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AN EXTENSION OF A-STABILITY TO ALTERNATING 

DIRECTION IMPLICIT METHODS* 

R.F. WARHINC AND RICHARD M. BEAM 

Abstract. 

Completely implicit, noniterative, finite-difference schemes have 

recently been developed by several authors for nonlinear, multidimensional 

systems of hyperbolic and mixed hyperbolic-parabolic partial differential 

equations. The method of Douglas and Gunn or the method of approximate 

factorization can be used to reduce the computational problem to a 

sequence of one-dimensional or alternating direction implicit (ADI) steps. 

Since the eigenvalues of partial differential equations (for example, 

the equations of compressible fluid dynamics) are often widely distrib- 

uted with large imaginary parts, A-stable integration formulas provide 

ideal time-differencing approximations. In this paper it is shown that 

if an A-stable linear multistep method is used to integrate a mcdel two- 

dimensional hyperbolic-parabolic partial differential equation, then one 

can always construct an AD1 scheme by the method of approximate factori- 

zation which is also A-stable, i.e., unconditionally stable. A more 

restrictive result is glven for three spatial dimensions. Since necessary 

* 
The main results of this paper were presented at the STAM National 

Meeting, Madison, Wis., May 24 to 76 ,  1978, and section 9 was part of a 

presentation at the 751st Meeting of the American Plathematical Society, 

San Luis Obispo, California, Nov. 11 to 12, 1977. 



and sufficient conditions for A-etability can easily be determined by 

using the theory of positive real functions, the stability analysis of the 

factored partial difference equations is reduced to a simple algebraic 

test. 



1. Introduction. 

Alternating direct ion implicit (ADI) methods for parabolic equat lone 

were originated by Douglas [lo] and Peaceman and Rachford [24]. A general 

procedure for constructing AD1 schemes for multidimensional parabolic 

equations and the second-order wave equation was devised by Douglas and 

Gunn [12]. An AD1 method for first-order linear hyperbolic systems in 

two space dimensions was constructed by Gourley and Mitchell [15]. 

Recently, completely implicit, noniterative, flnite-difference 

schemes have been developed by several authors for nonlinear, multi- 

dimensional systems of hyperbolic [1,25] and mixed hyperbolic-parabolic 

[2,5,6,19,25] partial differential equations. Lindemuth and Killeen 

formulated their AD1 scheme by following the Douglas, Peaceman-Rachford 

procedure, Briley and MacDonald devised their AD1 algorithm by a formal 

application of the Douglas-Gunn procedure, while Beam and Warming 

constructed an AD1 method by using approximate factorization. 

The linear stability analysis for the algorithms applied to systems 

of hyperbolic-parabolic equations is in a very rudimentary state. The 

primary reason is that the operators involved do not commute. In addition, 

the stability analysis of schemes for mixed hyperbolic-parabolic equations 

is generally more difficult than the analysis for either type treated 

separately. This is particularly true for schemes using more than two 

time levels. In fact, we are aware of only one stability proof for a 

multistep AD1 scheme applied to a model equation with both convection 

(hyperbolic) and diffusion (parabolic) terms [ 7 ] .  

The eigenvalues associated with a mixed hyperbolic-parabolic system 

( f t \ r  r ~ x ~ \ m ) \ l t ~ ,  t tic* ~ * c l r i i r t  lons of compress l hlc flu! ti d v n , ~ m i c e )  ure of ten 
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spectrum cannot be bounded away from the imaginary axir, A-atable linear 

multistep integration formulas provide ideal time-differencing approxi- 

metions (For the definizion of A-stable methods, see, e.g., [8,14] or 

section 2.) Although the temporal accuracy of an A-stable linear multi- 

step method (LHM) cannot exceed two (81, this is compatible with the 

accuracy achievable with typical AD1 schemes, 

The purpose of this paper is to show that if one uses an A-stable 

LMM to integrate an evolutionary partial differential equation (PDE) of 

the form 

where 
=x 

and L are linear scalar differential operators, then one 
Y 

can always construct an AD1 scheme by the method of approximate factori- 

zation which is also A-stable, i.e., unco~ditionally stable. Since 

necessary and sufficient conditions for the A-stability of an LMM can easily 

be determined by applying the theory of positive real functions ( 9 1 ,  the 

stability analysis of the factored partial difference equations is 

reduced to a simple algebraic test. Our most general result is for two 

spatial dimensions with a more restrictive result for three spatial 

dimensions. We should add that the stability ~nalpsis is for simple 

linear test equations and we have not dealt with noncommuting operators. 

In section 2 we briefly review the theory of linear multistep 

methods. In section 3 we describe a method of constructing an AD1 

method by starting with a linear multistep method and then using the 

method of approximate factorization. A linear (model) test equation for 

partial differential equations is defined (section 4 )  and then used to 



analyze the rtabi lity of rpproxlputu frc toritation rchemor (rection 5) .  

The natural extension of approximrite factorisation method6 to three 

spatial dimenrions is discussed in section 6. In section 7 we examine 

in detr'l the family of A-stable linear two-step methods. To illustrate 

the notions of this paper, we write out an AD1 method for the three- 

dimensional heat equation (~ection 8). Section 9 contains an illustration 

cf a reduced stability range for an approximate factorization formulation 

which does not follow the formulation oC section 3. The connection 

between chis paper and the classic paper on AD1 methods by Douglas and 

Gunn [12] is discussed In section 10. The final section includes a 

summary of the approximate factorization approach described in this 

paper. 

2. Preliminaries: A review of linear multistep methods (LMM) and 

A linear k-step method for integrating the first-order ordinary 

differential equation 

is defined by 

where A t  1s the step size ( t  - nAt), the coefficier~ts n and B 
j j 

are real constants with ak $ 0 and not both L I ~  and BO are zero. 



The r t h o d  i n  sa id  t o  be o x p l i c i t  i f  B k =  0 and imp l i c i t  o thamis@.  

Conaiatoncy and n o r u l i a a t i o n  a r e  exprasead by the  r e l a t i one  

It is convenient t o  assoc ia te  with ( 2 . 2 )  the polynominls 

Conscqu~ntly the I N 4  ( 2 . 2 )  can be rewr i t ten  as 

n du" 
p ( E ) u  = A t  o ( E ) z  B 

where the s h i f t  operator  E  is  defined by 

Linear s t n b l l i t y  of an LMM is nnalyzed by upplying ( 2  to the 

l inear  t e s t  equet ion 



i r  a complex constant. Lf one aosumas a solution of the form un = r;'l 

(t t o  the nth power), there follows the characteristic equation 

where the polynomials p and are defined by (2.4). The stability 

region of an LMM consists of those values of X At for which the 

characteristic equation (2.8) satisfies the root condition, i. e . ,  its 

roots 6 satisfy 1 C~ 1 S 1 and the roots of unit modulus are simple. e 
An LMM is said to be A-otable if its stability region contains all 

of the left half of the complex 1 At plane including the imaginary axis 

(Dahlquist [ 8 ] ) .  Since the linear test equation (2.7) has a bounded solu- 

tion if and only if Re X I 0, the notion of A-stability is equivalent to 

stability of ODE stability of LMM 

where ODE denotes ordinary differential equation. Dahlquist 18) proved 

that the order of accuracy of an A-stable LMM cannot exceed two and that 

an A-stable method must be implicit. In addition, he showed that the 

trapezoidal formula 

has the smallest truncation error of all the A-stable LMMs. 

The advantage of an A-stable LMM is that the stability of the ODE 

is a sufficient condition for the unconditional stability (i.e., stability 

for an arbitrary value of At) of the LMM. In this paper we extend the 

notion of A-stability to LMM methods applied to partial differential 



equa t ions  (PDEs). The numerical  scheme i e  cons t ruc ted  s o  t h a t  approxi-  

mate s p a t i a l  f a c t o r i n g  i n t o  a product  of one-dimensional o p e r a t o r s  

r e t a i n s  t h e  A-stable proper ty:  

(2.11) s t a b i l i t y  of PDE s t a b i l i t y  of f a c t o r e d  LMM . 

The p r e c i s e  meaning of a f a c t o r e d  method w i l l  be c l a r i f i e d  i n  t h e  

fol lowing s e c t  ion.  

3. Construct ion of an  AD1 scheme us ing  an LMM and approximate - 
f a c t o r i z a t i o n .  

For t h e  development t h a t  fo l lows ,  a convenient form of t h e  LMM (2 .5 )  

where 

Henceforth we consider  only  A-stable LMMs and assume t h a t  (3 .1)  is  

A-stable.  Since t h e  o rder  of accuracy of an A-stable LhiM cannot exceed 

two, we concen t ra te  i n  t h i s  paper on the  second-order schemes a s  

3 
i n d i c a t e d  by t h e  symbol O(At ) on t h e  right-hand s i d e  of (3 .1) .  The 

parameter o is  def ined so  t h a t  the  opera to r  a(E) - wp(E) on t h e  

right-hand s i d e  of (3.1) i s  a t  l e a s t  one degree lower than the  opera to r  

p(E) on the  lef t -hand s i d e .  This i s  obvious by no t ing  t h a t  



and hence 

Consequently, the right-hand side of (3.1) can be computed explicitly 

from known data when advancing the numerical solution from n + k - 1 
to n + k. 

Insertion of the linear PDE (1.1) into (3.1) yields 

Here, for simplicity, we have assumed that the linear operators L and 
X 

L are independent of time although the case of time-dependent andlor 
Y 
nonlinear coefficients can he handled without difficulty [3]. It is 

n important to note that the unknown variable to be computed is p(E)u 

and not u"+~. This choice ensures that the approximate factorization 

does not upset either the temporal accuracy of the scheme (see below) or 

the unconditional stability (section 5 ) .  

If the spatial operators Lx and L are approximated by 
Y 

app~opriate difference quotients, one obtains, in general, an enormous 

n linear system to solve for p(E)u . The computational problem can be 



reduced to a requence of one-dimensional (inversion) problems by an 

approximate factorization of the left-hand side of (3.2): 

On comparing the left-hand sides of (3.2) and (3.3), we see that they 

differ by the cross product t e n  

n But by expanding p(~)u" in a Taylor series about u and using 

the consistency and normalization conditions (2.3a,b), there follows 

Consequently, the cross product term 

is n third-order term and formal accuracy of the scheme (3.2) is not 

upset by the approximate factorization (3.3). The computational sequence 

to implement the factored scheme (3.3) as an alternating direction 

sequence is not unique, Perhaps the most obvious choice is 



* 
where p(E)u is a dummy temporal difference. Here b. have used 

notation from the theory of LMM for ordinary differential equations and 

consequently the algorithm ( 3 . 4 )  looks rather unfamiliar. In section 8 

we write out an example following notation more conventional for partial 

differential equations. 

An important aspect of implementing an AD1 scheme is determining 

the proper boundary values for the intermediate dummy variables such as 

* 
p(E)u . Although such considerations are outside the scope of the 

present paper, they have been discussed elsewhere (see, e. g.. [13,2 1 ) . 

4 .  A linear test equaticn for partial differential equations. -- 
For first-order ordinary differential equacions, Eq. (2.7) is 

known as the linear test equation. For a first-order evolutionary PDE, 

we define a linear test equation for two spatial dimensions as 

where cl, c2, a, b and c are real constants. In order to determine 

the conditions to be imposed on these constants for which the PDE (4.1) 

has a bounded solution, we seek a solution of the form 



where v(t)  is the Fourier coefficimt, and K , ~  are the Fourier 

variables (wave numbers). The Fourier coefficient v(t ) satisfies 

where 

For the PDE (4.1) to have bounded solutions, Re A S 0. Consequently, 

the quadratic form 

must be nonnegative for arbitrary values of K and w 2 ,  which 1 
2 

implies that a,c 20, b I4ac. In the absence of the convective terms, 

i.e., c = c2 = 0, the inequalities a > 0 ,  b2 < 4ac are the conditions 1 

under which (4.1) is parabolic. The convection coefficients c and 
1 

c are arbitrary real numbers, and in the absence of diffusion, i . e . ,  
2 

a = b = c = 0, the eigenvalue A is pure imaginary. 

5. Linear stability analysis for two-dimensional unfactored and 

factored schemes. 

In this section we examine the stability of the unfactored scheme (3.2) 

and its factored counterpart (3.3) when applied to the linear test 

equation (4.1) with the mixed derivative bu set to zero. The linear 
XY 



A etability malyeis including the mixed apatial derivative i e  considered 

In appendix A. 

n 
W t  assume for simplicity that u is rpatially continuous and assume 

a solution of the form 

n where v is the Fourier coefficient and L . ~ , L ~  err the Fourier 

variables. In practice, the spat in1 derivntives are replaced hy discrete 

difference quotients; however, as indicated at the end of thi8 section, 

the stabllity proof for the spatially discrete case requtres only a minor 

modification of the following stability proof. We first consider tlrr 

wherv, for the ibrcsent nnnlysta, 1, nnd L are drf ined hv ( 5 . 1 ) .  
X Y 

Assuming a solut  tot1 of the form ( 5 . 2 ) .  wta obtnln the chc~rac.trrittt tc .  

equnt i an 



and c is the amplification factor defined by 

But (5.34~) has the same form as the characteristic equation (2.8) 

obteined when an LEM method is appliad to the linear test equation (2.7) 

for ordinary differential equations. Since Re X S 0, the resulting 

scheme is unconditionally stable since we have assumed that the original 

M is A-stable. We note that for an unfactored scheme with un assumed 

to be spatially continuous, an equivalent way of obtaining the character- 

istic equation (5.3a) would be to apply an LMM directly to the ODE (4.3) 

satisfied by the Fourier coefficient. 

For the factored scheme (3.3) where L and 1. are defined by 
X Y 

(5.1), we again assume a solution of the form (5.2) and obti~in the  

following characteristic equation for the amplification factor: 

where 

(5.5b) 



with 

On coqarina (5.3) and (5.5) we see t h a t  A - A1 + A 2  has been r e p l a c e d  

by 

The p roduc t  term i n  t h e  denominator  is  a d i r e c t  r e s u l t  o f  t h e  approximate  

f a c t o r i z a t i o n  (AF) and hence we c a l l  t h i s  "eigenvalue" A .  A s u f f i c i e n t  

c o n d i t i o n  f o r  t h e  f a c t o r e d  scheme t o  be u n c o n d i t i o n a l l y  s t a b l e  is 

Re XAF 5 0 which f o l l o w s  d i r e c t l y  from t h e  f o l l o w i n g  lemma: 

f o r  a r b i t r a r y  real a. 

PROOF. R e c a l l  f o r  an a r b i t r a r y  complex number z t h a t  i f  Re z 5 0, 

- 1 t hen  Re z 5 0. Then, by n o t i n g  t h a t  

t h e  lemma obv ious ly  f o l l o w s . 0  



In the above analyrir we asrumed that spatial derivatives were 

continuous. I t  reemins to consider the spatial ly discrete case, We 

conside,, t:n case where the spatial derivatives i n  (5.1) are replaced 

by thrce-po tnt central difference quotients : 

with  analogous express ions  f o r  the  y -de r iva t ives .  The s t a b i l i t y  

a n a l y s i s  proceeds a s  i n  t h e  s p a t i a l l y  cont inuous  c a s e  wi th  the  excep t ion  

t h a t  the  exponen t i a l  i n  ( 5 . 2 )  is  replaced by 

where x = j Ax, y = k Ay. If we make t h e  fo l lowing correspondence 

where 

between the  paraa: t : t , s  f o r  the  d i s c r e t e  and cont inuous  c a s e ,  then the  

e igenvalue  ( 5 .  :a) has  the  same form f o r  both the  cont inuous  and t h e  



dircrata care, Racall for tha rpatially continuour car. that Ra A S 0 

for rrbltrary real valuer of c ~ , c ~ , K ~ , K ~  and hence the dircratitation 

doer not change tha errantial property for krtability that Re A 5 0. 

Likawira, for the factored algorithm (3.3) with dircrete rpatial deriva- 

tive approximatione, one obtains by uring the correrpondence (5.10) the 

same characterietic equation (5.5) as for the spatially continuous case 

and again the algorithm is unconditionally stable. 

In this section we considered the stability of the factored scheme 

(3.3) when applied to the linear test equation (4.1) with the mixed 

derivative bu set to zero. In appendix A we prove that if the mixed 
XY 

derivative is treated explicitly, then the reeulting factored scheme is 

unconditionally stable. The particular explicit method considered in 

appendix A has the defect that the resulting scheme is first-order 

accurate in time for the mixed derivative. Beam and Warming [2] showed 

that it was possible to construct an unconditionally stable two-step 

schene where the mixed derivative is second-order time accurate by using 

linear extrapolation. However, the characteristic equation for the 

amplification factor did not have the form (5.5a); and the stability 

analysis did not include the convective terms c u and c u . 
1 x 2 Y 

6 .  Extension to three spatial dimensions. 

In three spatial dimensions, an obvious generalization of the 

two-dimensional approximate factorization scheme (3.3) is 



For three spatial dimcasione a linear test equation (without mixed 

derivatives) is 

where the coefficients cQ are arbitrary real numbers and a 2 0. 
9. 

If the approximate factorization scheme (6.1) is applied to the test 

equation (6.2), one obtains the following characteristic equation for 

the amplification factor: 

where 

and 

The lemma (5.6) of the previous section does not extend to three 

dimensions for arbitrary values of X e  with Re A t  S 0. We consider 

two special cases. If A t  is pure real, i.e., A a  = -a K then the e a '  
denominator of ( 6 . 3 b )  is positive and, consequently, Re AAF = XAF 5 0 

and the scheme is unconditionally stable. If X e  is pure imaginary, 

i.e., A t  I - i c  K then XAF has the form 
R e' 



where 

The region of stability for a typical A-stable LMM is illustrated in 

figure 1. For given values of c1,c2,c3, one can always pick wave 

numbers K1,K2,K3 such that XAF At as defined by (6.4) has a positive 

real part and falls in the unstable "hole" of figure 1. Consequently, 

for pure imaginary eigenvalues (a = O ) ,  the unconditional stability of the 
11 

three-dimensional factored algorithm for the model equation (6.2) is not 

retained. 

7. A-stable linear two-step methods. 

Since the order of an A-stable LMM cannot exceed two, one- and two- 

step schemes are of primary interest. The addition of more steps or 

time levels complicates the numerical scheme and generally increases 

cornpc-ter storage requirements with no attendant increase in accuracy. 

The most general consistent two-step method [i.e., k = 2 in (2.2)] can 

1)i. wr 1 L lc-n ;IS 



n 
where t h e  parameters  O B E B $  are a r b i t r a r y  real numbers and e j.s the  

l o c a l  t r u n c a t i o n  e r r o r  

determined by a Taylor  s e r i e s  expansion about t = n A t .  The c l a s s  of 

all two-step methods t h a t  a r e  a t  l e a s t  second-order a c c u r a t e  is  ob ta ined  

2 
by s e t t i n g  t h e  c o e f f i c i e n t  of d u / d t 2  i n  ( 7 . 2 )  t o  ze ro ,  

i n  which case  t h e  l o c a l  t r u n c a t i o n  e r r o r  is 

I f  !'. = 4 = 0 i n  ( 7 . 1 1 ,  we o b t a i n  t h e  l i n e a r  onr-stc.11 rnctl~nd (whic.11 is 

n s u b c l a s s  of t h e  two-step methodj, 

where we have s t l i f t e d  the  time index down bv one. This scheme is 

sometimes c a l l e d  the  0-method. I f  t' - 1/2, we o b t a i n  the  t r apezo ida l  

formula (2 .  l o ) ,  wlltc11 is the  only  s ~ ~ c n n d - c ~ r d ~ r - a i ~ ~ . u l - . ~ t t ~  cvic-stcr mcthod. 



Because the trapezoidal formula has the smallest truncation error 

of a11 A-stable W s  [a] ,  one might ask why we bother to conalder the 

class of A-etable linear two-step schemes. Unfortunately, the trapezoidal 

formula has the property that the characteristic root t + -1 as 

A At + -. Consequently, when applied to stiff ordinary differential 

equations, the trapezoidal formula can produce slowly decaying numerical 

oscillations. When the trapezoidal fonnula is applied to hyperbolic 

partial differential equations where central spatial difference approxi- 

mations are used, the resulting algorithr is neutrally stable, i.e., 

the eigenvaiues of the amplification matrix have unit modulus. If the 

solution is nonsmooth by virtue of the presence of shock waves, shear 

layers, etc., the resulting solution can exhibit highly oscillatory 

errors. In both of these applications, the oscillatory errors can be 

damped by a filtering procedure (181 or by the addition of dissipative 

terms in the case of hyperbolic equations [1,2]. An alternative to 

using the trapezoidal rule with smoothing is to use a "nonsymetric" 

A-stable scheme such as the second-order backward differentiation 

formula [(7.1) with 0 = 1, 5 = 1/2, +I = 01, Nevanlinna and Liniger [23] 

have recently suggested contractive methods for problems with nonsmooth 

solutions or where the lack of smoothness is introduced by rapidly 

varying integration step sizes. A particular example is a method called 

the contractive Adams method [23] [(7.1) with 0 314, 5 = 0, +I = -1/4]. 

An elegant and simple test for A-stability can be formulated in 

tern3 of positive real functions. This terminology is borrowed from the 

literature of electrical engineering (see, e.g., (161, page 409). 

Dahlquist 191 has recently extended the theory of positive real functions 



and conriderod rpplicationr to rtablllty problem atiring in nuamrical 

analyela, By applying thir theory, it is many to show that the linear 

tuo-atop wthod ( 7 , l )  ir A-atable if and only if the parameters ( O , t , + )  

satisfy the followin8 inequalities: 

The d e t a i l s  of the wn.ul\.sis for  ohra in ing  these i n e q u a l i t i e s  arc 

descr ibed  in  [31,  

In p a r t i c u l a r  we a r e  i n t e r e s t e d  In  t h e  c l a s s  t\f a11 A-stahle m t h \ \ d s  

t h a t  art, second-order a c c u r a t e  a s  detcrrnir~ed by t h e  r ~ > r ~ r l i  t i o n  ( 7 . 1 ) .  

111 t h i s  case t w o  parameters remain ctnti tht* L~ic*cl\~;rlitit*s (7.h)  

d e f i n i n g  the  A-stable schemes br*zome 

Tht* shaded rapltjn o f  f i s t i re  2 sI\ous the  r;\11$e o f  C I \ Z  pctr:\mctt-r?r ( t l .  t 1 

tttr w1rir.h t h i s   lass ~ * f  mett~ods i s  t\-st.tblt8. l . i~ l ig t*r  l 2 t l ]  \i~*vist*,i {t 

r ; i ~ f f i \ . t t * ~ l t  and ";rlmttst IIC*ZCSSJI~\" '  ~ . ~ \ ~ ~ t i i t i o t l  f,\t' : I - s t ; ~ b f l i t \  t - t  ld , Is .  

As an a p p l  i c a t  i ~ > n  of the  t'ri tc.rit\tl trts dr\.c-l~rpt*ti, I . t l r l  get' Jett*rmit~t*d t hr* 

c , \ ~ r s t r ; r r ~ r t s  i ~ \ r  l \ - s t a b t l t t u  ttw yar;rmrbtrnr!: tlr:rr , t c * i t ~ \ t %  : t r v  f;tmilv \\i  

;r 11 1 itrt~.+r tw~t-stt*p st- t \ t-~ws t hht :trt* . t t  lc*<tsc st*,*,tr!,!-t~r.itbt~ ;t\*~.i~r;tt t8. 

rttc shitti8*~! dt\m,-t ill , \ l  t' isitrta 2 rty\r\\,!u~.t*s t Ire rtBsu 1 t ,it-t t*rmi~rtx~i 1-Y 

L i ~ r f ~ c * r .  t\)trr r ;rramt*tr .r ir( t t i t~~\ of ttw tw~>-stt*b* mt*thrtJ~ J t t t r * r s  fr,\rn 

I. inigtar but i t  i s  t*rls\' : t j  mdkt* t t\t\ pt.t\pthr r ' t ~ l ' t ' t s s ~ l ~ ~ ~ i d z ~ l t * t * .  ) 



In n w r i c a l  algorithms for partial differential equationr it ie 

conventional to ure n + 1 as the most advanced time level. Hence we 

multiply the linear two-etep echeme (7.1) by the shift operator E-l to 

obtain 

where 

where A and V a r e  c l a s s i c a l  forward and backward d i f f e r e n c e  o p e r a t o r s  

de f ined  by 

A s  a n o t a t i o n a l  s i m p l i f i c a t i o n  we deno te  E-'P(E) by t h e  o p e r a t o r  A :  

n 
AU - E " ~ ( E ) U ~  = [ ( 1  + O A  - cviun 

n+l 
= ( 1  + ( ) u  - (I + 2 0 u n  + tun-' 

n 2 n 
= A u  + ( 6 u  , 

where ti2 is t h e  second-centra l  d i f f e r e n c e  o p e r a t o r  

The c l a s s  of A-stable,  two-step, second-o'rder methods ( s e e  f i g u r e  2 )  

is q u i t e  l a r g e .  C e r t a i n  s u b c l a s s e s  o f f e r  p a r t i c u l a r  advantages i n  regard  

2 3 



t o  computer s t o r a g e ,  numerical d i s s i p a t i o n ,  e t c .  As a n  example we 

cons ider  one s p e c i a l  s u b c l a s s  t h a t  has  a p a r t i c u l a r l y  s imple  computational 

form. Let (6.1) be a n  AD1 scheme where the  time d i f f e r e n c i n g  is the  

two-step method (7 .1) .  In  t h i s  p a r t i c u l a r  c a s e  w = B2/a2 - 8 / ( 1  + 6 ) .  

Mult iply  (6.1) by 6-I t o  conform t o  t h e  convention tha t  the  most 

advanced time l e v e l  is n  + 1. The computational a lgor i thm is s i m p l i f i e d  

when the  d i f f e r e n c e  opera to r  i n  t h e  b racke t s  on the  right-hand s i d e  of 

(6.1) is the  i d e n t i t y  opera to r .  Since  from (7 .9)  and (7.10) 

t h i s  becomes the  i d e n t i t y  opera to r  i f  

For t h e  c l a s s  of second-order methods, ((4, C , $ )  a r e  r e l a t e d  by (7.3) and 

hence ( 7 . 1 4 )  can be w r i t t e n  i n  terms of (t',:) a s  

This  curve is  sllnwn i n  f i g u r e  2 as  a dashed l i n ~ a .  With the  n o t a t i o n  

(7.12) and the cond i t ion  \ 7 . 1 4 ) ,  which reduces ( 7 . 1 3 )  t o  t h d  i d e n t i t y  

o p e r a t o r ,  the  fac to red  scheme (6 .1)  bccomt*s 

where u - c / ( l  + !.). 



8, An AD1 acheme for the heat equation in three dimensions. 

To illustrate the result8 cb the preceding sections we write out 

a3 MI scheme for the linear heat equation 

where aQ 2 0. Thtb scheme considered will be for the class of second- 

order A-stable schemes represented by the portion of the curve 

0 = ( 6  + 1) (5 + 112) of figure 2 in the shaded region. When appliea to 

the heat equation (8. l), the factored algorithm (7.16) is 

An obvious implementation of ( 8 . 2 )  is 



* * * 
where o = 8/(1 + 6 )  = 6 + 1/2 and Au and Au are dummy variables. 

2 2 
If the space derivatives a /ax , etc., are approximated by central 

difference quotients, then the x-, y-, z-operators on the left side of 

(9.3a,b,c) each require the solution of a tridiagonal system. There is 

a well-known and highly efficient algorithm for the solution of tridiagonal 

systems (see, e.g. [17, page 551) .  The final step (8.3d) is to compute the 

solution u n n n- 1 from known values of Au , u and u . 

9. Reduced stability boundary for an alternative formulation. --- 
It has been demonstrated that an approximate factorization scheme 

for the model equation (4.1) can be constructed that is unconditionally 

stable if the time differencing is b,ised on an A-stable LMM. In this 

section we show that an alternative formulation leads to a reduced 

stability range. 

Here we con 'der only the hyperbolic model equation 

- 1 
and the linear two-step scheme (7.1). After multiplying (7.1) by E , 

one can rewrite the two-step scheme (7.1) as (7.8): 

where A and V are forward and backward difference operators defined 

by (7.11). The operator on the left-hand side of (9.2) is A = ~ " p  (E) 

as defined by (7.12). As formulated in section 3, the unknown variable 



n 
t o  be computed is  Au . I n  t h i s  s e c t i o n  we alter t h e  procedure and 

t a k e  bun as t h e  unknown v a r i a b l e .  

I f  t h e  time d e r i v a t i v e  on t h e  right-hand s i d e  of (9.2) is replaced 

by s p a t i a l  d e r i v a t i v e s  from (9.1) t h e r e  fo l lows  

An approximate f a c t o r i z a t i o n  of t h e  lef t -hand s i d e  of (9.3) y i e l d s  

where RHS (9.3) denotes  t h e  right-hand s i d e  of (9.3). In  appendix B 

we analyze t h e  s t a b i l i t y  of the  f a c t o r e d  scheme (9.4).  For the  c l a s s  

of a l l  two-step methods (9.2) t h a t  a r e  a t  l e a s t  second-order a c c u r a t e ,  

t h e  parameters (0,(,41) a r e  r e l a t e d  by (7 .3) .  For t h i s  c l a s s  of methods, 

the  parameter space ( 0 , O  f o r  which t h e  f a c t o r e d  scheme (9 .4)  is 

uncondi t iona l ly  s t a b l e  i s  shown by t h e  shaded region of f i g u r e  3. The 

wedge shaped region t o  the  "r ight"  of t h e  d o t t e d  l i n e s  shows the  parameter 

space f o r  which t h e  LMM scheme ( 7 . 1 )  wi th  cond i t ion  ( 7 . 3 )  is A-stable 

( t h i s  region c o i n c i d e s  with the  shaded region of f i g u r e  2 ) .  Consequently, 

a  f a i r l y  l a r g e  c l a s s  of f a c t o r e d  schemes t h a t  a r e  uncondi t iona l ly  

s t a b l e  according t o  t h e  formulat ion of s e c t i o n  3 a r e  no t  uncondi t ional ly  

n  
s t a b l e  i f  t h e  unknown v a r i a b l e  is taken t o  be Au r a t h e r  than 

n n  n  
E - ~ D  ( E ) u ~  = AL . We should n c t e  t h a t  the  Pu and t h e  Au formulat ions  



are I d e n t i c d l  f o r  t he  s u b c l a s s  of two-step schemes where 6 - 0 ,  s i n c e  

i n  t h i s  s p e c i a l  c a s e  bun - hun, a~ i e  obvious from (7.12). 

The s i m p l e s t  computational  v e r s i o n  of  (9.4) is t h e  v a r i a n t  where 

4 - 0 I n  t h i s  c a s e  (7.3) becomes 5 = 6 - 1 / 2  and t h i s  s u b c l a s s  of 

schemes was considered i n  ( 2 1  and [ 25 ] .  The l i n e  E = 0 - 1 / 2  is shown 

i n  f i g u r e  3 and f a l l s  i n  t h e  region of  uncond i t iona l ly  s t a b l e  schemes f o r  

e r l / 2 .  

The reduced s t a b i l i t y  range i l l u s t r a t e d  i n  f i g u r e  3 r e s u l t s  from 

applying t h e  l i n e a r  two-step method ( 9 . 2 )  t o  t h e  model hyperbol ic  

equat ion (9.1) and t ak ing  A U ~  t o  be the  unknown v a r i a b l e .  I f  w e  had 

followed e x a c t l y  t h e  same procedure f o r  t h e  p a r a b o l i c  model equa t ion  

n  
t h e  r e s u l t i n g  approximate f a c t o r i z a t i o n  scheme i n  the  Au v a r i a b l e  

would not have r e s u l t e d  i n  a reduced s t a b i l i t y  range i n  the  parameter 

space (8,5). The example of t h i s  s e c t i o n  and the  r e s u l t  of 5 e c t i o n  6 

f o r  t h r e e  s p a t i a l  dimensions show t h a t  mainta ining unconditioncil s t a b i l i t y  

of approximate f a c t o r i z a t i o n  schemes is more d i f f i c u l t  f o r  hvperbol ic  

equa t ions  than f o r  parabolic equat ions .  

10. The r e l a t i o n  between the  Dou~las-Gunn method and t h e  method of 

approximate f a c t o r i z a t i o n  

A genera l  procedure f o r  d e v i s i n g  AD1 schemes from f u l l v  i m p l i c i t  

schemes f o r  pa rabo l i c  equa t ions  and the  second-order wave equat ion was 

developed by Douglas and Lunn [ 1 2 ] .  In t h i s  s e c t i o n  we b r i e f l y  d i s c u s s  



the relation between the method of Douglar ana Cunn and the method of 

approximate factorization as formulated in section 3. 

Linear one-step ..,e thode [defined by (7.5) ] are called two-level 

difference schemes by Douglas and Gunn. For linear one-step methods, 

the operator p (E)un is simply the forward difference operator 

n A method where the increment p (E)u" = Au is taken to be the unknown 

variable (rather than un+') is sometimes said to be in the "delta" form. 

For a linear one-step method, the time-differencing method for the AD1 

scheme (8.3) with 5 = 0 corresponds to the trapezoidal formula (2.10). 

In this special case, the scheme (8.3) for the heat equation is equivalent 

to the Douglas-Gunn scheme and to a scheme given earlier and independently 

by Brian [4] and Douglas 111 1 .  The form that Douglas and Gunn recommend 

for machine computation (see (2.7) of [12]) is not in the delta form, 

but it can easily be rewritten in delta form. The delta form generally 

leads to the most efficient computational algorithm. 

To simplify the comparison of the Douglas-Cunn scheme and the 

formulation of this paper for linear multistep methods, we consider two- 

n 
step methods. The role of the operatvr Au defined by (7.12) is taken 

in the Douglas-Gunn formulation ([12], page 441) by 

where 



Here u:+l is a prediction of u 
n-1 based on un and u . The choice 

of (4 ,$ ) is itmbiguous unless some candition in addition to (10.2~) is 
0 1 

imposed. The interested reader should refer to the discussion by 

Douglas and Gunn. 

In the ftrmulation of this paper, the variable to be determined 

from the sche3e is E'lp (g)un rather than un+'. It is obvious from (2.5) 

that p (E)u~ must be an approximation to At au/at for any consistent 

- 1 scheme. Choosing E p(E)un as the unknown variable is equivalent to 

imposing the condition 

in the Douglas-Gunn method. The normalization factor (1 + 5)-l results 

from the parameterization chosen for the two-step method, as can be seen 

by comparing (7.12) and (10.2). By imposing (10.3) and using (10.2b), 

we obtain (10.2~) and, in addition, 

Hence 



Consequently, if one applier a linear two-rtep scheme [with the param- 

eterization (7.1)) to the heat equation (9.1) and uses the Douglas-Gunn 

method with (0,1) determined by (10.5), then the resulting algorithm 

will be equivalent to (8.3). Since condition (10.3) is not part of the 

Douglas-Gunn formulation, the scheme (8.3) will not, in general, 

coincide with the Douglas-Gunn  peth hod. It is obvious that if the 

constants ((0,(1) are determined by (10.5), then u:" will depend on 

the particular titse differencing method chosen. 

We should mention that since Douglas and Gunn did not include 

first-order hyperbolic equations in their formulation, we are demanding 

a more stringent stability condition (namely A-stability) than one would 

require if the eigenvalue [see (4.3b)J were pure real. In the latter 

case, A = AR S 0 and A -stability is sufficient for unconditional 
0 

stability. A -stability means that the region of stability (see 0 

section 2) contains only the interval (-rn , 0 ]  rather than the entire 

lef t-half plane as required for A-stability. (See also last paragraph 

of sec t ion 9. ) 

11. Concluding remarks and summary. 

In this paper we have combined A-stable LMMs and approximate 

factorization to construct unconditionally stable AD1 schemes for partial 

differential equations with both convection (hyperbolic) and diffusion 

(parabolic) terms. Linear stability analysis for multilevel partial 

difference equations is usually very difficult. The stability of a 

;articular scheme is determined by the location of the roots of the 

characteristic polynomial relative to the unit circle in the complex 



plane. There are testa such aa the Schur-Cohn criterion to determine 

when the roots of the characteristic polynomial have modulus less than 

or equal to unity (see, e.g., 121,221). However, it is often difficult 

in practice to apply thesf. tests because of the complicated nature of 

the coefficients (generally complex) of the characteristic polynomial. 

(See appendix B for the complexity involved for a simple model problem.) 

We have circumvented this difficulty by constructing a class of AD1 

schemes such that a sufficient condition for unconditional stability 

(A-stability) is maintained in the step by step development of the 

scheme. 

The approach is summarized as follows. An A-stable LMM is chosen 

as the basic time differencing scheme. Next, one discretizes in time 

but not in space and applies the LMM method to a (model) linear PDE (4.1). 

The resulting (space continuous) scheme retains the A-stable property 

since the requirement that the real part of the eigenvalue (4.3b) be 

nonpositive is the parabolicity condition for the PDE. The ensuing 

approximations in the construction of an AD1 scheme arc such that the 

real part of the "eigenvalue" remains nonpositive. The implicit operator 

to be inverted is constructed so that the unknown variable to be 

n 
determined is p(E)u . This ensures that the approximate factorization 

does  lot upset ei :her the temporal accuracy (second-order) or the 

stability of the scheme [by lemma ( 5 . 7 ) 1 .  Finallv, one notes that 

(central) spatial discretizations do not alter t i le  essential property 

for A-stability, i . e . ,  the real part of the eigenvalue is nonpositive. 

Since our main emphasis in this paper is linear stability theory, 

we have considered only model equations. In a companion paper 131, 



we apply the method outlined in section 3 to derive an AD1 algorithm 

for a mlxed hyperbolic-parabolic system of nonlinear equations where 

the time differencing is the class of A-stable linear two-step methods. 

Earlier references on the development of noniterative AD1 schemes for 

nonlinear systems of partial differential equations are listed in the 

introduction. 



Appendix A. Stability analysis when model equation includes a mixed 

spatial derivative. 

In the stability analysis of section 5 we assumed that the mixed 

derivative term bu of the model equation (4.1) was zero. In this 
XY 

appendix we show that if the mixed derivative is treated explicitly by 

a first-order method, then the resulting AD1 scheme remains uncondition- 

ally stable. An explicit treatment of the mixed derivative means that 

bu does not appear on the left-hand side of the factored scheme ( 3 . 3 )  
XY 

but does appear on the right-hand side. Let the mixed derivative be 

appended to (3.3) as follows: 

where L and L are defined by (5.1). 
X Y 

By following the same stability analysis t h a t  led t o  characteristic 

equation ( 5 . 5 a ) ,  we obtain 

and XI and h 2  are defined by ( 5 . 5 b )  and b is the coefficient of 

LI in the partial differential t .qu;ltion. A s i ~ f f  i c i c n t  condition for  
x Y 



unconditional stability 18 that the Re AAF 5 0. Since A has the 

form 

Re AAF S 0 if and only if 

By a direct calculation we find 

where $ = w A t r r  Thequadratic forms 
1 2 '  

and 

> 
artb nonrit~gat ~ V C *  i f  and unlv i f  ; I , C  2 O and I ) &  I 4 i l i . ,  w11icl1 1% L I I C ~  

yarabolicity condition for the I'DE. ( I f  equality holds tllc equatic~u is 

hvperbolic.) Likewise, the quadratic 



2 
is nonnegative if and only if b S 4ac. Consequently, Re AAF S 0 and 

the AD1 scheme with the mixed derivative term treated explicitly is 

unconditionally stable. The above analysis is for the spatially 

continuous case. However, in the spatially discrete case, AAF will also 

have the same form as (A2) and thus the spatially discrete AD1 scheme 

will be unconditionally stable. 

It is very interesting to observe that if one treats the mixed 

derivative term explicitly but does not use a factored scheme, the 

2 2 
product term w A t  A1A2 would be missing from the denominator of (A2b). 

In this case one can always pick wave numbers 
K 1 ' K 2  

so that the 

denominator is negative, and then Re AAF > 0. Consequently, the 

unfactored scheme is not unconditionally stable. 

Finally, we should point out that if the cross derivative term is 

treated explicitly as above, then the resulting scheme is first-order 

accurate in time for the mixed derivative. (See last paragraph of 

section 5 . )  



Appendix 6. Stability analysis for an alternative formulation. 

In this appendix we carry out a linear stability analysis for the 

factored scheme (9.4). We assume a solution of the form (5.2) and find 

that the Fourier coefficient satisfies 

where we have defined 

and used the identity 

From (Bl) it follows that the amplificrtion factor defined by (5.4) 

satisfies the quadratic equation 

where 



The characterietic equation (B4) with coefficients (B5) cannot he ~?trt 

in the form (5.3a) and, conscquently, we must use some other metl~od oi 

determining when the modulus of the roots of (B4) are bounded by unity. 

Here we use the Schur-Cohn criterion (211 as formulated by Miller [ 2 2 1 .  

The polynomial (B4) is a von Ncumann polynomial [ 2 2 ] ,  that is, 

/ c I 5 1, if and only if either 

and 

Substitution of the coefficients (05) into (B6a.b) yields, after some 

algebraic manipulations, 



- 
where = 5/(1 + 5). For the class of all two-step methods (9.2) that 

are at least second-order accurate, the parameters (0,5,$) are related 

by (7.3). For this class of m~thods we want to determine the parameter 

space ( 8 . 5 )  for which the factored scheme (9.4) is unconditionally stable. 

First, we consider the conditions under which A2 as given by (BB) 

is nonnegative. Using (7.3) we find that the expression enclosed in 

the first ])air o f  br;~ckets within the brnces of (R8) is zero. ' l l~ i*  

- 2- 2 
coefficient of c l  c2 1s nonnr~~tive if and only i l  

The remaining tdtr;s within the braces constitute a quadratic form 
I 

which is nonnegative if and only if 

The first t w o  inequalities (Bl1a.b) require 



Necessary and sufficient conditions for the third inequality (Bllc) 

are 

for E 2 0 .  

Formula (57) for Al can be rewritten as the sum of two quadratic forms: 

where 

- 2 2 2 
dl = 1 - t . d2 + d,, = -2@) , d = 1 - ) . 

Necessary and sufficient conditions to satisfy A1 < 0 are less 

restrictive than conditions (B9) and (B13a,b), as the interested reader 

can verify. Hence, the region of unconditional stability is defined by 

the inequalities (B9) and (B13) and is indicated by the slladed region 

of figure 3 of thc tcxt. 
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Fig. 1.  Region of s t a b i l i t y  for a typical A-stable scheme. 



Fig. 2. A-stable range of the parameters ( 8 , O  for the class of all 

second-order linear two-step methods. 



Fig. 3. Unconditionally stable range of the parameters (d,S) for the 

factored scheme (9.4). 
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