NUMERICAL AERODYNAMIC SIMULATION FACILITY

F. R. Bailey and A. W. Hathaway
NASA Ames Research Center

INTRODUCTION

The rapid advancement of computer speed and storage over the last two
decades has fostered an equally rapid advancement in computational fluid
dynamics simulation capabilitg. A major growth field is computational
aerodynamics, which combines the disciplines of aerodynamics, fluid physics,
mathematics, and ecomputer science for the purpose of simulating aerod{namic
flow fields through the numerical solution of approximating sets of fluid
dynamics equations. The field of computational aerodynamics, even in its
gurrentthEmative stage, is emerging as an important aerodynamie research and

esign tool.

Critical to the advancement of computational aerodynamics capabilitz is
the abilit¥ to simulate flows about three-dimensional configurations tha
contain both compressible and viscous effects, including turbulence and flow
separation at high Reynolds numbers. While it is currently possible to
accomplish this in two dimensions, bridging the gap to three dimensions is
beyond the capability of current computers.

The Numerical Aerodynamic Simulation Facility (NASF) is proposed to
provide this needed increase in computational cagability by carefully
matehing the characteristics of the problems to be solved with advances in
computing sistem architecture. The NASF Project has been under way for
approximately three years, and the remainder of this paper will describe
Project activities to date.

CHARACTERISTICS OF NAVIER-STOKES SOLUTION ALGORITHMS

The first step in the development of the NASF was to ascertain whether
the problems to be solved were such that architectural innovations could
reasonably be expected to produce the performance gains desired. To this end,
analyses were conducted of two solution techniques for solving the Reynolds
averaged Navier-Stokes equations describing the mean motion of a turbulent
flow with certain terms involving the transport of turbulent momentum and
energy modeled by auxiliary equations. The first solution technique (ref. 1)
is an impliecit approximate factorization finite-difference scheme applied to
three-dimensional flows. The implieit formulation avoids the restrictive
stability conditions when small grid spacing is used to obtain spatial
resolution of large gradients in viscous dominated regions, The approximate
factorization reduces the solution process to a sequence of three
one-dimensional groblems with easily inverted matrices. The second technique
(ref. 2) is a hybrid explicit/implicit finite-difference scheme which_is also
factored and applied to three-dimensional flows. In this scheme, implicit
techniques are used only in the surface normal direction where the grid
spacing is the finest. "Both methods are applicable to problems with highly
distorted grids and a variety of boundary conditions and turbulence models.
These early analyses indicated the following three fundamental
characteristics:

1) Massive but rather simple calculations

While a typical Navier-Stokes solution will involve approximately a
trillion calculations, these calculations are almost evenly divided
between adds and multiplies, with very few divides (on the order of
3%) and essentially no intrinsic functions such as square root. In
addition, almost one-third of all computations are in the form of
"multiply-add" combinations.

15

2) Massive but well structured data bases

The large number of grid points necessary to describe non-trivial
geometries %ives rise to data bases for Navier-Stokes problems of on
the order of 40 million words. In addition, this data must be
accessed in each of the three spatial direcfions associated with the
factored algorithm approach at least once per iteration. There is
only local grid data interaction, however, allowing the sweeps
through the data to take place independenfly.

3) Simple control

The basic algorithms consist of identical operations performed on
large blocks of data, which makes them quite well suited to parallel
solution approaches. In addition, there are relatively few
recurrences or branches, and those that do exist are within deeply
nested loops, again allowing the use of parallelism to improve
computational speed.

These results clearly indicated that the Navier-Stokes algorithms were in
fact ideally suited to parallel Erocessing techniques, the only architectural
alternative for meeting NASF goals in a reasonable time frame.

PRELIMINARY NASF SPECIFICATIONS AND GUIDELINES

In addition to .providing advanced cagability for computational
aerodynamics research, a basic goal for the NASF is to be a tool to aid in the
design of aerospace vehicles. To serve such a role, it is necessary that
solutions be available in relatively short times to make it practical to sort
through many possible configurations early in the design cycle when
aerodynamic factors have the largest impact on the shape of a new vehicle.
This gives the following basic statement of required NASF performance:

The solution of the Reynolds-averaged Navier-Stokes equations,
for grids of one million points, in less than ten minutes.

Assuming reasonable advances in numerical method effieiene{ (estimating a
factor of four improvement by 1983), this in turn gives the following
estimates for processing rate and séorage:

A processing rate of apgroximately one billion floating point
operations per second, for the add/multiply/divide mix of
Navier-Stokes algorithms, on a data base of 40 million words.

This number of one billion floating point ogerations per second has
served as a quick-reference performance figure throughout the Project. It
should be kept in mind, however, that the basic performance goal of the NASF
is not stated in terms of raw processing rate, but rather in terms of elapsed
time for Navier-Stokes solutions. This of course has profound implications on
total system architecture, benchmarks, and so forth.

In addition to the above performance goal, the NASF has very stringent
requirements on reliability and trustworthiness. Reliability in this sense
means that the machine must be capable of performing useful work a high
percentage of the time -- it must not break very often and when it does, it
must be easy to regalr -- and trustworthiness means that the computations it
does produce must be correct -~ the user must not have any reason to distrust
results. The NASF will be a very large and very complex system; without
early and strong emphasis on both reliability and trustworthiness its value
for practical engineering use can be severely compromised.

. In order to assure the attainment of these goals, one other concept is
beln% strongly emphasized throughout the groject: the NASF is not being
developed as a computer science project, but rather as the construction of a
fluid dynamics research and engineering tool. Therefore, while state of the
art technologies must be used throughout in order to reach the substantial
performance expectations, there are no specific attempts being made to stretch

16

%

the state of the art in individual areas. For example, a basic concept of the
Facility views it as being made up of two separate components:

Flow Model Processor (FMP)

The FMP is the comfutational engine and storage for solving the
Navier-Stokes problems. As it will operate on only one job at a
time, it will also contain sufficient staging memory to allow
buffering of output for the current and previous job as well as
input of code and data for the next job.

Support Processor System (SPS)

‘The SPS will be responsible for the overall operation of the
Facility, including compiling and scheduling jobs for the FMP,
magag%ng the file system, and providing an interactive user
interface.

In this concept, then, essentially all custom hardware will be in the FMP
itself; the SPS will be a standard, proven, off-the-shelf computing system.
Likewise the development of custom software will be minimized: the FMP will
have the minimum operating system possible for staging of input and output,
and the SPS will have minimum modifications to its standard ogerating system.
This philosoghy is also being followed in the development of the FMP
grogramming anguage. First, it will be based on ANSI FORTRAN 77, with only

he minimum extensions required for expressing problem parallelism and memory
hierarchy management. Second, there will be no attempt made to have the FMP
compiler automatically recognize parallelism in standard FORTRAN constructs;
all problem parallelism must be explicitly specified by the programmer. It is
strongly felt that both of these restrictions are necessar{ in order to
develop, in the time frame necessary, an operational compiler capable of
delivering acceptable FMP performance.

Thus we see that while the NASF has substantial goals in terms of
performance_and reliability, every effort is also being taken to ensure that
it is actually buildable and usable. The Facility is not based on any
breakthroughs in either hardware or software technology and will instead
achieve its %oals through architectural innovations and throu%h the combining
ofdsevegalls ate of the art technologies under strict reliability guidelines
and controls.

PRELIMINARY FEASIBILITY STUDIES

After the encouraging results of the early Navier-Stokes analyses, two
independent, parallel feasibility studies were conducted, one by Burroughs
Corporation and one by Control Data Corporation. The major efforts of these
contracts were the analysis of the two Navier-Stokes algorithms described
above and the development of candidate grocessor architectures optimized for
their execution. Extensions of these studies further refined the two baseline
configurations, including the develogment of simulators for performance and
{ugctlonal verification. These two baseline configurations are described

ater.

A second phase of feasibility studies is currently under way, with the
same contractors, with the goal of extending the baseline designs even
further, including software and total facility specifications. These further
studies will also assess the proposed configurations for weather/climate
simulation and will investigate modifications which could improve FMP
performance for such applications.

In addition to these two studies, Ames is involved in numerous other
contract efforts. Most of these efforts are for technical assistance in areas
such as evaluation of feasibility study results, reliability considerations,
and performance analysis.

Before discussing the baseline architectures in detail, it is necessary
to review two fundamental concepts.

17

FUNDAMENTAL ARCHITECTURAL CONCEPTS

The first of these concepts is that of parallelism, as illustrated in
figure 1. As indicated earlier, Navier-Stokes solutions involve manz
oEerations belng done repetitively on large blocks of data points; his is
illustrated by the program segment in figure 1a. This loop will cause the
three operations indicated by the boxes fo be done N times, once for I=1, once
for I=2, and so forth; each execution of the three operations is called an
"instance." Further it is assumed that the N instances are data independent,
that results of one_ instance are not used as inputs by another. (This
condition is generally satisfied by the types of problems envisioned for the
NASF.) Doing the N independent instances of the loop g.equentiallgz as on
current general purpose computers, is illustrated in figure 1b. ince this
cannot hope to achieve the processing rate planned for the NASF, some form of
parallelism must be used; his is illustrated in figure tec.

Given this general form of parallelism, it is then necessary to map the N
instances of the loop onto physical hardwarei methods for doing this are
shown in figure 2. One technlque, known as "horizontal slicing," consists of
performing all N instances of the first operation in the loop, then performing
all N instances of the second operation, and so forth. This is the technique
used in vector or pipeline computers such as the STAR-100, the ASCﬁ and the
CRAY-1. The second general technique, known as '"vertical slicing," consists
of assigning the N independent instances to N independent processors and
having them each perform all of the operations for one particular instance.
This technique is commonly referred to as parallel or concurrent processing.

Both forms of slicing assume that in fact N operations can be done in
arallel, and unfortunate K this assumption is frequently not valid on real
ardware. In this case, the problem is solved as a comblnation of serial and

parallel computations, First assume a vertical slicing approachﬁ with P
processors available (P<N). The N instances are grouped into M "ecycles," with
P instances per cycle. M is of course chosen so that MxP is equal to or
sli%htly larger than N. The P processors are then started computing the
instances in the first cycle. hen they complete, the second cycle is done,
and so forth until all M cycles are completed (with some processors gossibly
being idle durin% the last cycle). This same problem can manifest itself in
the horizontal slicing approach as well if the number of data elements which
can be operated on at once is less than N. This can be caused either b
exceeding the maximum allowable vector length (as on the CRAY-1 if N>64¥ or by
having insufficient memory to store long vectors of temporar¥ results (as
frequently hapYens on the STAR-100). Again the solution is to perform a
series of parallel operations.

Figure 3 illustrates a slightly different problem, more typical of
applications other than Navier-Stokes. As shown in figure 3a, the N
independent instances in this case involve data degendent or subscript
dependent branching ("subscript dependent" means things like boundary
conditions). 1In the horizontal slicing approach, shown in figure 3b, the
steps are as follows: perform the first ogeration for all N instances, make
the decision for all N instances (storing the result as a logical or bit
vector)‘ perform the third step for all applicable instances (under control of
the logical vector produced earlier), perform the alternate third step for the
other instances (again controlled by the lo%ical vector), and finally Eerfbrm
the fourth step for all. Actual implementations of "under control of the
logical vector" may involve techniques such as sparse vector processing,
Ygather" ogerations, index lists, and so forth. Additional overhead is
required, however, and all operaEions must take place in rigid sequence. In
the vertical slicing approach each of the individual processors is free to
take only the a@gpopriate branch; there is no need to wait on the alternate
not selected. is means that the net time for completing all instances can
be significantly reduced. Note also that in this type of problem the
horizontal slicing approach is illustrative of both vector processing
(STAR-100, CRAY-1, etc.) and lockstep parallel processing (ILLIAC IV, BSP,
etec.); the vertical slicing approach is applicable only if the processors are
able to execute independently.

18

. The other basic concept relates to storage and accessing of three-
dimensional data, as required by the 3-D Navier-Stokes codes. As shown in
figure 4, sweeping through the data in each of the three directions associated
with the factored algorithms involves picking up planes in each of the_three
orientations. That is, when advancing in the X direction (having the I
subscript advance once per loop), it is necessary to operate on Y-Z planes as
vectors (the N instances are composed of all J and K values for the current
value of I). Similarly, the Y direction sweep fetches X-Z planes and the Z
direction sweep fetches X-Y planes. Since computer memory is not oriented in
three dimensions, some mapping must be applied between the high level language
construct of a three-dimensional array and the linear memory of a computer;
an example based on FORTRAN is given in figure 5. Here we can see that
accessing the data in all three directions involves not only fetching
contiguous words (the most efficient in most architectures), but also groups
of words and individual words separated by constant intervals. Thus the
requirement that the FMP permit efficient three-dimensional access to the
entire 40 million word data base has significant impact on the FMP
architecture.

Note finall{ that the orderly data accessing of the Navier-Stokes
algorithms, together with the local grid data interaction, allows the use of a
multi-level memory hierarchy. That is, while it is necessary to have
extremely fast access to data being fed directly to processors, other data
(previous or subsequent planes) may be contained in a slower, block-accessed
backing store, to be moved into the faster processor memory only as required.

We will now describe the baseline NASF configurations developed by the
two contractors. Both concepts are still in a state of development and should
be considered preliminary and subject to modifications as indicated by further
analyses. Nevertheless, they indicate the basic directions being pursued.

CONTROL DATA BASELINE CONFIGURATION

Figure 6 shows a simplified block diagram of the Control Data FMP
concept. The basic philosophy espoused by CDC was to build the absolutely
fastest pipeline processing unit possible, and then combine as many of them as
required to meet the processing rate requirements of the NASF. As might be
expected, this gave rise to an architecture which is quite similar to the
STAR-100: there is a scalar processin§ unit, which also contains a control
unit to do instruction processing; a lockstep group of eight vector pipeline
processing units, with buffer registers; a memory mapping unit, allowing
complex memory accessing modes at nearly full vector speed; a main random
access memory of eight million words; and a block-accessed CCD (charge
coupled device) memory of 256 million words. This CCD memory will serve both
as the staging memory (for buffering FMP input and output) and as the primary
storage for grid data, with appropriate blocks being moved into the_eight
million word main memory for actual processing. The architecture also .

rovides for both 64-bit and gz-bit processing modes, with 32-bit processing
aking place at twice the 6U4-bit rate.

Reliability features of the CDC architecture are substantial. All memory
contains single—error-correction-double-error-@etectlon (SECDED) circuitry,
with appropriate block error correcting codes in thg large CCD memory. In
addition, the vector processors employ a unique varlable—redundancY concept
which provides substantial error detection. Each processor actually consists
of two identical, independent sets of functional units, Elus an input operand
select unit and a set of coincidence checkers. For simple operations, such as
AxB, the same operand streams are sent to each set of functional units and the
units perform identical, redundant calculations. The outputs of each pair of
redundant components are sent to the coincidence checkers, providing complete
redundancy and a very high degree of error checking. As mentioned above,
however, many computations in Navier-Stokes problems are of more complex
forms, such as (A+B)x(C+D). The vector processors are also capable of
performing such complex calculations although in this case all components
would be needed in the actual computation, giving no redundancy and no
checking. Operations of intermediate complexity also exist, w ich allow some

19

units to oggrate redundantly and be checked while others operate

Sndeanandan Ty Thiiea +thara 7a a Auynoamin +rnada_nff haing made hetrwrasan mavimm
LOUCPTLIUCIIvL Y. 1ilus LIICI'C 1o d UyliaiileC LduS=0l1 UCLliy LiautT UTULWCCIl mda il

speed, in which all units operate independently, performi three floatin
point operations every machine cycle, and maximum error detection, with all
units performing redundant, checked calculations. It is felt that a normal
instruction mix will provide amgle checking while still allowing the peak
performance rates required of the NASF.

In addition to the error detection grovided within the pipelines, there
is also redundancy in the form of a ninth, spare processing unit which can be
activated at any time. Thus if a processor fails, the spare processor can be
configured in and the FMP can resume operation while the failed processor is
being repaired. Note that no instruction re-try is planned, however; if a
processor fails, the currently active job is aborted prior to reconfiguring the

pipelines and resuming operation.

The scalar unit of the Control Data FMP is very similar to the scalar
unit of the STAR-100A. This is expected both to save design effort and to
produce a more reliable device.

The map unit is a substantial extension of the current STAR-100
architecture in that it provides the capability of accessing memory in each
of the three directiong shown in figure 5: contiguously (Z sweep), evenly
spaced groups (Y sweep), or evenly spaced words (X sweep). There can be a
significant performance degradation for non-contiguous accesses, but the map
unit operates concurrently with many vector operations, allowing complex

“ilsa v ~ s Qv (SR, 4 ClivL 4 wil aalild voluvl CiQuaJias

fetching of the next vector to overiap with processing of the current one.

Since the Control Data approach is basically horizontal slicing, as is
the STAR-100, the proposed FMP programming language draws heavily from STAR
FORTRAN. Unfortunate y STAR FORTRAN is hardly an ideal high level langua%e
due to the need for frequent use of the "Q8" construct, which is essentially
embedded assembly language. CDC does feel that they have learned quite a bit
from the STAR FORTRAN experience, however, and that reasonable FORTRAN
syntactic extensions can in fact be devised which will allow true high level
specification of horizontal slicing parallelism. An early attempt had also
been made to specify a vertical slicing extension, using a construct which was
similar to the Burroughs proposal (to be described later). It was felt that
this would require considerably more compiler sophistication than was
reasonable, however, and so the approach was dropped.

BURROUGHS BASELINE CONFIGURATION

In the Burroughs NASF baseline configuration, the FMP-SPS interconnection
is quite similar to that used for the Burroughs Scientific Processor (BSP) to
build on_experience and save development costs, The Burroughs FMP design is
not at all similar to the BSP, however; figure 7 shows a simplified diagram
of the proposed FMP.

The approach taken by Burroughs is also quite different from that of
Control Data. Here the processors are relatively simple devices, but the
replication factor is much higher. There are 512 independent processors
proposed, each with 32,768 48-~bit words of local storage for program and data.
There is also a control unit, which controls overall FMP operation and allows
synchronization of the processors. The control unit does not do instruction
decoding and sequencing for the processors, however; the FMP is not a
lockstep machine like the ILLIAC IV or the BSP. Instead, each processor has
its own Erogram storage and instruction decoding cagabillty. ile this
potentially allows the FMP to operate as a full multiple instruction
multiple data stream (MIMD) machine, this is not the mode of operation planned
for the NASF. The primary reasons for this are the primitive interprocessor
cooperation capability provided (there is no automatic "locking" of data in
extended memor{, no capability for synchronization of subsets of processors,
etc.) and the lack of a sophisticated grogram distribution mechanism (it is
Elanned that the same program will be broadcast to all processors at once by

he control unit). Therefore the Burroughs FMP is envisioned as a
"synchronizable array machine," in which the processors will in fact all

20

it
i

b

execute the same code with frequent synchronization although individual
processors will be able to take different data dependent branches and also to
utilize data dependent arithmetic algorithms as well as individual instruction
retry and other error recovery procedures.

The memory associated with each processor will in actuality be treated as
scratchpad storage, with problem grid data being passed through the processor
memories as planes afgropriate to the current sweep direction. The actual
problem data base wi be held in a 34 million word random access memory,
which transfers data to and from the processor memories through a
transposition network (to be described later). This 34 million word extended
memory is or%anized as 521 separate modules, the prime number 521 being.chosen
to minimize bank conflicts. That is, with a prime number of memory banks, the
only confliets which will arise are for data intervals of exact mu tiples of
521. With other numbers of banks saﬁ 512, conflicts could occur for
intervals of 2, 4, 8, 16, and so forth.

The Burroughs configuration also utilizes CCD technology for the staging
memory, with a Eroposed 134 million words. Transfers to and from the 34
million word extended memory would be on a job basis, rather than the
plane-at-a-time access planned by Control Data.

The Burroughs design also makes use of SECDED in all memories, but error
detection within the processors poses a gquite different problem than in the
fewer pipeline processors of the CDC design. Studies are currently under way
to determine appropriate error detection mechanisms for such a large array of
processors.

The transposition network originall{ proposed by Burroughs has undergone
some fundamental changes recentl as follows, The original FMP design was
tailored sgecifically to Navier-géokes problems, and as mentioned earlier,
these problems have well structured data accesses and relativel¥ few branches.
Thus a network was designed which would provide conflict-free (that is, full
speed) accessing for words separated b{ a constant skip distance. Such a
sequence of words located at a constant interval of p words is called a
"p-ordered vector." Thus the network would handle the X and Z sweeps at full
speed, and sufficiently large arrays would also be efficient in the Y sweep
(if the number of words in each group is large compared to the number of
processors). This network was quite simple and easy to control, but it did
require that all processors access data from different extended memory modules
(which will always be the case with p-ordered vectors, due to the prime number
of banks) and that all processors be synchronized prior to extended memory
accessing.

Subsequent feasibility studies were concerned with the suitability of the

FMP for other problems, however, notably weather/climate simulation codes.
These programs have significantiy more data dependent branching, as well as
less orderly data accessing. 1In fact, analyses showed that significant
gerformance degradations were being caused by the need for synchronization and
he restricted extended memory accessing permitted. To solve this problem, a
new transposition network is currently under investigation. This network is
much more general than the previous one, with processors making requests
independentlg and the network itself deéermining what path conflicts exist and
temporarily lockin% conflicting requests. The basic interconnection of the
network is similar to an omega network, but the design calls for a
self~setting mode of control. That is, rather than having the control unit
compute the proper setup for the network (a computation which can guarantee
optimum operation but which is prohibitively complex), the network is set u

by combinatorial logic cascading through the individual stages. Once a pat
is_established between a processor and an extended memory module, that path is
held until all data are passed. The path is then released, allowing blocked
requests to proceed.

Simulations of various mechanisms for imglementing the new network are in
progress, and preliminary indications are that a self-setting network can in
fact be built which is as efficient as the 0ld network for contiguous words
only slightly less efficient for evenly spaced sin%le words, and significanély
more efficient for spaced groups, particularly small groups. Thus the new

21

network may cause a small degradation for Navier-Stokes problems (although
even this is not obvious since the network accounts for relatively little of
the Navier-Stokes time) but should be substantially better for other

applications with more random data accessing characteristics.

The Burroughs FMP is basically a vertical sliced architecture: the
processors are independent during execution of a cycle of instances, with
synchronization necessary only at top and bottom. As such, the programming
language extensions are minimal and quite easy to use, Currently the major
extension is a DOALL construct, which performs essentially like a standard
FORTRAN DO-loop except that the programmer has promised that all instances of
the loop are data independent, and thus may all be done in parallel., The
comgiler has a relatively easy job of carving ug instances into cycles, and
most serial optimization techniques are applicable.

PERFORMANCE EVALUATIONS

As mentioned earlier, Ames is undertaking independent performance
evaluations of each of the baseline FMP configurations. This is being done b
first programming each of the codes in the appropriate FMP FORTRAN, then hand
compiling them (assuming an unsophisticated compiler), and finally timing the
machine code, either by hand or with simulators.

D

The results of these evaluations, together with maximum processing rates
quoted by Control Data and Burroughs, are shown in figure 8. " All performance
numbers are in terms of billions of floatin% point operations per second;
note that the initial performance specification for the FMP was 1.0.

The first line of figure 8 gives the maximum rates of the two
configurations for simple operations (such as AxB). Note that the Control
Data configuration performs twice as fast in 32-bit mode. The second line
shows the absolute maximum processing rate possible for each architecture,
using the most complex ogerations available (AxB+CxD for Control Data and
AxB+C for Burroughs). The next two lines are the performances estimates for
the two Navier-Stokes codes provided by NASA; the first is a hybrid
explicit-implicit method and the second is totally implicit. Notice that the
Control Data figures are for 32-bit; it is unknown how much of the actual
code could be executed with sufficient accuracy in this mode. The final two
lines are estimated figures for the GISS global circulation model and the MIT
spectral model, the two weather/climate codes being considered.

SUMMARY

Although feasibility studies are continuing, it has been fairly well
demonstrated that the NASF can in fact be built, that it can meet
Navier-Stokes performance objectives, and that it will perform efficiently on
other applications as well. Subsequent phases of the Project will verify
these conclusions through detailed design, actual fabrication, and subsequent
operation of the Numerical Aerodynamic Simulation Facility.

REFERENCES

1. Pulliam, T. H. and Steger, J. L.: On Implicit Finite-Difference
Simulations of Three Dimensional Flow. AIAA Paper 78-10, 1978.

2. Hung, C. M. and MacCormack, R. W.: Numerical Solution of Supersonic
Laminar Flow Over a Three-Dimensional Compression Corner. AJIAA Paper

77-694, 1977.

22

1a: PROBLEM: DO 11=1,N

N INDEPENDENT INSTANCES
OF THE SAME OPERATIONS

1 CONTINUE
j)
1b: SERIAL APPROACH: .
?|=1
i
. J
4
I
>|=2
C3 .,
[}
[]
1c: PARALLEL APPROACH: °
_ I B
I I I
CICJC 1 eee
| I L1 1]

Figure 1.- Concepts of parallelism - basic.

23

2a: HORIZONTAL SLICING (VECTOR OR PIPELINE APPROACH)

2b: VERTICAL SLICING (MULTIPLE PROCESSOR APPROACH)

1

cCal (cal [l ees
| (3l [

Figure 2.- Concepts of parallelism - slicing.

24

I

3a: PROBLEM DO 11=1,N
N INSTANCES WITH DATA DEPENDENT
OR SUBSCRIPT DEPENDENT BRANCHING
1 CONTINUE
3b: VECTOR OR LOCKSTEP PARALLEL 7 |
— e o o
1 T
= = = = F‘- e o o -
_ I
C1 e o o |
1
I :lj I Ej l-l | h ll:j
Il N © o o (]
- I
3c: INDEPENDENT PARALLEL |
I | I l
o000
[| |

Figure 3.~ Concepts of parallelism - branching.

25

9T

1. X DIRECTION SWEEP

2. Y DIRECTION SWEEP

N
LK N N I J

X-Z PLANE PARALLELISM

Figure 4.- The three

Y-Z PLANE
PARALLELISM

SERIAL

_—___>

3. ZDIRECTION SWEEP

1

°
PARALLEL
°

sweeps of the three-dimensional impliecit method.

X-Y PLANE
PARALLELISM

WN=WN=232WN=WN=WN=2(WN=WN=WN = WON = =

2
3
1 2
2
3 2
1 3
2 3
3 3

Lragpuse— e

DIMENSION Q(3,3,3)

ELEMENTS OF A PLANE WHEN THE SWEEP DIRECTION IS
Y b4

AV ALALLIALY AL M WML AL A RALA L WAL A M) e el gy e

28

NOTE: PARENTHESIS REFERS TO

32 BIT WORDS, OTHERWISE 64

ccD
LARGE MEMORY

256 MILLION WORDS

(612)

RAM
SMALL MEMORY

8 MILLION WORDS

SCALAR
PROCESSOR

(16)

MAP UNIT

{

PIPELINE PROCESSORS

1 2 8
@2 .| (16)
+ 1 SPARE
(2)

TO HOST
SYSTEM

CONTROL

UNIT

Figure 6.- Simplified block diagram of Control Data FMP.
(RAM denotes random access memory.)

DATA BASE a4
MEMORY < >
134 MILLION WORDS

U

RAM EXTENDED MEMORY 34 MILLION WORDS

1

2 3 4 seseocee |51

I

DATA TRANSPOSITION NETWORK

TO HOST
SYSTEM

SCALAR PROCESSORS (8 MILLION WORDS)

1 c

u | 2|] 3f]4|___|512| |

+4 SPARES

[A

u] []] [Jeee[]

mem] [1 [] [1 [

CONTROL
UNIT

Figure 7.- Simplified block diagram of Burroughs FMP.

29

IN BILLIONS OF FLOATING POINT OPERATIONS PER SECOND

CODE CONTROL DATA BURROUGHS
MAX RATE (SIMPLE) 9o fﬁ:g: St 1.5 (AxB)
MAX RATE (COMPLEX) bty St 2.3 (AxB+C)
HUNG-Mac CORMACK 0.9 (32—bit) 1.1
PULLIAM-STEGER 1.2 (32—bit) 1.2
GISS GCM 0.54 (32—bit) 0.8
MIT SPECTRAL 0.5 (32—bit) 0.7

30

Figure 8.- Performance estimates for alternate FMP concepts.

