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DESIGN OF HELICOPTER ROTORS TO NOISE CONSTRAINTS

Edward G. Schaeffer and Harry Sternfeld, Jr.
Boeing Vertol Company

SUMMARY

Results from the initial phase of a research contract, "Study of Design Con-
straints on Helicopter Noise," NAS1-15226, sponsored by the NASA Langley
Research Center are presented. A description of the overall program is in-
cluded. Basic calculations of nonimpulsive rotor harmonic and broadband hover
noise spectra, over a wide range of rotor design variables were accomplished;
and the sensitivity of PNL to changes in rotor desigf parameters are presented.
Measured rotor noise data were used to correlate the calculations in verifying
the prediction methodology.

INTRODUCTION

Increased emphasis on reducing the noise generated by helicopter rotors to
minimize aural detection times in military applications, and increase community
acceptance during commercial operations, now require the helicopter manufac-
turer to consider noise constraints of his product early in the design phase.
Impending noise regulations, such as the FAA/ICAO possible noise limits for
certification of helicopters, are forcing designers to implement noise control
measures during preliminary design performance studies when the sizing of
rotors 1is being %gtermined.

Basic rotor design parameters such as total thrust, blade tip speed, disk
loading, number of blades per rotor, and rotor solidity, which invariably
affect the noise produced by the rotor, have generally been decided long before
noise restrictions are considered. One reason is that most preliminary
designers do not have simplified guidelines for predicting rotor noise which
can be meaningful during early rotor design decisions stages. Consequently,
most designs-are semi-finalized, before noise estimates of the configuration
can be made. Subsequent changes that may be required in reducing the noise to
comply with certain regplations find themselves in conflict with designs that
have already been set.

This study, when completed, will result in a general method, and sets of design
charts, which will permit evaluations of the noise and performance tradeoffs

of single rotors during the early design stage. The measure of performance
will be the percentage of available rotor thrust which must be expended in
1lifting the drive system (rotor blades, hub, and rotor transmission).
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Given a desired thrust and noise limit, the charts can be used to define the
corresponding radius, chord, and tip speed for 2, 3, 4, 5 or 6 bladed rotors.
The rotor which requires the lowest drive system weight is the optimum design.

Conversely, given a completely defined rotor the charts can be used to predict
the noise.

Results from the completed initial phase of the study, which includes the cal~
culation of both rotor harmonic and broadband, nonimpulsive hover noise and
the relative importance of various rotor design parameters that influence
changes in Perceived Noise Level (PNL) are discussed in this paper.

SYMBOLS AND ABBREVIATIONS

Values are given in both SI and U.S. Customary Units. The calculations were
made in U.S. Customary Units.

T thrust, N (1b)
Vr blade tip speed, m/sec (ft/sec)
fp peak frequency, Hz
Ab blade area, m? (£t2)
o) angle between centerline of rotor shaft

and line to observer, deg

83 one~third octave frequency band correction

Cr, 1ift coefficient

T distance to observer, m (ft)

SPL Sound Pressure Level, dB (re 2 x 107 N/mz)

PNL Perceived Noise Level, in PNdB

dBA A-weighted network

dBC C-weighted network

BB Bréadband noise

PNLT Tone-corrected Perceived Noise Level

NOY Unit used in the calculation of Perceived Noise Level. It is the

noisiness of a noise for which the Perceived Noise Level is 40 PNdB.
The noisiness of a noise that is judged by a subject to be n times
that of a 1-NOY noise is n NOYS.
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PROGRAM

he objective of the program is to provide a "handbook" for helicopter designers
nd configuration managers to evaluate the noise of rotors during the prelim~
nary design phase, and to estimate the effect on rotor payload.

n order to produce an effective designer's tool that can be used during noise
nd performance tradeoff evaluations, the total rotor noise signature has to
e represented accurately. All major sources of rotor noise are included in
leveloping the design charts for the handbook. Figure 1 shows an example of
‘hese sources and their contribution to the overall noise signature. The sub-
jective weighting of these noise sources; harmonic, broadband (nonharmonic),
ind impulsive, which is the prelude to determining the PNL, are shown in
'igure 2 as total NOY values per octave band. The engine noise minor contri-
yation is shown for completeness only. Examination of this figure indicates
chat in terms of annoyance, rotor impulse is the major factor; but if the
rotor did not have an impulsive characteristic then broadband noise predomi-
1ates the Perceived Noise Level (Figure 2) to a much greater extent than the
Sound Pressure Level Spectrum (Figure 1).

fhe overall study consists of the following phases:

l. Calculating the nonimpulsive rotor harmonic and broadband noise spectra
using established prediction procedures recognized and used by industry
and found in open literature. The range of rotor physical parameters
included in the calculations are: thrust, 44 to 356 kN (10 000 to
80 000 1b); disk loading, 287 to 575 N/m2 (6 to 12 1b/ft“); solidity,
0.04 to 0.12; number of blades, 2 to 6; and tip speed, 152 to 244 m/sec
(500 to 800 ft/sec). Calculations are for a sideline distance of
150 meters from rotor and a height of 150 meters (which corresponds to
the measurement locations being considered in the regulations). Com-
bining the noise signatures into one-third octave frequency bands
calculating PNL, dBA and dBC.

2. Appl?ing impulsive corrections developed by the Boeing Vertol Co, and
sublgetive adjustments from Reference 1 to adjust dBA, dBC and PNL values
to a subjectively equivalent broadband level.

3. Preparing a set of design charts to permit direct determination of values
of dBA, dBC and PNdB for range of rotor physical parameters. An example
of a possible design chart format is shown in Figure 3 for determining the
PNdB in hover and, providing a rationale showing the effects of rotor
configuration on forward flight noise.

4. Evaluating the performance penalty for each main rotor configuration and
tip speed combination. The ratio of drive system weight to rotor thrust
shall be used as an index of the design efficiency.
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RESULTS AND DISCUSSION
Prediction of Nonimpulsive Rotor Hover Noise

The harmonic rotation noise calculation was based on the method developed in
Reference 2, This widely accepted rotor noise calculation includes the design
variables of thrust, disk loading, tip speed, and number of rotor blades.. The
only change made to the equations of Reference 1 was that an airloads harmonic
decay exponent of 1.3 was used instead of 2.0, as specified by the original
authors. This modification reflects a more realistic airload harmonic decay
of 15 dB per octave which has been measured by other researchers and provides
better agreement with measured data in the higher harmonic range.

The broadband, or nonharmonic, rotor noise calculation used was from the
unpublished semiempirical prediction made by Robert J. Pegg of the NASA
Langley Research Center. The equation from this prediction,

£, ~240 log T + .746 V. + 786
SPL 10 log Ay + 60 log Vp + 10 log (cos?o + .1)
+ 85 -20 log r + f(Cy) - 53.29

£(C1) = 10 log —C—Tz:- for CL < .48
£(C) = .9 + 80 log CL_ for CL, > .48

.48

has as its design variables, thrust (T), tip speed (VT), blade area (Ap)
and 1ift coefficient (Cp).

A computer program was written to include all of the design variables and to
provide an automatic calculation of both the harmonic and broadband mnoise,
then combine them into one-third octave frequency bands and print-out the
resultant dBA, dBC and PNL. Figure 4 shows a sample of this output.

Nine hundred sixty computer cases were run during the initial phase of

the program to provide adequate definition of the design variables for
preparation of the "handbook" charts.

Prediction~Data Correlation

Measured noise data, shown in Figures 5 and 6, from a nonimpulsive and moder-
ately impulsive rotor were directly compared to the calculated one-third octave
SPL using the developed computer program. The agreement between predictions
and measurement for the nonimpulsive case (fig. 5) are generally quite good,
the discrepancy in the 500 Hz octave band 1is probably due to destructive inter-
- ference between the direct and first ground reflected waves which calculates
to occur at 556 Hz. 1In the case of the impulsive rotor (fig. 6) good agree-
ment 1s attained in the first two harmonics and higher frequency broadband
noise since the harmonic noise prediction method does not account for the
increase in mid-harmonic loading which typifies impulsive rotor noise.
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Perceived Noise Level Sensitivity to Rotor Design

To provide an indication of the sensitivity of PNL to changes in design vari~
ations, five baseline rotor designs representing different classes of heli-
copters were investigated. For each baseline configuration the rotor parameters
of thrust, disc loading, tip speed and number of blades were varied one at a
time (at constant 1lift coefficient) and thé resultant PNdB calculated.

Figure 7 shows an example of the calculated nonimpulsive hover SPL for one
particular case (3-bladed, 89-kN (20 000-1b) thrust rotor). Taking this con-
figuration as a baseline design and varying each of the parameters one at a

time results in the PNL sensitivity chart shown in figure 8., Similar studies
have been done for four other baseline designs which cover a wide range of wvalues
and the resultant summary (table I) indicates some rough guidelines which can

be used pending release of the final design charts which will result from

this study.

CONCLUDING REMARKS

The calculation of the nonimpulsive harmonic and broadband hover noise for a
wide range of rotor design variations was accomplished. The prediction method-
ology used correlated well with measured whirl tower data. Application of

the predictions to variations in rotor design (thrust, tip speed, disc loading,
and number of blades per rotor) has shown tip speed and thrust as having the
most effect on changing the PNL.
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TABLE L.- INTERIM RESULTS SUMMARY OF SENSITIVITY OF PNL
TO DESIGN PARAMETER VARIATION

Parameter Range Sensitivity *
Tip speed 137 to 290 m/sec 2 to 5 PNdB per 30.5 m/sec
(450 to 950 ft/sec) (100 ft/sec)
Thrust 11121 to 358876 N 2 PNdB per doubling of
(2 500 to 80000 1b) thrust
Disk loading 96.1 to 574.6 N/m2 0.5 PNdB per 96.1 N/m?
(2 to 12 1b/ft2) C (2 o/ft2)
Number of blades 2to6 <0.5 PNdB per blade addition
per rotor

*Based on varying parameter under study while holding all others constant.
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Figure 1l.- Helicopter noise source contribution during 6-degree approach.
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Figure 2.- Subjective weighting of helicopter noise during 6-degree approach.

DISK LOAD RANGE
96.1 — 575N/m?
(2-12 ib/ft?)

TIP SPEED (VT)

RANGE 152-244 m/sec
(500-800 ft/sec)

LOAD — T
PNdB iy
y A
TMAX]
: BKLOAD — ——e—
soum?rv COMBINATIONS =-===—==
VT 1
SOLIDITY RANGE
{ 0.04—0.12
TMin |

1 1 1 i
THRUST
RANGE 44 484 — 355 876 N (10,000—80,000 Ib}

Figure 3.- Possible design chart format for 2-, 3-, 4-, 5-, and 6-bladed rotors.
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Figure 4.- Rotor noise calculation ~ computer program sample output.
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Figure 4.~ Concluded.
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Figure 5.- Correlation of calculations with whirl tower nonimpulsive rotor
noise at 152-m (500-ft) distance.
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Figure 6.- Correlation of calculations with whirl tower impulsive rotor noise
at 152-m (500-ft) distance.

560



BASE POINT VALUES
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Figure 7.- Calculated ~ nonimpulsive hover noise 3-bladed rotor at
152-m (500-ft) distance.
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Figure 8.- Relative change in PNdB with
design parameter variation.
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