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SUMMARY 

This paper discusses an effort to convert a nonlinear finite element 
program to the CDC STAR 100 pipeline computer. The program called DYCAST was 
developed under contract with NASA Langley Research Center for crash simulation 
of structures. Initial results with the STAR 100 computer indicate that 
significant gains in computation time are possible for operations on global 
arrays. However, for element level computations that do not lend themselves 
easily to long vector processing, the STAR 100 was slower than comparable 
scalar computers. On this basis it was concluded that in order for pipeline 
computers to impact the economic feasibility of large nonlinear analyses it is 
absolutely essential that algorithms be devised to improve the efficiency of 
element level computations. 

INTRODUCTION 

During the last decade, finite element methods, originally developed for 
linear structural analysis, have been extended to nonlinear problems. These 
developments have progressed to the point where the available methods are on 
a firm analytical basis and have been implemented in a number of general 
purpose computer codes. Since nonlinear analysis with the finite element 
method is essentially a successive linearization of a nonlinear problem, a 
given analysis completed in 'In" steps can require a level of computation associ- 
ated with 'In" linear finite element solutions. Consequently, the problem 
facing the analyst today is not so much whether the solution to a given 
problem can be obtained, but whether the computer cost can be afforded. As 
analysts we can search for better algorithms based on the currently available 
computers in order to achieve near optimum computational efficiency while 
requesting that developers of computer systems constantly produce larger 
capacity faster machines. The purpose of this paper is to address this 
problem by describing an ongoing effort to convert a nonlinear finite element 
program to the CDC STAR 100 computer. This currently operational large fourth 
generation computer has a number of distinguishing features. From a user's 
vantage point, the two most important are the capability for vector arithmetic, 
e.g., pipeline processing, and the use of virtual memory. Vector arithmetic 
refers to the capability of performing computations on a string of numbers 
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(vector) with a single vector instruction. More significantly, the computer 
central processing unit (CPU} is designed to exploit this type of calculation. 
For example, experience to date has indicated time savings as high as 35 to 1 
over comparable CDC 6600 times for pure vector operations. 

The virtual memory capability is a method of data management which gives 
the illusion that physical memory is larger than it really is. This is 
accomplished with both computer hardware and operating system software. In 
principle, the user can organize a program as if all the core necessary is 
available and the operating system "pages" data in and out of primary core. 
Thus, the process of overlaying code and using auxiliary storage devices to 
accommodate large quantities of data, common to programs implemented on third 
generation serial computers, can be assumed by the hardware and operating 
system software. 

In order to exploit the features of the STAR 100, it is incumbent upon 
the user to design a solution strategy, if possible, that can utilize these 
features to the fullest. This can simply mean converting an existing algorithm 
to vector operations, or it can require devising an entirely new algorithm that 
can exploit pipeline processing. 

An in-depth review of the features of the STAR 100, as well as its 
anticipated usefulness for finite element analysis, has been given by Noor and 
Fulton (ref. 1). A study of the feasibility of transferring NASTPm@ to STAR 
is found in ref. 2. 

Work is currently underway by the authors to convert a program for non- 
linear transient dynamic analysis to the STAR 100 computer. This program, 
called DYCAST (Dynamic Crash Analysis of STructures), was developed under -- - 
contract with NASA Langley Research Center, for crash simulation of structures. 
It is the purpose of this paper to discuss our user experiences, successes and 
pitfalls, during the course of this effort. In the remainder of this paper 
we first outline the theory on which DYCAST is based and identify potential 
areas where the STAR vector processing will have a significant effect. In 
order to gain experience in the usage of the STAR pipeline processing system 
and the associated extended subset of FORTRAN vector syntax, a pilot effort 
was initially begun to vectorize a program for the eigenvalue/eigenvector 
extraction of large matrices (ALARM - &tomatic L&ge Reduction of Eatrices to 
tridiagonal form - ref. 3). 

In doing this we not only had the advantage of working with a small 
program but one that was particularly amenable to vector processing. Results 
from this study as well as those from DYCAST are presented in the paper. 

DYCAST FORMULATION 

DYCAST is a finite element program for the nonlinear transient dynamic 
analysis of structures with particular emphasis on crashworthiness evaluation. 
It is based on, and represents a continuation of the development of a system 
of 'finite element programs for nonlinear static analysis called PLANS (PLastic 
and Large Deflection ANalysis of Structures - ref. 4). A review of the salient 
features of DYCAST can be found in ref. 5. 
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DYCAST implements an updated Lagrangian formulation (refs. 6,7,8) for 
geometric nonlinearity and an incremental plasticity theory (ref. 9) to 
represent material nonlinear behavior. 

In this section we outline the governing matrix equations used here in 
order to identify the key computation bound operations on which the STAR 100 
will have its greatest impact. 

The governing matrix equation based on the updated.*Lagrangian formulation 
with the displacement increment AU n+l and acceleration U n+l as unknowns is 

[K (O) + K (l)] AU =p -F -M;; 
n n n+l n+l n n+l (1) 

This equation assumes that third order terms in the integral work relation 
have been neglected in going from the nth configuration to the n+lth. These 
neglected terms are discussed in refs. 6, 8. The matrix term K~O) is 

K co) = / Wt D-l 
n Vn n n Wn d V 

where V is the volume in the n th 
n 

configuration, Wn relates increments in 

total strain to increments in displacement, and D = E -' (I + EC) with E the 
n 

matrix of elastic material properties and C a matrix obtained from the plastic 
constitutive relations. The matrix term nil) is 

K(l) = / i-i% RdV n Vn n n 

where R 
n relates the nonlinear components of the strain displacement relations 

to displacement increment and T is a matrix of Cauchy stresses with respect to 
the nth configuration. The matFix term Fn is 

F = 
5 

WtZ dV n n n n 

where Z is a vector of Caucby stresses with respect to the n th 
n 

configuration. 

One can use either an explicit or implicit time integrator to obtain solutions 
to eq. (1). Both types are implemented in DYCAST. 

Explicit Integrator 

DYCAST currently implements a constant time step central difference and 
a variable step modified Adams predictor-corrector time integrator. In both 
procedures, eq. (1) is written as 

Mu n+l = P -F n+l n - Af n+l (2) 
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where 

Af = [K(O) + Kc;)] AUn+l n+l n 

is the incremental force vector. 

This vector is then approximated in terms of previously calculated vari- 
ables by making use of the discrete time integrator so that if the mass matrix 
M is unchanging the. solution reduces to calculating a right hand side to eq. 
(2) and then solving for U n+l' 

For central difference use is made of the recurrence relations 

AU 
n+l 

= 2AU - AUnBl + At2A; 
n n 

(3) 
AU 

AU = n+l -*Un-1 
n 2At 

in order to obtain Af n+l' 

The modified Adams procedure is based on substituting a predictor solution 
for AUn+l, into eq. (2) 

AU:+l 
= Audev 

n 
+At U +F 

n (4) 

Equation (4) is the Taylor series expansion for U with the backward differ- 
dev n+l 

ence used for the acceleration and AU is the difference between the n th 
n . . 

predictor and corrector solutions, LIZ - Up. Once eq. (2) is solved for U. 
n n+l 

the corrector solution is generated based on a forward difference for the 
third term. 

UC n+l 
=U +Atti +nt(U 

n n 2 n+l - ii,, 

(5) 
‘C U n+l =ir +At;; ++i 

n n n+l - i-i,, 

An error criterion is used to ensure that the difference between the predictor 
and corrector solutions satisfies some preset error criterion. In practice, 
the convergence criterion fails on the difference between the predictor and 
corrector velocities. This is 

(6) 

'C U n+l 
- fip 

n+l 
= F ((Un+l-Q - (Un-inml) > 

= F (Aii+l - Ain) 

122 



and the error criterion becomes 

At (Ain+l - Ain) 

2 
< E' 

ir n+l ; 
(7) 

It can be seen from eq. (7) that the error criterion limits the rate !of change 
of acceleration. Whenever the inequality of eq. (7) is violated the time step 
is halved. Conversely, the time step i.s doubled whenever the inequality is 
satisfied within a predetermined lower bound. 

Implicit Integrator 

A variable time step implicit solution algorithm with inner loop iter- 
ations, based on the Newmark-Beta family of integrators, is implemented within 
DYCAST. 

The governing recurrence relations for the Newmark-Beta method are 

. . AU n+l ti 
U =-- 

n+l Sat2 j-5 n 

. . . . 
Air n+l = At Un + YAt AUn+l 

Substituting eq. (8) into eq. (1) yields 

'K,AU 
n+l 

= Pn+l + Q; -F n 

(81 

(9) 

where 

it = K(O)+ K(1) ; M 
n n n SAt2 . 

Q~=M(& 1 em + (j? -l>UJ 

Equation (9) can be solved iteratively within each time step by feeding 
back the effect of an equilibrium correction term. 

In this form eq. (9) becomes 
. r 

EnAU;+l = Pn+l + Qt - Fn+; Rj 
j=o n 

where 

Rjcp -Fj 
. . . 

n n+l n+l - M UA+1 

When i = 0, eq. (10) reduces to eq. (9) since Bi = 0. 

(10) 
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There are a number of ways to define convergence. Use is made in DYCAST 
of the following criterion 

AU;+l - ALJ;-l 
< 

Ui 
E 

n+l 
(11) 

In addition to eq. (ll), an admissibility test is used in order to control 
the time step. Based on our experience with the modified Adams method, the 
admissibility test is developed by writing a p,redictor form of eq. (8) that 
leads directly to a criterion similar to eq. (7) 

. . . . 
AU 

y At 
n+l - AUn 

c E . (12) 
I U n+l I 

ALARM IMPLEMENTATION 

As an initial test of STAR vector processing, a program for the eigenvaluel 
eigenvector evaluation for large matrices was converted to STAR. This program 
called ALARM (Automatic LArge Reduction of Matrices to tridiagonal form) is 
based upon a method whichreduces a large matrix to an "equivalent" tridiagonal 
one of much smaller size. It is based on the work of Ojalvo and Newman (ref. 
10) and as such is similar to the eigensolver, FEER, which has been implemented 
in recent versions of NASTRAN. For full details of the method the reader is 
referred to ref. 3 for ALARM and ref. 11 for FEER. In the following we out- 
line the computational flow from ref. 3 as a means of identifying the areas of 
vector processing. The algorithm almost exclusively involves operations on 
large matrices and as such is particularly suitable for vector processing. It 
is based on generating a "tall" rectangular transformation matrix, V, the 
columns of which are orthonormal vectors. This transformation matrix reduces 
the equation 

K $J~ = tit M $i (13) 

where K and M are the stiffness and mass matrices, respectively, to symmetric 
tridiagonal form of much smaller size. The eigenvalues/eigenvectors of this 
equation are then obtained by Sturm sequencing and bisection of the intervals 2 containing w.. 1 

The sequence of operations excluding the starting procedure and error 
checking is as follows (ref. 3): 

1. Factor the stiffness matrix into upper and lower triangular 
form K = LLt 

2. Solve for successive columns of the reduction vector, V, as follows: 
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* 
v i+l = L-l# L+ vi 

This is accomplished by first solving for 

Lt wi = vi 

then performing the matrix multiplication 

U 
i 

= Mw i 

and then solving 

I.4 v;+l = ui 

All of these operations involve vector processing on vectors of the order of 
the semibandwidth and bandwidth of K and M. The procedure is completed by 

3. ;i+l = v;+1 - c1.v - B ii i-l vie1 

where 
* 

cl 
i 

=v v i i+l 
* 

B i-l =v i-l V i+l 

The desired column of V is then 
v 

V i+l - 
i+l f3 i 

where u., B. are the diagonal and off-diagonal terms, respectively, of the 
final r&duc$d tridiagonal matrix. 

The method outlined above was vectorized using the STAR 100 subset of 
vector FORTRAN syntax. Results are shown in Table I for CPU time for a number 
of benchmark problems using an IBM 370/168, CDC STAR 100 with all scalar 
operations and STAR 100 using vector processing. The times shown for bench- 
mark problems exclude the factoring of the stiffness matrix, and assume a 
diagonal mass matrix. The table reveals that as the matrix size increases, the 
relative running time on the STAR 100 in the scalar mode increases relative 
to the IBM 370/168. However, as the problem size increases, the payoff for 
vector calculations grows. The final result, that of a 10000 degree of 
freedom matrix with a semibandwidth of 100 and a running time of 9.91 CPU 
seconds, indicates almost a 160-fold decrease in time over the IBM 3701168. 
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This table clearly indicates two points: the efficiency of vector 
processing for large global arrays and the relative inefficiency of the 
current version of the STAR 100 for primarily scalar arithmetic. 

Figure 1 shows a section of a longitudinally compressed skin stringer 
element typical of the NASA space shuttle wing cover construction. A linear 
bifurcation buckling analysis of this structure was performed using one of the 
PLANS system programs. This program uses a higher order plate element to model 
the structure and the ALARM program to obtain the eigenvalues and eigenvectors. 
The resulting model led to matrices with 3158 degrees of freedom and a semi- 
bandwidth of 301. Running time on an IBM 3701168 in double precision depended 
on the amount of available core. Table II shows data from ref. 12 and indicates 
the normalized running time versus increased core size. The increased core 
size was due to increasing the work area available to the matrix packages. In 
no case, however, were we able to use more than 150000 words. This corresponds 
to the available incore capacity of STAR equal to approximately 450000 words 
for code and data and demonstrates a source of efficiency of STAR due to large 
incore storage coupled with the virtual core facility. This same problem was 
run with the STAR version of ALARM. To do this, the necessary matrices were 
assembled and passed to STAR via tape files. 

The resulting computer times are summarized in Table III. Evaluation of 
two eigenvalues and eigenvectors to the desired accuracy took 12.5 CPU seconds 
on the STAR 100 computer, compared to 269.6 CPU seconds on the IBM 370/168 in 
double precision using 921 KBYTES of core. This represents a ratio of 21.5 
to 1 which is consistent with the data presented in Table I. The computer 
time to calculate one column of the transformation matrix, step 2 outlined 
above, was 0.9 CPU second for the STAR 100 and 19 CPU seconds for the IBM 
3701168. Also shown in Table III is the time to factor the stiffness matrix. 
To perform this operation, use was made of a vectorized equation solver written 
by Dr. J. Lambiotte, Jr. of NASA Langley Research Center. This procedure factors 
the matrix as rDzt, where t is a lower triangular matrix and D is diagonal. 
In order to obtain the Cholesky factorization required by ALARM, we performed 
the additional operation of taking the square root of the diagonal matrix and 
premultiplied E by the result. 

The predicted buckling load obtained from this analysis agreed quite 
favorably with the average of three tests (see fig. 1). Plots of the mode 
shape predicted by this model are also shown in fig. 1. For a clearer 
representation, only the portions of the structure that buckled are shown, 
and the deformed sheet and stringer flanges were plotted as if detached. 

DYCAST COMPUTER IMPLEMENTATION 

Given that the appropriate theories from structural mechanics have been 
implemented, the features that distinguish a program for nonlinear analysis 
from a linear program are: 1) the solution algorithm is of the repetitive 
type so that calculations performed once for a linear analysis must be 
repeated for a nonlinear analysis, and 2) field quantities such as displace- 
ments, stresses, and strains must be stored for use in succeeding calculations. 
These considerations force the designer of a nonlinear code to exercise extreme 
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care in coding key "number crunching" sections since any inefficiencies, while 
perhaps not being crucial for a linear analysis, are multiplied "n" times in 
a nonlinear analysis. It is in these areas that the STAR vector processing 
can potentially make a contribution. 

In the following, the flow of the computational bound section of DYCAST 
is outlined in order to identify areas of potential vector processing. The 
program is separated into two functional units as shown in fig. 2. A small 
main program initially determines core allocations and then passes control to 
a subroutine that reads and processes all input and defines nece.ssary data 
bases. Since computations are minimal in this routine the only impact of the 
STAR 100 here is the use of virtual core capability over utilization of tem- 
porary scratch files. 

After the input phase, control is returned to the calling program which 
in turn calls a subprogram that controls the main computational loop. This 
loop, shown in block diagram form in fig. 3, has all the ingredients usually 
found in a linear finite element program, namely, (1) Matrix assembler, 
(2) Equation solver, (3) Time integrator, (4) Finite element matrix formation, 
and (5) Stress and strain calculations. 

Items 1 through 3 are global functions that are easily recast into vector 
form. That is, the equation solver involves dot products on vectors whose 
length is of the order of the semibandwidth of the matrix, a process that can 
exploit the STAR vector processing. Implementing the integrator, although not 
taking a large percentage of the computation time, involves sums of vectors 
that can easily utilize STAR vector processing. However, items 4 and 5 are 
carried out on the element level and involve primarily operations with small 
matrices. 

The method devised to implement element level calculations can be an 
important consideration. This is because it has been our experience that more 
than half the computer time per time step is taken by the element level 
calculations (for moderate sized problems) when using an implicit integrator. 
The relative time can be as much as 314 for an explicit integrator. Figure 
4 shows the computational flow for a typical element level sequence of 
calculations for the simplest case of a three node constant strain triangle. 
For this element, the calculations involve primarily scalar arithmetic along 
with vector products on vectors of length 3 and 9. These lengths are too 
small for efficient vector processing because of instruction start-up time 
for vector operations. Vectors of length 100 begin to substantially 
exploit the STAR pipeline processing. It is also worth noting that since 
.a finite element model consists of a multitude of elements, a computer 
system optimized for this type of operation might more naturally be based 
on parallel rather than pipe-line processing. That is, calculations can be 
carried out on many elements simultaneously. Reference 13, for example, 
conceptually describes the implementation of a finite element program on the 
Illiac IV parallel processing computer. 
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Practical experience was gained in implementing the items discussed above 
into a finite element program for nonlinear analysis by the Computer Sciences 
Corporation under Contract with NASA Langley Research Center. This program 
developed for plastic analysis alone, is part of PLANS (_Plastic and Large 
deflection ANalysis of Structures - ref. 4).. The program chosen treats the 
plastic anaGsis problem using the "initial strain" or pseudo load method. 
Consequently, the problem reduces to the solution of a sequence of linear 
analyses with a changing pseudo load vector that accounts for plasticity. The 
stiffness matrix is unchanged in each step so that it can be factored once with 
subsequent solutions requiring only a forward and backward substitution of 
triangular matrices. Within this framework the major effort in each step is 
to solve the set of finite element equations, calculate stresses and strains 
(impose plastic constitutive equations), and reformulate the vector of pseudo 
loads. Thus, it has all the steps that the explicit formulation of DYCAST 
has, eq. (21, with the exception that DYCAST must form a contribution to the 
pseudo load vector, Af n+l' that is the incremental internal force vector. 

Consequently, the effectiveness of the STAR computer on this program should 
carry over to DYCAST. 

Results provided to us by R. Fudurich and D. Dunlop of Computer Sciences 
Corporation are shown in Table IV and summarize the results obtained to date. 
These results indicate a substantial speedup in the solution algorithm, up 
to 13:l for initial solutions, and up to 19O:l for subsequent solutions that 
require only forward and back substitution. However, in the area of stress 
and strain recovery, where operations are presently primarily scalar, the STAR 
computer was appreciably slower than the CDC CYBER 175. As mentioned previously 
these element level calculations are performed on small matrices for which we 
anticipate that the vector capability would not lead to significant savings. 
Based on the results shown in Table IV i.t becomes apparent that it is essential 
to restructure the program in this area in order to exploit the STAR 100 
pipeline capability. 

Work is currently underway to convert the DYCAST program to the STAR 100 
computer. To date, subroutines for matrix assembly and equation solution that 
use the STAR virtual core and vector processing capability have been implemented 
into DYCAST. The effect of vector processing was demonstrated on a finite 
element model containing 332 elements (179 triangular membrane, 33 axial force 
stringer, 120 beam), 413 degrees of freedom, and 136 semibandwidth. The 
computer times for one time step for this problem using both the implicit and 
explicit integrators on an IBM 370/168 and CDC STAR 100 are shown in Table V. 
As anticipated, any savings due to vectorizing the solution algorithm is 
offset due to the slower computation time on STAR for scalar operation. Vector 
processing, although on small vectors, is currently being introduced into the 
element level routines. 

CONCLUSIONS AND RECOMMENDATIONS 

This paper discusses our successes and pitfalls in converting a finite 
element program for nonlinear finite element analysis to the CDC STAR 100 
computer. Our experience may be summarized by the following: On global 
functions, the vector processing, coupled with the virtual memory capability, 
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led to decisively improved computation times over the available scalar computers. 
However, on element level computations that were not vectorized,. and indeed do 
not lend themselves easily to long vector processing, the STAR 100 was deci- 
sively slower than comparable scalar computers. We do expect some slight 
improvement when these routines are converted to vector code. Consequently, 
as the number of successive linearization increments increased in a nonlinear 
analysis, the gains made on processing global functions were offset by the 
element level calculations. On this basis it can be concluded that in order 
for pipeline computers to impact the economic feasihility of large nonlinear 
analyses it is absolutely essential that algorithms be devised to improve the 
computational efficiency of element level computations. Recommendations to 
accomplish this are discussed below. 

In problems involving plasticity alone it is usual that a contained 
region of plastic flow exists. For this situation the pseudo load method can 
be used and element level stress recovery can be simply limited to this 
contained region. This can be done using the pseudo load method since these 
effective plastic loads are nonzero only in the contained region and element 
stiffness matrices are not reformed in each increment. This notion can be 
expanded even further (ref. 14) by employing a substructuring technique to 
eliminate the unknowns in the assumed elastic region. Since these calculations 
are exclusively on global arrays, the substructuring operations can effectively 
make use of vector processing. The remaining incremental calculations can 
then be carried out using the reduced set of equations. 

Because of the effectiveness of vector processing on global arrays, any 
method that operates on these primarily large matrices during an incremental 
nonlinear solution will be computationally efficient on the STAR 100. Methods 
were previously developed (ref. 9) that eliminate the displacements in the 
governing matrix equation so that the remaining incremental equations are 
global arrays of stress or strain increments. For example, the total strain 
increment can be written as shown in ref. 9 as follows: 

AeT = A AP + J AE (14) 

where AE is the incremental plastic strain, AP is an incremental load factor, 
and A and J are matrices that depend on the number of strain recovery points 
in the finite element model. Once eq. (14) is formulated, it is solved 
incrementally as part of the nonlinear analysis thereby replacing the usual 
element level calculations. Consequently, it may be worthwhile to re-examine 
this method for implementation on the STAR 100. 

The previous comments are also pertinent to the formulation of linear 
dynamic analysis because the coefficient matrices do not change when either 
the explicit or implicit methods are employed. Consequently, the method 
reduces to calculating the right hand side vector and then solving for either 
accelerations or displacements. The right hand side vector for both methods 
can be recast in terms of global matrices by assembling and storing the total 
stiffness and mass matrices and then performing the matrix multiplications 
indicated in eqs. (2) and (9). Stress and strain recovery may still be a 
limiting factor, but these need not be computed in every time step. 
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The methods described above cannot be used in DYCAST because the stiffness 
matrix changes in each step due to the problem nonlinearities. One is therefore 
constrained to perform these element level calculations in every time step. 
Consequently these calculations must be reformulated so that they can effectively 
use vector processing. It may be possible to do this by partitioning the 
structure so that calculations are carried out on assemblages of elements, i.e., 
super elements. This technique will be pursued in future developments of 
DYCAST. 
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TABLE I. - COMPUTER TIME (CPU SECONDS EXCLUSIVE OF FACTORING 
STIFFNESS MATRIX) FOR EIGENVALUE/EIGENVECTOR EXTRACTION 
FOR VARIOUS SIZE MATRICES 

Solution 
Time Solution Solution 

Maximum IBM 370/168 Time Time 
Matrix Semi- (single STAR 100 STAR 100 

Size 
STAR Scalar ( IBM 370 

bandwidth precision) Scalar 
IBM 370 

Vector STAR Vector STAR Vector STAR Scala 
I 

10 1 3.44 1.30 I 0.61 2.13 5.64 2.65 

100 10 4.47 5.64 1.05 6.42 i 4.26 0 .'79 

1000 100 26.91 76.21 1.76 45.06 15.29 0.353 

4000 100 175.08 4.86 36.02 ' 

4000 400 225.52 7.18 31.4 ! 

10000 100 1532.3+ 9.91 154.6 

+ Time to form tridiagonal matrix 



TABLE II. - PERCENT DECREASE IN CPU TIME ON IBM 370/168 
VERSUS AVAILABLE CORE SIZE FOR BUCKLING ANALYSIS 
OF SKIN-STRINGER PROBLEM 

Problem Size = 3158 degrees of freedom 

Semibandwidth = 301 

TABLE III. - COMPARISON OF CPU TIMES IN SECONDS FOR 
BUCKLING ANALYSIS OF SKIN-STRINGER PROBLEM 

IBM 370/168 
CDC STAR 100 
Ratio 370/STAR 

_.- 
Step 1 Step 2 

Factor K Eigenvalue Eval. Total 
(CPU Time) (CPU Time) (CPU Time) 

342. 269.6 611.6 
57.7 12.5 70.2 

5.9 21.5 8.7 
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TABLE IV. - SUMMARY OF CDC STAR 100 VERSUS CDC CYBER 175 
COMPUTING TIMES FOR PLANS PROGRAM 

Total Total Stress 
No. of Semi- Initial+ 

* 
Initial Subsequent Recovery 

Problem Elements DOF Bandwidth Solution Total Solutions Pseudo 

'1 25 138 42 0.21261 3.8851 5.2291 530.075/ 
1.514 I 3.864 470.265 109.78 

2 66 300 60 0.8142/ 8.8926/ 1.4579/ 191.905/ 
5.390 8.305 277.679 34.715 

3 560 1492 9.3 6.31 45.261 0.3121 35.041 
82.96 100.7 N.A. N.A. 

4 710 4366 170 58.11 --- --- --- 

I 546.9 ! 

+ Refers to initial factoring and forward and backward solution. All times given 
STAR time/CYBER-175 time. 

* 
All initial preprocessing, element formation, critical load stresses and strains, 
algorithm vectorized. 

Problem 4 Compared versus IBM 3701168; Total times depend on number of increments 
range. 



TABLE V. - COMPARISON OF CDC STAR 100 VERSUS 
IBM 370/168 COMPUTING TIMES FOR 
ONE TIME STEP USING DYCAST 
413 DOF, 136 SEMIBANDWIDTH, 332 ELEMENTS 

Matrix Assembly 

Solution 

Time Integrator 

Stress/Strain 
Recovery and 
Element Formation 

Total 

- 

Explicit 
Implicit 

(one iteration) 

o.o/o.o I 0.32/4.03 

0.03/0.65 I 2.0516.77 

0.02/0.02 0.04/0.10 
--__ __-.-__ 

8.8614.08 16.90/6.87 

8.91/4.75 19.31/17.77 

All times given in CPU seconds and STAR time/IBM 3701168. 
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BUCKLING LOAD, N (lb) 
BENST 81500 (18320) 
TESTS(3) 88850 (19970) AVERAGE 

SKIN THICKNESS - 0.18 cm (0.070 in.) 
LENGTH - 21.5 cm (8.5 in.) 

a) FINITE ELEMENT MODEL OF STRINGER 

b) COMPUTER PHOTO OF BUCKLING MODE SHAPE IN SKIN 
AND ATTACHED STRINGER FLANGES (ONLY PORTIONS 
OF STRINGER THAT BUCKLED) 

Figure 1 Analysis of Longitudinally Compressed Skin-Stringer 
Element Typical of Shuttle Wing Cover Construction: 
Comparison of Computed Buckling Load with Test Results 
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,MAIN CALLING- 
PROGRAM 

I I 
READ, PROCESS & MAIN 
CHECK INPUT; COMPUTATIONAL 
INITIALIZE DATA BASE LOOP 

Figure 2 Global Structure of DYCAST 

MATRIX TO ASSEMBLE COEFFICIENT 

EQUATION SOLVER 

TIME INTEGRATOR 
ONE FOR EACH INTEGkATOR 
IMPLEMENTED IN PROGRAM 

ELEMENT CALCULATIONS 
- STRESS, STRAIN, PLASTIC 

CONSTITUTIVE RELATIONS 
- REFORM ELEMENT MATRICES IF 

REQUIRED 
- FORM COMPONENTS OF RIGHT-HAND 

SIDE OF EQ. (2) OR EQ. (10) 

ASSEMBLE RIGHT-HAND 
A SIDE FOR EXPLICIT OR 

IMPLICIT INTEGRATOR 

CONTINUE 
CALCULAilONS 

THREE EQUATION SOLVERS 
- IN-CORE 
- OUT-OF-CORE 
- ‘IIAGONAL COEFFICIENT MATRIX 

FOR EXPLICIT, LUMPED MASS 

- CALCULATE THE REMAINDER 
OF THE KtNEMATlC FIELD 
QUANTITIES; 
CHECK CONVERGENCE 

CALCULATIONS FOR STRESS & 
STRAIN TO COMPLETE NTH 
STEb W.ljILE PREPARING TO 
GO ON TO N + ITH STEP 

. 

Figure 3 Computional Flow of Major Loop of DYCAST 
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EXTRACT ELEMENT 
KINEMATIC FIELD 
QUANTITIES FROM GLOBAL 
ARRAY AND FORM 
CORRESPONDING LOCAL 
AR RAY 

CALCULATE ELASTIC 
STRESS&STRAIN 
INCREMENT 

SMALL VECTORS - LENGTH 9 

I I 
CHECK YIELD FUNCTION 
AND IF PLASTIC APPLY 
PLASTIC CONSTITUTIVE 
RELATIONS 

FORM ELEMENT 
MATRICES k” k’ I I , 
m 

I 

FORM COMPONENTS OF 
EFFECTIVE LOAD 
VECTOR 

3x1 3x9 3x 1 
Ae = W AU 

3x1 3x3 3x1 
Ao = E Ae 

3x3 3x3 

EP 
= R-1 

3x1 3x3 3x1 
Aa = Ep AeT 

3x1 3x3 3x1 
Ae = C Ao 

ALL INVOLVE SIMPLE SCALAR 
OPERATIONS PLUS TRANSFORMATION 
TO GLOBAL SYSTEM 
9x6 6x6 6x9 

T’k T 

m(f& +($-I) ii,) 
OR 

- k AU;+ , 

Figure 4 Computational Flow of Element Level Subroutine 
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