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SUMMARY 

A procedure is presented for determining the nonlinear behavior of 
structures subjected to extreme loading and the possibility of development 
of potential for progressive failure. The methodology takes into account 
the effect of both material and geometric nonlinearities. At a given 
stage of analysis, the individual components of the structure are checked 
against predetermined failure criteria. Subsequently, the failing com- 
ponents are removed and the modified structure is analyzed for overall 
failure. Examples, obtained from a computer program based on the proposed 
procedure, showing the applicability of the method are presented. 

SYMBOLS 

Values are given in both SI and U.S. Customary Units. The calculations 
were made in U.S. Customary Units. 

{FI,{FO) nodal applied and equivalent force vectors, respectively 

[Kl, [KG], $1 elastic, geometric, and total system stiffness matrices, 
respectively 

k2'kl slope of inelastic and elastic branch of stress-strain 
curve, respectively 

[ml consistent mass matrix 

'i 

y,,... 

{q)&1&1 

ith component of element nodal forces - 

normalized stress resultants used in the yield criterion 

generalized displacement, velocity, and acceleration 
vectors, respectively 

* 
This research was sponsored by the National Science Foundation through grant 
NSF-ENG76-00332. 
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at time increment 

plastic potential function 

Subscripts: 

est estimate 

pre previous solution step 

INTRODUCTION 

The determination of the response of structural systems under externally 
applied loading, whether of static or dynamic nature, has been always of great 
concern to the structural engineers, especially when such response has ex- 
tended into the nonlinear range. However, up to recent years the solution to 
only few simple problems had been obtained. This is due to the complicated 
nature of the problem which renders the classical methods of solution inappli- 
cable. 

With the advent of high speed computers in the past few decades, a more 
realistic solution of complex engineering problems has become an attainable 
goal. Consequently, numerous investigators have turned their attention to 
the solution methods for nonlinear structural problems. Some of the work done 
in this respect with regards to beam and frame type structures as well as 
plate structures can be found in references l-8. In addition, numerous 
studies have been reported on the application of the finite element to non- 
linear problems. Some of these studies deal primarily with the material 
nonlinearity while others outline methods for treating general problems. 
Notable among the first group are the works of Akyuz and Merwin (ref. 9), 
Argyris (ref. lo), Marcal (ref. 11) and Armen et al.(ref. 12). Among the works 
concerned with the latter category are the findings of Oden (ref. 13), 
Stricklin et al.(ref. 14), Marcal and collaborators (ref. 15), Bathe 
et al.(ref. 16), and Zienkiewicz et al. (ref. 17). 

The nonlinear behavior of particular types of elements has also received 
the attention of the investigators in the field. Some of the works dealing 
with beam and frame type elements have been cited above. Other studies deal- 
ing with beams as well as plate type elements are the works of Toridis and 
Khozeimeh (ref. 18,19) Akkoush et al.(ref. 20), Marcal et al,(ref. 21), and 
McNeice (ref. 22). 

In recent years some investigators have turned their attention to the 
question of structural damage and failure as the result of excessive loads 
and/or ensuing deformations which are well beyond the linear range or the 
acceptable design levels. In particular the effect of loss of certain sup- 
porting elements on the overall behavior of the structure has received due 
attention. These investigations have been motivated by the observations on 
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the performance of actual structures in which such loss of elements has caused 
"progressive failure," a chain reaction type behavior, resulting in the col- 
lapse of the entire structural system. Recent examples of this type of 
behavior are the Ronan Point Modular Building collapse in England and the 
Skyline Towers High-Rise Building collapse in northern Virginia, U.S.A. 

The study of existense of potentials for this type of failure is becoming 
more and more important as the concept of modular and panelized buildings 
gains in popularity. In this type of structures extensive use is made of pre- 
manufactured shear wall and floor panels that are interconnected to act as the 
basic load carrying systems, providing the three-dimensional rigidity of the 
building. The successful performance of such buildings depends on the be- 
havior of the basic panels (elements) and the connecting system between the 
panels. It is, therefore, highly desirable to determine the performance of 
such structures under extreme loading and environmental conditions, in order 
to eliminate unsafe design practices. Since also the failure of one or more 
of the structural components or subassemblies gives rise to potential for 
progressive collapse and the ensuing disproportionate deformations, in studies 
dealing with such systems it is desirable to consider the ultimate strength 
properties of the structure prior, as well as after, the failure of some of its 
components. 

In the present study, a procedure for determining the behavior and the 
potential for progressive collapse of the structural system subjected to 
extreme loading is formulated. The structure is modelled as an assemblage 
of beam and plate type elements and the response is found based .on an incre- 
mental approach which allows for consideration of both material and geometric 
nonlinearity. At each stage of the structural deformation, failure criteria 
pertaining to excessive deformations, strength and stability of the structure 
are checked and parts of the structure that meet the appropriate failure 
criteria are removed and the remainder of the structure is checked against 
overall failure. The entire procedure is incorporated in a computer program. 

GENERAL APPROACH 

The response of the structural systems when subjected to high intensity 
loading generally extends into the nonlinear range. Consequently, in the 
analysis of such systems the effect of both material and geometric nonlineari- 
ties must be considered. Of special interest in the analysis is the incidence 
of abnormal loadings, i.e., loadings against which adequate measures have not 
been incorporated in the design. Such loadings, although infrequent, may lead 
to localized structural damage, which in turn may cause a "progressive" chain 
reaction type failure culminating in structural damages entirely dispro- 
portionate to the significance of the initiating cause. Thus to determine the 
complete nonlinear response of a structural system, its ability to form an 
alternative path to bridge any local damage must be studied. 

The general approach adopted in this study to achieve the above objective 
is an extension of the work reported in references 18 and 19 and is based on 
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the finite element method coupled with an incremental approach. To this end 
the structural system is modelled as a collection of beam and rectangular 
plate type elements. The three-dimensional beam element is used to model the 
skeletal frames while the plate element which is capable of simulating bending 
and/or in-plane action can be used effectively in representation of shear 
walls and floor panels, elements of construction which seem to become more 
important as trend towards modular, "panelized" construction continues. The 
detailed properties of the above beam and plate have been reported in ref- 
erences 4 and 18 and will not be repeated here. As shown in reference 23 the 
basic dynamical equations governing the behavior of a structural system can be 
obtained through the application of the Hamilton's Principle as applicable to 
discrete systems. In matrix form, these equations are expressed as 

{q] = {F] + IF0 [ml(i) + ([Kl + [KG11 

where 

‘1 (1) 

[ml = generalized consistent mass matrix of the structural system 

{q} and It> = generalized displacement and acceleration vectors, 
respectively 

[K] = generalized elastic stiffness matrix of the structural system 

[KG1 = generalized geometric stiffness matrix of the structure 

{F] = generalized nodal force vector corresponding to the externally 
applied loads 

{F'} = equivalent generalized nodal force vector due to plastic strains, 
computed in accordance with the "initial stress or strain" 
method 

In case of static loading, the above equation can be reduced to 

(WI + [KG]) {q] = {F] + {F"] (2) 

Based on equation (1) or equation (2), whichever governs the problem, the 
following incremental procedure to determine the behavior of the structure 
in the linear and nonlinear range is formulated. 

Referring to equation (1) and based on the current configuration and the 
state of stress of the structural system, the components of the vector of the 
generalized accelerations, {q>,are found using the currently applied loads. 
Subsequently, the generalized displacement vector, {q], is determined through 
a numerical integration procedure. The integration procedure utilized in this 
study is the Newmark's constant acceleration scheme (i.e., f3=0) and can be 
expressed as 
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I;}, = {;I1 + 0.5(At>[{$2 + (&I (3) 

{q12 = Cql, + At{&, + 0.5(W2{$, (4) 

In the above eqvations, At is the time step, the subscripts refer to the time 
stations, and {q) is the generalized velocity vector. 

Having determined the vector {q), the totals and the increments of the 
element nodal displacements and forces are obtained through the appropriate 
transformations and the current element stiffness matrices. The element 
nodal forces thus calculated are then used as an estimate to check for in- 
elastic behavior in the element. To this end, the Mises yield criterion ex- 
pressed in terms of the stress resultants is utilized. The normalized form 
of this criterion for a beam element is expressible as (ref. 19) 

(5) 

where Y denotes the "yield value" which may change through straining, and 
Fl, P2, P3, and is4 are the normalized form of the axial force, torsional 
moment, and bending moments about member y and z axes, respectively. A similar 
expression can be written in the case of a plate element. 

If any element is undergoing inelastic deformation, its corrected force 
components and the corresponding contributions to the vector {F"} must be 
determined. This is done through a simplified approximate procedure known 
as "Proportioning Method" (ref. 19). In this approach, if 0 denotes the 
plastic potential function assuming elastic behavior, then aEshtimate of the 
increment of the plastic potential function due to current load/time incre- 
ment, dQest, is found as 

d9 =Qest-Q est we 
(6) 

where Qpre refers to the plastic potential function at the end of previous 
step. Then assuming a bilinear stress-strain relation and utilizing the 
"universal" stress-strain curve, the corrected plastic potential function, a', 
is determined as 

@=CJ k2 + - d@ 
pre kl est (7) 

in which k 1 and k 2 represent the slopes of the elastic and inelastic branches 
of the stress-strain curve, respectively. The basis of this simple procedure 
is explained in detail in reference 19. 
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Having found the final value of the plastic potential function, the ith 
component of the nodal forces, P;, is determined by a proportioning process, 
I.e., 

L 

(8) 

where P i is the estimate of the force component assuming elastic behavior. 
est 

Furthermore, in the analysis the "Average Force Model" (ref. 19) is utilized. 
In the development of this model it is assumed that the entire element under- 
goes plastic deformations if the plastic potential determined from average 
value of stress resultants acting at the nodes exceeds the current yield value. 

As is well known, the geometric nonlinearities can be attributed to two 
causes, namely the effect of large rotations and the contributions due to 
nonlinear strain-displacements (P-A) effects. The latter effects are ac- 
counted for in the present analysis through the inclusion of the geometric 
stiffness matrix, [KC]. The entries to this matrix are directly affected by 
changes in the axial or in-plane force components acting on the elements of 
the structure. Consequently, this matrix is continuously updated in the 
solution process to reflect changes in the internal forces of the structure. 
To account for the effect of large rotations with its inherent change in 
geometry the total stiffness matrix, 
geometric stiffness matrices, i.e., 

[KT], defined as the sum of elastic and 

[KTl = WI + [KG1 (9) 

as well as the mass matrix and the equivalent force vector are regenerated 
through the use of the current transformation relations based on the deformed 
configuration of the structure. 

In addition, before any new solution step is attempted, the modified 
configuration of the structure is determined. This is accomplished by check- 
ing the individual elements for excessive inelastic deformation and attainment 
of its ultimate strength which necessitates the removal of such elements from 
further consideration in the analysis. Also, the entire structure is checked 
for stability and functionality and all portions of the structural system that 
fail to meet the above requirements are also removed from consideration. 
Furthermore, if any modification is made to the structure, the appropriate 
system matrices are reformulated based on the latest configuration of the 
structure. 

The entire procedure outlined above is incorporated in a general purpose 
computer program. The macro flow chart depicting the sequence of the opera- 
tions is presented in Figure 1. As seen in the figure and based on the fore- 
going discussion, the procedure allows for removal of elements and nodes from 
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further consideration. In case of an element, this is done by placing its 
number on the list of inactive elements and thus neglecting its contribution 
to system matrices in the subsequent solution steps. The removal of a given 
node entails two operations. First, all the elements incident to the node 
must be removed through the aforementioned procedure. Second, all the degrees 
of freedoms associated with the node must be eliminated to prevent the struc- 
tural stiffness matrix from becoming singular. This is done in this study by 
introduction of artificial constraints at the node so that no degrees of free- 
dom are assigned to the node in the subsequent analysis cycles. It should 
also be noted that in the case of static loading the analysis cycle refers to 
an increment of load rather than time. 

FAILURE CRITERIA 

A structural system or portions of it are said to have failed if certain 
prescribed conditions are violated. These may be based on strength require- 
ments of individual parts of the structure or due to excessive displacements. 
Obviously, one of these possible modes of failure is instability. In general, 
instability is induced in the structural system composed of various members 
if the state of stress and deformation is such as to cause the system to lose 
its stiffness. This can come about if the axial or in-plane forces reach 
a critical value (buckling mode). Alternatively, the failure of a segment of 
the structure, perhaps through excessive deformation and formation of plastic 
hinges, may cause other portions or subassemblies of the structural system to 
undergo rigid body motion. However, irrespective of which mode of instability 
is encountered, the problem of stability can be formulated as the eigenproblem 
given by 

([Kl - A[KG]) = 0 (10) 

However, as has been pointed out by Gallagher (ref. 24), in the case of rigid 
body motion only, the total stiffness matrix will have eigenvalues of zero 
magnitude, and the corresponding eigenvectors will represent the rigid body 
modes. This fact is used to advantage in the present study to check for the 
potential of occurrence of rigid body motion whenever the determinant of the 
regenerated total stiffness matrix, [K~], approaches zero. If such rigid body 
motion occurs, the parts of the structure undergoing such motion are removed 
from consideration for the remaining time/load increments of the study. 

Deformations are also of great importance as a criterion for determination 
of acceptable structural behavior. Traditionally, the formation of sufficient 
number of plastic hinges has been used as a measure of structural failure. 
However, since displacements and plastic deformations generally become ex- 
tremely large before a structure becomes a true mechanism, failure criteria 
based on a count of plastic hinges are unsatisfactory. On the other hand, it 
is known that the distortions (displacements and rotations) in the structure 
increase a great deal just before the collapse load is reached. Therefore, 
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a failure criterion based on the magnitude of structural distortions is more 
appropriate, especially if account is taken of the ability of the structure 
to strain-harden. This is indeed the approach adopted in this study. Un- 
fortunately, very limited quantitive information is available in the litera- 
ture on this subject; rather the investigators in the field have stressed the 
need for the experimental determination of such limits. In the present study, 
this problem is circumvented by requiring the input of the above information 
for a given structure based on the best available data and professional judge- 
ment. 

The effect of inelastic deformations in a member or part of the structure 
can also be taken into account through the concept of the ductility factor 
or ductility ratio. Different definitions for the ductility ratio with 
respect to curvilinear and bilinear hysteresis curves have been reported in 
the literature (ref. 25-28). In the present study, the ductility factor is 
defined as the ratio of the maximum permissible or useful strain (or gener- 
alized strain/displacement) to the corresponding value at first yield. This 
factor is then used as a measure of failure in a structural component. 

NUKERICAL RESULTS 

To demonstrate the applicability of the proposed method, solutions to 
several structures have been obtained. Some typical results are reported 
herein. It should be mentioned that although the precedure is applicable to 
both beam and plate type structures, currently, only the beam elements have 
been fully incorporated in the computer program. 

Example 1 

The first example considered is a two story, two bay skeletal frame with 
dimensions as shown in Figure 2. All the girders are W 10x11.5 steel sections 
while the columns, with exception of the lower level interior column, are made 
up of W 8x20 sections. The lower level interior column is M 7x5.5 and all 
the steel is assumed to have a bilinear stress-strain relation with a yield 
point of 249 MN/m2(36 ksi) with the slope of the inelastic branch being 0.01 
times the corresponding value for the elastic branch. The columns are modelled 
by 3 equal elements per story and the girders are subdivided into 4 equal 
elements per bay. The loading consists of a uniform dead load, Wl, distributed 
over the girders and a live load, W2, as shown in Figure 2. In the analysis, 
the distributed loads are replaced with equivalent nodal forces. The dead load 
is applied in 3 increments of 7.78 kNjm(0.53 kipjft) each. This is then fol- 
lowed by application of live load increments of the same magnitude until the 
structure fails completely. The failure limits are set at 15.25 cm(6 in) and 
0.2 radians for nodal displacement and rotation, respectively. 

Figures 3A-F depict the sequence of structural modification due to prop- 
agation of failure. In Figure 3A the lower story inner column fails due to its 
ultimate strength being exceeded. Upon further loading, the girders start to 
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fail due to strength requirements (Fig. 3B,C). Continuation of loading the 
structure leads to excessive displacements which necessitate the removal of 
a node (Fig. 3D) which in turn leads to rigid body motion and removal of 
further portions of the structure (Fig. 3E) and ultimate failure (Fig. 3F). 

Example 2 

The second example considered demonstrates the effect of a weak exterior 
column coupled with lateral loads. In this example the same frame as in the 
previous case is used except that the lower story right-hand side is con- 
sidered to be a weak column (i.e., M 7x5.5 section) instead of the middle 
column. In addition, concentrated loads as shown in Figure 4A are applied 
to the structure. The loading sequence consists of 3 load increments of 
Wl = 7.78 kN/m(0.53 kip/ft) followed by 11 live load increments, W2, of the same 
magnitude. This is then followed by 6 load increments of H = 1.34 kN(0.3 kip). 
The failure pattern of this structure is depicted in Figures 4B to 4E. As can 
be observed, in this case the failure is not as extensive as in the previous 
example. 
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Figure 2.- Example structure. 
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(A) Wl = 23.34 kN/m; W2 = 46.68 kN/m. (B) Wl = 23.34 kN/m; W2 = 54.46 kN/m. 

(C) ~1 = 23.34 kN/m; W2 = 85.58 kN/m. (D) Wl = 23.34 kN/m; W2 = 101.1 kN/m. 

(E) Wl = 23.34 kN/m; W2 = 108.9 kN/m. (F) Wl = 23.34 kN/m; 152 = 116.7 kN/m. 

Figure 3.- Progression of failure in example 1. 
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- * - 

(A) Lateral loads. 

(B) WL = 23.34 kN; W2 = 70.02 kM. (C) Wl = 23.34 kN; W2 = 77.8 kN; 
H = 0 kN. 

(D) Wl = 23.34 kN; 152 = 85.58 kN; 
H = 0 kN. 

(E) Wl = 23.34 kN; W2 = 85.58 kM; 
H = 8.01 kN. 

Figure 4.- Pattern of failure in example 2. 
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