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AN EXTENSION OF A-STABILITY TO ALTERNATING

*
DIRECTION IMPLICIT METHODS

R.F. WARMING AND RICHARD M. BEAM

Abstract.

Completely implicit, noniterative, finite-difference schemes have
recently been developed by several authors for nonlinear, multidimensional
systems of hyperbolic and mixed hyperbolic-parabolic partial differential
equations. The method of Douglas and Gunn or the method of approximate
factorization can be used to reduce the computational problewm to a
sequence of one-dimensional or alternating direction implicit (ADI) steps.
Since the eigenvalues of partial differential equations (for example,
the equations of compressible fluid dynamics) are often widely distrib-
uted with large imaginary parts, A-stable integration formulas provide
ideal time-differencing approximations. In this paper it is shown that
if an A-stable linear multistep method is used to integrate a mecdel two-
dimensional hyperbolic-parabolic partial differential equation, then one
can always construct an ADI scheme by the method of approximate factori-
zation which is also A-stable, i.e., unconditionally stable. A more

restrictive result is glven for three spatial dimensions. Since necessary

*

The main results of this paper were presented at the SIAM National
Meeting, Madison, Wis., Mayv 24 to 26, 1978, and section 9 was part of a
presentation at the 751st Meeting of the American Mathematical Society,

San Luis Obispo, California, Nov. 11 to 12, 1977,
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and sufficient conditions for A-stability can easily be determined by
using the theory of positive real functions, the stability analysis of the

factored partial difference equations is reduced to a simple algebraic

test.

T,

<
v

o pwctnbey, g
. I

j »!.Jg.l::-“:??‘,‘;ig; o """*‘lq

PO B
N B
4

. >
- N
. T~
e o
. .
#

~ r
S T
e e
- H
- P
s

! ,
A &
. .
? %

-
.o¥

r
-

s oz

L e mme g e .
SR ey

! L)
. .
i *
7y
i g ;
i I N
N
= 3¢
v B
o
.
.

""'-,"‘!’1*‘

e

v




U W U SN U D i_gi&__f‘ Ai_aﬁlgaul.éxlﬁaé ;'

1. Introduction.
Alternating direction implicit (ADI) methods for parabolic equations 2
were originated by Douglas [10] and Peaceman and Rachford [24]). A general
procedure for constructing ADI schemes for multridimensional parabolic
equations and the second-order wave equation was devised by Douglas and
Gunn (12]. An ADI method for first-order linear hyperbolic systems in
two space dimensions was constructed by Gourley and Mitchell [15].
Recently, completely implicit, noniterative, finite-difference
schemes have been developed by several authors for nonlinear, multi-

dimensional systems of hyperbolic [1,25] and mixed hyperbolic~parabolic

12,5,6,19,25) partial differential equations. Lindemuth and Killeen

« &
formulated their ADI scheme by following the Douglas, Peaceman-Rachford >
procedure, Brilev and MacDonald devised their ADI algorithm by a formal ;?

b
k
application of the Douglas-Gunn procedure, while Beam and Warming o

constructed an ADI method by using approximate factorization.
The linear stability analysis for the algorithms applied to systems
of hyperbolic-parabolic equations is in a very rudimentary state. The

primary reason is that the operators involved do not commute. In addition,

the stability analysis of schemes for mixed hyperbolic-parabolic equations
is generally more difficult than the analysis for either type treated o
separately. This is particularly true for schemes using more than two

time levels. In fact, we are aware of only one stability proof for a

multistep ADI scheme applied to a model equation with both convection
(hyperbolic) and diffusion (parabolic) terms [7].

The eigenvalues associated with a mixed hyperbolic-parabolic system
(for example, the equatfons of compresasihle fluld dynamics) are often

widely digtributed with lavge {magloary parts,  Stoce the olgenvalue
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spectrum cannot be bounded away from the imaginary axis, A-stable linear
multistep integration formulas provide ideal time-differencing approxi-
mations (For the definition of A-stable methods, see, e.g., [8,14] or
section 2.) Although the temporal accuracy of an A-stable linear multi-
step method (LMM) cannot exceed two (8], this is compatible with the
accuracy achievable with typical ADI schemes.

The purpose of this paper is to show that if one uses an A-~stable
LMM to integrate an evolutionary partial differential equation (PDE) of

the form

du
1.1) Y (Lx + Ly)u .

where Lx and Ly are linear scalar differential operators, then one
can always construct an ADI scheme by the method of approximate factori-

zation which is also A-stable, i.e., uncorditionally stable. Since

necessary and sufficient conditions for the A-stability of an LMM can easily

be determined by applying the theory of positive real functions [9], the
stability analysis of the factored partial difference equations is
reduced to a simple algebraic test. Our most general result 1is for two
spatial dimensions with a more restrictive result for three spatial
dimensions. We should add that the stability analysis is for simple
linear test equations and we have not dealt with noncommuting operators.
In section 2 we briefly review the theory of linear multistep
methods. In section 3 we describe a method of constructing an ADI
method by starting with a linear multistep method and then using the
method of approximate factorfzation. A linear (model) test equation for

partial differential equations is defined (section 4) and then used to
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snalyze the stability of approximats factorization schemes (section 5).
The natural extension of approximute factorization methods to three
spatial dimensions is discussed in section 6. In section 7 we examine

in dets’l the family of A-stzble linear two-step methods. To illustrate
the notions of this paper, we write out an ADI method for the three-
dimensional heat equation (section 8). Section 9 contauins an illustration
of a reduced stability range for an approximate factorization formulation
which does not follow the formulation of section 3. The connection
between chis paper and the classic paper on ADI methods by Douglas and
Gunn [12]) is discussed in section 10. The final section includes a
summary of the approximate factorization approach described in this

paper.,

2. Preliminaries: A review of linear multistep methods (LMM) and

A-stability.
A linear k-step method for integrating the first-order ordinary

differential equation

du
(2.1) at f(u) , t>0 , u(0) us o
is defined by
k k n+
n+j du -
2.2 a,u = At —_—
@ PR P IRTE
j=0 Jj=0
where 4t 1s the step size (t = nAt), the coefficients uj and Bj
are real constants with ak ¥ 0 and not both “O and BO are zero.
5
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The method is said to be explicit if Bk = 0 and implicit otherwise.

Consistency and normalization are expressed by the relations

k k k
2.3a,b,c a, =0 - -1 .
NI T »EES ) .
3=0 3=0 3=0
It is convenient to associate with (2.2) the polynomials ;
?'f
k 3 ;a
2.4 - . 4
(2.4a) p(2) 2 ajC :
j=0 |
k )
- J X .
(2.4b) o(e) E Bt ]
: 3=0
% Consequently the LMM (2.2) can be rewritten as
1 }
| n du“
3 (2.5) p(E)u = bt o(Edgy  » ;
I
where the shift cperator E 1is defined by '
)
(2.6) Fu' = un+1
! -
i

Linear stability of an IMM is analyzed by applying (2.2) to the

linear test equation
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is a complex constant.

if one assumes a solution of the form un - c“

(¢ to the nth power), there follows the characteristic equation

(2.8) p(g) - A At o(g) =0 ,
- .

e GRS S

where the polynomials p and 5 are defined by (2.4). The stability

region of an LMM consists of those values of XA At for which the

¥
characteristic equation (2.8) satisfies the root condition, i.e., its i
roots L, satisfy lczl S 1 and the roots of unit modulus are simple. %

An IMM is said to be A-stable 1if its stability region contains all

of the left half of the complex ) At plane including the imaginary axis

(Dahlquist [81).

-
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Since the linear test equation (2.7) has a bounded solu-

tion if and only if Re X £ 0, the notion of A-stability is equivalent to

2.9) stability of ODE ==> stability of LMM

where ODE denotes ordinary differential equation. Dahlquist [8] proved

that the order of accuracy of an A-stable LMM cannot exceed two and that

an A-stable method must be implicit. 1In addition, he showed that the

trapezoidal formula
(2.10) ORISR A‘(§9“+l 99“)

has the smallest truncation error of all the A-stable LMMs.
The advantage of an A-stable LMM is that the stability of the ODE

is a sufficient condition for the unconditional stability (i.e., stability

for an arbitrary value of At) of the LMM, 1In this paper we extend the

notion of A-stability to LMM methods applied to partial differential




equations (PDEs). The numerical scheme is constructed so that approxi-

mate spatial factoring into a product of one-dimensional operators
retains the A-stable property:

g (2.11) stability of PDE =) stability of factored LMM .

The precise meaning of a factored method will be clarified in the

following section.

3. Construction of an ADI scheme using an LMM and approximate

factorization.

For the development that follows, a convenient form of the IMM (2.5)

is
n du” du” 3
(3.1) p(E)u - wAtp(E) rrilie At[o(E) - wp(E)] ﬁ + 0(at”)
where
Bk
w = -a—
k

Henceforth we consider only A-stable LMMs 2nd assume that (3.1) is

A-stable. Since the order of accuracy of an A-stable LMM cannot exceed

two, we concentrate in this paper on the second-order schemes as

indicated by the symbol 0(At3) on the right-hand side of (3.1). The

parameter w is defined so that the operator o(E) - wb(E) on the
right-hand side of (3.1) is at least one degree lower than the operator

p(E) on the left-hand side. This is obvious by noting that
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k k-1
o(E) = BE +8 % " +...

B
k k k-1
wp (E) o (ng + ak-lE + .. .) ,

and hence

B
o(E) - un(E) = (ak-l - ;5 uk_;)Ek el .

=

Consequently, the right-hand side of (3.1) can be computed explicitly
from known data when advancing the numerical solution from n + k - 1

to n + k.

Insertion of the linear PDE (1.1) into (3.1) yields
(3.2) 1~ wAt(Lx + Ly)]p(E)un = At[o(E) ~ wp(E)](Lx + Ly)un + O(Ata) .

Here, for simplicity, we have assumed that the linear operators Lx and
Ly are independent of time although the case of time-dependent and/or
nonlinear coefficients can be handled without difficulty [(3]. It is
important to note that the unknown variable to be computed is o (E)u"
and not un+k. This choice ensures that the approximate factorization
does not upset either the temporal accuracy of the scheme (see below) or
the unconditional stability (section 5).

If the spatial operators Lx and Ly are approximated by

appropriate difference quotients, one obtains, in general, an enormous

linear system to solve for p(E)u". The computational problem can be
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reduced to a sequence of one-dimensional (inversion) problems by an

approximate factorization of the left-hand side of (3.2):
(3.3) (I~ wAt L)(1 - wit Ly)p(E)un -

selo(E) - w (B + L)u" + o(at’)
On comparing the left-hand sides of (3.2) and (3.3), we see that they

differ by che cross product term

2 2 n
wo At LxLyp(E)u .
But by expanding p(E)un in a Tavlor series about u"  and using

the consistency and normalization conditions (2.3a,b), there follows

n
+
o(E)un = At %% + O(Aca l) , a21 .
Consequently, the cross product term
2,2 n_ 2.3 3" a+3
watT LLp(E)u =" 4t L L T +0@c 7)
X ¥ X t

= 0(At3)

is a third-order term and formal accuracy of the scheme (3.2) is not

upset by the approximate factorization (3.3). The computational sequence

to implement the factored scheme (3.3) as an alternating direction

sequence I8 not unique. Perhaps the most obvious cholce {s

(3.42) (1= wit L)e(E)a" = at[o(E) - we(®IQ +L )"
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(3.4b) (1 - w8t L)p()u" = o(E)u

k-1
3.4 n+k - _l_ n _ in
(3.4c) u 3 o (E)u JZO aJE u .

where p(E)u* is a dummy temporal difference. Here w have used
notation from the theory of LMM for ordinary differential equations and
consequently the algorithm (3.4) looks rather unfamiliar. In section 8
we write out an example following notation more conventional for partial
differential equations.
An important aspect of implementing an ADI scheme is determining

the proper boundary values for the intermediate dummy variables such as
D(E)u*. Although such considerations are outside the scope of the

present paper, they have been discussed elsewhere (see, e.g., [13,2]).

4, A lincar test equation for partial differential equations.

For first-order ordinary differential equations, Ec. (2.7) is
known as the linear test equation. For a first-order evolutionary PDE,

we define a linear test equation for two spatial dimensions as

2 2 2
du du du 3 u du du
4.1) LS T Ay L A

wheze , a, b and ¢ are real constants. In order to determine

1y
the conditions to be imposed on these constants for which the PLE (4.1)

has a bounded solution, we seek a solution of the form

i((1x+t2y)
(4.2) u(x,y,t) = v(t)e )

11




vhere v(t) is the Fourier coefficient, and KysK, are the Fourier

variables (wave numbers). The Fourier coefficient v(t) satisfies

dv

set to zero. The linear

where

- (4.3b) A= <i(c,k, + c,k,) - (ak 2 + bk.k, + cx 2) .

. 171 272 1 172 2

-
ﬁii For the PDE (4.1) to have bounded solutions, Re A £ 0. Consequently,

; the quadratic form

1

_ axlz + bKlK2 + cnzz
%a must be nonnegative for arbitrary values of 3 and Ko» which
é? implies that a,c 2 0O, b2 € 4ac. In the absence of the convective terms,
KE% i.e., ¢, =c, = 0, the inequalities a > 0, b2 < 4ac are the conditions
?ﬁ under which (4.1) is parabolic. The convection coefficients cl and
ié c2 are arbitrary real numbers, and in the absence of diffusion, i.e.,
§ a=b=c =0, the efgenvalue A 1is pure imaginary.
£4

ﬁ 5. Linear stability analysis for two-dimensional unfactored and

’ factored schemes.
% In this section we examine the stability of the unfactored scheme (3.2)
% and its factored counterpart (3.3) when applied to the linear test

% equation (4.1) with the mixed derivative bux

3

?

OpeTatore Lx and Ly are
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2
L - '(:1 '31‘ + a 2 Y
ox
(5.1)
2
3 9
Lo® =c, o= ¢ —
. 2 3y ayz
. A stability analysis {ncluding the mixed spatial derivative is considered

in appendix A.

We assume for simplicity that W s spatially continuous and assume
a solution of the form
(5.2) Wt e V" ei(le+K2Y) .
where V' 1is the Fourler coefficient and ST the Fourler
variables. In practice, the spatial derivatives are replaced by discrete
difference quotients; however, as indicated at the end of this section,
the stability proof for the spatially discrete case requires only a minor
modification of the following stability proof. We first consider the
stabtlfty of the untfactored scheme (3.2).  Fquation (3.2) was written
in the particelar form shown ax o precursor to factoring the scheme Into
a product of one-dimensional operators. However, as {t stands, (L.2) s

simplv

A T R LA Y (A R T

where, for the present analysis, l.x and Lv are defined by (5.1).
Assuming a solution of the form (5.2), we obtaln the characteristic

equation

11
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(5.3) p(t) -2 At o(Z) =0 ,

vhere

(5.3b) A= -j(e,x, +c.k,) - (ax 2 + cx 2)
* 11 272 1 2

and [ 18 the amplification factor defined by

\5.’0) Vn+1 - (vn

But (5.3a) has the same form as the characteristic equation (2.8)
obtained when an IMM method is applied to the linear test equation (2.7)
for ordinary differential equations. Since Re A £ 0, the resulting
scheme is unconditionally stable since we have assumed that the original
LMM {s A-stable. We note that for an unfactored scheme with u" assumed
to be spatially continuous, an equivalent way of obtaining the character-
istic equation (5.3a) would be to apply an LMM directly to the ODE (4.3)
satisfied by the Fourier coefficient.

For the factored scheme (3.3) where Lx and 1. are defined by
(5.1), we again assume a solution of the form (5.2) and obtain the

following characteristic equation for the amplification factor:

(Xl + Xz)At
1 + 0w At XIAZ
where
(5.5b) A, = -jc x, - ax 2 A, = ~jc.x, - ¢ 2
: 1 ‘1“1 LY ) €22 7 %2
14
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with

Re Al s Re A, S0 .

2

On comparing (5.3) and (5.5) we see that A = A+ Az has been replaced

N I

Al + Az ‘§
(5.6) XAF - 1+ w2 Atz Alxz . %
The product term in the denominator is a direct result of the approximate %

factorization (AF) and hence we call this "eigenvalue" AAF' A sufficient

condition for the factored scheme to be unconditionally stable is

Re AAF S 0 which follows directly from the following lemma:

fasd,

Mot ?
(5.7) Re X,, Re A SO:%Re—-———-—— <0 e
1 2 2 i

% S
W E

L3

for arbitrary real a.

=

W § TS R ek e U 2P 80 8

iy

PROOF. Recall for an arbitrary complex number =z that if Re z £ O,

then Re z.1 < 0. Then, by noting that
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the lemma obviously follows. (]
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In the above analysis we assumed that spatial derivatives were
continuous. It remains to consider the spatially discrete case. We

o conside. tiw case where the spatial derivatives in (5.1) are replaced

by three-point central difference quotients:

a—q = —J——_—j———“ +l - -1 2 =
(5.8)
p— 9—2-2 - uj+l ~ 2uj * uj l + O(sz)
2 2
X j Ax

with analogous expressions for the y~derivatives. The stability

analysis g roceeds as in the spatially continuous case with the exception
that the exponential in (5.2) is replaced by

i(Klex+K

kay)
- (5.9) ul= vt e 2

vhere x = j 8x, y = k Ay. 1f we make the following correspondence

2 sin(6,/2) 2 sin(OZ/Z)
(5.10) K1<— —_— x:2<-—————-—-—-—Ay ’
L
o C) -— cos(61/2) » Copa— Cy cos(82/2) ’

a

where

Gl-ule , 82='<2Ay

between the parar :c¢'s for the discrete and continuous case, then the

eigenvalue (S..0) has the same form for both the continuous and the

16
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discrete case. Recall for the spatially continuous case that Re A £ 0
for arbitrary real values of Cy1CgaKy 0Ky and hence the discretization
does not change the essential property for A-stability that Re X 5 O,
Likewise, for the factored algorithm (3.3) with discrete spatial deriva-
tive approximations, one obtains by using the correspondence (5.10) the
same characteristic equation (5.5) as for the spatially continuous case
and again the algorithm is unconditionally stable.

In this section we considered the stability of the factored scheme
(3.3) when applied to the linear test equation (4.1) with the mixed
derivative buxy set to zero. In appendix A we prove that if the mixed
derivative is treated explicitly, then the resulting factored scheme is
unconditionally stable. The particular explicit method considered in
appendix A has the defect that the resulting scheme is first-order
accurate in time for the mixed derivative. Beam and Warming [2] showed
that it was possible to construct an unconditionally stable two-step
scheme where the mixed derivative is second-order time accurate by using
linear extrapolation. However, the characteristic equation for the
amplification factor did not have the form (5.5a); and the stability
analysis did not include the convective terms c¢.,u_ and ¢

1%x 2%

6. Extension to three spatial dimensions.

In three spatial dimensions, an obvious generalization of the

two-dimensional approximate factorization scheme (3.3) is
n
(1 - wAt Lx)(I - wit Ly)(I - wit LZ)Q(E)u -
n
- W +
(6.1) At{o(E) m(E)](Lx Ly + Lz)u

17




For three spatial dimensions a linear test equation (without mixed

derivatives) is

2 2 2
Ju Ju Ju Ju o u 3 u )

(6.2) —f e, =+, —+C, g =t g ~—4¢gq —
at 1 ax 2 dy 3 9z 1 3x2 2 ayz 3 322

where the coefficients ¢, are arbitrary real numbers and az 2 0.

1f the approximate factorization scheme (6.1) is applied to the test

equation (6.2), one obtains the following characteristic equation for

the amplification factor:

(6.3a) o(g) - AAF ot o(z) =0 ,
where
Xl + AZ + A3
(6.3b) A= 72 33
1+ 0w At (Alkz + A2A3 + ABAI) - w” At AIAZAB

and

A = -ic k. -~ a .« 2 Re X, £ 0

L £ 2 L2 ’ £ *

The lemma (5.6) of the previous section does not extend to three

dimensions for arbitrary values of Al with Re At < 0. We consider

two special cases. If AE is pure real, i.e., Az = —almzz, then the
denominator of (6.3b) is positive and, consequently, Re AAF = XAF <0
and the scheme is unconditionally stable., If xg is pure imaginary,

i.e., AQ = —iCQKQ’ then AAF has the form

R LA
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(6.(‘) A N ce—ce—
a, + 182

where

81 = —(clx1 + € Ky + C3K3) . :
33 £
82 -w At €84 KoKg s ‘
a, =1 - wz At2(c C.K.Ka + 2,C.K.Ka + C.C. KK f
2 172"17°2 ° "273°2°3 371731 ' .
The region of stability for a typical A-stable LMM is illustrated in ,§
figure 1. For given values of cl,cz,c3, one can always pick wave %ﬁ
:-;'!:,3
numbers K 2KpsKq such that AAF At as defined by (6.4, has a positive i3
5. 4
o
real part and falls in the unstable "hole" of figure 1. Consequently, ?%’
for pure imaginary eigenvalues (al = 0), the unconditional stability of the g?
three-dimensional factored algorithm for the model equation (6.2) is not gf
retained. ié.
:‘j .
7. A-stable linear two-step methods. Ly

Since the order of an A-stable LMM cannot exceed two, one- and two-
step schemes are of primary interest. The addition of more steps or
time levels complicates the numerical scheme and generally increases

. comp..ter storage requirements with no attendant increase in accuracy.

The most general consistent two-step method [i.e., k = 2 in (2.2)] can

be written as

19
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n+2 n+l

(7.1) 1+ §)u

- (1 + 28)u + Eun -

dc

n+2 n+l n
At[% §§ +(1-6+4¢) %f - o ] -e"

where the parameters 6,£,¢ are arbitrary real numbers and en js the

local truncation error

(7.2) e = (¢ - & +8 - -%)Atz d u + 0(At3)

determined by a Taylor series expansion about t = n At, The class of
all two-step methods that are at least second-order accurate is obtained

by setting the coefficient of d2u/dt2 in (7.2) to zero,

(7.3) b =E -0 +43

2

in which case the local truncation error is

3 In
) -‘%— d “,3 + 0(.\tl')
dt

(7.4) e = (20 - £ -

o

If &L =¢ =0 in (7.1), we obtain the linear one-step method (which is

a subclass of the two-step method),

n+l n
n+l n du du n
- -/ ) —— - 0 — - .
(7.5) u u ’\L[( it + (1 8) dt] e

where we have shifted the time index down bv one. This scheme is
sometimes called the ¢-method. If ¢ = 1/2, we obtain the trapezoidal

formula (2.10), which is the only second-order-accurate one-step method,

20

kit it i O e e miame i R .

LR TR

e

Bowae TP

™

TRt KLy Sl gl

Y AT
AT

T,

——

e AT A

Leas

Bop?



Because the trapezoidal formula has the smallest truncation error
of all A-stable LMMs [8], one might ask why we bother to consider the
class of A-stable linear two-step schemes. Unfortunately, the trapezoidal
formula has the property that the characteristic root ¢ + -1 as
A At + =, Consequently, when applied to stiff ordinary differential
equations, the trapezoidal formula can produce slowly decaying numerical
oscillations. When the trapezoidal formula is applied to hyperbolic
partial differential equations where central spatial difference approxi-
mations are used, the resulting algorithr is neutrally stable, i.e.,
the eigenvaiues of the amplification matrix have unit modulus. If the
solution is nonsmooth by virtue of the presence of shock waves, shear
layers, etc., the resulting solution can exhibit highly oscillatory
errors. In both of these applications, the oscillatory errors can be
damped by a filtering procedure (18] or by the addition of dissipative
terms in the case of hyperbolic equations [1,2]. An alternative to
using the trapezoidal rule with smoothing is to use a "nonsymmetric"
A-stable scheme such as the second-order backward differentiation
formula [(7.1) with 6 = 1, £ = 1/2, ¢ = 0]. Nevanlinna and Liniger [23)
have recently suggested contractive methods for problems with nonsmooth
solutions or where the lack of smoothness is introduced by rapidly
varying integration step sizes. A particular example is a method called
the contractive Adams method [23] [(7.1) with 0 = 3/4, £ = 0, ¢ = -1/4].

An elegant and simple test for A~stability can be formulated in
terrs of positive real functions. This terminology is borrowed from the
literature of electrical engineering (see, e.g., [16], page 409).

Dahlquist [9) has recently extended the theory of positive real functions
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and considered applications to stability problems arising in numerical

analysis. By applying this theory, it is easy to show that the linear

e two-step method (7.1) is A-atable if and only if the parameters (9,£,4)
satisfy the following inequalities:

02 ¢ +1/2

*

(7.6) L2-1/22

A

£SO+ ¢~ 1/2

ad
4 The details of the analvsis for obtaining these inequalities ave
described in [3].
In particular we are interested in the class of all A-stable methods p
2]
that are second-order accurate as determined by the condition (7.13).
¥
In this case two parameters (%,5) remain and the {nequalities (7.8) |§
- defining the A-stable schemes become ae
b
- o . . &
(7.7) g2 -1 , L3 -=102 W
N
Eg The shaded region of figure 2 shows the range of the parameters (0,00 ;
2 tor which this class of methods {8 A-stable.  Liniger [J0] devised a 5
)
3 sufficient and "almost necessary” condition for A-stability ot LMMs. %‘
; , _ e
.% As an application of the criterion he developed, Lintger determined the -
3 canstrafnts for A-stability on the patameters that Jdeline the familv of sﬁ
% ¢
% all Dinear two=step schemes that are at least second-ovder acocurate. *&
g & Lt
'§ The shaded domain of tigure 2 reproduces the result determined by
:
1
1

Liniger, (Qur pavameterization of the two-step methods Jditters trom

Liniger but it {s casv o mare the proper correspondence,)

[
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In numerical algorithms for partial differential equations it is

conventional to use n + 1 as the most advanced time level. Hence we

multiply the linear two-step scheme (7.1) by the shift operator E-l

to
obtain
-1 -1 du”
(7.8) E p(E)un = At E "o(E) it
where
(7.9) E () = (1+ &) - g7 ,
(7.10) Elo(E) = 1+ 68 + ov ,

where A and V are classical forward and backward difference operators

defined by

(7.11) " = un+1 - " n-1

n n
y Vu = u ~uy

As a notational simplification we denote E-lp(E) by the operator A:

m® = E LB = [(1 + £)a - £7]u®

(7.12) n+l

= (1 + €)u - (1 + 2£)un + Eun-l

= A" + Eézun .
where 62 is the second-central difference operator

2 n n+l n~-1
S u

n
= 4 - 2u +u

The class of A-stable, two-step, second-order methods (see figure 2)

is quite large. Certain subclasses offer particular advantages in regard
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i to computer storage, numerical dissipation, etc. As an example we
D | consider one special subclass that has a particularly simple computational
‘= form. Let (6.1) be an ADI scheme where the time differencing is the
two-step method (7.1). 1In this particular case w = lecx2 = §/(1 + ¢).
Multiply (6.1) by E-l to conform to the convention that the most
advanced time level is n + 1. The computational algorithm is simplified . !
when the difference operator in the brackets on cthe right-hand side of
PR
- (6.1) is the identity operator. Since from (7.9) and (7.10)
(7.13) E o) - wo(E)] = 1 + (¢ + 3—?5'—.»)‘7
this becomes the identity operator if
BE
(7.14) b+ T 0 .
? For the class of second-order methods, (¢,5,¢) are related by (7.3) and 4
' hence (7.14) can be written in terms of (0,§{) as
? (7.15) 8 = (L + 1)(5 +1/2)
R

This curve is shown in figure 2 as a dashed linc. With the notation

(7.12) and the condition \7.14), which reduces (7.13) to the identity

operator, the factored scheme (6.1) becomes

n
(7.16) (I - Wit Lx)(I - wit Ly)(l - Wit Lz)Au =

Ar(L + L+ Lt
X v z

where w = ¢/(1 + £).

r
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8. An ADI scheme for the heat equation in three dimensions,

To 1llustrate the results cf the preceding sections we write out

an ADI scheme for the linear heat equation

RN d u 3 u Y
(8.1) = = a, — +a,—s +a, "— ,
3t 1 ax“ 2 3y2 3 322

where a, 2 0. The scheme considered will be for the class of second-
order A-stable schemes represented by the portion of the curve
8= (£ + 1)(E + 1/2) of figure 2 in the shaded region. When appliea to

the heat equation (8.1), the factored algorithm {(7.16) is

32 82 2 n
(8.2) 1 - wit al —-})(1 - wAt 32 -3 1 - Wit a3 -——5>A =
ax y dz

An obvious implementation of (B8.2) is

52 2 2
: 3"\ n
™ \t(al-—‘—z-baq-—-z+33 s,
IX Iy dz

32 *k *
(8.3h) 1 - wdt a, —sjlu = 1tu
Sy’

)
3 n kx
3 ,)Au = Au R
RF
n n-1

+
(8.3d) A+ O™ =™ s 200" - cu

,JI,,

(8- 33) (1 - Wit 8

(8.3¢) (1 - wAt a
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* *k
where w = 08/(1 +&) =€+ 1/2 and Au and Au are dummy variables.
If the space derivatives az/axz, etc., are approximated by central
difference quotients, then the x-, y~, 2z-operators on the left side of

(9.3a,b,c) each require the solution of a tridiagonal system. There is

a well-known and highly efficient algorithm for the solution of tridiagonal

systems (see, e.g. [17, page 55]). The final step (8.3d) is to compute the

+ n
solution o 1 from known values of Au , u® and u"

9. Reduced stability boundary for an alternative formulation.

It has been demonstrated that an approximate factorization scheme
for the model equation (4.1) can be constructed that is unconditionally
stable if the time differencing is bused on an A-stable LMM. In this
section we show that an alternative formulation leads to a reduced

stability range.

Here we con ‘der only the hyperbolic model equation

Ju du Ju
(9.1) 3t + I + <,y 3y 0

and the linear two-step scheme (7.1). After multiplying (7.1) by E_l,

one can rewrite the two-step scheme (7.1) as (7.8):

n
du
L

(9.2) [(1+ £)d - ev]u” = at{l + 0a + g,

where A and V are forward and backward difference operators defined
by (7.11). The operator on the left-hand side of (9.2) is A\ = E—lo(E)

as defined by (7.12). As formulated in section 3, the unknown variable
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to be computed is M". In this section we alter the procedure and
take Au" as the unknown variable.
If the time derivative on the right-hand side of (9.2) is replaced

by spatial derivatives from (9.1) there follows

8 At 9 ] n
6.9 [ PR L ..)] .

At 9 9\ n ¢ At 9 Sl.n
1+ £(c1 5% T C2 ay)“ 1+ E(Cl ax T 2 3y

An approximate factorization of the left-hand side of (9.3) yields

(9.4) (1 + Te—;‘l% N a—i)(l + IQTME ¢, %)Aun = RHS(9.3) ,

where RHS (9.3) denotes the right-hand side of (9.3). In appendix B

we analyze the stability of the factored scheme (9.4). For the class

of all two-step methods (9.2) that are at least second-order accurate,

the parameters (8,£,¢) are related by (7.3). For this class of methods,
the parameter space (8,f) for which the factored scheme (9.4) is
unconditionally stable is shown by the shaded region of figure 3. The
wedge shaped region to the "right'" of the dotted lines shows the parameter
space for which the LMM scheme (7.1) with condition (7.3) is A-stable
(this region coincides with the shaded region of figure 2). Consequently,
a fairly large class of factored schemes that are unconditionally

stable according to the formulation of section 3 are not unconditionally
stable if the unknown variable is taken to be au"  rather than

E-lo(E)un = Aun. We should ncte that the Aun and the A" formulations
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are identical for the subclass of two-step schemes where £ = 0, since
in this special case A" = Aun. as is obvious from (7.12).

The simplest computational version of (9.4) is the variant where
¢ = 0. In this case (7.3) becomes & = 6 - 1/2 and this subclass of
schemes was considered in [2] and [25]. The line ¢ = 6 - 1/2 is shown
in figure 3 and falls in the region of unconditionally stable schemes for
8 2 1/2.

The reduced stability range illustrated in figure 3 results from
applying the linear two-step method (9.2) to the model hyperbolic
equation (9.1) and taking A" to be the unknown variable. If we had

followed exactly the same procedure for the parabolic model equation

Jdu 32u 32u
T TaTte TS
ax y

the resulting approximate factorization scheme in the A" variable
would not have resulted in a reduced stability range in the parameter
space (98,£). The example of this section and the result of section 6
for three spatial dimensions show that maintaining unconditional stability
of approximate factorization schemes is more difficult for hvperbolic

equations than for parabolic equations.

10. The relation between the Douglas-Gunn method and the method of

approximate factorization.

A general procedure for devising ADI schemes from fully implicit
schemes for parabolic equations and the second-order wave equation was

developed by Douglas and Gunn [12]. In this section we briefly discuss

28

R

-2

T g

Wz nF ™

RITEIR VI ) is SO

e

M X0 "
A Mg gy vr T

af

v

gk p

f‘ "'\J
~p, e



the relation between the method of Douglas and Gunn and the method of
approximate factorization as formulated in section 3.

Linear one-step .cthods [defined by (7.5)] are called two-level
difference schemes by Douglas and Gunn. For linear one-step methods,

the operator p(E)un is simply the forward difference operator

(10.1) p(E)un - A" - un+1 - "

A method where the increment p(E)u" = au"  1s taken to be the unknown
variable (rather than un+l) is sometimes said to be in the "delta" form.
For a linear one-step method, the time-differencing method for the ADI
scheme (8.3) with £ = 0 corresponds to the trapezoidal formula (2.10).
In this special case, the scheme (8.3) for the heat equation is equivalent
to the Douglas-Gunn scheme and to a scheme given earlier and independently
by Brian [4] and Douglas [1l]. The form that Douglas and Gunn recommend
for machine computation (see (2.7) of [12]) is not in the delta form,
but it can easily be rewritten in delta form. The delta form generally
leads to the most efficient computational algorithm.

To simplify the comparison of the Douglas-Gunn scheme and the
formulation of this paper for linear multistep methods, we consider two-
step methods. The role of the operator A" defined by (7.12) is taken

in the Douglas-Gunn formulation ([12], page 441) by

n+l n+l
(10.2a) (Rattac) IS
where
nt+l n n-1
(10.2b) u, ¢0u + ¢1u
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and

(10.2¢) ¢0 + 01 =1 .

Here u:+l is a prediction of un+1 based on u" and un-l. The choice

of (¢o,¢l) is ambiguous unless some condition in addition to (10.2c) is
imposed. The interested reader should refer to the discussion by
Douglas and Gunn.

In the frrmulation of this paper, the variable to be determined

. -1 n n+l .

from the scheme is E "p(E)u rather than u ~. It is obvious from (2.5)
that p(E)u” must be an approximation to At 3u/3t for any consistent
scheme. Choosing E-lo(E)un as the unknown variable is equivalent to

imposing the condition

n
(10.3) ST B ey o(at?)

in the Douglas-Gunn method. The normalization factor (1 + &)-1 results
from the parameterization chosen for the two-step method, as can be seen
by comparing (7.12) and (10.2). By imposing (10.3) and using (10.2b),

we obtain (10.2c) and, in addition,

(10.4) 6, + 28, =

Hence

Faal

- 1t 28 - -

[
—
+

o
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Consequently, if one applies a linear two-step scheme [with the param-

eterization (7.1)] to the heat equation (9.1) and uses the Douglas-Gunn 1

method with (00,01) determined by (10.5), then the resulting algorithm ;
will be equivalent to (8.3). Since condition (10.3) is not part of the ;
Douglas-Gunn formulation, the scheme (8.3) will not, in general, f
. coincide with the Douglas-Gunn method. It is obvious that if the }3‘
constants (¢o.¢1) are determined by (10.5), then u:+1 will depend on %
the particular time differencing method chosen. '?
We should mention that since Douglas and Gunn did not include .{
first-order hyperbolic equations in their formulation, we are demanding ;;
a more stringent stability condition (namely A-stability) than one would %%
require if the eigenvalue [see (4.3b)] were pure real. In the latter %g

R

case, A = AR £0 and Ao-stability is sufficient for unconditional

ot b
LEIRANT

LS

stability. Ao-stability means that the region of stability (see
section 2) contains only the interval (~e ,0] rather than the entire
left-half plane as required for A-stability. (See also last paragraph

of section 9.)

11. Concluding remarks and summary.

In this paper we have combined A-stable LMMs and approximate

T A VLA AT

factorization to construct unconditionally stable ADI schemes for partial
’ differential equations with both convection (hyperbolic) and diffusion
(parabolic) terms. Linear stability analysis for multilevel partial
difference equations is usually very difficult. The stability of a
rarticular scheme is determined by *he location of the roots of the

characteristic polynomial relative to the unit circle in the complex
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plane. There are tests such as the Schur-Cohn criterion to determine
when the roots of the characteristic polynomial have modulus less than
or equal to unity (see, e.g., [21,22]). However, it is often difficult
in practice to apply these tests because of the complicated nature of
the coefficients (generally complex) of the characteristic polynomial.
(See appendix B for the complexity involved for a simple model problem.)
We have circumvented this difficulty by constructing a class of ADI
schemes such that a sufficient condition for unconditional stability
(A-stability) is maintained in the step by step development of the
scheme.

The approach is summarized as follows. An A-stable ILMM is chosen
as the basic time differencing scheme. Next, one discretizes in time
but not in space and applies the LMM method tv a (model) linear PDE (4.1).
The resulting (space continuous) scheme retains the A-stable property
since the requirement that the real part of the eigenvalue (4.3b) be
nonpositive is the parabolicity condition for the PDE. The ensuing

approximations in the construction of an ADI scheme are such that the

real part of the "eigenvalue" remains nonpositive. The implicit operator
to be inverted is constructed so that the unknown variable to be ﬁ
determined is p(E)un. This ensures that the approximate factorization
does unot upset either the temporal accuracy (second-order) or the §

stability of the scheme [by lemma (5.7)]. Finallv, one notes that

"

(central) spatial discretizations do not alter the essential property
for A~stability, i.e., the real part of the eigenvalue is nonpositive.
Since our main emphasis in this paper is linear stability theory,

we have considered only model equations. In a companion paper {3],

32
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we apply the method outlined in section 3 to derive an ADI algorithm
for a mixed hyperbolic-parabolic system of nonlinear equations where
the time differencing is the class of A-stable linear two-step methods.
Earlier references on the development of noniterative ADI schemes for
nonlinear systems of partial differential equations are listed in the

introduction.
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Appendix A. Stability analysis when model equation includes a mixed

spatial derivative.

In the stability analysis of section 5 we assumed that the mixed
derivative term buxy of the model equation (4.1) was zero. In this
appendix we show that if the mixed derivative is treated explicitly by
a first-order method, then the resulting ADI scheme remains uncondition~
ally stable. An explicit treatment of the mixed derivative means that
buxy does not appear on the left-hand side of the factored scheme (3.3)
but does appear on the right-hand side. Let the mixed derivative be

appended to (3.3) as follows:

(A1) (1 - wat L )(L ~ wht Ly)o(E)un =

2
A n
- + + b ———
At[o(E) wp(E)](;x Ly b axay)u .

12

where Lx and Ly are defined by (5.1).

By following the same stability analysis that led to characteristic

equation (5.5a), we obtain s

(A2a) p(&) = A, At o(2) =0 )
where AAF is now defined by

Al + \g - hulﬁz .
(a20) KAF ) 1+ mzArz Al\z - wit bxlxz

and Al and AZ are defined by (5.5b) and b {s the coefficient of

u in the partial differential equation. A sufficient condition for
Ry

34
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unconditional stability is that the Re AAF € 0. Since AAF has the
form
ol + iBl
. (A3) A, = ,
AF a, + 182
Re AAF € 0 if and only if
(A4) aja, + 8182 <0 .

By a direct calculation we find

2 2 2
@, a, + 8182 = -(avcl + bxlxz + Ky )(acw - by + l)

- wzvclzxzz(cclz - bc1c2 + aczz) s

where ¢ = w At K1Kg+ The quadratic forms

ax + bx,xk, + cK

and

2
cc1 - bclc2 + ac?

)
are nonnegative if and only {f a,c 2 0 and b~ € 4ac, which % the
parabolicity condition for the PDE. (If equality holds the equation is

hyperbolic.,) Likewise, the quadratic

acwz - by +1
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is nonnegative if and only if b2 S 4ac., Consequently, Re AAF £ 0 and

the ADI scheme with the mixed derivative term treated explicitly is

unconditionally stable. The above analysis is for the spatially

continuous case. However, in the spatially discrete case, A

will also

have the same form as (A2) and thus the spatially discrete ADI scheme

will be unconditionally stable.

It is very interesting to observe that if one treats the mixed

derivative term explicitly but does not use a factored scheme, the

product term wz Atz A

1A2 would be missing from the denominator of (A2b).

In this case one can always pick wave numbers K oK so that the

2

denominator is negative, and then Re A > 0. Consequently, the

AF

unfactored scheme is not unconditionally stable.

Finally, we should point out that if the cross derivative term is

treated explicitly as above, then the resulting scheme is first-order

accurate in time for the mixed derivative. (See last paragraph of

section 5.)
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Appendix B. Stability analysis for an alternative formulation.

In this appendix we carry out a linear stability analysis for the i
factored scheme (9.4). We assume a solution of the form (5.2) and find x
that the Fourier coefficient satisfies %
. 7
H
(Bl) (1 +13)(L + 15,)8v" = = 3 (13, + 15 )v" ;
. 1 2 8 1 2 g
% - n-1 £ n-1 ;
5 [icl + iCZ]AV + I—i—g av .

where we have defined ‘

- 0 At - At
(BZ) o = K, C ¢ ————

and used the identity
(B3) w' = Avn_1

From (Bl) it follows that the amplification factor defined by (5.4)

satisfies the quadratic equation

2
(84) a0 +aL+a =0,

where

-
"

te

(1 + i._-l)(l + i:l) .

- .- L, 2Y ic >
(BS) a) ==+ DA+ 5y +(3 +2)ad, + i) -
. = -2 (4o < S S,

g = -3 Uep + i) + 137
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The characteristic equation (B4) with coefficients (BS) cannot be put

in the form (5.3a) and, conacquentlv, we must use some other method of

determining when the modulus of the roots of (B4) are bounded by unity.

Here we use the Schur-Cohn criterion [21] as formulated by Miller [22;.
The polynomial (B4) is a von Ncumann polynomial [22], that is,

|z| €1, if and only if either

(B6a) 8) = agag = a8, < 0

and

(B6b) . A, = (a,.a -.1,3,)2— (i.a - aa)(a,a, - a.a) 0
2 00 272 271 01 271 01

or

(B6c) By =8y =0 , 4aya, - aa 20

Substitution of the coefficients (B5) into (B6a,b) yields, after some

algebraic manipulations,

2 2 2
- 32 2,9 == o2 - 2-2
(B7) Al £ -1 - <1 - 2)(:1 2 7 €16 + (1 ‘2)<2 + ¢ < .
8 6 ¢
38
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(B8) 8, = 5 (L +E)[(26 + 2¢ ~ 1) - £E(26 + 2¢ + 1))

2
+ (20 + 20 - 1)212622 + (e—‘g-i) (20 - 24 - 1)312

2
+ 2[E - (20 + 26 - 1) + (9—;-‘2) (20 - 2¢ - 1)]2152

+ (?—%—2)2(29 ~2¢ - 1)522 ,

where £ = £/(1 + £). For the class of all two-step methods (9.2) that

are at least second-order accurate, the parameters (6,£,¢) are related

by (7.3). For this class of methods we want to determine the parameter

space (8,£) for which the factored scheme (9.4) is unconditionally stable.
First, we consider the conditions under which Az as given by (B8)

is nonnegative. Using (7.3) we find that the expression enclosed in

the first pair of brackets within the braces of (B8) is zero., The

coefficient of ¢, ¢

1 1s nonnegative if and only if

2

(B9) £20

The remaining toras within the braces constitute a quadratic form

¥

(B10) AElz + 33122 + cézz ,
- ’ which is nonnegative if and only if
' (Blla,b,c) az0 , c20 , B2 <uAc
4 The first two inequalities (Blla,b) require
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(B12s) E<20-1 .

Necessary and sufficient conditions for the third inequality (Bllc)

are
(B13a) 02 (1+ s)[u +20)-Ja+2000 + e:)]/c :
(B13b) 8BS (1+ g)[?1 +20) + 4@ +20)Q + 5)]/5
for £ 2 0.
Formula (37) for Al can be rewritten as the sum of two quadratic forms:
- - - - \2 - 2 - - -2
A1 = -[;1 + dzclc2 + (clcz) + d3cl + dl‘clc2 + d3c2 ] ,
where

2 2
v dy=1- (%)

Necessary and sufficient conditions to satisfy A

=1 - g2 = -2
a4 =1-% . 4, +4q z(e)

1< 0 are less
restrictive than conditions (B9) and (Bl3a,b), as the interested reader
can verify. Hence, the region of unconditional stability is defined by

the inequalities (B9) and (B13) and is indicated by the shaded region

of figure 3 of the text.
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