
ADAPTATION OF A PROGRAM FOR NONLINEAR FINITE

ELEMENT ANALYSIS TO THE CDC STAR 100 COMPUTER*

Allan B. Pifko
Grumman Aerospace Corporation

Patricia L. Ogilvie
Grumman Data Systems Corporation

SUMMARY

This paper discusses an effort to convert a nonlinear finite element
program to the CDC STAR 100 pipeline computer. The program called DYCAST was
developed under contract with NASA Langley Research Center for crash simulation
of structures. Initial results with the STAR 100 computer indicate that
significant gains in computation time are possible for operations on global
arrays. However, for element level computations that do not lend themselves
easily to long vector processing, the STAR 100 was slower than comparable
scalar computers. On this basis it was concluded that in order for pipeline
computers to impact the economic feasibility of large nonlinear analyses it is
absolutely essential that algorithms be devised to improve the efficiency of
element level computations.

INTRODUCTION

During the last decade, finite element methods, originally developed for
linear structural analysis, have been extended to nonlinear problems. These
developments have progressed to the point where the available methods are on
a firm analytical basis and have been implemented in a number of general
purpose computer codes. Since nonlinear analysis with the finite element
method is essentially a successive linearization of a nonlinear problem, a
given analysis completed in 'In" steps can require a level of computation associ-
ated with 'In" linear finite element solutions. Consequently, the problem
facing the analyst today is not so much whether the solution to a given
problem can be obtained, but whether the computer cost can be afforded. As
analysts we can search for better algorithms based on the currently available
computers in order to achieve near optimum computational efficiency while
requesting that developers of computer systems constantly produce larger
capacity faster machines. The purpose of this paper is to address this
problem by describing an ongoing effort to convert a nonlinear finite element
program to the CDC STAR 100 computer. This currently operational large fourth
generation computer has a number of distinguishing features. From a user's
vantage point, the two most important are the capability for vector arithmetic,
e.g., pipeline processing, and the use of virtual memory. Vector arithmetic
refers to the capability of performing computations on a string of numbers

This work was supported by NASA Langley Research Center under Contract
NAS-l-13148.

119

(vector) with a single vector instruction. More significantly, the computer
central processing unit (CPU} is designed to exploit this type of calculation.
For example, experience to date has indicated time savings as high as 35 to 1
over comparable CDC 6600 times for pure vector operations.

The virtual memory capability is a method of data management which gives
the illusion that physical memory is larger than it really is. This is
accomplished with both computer hardware and operating system software. In
principle, the user can organize a program as if all the core necessary is
available and the operating system "pages" data in and out of primary core.
Thus, the process of overlaying code and using auxiliary storage devices to
accommodate large quantities of data, common to programs implemented on third
generation serial computers, can be assumed by the hardware and operating
system software.

In order to exploit the features of the STAR 100, it is incumbent upon
the user to design a solution strategy, if possible, that can utilize these
features to the fullest. This can simply mean converting an existing algorithm
to vector operations, or it can require devising an entirely new algorithm that
can exploit pipeline processing.

An in-depth review of the features of the STAR 100, as well as its
anticipated usefulness for finite element analysis, has been given by Noor and
Fulton (ref. 1). A study of the feasibility of transferring NASTPm@ to STAR
is found in ref. 2.

Work is currently underway by the authors to convert a program for non-
linear transient dynamic analysis to the STAR 100 computer. This program,
called DYCAST (Dynamic Crash Analysis of STructures), was developed under -- -
contract with NASA Langley Research Center, for crash simulation of structures.
It is the purpose of this paper to discuss our user experiences, successes and
pitfalls, during the course of this effort. In the remainder of this paper
we first outline the theory on which DYCAST is based and identify potential
areas where the STAR vector processing will have a significant effect. In
order to gain experience in the usage of the STAR pipeline processing system
and the associated extended subset of FORTRAN vector syntax, a pilot effort
was initially begun to vectorize a program for the eigenvalue/eigenvector
extraction of large matrices (ALARM - &tomatic L&ge Reduction of Eatrices to
tridiagonal form - ref. 3).

In doing this we not only had the advantage of working with a small
program but one that was particularly amenable to vector processing. Results
from this study as well as those from DYCAST are presented in the paper.

DYCAST FORMULATION

DYCAST is a finite element program for the nonlinear transient dynamic
analysis of structures with particular emphasis on crashworthiness evaluation.
It is based on, and represents a continuation of the development of a system
of 'finite element programs for nonlinear static analysis called PLANS (PLastic
and Large Deflection ANalysis of Structures - ref. 4). A review of the salient
features of DYCAST can be found in ref. 5.

120

DYCAST implements an updated Lagrangian formulation (refs. 6,7,8) for
geometric nonlinearity and an incremental plasticity theory (ref. 9) to
represent material nonlinear behavior.

In this section we outline the governing matrix equations used here in
order to identify the key computation bound operations on which the STAR 100
will have its greatest impact.

The governing matrix equation based on the updated.*Lagrangian formulation
with the displacement increment AU n+l and acceleration U n+l as unknowns is

[K (O) + K (l)] AU =p -F -M;;
n n n+l n+l n n+l (1)

This equation assumes that third order terms in the integral work relation
have been neglected in going from the nth configuration to the n+lth. These
neglected terms are discussed in refs. 6, 8. The matrix term K~O) is

K co) = / Wt D-l
n Vn n n Wn d V

where V is the volume in the n th
n

configuration, Wn relates increments in

total strain to increments in displacement, and D = E -' (I + EC) with E the
n

matrix of elastic material properties and C a matrix obtained from the plastic
constitutive relations. The matrix term nil) is

K(l) = / i-i% RdV n Vn n n

where R
n relates the nonlinear components of the strain displacement relations

to displacement increment and T is a matrix of Cauchy stresses with respect to
the nth configuration. The matFix term Fn is

F =
5

WtZ dV n n n n

where Z is a vector of Caucby stresses with respect to the n th
n

configuration.

One can use either an explicit or implicit time integrator to obtain solutions
to eq. (1). Both types are implemented in DYCAST.

Explicit Integrator

DYCAST currently implements a constant time step central difference and
a variable step modified Adams predictor-corrector time integrator. In both
procedures, eq. (1) is written as

Mu n+l = P -F n+l n - Af n+l (2)

121

where

Af = [K(O) + Kc;)] AUn+l n+l n

is the incremental force vector.

This vector is then approximated in terms of previously calculated vari-
ables by making use of the discrete time integrator so that if the mass matrix
M is unchanging the. solution reduces to calculating a right hand side to eq.
(2) and then solving for U n+l'

For central difference use is made of the recurrence relations

AU
n+l

= 2AU - AUnBl + At2A;
n n

(3)
AU

AU = n+l -*Un-1
n 2At

in order to obtain Af n+l'

The modified Adams procedure is based on substituting a predictor solution
for AUn+l, into eq. (2)

AU:+l
= Audev

n
+At U +F

n (4)

Equation (4) is the Taylor series expansion for U with the backward differ-
dev n+l

ence used for the acceleration and AU is the difference between the n th
n . .

predictor and corrector solutions, LIZ - Up. Once eq. (2) is solved for U.
n n+l

the corrector solution is generated based on a forward difference for the
third term.

UC n+l
=U +Atti +nt(U

n n 2 n+l - ii,,

(5)
‘C U n+l =ir +At;; ++i

n n n+l - i-i,,

An error criterion is used to ensure that the difference between the predictor
and corrector solutions satisfies some preset error criterion. In practice,
the convergence criterion fails on the difference between the predictor and
corrector velocities. This is

(6)

'C U n+l
- fip

n+l
= F ((Un+l-Q - (Un-inml) >

= F (Aii+l - Ain)

122

and the error criterion becomes

At (Ain+l - Ain)

2
< E'

ir n+l ;
(7)

It can be seen from eq. (7) that the error criterion limits the rate !of change
of acceleration. Whenever the inequality of eq. (7) is violated the time step
is halved. Conversely, the time step i.s doubled whenever the inequality is
satisfied within a predetermined lower bound.

Implicit Integrator

A variable time step implicit solution algorithm with inner loop iter-
ations, based on the Newmark-Beta family of integrators, is implemented within
DYCAST.

The governing recurrence relations for the Newmark-Beta method are

. . AU n+l ti
U =--

n+l Sat2 j-5 n

. . . .
Air n+l = At Un + YAt AUn+l

Substituting eq. (8) into eq. (1) yields

'K,AU
n+l

= Pn+l + Q; -F n

(81

(9)

where

it = K(O)+ K(1) ; M
n n n SAt2 .

Q~=M(& 1 em + (j? -l>UJ

Equation (9) can be solved iteratively within each time step by feeding
back the effect of an equilibrium correction term.

In this form eq. (9) becomes
. r

EnAU;+l = Pn+l + Qt - Fn+; Rj
j=o n

where

Rjcp -Fj
. . .

n n+l n+l - M UA+1

When i = 0, eq. (10) reduces to eq. (9) since Bi = 0.

(10)

123

There are a number of ways to define convergence. Use is made in DYCAST
of the following criterion

AU;+l - ALJ;-l
<

Ui
E

n+l
(11)

In addition to eq. (ll), an admissibility test is used in order to control
the time step. Based on our experience with the modified Adams method, the
admissibility test is developed by writing a p,redictor form of eq. (8) that
leads directly to a criterion similar to eq. (7)

. . . .
AU

y At
n+l - AUn

c E . (12)
I U n+l I

ALARM IMPLEMENTATION

As an initial test of STAR vector processing, a program for the eigenvaluel
eigenvector evaluation for large matrices was converted to STAR. This program
called ALARM (Automatic LArge Reduction of Matrices to tridiagonal form) is
based upon a method whichreduces a large matrix to an "equivalent" tridiagonal
one of much smaller size. It is based on the work of Ojalvo and Newman (ref.
10) and as such is similar to the eigensolver, FEER, which has been implemented
in recent versions of NASTRAN. For full details of the method the reader is
referred to ref. 3 for ALARM and ref. 11 for FEER. In the following we out-
line the computational flow from ref. 3 as a means of identifying the areas of
vector processing. The algorithm almost exclusively involves operations on
large matrices and as such is particularly suitable for vector processing. It
is based on generating a "tall" rectangular transformation matrix, V, the
columns of which are orthonormal vectors. This transformation matrix reduces
the equation

K $J~ = tit M $i (13)

where K and M are the stiffness and mass matrices, respectively, to symmetric
tridiagonal form of much smaller size. The eigenvalues/eigenvectors of this
equation are then obtained by Sturm sequencing and bisection of the intervals 2 containing w.. 1

The sequence of operations excluding the starting procedure and error
checking is as follows (ref. 3):

1. Factor the stiffness matrix into upper and lower triangular
form K = LLt

2. Solve for successive columns of the reduction vector, V, as follows:

124

*
v i+l = L-l# L+ vi

This is accomplished by first solving for

Lt wi = vi

then performing the matrix multiplication

U
i

= Mw i

and then solving

I.4 v;+l = ui

All of these operations involve vector processing on vectors of the order of
the semibandwidth and bandwidth of K and M. The procedure is completed by

3. ;i+l = v;+1 - c1.v - B ii i-l vie1

where
*

cl
i

=v v i i+l
*

B i-l =v i-l V i+l

The desired column of V is then
v

V i+l -
i+l f3 i

where u., B. are the diagonal and off-diagonal terms, respectively, of the
final r&duc$d tridiagonal matrix.

The method outlined above was vectorized using the STAR 100 subset of
vector FORTRAN syntax. Results are shown in Table I for CPU time for a number
of benchmark problems using an IBM 370/168, CDC STAR 100 with all scalar
operations and STAR 100 using vector processing. The times shown for bench-
mark problems exclude the factoring of the stiffness matrix, and assume a
diagonal mass matrix. The table reveals that as the matrix size increases, the
relative running time on the STAR 100 in the scalar mode increases relative
to the IBM 370/168. However, as the problem size increases, the payoff for
vector calculations grows. The final result, that of a 10000 degree of
freedom matrix with a semibandwidth of 100 and a running time of 9.91 CPU
seconds, indicates almost a 160-fold decrease in time over the IBM 3701168.

125

II I llllllllllllllll IIIIII II

This table clearly indicates two points: the efficiency of vector
processing for large global arrays and the relative inefficiency of the
current version of the STAR 100 for primarily scalar arithmetic.

Figure 1 shows a section of a longitudinally compressed skin stringer
element typical of the NASA space shuttle wing cover construction. A linear
bifurcation buckling analysis of this structure was performed using one of the
PLANS system programs. This program uses a higher order plate element to model
the structure and the ALARM program to obtain the eigenvalues and eigenvectors.
The resulting model led to matrices with 3158 degrees of freedom and a semi-
bandwidth of 301. Running time on an IBM 3701168 in double precision depended
on the amount of available core. Table II shows data from ref. 12 and indicates
the normalized running time versus increased core size. The increased core
size was due to increasing the work area available to the matrix packages. In
no case, however, were we able to use more than 150000 words. This corresponds
to the available incore capacity of STAR equal to approximately 450000 words
for code and data and demonstrates a source of efficiency of STAR due to large
incore storage coupled with the virtual core facility. This same problem was
run with the STAR version of ALARM. To do this, the necessary matrices were
assembled and passed to STAR via tape files.

The resulting computer times are summarized in Table III. Evaluation of
two eigenvalues and eigenvectors to the desired accuracy took 12.5 CPU seconds
on the STAR 100 computer, compared to 269.6 CPU seconds on the IBM 370/168 in
double precision using 921 KBYTES of core. This represents a ratio of 21.5
to 1 which is consistent with the data presented in Table I. The computer
time to calculate one column of the transformation matrix, step 2 outlined
above, was 0.9 CPU second for the STAR 100 and 19 CPU seconds for the IBM
3701168. Also shown in Table III is the time to factor the stiffness matrix.
To perform this operation, use was made of a vectorized equation solver written
by Dr. J. Lambiotte, Jr. of NASA Langley Research Center. This procedure factors
the matrix as rDzt, where t is a lower triangular matrix and D is diagonal.
In order to obtain the Cholesky factorization required by ALARM, we performed
the additional operation of taking the square root of the diagonal matrix and
premultiplied E by the result.

The predicted buckling load obtained from this analysis agreed quite
favorably with the average of three tests (see fig. 1). Plots of the mode
shape predicted by this model are also shown in fig. 1. For a clearer
representation, only the portions of the structure that buckled are shown,
and the deformed sheet and stringer flanges were plotted as if detached.

DYCAST COMPUTER IMPLEMENTATION

Given that the appropriate theories from structural mechanics have been
implemented, the features that distinguish a program for nonlinear analysis
from a linear program are: 1) the solution algorithm is of the repetitive
type so that calculations performed once for a linear analysis must be
repeated for a nonlinear analysis, and 2) field quantities such as displace-
ments, stresses, and strains must be stored for use in succeeding calculations.
These considerations force the designer of a nonlinear code to exercise extreme

126

care in coding key "number crunching" sections since any inefficiencies, while
perhaps not being crucial for a linear analysis, are multiplied "n" times in
a nonlinear analysis. It is in these areas that the STAR vector processing
can potentially make a contribution.

In the following, the flow of the computational bound section of DYCAST
is outlined in order to identify areas of potential vector processing. The
program is separated into two functional units as shown in fig. 2. A small
main program initially determines core allocations and then passes control to
a subroutine that reads and processes all input and defines nece.ssary data
bases. Since computations are minimal in this routine the only impact of the
STAR 100 here is the use of virtual core capability over utilization of tem-
porary scratch files.

After the input phase, control is returned to the calling program which
in turn calls a subprogram that controls the main computational loop. This
loop, shown in block diagram form in fig. 3, has all the ingredients usually
found in a linear finite element program, namely, (1) Matrix assembler,
(2) Equation solver, (3) Time integrator, (4) Finite element matrix formation,
and (5) Stress and strain calculations.

Items 1 through 3 are global functions that are easily recast into vector
form. That is, the equation solver involves dot products on vectors whose
length is of the order of the semibandwidth of the matrix, a process that can
exploit the STAR vector processing. Implementing the integrator, although not
taking a large percentage of the computation time, involves sums of vectors
that can easily utilize STAR vector processing. However, items 4 and 5 are
carried out on the element level and involve primarily operations with small
matrices.

The method devised to implement element level calculations can be an
important consideration. This is because it has been our experience that more
than half the computer time per time step is taken by the element level
calculations (for moderate sized problems) when using an implicit integrator.
The relative time can be as much as 314 for an explicit integrator. Figure
4 shows the computational flow for a typical element level sequence of
calculations for the simplest case of a three node constant strain triangle.
For this element, the calculations involve primarily scalar arithmetic along
with vector products on vectors of length 3 and 9. These lengths are too
small for efficient vector processing because of instruction start-up time
for vector operations. Vectors of length 100 begin to substantially
exploit the STAR pipeline processing. It is also worth noting that since
.a finite element model consists of a multitude of elements, a computer
system optimized for this type of operation might more naturally be based
on parallel rather than pipe-line processing. That is, calculations can be
carried out on many elements simultaneously. Reference 13, for example,
conceptually describes the implementation of a finite element program on the
Illiac IV parallel processing computer.

127

Practical experience was gained in implementing the items discussed above
into a finite element program for nonlinear analysis by the Computer Sciences
Corporation under Contract with NASA Langley Research Center. This program
developed for plastic analysis alone, is part of PLANS (_Plastic and Large
deflection ANalysis of Structures - ref. 4).. The program chosen treats the
plastic anaGsis problem using the "initial strain" or pseudo load method.
Consequently, the problem reduces to the solution of a sequence of linear
analyses with a changing pseudo load vector that accounts for plasticity. The
stiffness matrix is unchanged in each step so that it can be factored once with
subsequent solutions requiring only a forward and backward substitution of
triangular matrices. Within this framework the major effort in each step is
to solve the set of finite element equations, calculate stresses and strains
(impose plastic constitutive equations), and reformulate the vector of pseudo
loads. Thus, it has all the steps that the explicit formulation of DYCAST
has, eq. (21, with the exception that DYCAST must form a contribution to the
pseudo load vector, Af n+l' that is the incremental internal force vector.

Consequently, the effectiveness of the STAR computer on this program should
carry over to DYCAST.

Results provided to us by R. Fudurich and D. Dunlop of Computer Sciences
Corporation are shown in Table IV and summarize the results obtained to date.
These results indicate a substantial speedup in the solution algorithm, up
to 13:l for initial solutions, and up to 19O:l for subsequent solutions that
require only forward and back substitution. However, in the area of stress
and strain recovery, where operations are presently primarily scalar, the STAR
computer was appreciably slower than the CDC CYBER 175. As mentioned previously
these element level calculations are performed on small matrices for which we
anticipate that the vector capability would not lead to significant savings.
Based on the results shown in Table IV i.t becomes apparent that it is essential
to restructure the program in this area in order to exploit the STAR 100
pipeline capability.

Work is currently underway to convert the DYCAST program to the STAR 100
computer. To date, subroutines for matrix assembly and equation solution that
use the STAR virtual core and vector processing capability have been implemented
into DYCAST. The effect of vector processing was demonstrated on a finite
element model containing 332 elements (179 triangular membrane, 33 axial force
stringer, 120 beam), 413 degrees of freedom, and 136 semibandwidth. The
computer times for one time step for this problem using both the implicit and
explicit integrators on an IBM 370/168 and CDC STAR 100 are shown in Table V.
As anticipated, any savings due to vectorizing the solution algorithm is
offset due to the slower computation time on STAR for scalar operation. Vector
processing, although on small vectors, is currently being introduced into the
element level routines.

CONCLUSIONS AND RECOMMENDATIONS

This paper discusses our successes and pitfalls in converting a finite
element program for nonlinear finite element analysis to the CDC STAR 100
computer. Our experience may be summarized by the following: On global
functions, the vector processing, coupled with the virtual memory capability,

128

r

-
Iif

-I-

f

led to decisively improved computation times over the available scalar computers.
However, on element level computations that were not vectorized,. and indeed do
not lend themselves easily to long vector processing, the STAR 100 was deci-
sively slower than comparable scalar computers. We do expect some slight
improvement when these routines are converted to vector code. Consequently,
as the number of successive linearization increments increased in a nonlinear
analysis, the gains made on processing global functions were offset by the
element level calculations. On this basis it can be concluded that in order
for pipeline computers to impact the economic feasihility of large nonlinear
analyses it is absolutely essential that algorithms be devised to improve the
computational efficiency of element level computations. Recommendations to
accomplish this are discussed below.

In problems involving plasticity alone it is usual that a contained
region of plastic flow exists. For this situation the pseudo load method can
be used and element level stress recovery can be simply limited to this
contained region. This can be done using the pseudo load method since these
effective plastic loads are nonzero only in the contained region and element
stiffness matrices are not reformed in each increment. This notion can be
expanded even further (ref. 14) by employing a substructuring technique to
eliminate the unknowns in the assumed elastic region. Since these calculations
are exclusively on global arrays, the substructuring operations can effectively
make use of vector processing. The remaining incremental calculations can
then be carried out using the reduced set of equations.

Because of the effectiveness of vector processing on global arrays, any
method that operates on these primarily large matrices during an incremental
nonlinear solution will be computationally efficient on the STAR 100. Methods
were previously developed (ref. 9) that eliminate the displacements in the
governing matrix equation so that the remaining incremental equations are
global arrays of stress or strain increments. For example, the total strain
increment can be written as shown in ref. 9 as follows:

AeT = A AP + J AE (14)

where AE is the incremental plastic strain, AP is an incremental load factor,
and A and J are matrices that depend on the number of strain recovery points
in the finite element model. Once eq. (14) is formulated, it is solved
incrementally as part of the nonlinear analysis thereby replacing the usual
element level calculations. Consequently, it may be worthwhile to re-examine
this method for implementation on the STAR 100.

The previous comments are also pertinent to the formulation of linear
dynamic analysis because the coefficient matrices do not change when either
the explicit or implicit methods are employed. Consequently, the method
reduces to calculating the right hand side vector and then solving for either
accelerations or displacements. The right hand side vector for both methods
can be recast in terms of global matrices by assembling and storing the total
stiffness and mass matrices and then performing the matrix multiplications
indicated in eqs. (2) and (9). Stress and strain recovery may still be a
limiting factor, but these need not be computed in every time step.

129

The methods described above cannot be used in DYCAST because the stiffness
matrix changes in each step due to the problem nonlinearities. One is therefore
constrained to perform these element level calculations in every time step.
Consequently these calculations must be reformulated so that they can effectively
use vector processing. It may be possible to do this by partitioning the
structure so that calculations are carried out on assemblages of elements, i.e.,
super elements. This technique will be pursued in future developments of
DYCAST.

130

REFERENCES

1. Noor, A.K.; and Fulton, R.E.: Impact of the CDC STAR 100 Computer on Finite
Element Systems, J. Structural Div. ASCE, vol. 101, 1975, pp. 731-750.

2. Study of the Modifications Needed for Efficient Operation of NASTRAN
on the Control Data Corporation STAR 100 Computer. Aerospace Division
of Control Data Corp., NASA CR-132644.

3. Ojalvo, I.U.: ALARM -- A Highly Efficient Eigenvalue Extraction Routine
for Very Large Matrixes. The Shock and Vibration Digest, vol. 7, no. 12,
Dec. 1975.

4. Pifko, A.; Levine, H.S.; and Armen, H. Jr.: PLANS - A Finite Element
Program for Nonlinear Analysis of Structures, vol. I - Theoretical
Manual. NASA CR-2568, August 1974.

5. Winter, R.; Pifko, A.; and Armen, H. Jr.: Crash Simulation of Skin-Frame
Structures Using a Finite Element Code. Presented at Sot. of Automotive
Engineers, Business Aircraft Meeting, Wichita, Kansas, Mar. 29 - Apr. 1,
1977, Paper no. 770484.

6. Armen, H.; Levine, H.; Pifko, A.; and Levy, A.: Nonlinear Analysis of
Structures. NASA CR-2351, March 1974.

7. Hofmeister, L.; Greenbaum, G.; and Evensen, D.: Large Strain Elasto-
Plastic Finite Element Analysis. AIAA J., vol. 9, no. 7, 1971, pp. 1248.

8. Bathe, K.; Ramm, E.; and Wilson, E.L.: Finite Element Formulations for
Large Deformation Dynamic Analysis. Inter. J. for Numerical Methods in
Engineering, vol. 9, 1975, pp. 353-386.

9. Armen, H. Jr.; Pifko, A.; and Levine, H.: Finite Element Analysis of
Structures in the Plastic Range. NASA CR-1649, February 1971.

10. Ojalvo, 1-U.; and Newman, M.: Vibration Modes of Large Structures by
Automatic Matrix Reduction Method, AIAA J., vol. 8, no. 7, July 1970,
pp. 1234-1239.

11. Newman, M.; and Pipano, M.: Fast Model Extraction in NASTRAN via the FEER
Computer Program. NASA 'IMX-2893, Sept. 1973, pp. 485-506.

12. Crouzet-Pascal, J.: PLANS - Current and Potential Capabilities for Finite
Element Analysis of Intersecting Thin Shell Structures. Grumman Research
Dept. Memorandum RM-635, June 1977.

13. Field, E.I.; Johnson, S-E.; and Stralberg,: Software Development Utilizing
Parallel Processing. Structural Mechanics Computer Programs, Surveys,
Assessments, and Availability, Univ. Press of Virginia, Charlottesville,
VA, 1974.

131

14. Armen, II., Jr.; and Levy, A.: Substructuring, Restart, and Variable
Constraints in a Three-Dimensional Finite Element Program for Fracture
Analysis. Grumman Aerospace Corp. Report RE-553, April 1978.

132

TABLE I. - COMPUTER TIME (CPU SECONDS EXCLUSIVE OF FACTORING
STIFFNESS MATRIX) FOR EIGENVALUE/EIGENVECTOR EXTRACTION
FOR VARIOUS SIZE MATRICES

Solution
Time Solution Solution

Maximum IBM 370/168 Time Time
Matrix Semi- (single STAR 100 STAR 100

Size
STAR Scalar (IBM 370

bandwidth precision) Scalar
IBM 370

Vector STAR Vector STAR Vector STAR Scala
I

10 1 3.44 1.30 I 0.61 2.13 5.64 2.65

100 10 4.47 5.64 1.05 6.42 i 4.26 0 .'79

1000 100 26.91 76.21 1.76 45.06 15.29 0.353

4000 100 175.08 4.86 36.02 '

4000 400 225.52 7.18 31.4 !

10000 100 1532.3+ 9.91 154.6

+ Time to form tridiagonal matrix

TABLE II. - PERCENT DECREASE IN CPU TIME ON IBM 370/168
VERSUS AVAILABLE CORE SIZE FOR BUCKLING ANALYSIS
OF SKIN-STRINGER PROBLEM

Problem Size = 3158 degrees of freedom

Semibandwidth = 301

TABLE III. - COMPARISON OF CPU TIMES IN SECONDS FOR
BUCKLING ANALYSIS OF SKIN-STRINGER PROBLEM

IBM 370/168
CDC STAR 100
Ratio 370/STAR

_.-
Step 1 Step 2

Factor K Eigenvalue Eval. Total
(CPU Time) (CPU Time) (CPU Time)

342. 269.6 611.6
57.7 12.5 70.2

5.9 21.5 8.7

134

TABLE IV. - SUMMARY OF CDC STAR 100 VERSUS CDC CYBER 175
COMPUTING TIMES FOR PLANS PROGRAM

Total Total Stress
No. of Semi- Initial+

*
Initial Subsequent Recovery

Problem Elements DOF Bandwidth Solution Total Solutions Pseudo

'1 25 138 42 0.21261 3.8851 5.2291 530.075/
1.514 I 3.864 470.265 109.78

2 66 300 60 0.8142/ 8.8926/ 1.4579/ 191.905/
5.390 8.305 277.679 34.715

3 560 1492 9.3 6.31 45.261 0.3121 35.041
82.96 100.7 N.A. N.A.

4 710 4366 170 58.11 --- --- ---

I 546.9 !

+ Refers to initial factoring and forward and backward solution. All times given
STAR time/CYBER-175 time.

*
All initial preprocessing, element formation, critical load stresses and strains,
algorithm vectorized.

Problem 4 Compared versus IBM 3701168; Total times depend on number of increments
range.

TABLE V. - COMPARISON OF CDC STAR 100 VERSUS
IBM 370/168 COMPUTING TIMES FOR
ONE TIME STEP USING DYCAST
413 DOF, 136 SEMIBANDWIDTH, 332 ELEMENTS

Matrix Assembly

Solution

Time Integrator

Stress/Strain
Recovery and
Element Formation

Total

-

Explicit
Implicit

(one iteration)

o.o/o.o I 0.32/4.03

0.03/0.65 I 2.0516.77

0.02/0.02 0.04/0.10
--__ __-.-__

8.8614.08 16.90/6.87

8.91/4.75 19.31/17.77

All times given in CPU seconds and STAR time/IBM 3701168.

136

BUCKLING LOAD, N (lb)
BENST 81500 (18320)
TESTS(3) 88850 (19970) AVERAGE

SKIN THICKNESS - 0.18 cm (0.070 in.)
LENGTH - 21.5 cm (8.5 in.)

a) FINITE ELEMENT MODEL OF STRINGER

b) COMPUTER PHOTO OF BUCKLING MODE SHAPE IN SKIN
AND ATTACHED STRINGER FLANGES (ONLY PORTIONS
OF STRINGER THAT BUCKLED)

Figure 1 Analysis of Longitudinally Compressed Skin-Stringer
Element Typical of Shuttle Wing Cover Construction:
Comparison of Computed Buckling Load with Test Results

137

,MAIN CALLING-
PROGRAM

I I
READ, PROCESS & MAIN
CHECK INPUT; COMPUTATIONAL
INITIALIZE DATA BASE LOOP

Figure 2 Global Structure of DYCAST

MATRIX TO ASSEMBLE COEFFICIENT

EQUATION SOLVER

TIME INTEGRATOR
ONE FOR EACH INTEGkATOR
IMPLEMENTED IN PROGRAM

ELEMENT CALCULATIONS
- STRESS, STRAIN, PLASTIC

CONSTITUTIVE RELATIONS
- REFORM ELEMENT MATRICES IF

REQUIRED
- FORM COMPONENTS OF RIGHT-HAND

SIDE OF EQ. (2) OR EQ. (10)

ASSEMBLE RIGHT-HAND
A SIDE FOR EXPLICIT OR

IMPLICIT INTEGRATOR

CONTINUE
CALCULAilONS

THREE EQUATION SOLVERS
- IN-CORE
- OUT-OF-CORE
- ‘IIAGONAL COEFFICIENT MATRIX

FOR EXPLICIT, LUMPED MASS

- CALCULATE THE REMAINDER
OF THE KtNEMATlC FIELD
QUANTITIES;
CHECK CONVERGENCE

CALCULATIONS FOR STRESS &
STRAIN TO COMPLETE NTH
STEb W.ljILE PREPARING TO
GO ON TO N + ITH STEP

.

Figure 3 Computional Flow of Major Loop of DYCAST

138

EXTRACT ELEMENT
KINEMATIC FIELD
QUANTITIES FROM GLOBAL
ARRAY AND FORM
CORRESPONDING LOCAL
AR RAY

CALCULATE ELASTIC
STRESS&STRAIN
INCREMENT

SMALL VECTORS - LENGTH 9

I I
CHECK YIELD FUNCTION
AND IF PLASTIC APPLY
PLASTIC CONSTITUTIVE
RELATIONS

FORM ELEMENT
MATRICES k” k’ I I ,
m

I

FORM COMPONENTS OF
EFFECTIVE LOAD
VECTOR

3x1 3x9 3x 1
Ae = W AU

3x1 3x3 3x1
Ao = E Ae

3x3 3x3

EP
= R-1

3x1 3x3 3x1
Aa = Ep AeT

3x1 3x3 3x1
Ae = C Ao

ALL INVOLVE SIMPLE SCALAR
OPERATIONS PLUS TRANSFORMATION
TO GLOBAL SYSTEM
9x6 6x6 6x9

T’k T

m(f& +($-I) ii,)
OR

- k AU;+ ,

Figure 4 Computational Flow of Element Level Subroutine

139

