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1.0 INTRODUCTION

The ORAN program simulates a Bayesian least squares

data reduction for orbital trajectories. It does not process

data, but is intended to compute the accuracy of the results

of a data reduction if measurements of a given accuracy are

available and processed in a least squares data reduction

program. Actual data tape input may be used, but if so,

this provides only the time when a measurement was available

and the estimated noise on the measurement.

It should be noted that the ORAN program is designed

to consider a data reduction process in which a number of

satellite data periods are reduced simultaneously. The term

arc refers to a specific data period over which one or more

satellite orbits are simultaneously integrated and tracked.

If there is more than one satellite in an arc, satellite to

satellite tracking can he analyzed by ORAN if such tracking

is specified on the measurement cards.

In practice, simultaneous reduction of multiple satel-

lite data periods would be done if parameters (such as

station positions or geopotential coefficients) were being

estimated which had values known to be the same for all data

periods and all satellites analyzed. If there are no adjusted

parameters common to all arcs, then the results for each arc

are completely independent.

Section 2 contains a mathematical description of the

error analysis and Section 3 describes the partitioning of

the error analysis equations as implemented in ORAN. Section

4 gives a brief description of the type of measurement model

contained in the program and Section 5 describes the force

model equations which relate the epoch state being estimated

1
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to satellite position and velocity at any other ti_:_e.

Section 6 gives the mathematical formulae used to compute
each force acting on the satellite and the accoml_:_nying

variational equation used to relate errors in force model

parameters at epoch to errors in satellite position and

velocity at any other time.

2
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2.0 MATHEMATICALDESCRIPTION

The least squares estimator in most orbital deter-
mination programs _IJ"" assumes that N measurements can be

modeled by the nonlinear regression equation

_z= + (z.1)

where x contains parameters to be estimated (i.e., adjusted),

]6 contains errors in parameters which are assumed to be known

constants (i.e., unadjusted) and c is a vector of zero mean

measurement noise. It is assumed that the covariance matrix

associated with _ is diagonal. The partitioning of parameters

into x and y_ (i.e., adjusted and uriadjusted) is somewhat

arbitrary. For any particular problem, the data will be

insufficient to adjust all parameters subject to uncertainty,

and some reasonable subset of these parameters must be selected

for adjustment. The final errors in the adjusted parameters

can be decomposed into a component due to measurement noise

and a component due to errors in the assumed values of the

unadjusted parameters. The error statistics associated with

the first are evaluated in the orbital determination

program as a noise only covariance matrix. ORAN is used

to simulate the orbital determination processing and compute

error statistics associated with the second component.

(I) GEODYN Program Documentation, Volume I, Section I0.
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Bayesian least squares estimation is characterized

by the use of a priori information on all parameters being

estimated. The estimation technique is otherwise identical

to weighted least squares. In the following, no explicit

use of a priori information will be made because of the

complexity it introduces into the form of the equations.

Further, when a priori information is viewed as simply

additional observations as is a perfectly legitimate

procedure - then it is not necessary to treat it separately

in the mathematical development. -- '

In this section we will consider first the procedure

used to derive the least squares estimation equations.

The standard nonlinear least squares estimation prbblem is

based on the regression equation given in (2.1).

Since the problem must be solved iteratively using

linear theory, for error analysis purposes the adjusted

parameters may be expressed as

x = xN+ x (2.2)

(

and the unadjusted parameter errors as

6y = yR - y (2.3)

where _N and _N are nominal values which are known and

assumed to be reasonably close to the true values of x and _.

4_--- 7"_



The linearized version of Equation (2.1) is given by

A = f(xN,% N) + B 6{ .- K _ + [ (2.4)

where B and K are the partial derivatives of the measurement

with respect to _ and K evaluated at (x = _N' _ = KN )" The

nominal or computed measurement is defined as

z_N : f(xN,_) , (2.s)

by ¸

The weighted least squares estimate of _x is given

6x (BTwB) -I BTw (z-zN) (2.6)

where W is the weight matrix usually assumed to be given

by

w-I = s.(eET) (2.7)

Substituting from (2.4) and (2.5) into (2.6), the

error in estimating 6x is given by

(6_' 6x) = (BTwB) -1 BTw (a- K6y_) (2.8)



The covariance of the estimate given by Equation (2.6)

is defined as

cov _x -- E[(_x-_x) (_x-_x)T] (2.9)

Substituting from C2.8) into C2.9), and assuming that

6! is uncorrelated with the measurement noise,

E(ay T) = O, , (2. lo)

it follows that

A °--

COV (6x) = (BTwB) -1 + [(BTwB) -I BTwK] COV ][[(BTwB) 1 BTwK]T (2.11)

where COV ! is the covariance matrix associated with %K

COV I = E(6y 6y T) C2.12)

The total covariance is decomposed into a noise contribution

and an unadjusted parameter contribution. In most practical

situations, the noise contribution is negligible compared to

the unadjusted parameter effects.

COY _ is usually assumed to be a diagonal matrix

implying that the components of °! are statistically inde-

pendent. For notational convenience in the following dis-

cussions, the normal matrix is defined as

N = BTw B 1:2.13)

6 tT' _<



O_N does not compute the entire systema%ic error

covariance matrix given in (2.11). In order to reduce

computational resource requirements only the diagonal
elements of this matrix are computed.

4"
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SECTION 3.0

PARTITIONING OF THE ERROR ANALYSIS EQUATIONS

Considerable savings in both the number of computations

and core storage requirements can be achieved by partitioning

the matrices and vectors involved in Equations (2.6) and (2.7)•

This is done in both GEODYN and ORAN. The ORAN partitioning

of the adjusted parameters is given by

• I

ax s : _ : __ (3.l)
1

k

where _. contains the ith arc orbital elements, 8i contains

all of the other ith arc adjusted parameters, k contains

the adjusted parameters which are common to all arcs and

n is the total number of arcs processed.

In a similar way the unadjusted parameter errors are

partitioned as:

- aJ
_-- ° I

X = Y--k Y--anI
(3.2)

8 11<



where Y__a. are the unadjusted parameters associated with the

•th i
I arc and Y-k contains the unadjusted parameters common to

all arcs.

It is assumed that the measurement noise is uncorrelated

between measurements. Thus the weight matrix can be partitioned

into arc components as:

110jW = ". (3.3)

"W

where the individual arc weight matrices I_i are also diagonal.

From the partitioning of Ax s in (3.1), the matrix of

partial derivatives of the measurements with respect to the

adjusted parameters can be partitioned as

B=[B a Bb lBk] =

i

B 0 ... 0
aI

0 B ... 0
a2

0 0 ... B

Bbl 0 ... 0

0 Bb ... 0
2

0 0 ... Bba
n n

Bk I

Bk 2

Bk
n

(3.4)

From the partitioning of _ ix (3.2), the matrix of partial

derivatives of the measurements with respect to the unadjusted

parameters can be partitioned as



K = [KalKk] =

K 0 0
a

K 0
a 2 ...

: :

0 0 ... K
a

n

m

Kk I
.£

Kk 2

Kk n

(3.s)

From (3.3) and (3.4) it can be shown that the normal matrix

defined in equation (2.10) is partitioned as

N

B TWB
a a

Bb T W Ba

BkTW Ba

T
Ba W Bb

T
Bb W Bb

BkT W Bb

I

T
Ba W B k

BbT W Bk

BkT W Bk

(3.6)

3.1 FIRST LEVEL PARTITIONING

The first partitioning in ORAN separates the adjusted

parameters into orbital elements and all other parameters as

AX
--S

and the corresponding partitioning of the normal matrix is

given by

N [ ]N 1 N 2

N2 T N 4

10

(3.1.2)
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where

T
N = B W B
I a a

TWBb[BT WN2 = [Ba a Bk]

N

4

m

T
Bb W Bb

BkT W Bb

n

BbT lq Bk

BkT W Bk

The partitioned inverse of the normal equations is given by

;I1M a Mab

N-l-- -- M

ab T Mb

(3.1.3)

Utilizing the relationship NM=I, where I is the identify

matrix, it can be shown that the components of M are given

by

Ma = NII + Q Mb QT

M b (N 4 _ N2T Q) -i

(3.1.4)

(3.1.S)

Mab = -QM b (3.1.6)

where

-i
Q = N I N 2

Rewriting equation (2.6) in partitioned form

AX = [_1 = I Ma I Mal?l rB--a_ _I-S MabT Mb J [_bT K y_.

(3.1.7)

ii 24<



where

and

Bb = [B b Bk ]

Performing the matrix multiplications in (3.13) and using

equations (3.10), (3.11) and (3.12) the errors in the orbital

elements due to errors in unadjusted parameters are given by

- Ba T ~a = N 1 1 W K y_. - Q 8_. (3.1.8)

And the errors in the rest of the adjusted parameters due to

errors in the unadjusted parameters are given as

_ QT T] W K y (3.1.9)8 = Mb [Bb T B a _

3.2 SECOND LEVEL PARTITIONING

In the second level of partitioning the common adjusted

parameters are separated from the remaining arc adjusted

parameters as

= (3.2.1)

For notational convenience define the matrix H as

-I BTw]H = I - Ba N 1 a

and note that H is a diagonal matrix

H

(3.2.2)

12 I_'_



with the typical diagonal element corresponding to the ith
arc is given by

T
• Ba -)-l B T W ] (3 2 3)Hi = [I - Ba. (Ba. Wl . a. i " "

1 i I 1

Using the matrix partitioning shown in equations (3.6) and (3.1.2)

equation (3.1.9) can be expanded as

1 I Mb2
T Mb

2 4

BbT W H

[Ka Za + Kn Kk ] (3.2.4)

substituting the definitions from equation (3.8) in equation

(3.11) it can be shown that Mb is given by

Mb

m

Nb ] Nb

• 1 2

Nb T Nb
2 4

-1
m

Mb 1

M T

b 2

Mb
2

M b
4

(3.2.s)

where

T
Nb = Bb W H Bb

i

Nb = BbT W H Bk
2

Nb = BkT iV H Bk
4

Again using the partitioned form of 'the matrix inverse

Mb - 1 Q Q
i = Nbl + Mb4

T
(3.2.6)

13
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where

T _]-1
Mb -- [Nb4 Nb4 2

Mb2 -Q •= Mb 4

(3.2.73

(3.2.s)

Q -1 Nb
= Nbl 2

Using the relationships from (3.21), (3.22) and (3.23) along with

the partitioned forms of K and K equation (3.19) can be written

as

-I ~
__ -- Nb Bb W H [Ka-c a + Kk lk ] - Q k_ (3.2.9)

1

k = Mb [Bk T W H _T BbT W H] [K a Y--a÷ Kk Y-k]
4

3.3 ACCUMULATION OF SYSTEMATIC ERRORS AND ERROR SENSITIVITIES

Summarizing the results of the previous two sections

the systematic error in the common adjusted parameters is

given by

k_. -- Mb [BkT _ _T Bb T] W H [Ka Ya + Kk Yk ] (3.3.1)

14



The error in arc adjusted parameters (exclusive of

orbital elements) is given by

-I ~

_ = Nbl Bb W H [K a Y-a + Kk Y-k] Q k_ (3.3.2)

And the error in the orbital elements is given by

Error sensitivities are computed by taking the partial de-

rivatives of each adjusted parameter with respect to each

unadjusted parameter. In order to minimize core storage ORAN

processes one arc of data at a time. Various matrices which

involve summations over all arcs are accumulated in core.

Components of the sensitivity matrices which are indigenous

to individual arcs are temporarily stored on a tape or disk

scratch file. Therefore equations (3.25), (3.26) and (3.27)

will be used to develop these partial derivatives which will

be expressed in terms of the individual arc matrices.

From equation (3.25) the partial derivatives of the

common adjusted parameters with respect to the common un-

adjusted parameters are given by

k

_ _T BbT ] W H Kk[BeT
= Mb4

(3.3.4)

In terms of th_ individual arc matrices M_
U 4

can be expressed as

li__l T -i

Mb4-- Bki Wi Hi [I - Bbi (Bbi Wi Bbl)"

BbiT Wi Hi] Bkil 1

\

(3.3.5)

18<
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Expanding equation (3.28) in a similar manner

- _ Mb4 Bk T
_Y- 1 i

k

Wi Hi [I - Bb. (Bb.
i I

Bb'IT Wi Hi] Kk'll

T -i
W i H i Bb.)

1

(3.3.6)

The partial derivatives of the common adjusted parameter with

respect to the unadjusted parameters of the i-th arc are

given by

f-

- - h T -I
_k Mb4 IBk. T W. H. [_ Bb (Bb. W. H. Bb )
_fla. I I I i z i z i

1

TW i HI 1Bb i i Ka_

(3.3.7)

From equation (3.26) the partial derivatives of the i-th arc

adjusted parameters (exclusive of the orbital element) with

respect to the common unadjusted parameters are given by

where

a-Bi T . H Bb )-I 13 T W. H Kk _ _ ak= (Bb. WI z a. I i . i

_Y-k i i I I . ay_k.
(3.3.8)

T -I T
Qi = (Bb. Wi Hi Bb.) Ba. Wi lli Bk.

i I I i

Also from equation (3.26) the partial derivatives of the i-th

arc adjusted parameters (exclusive of orbital elements) with

respect to the i-th arc unadjusted parameters are given by

_--i T -I T ~ _k

ay_a" = (Bb'l W.I H.I Bb.)1 Bb i '_'zH.I Ka. -Qi1 _Za.
1 1

(3.3.9)

16



It is necessary to compute the effect of one urc's unudjusted

parameters on another arc's adjusted parameters. Thus from

(3.26) the partial derivatives of ith arc adjusted parameters

(exclusive of orbital elements) with respect to the jth arc

unadjusted parameters are given by

= -Qi
_Y-a. _Y-a.

J J

(:3.3.1o)

In a similar manner from equation (3.27) the partial derivatives

of the i-th arc orbital elements with respect to the un-

adjusted parameters are given by

• {Kai Bb i _-8i

8_-i T -I T W.
- (Ba. W. B ) Ba. i

_Y-a. i i ai i 3Y_a.
I I

}
- Bki _Y-a. " (3.3.11)

1

• T -I IBbi _Bi
_ T W. -8_-I W. B ) Ba. i

3Ya. (Bai i a i i _Y-a.

J J

t (3.3.12)

_(Y..

_Yk
- (Bai . )-I B T Wi lKk. _ Bb "T NI Ba i ai 1 1

- Bk
i _Y-k

_i

_Y-k

(3.3.13)

17 ZO<



4.0 PROPAGATION OF ERROR SENSITIVITIES •

Various ORAN output displays require _ computation of

the effects of unadjusted parameter errors on the satellite

position and motion at some time other than epoch. This

is given by

at _at
Aat = A_0 + Y

_x0 Dr
(4.1)

where _t is the satellite positon and velocity at time t and

_0 is the vector of adjusted parameters, including'the orbital

elements at epoch time. The first term in (4.1) is due to

errors in the estimated epoch state and the second term is

due to the effect of the unadjusted parameters onpropagation

of that epoch state to time t. The error in the epoch state

can be decomposed into a random component given by

Ax r = (BTwB)-I BTI%_ (4.2)

and a systematic component due to errors in the unadjusted

parameters given by

Ax
--S

=_ (BTwB)-I BTWKy (4.3)

gives

Substituting from (4.2) and (4.3) into (4.1), this

Aa_t
_at [ _at _a t
-- (BTwB)-I BTwe_ +

_x o [_Y_ _x_o (BTwB) -I BTwKJ y (4.4)

18 v" ZI<



The first term in (4.4) is the random error in a clue
-t

to measurement noise. The second term in the systematic

error in a t is due to the unadjusted parameters.. These two

components are independent since

E (! s_/) = 0

• a!t a_t

The partial derivatives _ and _ are obtained through

integration of the appropriate variational equations as

described in Section S.

The sensitivity of it to the unadjusted parameters is

given by ..

aat _ .-aat (BTwB) BTwK + @at (4.s)

Equation (4.5) is used by ORAN to compute the sensitivity

of each element in it to each unadjusted parameter. The

total covariance matrix associated with it is given by

E(AitiatT) [_--_0 (BTwB) 1BTW E(¢ cT)I _a--t_x o (BTwB) - 1 BTwI

T

pit BEt ] !_y_ Bit
(BTIvB) -1 BTwK COV ! (BTIvB)-I

[_Z B_o - _o

The first component of (4.6) is the noise only con-

tribution and the second component is the unadjusted

parameter contribution. To avoid excessive computations,

ORAN computes only the diagonal elements of these covariance

matrices. For each element of !tthe program computes the

noise only Sigma, the sigma due to unadjusted parameters

and the total sigma.

19 /
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SECTION 5.0

MEASUREMENT MODELING AND MEASUREMENT ERRORS

5.1 MEASUREMENT MODELING

In order to simulate a least squares data reduction

ORAN must compute partial derivatives of the measurements

with respect to both adjusted and unadjusted parameters.

The basic types of observation in ORAN are:

• right ascension and declination

• range

• range rate

• Z and m direction cosines

• X and Y angles

• Azimuth and elevation

• Altimeter height

• Inter-Satellite Range and Range Rate

These measurements are geometric in nature. The

computed values for the observations are obtained by applying

geometric relationships to the computed values for the rela-

tive positions and velocities of the satellite and the

observer at the desired time.

2O



5.1.1

Range :

Range and Range Rate

Consider the station-satellite vector:

where

p = r - rob (5.1.1.1)

r is the satellite position vector (x,y,z) in

the geocentric Earth-fixed system, and

_ob is the station vector in the same system.

The magnitude of this vector, p, is the (slant)

range, which is one of the measurements.

Range rate:

Tile time rate of change of this vector

p = r

is

(S.I.I.Z)

as the velocity of the observer in the Earth-fixed sys-

tem is zero. Let us consider that

where

A

P- = OU
(5.1.1.3)

u is the unit vector in the direction of _.

21
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Thus we have

p -- pu + pu (5.1.1.4)

The quantity p in the above equation is the computed value

for the range rate and is determined by

p = u r (5.1.1.5)

The partial derivatives of range and range rate with

respect to the satellite position and velocity are given

below. All are in the geocentric, Earth-fixed system.

(The ri refer to the Earth-fixed components of _.)

Range:

_)P Pi

8r. p
1

(S.L.I.6)

Range rate:

Dr.
1

1

P
(5.!.i.7_

1

Pi

P
(5.1.1.8)

22



The derivatives of range and range rate with

respect to time are presented below. All are in the

Earth-fixed system.

Range:

^ •

p = U . r (5.l.1.9)

Range Rate:

tion.

The range rate derivative deserves special atten-

Remembering that

• .L

p = r , (5.i.i. I0)

We write

• ^ "_I_

p = U • p (5.1.1.11)

Thus

^ ' ^

p = U • p + U

°•

P (5.1.1.12)

23



Because

d
A • A^ .

p = _ (pu) = pu + pu
dt (5.1.1.13)

A '

we may substitute in Equation 4 above for u:

•. I - - • ,, - ^ ..
p : -- (p • p - p u p) + u'p

P
(5.1.1.14)

or, as

• ^ "_.

p = U • p (5.1.1.15)

we may write

.. 1

p = n

P

• p
"2
P + p (5.1.1.16)

24



The gradient of this potential with respect to the Earth-

fixed position coordinates of the satellite is the part of
e°

due to the geopotential:

- - --T 1 e C20 S sin 2 z

_r i r 2 r 2 $- I- 2 r i

r o

1

(s.i.i.17)

We must add to this the effect of the rotation of the

coordinate system. (The Earth-fixed coordinate system

rotates with respect to the true of date coordinates with

a rate 9g, the time rate of change of the Greenwich hour

angle.)

oo

The components of o are then

•. @U

Pl : _+ [_ cos @g

@r 1

.. _U .

= --+ [-x sin @P2
3r 2

.. _U @U

P3 =

@r 3 _z

+ y sin @g] @g + r 2 _g

+ y cos @g] @ - r I @g _ g

(S.I.I.IR)

(S.I.I.i9)

(5.I._.291

where x and y are the true of date satellite velocity

components•

25



5.1.2 Altimeter Height

The altimeter height is unique in that the satellite

is making the observation. While this is actually a

measurement from the satellite to the surface of the Earth,

it is taken to be a measurement of the spheroid height and
the time rate of change of that quantity for obvious

reasons. Using the formula for spheroid height determined

in Section 5.1 of the GEODYNProgram Documentation Volume I,

4

Hal t .... r ae -2 ae f2

2

+ (a e f +-a f2)
2 e

(S.l.2.1)

where

a
e is the Earth's mean equatorial radius,

f is the Earth's flattening, and

is r3, the z component of the Earth-fixed

satellite vector.

26 _9 <



For error analysis purposes, the partial derivatives

of the altimeter measurement with respect to the satellite

position, velocity, and time are needed. These are derived

directly from the analytical expression for HAL T .

= _ + -- 2 a f + 3 a f2 z

8r i r r e e

3] zxi1r

(5.1.2.2)

The time derivative of altimeter range is given by

• _HAL T _HAL T _HAL T .

HAL T = r I + r 2 + r3
_r I 8r 2 _r 3

(5.1.2.3)

The altimeter measurement is actually made to the

geoid surface instead of the spheroid surface. A detailed

geoid is necessary, however, to model the altimeter measure-

ments to properly exploit their full accuracy.

27 _0<



5.1.3 Right Ascension and Declination

The topocentric right ascension _ and declination

6 are inertial coordinate system measurements as illus-

trated in Figure 4.1. ORAN computes these angles from the

components of the Earth-fixed station-satellite vector

and the Greenwich hour angle @g.

= tan "I + @
(5.i.3.1)

6= sin -I ( pP___3) (5.1.3.2)

The partial derivatives of these measurements with respect

to the Earth-fixed satellite position vector F are given by

Right Ascension:

ac_ -P2

---2----T
ari /_Pl +P2

(5.1.:3.3)

ac_ Pl

/pl2 2at2 + P2

(5.1.3.4)

_6
= 0

ar 3
(5.I.3..5]

31<
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Declination:

_r I

- Pl P3

p2// 2+p 2
1 2

(5.i.3.6)

B6 02 P3

_r2 O 512+p22

(5.1.3.7)

36 ,/p12+022

2
_r 3 P

(s.i.3.s)

The time derivatives are given by

Right ascension: _ =
u I r2-u 2 r I

2
o (1-u 3)

(5.1.3.9)

Declination: _ = (5.I.3.10)

A

where the unit vector u is defined as

^ p

U -

29/D("
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5.1.4 Direction Cosines

There are three direction cosines associated with

the station-satellite vector in the topocentric system.
A A A

Description of these measurements requires the N, Z, and E

(north, zenith and east baseline unit vectors which describe

the tropocentric system along with the u). The direction

cosines are computed as:

£ = u • E

m = u • N

(5.1.4.1)

(5.1.4.2)

A

n = u • Z (5.1.4.3)

The £ and m direction cosines are observation types for

ORAN.

The partial derivatives of the direction cosines with

respect to the satellite position vector are given by

- - - Zu.

_r i p z
(5.1.4.4)

i .J
(s.1.4.s)

-- = -- Z. -_u.
Br. p z z

Z

(5.i.4.6)
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where

E. = component of E in the r. direction
1 l

N i = component of N in the ri direction

A

• = component of Z in the r i directionZ I

The time derivatives of the _ and m direction cosines are

given by

m -

p • E-ZO

p • N-mp

P

(5.1.4.7)

(s.1.4.8)
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5.1.5 x and y Angles

The x and y angles, as illustrated in Figure 5.2, are

computed in a tropocentric coordinate system as

(5.1.5.1)

Ya = sin'l (m) (5.1.5.2)

The derivatives of the x and y angles with respect to the

satellite position vector are

8X nE.-£Z.
a 1 1

_r i o(l-m 2)

(5.1.5.3)

Ya Ni-mui

_r i p_2_-_

(5.1.5.4)

and the time derivatives are given by

Xa=

, A A

p • (n E-_Z)

p (l-m 2 )
(s.].s.s)

Ya=

p • N-mp

I

P /i -m2

(s.]..s.6)

36<
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5.1.6 Azimuth and Elevation

Figure 5.3 illustrates the measurement of azimuth

and elevation. These angles are computed in the topo-

centric coordinate system as

A = tan
z

-I

m

(5.1.6.1)

E_ = sin-I (n) (5.1.6.2)

The partial derivatives with respect to the satellite

position vector are given by

_A z mE i -_N i

p/i-: z '
1

(5.l.6.3)

_E_ Z i-pu i

_r i p(l-n 2)

(5.1.6.4)

and the partial derivatives with respect to time are

Az=

A A

P " (mE-_,N)

p (1-m 2)

(5.1.6.5)

E_,=

p • Z-rap
(5.1.6.6)
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5.1.7 Satellite-Satellite Range and Range Rate

The range measurement from one satellite to another

is computed as follows.

Let X be the inertial coordinates of the transmit-
1

ting satellite and _ the inertial coordinates of the receiving
2

satellite. Then the range (or distance) between the two

satellites is given by

/ - Z) • (z - _)R (X_2 I 2 i (5.1.7.1)

The time rate of change of range, or just range rate, is cal-

culated by differentiating (I) with respect to time:

(x' f ) (_ _ )
R = 2 1 2 1

R (5.1.7.2)

ORAN can also simulate relay range and range rate measurements.

Relay range is simply the sum of two range measurements: the

range from some transmitting station to a satellite plus the

range from that same satellite to _nother satellite. This

configuration is given in Figure 5.4. Thus, according to the

notation in Figure 5.4, the relay range is defined as

Relay
= R + R

I 2

Likewise, the relay range rate is the time derivation of

(3), or

R = R + R
i 2

Relay

(5.I.7.4)
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Since the partial derivative of a sum is equal to tl_e

sum of the individual partial derivatives, any partial

derivative of RRelay or RRelay can be found by summing

the individual partials of the two quantities in tile

sum. Specifically, if one wants the partial with respect

to some parameter o, then

aRrelay aR aR_ 1 + 2

a_ a_ _ '

(5.1.7.5)

aR aR aR
rela X _ I + 2

ao _o aT " (5.1.7.6)
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5.2 MEASUREMENT ERRORS

This section discusses the individual measurement

error sources and the mathematics used to model them in

ORAN. Table 5.i lists all measurement error sources and

the associated error parameters.

5.2.1 Bias

Bias errors are considered as constants which must

be added on to the computed value in order to better repre-

sent the observed. Therefore,

Z = Z' + b
C C (5.2.1.1)

where

is the computed measurement corrected for

any biases

Z I

C
is the computed measurement based only on

satellite geometry

b is the bias

Thus

_Z
C

_--5-- = I for all measurement types. (5.2.1.2)

36
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5.2.2 Timing

Should the time tag of the measurement be incorrect,

then a correction to this time tag is called a correction

to timing• Any error in this correction can be found by

computing the partialderivative of the computed measurement

and multiplying by the time error, or

8Z

At = AZ . (5.2.2.1)
_t CTi m

where At is the timing error, but

where

_Z c _Z c _

_t 8F _t

(s•2.2.23

is the satellite position vector

r is the satellite velocity vector.

Thus

AZ
CTim

_Z c
_ • r

_)r

At
(5.2.2.3)
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5.2.3 Transit Time

The time tag assigned to the measurement is usually

the time at which the station receives the signal. But the

satellite retransmitted the signal to the receiving station

at some earlier time. Therefore, two times are involved.

To simplify matters somewhat, the observed measurements

usually have been corrected so the computation process of

the computed values can assume the satellite and station at

the same time. An error in this transit time correction is

Similar to the timing error just discussed, but now the

systematic error is some fractional part of the estimated

transit time, i.e.,

_Z
&Z = __c . r AT

Ctransit time _F
(s.2.3.1 

where AT is the error in the transit time. If p is the

fractional error in transit time correction, then

[5.z.3.2)

where

R is range

C is speed of light
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5.2.4 STATION LOCATIONS

In the preceding sections measurement equations have

been developed for a relative satellite-station geometry.

These measurements are used to determine satellite position

and motion in an inertial coordinate system at some epoch

time. In transforming from the relative coordinate system

at the time of measurement to the inertial system at epoch

we must account for both the movement of the satellite and

the movement of the station in inertial coordinates during

the time period between measurement and epoch. The equations

of motion for the satellite are given in Sections 5 and 6.

The station movement is due to the movement of the Earth

(considered as a solid body) and to the movement of the

Earth's crust relative to the central mass. Station co-

ordinates are referenced to a particular epoch time (usually

1900.0) and the movement of the station since this time

is included in the computation of a station-satellite

measurement. The solid body component of station motion

is due to the Earth's rotation, nutation and precession.

These are very well known and make negligible contributions

to station location error.

The effect of an error in station location on the com-

puted measurement can be determined by the following expression

_Z
= ____£c - (5 2.4.1)

ZCsTA _ " &rST A

where

AZ
cSTA

is the error in the computed measurement due to

an error in station position

r

m

ArST A

is the satellite position vector

is the error in station position (in same

coordinate system as F)

39
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This is obvious if one considers, for example, a range

measurement from a station to a satellite. If the station

height were raised, the same effect on the measurement

would occur if the satellite height were lowered.

At any measurement time the total station location

error can be expressed as

where the components are defined as

(5.2.4.2)

AFs survey error. This is the error in a station's

location relative to the local datum. Each

station on the same local datum will have a

different value of Ar s.

station location error due to uncertainty in

location of the local datum with respect to

the center of mass of the Earth. All stations

on the same local datum will have the same

Ar E •

The remaining components are due to uncertainties in the

movement of the Earth's crust relative to the central mass.

These are:

4S<
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J

ArSE error due to solid Earth tidal displacements.

This is relatively a local error.

A_OL =

m

Ar =
P

error due to ocean loading displacement. This

is also a relatively local error which depends

upon the distance of the station from the

shoreline.

error due to polar motion

The equations for these last three components are developed

in the following sections.

5.2 5 Polar Motion

The changes in station longitude and latitude due to

polar motion are defined as

Ak = km - _ = (XpsinX - Y cosk m) tan em (SEC ARC)c m p
(5.2.5.i

A¢ =em " ¢c ='(XpC°SAm _" Yp sinkm) (SEC ARC)
(5.2.5,

where

subscripts c and 0 denote computed and observed values

respectively, and

Xp, Yp are angular variations (seconds of arc) in the

position of the Earth's axis of rotation relative to

The change in longitude, Ak, can be related to UTI by the

equation

49<
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Errors in station position due to polar motion are

represented by uncertainties in Xp and Yp, and are obtained
in the form

C C C
- +

_X _A_ _X _A_ _X
P P P

(s.2.s.s)

3Z _Z 3Ak 3Z _A¢
C C C

- +

_Y _Ak _Y _A¢ 3Y
P P P

(5.2.5.4)

where Zc is the computed measurement.

5.2.6 Solid Earth Tidal Displacements

Let the total displacement of a station on the surface

of the Earth due to the solid Earth tide be expressed in

spherical coordinates (r,@,k):

42
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fiT = r NTr + 0 NT@ + _ NTk (5.2.6.1)

where @ is the co-latitude and % if the east longitude.

this coordinate system the gradient operator is:

In

^ _ ^ 1 _ ^

_r r _@ r sin @ _X
(s.z.6.z)

Let

^ i @ I

Vh - O +
r 30 r sin O 31

(s.2.6.3)

Then (Diamante and Williamson, 1972):

£2 h2 ^

NT = -- r ?h UT + -- U r
g 2 g T2

(5.2.6.4)

_2r (rUT 2 ^ _UT2 ) h2 UT2 "- r + -- r

g _r g
(s.z.6.5)

where h 2 and _2 are the_ Love numbers of the second and third

kind.
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Using

GMd 2( ^^2 )UT2 - 3 r 3 (Rd.r) - 1
2 Rd

CS.2.6.6)

_T ,dr2A]
3Z2(Rd,r ) Rd +R g

3 - 2 ( "r)2

]AIh2 r

2 (._.2.6.7)

Using g
GMe

= T; and r=re, the local value of the Earth's radius,

°I°"T

r _-

Mar°'_Ir,,_ A]A
r e

e

(5.2.6.8/

+ [(h2 )^^ .2 __2
3 -- " _2 eRa'r) -

2 2
r

_T acts as a measurement error by introducing a time

variation in the position of any station on the Earth's

surface. Typically, NTr is on the order of 0.5 meters,

while the tilt d_' is on the order of I0 seconds of arc

which is equivalent to horizontal displacements NT, 0.36

meters. Values of h 2 and 2 are found in the range:

44



0.587 _<h2 _<0.610

0.068 _<£2 -< 0.082
•

(s.z.6.9)

Again, there are tw___ocontributions (5.2.6.8) from the

combined effects of the Sun and Moon:

m s_

(5.2.6.10)

where _T and _T are obtained from (5.2.6.8) replacing the
m s

subscript "d" with "m" and "s", respectively.
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5.2.7 Ocean Loading Displacements

Many of the currently active satellite tracking stations

are on or near the coast. The tidal motions in the great

bodies of water covering 70 percent of the surface of the

Earth are now known to produce fluctuations in the observations

of the solid Earth tidal effects. These oceanic perturbations

account for about 10% of the observed gravity tide, 25% of

the observed strain tide and 90% of the observed tilt tide at

the Earth's surface near coastlines_iamante and Williamson) 1972)

principal ocean tide contribution to the observed surface

gravity, strain and tilt is mainly a result of the deflection

of the surface of the Earth under the oceanic loading. It

is precisely this contribution to the strain tide (and hence

station position) that is of importance in satellite opera-

tions.

Unfortunately, difficulties arise in developing useful

ocean loading models of the strain tide due to:

(I) The theory of the ocean tides themselves is

generally deficient. Complications arise from

the fact that the oceans do not cover the entire

surface of the planet and the depth of the oceans

varies considerably.

<z) Observational data are limited. The state of

the tides in the great open oceans is virtually

unknown. The regions inland to about 400-500 km

from continental coast-lines are dominated by

the influence of local and regional tides. At

about the 400 km distance from the shoreline,

46



regional tides provide about an equal contri-
bution to the variations in the solid Earth tide

as do the open oceans. However, further inland

the open oceans provide the dominant contribu-

tion The ocean loading effect, however, drops

off as the distance from the shore, L, in-
creases.

(3) Additional complications arise even where data

are available. Even in the case of isolated

islands, observations have been found to

correlate with the tides of some more distant

region, rather _han with the immediate regional

tide. Furthermore, the most frequently avail-

able and reliable observational data of the

fluctuations in the solid Earth tide have been

made with gravimeters.

In view of these difficulties, we have developed a

semi-empirical error model for station position which will

incorporate available observational data. These observational

data are mainly in the form of variations in the vertical

component of the surface gravity which are translated into

a model of the vertical strain variation, acceptable for

error analysis applications. The horizontal components of

the strain are neglected, being of secondary importance in

any case. Kuo, et. al. (1970) have made measurements of the

fluctuations in the M 2 and O 1 gravity tide constituents.

However, the M 2 measurements are generally better and pro-

vide better agreement with numerical models. Farrell (1970)

provides some data on M2, O1, $2K2, and PIKI gravity measure-

ments, but the M 2 measurements are the most prevalent.
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Gravimetric measurements are generally presented as a

fraction of the theoretical solid earth _.I2 tides:

3 ) 2UTM 26gr = 1 - --k 2 + h 2
2 r

r - r

(5.2.7.3)

Assuming the value of the gravimetric factor _:

( 'k,)6o = i - -- + h = 1 16
2 2 "

(5.2.7.2)

and zero phase <. The result is normalized by the theoretical

value of the bl2 solid earth tide on a rigid earth:

R _ 2UTM2

gr r

r = r
e

(5.2.7.3)
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The measurements provide an amplitude

_ (_e)

in terms of a percent of _ with a time dependence in terms

of a phase angle

K(F e) in degrees.

AT and _ are indicated as functions of the local position on

the surface of the Earth, _e"

Kuo et. al. (1970) and Kuo and Jachens (1970) made a

series of long-term gravimetric measurements across the con=

tinental United States. All of the stations used in that

study were within _ i_ of tile 40 _ parallel of latitude, in

employing these results, we will refer all distances from

the coast-lines to the 40 ° parallel. Given the geographical

makeup of the United States, we can expect their results to

apply reasonably well for any U.S. station position in the

latitude range:

35 ° North < _ < 50 ° North.

Using the stations nearest to the shore:

New York I 40°49"0'N

73°58.0'W

49



and

Point Arena, California I 38°54"3'N
(123°42.4'W

as the Atlantic coast origin and Pacific coast origins (L=0),

respectively, the results of Kuo, et. al. for the M2-tide

(shown graphically in Figure 5.5) have been reduced to tabular

form (Table 5.2) 1. Distances are measured along the 40 °

parallel, line from the Atlantic and Pacific coasts. Addi-

tional values of the measured gravimetric factors AT and phase

K for the M 2 and O 1 tides have been given by Farrell (1970)

for a number of isolated stations, including:

Bermuda M tide: AT : 1.249,

O 1 tide: A_ : 1.198,

K:= 5.2 °

<= 0.3 °

''2 ....... '
Honolulu

01 tide: A6 = 1.181,

Kuo et. al. have also made corresponding measurements for the

O 1 tidal effects across the United States. These results,

shown graphically in Figure 5.6, do not agree as well with

the numerical model calculations as do their M 2 tidal measure-

ments, however.

•

A_ -
T
0

x I00 (in percent)•
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TABLE 5.2

Values of AT(L) and <(L) the M2-tide for the Continental
United Stated Referred to the 40 ° Parallel of Latitude

and with New York City as the Origin for Atlantic Coast

Values eL=O) and Point Arena as the Origin

for Pacific Coast Values (L=O) ,_'*

1

2

3

4

5

6

7

8

9

"It_

11

12

13

14

15

16

17

18

19

20

21

22

Distance Distance

From Pac. From Atl. &E <

Coast(]_m) Coast(km) % Degrees

- 0 4242 -3.560

202 4040 -0.925

404 3838 0.150

606 3636 0.308

808 3434 0.385

1010 3232 0.423

1212 3030 0.308

1414 2828 0.270

1616 2626 0.193

_o_o .A? 4 0 16n

2020 2222 0.150

2222 2020 0.150

2424 1818 0.160

2626 1616 0.231

2828 1414 0.308

3030 1212 0.463

3232 I010 0.655

3434 808 1.000

3636 606 1.385

3838 404 2.159

4040 202 3.159

4242 - 0 4.540

3.87

3.21

2.54

1/94

1.51

1.21

0.968

0.848

0.786

0.755

0.725

0.725

0.725

0.725

0.725

0.725

0.755

0.847

1.09

1.45

2.18

3.45

Roduced From Kuo et. al., 1970.
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TABLE 5.3

Values of A%_(L) and K(L) the M2-tide for the Continental
United Stated Rcfcrrcd to the 40 ° Parallel of Latitude

and with New York City as the Origin for Atlantic Coast
Values (L=O) and Point Arena as the Origin

for Pacific Coast Values (L=O) ,_._*

1

2"

3

4

S

6

7

8

9

J..V

II

12

13

14

iS

16

17

18

19

20

21

22

Distance Distance
From Pac. From Atl. &_

Coast(km) Coast(km) % Degrees

~ 0 4242 -3.560 3.87

202 4040 -0.92S 3.21

404 3838 O.ISO 2.54

606 3636 .. 0.308 1;94

808 3434 0.385 l. Sl

i010 3232 0.423 1.21

1212 3030 0.308 0.968

1414 2,828 0.'270 0.848

1616 2626 0.193 0.786

_°_° 2424 0 160 0 7_5

2020 2222 0.150 0.725

2222 2020 0.150 0.725
q

2424 1818 0.160 0.725

2626 1616 0,231 0.72S

2828 14i4 0.308 0.725

3030 1212 0.463 0.725

3232 I010 0.655 0.75S

3434 808 1.000 0.847

3636 606 1.385 1.09

.3838 404 2.159 1.45

4040 202 3.159 2.18

4242 - 0 4.540 3.45

Reduced Front Kuo et. al.; 1970.
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To good approximation the tidal potential for the M 2

lunar tidal component (principal lunar semi-diurnal tide) is

(Diamante and Williamson, 1972):

3 GMm (r_12 cos2 ¢ coS2¢m cos 2t
UTbI2 -

4 dm \%/
(5.2.7.4)

where ¢ is the geocentric latitude of the station, t is the

hour angle o£ the Moon and 6m is the lunar declination, dm

is the mean distance of the Moon. Let N be a unit vector

along the north polar axis of the Earth, then:

r 2{ RmUTM2 _ 3 GMm 2[(N.r)(N. ) - Rre.r] 2
• 4 dm

^ ^ 2 I._,S x I[I "'" ][ r) z'kL_- j- _mj

(5.2.7.5)

Similarly, to good approximation the 01 tidal constituent

(principal lunar diurnal tide is:

2 3

_ 3 GMm / _ sin 2¢ sin 26

UTOI 4 dm \ Rm m

cos t (5.2.7.6)
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or

GM r 2 d 3 (

(d) I....UTO 1 = 3 _ (N.r) 2(N-R m)
dm m

2 " ..... )!I
iN ) iN ) ( • r "- •r •Rm Rm

(S.2.7.7)

The measurements of Kuo et. al., (1970) and other

investigators are of the form:

SO

gr
__[A_-I00/-2UT2r _->

r = r e

(5.2.7.8)

for specific lunar tidal components of U T . Equating (4) and (8)

the solid Earth surface displacement in t_e radial direction is

given by

4Tr = 3 g

r = re

(5.2.7.9)

In terms of the contributions of the M 2 and 01 tidal effects

(Diamante and Williamson, 1972):

NSO -_ NSO NSO (O1)Tr Tr (_12)+ "Tr

4 r 2 6 x I0- 2
O

3 GiMe
[A_(M2) UTM 2

+

a_(°1) uT° I '
r -- r

e

(5.2.7.10)
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or

N SO
Tr(L) -" N SO (H 2;L) + SO "L)Tr NTr (01'

NSO
Tr(H2;L) = 1.16x10

-2

\dml Me/

R
e

^ ^ ^ ^m_ Am̂2[(N.r) CN.R - (R "r)]
^ ^ ?

2 _ [i- ON"R_)
^^ 1

] [l-ON'r) 2] I '

N SO
Tr(OI;L) = 1.16x10

-2

\dmJ . .
R e

4(N- (N- R*'*) [ (R**"
m m

(N.r) • *) ]

(5.2.7.11)

(5.2.7.12)

(S.2.7.13)

vzhere L is the distance from the shoreline and the local phase

angle <(L) has been taken into account by the relations:

CRm) = CRm) cos < (H2;L) - (Rm) sin < (M2;L) ,
x x y

(5.2.7.14)

Rm ^ ^( ) = (Rm) cos < (M2;L) + (Rm) sin < (M2;L) ,
y y x

(5.2.7.15)

A

(Rm*) = (Rm)
X X

A

cos _ (OI;L) - (Rm)y sin < (01;L) (5.2.7.16)
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A A

(R**) = (Rm) v
" m

Y

A

cos K (OK;L) + (Rm)

(Rm) = (R;_*) = (Rm) .
Z Z Z

sin _ (Ol;I.)
X

(5.2.7.17)

(5.2.7.18)

For most error analysis applications, however, the phase lag

can be assumed equal to zero and the O 1 component (equation

3.28) may be neglected. In any case, the O 1 component can gen=

erally, be neglected for stations within the latitude band:

-40 ° < _ < 40 ° .

In ORAN the O 1 component is neglected. The values of

and 46 are computed by fitting a polynomial in L to

the curves of Figure 4.5. Then Equations 12, 14, 15

and 18 are used to compute the change in station height.
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5.2.8 Measurement Errors Due to Medium Distortion

In ORAN uncertainties in range and range rate due to

the following transmission medium effects are treated.

• Tropospheric refraction

• Ionospheric refraction

• Space plasma

These are discussed in detail in the following sections.

5.2.9 Errors in Tropospheric Refraction

Except at very low elevation angles, (<5°), the primary

effect of the troposphere is a decrease in the velocity of

propagation. At the Earth's surface, this decrease is about

300 parts per million, decreasing to about 1 part per million

at a height of 30 km. Considering the Earth's atmosphere to

be horizontally stratified, as is almost always done in data

reduction, a good approximation to the integrated tropospheric

effect on range measurements is

2.77 (Ns/328.5)

AR T = meters
.026 + sin E

(s.2.9.1)

where

ROBSERVED = RCOMPUTED + ART,

N
S

is the deviation of surface index of refraction

from unity in parts per million, and

E is the elevation angle.

55

67<



The most serious error in applying this correction

to data is due to errors in the surface index of refraction

at the tracking site. For this reason, tropospheric refrac-

tion errors are modeled in ORAN as

(AR T ) (2.77/328.5)

3N .026 + sin E
S

(5.2.9.2)

The systematic effect of tropospheric refraction on

range rate errors is obtained by differentiating the range

error with respect to time,

(AR T)

3N
S

(-2.77/328.5)

(.026 + sin E)

cos E E
2

(5.2.9.3)

Elevation :

For elevation observations, the partial with respect

to refraction is

3E 10 3

3--_ 16.44+930 tan E
S

(5.2.9.4)

Azimuth is not affected by refraction.

Direction Cosines:

3£ = -sin A sin E _E

S S

(5.2.9.5)

3m sin E 3E
3--m : -cos A z _--_

S S
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X and Y angles:

BX sin Az BE

Bns (sin 2 E + sin 2 A z cos 2 E) _ns
(5.2.9.7)

BY cos A sin Ez BE

J _nBns i - cos a A cos 2 E s
Z

(s.2.9.8)

5.2.10 Errors in Ionospheric Refraction

The effect of the ionosphere on a range measurement

is evaluated by considering

ROBSERVED = RCOMPUTED + AR I

The correction AR I is modeled by fitting a polynomial to the

curves in Figure 4.6, which were taken from JPL SPS 37-41,

Volume III, page 8. The polynomial takes the form

AR I = CO + C I SIN E + C 2 SIN2E + C 3 SIN3E (5.2.10.1)

where E is the elevation angle and the C i are obtained by a

least squares fit to selected points from the curves. Errors

in range rate are obtained by differentiating AR I.
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An estimate of the error in ARI is given by the above
reference to be 10% on a day-to-day basis for a particular
location.
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°.

LOW SUNSP()T __..,.' ""/// /1///."

INDEX _

10 20 30 40 50 60 70 80

ELEVATION, deg

90

Figure 5.7 Effects of Ionosphere

on Range Measurements DSIF S-band

System (f = 2.5 x 109 Hz)
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5.2.11 Errors in Space Plasma

Space plasma represents another type of propagation

error. Unlike the ionosphere, which is assumed to terminate

somewhere near 600 KM above the Earth's surface, space plasma

continues ad-infinitum, and is reasonably represented by

a I/r 2 law. Therefore, no closed-form solution exists for

its effect on measurements, and an integration process must

be performed. Let

ROBSERVED = RCOMPUTED + &Rsp

where &Rsp is modeled by the relationship

44.3 f
ARsp - f-f- Np

ds (5.2.11.1)

and

f = frequency of wave (Hz)

N = proton density per cubic centimeter
P

s = ray path
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Figure 5.7, which was taken from the JPL SPS 37-41,

• (T "Vol III, page 6, ozves the assumed proton density repre-

sentation as a function o£ the distance from the sun.

2O

i0

6

to
4

to
Z
0
_-_
0

' 2

Z

"_-ENUS

1

_: 5 DT tl _-_'_ Oq
,a._a La_ aA h ,La* ka _.t_a

8.00 8.10 8.20 8.30

LOG R km
i0

Figure S.7 Logarithmic Plot of

Proton Density and Flux vs Distance from the Sun

The proton density was taken to be

8.40

N = A[Iog R] + B
P

which was converted into a 4 th degree polynomial

= K2R2 K3R3 R4Np K0 + KIR + + + K4

s9 7,2<



Tile coefficients K i were obtained by a least squares fit to

selected points from Figure 5.7.

The integration process is numerical (SJmpsons Rule)

in which the total ray path is divided in half. This

halving process is necessary because of the possible situa-

tion shown in Figure 5.8 in which the proton density

curve along the ray path would be bell shaped (Figure 5.9)

SUN

0

EARTH

SATELLITE

Figure 5.8 Earth-Sun-Satellite Configuration

which Requires Halving the Ray Path

to Accurately Represent Proton Density

6O
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>_

Z
O

(D

EARTtt SUN SATELLITE

RAY PATH (One Way)

Figure 5.9. Proton Density Corresponding
to Figure 5.8

Figure 5.9 shows that a quadrature expression which does

not consider an intermediate value of the proton density on

the ray path would give a totally erroneous density repre-

sentation.
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SECTION 6.0

FORCE MODEL AND VARIATIONAL EQUATIONS

A fundamental part of the ORAN Program requires

computing positions and velocities of the spacecraft at each

observation time. The dynamics of the situation are expressed

by the equations of motion, which provide a relationship be-

tween the orbital elements at any given instant and the

initial conditions of epoch. There is an additional re-

quirement for variational partials, which are the partial

derivatives of the instantaneous orbital elements with

respect to the parameters at epoch. These partials are

generated using the variational equations, which are

analogous to the equations of motion.

6.1 EQUATIONS OF MOTION

In a geocentric inertial rectangular coordinate

system, the equations of motion for a spacecraft are of

the form

B

•. _r
r = + A

3
r

(6.1.i)

where

r is the position vector of the satellite.

is the GM, where G is the gravitational constant

and M is the mass of the Earth.

is the acceleration caused by the asphericity of

the Earth, extraterrestrial gravitational forces,

atmospheric drag, and solar radiation.
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This provides a system of second order equations

which, given the epoch position and velocity components,

may be integrated to obtain the position and velocity

at any other time. This direct integration of these

accelerations in Cartesian coordinates is known as Cowell's

method and is the technique used in ORAN's orbit generator.

This method was selected for its simplicity and its capacity

for easily incorporating additional perturbative forces.

There is an alternative way of expressing the above

equations of motion:

: = VU + : _[D + AR (6.1.2)

where

U is the potential field due to gravity,

contains the accelerations due to drag, and

contains the accelerations due to solar

radiation pressure.

This is, of course, just a regrouping of terms coupled

with a recognition of the existence of a potential field.

This is the form used in ORAN.

The inertial coordinate system in which these equations

of motion are integrated in ORAN is that system corresponding

to the true of date system of the epoch time. The complete

definitions for these coordinate systems (and the Earth-

fixed system) are presented in the GEODYN Program Documen-

tation, Volume i, Section 3.0.
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The evaluation of the accelerations for r is per-

formed in the true of date system. Thus there is a require-

ment that the inertial position and velocity output from the

integrator be transformed to the true of date system for the

evaluation of the accelerations, and a requirement to trans-

form the computed accelerations from the true of date system

to the inertial system•

6.2 THE VARIATIONAL EQUATIONS

The variational equations have the same relationship

to the variational partials as the satellite position vector

does to the equations of motion. The variational partials

are defined as the _x(t) .where _(t) spans the true of date

o)

position and velocity of the satellite at a given time; i.e.,

iCt) = x,y,z,i,y, ;

and _(t o) spans the epoch parameters; i.e.,

XO )Yo )ZO

XO )YO )ZO

the satellite position vector at epoch

the satellite velocity vector at epoch

CD

CR

Cnm,Snm

the satellite drag factor

the satellite emissivity factor

gravitational harmonic coefficients for

each n, m pair

X surface density coefficients
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GM Earth gravitational constant

Ag

YD

lumped effect of gravitational model dif-

ferences. The differences between several

built-in gravity models may be propagated

as a single parameter which approximates

errors in low degree and order models.

Logically, this parameter should never

be considered adjusted.

ratio of Earth reflected radiation to

incoming solar flux

GM
S

GM
m

K 2

Sun gravitational constant

Moon gravitational constant

Love Number

Also, the ORAN program can treat the perturbations in

the Earth gravitational field due to mascon of mass m at an

arbitrary location in the Earth.

Let us first realize thatthe variational partials

may be partitioned according to the satellite position and

velocity vectors at the given time. Thus the required

partials are

aF(t) 8r(t)

)

o) Bg(to)

6S
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where

F(t) is the satellite position vector (x,y,z)

in the true of date system, and

r(t) is the satellite velocity vector (x,y,z)

in the same system.

The first of these, _F(t)

_fl(t o )
integration of

can be obtained by the double

_r(t)
(6.2.1)

or rathei, sinc= the order of differentiation may be

exchanged,

(6.2.;-)

Note that the second set of partials, _r_ may be obtained

.. a (t o)

by a first order integration of 8r(t) . Hence we recognize

that the quantity to be integrated is Using the first
88Ctoj

form given for the equations of mot'ion in the previous

subsection, the variational equations are given by

66'
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3r(t)

_)_(t O) aE(t O)
_u(t) + _R(t) + i_D(t)] (6.2.31

where

U(t) is the potential field due to gravitational

effects at time t.

KR(t) is the acceleration due to radiation pressure

at time t.

_D(t) is the acceleration due to drag at time t.

The similarity to the equations of motion is now obvious.

When the app priate partial derivatives are computed,

Equation (6.2.31 is of the form

y(t) : ACt) _(t) + BCt) _(t) + C(t) (6.2.4)

where

A(t)

B(t)

rCt)

_F(t)

@r(t)

@F(t)
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c(t)

oo

_T(t)

_B-(to)

_T(t)
_(t) :

_g(t o)

_rCt)

__(t o)

This is a linear differential equation with coefficients A(t),

B(t) and C(t) which are known functions of time. In ORAN a

Cowell predictor-corrector integrator is used to compute ?(t),

r(t) and the coefficients A(t), B(t) and C(t). Then an Adams-

Cowell corrector only integrator uses these coefficients to

solve the variational equations (6.2.4) for lit) and y(t).
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SECTION 7.0

FORCE MODEL COMPONENTS

Equation (6.1.1) expresses the instantaneous satellite

acceleration as the sum of individual acceleration due to

the gravitational field, atmospheric drag, and solar radiation

pressure. This section describes how each of these accelera-

tions and the associated variational equations corresponding

to Equation (6.2.4) are evaluated. Table 6.1 lists tho con-

tributions to each of these acceleration components and

the associated error parameters.
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7.1 TIlE EARTH'S POTENTIAL

In ORAN the Earth's potential is described by a

spherical harmonic expansion with surface densities used

to model local irregularities,
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X
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Figure 7.1 : Spherical Coordinates



7.1.1 Spherical Harmonic Expansion

The Earth's potential is most conveniently expressed

in a spherical coordinate system as is shown in Figure 7.1.

By inspection:.

¢', the geocentric latitude, is the angle

measured from D-_, the projection of D-F in

the X-Y plane, to the vector D-P.

k, the east longitude, is the angle measured

from the positive direction of the X axis

to _.

• r is the magnitude of the vector D-_.

Let us consider the point P to be the satellite

position. Thus, _ is the geocentric Earth-fixed satellite

vector corresponding to T, the true of date satellite

vector, whose components are (x,y,z). The relationship

between the spherical coordinates (Earth-fixed) and the

satellite position coordinates (true of date) is then

given by

2r = + y2 + z2 (?.1.1)

Z

¢' = sin 1 _

r

(7.1.2)

-1
k = tan

Y

x g
(7.1.3)

71,,4
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where @g is the rotation angle between the true of date

system and the Earth-fixed system (see GEODYN Program Docu-

mentation, Volume I, Section 3.4).

The Earth's gravity field is represented by the

normal potential of an ellipsoid of revolution and small

irregular variations, expressed by a sum of spherical

harmonics. This formulation, used in ORAN is

GN
W =

r

nmax n

n sin _ CnmCOS ml + S
n=2 m=O nm sin ml] I

where
(7.1.4)

G is the universal gravitational constant,

M is the mass of the Earth,

r is the geocentric satellite distance,

nmax is the upper limit for the summation (highest

degree),

a
e

is the Earth's mean equatorial radius,

_' is the satellite geocentric latitude,

is the satellite east longitude,

m

Pn(Sin_) indicate the associated Legendre functions,

and

Cnm and Snm are the denormalized gravitational coefficients.

86<
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The gravitational accelerations in true of date co-

ordinates (_,_,_) are computed from the geopotential,

U(r,¢',X), by the chain rule; e.g.,

•. 8U _r _U _¢' 8U 8X
X = -- -- + +

_r 8x 8¢'3x 3X _x

(7.1.5)

The accelerations y and z are determined likewise. The

partial derivatives of U with respect to r, ¢', and X are

given by

nmax / n n
-- = --_ I + _ FC
8r r ,_ | _ " nm

k n=2 m=O

_U

8X

cos m_

+ S
nm sin mX) (n + i) pmn (sin ¢')I

nmax n n

-- E (Snm cos mX - Cnm

r n=2 m=0

sin mX)

(7.1.6)

(7..1.7)

m pm (sin ¢')
n

_U

2¢'

nmax n n

-- E (Cnm

r n=2 m=0

cos ml + S
nm sin mX) (7.1.8)

pm+l (sin 4') - m tan ¢' pmn n

73

(sin _')]
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The partial derivatives of r, _', and _ with respect to

the true of date satellite position components are

Dr r.
1

Dr. r
1

(7.1.9)

./-_7--_ r 2 + --
_r i

(7.1.103

P

_ 1 | _y y _x

[_r i _ _r i x _r i
(7.z.ii)
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The Legendre functions are computed via recursion

formulae:

Zonals" m=0

1

po (sin +_ = -
n

n (2n-l) sin _' pO (sin CD -n-i

(n- i) pO ]n-2 (sin _

(7.i.i2)

o (sin _ = sin _'P1 (7.1.13)

Tesserals: m_O and m<n

Pmn (sin _ = Pmn_2 (sin _ + (2n-l) cos _' pm-ln_l(sin _

P_ (sin ¢') = cos _'

(v.1.14)

(7.1.15)

Sectorals: m=n

pm = (2n-l) cos _' pn-I (sin _9 (7 1 16)n n-i • •
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The derivative relationship is given by

d
m

Pn (sin #')
d_'

pm+l (sin _') - m tan _' pm (sin ¢')
n n

(7.1.17)

It should also be noted that multiple angle formulas

are used for evaluating the sine and cosine of ml.

The variational equations require the computation of

the matrix U2c ,

U2c)i,j

whose elements are given by

a2 u

_r. _r.
I 3

(7.1.18)

where

r i : {x, y, z}, the true of date satellite position.

U is the geopotential.

Because the Earth's field is in terms of r, sin _',

and k, we write

U2c : cT U2 CI + Z

k=l

_U

-- C2k

Be k
(7.1.19]

where

e k

U 2

ranges over the elements r, sin ¢', and

oth
is the matrix whose i, j

2
U

element is given by
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C1 element is given
.th

is the matrix whose i, j

by 8ei

8r.
3

and

C
2k

.th
is a set of three matrices whose i, j

9

elements are given by 8" ek

8r. _r.
± J

We compute the second partial derivatives of the

potential U with respect to r, _', and _:

82U

2
8r

2GM GM nmax &_n n

3 3 "" 1r r n=2 r J m--o

(Cnm cos m% + Snm sin ml) pm (sin _9
n (7.1.2o)

82U

_r 8d_'

GM

2
r

nmax n
(n+l) _re) (Cnm cos mk

n= 2 m=o

+ S sin mE)
nm

8

__ (pn (sin _3
Ill (7.1.21)

nmax n n

r2 (n+l) m
n=2 m=o

(-C sin ,nk + S cos m_) pm (sin _
nm nm n (7.1.223
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_2U G_I _Xae n _
= -- (_) (Cnm cos m_, + Snm

r n=2 m=o

2

GM nmax (._)n- 2;-- m (-C
r nm

n=2 m=o

s in mX

sin reX)

(7.1.23)

(7.1.24]

+ Snm cos reX) a4 n (sin 4

GM nmax. .n n

-- E(5/E
r n=2 \r I m=o

2

m (Cnm cos mX (7.1.25)

+ Snm sin mX) pm (sin 4)
n

where

)-- (sin 4) = pm+l (sin. Q')
a4 n

m tan _' pm (sin 0')
n

(7.1.26)
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2

(sin _')-[m+l)tan _' pm+l(sin _
n

m tan _' [Pn +1 (sin _9 - m tan _' pm(sinn ¢_]

2 q_, pm (sin _')m sec n (7.1.273

The elements of U 2 have almost been computed.

_' k) toWhat remains is to transform from (r, ,

(r, sin 4,k). This affects only the partials involving

3U 3U _¢'

3 sin _' 3_' 8 sin _'
(7.1.28)

32U 3¢' 32U

3 sin _,2 3 sin _' \8_-_'/

3U 325 '
+

34 3 sin 42

where

(7.1.29)

3¢'

3 sin _'

: sec _' (7.1.30]

32_ ,

3 sin _,2

3
: sin @' sec _' (7.1.31)
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For the C 1 and C2k matrices, the partials of r,

sin _', and _ are obtained from the usual formulas:

r = 4x (7.1.32)

Z

sin ¢' = --
r

(7.1.333

= tan 1 - Og
(7.1.34)

We have for CI:

_r r.
1

_r. r
i

(7,1.35)

sin¢'

_r.
1

-Z r.
1

3
r

I
+ --

r

_z

_r.
1

(7.1._6)

8_
m

1

1

_y

X --

3r i
x]y--
_r.

1
(7.1.37)
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• The C2k are symmetric.

are given by

The necessary elements

i 3r.
32r = ri _ + z

3r. 3r. r3 r 8r.
3 J

(7.1.38)

3 2 sin $' 3z ri r_ I [ Bz Bz
i

_r I 3r. rS r-_ rj + r.
• j 3 i _ j

82X

4-

_zr.[,y ,x],,, _ x-- y--

(x2+y2) 2 3r.z 3ri

[ ]i 3x 3y 3y 8x

x2+y 2 _rj 3r. Br. _r.J J J

(7.1.40)

If gravitational constants, Cnm or Snm are being

treated, we require their partials in the f matrix

for the variational equations computations. These

partials are

= (n+l) -7

Cnm r

COS
m

(ink) Pn(sin ¢') (7.1.41)

3Cnm

m -- sin (m%) pm (sin _')
n

r (7.1.42)
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= cos (mX) pm+l

Cnm r • n

(sin 4)

m tan _' pmn (sin _')J
(?.1.43)

The partials for Snm are identical with cos (mX) re-

placed by sin (mX) and with sin (mX) replaced by

-cos (mX).

These partials are converted to inertial true of

date coordinates using the chain rule; e.g.,

t- -_'-xx7 = _Cnm t_r/ _x + _Cnm t'-'_"Xl "_'-_x_Cnm

a (_'I--'_U_'Cnm _x
(7.1.44)
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The logic and appropriate array dimensions of the

ORAN program have been modified to accommodate uncertainties

in the coefficients of the zonal and tesseral harmonic terms

in the geopotential up to and inclduing (30,30). This is

near to the practical limit for the current 360 series

machines. Beyond (30,30), the accuracy of the computations

of the perturbations and partials becomes poor for double

precision and excessive amounts of computing time are involved

in calculating the Legendre polynomials. However, the

highly localized gravitational anomalies that require higher

prder spherical harmoncis for adequate representation can

be simulated by using the surface density model described

in Section 7.2.
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7.2 blASCONS AND SURFACE LAYER DENSITY

The surface layer density represents the acceleration

due to a localized gravity anomaly. This acceleration is pro-

portional to the area of the particular block in question and

inversely proportional to the square of the distance from the

spacecraft. The surface layer density block can be repre-

sented as a mascon by equating the errors in the spacecraft

acceleration due to a mascon and local density layers. Let

RDEN be this acceleration. Then:

•. ( A. x.. 1
= _ _i 13 i)

RDENj i Oi /
(7.2.1)

where _i is the density of block i; A i is the area of block i;
3

x i is the distance along the j axis; and _ is the cube of

distance from block i to the spacecraft.

ORAN was modified to account for both propagations

of errors Jn this model and adjustments of the local density

values. Any number of blocks can be generated by the program.

However, the user is cautioned not to specify so many blocks

that an excessive amount of core is required.

For integration of these force model partials, the

differential equation

dt 2 _ aS i aS i
(7.2.2)

must be solved.

To do this, 0RAN required the second term on the
,.

right-hand side. It is found by differentiating I_DEN with

respect to _i'
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_ _ _gDEN = Ai Xij

?_i _ i Pi 2
(7.2.3)

The complete details of the surface layer density model in the

ORAN program have been given by Martin (1972).

}._SCONS are modeled as point masses which may be located

at any point in the earth. These point masses perturb the satel-

lite orbit in the same manner as do geopotential harmonics and

are consequently treated similarly in the ORAN program. The

gravitational potential of a MASCON produces a satellite force

which can be integrated numerically along with the variational

equations for epoch element and geopotential coefficient partial

derivatives. Thus, as far as the EASST program is concerned,

the only thing unique about a MASCON is its forcing function in

the variational equations. The appropriate forcing function will

now be derived.

The potential of a mass m at a point which is a distance

p from the mass is, by definition

G.___m (7.2.4)
P

where G is the gravitational constant.

of a mass (M-m) at a distance Pl is

Similarly, the potential

G (M-m)

Pl
(7.2.5)

The potential of both masses at the same point, P, is

V

G (M-m) + G__m_m

Pl P
(7.2.6)
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This expression for the potential V can be used to

derive the disturbing potential of a MASCON. Let m be the

mass of the MASCON and (M-m) be the mass of the body containing

the MASCON, so that the total mass within the primary body is

M. Then the potential of the central force is GM/r where r

is the distance of the point P from the center of gravity of

the MASCON and the primary body. If the MASCON (m) is fixed

with respect to the mass (M-m), then we can write the disturbing

potential as

AV = V - GM/r

G (M-m) + Gm GM

Pl p r
(7.2.7)

This expression can be simplified if we are prepared
7 \m 2 /_\ 2

to neglect terms of order|_, . Even for the moonl_| is of

order 10 -s. For the earth__ for whichi_] is much _mallem r, we

\ 21,yt\
are completely justifxea in neglecting [_] . With this ap-

proximation the disturbing potential can be written as:

AV - Gm Gm (xX + yY + zZ) _ Gm
P 3 r

r

(7.2.8)

where (x,y,z) are the coordinates of P, and (X,Y,Z) are the

coordinates of the MASCON relative to the center of gravity of

the system.

From the disturbing potential we can derive the compo-

nents of the disturbing acceleration by differentiation. The

x-component is

_(AV) _ Gm (x X) +Gm _(x-X) + 3x (xX + yY + zZ)_

_x p 3 . r 3 _ r 2 _ , (7.2.9)

with identical forms for the other two components.
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7.3 LUNAR AND SOLAR PERTURBATIONS

Consider a system of n point masses m. (i = 0,1,2,...n-l).
.th z

Tile equations of motion of the z mass relative to the mass

m 0 can be written:

.. G(mo+mi) n-] E_.. -- i 1
roi = - 3 1:0i + G _ m. 11-- 10-_-=-I

, J [rij 3 r "_/ 'roi j=l Oj
Aj

(7.3.13

Let m 0 denote the Earth and m i the satellite. The satellite's

motion relative to the EartN is then (m i is negligible with

respect to the other masses)

rOl = _ Gm 0 _
ro i + G mj

rOl j=2

(7.3.2)

The variational equation for an error in the gravitational

constant Gin. (j = 2,3,...n-i) is then
J

8rOl

a (Gmj)

d2 (_r01)-- / _ _

dt rlj r0j

(7.3.33

These variational equations are integrated numerically to

give _ (r01)/_ (Gmj) .
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Recent determinations of GM for the Moon give a value of

about 4902.6 kg3/sec 2 with a standard deviation of about 0.25

kg3/sec 2. Consequently a reasonable estimate of the uncertainty
in GM for the Moon is given by 0.25/4902.6 z 5.0xi0-5.
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7.4 SOLID EARTH TIDES

The tidal displacement of mass produces a perturbation

in the gravitational field of the Earth, UD. Following the
small response assumption, Love (1911) represented the dis-

turbance potential, at the surface r=Re, by

UD(Re9 = k UT(Re) (7.4.1)

This can be generalized (Kaula, 1968) as:

UD (Re) = E kn UTn (Re)

n=2

(7.4.2)

Since Re << i, terms involving n>2 can be neglected to first

Wd
approximation, and

UD (Re) = k 2 UT2 (Re) • (7.4.3)

There is an unresolved discrepancy with the best theoretical

value of k 2 which is equal to 0.290 and the best estimates

based on satellite measurements, which now center on 0.25.
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The second order third body disturbing potential at

the surface of the earth is given by

GM d R 2
e

UT 2 = R3 P2 (cos @) (7.4.4)
d

where G is the gravitational constant, M d is the mass of the

disturbing body, Re is the radius of the Earth, and Rd is

the magnitude of the vector Rd from the Earth to the disturbing

body. The angle @ is the angle enclosed by Rd and the vector

from the earth to the satellite. Evaluating the Legrendre

polynomial and using the vector formulation for cos @ yields

I]GMd R2 [d " _ 2

UT2 = 2 R3d e 3 r -i • (7.4.5)

Letting the "^" notation refer to the unit vector,

k 2 GMd Re5 [ ^ ^ JUD(r) = _--_ 3 (Rd-r) 2 - 1 (7.4.6)

2 R d r

The acceleration produced at position T by the solid

Earth tidal bulge is (Diamante and Williamson, 1972):

= VUD = - -- k2 --3-- i2 Rd r4 3 (R d. r) 2 r

r)+ 6 _ e (a r) ^ ( -r)2

R_ r _ \ r r

91
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The variational equation is:

d--_ - 2 R_ 7 [3-15(Rd r) 2]r + 6(Rd r) Rd)

+_ e " " 2 _" ,, _"

15 r-- e_m I( AA(6 d" - 30(Rd-r ) r._r_ Rd

 k2/J

÷

3"15 (Rd'r) _ + " F
(7.4.8)

The ;'ariati --^'_,,_equation is actua_'y_ given by the sum

of the expression above for the Moon and Sun, i.e., with the

subscript "d" replaced by "s" and "m". These equations were

derived under the assumption that the response time of the Earth

is negligible. Actually, the tide will be displaced by some

angle _ -- n o At where no is the angular velocity of the Earth

and at is the time lag of the tide. This phase lag may be

accounted for by replacing _d in the above Equation with a vector R_

which corresponds to _d rotated through an angle ¢ in the direc-

tion of Earth's rotation (Diamante and Williamson, 1972).
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7.5 LUMPEDGEOPOTENTIALERRORDUE TO GRAVITY MODEL
DIFFERENCES

The ORANprogram possesses the capability of modeling

the total set of errors in the set of spherical harmonic
coefficients used to perform an orbital data reduction.

The rationale for the use of this form is basically as

follows. Let xApL represent a satellite orbit generated
or estimated using a set of geopotential coefficients

estimated by an investigator, or group of investigators,

which we have denoted by APL. Similarly, let xSAO represent
the same orbit ephemeris obtained (estimated) in the same

way except that geopotential coefficients estimated by a
group denoted by SAOwere used. Let us further assume that

group APL and group SAO operated completely independently

using different tracking data on different satellites.

On this basis, we deduce that errors in their geopotential

models and thus geopotential dependent errors in xApL and

xSAO are independent. It is not necessary to assume that
the two models are equally accurate.

Let us then consider the variance of the difference

between xApL and xSAO. We can obtain this variance in terms
of the variance of the individual model errors by first

writing the difference as

xApL - XSAO =(XAPL - xt)= (XsAo-xt)= 6xApL - 6xSAO (7.S.1)

where

x t is the true ephemeris and _xAp L and _xSA O are the

errors in the two orbits using the two different geo-

potential models. Then

93



• T]
Var(xAPL-XSA0) = E[(XAPL-XSA0) (XAPL-XSA 0)

= Var 6xAp L + Var 6xSA 0

(7.5.2)

For the special case in which the models are of equal variance

(accuracy), we have

Var (6XAPL) = Var (6XsAo) = { Var (XAPL-xSAO) (7.s.3)

If the models are not of equal accuracy, but we can relate

the variances of the two models by a constant factor,

Var 6xAp L = k Var 6XsAo, (7.5.4)

we then have the relation

i
Var (6XsAo) = I+--$TVar (XAPL-xSAO) (7.s.s)

If the SAO model is the more accurate, then

1 1
< _ (7.5.6)

and we have an upper limit on the coefficient of the gravity

model difference variance which is needed to obtain the vari-

ance of the SA0 model.
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In practice, we would not expect k to be exactly a
constant, nor would we expect to find geopotential models

with completely independent errors, but we would expect to
be able to choose models which are nearly independent and

with a suitable definition of the variances of _xApL and
6xSAO (e.g., sampled over all possible orbits)) then k is
a constant. In any event, we will use the above relation

obtained using the SAO gravity model, in terms of the gravity
model difference effect.

It is possible to compute the effects on an orbit

of a gravity model difference using the integration of a
set of variational equations. Consider first the variational

equation for a spherical harmonic which we can write as

d 2 @_(t) _ @r(t) @FCt_)_) + 3rCt) BFCt) + BF(t)

dt 2 kDCnm / DF(t) 3Cnm Dr(t) DCnm DCnm

(7.s.6)

Where _(t) is the satellite position (x,y,z) at time t and

T(t) is the acceleration. Note that the acceleration due to

gravity is dependent only on position. Therefore, the second

term on the right hand side of the above equation is zero.

The effect of a small error _Cnm on the orbital parameters

at time t is given by

d2 I "" - ""

dt 2 (3F) = IDF- Dr + Dr 6CnmDr DCnm DCnm
(7.5.7)

A corresponding equation holds for the S
nm

the same degree and order

coefficient of

9s 1,09<



d2 + 1
m

dt 2 (6F(t)) t _S_-(t) _S aS nm
nm nm

(7.s.8)

If we sum (7.5.7) and (7.5.8) for a range of values of n and m

we get the variational equation for the total error in the

orbital parameters at time t due to errors in the spherical

harmonic coefficients

[ )
d 2 t) _F___(t) 6Cnm + __F(t) 6Snm + ___ Sn m

.dt--'_ (6T(t)) = [aF_'--#(__ aCnm aSnm aSnm

+ __r(t)_Cnm6Cnm I (7.5.9)

Within the limits of linearity (and ORAN is a linear error

analysis program), the quantities in brackets are the orbit

differences due to a set of differences (or errors) in the

spherical harmonic coefficients. We specialize this set of

differences to be obtained by differencing geopotential

model sets which are both as accurate and independent as

possible. Equation (7.5.9) then gives the variational equation

for the effects which the set of coefficient differences pro-

duce on the estimated orbit.

In ORAN each spherical harmonic coefficient may be

i) adjusted, 2) treated as an individual unadjusted parameter

or 3) included in the lumped parameter model of equation (7.5.9).
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7.6 DIRECT SOLAR RADIATION PRESSURE

_'R '

For a spherical satellite with an integrated reflectivity

the acceleration is (Diamante, 1972b):

F = r = -vCl+F ) - do _FI3 ,c [Rs

where

{
0, when the satellite is in the Earth's

shadow,

i, when the satellite is illuminated by

Sun,

r = satellite position vector (Earth centered

coordinat_ system),

_S = position vector of the sun (Earth centered

coordinate system),

A = cross-sectional area of the satellite I,

m = mass of the satellite.

1
The cross-sectional area is in a plane normal to the direc-
tion of the radiation flux. A is therefore constant for

spherical satellites. [Iowever, for other geometries, vari-
able cross-section along the orbit must be taken into

account or an average value of A adopted.
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Clearly, when fl >--0, the satellite is always in full sun-

light. If fl < 0, the satellite will be in shadow when:

^ 2 2
_.7 - (F.Rs) £ Re (7.6.2)

R is the radius of the Earth. Let:
e

2 ^ 2
f2 = r . {Rs._)2 _ Re . (7.6.3)

Then

i' fl >0

_) = ' fl < 0 and f2 > 0

' fl < 0 and f2 <-0

(7.6._))

An error in the direct solar radiation pressure force

model can be expressed as an uncertainty in PR' or as an

uncertainty in C R. Then

d 2 _ S 2 i + CR • V
-- F - Z = -v - do --
_C R dt c _C R I s- -I 3

+ --. V F,

_C R

(7.6.5)
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where V is the gradient operator and _ includes the effects

of all the other forces acting on the satellite. The vari-

ar

ational equation for aC R reduces to (Diamante, 1972b):

r -

aC R dt 2

S Rs-r
= -_J-- + 3

c igs_Fl 3
• m

_C R

C R

i 13 + . V F •
(7.6.{)

7.7 EARTH REFLECTED RADIATION

Over the long term, the radiation budget of the Earth

must be in equilibrium. A large fraction of the solar radia-

tion received by the Earth is reflected back, almost immedi-

ately, at nearly the same wavelengths at which it is received.

The ratio of the reflected radiation to the incoming solar

flux is known as the albedo, YR" The best estimate of the

long-term mean global albedo for the Earth has been obtained

from TIROS VII measurements:

YR = 0.32 (7.7.1)
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The remaining fraction of the incoming solar flux is absorbed

by the atmosphere, oceans and surface of the Earth and is

eventually re-emitted as the far-infrared planetary radiation.

From equilibrium requirements, this fraction is:

= i = 0.68
YIR YR (7.7.2)

Part of the reflected radiation is scattered diffusely

and part is scattered specularly. The specular reflection is

mostly from small bodies of water scattered over the surface

of the Earth and occasional calm areas of the oceans. There-

fore,

YR = YD + YS'
(7.7.3)

where the subscripts D and S stand for diffuse and spectral.

Using a value of 4/3 for the index of refraction of water,

the refractivity at normal incidence is 0.02.

Furthermore, although 71% of the Earth's surface is covered

by water, only a small fraction of that can be expected to

produce specular reflection at any one instant in time.

Therefore, to good approximation,

YD _ YR = 0.32 (7.7.4)

Since for the purposes of error analysis we need only

consider the radial accelerations, we have employed a simplified

analytic model for the Earth reflected radiation (Diamante,

1972b).
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Danjon (1954) made observations of the Earth-shine

reflected from the dark hemisphere of the Moon. lie found

that the phase function of the Earth is better represented

by a non-Lambert Law expression. At great distances, the

Danjon relation can be approximated by a (l-coSBs)2 dependence.

The Earth receives solar energy at a rate:

2
_rR

e
s(d°l 2 ergs/sec,

\Rs/

and reflects:

2
YD _Re S ergs/sec

\Rs_

away. If this is distributed at great distances according

to the function:

2
C(r) (l-coSBs) ,

then the total energy flux through a spherical surface of

radius r, assuming that the flux is radially outward, is:

f _ + coS2Bs)dS2_r 2 C(r) sin s(l 2 cosB s ,

0

16
2

_ r

3

CCr).
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2S
Setting this equal to YD_R e :

2 2

3C(r) - -- ¥D s
16

S

(7.7.s)

Therefore, the Wyatt-Danjon expression for the radiation

pressure is

p

2 2

_ (l_coSSs) 2,
3/16 YD c

S

(7.7.6)

and the radial acceleration is:

2 o

rAR = 3/16 YD(I+_-R)----(_s)mc (l-coSBs)2 r.
(7.7.7)

A force error in the Earth-reflected radiation pressure

can be modeled as an error in YD" Noting that:

A A

= R • rc°SSs s (7.7.8)

where the "^" notation again denotes the unit vector, the

variational equation is then:
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^ 3 A S

(A R r) - (i+_ R)

_YD 16 m c

Re 2 l+y D

s _YD

R
S

- 2 --

o
r r

(7.7.9)

or

Dr

3YD

= (AR r) -

_YD

2

3__.AS(d)(I+_R) - -- R
16 m c . e

S

(_ )+ --. VF

_YD

(7.7.10)

where

^ - 2

Rs'r) 2YD (i3
r r s _YD s r/k_YD r

3yo_
r A 1

r _YD.

(7.7.11)
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7.8 ATMOSPIIE RI C DRAG

The acceleration _ on a satellite due to the atmos-

pheric drag force is given by the expression:

AS . .

M
S

(7.s.1)

whe r e

CD is the coefficient of drag for satellite,

A S is the cross-section area of the satellite,

(m 2)

mS

r

is the mass of the satellite (kg)

is the velocity vector of the satellite,

relative to the atmosphere (under the

assumption that the atmosphere rotates

with the Earth) (m/sec),

is the position vector from the center of

the Earth to the satellite (m),

is the mass density of the atmosphere

at position r (kg/m3).
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Strictly speaking, AS is the area of the satellite projected
in the V direction. However, in practice the moan cross-. r
section is used (constant) and CD is also taken to be a
satellite dependent constant.

The major source of error in determining the drag

accelerations arises from uncertainties in the density, O.

Since these uncertainties can usually be expected to exceed

drag coefficient uncertainties, density errors can con-

veniently be represented as errors in CD. Let

I(A )-- 01 [r
2

(7.8.2)

The variational equations for o_-_D are then:

"" 2
_r d

_C D dt

M •

= -- • 7 "_ + CD 3CD[ i" + CD _CD

m _- m

3C D dt

(7.8.3)

where _ involves the effects of all other forces (assumed

independent of velocity) and 7 is the gradient Operator.
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The righthand side of equation (2.3) may be expanded,

remembering that 0 is not a function of velocity. The ex-

pressions for the partial derivatives have been given by

Williamson, Martin and Dutcher, 1971. All derivatives of

p, however, must be evaluated numerically for a given satel-

lite orbit using the atmospheric density model described

below. An error in the satellite position due to an uncer-

tainty in CD (drag error) is then obtained by integrating
_r

the,above variational equations for _-ffD"

The Jacchia 1965 Model Atmosphere, with revisions

through 1968, has been selected to represent the atmospheric

density in the drag error calculations of the ORANprogram.

The atmospheric density calculation in the ORANpro-
gram is performed by subroutine DENSTY. This subroutine is

a modification of the one currently employed in the GEODYN

programs and is based on the static diffusion models of

Jacchia (1964, 1968).

The 1968 Jacchia Model Atmosphere allows the calcula-

tion to be structured into two major steps. In the first

step, the exospheric temperature is calculated from data on

solar flux, geomagnetic index, solar ephemeris and satellite

position information. In the second step, the density is

calculated as a function of the exospheric temperature T ,

and the satellite altitude above the surface of the Earth, z.

This second step is accomplished by using a polynomial fit to

tabulated solutions of differential equations. The complete

procedure is summarized in Figure 2.1.
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The daily value of the 10.7 cm solar flux strength,

is in units of 10 -22 watts/m2/cycle/second of band-
FI0.7,

width. In the GEODYN program, the daily values of FI0.7

are data input and _I0.7 is obtained by averaging the daily

values over the preceding 54 days (two solar rotations).

In the ORAN program, it is anticipated that for most error

analysis applications and mission planning, the daily values

will either be unavailable (before the fact) or represent an

unnecessary burden on storage and computation for the level

of accuracy required. Consequently, in the ORAN program,

FI0.7 = FI0.7.

Average values of FI0.7 have been obtained by averaging the

daily record of FI0.7 over intervais of the ll-year solar

cycle corresponding to periods of high, medium and low solar

activity. These values are 218.80, 130.62 and 124.35, re-

spectively. Commonly accepted values of FI0.7 for very high,

medium and very low levels of solar activity are 250-275,

150, and 65-75, respectively. Appropriate values may be

selected for the anticipated solar activity levels in the

period of interest.

The correction for geomagnetic activity was provided

by Jacchia, Slowey and Verniani, 1967 and is based on ap,

the three-hour planetary geomagnetic index. In applying this

result in the ORAN program, the three-hour equivalent plane-

tary amplitude ap was replaced by the daily equivalent plane-

tary AP in order to minimize data input and storage. The

index Ap is defined as the arithmetic average of the eight

values of ap for a given day. For application of the

geomagnetic correction in ORAN, the same remarks apply here

lO7 J21<



as for input data on FI0.7. Average values of Ap corres-

ponding to the same averaging periods over the II year solar

cycle employed in the calculation of average values of FI0.7

for periods of high, medium and low solar activity were

found. These are respectively Ap=20.24, 13.63 and 10.98,

corresponding to the values _i0.7=218.80, 130.62 and 124.35

for high, medium and low solar activity. The indices ap and

Ap can range from 0 to 400. Days when Ap_2 are considered

to be geomagnetically quiet and slightly disturbed days are

those for 4_Ap_10. Moderate disturbances are in the range

Ap=40-S0 and intense disturbances range Ap_100.
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7.9 MICROMETEORITE IMPACT AND THRUST ERRORS

Collision of a spacecraft with micrometeorites can

be modeled by uncertainties in spacecraft thrusting. If
e9

r-T is the acceleration due to the thrusting, then the error

in position and velocity due to an uncertainty in rT at the

time of application is

A_ = _ Ar T = -- (Ar-T) (At) 2, (7.9.1)
_r 2

T

8r ..

3r T

(At) , (7.9.2)

where At is the duration of the thrust and AF T is the uncertainty

in the magnitude. These relations provide the initial values

for integrating variational equations to provide the effects on

the orbit as a function of time.

Information on the meteoric environment near to the

Earth and in interplanetary space, useful for application of

the ORAN error model, is provided in Space and Planetary

Environment Criteria Guidelines ]:or Use In Space Vehicle

Development, 1971 Revision.
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