General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NONLINEAR AXISYMMETRIC LIQUID CURRENTS IN SPHERICAL ANNULII

N. M. Astaf'yeva, N. D. Vvedenskaya, and I. M. Yavorskaya
(NASA-TM-75559) NONLINEAR AXISYMMETRIC
IIQUID CURRENTS IN SPHERICAL ANNULI
Administration)
Administration) $55 \mathrm{p} \mathrm{HC} \mathrm{A04/MFA01} \mathrm{CSCL}$

[^0]gTANGARO TITLE PAGB

le Rember Na. NASY-7N-755ge	2. Defermment reseroten Nor
A. Yuto end dubitle. NONHENRAR AXISYMO TN SPEMRTGAT ANWU	RIC LIQULE GURRENTS I
F4 Auhertal N. M, Astafiyeva.雪• A. Wavexakeya	D. Yvedenotnoye, and
P. Pettaming Prearitotion Nome ond SODTHAN Fen 5456 Santa Barbara; ga	Adtops
19. Spensering ADency Nemo end Add Nasional Aeronautzer Warhingten, D.G.	Space Admutatrabten 46

TABLE OF CONTENTS

INTRODUCTION 1

1. STATEMENT OE THE PROBLEM AND THE MEMHOD OF SOLUTION 6
2. RESULTS OF THE NUMERICAL. CALCULATIONS 22
3. THE HYDRODYNAMIC TNTERPREATION OF THE RESULTS OBTAINED. COMPARISON WITH EXPERIMENTI 17
4. CONCLUSIONS AND SUMMARY 19
APPENDIX 21
REFERENCES 24

ANNOTATRON

We present a numerieal analysis of nonitnear axtsymmetrito oupm rents in a viseous litquid in spherleal annuitic of various thtolness when only the tnner sphere rotates.

We obtatned the 1 Ines of fiow and the lines of equal angutar veloctity, the spatial speotra of the kinetse energy and uf inditutdual veloedty oomponents; wo enloulated the integral charaotertsties of the motions: the totad kinetic energy and the torque fers vartous values of the numbers Re.

In a thin annulus, the nonundqueness of the steady-state solum tions of the NaviermStolees equations was estabhished, and the regtens (with respeet to Re) in whith yarious rlow regimes extst werre determined.

Caleulations of the ourponts in a thiol annulus together with the resulta of previous experimento make it possible to draw conelusions eoneomang the stability of eurrents in the Re range constaered.

Compardson of the numerleal results with experiments shows good guantitative and guadiative agreement.

Nominees Axisymuetric Liquid Currents in
Sphesteal Amain
N. N. Astadtyeva, N. D. Vretensitya, and I. M. Yavorskaya

INTRODUCTION

The study of nonlinear shearing currents in a liquid or a gas in rotating spherical annulus is the basis for an understanding of many dynamic processes of global scale in owens, the atmospheres of the Earth, planets, and in the inter ion of stars of various spectral classes.

In all these instances, the form of the currents and their stability depends essentially on two important factors: the spherical geometry of the volume in whin they flow, and the rotation. Neglect of even one of these factors can lead to results quite remote from reality, as experiments show [1-6].

One of the simplest shearing currents in which such factors are considered is a current in a viscous incompressible liquid in a spherical annulus, the boundaries of which rotate around the same axis with different constant angular velocities. "By analogy with the plane and cylindrical cases, we call it the Colette spherical current.

The published results of experiments [1-6] have shown that, depending on the values of the parameters of similar problems: the Reynolds number Re $=\left(\Omega_{1} r y\right)$, the relative thickness of the

[^1] Reynolds number with respect to the external sphere $R_{e_{5}}=\frac{\Omega_{2} r_{2}^{2}}{y}$, 16 the character and form of the currents arising in the annulus turn out to be extraordinarily diverse $\left(\mathcal{Z}_{1}, \tau_{2}, S_{i}\right.$ and $S_{\mathcal{L}}$ are the radil and the angular velocities of rotation of the internal and external spheres, respectively, and v is the kinematic viscosity).

For sufficiently smail numbers $\operatorname{Re}[7$ - 10], the Couette spherical ourrent is axisymmetric and consists of differential rotations around the axis and the meridional circulation whose intensity and form for fixed numbers Re are determined by the parameters δ and ε. Here it is already clear that the analogy between the plane and cylindrical currents, on the one hand, and the spherical, on the others is purely external: the first two currents are one-dimensional and have one velocity component in the direction of the displacement of the velocity. A current in a spherical annulus is much more complex: it has three velocity components and depends on the two spherical coordinates r and θ, and on the Reynolds number.

This difference becomes still more significant when the basic current loses stability. In the plane case, If the very first instability leads to the spontaneous development of turbulence and, in the cylindrical case, to the appearance of stationary axisymmetric or (when the Rossby numbers are large and negative) periodic undulating Taylor vortices, then in the spherical annulus [5, ll] when the basic current loses stability, there arise diverse currents which differ widely among themselves, depending on the thickness of the annulus and the number ε. Obviously this indicates that there are various mechanisms which cause the instability of the basic current for different δ and ε.

Such a difference between plane, cylindrical and spherical curients arouses not only applied, but also theoretical interest in the study of Couette spherical currents, since they obviously are
more general in character. This greater generality leads, as is to be expected, to significantly greater mathematical difficulties in. obtaining a solution: indeed, for arbitrary values of simflar parameters, calculation of the spherical current reduces to the solution of a boundary value problem for a system of nonlinear partial differential equations.

It is possible, therefore, that the most interesting results were those obtained experimentally in recent years. The analytical and numerical results are few in number and relate only to certain specific points in the space of similar parameters. A detailed analysis of all results in papers published up to 1974 is given in our survey article [12]. Here we shall touch on only those results in recent years, of which our paper is a direct development.

First of all, let us note that spherical annulii can be subdivided into thin annulii where $\delta<\delta^{*}$, and thick annulii with $\delta>\delta *$, depending on whether or not the principle of "change of stabllity" holds at the limit of stability when $R e=\mathrm{Re}_{\mathrm{c}}$. The critical value of the Reynolds number is a function of δ and ε, and the critical value of the thickness of the annulli δ^{*}, for which the character of the secondary current changes also, is obviously a function of the Rossby number ε. Henceforth, we shall consider only rotations of the internal sphere for which $\delta^{*}=0.24$.

Up the the present, the question as to the stability of the Couette spherical current in thick anndifi has not been resolved unambiguously. For a long time it was assumed that thick annulif were always stable [1, 2, 13]. The fact which the energy theory [10] of the qualitative difference between thick and thin shells did not discover is that the lower boundary of the limit of stability in thick annulit was somewhat higher than in thin annulii. According to this theory, the most dangerous disturbances ror all of and ε turned out to be the nonaxisymmetrical distrubances with azimuthal wave number $m=1$.

The most detailed experiments have shown, however, that thick annulil are also unstable. In the papers [3, 6], the authors demonstrated visually the loss of stability by currents in annuliti of thickness $0,24 \cong \delta \leq I$ for $\operatorname{Re}_{c}=\operatorname{Re}_{e}(\theta)$, significantly exceeding the critical values of Re_{E} from the energy theory and exceeding the antim cipated critical values obtained by extrapolation from the experim mental stability curve in thin annulit. At the limit of stability, a complex secondary nonaxisymmetrical current was observed, cone sisting of the same number of vortices in each hemisphere and propagated in an azimuthal direction at a certain phase velocity $\Omega(\delta)<\Omega_{6}$.

A completely different result was obtain in [4], where the stability of the currents in thick annulii with $\delta=1,27$ and 2.25 were studied by measuring the torque M transmitted to the external sphere, and by visual means. On the curve $M=M(R e)$, four breaks were found in the current in the annulus with $\delta=I, 27$, the first ${ }^{-}$ three when the numbers $R e_{c_{4}}<R_{e_{2}}<R e_{e_{3}}$ were smaller than $R e_{c}(\delta=I, 3 \overline{3})$ (obtained in $[6,11]$), and only the fourth break occurred when $R e_{S 4_{4}} \approx R e_{C}(S=1,33)$. Usually, breaks in the integral characteristics of the currents correspond to the onset of instability and the emergence of a secondary current visually distinct from the pre-critical current. Visually, no significant rearrangements of the current were detected for the first three breaks; the fourth break, corresponding to $\operatorname{Re}_{C}\left(\delta=I_{0} 33\right)$ of [11], was identified with a sudden complete turbulization of the flow. In [4] it was proposed that for $\mathrm{Re}_{\mathrm{Cf}}$ the first break corresponds to a drastic instability of the basic current of fintte amplitude, which leads to secondary currents of the same form as the basic current.

Additional experiments conducted by us [11] In a thick annulus with $\delta=1,33$, with the help of the film thermai flowmeter "DISA"
mounted in the equatorial plane of the current, have show that there are no changes in the characteristics of the current up to the values $R e_{6}=R e$. When $R e=R e_{e}$ the secorded signal, its spectral density and the correlation function have shown the presence of only one frequency of the visually observed vortices. Moneover, investim gation of the spectral characteristics of the current for the highly supercritical numbers $R e \approx \mathcal{L} e_{c}$ have also shown that there are in the current no more than two different oscillation frequencies. Thus it was established that the transition through Re $* \mathrm{Re}_{\mathrm{c}}$ corresponding to the fourth break, is not accompanied by the sudden emergence of turbulence, but by the transition to a complex stratifled periodic motion such as may be found in [3]. The question regarding the first three breaiks remained open, since the change to a steady-state regime established with the aid of a thermal flowmeter is much more complicated.

To clarify this question in the present paper, numerical investigations of liquid currents were undertaken in an annulus of thickness $\delta=I_{2} 33$ in the interval $0 \leq R e \leq 250$, the results of which are disucssed in sections 2 and 3 . We obtained curves of the torque and the kinetic energy as functions of the Reynolds number, and we studied the structure and scale of the prevailing motions.

Previous numericas Investigations of the currents in a thick annulus ($\delta=I$) were presented in [7-10]. However, the form in which these results were presented and the small number of them made them unsuitable for our purposes.

In thin annulil with $\delta<0,24$ in the supercritical region, it was discovered experimentally that there exist several steady-state axisymmetric current regimes $[2,4-6,14,15]$ such that some of them can exist for the same number Re , depending on the prehistory of the process - which agrees with the nonuniqueness of the solution of the steady-state boundary problem for the Navier-Stokes equations. In particular, it was established experimentally that
in an annulus with thickness $\bar{O}=0$, int, there exist 4 steady-state currents with two, four, six, and eight annulan vortices, parajlel to the equator [6].

In the present paper, we study numerically all the experinentally obtained nonlinear steady-state axisymmetric currents in an annulus of $\delta=0, I I$; we establish the limits of their existence and the possible transitions from one regime to another. In contrast to the experiment, numerical modeling made it possible to study the structure of the currents, thein energy characteristics, and the linear scale of the prevalent motions, etc.

We know of only one paper [14] in which the authors discuss the results of separate calculations for the flow functions of the currents when $\mathcal{E}=-I$ in thin annulit with $\delta=0,776$ for $\operatorname{Re}=700,900$, and 1500 and with $\delta=0,5875$, Re $=3000-8000$ without any analysis of the sequential transitions of the various regimes and the regions of existence and nonuniqueness of the currents.

We present the results of calculations of the currents in a liquid in a thin and a thick anulus during rotation of the internal sphere only; the physical interpretation of the results and a comparison with experiment are discussed later in sections 2 and 3.

1. STATEMENT OF THE PROBLEM AND THE METHOD OF SOLUTION

The Couette spherical current is described mathematically by the solution of the boundary value problem for the Navier-Stokes system of equations. We shall find the steady-state solution by the method of adjustment, i.e., as the limit (if it exists) when $t \rightarrow \infty$ of the solution of the initial-boundary value problem for the non-steady-state equations (t is time). In dimensionless form, the problem has the form:

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial t}+(\vec{u} v) \bar{u}=-p p+\frac{1}{R e} \Delta \bar{u} \tag{2.1}
\end{equation*}
$$

$\operatorname{div} \bar{U}=0$.

$$
\begin{align*}
& u_{t}=u_{0}=0, u_{q}=\sin \theta, \quad \text { when } \quad \varepsilon=1 \text {. } \\
& u_{t}=u_{\varphi}=0, u_{\varphi}=\omega(d+\delta) \sin \theta \text { |when } x_{0}+\sigma_{\theta} \tag{2.2}
\end{align*}
$$

$$
\begin{equation*}
\left.u_{r}\right|_{t=0}=u_{i}^{0},\left.u_{\theta}\right|_{t=0}=u_{0}^{0},\left.u_{i}\right|_{i=0}=u_{\varphi}^{0} \tag{2.3}
\end{equation*}
$$

here, u is the velocity vector; p is the pressure; $U_{\tau}, U_{0} ; U_{p}$ are the components of in in spherical coordinates $\varepsilon_{2} \hat{\theta}_{2}, \hat{p}$. For the scales of length, time, velocity and pressure, we assume, respeatively, the radius of the intemal sphere x_{i}, the reciprocal of the angular rotational veloolty of the internal sphere
$S_{i}^{-1}, S_{1} r_{f}$ and $\rho_{0} \Omega_{1} r_{i}^{2}\left(\rho_{0}\right.$ is the density of the liquid),

$$
\omega=\Omega_{0} / \Omega_{1}=\varepsilon+1
$$

For the numerical solution of the problem, we shall follow the procedure in [16].

We seen an axisymmetricol solution of (2.1) - (2.3). Let us represent the desired functions in the form of a series in terms or the associated functions $\mathscr{F}_{e}^{\circ}(x)$ and $\mathcal{D}_{e}^{\prime}(x)$, where $x^{\circ}=\cos \theta$. and the coefficients depend on x and t. Ne shall restrict ourselves
to a finite number of terms in the series:

$$
\begin{align*}
& U_{\theta}\left(r_{2}, t\right)=\sum_{e=1}^{L} V_{e}\left(x^{+}\right) g_{e}^{r}(x) . \tag{2.4}\\
& \mu_{p}(x, \theta, t)=\sum_{t=1}^{L} W_{e}\left(c_{2}^{2}\right) \rho_{e}^{1}(x)+\omega c \rho_{1}^{1}(x)
\end{align*}
$$

Have in $U p$, the term $f \in \mathcal{P O}_{p}(x)$ whin is isolated in the steady-atate solution of (2.1) - (2.2) when $R e \rightarrow 0$ (the stokes current). For this team we have:

$$
\dot{d}=1+\alpha\left(i-\frac{1}{\varepsilon^{3}}\right) ; \alpha=(\omega-i) \frac{(1+\delta)^{3}}{(1+\delta)^{3}-1}
$$

Let us represent the nonlinear terms in analogous form [for brevity all oaleulations are hereafter presented much as the first of the equations (2.a)]:

$$
\begin{aligned}
& T_{\theta}\left(\dot{v}_{2}, \dot{\theta}\right)=-\left\{u_{\hat{2}} \frac{\partial u_{r}}{\partial r}+\frac{u_{\theta}}{\varepsilon} \frac{\partial u_{s}}{\partial \theta}-\frac{u_{\theta}^{2}+u_{\theta}^{2}}{\varepsilon}\right\}=
\end{aligned}
$$

$$
\begin{align*}
& \left.-\frac{1}{m}\left(\sum_{x}^{2} W_{0}+c .8 x_{x}\right)^{2}\right\} . \tag{2.5}
\end{align*}
$$

Let us especially stress the dhole of the method of approximating. the terms $\mathcal{F}, \dot{i}=1,2,3$. We shall consider our expansions as interpelationsal, hoo., we shall requite that the equations (2.5) be satisfied for $\theta=\theta_{d}, j=0, \ldots, L$, where $\theta_{j}=j \frac{\pi}{2}$.

Such a choice of θ_{j} is explained of the fact that it is natural to treat our functions ike the function $x=\cos \theta$, $-1 \leqslant x \leqslant 1$, and the points $x_{j}=\cos \theta_{j}$ are here the zeros of a Chebyshev polynomial. It is well-known that interpolation with respect to such a system of nodes is optimal in some sense.

Substituting (2.4) and (2.5) into (2.1), we may now separate the variables, and obtain for $V_{e}, V_{e}, W e, P_{a}$ the following system
of equations: of equations:

$$
\begin{align*}
& \frac{\partial U_{e}}{\partial t}-\frac{1}{R e}\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial U_{e}}{\partial r}+\frac{2}{r} \frac{\partial U_{e}}{\partial r}+\frac{2-e(e+1)}{r^{2}} U_{e}\right\} t . \\
& +\frac{\partial P_{e}}{\partial r}=\phi_{t, e}, \\
& \frac{\partial V_{e}}{\partial t}-\frac{1}{R e}\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial V_{e}}{\partial r}-\frac{e(l+1)}{r^{2}} V_{e}+\frac{2}{r^{2}} U_{e}\right\}+ \tag{2.6}\\
& +\frac{P_{e}}{r}=\phi_{2, e}, \quad ; \\
& \frac{\partial W_{e}}{\partial t}-\frac{1}{\operatorname{Re}}\left\{\frac{1}{z^{2}} \frac{\partial}{\partial r} \tau^{2} \frac{\partial W_{e}}{\partial r} j-\frac{e(e+1)}{r^{2}} W_{2}\right\}=\phi_{3, e}, \\
& \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} U_{e}-\frac{e(\rho+1)}{r} V_{e}=0 .
\end{align*}
$$

The boundary conditions assume the form:

$$
\begin{equation*}
U_{e}(r, t)=V_{e}(r, t)=W_{e}(r, t)=0 \text { for } r=1 ; 1+\delta . \tag{2.7}
\end{equation*}
$$

It is clear that equations (2.5) are exactly satisfied on the rays:

$$
\theta=\theta_{j} \quad ; \quad j=0, \cdots, \alpha
$$

Let us now carry out the discretization of the problem with respect to t and r and pass from (2.6) to finite difference equal tions. As a preliminary step, let us take a change in the inde_pendent variable r by means of the formulas $S=f(z)$, so that, after obtaining the equally spaced points of the difference scheme, the calculated points could be obtained which ape not equally spaced relative to r.

Thus, we shall consider all the functions only at the moment $\mathcal{L}_{n}=n \tau, n=0_{0} \dot{I}_{g} \ldots$ and at the points $\mathcal{J}_{k}=f(f)+k h_{d}$, $k=0, I_{, 000} \mathscr{K}$, or at the points $S_{k+1 / 2}=\frac{1}{f}(1)+\left(k+\frac{1}{2}\right) h, k,=0$, 4, …N: The functions V_{e}, V_{e}, W_{2} will be given at the points $S_{\text {res }}$ and P_{e} at the points $S_{x+1 / 2}$. Let $g\left(t_{n}, y_{j}\right)=g(j)$. The finite difference equations have the firm:

$$
\begin{align*}
& \frac{U_{e}^{n+1}(k)}{\tau}-\frac{1}{R e}\left\{\left(f^{\prime}(k)\right)^{2} \frac{U_{e}^{n+1}(k+1)-2 U_{e}^{n+1}(k)+U_{e}^{n+1}(k-1)}{h^{2}}+\right. \\
& +\left[f^{\prime \prime}(k)+\frac{4 f^{\prime}(k)}{2(k)}\right] \frac{U_{e}^{n+1}(k+1)-U_{e}^{n+1}(k-1)}{2 h}+\frac{P_{e}(k+1 / 2)-P_{e}(k-1 / 2)}{h}= \\
& \left.+\frac{2-e(l+1)}{\left(z(k)^{n}\right.} U_{e}^{n+1}(k)\right\}+f^{\prime}(k) \frac{P^{n+1}}{h}+\frac{U_{e}^{n}(k)}{\tau^{2}} . \tag{2.8}
\end{align*}
$$

Here, $\dot{\varphi}_{f^{\prime}, e}^{n^{\prime}}(\mathbb{K})$ is the $e^{t h}$ coordinate in the expansion for $\mathscr{F}_{1}(\xi, \theta, t)$.

$$
u_{r}^{n}(k) \frac{u_{2}^{n}\left(k_{1-1}\right)-u_{2}^{n}(k-1)}{2 h} f(x)+\frac{u_{\varphi}^{n}(k) \partial u_{i}^{n}(k)}{\tau(k)} \partial \theta \quad \frac{\left(u_{\theta}^{n}(k)\right)^{2}+\left(u_{4}^{n}(k)\right)^{2}}{r(k)}
$$

The boundary conditions for (2.8):

$$
U_{e}^{n}(0)=V_{e}^{n}(0)=W_{e}^{n}(0)=U_{e}^{n}(x)=V_{e}^{n}(x)=W_{e}^{n}(x)=0 . \quad(2.9)
$$

Here,

$$
\mathscr{K}=\left[s(1+\delta)-s\left(\delta^{2}\right)\right] / L
$$

everywhere.

It should be emphasized that in (2.8) the linear terms are computted on the ($n+1$) st annulus, and the nonlinear right side perm trains to the $h^{\text {th }}$ annulus, so that on each new annulus a linear boundary value problem is solved.

We shell consider only the current whicin is symmetric with respect to the equator $0=5 / \sqrt{6}$; therefore, in the expansion (2.4) is is sufficient to restrict ourselves to the terms of corresponding. parity. Namely,

$$
\begin{aligned}
& u_{r}=\sum_{e=0,2}^{L-1} U_{e} \mathscr{P}_{e}^{\prime} ; \quad ;=\sum_{e=0,2}^{L-1} P_{e} \mathscr{D}_{e}^{0}, \\
& u_{0}=\sum_{i=1,4}^{L-1} V_{e} \mathscr{P}_{e}^{\ell} ; u_{\varphi}=\sum_{e=1,3}^{L-2} W_{Q} P_{e}^{1}+\mathscr{Q}^{0} \mathscr{S}_{e}^{i}
\end{aligned}
$$

In the calculations, L is odd. The equations must be satisfied on $\frac{2+i}{2}$ rays:

$$
\theta=\theta_{j}=d \frac{\pi}{2} \quad, d=0,1, \ldots, \frac{2-1}{2}
$$

(The choice of even I is inconvenient, since in this case the system (2.6) has an additional degeneracy for $R=L$). The values of L for various versions are specified in section 2.

The choice of any even step with respect to to quires a certain accuracy; since our scheme is "explicitomplicit", the inertial terms.

In it ane oncuiated on the Lower annulus. The estinthe from shove for r what h guarantees the stability bo the solvent of s obtained without dipatculty in case the courifaiants in (2.8) do not depend on ko t th has the form:

$$
\tau<a \max |\bar{u}|^{2} / R e
$$

Where 0 It in the apse of variable coefficients, the chanaoter of the estimate is preserved, but varies somewhat. for values of in in our calculations, of, the supplement.

While establishing the solutions with respect to tine, we taxied the torque transmitted to the extemal sphere:

$$
M=M_{0} / \frac{g}{3} \pi r_{p}^{3} R_{\gamma}=\left[\frac{\partial W_{p}(r, t)}{\partial r}-\frac{W_{p}(r, r)}{r}\right]_{r=1 .}
$$

and the letnetito energy of the current

$$
E=\pi \int_{0}^{\pi} \int_{1}^{1+\delta}\left(u_{r}^{2}+u_{p}^{2}+u_{\theta}^{2}\right) \varepsilon^{2} \sin \theta d r d \theta .
$$

This was necessary so that these integral oharaoteristios may be maintained with a precision of up to 0.2n.

2. GESULTS OR THE NUMERTGAL CALCULATIONS

Calculations of the boundary value problem for the Navies stokes equation in a thick annulus with $\mathrm{S}^{\prime} \mathrm{m}, \mathrm{s}$, , when only the internal sphere was rotated, were carved out in the interval Re: $5 \leqslant$ Ret TKO in five steps relative to Re; close to the values Rect and $R_{\text {ce }}$, the steps relative to Re were reduced to two. In addition, the current was ondoulated for Re $=150,200$, and 250. For the initial data, we usually took the values of the functions for the preceding step relative to Re. An example of the calculam tron for Re 200 is given in Figure 7 .

In all the Intervals of the Re values considered, a unique steady-state axisymmetric current was obtained. To verify the uniqueness of the solution, calculations with different initial data were performed. Thus, for example when $R e=60>R_{C_{2}}{ }^{n} 55$ disturbances were introduced into the basic current computed for $H=31$, disturbances which substantially change the scale of the prevailing motions: 1) the amplitudes of all harmonies, beginifng with \& 28 , were significantiy increased; and for $\& \& 8$, they rew mained unchanged; 2) the amplitudes of the hamonics with \& $\leqq 4$ were equated to zero, and with $2 \geqq 6$, they increased significantiy.

In all cases, the solution was quickIy established for the basje regime.

In proportion to the growth in the Reynolds number, the number of associated functions L, used during the calculations, increased. Simultaneously with the characteristics of the current, the spectra of the kinetic energy and the individual components of the velocjty were calculated, depending on the meridional wave number \&. The spectra made it possible to determine the order of the neglected terms, and thus to evaluate the accuracy with which the solution is approximated by the finite semies (2.4).

Since for Re $=60$, It turns out to be sufficlent to take $L=17,17$ and for $R e=150$ to set $L_{1}=25$, so that the kinetic energy of the neglected texms does not exceed 0.1% of the total kinetic energy of the current. Simultaneously with the caloulation of the structure of the current, the integral characteristics were calcualted: the torque transmitted to the external sphere M (Figure 2), and the total kinetic energy E as a function or Re (Figure 3).

In a thin annulus, numerous calculations of the current were carried out from $\mathrm{Re}=300$ to $\mathrm{Re} \leqslant 2600$. The concrete values of Re for which solutions were obtained are marked with dashes on the diagram (Figure 4). Usually when making the calculations, we took for the anitial data the values of the cument characteristics for the
preceding step relative to Re , the step relative to Re being chosen positive as well as negative.

One of the bastic questions in the case of numerical calculations by the direct as well as the semi-direct methods is the quesm tion concerning the number of terms retained in the series (2.4). The general notions concerning the increase in H^{4} as Re increases are of ilttie help, as we shall see subsequently. To clarify this question for several values of Re , experimental calculations of the currents were performed for various values of i from II to III; the results of the calculations for $\mathrm{Re}=1300$ and 1500 in the form of the spectral component of the current velocity with respect to \& for varlous values of L_{1} are presented in Figures 5 and 6.

The difficulty in choosing L, as is clear from Figures 5 and 6 , is due to the fact that in critical situations (loss of stability of the basic current), the spectrum drops rapidly when $\pm \geq 10$, so that nothing is determined. Indeed, when $R e=1300$, the spectra of the r-component of the velocity when $L=11,21$, and 31 are practically identical, and the order of the rext terms neglected does not exceed 2% of the maximum value. However, as the calculations with $L=39,63,75$, and 91 have show, the actual spectrum has lititie in common with the spectrum for small L. The point is, as experiment shows, that near this value of Re the basic current becomes unstable, the emerging secondary current has a substantially smadler characteristic linear dimension, and in the spectrum of the meridional component there appears a second maximum for large wave numbers, the prediction of whose occurrence on the basis of calcuiations with I < 30 tumed out to be impossible. The spectrum of the rocomponent changed qualltatively with the increase in L, and the kinetic energy included in the radial component of the motions is now contained not only in the large scale motions of maximum size with $\&=2$, but also in the small scale motions with wave numbers $\& \approx 30$ to $46,1 . e$, for a sufficientiy acourate description of the current when Re ≈ 1300, it is necessany: to take \& $\mathrm{N}_{\mathrm{M}} 60$ 。

Thus, to obtain a real plicture of the current beyond the limit of stability ($R \mathrm{e}_{\mathrm{c}} \leqslant \mathrm{Re}=1300$), 挂 is necessary to increase the number of terms of the serles more than three-fold. At the same time, to describe the current when $\mathrm{Re}<1300$ it is sufficient, as calculations showed, to take $\mathrm{L}=11$. It must be emphasized that five terms of the series (2.4) give smooth, rapidiy determined solutions of the equations even for very large Re (calculations performed up to $\mathrm{Re}=3000$) when, at is familiar from experiment, $[5,6]$, not a single stability limit is traversed and the basic current simply does not exist, and the ratio of the energy of several of the first neglected terms to the total energy does not exceed the order of several. percent.

As the spectrum of U_{ℓ} shows for $\mathrm{Re}=1500$ (Figure 6), the qualitative picture of the current is easily discerned when $L=61$; when $L=75,91,111$, the spectral characteristics of the current practicaliy colncide.

As noted above, reorganization of the solution was observed when $\mathrm{Re}>1300$, and the current emerging here corresponded to the formation near the equator of four annular axisymmetric vortices (Figures 7a, 8a, 9a). This solution exists up to $\mathrm{Re}=2200$; when the number Re increases further, there occurs a further reorganization of the current, as a result of which another secondary current emerges with elght annular vortices parallel to the equation (Figures 9c, 9c). The solution with 8 vortices exists in our calculations in the interval $1750 \leqq R e \leqq 2600$; when $R e=2700$, a solution asd not appear for a'steady-state regime, and an oscillating periodic regime was established with period approximately equal to the period of the single rotation of the sphere. The cause of such oscillations is under study.

Henceforth for brevity in diagram 4, and from time to time in the text, we shali use the following designations for the current regimes: we shall designate the current with 25 steadymstate annular vorifices the regime $i(1=1,2,3,4)$, and we shall call
the basic current the regime 0 ; the transition from one regime to another will be indicated by arrows.

When fe decreased from 2700, the number of annular vortices in regime 4 decreased to 6 (Figures $7 \mathrm{~b}, 8 \mathrm{~b}, 9 \mathrm{~b}$). The regime 3 thus obtained exists "up" to Re $=2700$, whelre it - itke regime 4 becomes oscililatory.

For decreasing Re when $\mathrm{Re}=1550$, regime 3 goes over into regime 2, and when Re decreases still more, it become regime o for Re $=1300$), by-passing regime 1.

To obtain a solution with two annular vortices (regime l) which, as was known from experiment, arise when Re $\geqq 1212 \pm 25$ during loss of stability by the basic current [6], a special disturbance is introduced into the basic current whose form is close to that of the desired current. In Figures $7 \mathrm{c}, 10$, and 11 , the function of the flow and the values of the angular velocity on the surface $r=1.049$ are shown, as are also the spectral characteristics of the azimuthal and mexidional motions for two different current regimes (regimes 0 and 1) for the same $R e=1270$, calculated for the same number of spherical functions $L=91$.

Regime 1 extsts in the interval $1260<R e \leqq 1400$; for larger values of $R e$, the current is reorganized into the regime with four annular vortices, previously described (regime 2). When $\mathrm{Re}=1260$, the regime is reorganized into the basic current.

Besides the flow functions and the angular velocity of rotation, spatial spectra of the total kinetic energy and the individual components of the velocity were obtained. In Figure 10-19, the graphs of the change in the flow functions and the angular velocity with respect to θ are shown in the center of the annuius when $r=$ 1.049; also included are the Fourier coefficients, U_{ℓ}, W_{l} of the the meridional and azimuthal component of the velocity for various regimes of the current when $\operatorname{Re}=1270,1600,1900$, and 2000. In Figure 20, the flow Ines and a photograph of regime 4 when Re $=1900$
are shown. The spectra of the total kinetic energy for all regimes for $\operatorname{Re}=1270,1600,1900$, and 2200 are presented in Figuxes $21-22$. An anlysis of the energy spectral show that if we were interested in the basis kinetic energy of the motions, then clearly it would be possible in many cases to limit ourselves to $\mathbb{I} \overbrace{i} 40$. However, here the meridional motion, whose basic scale close to the equator is much less than the scale of the azimuthal motions, rould be greatly distorted.

3. THE HYDRODYNAMIC TNTERPRETATION OF THE RESULTS OBTAINED. COMPARISON WIRH EXPERIMENT

The numerical solutions of the problem posed in the thick annulus with $\delta=1.33$ and $\varepsilon=-1$ have demonstrated the uniqueness of the solution of the axisymmetric current in the interval of Re constdered.

The conformity with experimental and numerical results previously obtained [1-3, $8-10]$, the meridional current is concentrated in the lower latitudes (Figure 1) as Re increases, in the profile of the angular velocity there appears a point of inflection, and the spectrum of the kinetic energy shows that the basic part of the energy is contained in the large-scale motions.

The graph of the torque M as a function of Re (Figure 2) has no breaks up to the value of Re ≈ 410, but near Re ≈ 54 there is a point of inflection. Up to $\mathrm{Re}=130$, the experimental and numerical values of M agree with very good accuracy within 0.5%. For $\mathrm{Re}=$ 150, 200, and 250, the calculated values of M are given by circles in Figure 2; as is clear from the fifure, the difference between the measurements and the calculated values is on the order of 2.5%, recorded when $\mathrm{Re}=250$, and it is possible in this connection that for this value of Re the accuracy of the current calculations deciines for $L=31$. Analysis of the spectra of the kinetic energy near the breaks noted by Munson [4] for $\mathrm{Re}_{\mathrm{o}_{1}}$ and $\mathrm{Re}_{\mathrm{c}_{2}}$ also discloses the absence of any reorganization in the current.

The results discussed together with the results of experfment [3, 1.1] make it possible to state a oonalusion concernint the stability of a Gouette spherical ourcent in thick amulifin in the interval for Re which was considered.

In the thin annulus with $\delta=0.11$ and $\varepsilon=-1$, the basic axisymmetric Couette current exists up to $\mathrm{Fe}=1300$ according to the calculations, whioh is somewhat larger than the first experimental value of the oritical number $\mathrm{Re}=1212 \pm 25$. For vailues of Re >1260, only a special type of disturbance makes is possible to obtain numerically a current regime with two annular vortices. This impossibility of obtaining regime 1 from the basic current by a simple inarease in Re is connected, obviously, with the condition of symmetry of the current relative to the equator which we imposed. In an experiment [6], the appearance of regime 1 was connected with the momentary disruption of such symmetry at the limit of stability.

The cause of the approxinately 4% divergence in the numerical and experimental values of the first critical value of $\mathrm{Re}\left(\mathrm{Re}_{\mathrm{c}} *\right.$ 1260 by calculation; $\mathrm{Re}_{\mathrm{c}}=1212 \pm 25$ by experinent) is still not clear to us.

Just as in the case of experiment, calculations show that for superaritical values of Re there exist several different steadystate current regimes at one and the same point in space. on the diagram (Figure 4a), the regions of existence (relative to Re) corresponding to the regimes of the calculations are denoted by lines opposite the numerals $0,1,2,3$, and 4. The arpows indicate the transition from one regime to another as Re increases without the introduction of additional disturbances; a dotted arrow denotes the passage from the basic current to regime 1 when disturbances of special type are introduced into the current. The upper mark corresponds to the domain of existence of these regimes in the experiment [6]. The wavy form of the mark indlcates the appearance of sinusoidal disturbances in the annular vorbiees in the corresponding regimes.

Hegtmes 3 and 4, as is clear from the diagrem, exdist foy largex values of Re than in the expentment. Regime 4 fox Re -2150 and vecime 3 for $\mathrm{Re}=2300$ are reorgandzed into essentiaily nonaxisymmetuto regimes with spluals [5: 6], In the calculations, both solutions for Re 2700 become osolliathons with a period approsinately equal to the period of one revolution. For the presents it is difficult to say whether these osciliations are purely a calcuiational phenomenon, or the period axisymmetrio rem gimes are solutions of the Navier-Stokes equations. If the latter is true, then they must be unstable relative to the non-axisymmetric disturbances, sinoe in the experiment on spherioal [6] and cylindrical [17] annulif no periodic axisymmetric ourrent was observed.

Qualitatively, the forms of the currents for the regines obtained by calculation and by experiment compare favorably aiso. Thus in regime 4 , the third amular vortex from the equatior always ocouples more space than the remalning vortices, in the experiment as well as in the calculations. Supercompression of the lines of flow and the formation of closed yortices th the basic current (current of the "oat's eyes" type), obtalned in the numerical calculation (Ficures 7, 8, 9, 20B) were recorded in experiment [6] in the form of regions with large velocity gradients (the broad, darlf belts below the annulan vortices in Figure 20a).

CONCLUSIONS AND SUMMAFY

The results of the numerical investigation of nominear steadym state axisymmetric currents in a viscous incompressible liquid in a thiok ($\delta=1.33$) and a thin ($\delta=0.11$) annuitus when only the internal sphere rotates ($\varepsilon=-1$) in the Indicated invervals of variation of Re malce it possible to draw the following conclusions:

1. In the interval $5 \leq \mathrm{Re} \leqq 250$ in a thick annuius, thexe was obtained (in agreement with experiment) a unique stesdy-state axisymmetric solution - the basic Gouette spherdeal cumpent.
2. The absence of breaks in the curves of the torques $M(\mathrm{Re})$ (Figure 2) and the kinetle energy E(re) (Flgure 3), and also the. absence of qualitative changes in the spectrum for the kinetic energy of the curvent as Re Increases, make it possible to draw an inference conoeming the stabillty of the couette spherscal current in a thick annulus relative to the steady-state axisymmetric disturbances in the Re interval considered. Taking into account the results of experiment [12], this conciusion can be generalized to the stablilty of the Couette spherical cument in thick anmuli relative to arbitrary disturbances when Re ≤ 410.
3. In a thin annulus, only those steady-state axisymmetric cument regimes are obtained numericainy which were observed experimentall, $1 . e .$, the basic current and currents with two, four, six, and eight annular vortices. The regions of existence of the numerical solutions, as is clear from Figurel 4 s can be distinguished from the regions obtained experimentally. The prolongation of certain current regimes into the region of larger Re values can be explained by the fact that the conditions of axisymmetry and symmetry relative. to the equator are imposed on the motions; and the current regimes observed in these regions are essentially non-axisymmetric and nonsymmetric with respect to the equator.
4. The basic steady-state axisymmetric Couette current in a thin annulus exists up to the value Re $=1300$ s what is somewhat larger than the experfmental value of the first eritioal Reynolds number Re $=1212 \pm 25$, above which the basic current turns out to be unstable.
5. In the supercritical region, the numertcal as well as the physical experiment gives a non-unique solution for the same Re values.
6. In a thin annulus, the spectral characteristics of the velocity components disclose the following features of the secondary currents: a large part of the energy of differential rotation during supercritical regimes is contained in maximum scale motions
(the wave numbers $\& \approx 2-4$), and the energy of the meridional motions have two approximately equivalued maxima for $\& \approx 2$ and \& ~ 40 , ie., large-scale and small-scale motions which are equally justified from the standpoint of energy. . It is interesting to note that as Re increases within the very same regime, the predominant scale of the smali-scale part of the periodic motions increases, i.e.s the wave number \& decreases.

Thus, numerical modeling of the nonlinear Couette spherical current and the secondary currents which emerge for the supercritical values of Re produced results which are in good agreement with experiment. As a supplement to a physical experiment, the calculatins make it possible to determine the total kinetic energy of currents, its spectral distribution, to study the fine structure of currents, and in disputed cases to resolve the question of the stability of currents.

APPENDIX

In the calculations, the time -related quantities for the ($n+1$) st annulus were obtained after completion of the calculations for the $n^{\text {th }}$ annulus. At this time there were files for the quantities $U_{e}^{h}(k), V_{e}^{n}(k), W_{e}^{h}(k)$ in the storage of the computer by means of which, with the aid of formula (2.3), the values
$u_{2}^{n}\left(x, \theta_{j}\right), \frac{\partial u_{r}^{n}\left(k, \theta_{j}\right)}{r \theta}, u_{\theta}^{n}\left(k, \theta_{j}\right)$, etc., were calculated. By means of these quantities, the nonlinear terms $\mathcal{F}_{i}^{n}\left(k_{,}, \theta_{j}, t\right)$, $i=1,2,3$ were computed. To reduce the time to calculation $\mathcal{F}_{i}{ }^{n}$, at the beginning before undertaking the problem, three matrices were calculated and the results stored in the memory of the computer. The elements α_{j} of these matrices are (in the generally accepted notation):

$$
\begin{align*}
& Q_{e}^{0}\left(\cos \theta_{j}\right), l=0,2, \cdots, L-1 ; j=0,1, \cdots, \frac{L-1}{2} ; \\
& \partial_{e}^{1}\left(\cos \theta_{j}\right), l=2, \cdots, L-1, j=1, \cdots, \frac{L-1}{2} ; \tag{A,I}
\end{align*}
$$

$$
\rho_{e}\left(\cos \theta_{j}\right), e=1, \ldots, \operatorname{L-2}, j=1, \ldots, \frac{\alpha-1}{2}
$$

To calculate the values of $\phi_{i, e}(k)$, (with respect to $\mathcal{F}_{i}^{m}\left(k, \theta_{j}\right)$) the inverse f the matrices ($a: 1$) were stored in the computer. After calculating the values of $\phi_{i, e}^{n}(k)$, the difference equations (2.8) and (2.9) were solved. Here, D_{e}, V_{e}, P_{e} are found from equations 1,2 and 4 with the help of a matrix trial run, and W_{2} is obtained with the aid of the usual run. (We draw attention to the fact that no difficulties are encountered here because of the absence of boundary conditions for ρ.)

The major part of machine time was spent in calculating \mathcal{F}_{i} and ci_{6}.

Choice of the function is quite arbitrary. We assume:

$$
\begin{aligned}
& b=r^{3}+b r^{2}+c r+d \\
& b=-1.5(2+\delta) \\
& c=b+b^{2} / 3 ; d=-(b+c)
\end{aligned}
$$

The computed points $r(k)$ on the boundaries $\varepsilon=I$ and $\varepsilon=1+\delta^{\prime}$ were thicker here than in the center of the annulus. In calculations relative to $: \delta=133$, the number of points along the radius $\mathscr{K}=20$, and in calculations for $\delta=0, I I$, we assumed $K=I 0$.

The calculations for $\delta=$ j. 33 were carmied out with the values of the calculated parameter $\tau=0.6$; when $\delta=0.11$, it was assumed that $\tau=0.2$.

The time to determine the solution depended on the inttial data and the value of Re. Here near the critical values of Re, at which the current of the given regime lost stability, the time to obtain the solution increased. Thus, e.g., when Re $x 1750$ uith initial values dorresponding to $\mathrm{Re}=1800$, the fourth sign for torque M was detemmed after 400 steps with respect to t, and for $\mathrm{Ke}=1700$ and Initial values corresponding to $\mathrm{Re}=1750,1200$ steps were required.

Since we are interested in cases in which the solution or the steady-state equations is not unique, we devoted special attention to the extent to which these equations are effectively satisfied. Let us consider the following figures: when Re $=1250$ In the first of the equations, $\frac{\partial \mathscr{A}}{\partial L}=-1$, IITVSB7I $\times I 0^{-\hat{6}}$; here the contribution of the energy terms $=0.90864956$; that of the viscosity terms $=$ -0.0046423005 , and of the pressure gradient $=-0.086222768$.

The processing and development of the results were carried out according to separate programs. Since the solutions are presented In the form of interpolational sums, we were able to calculate the values of the desired functions at any point θ, which made it posm sible to obtain a detailed platuxe of the curvent in the equatorial region (aigure T-9).

1. Khlebutin, B. H. The Stability of the Motion of a Ifquid between Rotating and Fixed Concentric Spheres. MZHG, No. 6, 1968.
2. Sawatzki, V. O. and J. Zierep.

Acta Mech., Vol. 9, No. I, 1970.
3. Yavorskaya, I. M., Yu. N. Belyayev and A. A. Monakhov. An Experimental Study of the Couette Spherical Current. DAN SSSR, Vol. 221, No. 5, 1975.
4. Munson, B. R. and M. Menguturk. Viscous Incompressible Flow Between Concentric Rotating Spheres. J. Fl. Mech., Vol. 69, No. 4, 1975.
5. Yavorkaya, I. M., Yu. N. Belyayev and A. A. Monakhov. A Study of Stability and Secondary Currents in Rotating Spherical Annulii for Arbitrary Rossby NLimbers. DAN SSSR, Vol. 237, No. 4, 1977.
6. Petrov, G. I., I. M. Yavorskaya, Yu. N. Belyayev, et al. Modeling Dynamic Processes in the Atmospheres of Planets. Preprint IKI, No. 255, 1975.
7. Pearson, C. A. A Numerical Study of the Time-Dependent Viscous Flow Fetween Two Rotating Spheres. J. Fl. Mech., Vol. 28, No. 2, 1967.
8. Yakushin, V.I. On the Steady-State Motion of a Viscous Liquid in a Spherical Annulus. MZHG, No. 6, 1968.

Astaf'yeva, N. M. I. Yu. Brailovskaya and I. M. Yavorskaya. On the Motions of a Viscous Compressible Heat-Conducting Ifquid in a Spherical Annulus. Preprint IKI AN SSSR No. 96, Dep. No. 5050~72/

Munson, B. R. and D. D. Joseph. Viscous Incompressible Flow Between Concentric Rotating Spheres, Parts 1, 2. J. F. Mech, Vol. 49, No. 2, 1971.
11. Belyayev, Yu. N., A. A. Monakhov and I. M. Yavorskaya. The Stability of the Couette Spherical Current in Thick Annulii During Rotation of the Internal Sphere. MZHG, No. 2 (in press), 1978.
12. Yavorskaya, I. M. and N. M. Astaf'yeva. Currents of a Viscous Liquid in Spherical Annulii. Preprint IKI AN SSSR, Ob-10, 1974 .

* Translators Note: MzhG = Izvestiya Akademii Nauk SSSR, Meknanika Zhidkosti f. Gaza

13. Yakushin, V. I. On the Stablilty of the Motion of a Liquid In a Spherical Annulus. UCh. zap. PGU, No. 248, 1971, Part 3.
14. Bonnet, J. p. and T. Alaiary de Roquefort. Flow between Two Rotating Concentric Spheres. J. de Mec., Vol. 15, No. 3, 1976.
15. Wimmer, M. Experiments on a Viscous Flow between Concentric Rotating Spheres. J. Fl. Mech., Vol. 78, No. 2, 1976.
16. Babenko, K, I., N. D. Vvedenskaya and M. G. Orlova. Caloulation of the Steady-State Streamine Flow of a Viscous Liquid around a Circular Cyinner. ZH. vych. mat. 1 mat. fitu. Vo, 15, No. 1, 1975.
17. Coles, D. Transition in Circular Couette Flow. J. Fl. Mech., Vol. 21, No. 3, 1965.

Figure 1. Flow functions of the meridional current and the lines of constant angular velocity in the annulus $\delta=1.33, \operatorname{Re}=200$
Figure 2. The curve of the torque $\hat{M}($ Re $)$ for the annulus $\delta=1.33$. Experiment and theory $\hat{M}=M_{s} / \overline{3}$
Figure 3. The curve of the kinetic energy $E(R e)$ for the annulus $\delta=1.33$

Figure 4. Existence diagram for various regimes of currents (a) and the wave length of a vortex near the equator as a function of the number Re (B) in the thin annulus $\delta=0.11$

Figure 5. The spectrum $U_{\ell}(l)$ for various I when $\mathrm{Re}=2300$ in the annulus $\delta=0.11$

Figure 6. The spectrum $\mathrm{J}_{2}(\mathrm{l})$ for various L when $\mathrm{Re}=1500$ in the annulus $\delta=0.11$
Figure 7. The current functions $\psi \cdot 10^{2}$ and the lines of constant angular velocity in the annulus $\delta=0.11$
a) $\quad \mathrm{Re}=1600$ regime 2,
b) $\mathrm{Re}=1600$ regime 3,
c) $\mathrm{Re}-1.270$ regime 1

Figure 8. The same as Figure 7 with Re $=1900$
a) regime 2,
b) regime 3,
c) regime 4°

Figure 9. The same as Figure 7 with $\mathrm{Re}=2200$
a) regime 2,
b) regime 3 ,

Figure 10. The current function and the angular velocity as functions of θ when $r=1.049$, and, the spectra of $\mathrm{U}_{\ell}(\ell)$ and $W_{l}(l)$ for the basic current when $\operatorname{Re}=1270$

Figure 11. Ditto for regime 1 when $R e=1270$
Figure 12. Ditto for regime 2 when $\mathrm{Re}=1600$
Figure 13. Ditto for regime 3 when $\mathrm{Re}=1600$
Figure 14. Ditto for regime 2. when Re $=1900$
Figure 15. Ditto for regime 3 when $R e^{\prime}=1900$
Figure 16. Ditto for regime 4 when $\mathrm{Re}=1900$

Figure 17. Ditto for regime 2 when Re, 2200
Figure 18. Ditto for regime 3 when $\operatorname{Re}=2200$
Figure 19. Ditto for regine 4 when Re $=2200$
Figure 20. The stream lines $\psi \cdot 10^{2}$ and a photograph of the current of region 4 when Re $=1900$ and $\delta \geqslant 0.11$

Figure 21. The spectra of the kinetic energy of the currents in the thin annulus $\delta: 0.11$

Figure 22.
a) $\mathrm{Re}=1270$ region 0
b) Re $=1270$ regime 1
c) $\operatorname{Re}=1600$ regime 2
d) $\operatorname{Re}=1600$ regime 3

Figure 22. The same as Figure 21
a) $\mathrm{Re}=1900$ regime 2
b) $\cdot \mathrm{Re}=1900$ regime
c) $\mathrm{Re}=1900$ regime
d) $R e=2200$ regime
e) $\mathrm{Re}=2200$ regime
f) Re $=2200$ regime 4

Figure 23. The kinetic energy E and the torque M as functions.of Re in the thin annulus $\delta=0.11$

Figure 2

Figure $4 a$

$\underset{\sim}{\sim}$

$R e=1270$.

$R e=1270$

Figure 11

$R e=1900$

ORIGINAL PAGE IS
OF.,POOR QUALITY

$=$

$\ell=90$

Figure 21

[^0]: > Translation of Nelineynyve Osesimmetrichnyye Techeniya Zhidkosti v Sfericheskikh Sloyak, Academy of Sciences USSR, Institute of Space Research, Moscow, Report-385, 1978, pp. 1-55

[^1]: *Numbers in the margin indioate pagination in the original foreign text.

