwesnasen
70 Wi{JrK}=SUM R EQ.{4+10) OF BODK WGS00570
100 CONTINUE M UlKsJ) STORED IN WD K) W6S00580
WGS00%590
THE LOWER PART oF W 1S U TRANSPOSE WGS00600
) WGS00610
SUM=Z W6500620
DO 105 K=1lrJW WGS00630
105  SUM=DW (K)*W (1K) %xx2+5UM WGS006A40
U(1)=sym WGS00650
1J4=1 WES00660
DO 110 J=2s1I¥ WGS00670
DO 110 I=1,J WGS00680
TJ=1J+1 WES00690

110 UlTdI=wide ) WGS00700
Wwesoo710
RETURN wWesn0720
END WGS00730
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