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SUMMARY 

A s h o r t  pe r spec t ive  of t h e  Army ae roacous t i c  r e sea rch  program i s  pre- 
sented t h a t  emphasizes rotary-wing, aerodynamically generated noisi?. Exc i t ing  
i e w  breakthroughs i n  experimental  t echniques  and f a c i l i t i e s  are reviewed which 
Zre he lp ing  b u i l d  a d e t a i l e d  understanding of h e l i c o p t e r  e x t e r n a l  no i se .  Army 
ind j o i n t  Army/NASA supported r e s e a r c h  programs i n  a c o u s t i c s  are l ead ing  t o  a 
capidly developing technology which promises t o  reduce t h e  n o i s e  of f u t u r e  
i e l i c o p t e r s  without  severe performance p e n a l t i e s .  

INTRODUCTION 

The Reforger 76 NATO e x e r c i s e s  r e in fo rced  t h e  Army's concept of a v i a t i o n ' s  
ro l e  i n  t h e  combined arms t e a m .  
the h e l i c o p t e r  t o  inc lude  t h e  t r a d i t i o n a l  f u n c t i o n s  of land combat mob i l i t y  
including i n t e l l i g e n c e ,  f i repower,  combat service support ,  command c o n t r o l ,  and 
zommunications. The use  of t h e  h e l i c o p t e r  by ground f o r c e s  has  added another  
b a t t l e f i e l d  dimension by enhancing t h e  a b i l i t y  t o  conduct land  combat 
Eunc t ions .  

The Army has  cons iderably  expanded i ts  u s e  of 

The unique maneuvering c a p a b i l i t y  which has  made t h e  h e l i c o p t e r  so 
valuable  has  a l s o  brought wi th  i t  unique a c o u s t i c  problems ( f i g .  1). High t i p  
speed r o t o r s  are one source of ae roacous t i c  near- and f a r - f i e l d  n o i s e  which i s  
unique t o  rotary-wing vehicles, and t h i s  n o i s e  has  a very  d i s t i n c t i v e  character. 
It i s  re spons ib l e  f o r  l a r g e  d e t e c t i o n  d i s t a n c e s ,  severe community annoyance, 
and can s i g n i f i c a n t l y  in f luence  i n t e r n a l  n o i s e  levels.  High-speed and power 
t ransmiss ions ,  s h a f t s ,  and engines  a l s o  c o n t r i b u t e  s i g n i f i c a n t l y  t o  both  
i n t e r n a l  and e x t e r n a l  n o i s e  levels. 
i n t e g r a l  p a r t  of t h e  Army a i rmob i l e  concept ,  i t s  use fu lness  and acceptance can 
be enhanced i f  d e t e c t a b i l i t y ,  annoyance, and i n t e r n a l  n o i s e  levels can be 
reduced wi th  minimal l o s s  of its d e s i r a b l e  performance c a p a b i l i t i e s .  

Although t h e  h e l i c o p t e r  has  become an  

I n  response t o  these problems, t h e  Army h a s  focused i t s  a c o u s t i c  r e s e a r c h  
program on those  n o i s e  sources  unique t o  r o t a r y  wing. I n i t i a l l y ,  t h e  program 
attempted t o  apply e x i s t i n g  technology t o  alleviate t h e  h igh  n o i s e  levels. 
Af te r  determining that t h e  technology w a s  inadequate ,  t h e  emphasis of t h e  
program s h i f t e d .  Today, t h e  Army program emphasizes a more fundamental 
approach - t o  i s o l a t e  t h e  most offending sources ,  t o  a n a l y t i c a l l y  d e s c r i b e  
t h e i r  dependence, and then  t o  c o n t r o l  h e l i c o p t e r  n o i s e  wi th  a new, more 
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accura te  technology i n  a, cos t -e f fec t ive  manner. This research is  being per- 
formed in-house, i n  j o i n t  p a r t i c i p a t i o n  with NASA and through con t r ac t s  with 
indus t ry  and u n i v e r s i t i e s .  

AEROACOUSTIC RESEARCH 

For purposes of t h i s  paper, it is  convenient t o  sepa ra t e  t h e  no i se  sources 
i n t o  two broad ca tegor ies :  f i r s t ,  no ise  of aerodynamic o r i g i n  from main o r  
t a i l  r o t o r s  which w i l l  be r e fe r r ed  t o  as rotary-wing aerodynamically generated 
noise;  and second, t h e  he l i cop te r  no ise  t h a t  o r i g i n a t e s  from t h e  generation 
and d i s t r i b u t i o n  of power o r  mechanical v ib ra t ions  which w e  can ca l l  power- 
and mechanically generated noise.  
no i se  sources, bu t  t h e  main kmphasis of t h i s  paper is on t h e  f i r s t  category. 

The Army research  programs involve a l l  

Some ind ica t ion  of t h e  ex ten t  of Army-supported research  i s  indicated i n  
t a b l e  1. Of p a r t i c u l a r  s ign i f i cance  are t h e  j o i n t  Army/NASA programs which 
make ava i l ab le  spec ia l  f a c i l i t i e s  and/or j o i n t  resources t o  provide a sound 
rotary-wing acous t ic  technology base of mutual bene f i t  t o  commercial and 
m i l i t a r y  he l i cop te r  development. 
program is  highly dependent on t h e  spec ia l  s k i l l s  and c a p a b i l i t i e s  provided by 
t h e  u n i v e r s i t i e s  and industry,  l a r g e l y  through t h e  Army Research Office (ARO). 

The Army rotary-wing acous t i c  technology 

ROTARY-WING AERODYNAMICALLY GENERATED NOISE 

Rotary-wing aerodynamically generated noise  can be f u r t h e r  broken down 
i n t o  conventional ca t egor i e s  of high-speed impulsive, blade vor tex  in t e r -  
ac t ion ,  broadband, and inflow turbulence no i se  sources. There have been 
seve ra l  exce l len t  t echn ica l  summaries over t h e  years  which have described what 
w a s  known about each source of no ise  ( r e f s .  1-6). By reading them i n  t h e  
l i s t e d  order,  one can gain a f ee l ing  f o r  t h e  rapid progress being made i n  t h e  
f i e l d  of rotary-wing acous t ics .  O f  t hese  sources, one of t h e  most objection- 
a b l e  is  t h e  high-speed impulsive noise  source. When r o t o r  t i p  speeds are high, 
whether due t o  high r o t a t i o n a l  t i p  speeds o r  combinations of r o t a t i o n a l  and 
t r a n s l a t i o n a l  v e l o c i t i e s ,  l a r g e  pressure waves are propagated out from t h e  
r o t o r  d i sk  plane. 

Due t o  t h e  complexity of t h e  problem, it  has been very d i f f i c u l t ,  i f  not 
impossible, t o  i s o l a t e  and i d e n t i f y  t h e  cont r ibu t ion  of t h e  separa te  sources 
t o  t h e  t o t a l  helicopter-generated noise. 
tunnels  o r  fly-by measurements are plagued with add i t iona l  complications 
associated with reverbera t ion ,  t he  pecul ia r  r o t o r  no i se  d i r e c t i v i t y ,  and o ther  
complicating f ac to r s .  A technique w a s  sought which would allow d i r e c t  
measurement of a he l i cop te r  f a r - f i e ld  no i se  r a d i a t i o n  p a t t e r n  without inducing 
complications associated with reverberated pressure  waves and o ther  con- 
vent iona l  cons t ra in ts .  
he l icopter  when operating i n  i t s  own environment. 

I so la ted  tests of r o t o r s  i n  wind 

These objec t ives  required noise  measurements of a 
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An i n - f l i gh t  no ise  measurement technique w a s  developed t h a t  allows t h e  
Aicop te r  t o  operate under des i red  conditions i n  f r e e  space while t he  micro- 
iones and recording equipment are supported on a qu ie t  fixed-wing a i r c r a f t  
nat is  capable of maintaining t h e  microphone a t  the des i red  pos i t i on  f ixed  
da t ive  t o  t h e  r o t o r  ( f ig .  2 ) .  (Symbols used i n  t h e  f igu res  are defined i n  
h e  appendix.) 

The in- f l igh t  he l i cop te r  no i se  source c a l i b r a t i o n  experiment w a s  f i r s t  
onducted u t i l i z i n g  an OV-1C as t h e  microphone support and recording s t a t i o n  
nd a UH-1H he l icopter  as t h e  tes t  a i r c r a f t  ( r e f .  7). The a i r c r a f t  w e r e  flown 
n c l o s e  formation with the  UH-1H he l i cop te r ,  maintaining pos i t i on  and dis- 
ance behind t h e  OV-1C a i r c r a f t .  
r o p e l l e r  speeds t o  be se lec ted  t o  minimize in t e r f e rence  with t h e  r o t o r  funda- 
e n t a l  and harmonic frequencies. From t h i s  f i r s t  experimental in-f.light 
e l i cop te r  no i se  measurement test, the  f i r s t  t r u e  p i c t u r e  of t h e  high-speed 
mpulsive noise  and blade vortex i n t e r a c t i o n  no i se  r a d i a t i o n  p a t t e r n s  w a s  
ecorded. 
o r  UH-1H no ise  abatement operations had t o  be abandoned as ine f fec t ive .  

The f r e e  tu rb ine  engines allowed t h e  OV-IC 

Some unexpected r e s u l t s  were obtained and previous techniques used 

I n  addi t ion ,  t h e  d e t a i l s  of t h e  recorded t i m e  h i s t o r y  of t h e  pressure 
aves r a i sed  questions as t o  t h e  v a l i d i t y  of t h e o r e t i c a l  p red ic t ive  techniques 
nd provided a strong emphasis f o r  b e t t e r  da t a  with lower background no i se  
evels. 
a rge  negative pressure wave assoc ia ted  with high-speed impulsive noise.  This 
teak negative pressure increases  as t h e  t i p  Mach number increases.  Also shown 
.re several p o s i t i v e  pressure  pulses  which occur j u s t  p r i o r  t o  t h e  negative 
ipike: t h e  p o s i t i v e  sp ikes  are caused by blade vor tex  in t e rac t ions .  Recorded 
a-plane pressure  s i g n a l s  of t h e  UH-1H ( f i g .  4 )  show how the  peak negative 
iressure increases  with forward speed: t he  negative peak pressure  increase  
i i t h  forward ve loc i ty  from 80 t o  100 and t o  115 knots is  similar i n  l e v e l  
f l igh t ,  122 m/min (400 ft/min) and 244 m/min (800 ft/min) rates of descent. 

An idea l ized  pressure t i m e  h i s t o r y  o r  wave form ( f ig .  3) shows t h e  

Note, however, t h a t  t h e  p o s i t i v e  pressure  sp ikes  a t t r i b u t e d  t o  blade 
iortex i n t e r a c t i o n  increase  from t h e  top l e f t  t o  bottom r i g h t .  
)ne would expect blade vor tex  i n t e r a c t i o n  no i se  t o  be maximum a t  a cons is ten t  
iorward ve loc i ty  t o  descent rate r a t i o  which r e s u l t s  i n  t h e  t i p  vor tex  
remaining i n  t h e  r o t o r  d i s k  plane where i n t e r s e c t i o n s  occur with following 
)lades.  
i e l o c i t y  o r  Mach number increases .  The success of t h e  in - f l i gh t  test 
:echnique i n  producing in te r fe rence- f ree  time-pressure h i s t o r i e s  and 
i i r e c t i v i t y  p a t t e r n s  of d i f f e r e n t  r o t o r  no ise  sources proved t h e  concept and 
increased t h e  d e s i r e  t o  f ind  an improved microphone platform. 

I n t u i t i v e l y ,  

A s  would be expected, t h i s  no ise  level a l s o  increases  as t h e  blade 

Fortunately,  an almost i d e a l  qu ie t  f l y i n g  platform had been developed i n  
very l imi ted  q u a n t i t i e s  by t h e  U.S. Army f o r  su rve i l l ance  and t a r g e t  
acquisit ion.  The a i r c r a f t ,  designated the  YO-3A ( f ig .  5), w a s  an ex tens ive ly  
nodified Schweitzer 2-32 s a i l p l a n e  t h a t  s a w  only l imi ted  service during t h e  
last Asian c o n f l i c t .  
F.B.I. acquired two of t h e  few remaining "YO-3A qu ie t  a i r c r a f t . "  The Aero- 
mechanics Laboratory borrowed one of t h e  F.B.I. a i r c r a f t  and instrumented it 
f o r  acous t i c  t e s t i n g  (ref.  8) i n  a similar manner t o  t h e  OV-1C ( f ig .  6 ) .  I n  
addi t ion  t o  a tail-mounted microphone, wing-tip microphones were used t o  

They were surplused t o  o ther  government agencies, and t h e  
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gather d a t a  f o r  no i se  source i d e n t i f i c a t i o n .  
YO-3A is about 15 dB below t h a t  of t he  OV-lC, thus assur ing  exce l len t  signal-  
to-noise levels. 

The background noise  of t h e  

A sample of t h e  q u a l i t y  of da t a  obtainable by i n - f l i g h t  measurements with 
the  YO-3A is  shown i n  f i g u r e  7 f o r  t he  UH-1H he l icopter .  
speed and 122 m/min (400 ft/min) descent rate, even though t h e  t a i l  r o t o r  is 
about 13  t a i l  r o t o r  diameters from t h e  microphone, t h e  impulsive pressure  wave 
is  d iscern ib le .  Main r o t o r  p o s i t i v e  pressure  sp ikes  from blade  vor tex  in t e r -  
s e c t i o n  and t h e  high-speed impulsive negative pressure  pu l se  can a l s o  be  
c l e a r l y  seen. Note t h e  symmetry of t h e  high-speed pressure  pulse  a t  80 knots 
i n  comparison t o  t h e  very rap id  pressure  recovery a t  115 knots. 
advantages of t h e  i n - f l i g h t  technique u t i l i z i n g  t h e  YO-3A a i r c r a f t  f o r  acous- 
t i c  c a l i b r a t i o n  o r  r o t o r c r a f t  l e d  t o  measurements f o r  t h e  Army SSEB during 
eva lua t ion  of both t h e  UTTAS ( f i g .  8 )  and t h e  AAH h e l i c o p t e r s  ( f i g .  9) .  Unfor- 
tuna te ly ,  t h e  recorded d a t a  cannot be released because of s e c u r i t y  c l a s s i f i c a -  
t i o n ;  however, a l l  four  of t hese  he l i cop te r s  exhib i ted  the s a m e  c h a r a c t e r i s t i c  
high-speed impulsive no i se  and the  blade vor tex  i n t e r a c t i o n  noise .  The magni- 
tude and degree of presence of these  c h a r a c t e r i s t i c  sources d i f f e r e d  between 
t h e  a i r c r a f t  bu t  w e r e  p resent  and de tec t ab le  i n  each. 

A t  80 knots forward 

The obvious 

The d a t a  co l lec ted  by in - f l i gh t  measurement are serv ing  another important 
purpose. It has demonstrated the  v a l i d i t y  of using scaled model r o t o r s  t o  
experimentally measure, i n  acous t i ca l ly  t r e a t e d  wind tunnels ,  high-speed 
impulsive noise  ( r e f .  9) .  A s  shown i n  f i g u r e  10, t h e  wave forms are near ly  
i d e n t i c a l  although t h e r e  is  a d i f fe rence  i n  geometric scale of 7 t o  1. 
Figures 10  and 11 show t h a t  t h e  shape of t h e  peak pressure  v a r i a t i o n  with t i p  
Mach number and t h e  peak pressures  a r e  a l s o  i n  good agreement. Small-scale 
wind-tunnel tests provide t h e  opportunity t o  u t i l i z e  laser velocimeters,  flow 
v i s u a l i z a t i o n  techniques, and o ther  spec ia l ized  instrumentation t o  inves t iga t e  
t h i s  no ise  source. 

The steepening of t he  high-speed impulsive negative pressure  recovery a t  
high forward speeds l eads  one t o  specula te  as t o  the  cause of t h i s  un- 
expected change. I f  t h e  same noise  source could be studied i n  the  s i m p l e s t  of 
a l l  r o t o r  operating conditions (hover), add i t iona l  i n s igh t  could be obtained. 
The hovering r o t o r  a l s o  a f f o r d s  oppor tuni t ies  t o  u t i l i z e  spec ia l ized  
instrumentation. 

The U.S. Army, i n  cooperation with NASA, has developed a very spec ia l ized  
f a c i l i t y  capable of t e s t i n g  model r o t o r s  ( f i g .  1 2 ) .  The f a c i l i t y  is acousti-  

. c a l l y  t r ea t ed  t o  e l imina te  acous t ic  reverbera t ions  down t o  110 Hz. The flow 
e n t e r s  from t h e  roof and passes through acous t i ca l ly  t r ea t ed  passages t h a t  
a t t e n u a t e  ex te rna l  ambient noise;  t h e  flow then passes a t  very low ve loc i ty  
i n t o  t h e  room. The r o t o r  wake is the  d r iv ing  f o r c e  as t h e  wake passes 
i n t o  t h e  e j e c t o r ,  under t h e  lower f l o o r ,  and out  t h e  end doors; f r e s h  a i r  
is drawn i n  through t h e  top of t he  building. 
and acous t i c  measurements can be made. Model r o t o r s  up t o  2.4 m i n  
diameter can be t e s t ed  on the  metric d r i v e  system which is  capable of 
providing up t o  89.52 kW (120 hp) and over 3000 rpm ( f i g .  13). This f a c i l i t y  

Both aerodynamic performance 
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as been used t o  obta in  high-speed impulsive wave forms of t he  same 1/7-scale 
H-1H r o t o r  used i n  previous wind tunnel tests. 

A sample i s  shown i n  f i g u r e  1 4  (from r e f .  10). Note t h e  very rap id  
iressure recovery which is not  predicted by theory. The shapes of t h e  experi- 
iental  and t h e o r e t i c a l  curves are t o t a l l y  d i f f e r e n t  and t h e  peak pressure  i s  
tnderpredicted by a f a c t o r  of 2. 
.dentical  i n  shape t o  those obtained a t  M = 0.9 i n  both t h e  wind tunnel and on 
:he f u l l - s c a l e  UH-1H i n  f l i g h t ,  f r e e  from in te r fe rence .  
:hat t h e  t h e o r e t i c a l  model is inadequate. 

The experimental wave form i s  e s s e n t i a l l y  

It must be concluded 

Figure 15 shows t h a t  t he  peak negative pressure is  a l s o  not p red ic t ab le  
tor is  the  v a r i a t i o n  of t h e  peak pressure  with Mach number. A grea t  dea l  of 
Irogress has  been made. Although t h e  theory has  been shown t o  be inadequate, 
i technique t o  measure fu l l - s ca l e  interference-free helicopter-radiated noise  
ias been developed, and it  has been shown t h a t  small-scale r o t o r s  can be used 
in hover and wind tunnels t o  simulate t h e  fu l l - sca le ,  high-speed impulsive 
rotary-wing no i se  source. 

The wind tunnel a l s o  holds promise of providing t h e  necessary t o o l  f o r  
2xperimental i nves t iga t ions  of blade vor tex  i n t e r a c t i o n  no i se  ( f ig .  16).  The 
question of how Reynolds number a f f e c t s  t h i s  no ise  source has not ye t  been 
sdequately answered. Larger scale models o r  boundary l aye r  t r a n s i t i o n  s t r i p s  
nay be required t o  simulate t h e  fu l l - s ca l e  blade vor tex  i n t e r a c t i o n  e f f e c t s .  

Recent experimental i nves t iga t ions  i n  both model-scale and fu l l - sca l e  
f l i g h t  have shown t h a t  r o t o r  blade t i p  shapes can, i n  f a c t ,  al ter t h e  power 
required and r ad ia t ed  no i se  of he l i cop te r  ro to r s .  
ment with what many he l i cop te r  en thus i a s t s  have believed poss ib le  f o r  a long 
t i m e  but had not been proved u n t i l  recent ly .  
UH-1H he l icopter  has both increased t h e  aerodynamic e f f i c i ency  and reduced t h e  
t o t a l  rad ia ted  no i se  ( r e f .  11). 

These r e s u l t s  are i n  agree- 

The Ogee t i p  shape flown on a 

Further refinements and improvements a r e  s u r e  t o  follow once the  e f f e c t s  
of t h e  Ogee t i p  are f u l l y  understood. 
combined with well-conceived experimental programs i s  required t o  provide a 
bas i c  technology from which improved blade geometry w i l l  r e s u l t  i n  reduced 
blade vor tex  i n t e r a c t i o n  no i se . ’  The de ta i l ed  problem of vor tex  formation must 
be examined and the  r o t o r  flow f i e l d  defined with s u f f i c i e n t  accuracy such t h a t  
t he  vortex s i z e ,  s t rength ,  and s p a c i a l  l oca t ion  can be determined. 

A g r e a t  dea l  of t h e o r e t i c a l  e f f o r t  

BROADBAND NOISE 

Although on sounder foot ing ,  broadband no i se  i s  probably a more complex 
problem because of i t s  s e n s i t i v i t y  t o  both turbulence 1evels.and the  r o t o r  
wake ( re f .  5). Obtaining high q u a l i t y  experimental da t a  is  more d i f f i c u l t  i n  
t h a t  t h e  background no i se  must be lower, t he  frequency of broadband noise  is 
higher,  and Reynolds number i s  l i k e l y  t o  be a very important parameter. The 
acous t ic  r o t o r  hover f a c i l i t y  and small-scale r o t o r  tests i n  wind tunnels may 
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be bene f i c i a l  i n  def in ing  t h e  s e n s i t i v i t y  of t h e  broadband noise  t o  the  
sca l ing  parameters. However, i n - f l i gh t  no i se  measurements w i l l  be required t o  
assess t h e  magnitude of t h e  e r r o r s  induced by sca l ing  e f f e c t s ,  background 
noise ,  o r  w a l l  e f f e c t s .  The t h e o r e t i c a l  treatment of broadband no i se  has not 
ye t  r e a l l y  withstood t h e  baptism of f i r e .  The low-frequency impulsive noise  
and blade-vortex i n t e r a c t i o n  noise  both induce very r ap id  t i m e  v a r i a t i o n s  i n  
pressure which cont r ibu te  t o  t h e  amplitude of t h e  higher harmonic frequencies.  
It i s  therefore  e s s e n t i a l  t h a t  these  cont r ibu t ions  be p red ic t ab le  before an  
adequate assessment of broadband noise  t h e o r e t i c a l  ca l cu la t ions  can be 
obtained. 

INTERIOR NOISE 

A s  techniques f o r  a l l e v i a t i o n  of impulsive, blade-vortex in t e rac t ion ,  and 
broadband noise  are implemented, t h e  e f f e c t s  of t h e  aerodynamically generated 
r o t o r  no ise  on t h e  cabin i n t e r i o r  no ise  l e v e l s  w i l l  be reduced. The main 
sources of i n t e r i o r  no i se  are noise  transmission from t h e  power generation 
and d r i v e  system and noise  generated by sympathetic v ib ra t ions  of fuse lage  
s t ruc tu res .  Techniques must be devised f o r  no ise  i s o l a t i o n .  In su la t ion  of 
cabin i n t e r i o r s  can considerably reduce the  i n t e r n a l  no ise ,  bu t  only by 
r e l a t i v e l y  l a r g e  infringements on the  payload capab i l i t y .  

Noise deadening and noise  i s o l a t i o n  appear t o  hold t h e  most promise f o r  
reducing cabin i n t e r i o r  no i se  l e v e l s  with a minimum reduction i n  payload 
capab i l i t y .  Considerable e f f o r t  i n  both materials and app l i ca t ions  i s  
required.  Better t h e o r e t i c a l  models f o r  sound transmission w i l l  have t o  be 
developed. Refinements are required t o  accura te ly  c a l c u l a t e  t h e  blade passage 
unsteady pressure environment of the  fuselage s t ruc tu re .  The Army Aeromedical 
Research Laboratory i s  developing improved equipment f o r  b e t t e r  communications 
i n  t h e  noisy environment of cur ren t  he l i cop te r  i n t e r i o r s .  However, i n  t h e  
longer t e r m ,  both i n t e r i o r  and e x t e r i o r  no ise  reduction techniques are required 
t h a t  w i l l  not severely a f f e c t  t h e  unique performance c a p a b i l i t i e s  of t he  
he l icopter .  

CONCLUDING REMARKS 

Rotary-wing acous t i c s  i s  emerging from a complex, confusing, and o f t en  
cont rad ic tory  era i n t o  a well-founded s c i e n t i f i c  d i s c i p l i n e .  W e  are fo r tuna te  
t o  be involved i n  t h i s  exc i t i ng  emergence of a r ap id ly  evolving technology. 
be l ieve  t h a t  t h i s  change is  primarily due t o  recent  advancements i n  experi- 
mental techniques and philosophy which are r e s u l t i n g  i n  a wealth of new 
information t h a t  i s  pressing our theo re t i c i ans  t o  f ace  cur ren t  t h e o r e t i c a l  
l i m i t a t i o n s  and t o  push forward t h e  f r o n t i e r s  of t h e  t h e o r e t i c a l  treatment. 
The exper imenta l i s t s  must coordinate t h e i r  e f f o r t s  t o  avoid unnecessary 
dupl ica t ion  and t o  maintain a f l e x i b i l i t y  t o  provide v e r i f i c a t i o n  da ta  f o r  
emerging t h e o r e t i c a l  refinements. The Aeromechanics Laboratory, i n  co- 
operation with Ames Research Center, in tends  t o  continue refinement of t h e  

We 
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fu l l - s ca l e ,  i n - f l i gh t  no i se  measurement techniques u t i l i z i n g  t h e  YO-3A air- 
c r a f t  and t o  f u r t h e r  develop t h e  anechoic hover t e s t i n g  f a c i l i t y .  The Ames 
YO-3A a i r c r a f t  w i l l  be maintained as an in - f l i gh t  acous t i c  platform f a c i l i t y  
f o r  f u t u r e  problems i n  low-speed V/STOL no i se  research .  The Army w i l l  
continue t o  u t i l i z e  i t s  t echn ica l  e x p e r t i s e  t o  improve t h e  rotary-wing acous t i c  
technology by a systematic  approach of reviewing and improving t h e o r e t i c a l  
techniques while u t i l i z i n g  s p e c i a l l y  developed experimental  equipment and 
f a c i l i t i e s  made a v a i l a b l e  through t h e  j o i n t  agreement w i t h  NASA. 
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APPENDIX 

SYMBOLS 

airspeed 

ro to r  t h rus t  coef f ic ien t  

diameter of ro to r  

Mach number of advancing blade t i p  

t i p  Mach number i n  hover 

rate of descent 

dis tance from microphone t o  ro to r  center l ine 

f l i g h t  ve loc i ty  

angle of t i p  path plane r e l a t i v e  t o  a l i n e  between the  t a i l  micro- 
phone and the  ro tor  hub 

t i p  path plane angle 

rate-of-descent angle 

advance r a t i o  

ro to r  s o l i d i t y  
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TABLE 1.- HELICOPTER NOISE RESEARCH EFFORTS 

Army in-house 

J o i n t  programs 

Unive r s i t i e s  

Indus t ry  

AARL 
ECOM 
R&T Labs 

Army /NASA 

Cornel l  
M.I.T. 

George Washington U. ] ARO Poly. U. of New York 
U. of Miss i s s ipp i  

Stanford U. 

B e l l  Hel icopters  
Boeing VERTOL - ARO 
UTRL 
RASA 
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HIGH SPEED - BLADE VORTEX TAIL ROTOR 
INTERACTION HIGH SPEED IMPULSIVE 

VORTEX INTERACTION 
MAIN ROTOR WAKE 
TURBULENCE 
BROADBAND 

BROADBAND 

TRANSMISSION 

FUSELAGE PANEL VIBRATION 
BLADE PASSAGE UNSTEADY PRESSURE 

Figure 1.- Helicopter  n o i s e  sources.  
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Figure 2.- Schematic of in-flight far-field measurement technique. 
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Figure 5. - YO-3A "quiet aircraft. 'I 
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Figure 6.- Instrumentation on YO-3A. 

810 



Figure  7.- Waveform shapes from YO-3A f l i g h t  program - pre l imina ry  d a t a .  
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Figure 8.- YO-3A gathering acoustic data on Sikorsky UTTAS. 
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Figure 10.- Waveform comparison - full-scale and model-scale high speed data. 
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Figure 11.- Peak negative amplitude comparison - full-scale and model-scale 
high speed data. 
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Figure 12.- Schematic of the anechoic rotor hover test ing f a c i l i t y .  
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Figure 13.- l /- /-scale UH-1H model ro tor  i n  the anechoic ro tor  hover t e s t i n g  
f a c i l i t y .  
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Figure 14.- Hovering model r o t o r  comparison of theory and experimental 
pressure-time h is tory  in-plane. 
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Figure 15.-  Hovering m6del rotor comparison of peak negative pressure - 
theory and experiment. 
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Figure 16.- Model UH-1H r o t o r  i n t e r a c t i n g  wi th  previous t i p  v o r t i c e s .  


