NASA TM 75564

NASA TECHNICAL MEMORANDUM

WORKING MODEL OF THE ATMOSPHERE AND NEAR PLANETARY SPACE OF JUPITER

V.I. Moroz, ed.

Translation of "Rabochaya Model' atmosfery i Okoloplanetnogo Prostranstva Yupitera," Academy of Sciences USSR, Insititute of Space Research, Moscow, Report PR-282, 1976, pp. 1-52.

(NASA-TM-75564) WORKING MODEL OF THE N79-10984 ATMOSPHERE AND NEAR PLANETARY SPACE OF JUPITER (National Aeronautics and Space Administration) 58 p HC A04/MF A01 CSCL 03B Unclas G3/91. 33902

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 OCTOBER 1978

STANDARD TITLE PAGE

1. Report No.								
<u>NASA TM 75564</u>	2 Government A	ccession No	3 Recipient's Cata	ulog No				
4 Title and Subtitle			5 Report Date					
WORKING MODEL OF TH	<u>October 1</u>	978						
NEAR PLANETARY SPAC	6 Performing Organ							
7. Author(s)								
V.I. Moroz, ed.		8. Performing Organ	nization Report No					
		10 Work Unit No						
9 Performing Organization Name and			11 Contract or Gran					
Leo Kanner Associat		ļ	<u>NASW-3199</u>					
Redwood City, Calif		063	13 Type of Report a	ind Period Covered				
neawood orty, carri	Õruta 94							
12 Sponsoring Agency Name and Addres		······	Translati	.on				
1								
National Aeronautic			14 Sponsoring Agency Code					
istration, Washingt	on, D.C.	20546						
15 Supplementary Notes		— .						
Translation of "Rab	Achara Mo	dell'atmosf	orrationalo	nlonotnoro				
Prostranstva Yupite	mo ¹¹ Acado	achoste	Ery I OROIO	prane unogo				
of Space Descent	Maria D	ILY OF SCHEIR	Jes USSA, I					
of Space Research,	Moscow, R	eport PR-204	2, 1970, pp	1-52.				
-								
		••••••••••••••••••••••••••••••••••••••						
16 Abstract Basic physic:	al charact	eristics of	Jupiter, :	its gravi-				
tational field, atmos	sphere, el	ectromagnet	ic radiatio	on, magne-				
tosphere, meteorite	situation	and satelli	tes are pro	esented in				
numerous tables, grap	ohs and fi	gures and d	iscussed.	Means of				
observation of the a								
phere are presented and analyzed.								
_								
_	Ŭ							
	Ŭ							
	, and a second sec							
17. Key Words (Selected by Author/ch								
17. Key Words (Selected by Author(s))		18. Distribution State	ement					
17. Key Words (Selected by Author(s))			ement					
17. Key Words (Selected by Author(s))		18. Distribution State						
17. Key Words (Selected by Author(s))		18. Distribution State	•ment ied-Unlimit					
17. Key Words (Selected by Author(s))		18. Distribution State						
-		18. Distribution State Unclassif:	ied-Unlimit	ed				
19 Security Classif, (of this report)	20. Security Class	18. Distribution State Unclassif: anf. (of this page)						
-		18. Distribution State Unclassif: anf. (of this page)	ied-Unlimit	ed				

FOREWORD

Jupiter, the largest planet of the solar system, differs sharply from the Earth and terrestrial group of planets in many basic characteristics (mass, rotation, composition, atmospheric and deep interior structure, etc.). Until recently, Jupiter had been studied only by means of ground based telescope astronomy. The flights of Pioneer-10 and Pioneer-11 demonstrated the possibility of the use of space vehicles for this purpose, despite the high level of hard radiation near the planet.

The proposed model summarizes the basic data on structure of the atmosphere and near planetary space of Jupiter, published by the beginning of 1976. In approach to the problem and structure, the work is similar to the models of the atmospheres of Venus and Mars, previously compiled at the Institute of Space Research, Academy of Sciences USSR [1,2]. Several possible alternate versions of the vertical profile of the atmosphere, selected so as to obtain a "bracket" of the basic parameters (temperature and pressure) over a wide range of altitudes, are given. In distinction from the previously published models of the terrestrial group of planets, considerable attention was given to the physical conditions in the near planetary space (radiation and meteorite situation). The model was compiled by the following group of authors: V.I. Moroz (basic characteristics, model of the atmosphere, electromagnetic radiation, meteorite situation, satellites), P.Ye. El'yasberg (gravitational field and satellites), M.N. Izakov and V.S. Zhegulev (model of the atmosphere), G.A. Skuridin, Yu.I. Gal'perin and K.I. Gringayz (magnetosphere and radiation situation).

TABLE OF CONTENTS

۲

Fore	eword .		•••	•			•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	ii
1.	Basic and (Phys		Cł			eri 14	ist	ic	s	۱	• _ <u>-</u>	 		., · 		•	-	 -			1
	1.1.								•	•	•									•	•	1
			netar	•						•										•	•	
	1.2.		ensic				-			•		٠								٠	•	1
	1.3.	Mass	s and	G1	ravi	ta	tic	ona	11	Fί	le]	lđ	٠	٠	•	•	•	٠	•	•	•	2
	1.4.	Rota	ation	L .	• •	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	3
2.	Atmos	phere	÷	•		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	5
	2.1.	Cher	nical	. Co	ompo	si	tic	on		•	•		•		•			•		•	•	5
	2.2.	Vert	tical	. St	truc	tu	re	of	? f	ltn	nos	spł	nei	re	٠			•		•		б
	2.3.	Clou	ıds a	nd	Wir	nds							•		•			•		•	•	11
	2.4.	Elec	ctric	F	ield	ls	•	•		•	•	•	•	•	•	•		•	•	•	•	13
3.	Elect	romag	gneti	.c I	Radi	Lat	io	n														
	3.1.	Dire	ect a	nd	Rei	:le	cte	eđ	Sc	ola	ar	Ra	adi	iat	ic	n						14
	3.2.		rmal																			14
	3.3.		io En								•			•	•	•	•		•	•	•	15
4.	Magne										-											16
-	· ·	-		•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
	4.1.	0	netic							٠	•	•	•	•	•	•	•	•	•	•	•	•
	4.2.	-	netos	-						-		•	-	-					٠	٠	•	18
	4.3.		rgeti Jupi			;ic		s i					_				nei •	e.	•			19
			-				-	-	-	-	-	-			-							-
5.	Meteo:	rite	Situ	lat	ion	•	•	•	٠	٠	٠	•	•	•	٠	٠	•	•	•	•	•	20
6.	Satel	lite	s.	•	•			•	•	•	•	•	•	•	•	٠	•	•	•	•	•	21
Ref	erence	s.		•	•				•	•				•	•		•					23

<u>Page</u>

٠

WORKING MODEL OF THE ATMOSPHERE AND NEAR , PLANETARY SPACE OF JUPITER

V.I. Moroz, ed. Institute of Space Research, Academy of Sciences USSR, Moscow

1. Basic Physical Characteristics and Gravitational Field

1.1. Planetary Motion

Jupiter rotates about the sun in an elliptical orbit, with a $^{\prime}\frac{/4*}{}$ semimajor axis of 5.203 AU and eccentricity 0.0484. The rectangular geoequatorial, heliocentric coordinates and velocity components are presented in [3]. The maximum error of each coordinate of Jupiter corresponding to these data can be assumed to be $3 \cdot 10^{-6}$ AU and, of each velocity component, $3 \cdot 10^{-9}$ AU/day [4].

1.2. Dimensions and Shape

The shape of Jupiter is described by an ellipsoid of rotation. The equatorial radius, polar radius and compression are presented in Table 1. The recommended value of the equatorial radius is based on the results of radiooccultation of the atmosphere of "Jupiter by Pioneer-10 and Pioneer-11 [5], and it is relative-to the 1 atm equipotential level. The value presented in work [5] for the 0.16 atm level was extrapolated downward, by means of the models of the atmosphere presented in section 2.2. The indicated error of ± 30 km includes both measurement errors and indeterminancy in the models of the atmosphere.

The recommended value of the compression was determined as a result of analysis of the Pioneer-10 orbital data [6] and, within

*Numbers in the margin indicate pagination in the foreign text.

the limits of error, it coincides with the value found from the motion of the satellites [7], as well as with the geometric compression, obtained by means of micrometric measurements [8].

The radius of the planet at latitude ϕ is connected with the equatorial radius by the relation

$$R_{\varphi} = R_{e} \left(1 - \varepsilon \sin^{2} \varphi\right), \qquad (1)$$

/5

The values of R_{ϕ} for various latitudes are presented in Table 2.

1.3. Mass and Gravitational Field

In expansion of potential V of the gravitational field of Jupiter by Legendre polynomials, it is sufficient to leave three terms:

$$V(r,\varphi) = \frac{H}{2} \left[1 - I_2 \left(\frac{R_e}{2} \right)^2 P_2(\sin\varphi) - I_4 \left(\frac{R_e}{2} \right)^4 P_4(\sin\varphi) \right],^{(2)}$$

where μ is the gravitational parameter, I₂ and I₄ are the coefficients of the harmonics, R_e is the equatorial radius.

There now are several determinations of the mass of Jupiter from observations of the satellites of Jupiter, small planets and from orbital measurements of space probes (Pioneer-10,11) [6].

In accordance with the recommendations of the International Astronomical Union (IAU), the ratio of the mass of the sun to the mass of Jupiter should be assumed to be 1047.355 with a maximum error ± 0.025 , and the gravitational parameter of the

sun (132712438000 ± 5000)km³/sec². From this, for the ^rgravitational parameter of Jupiter, we obtained

$$\mathcal{\mu} = (126712000 \pm 3000) \cdot \text{km}^3 \cdot \text{sec}_{\overline{\mu}^2}^2$$

For the remaining constants in formula (2), the following values, determined by Anderson et al [6], can be assumed:

$$\vec{I}_{2} = (\vec{I}.4720 \pm 0.0040) \cdot 10^{-2},
 \vec{I}_{4} = (-650 \pm 150) \cdot 10^{-6},
 \vec{R}_{e} = 71398 \text{ KM}.$$
(3)

The value of $R_{\rm e}$ obtained by Anderson differs somewhat from that recommended above (and subsequently used for models of the atmosphere).

The acceleration of gravity depends appreciably on latitude. Centrifugal force makes a significant contribution. The acceleration of gravity for different latitudes is presented in Table 2. For calculations of models of the atmosphere, we will assume

$$g=25 \text{ m/sec}^2$$
. (4)

The change of g with altitude can be disregarded in these calculations.

1.4. Rotation

The observable details on the disc of the planet belong to the cloud layer. However, there are compact and long lasting formations (spots) among them, from which the period of rotation can be determined. Since atmospheric motions, the velocity of which is somewhat different at different latitudes, make a \circ

contribution to the observable rotation effect, the average period determined from the movement of details depends somewhat on latitude. It has been determined that, near the equator $(\pm 12^{\circ})$, the spots have a period of rotation of 9 hours 50 min, but it is close to 9 hours 55 min in the middle latitudes. The periodicity of change in intensity of radio emissions in the decimeter range and the frequency of bursts in the decameter range (see section 3) are close to the period of rotation in the middle latitudes; however, they are not completely consistent.

In connection with this, three systems of longitude are used to designate the coordinates on Jupiter: system I (equatorial), II (for middle latitudes) and III (for radio emission). The corresponding periods are given in Table 3. The zero meridians for these systems were selected arbitrarily, and they are not connected with any definite details. At a time in 1897, July 14.00, Julian day 2414120.0, the central meridian of the planet had a longitude of 43.31° in system I and 96.58° in system II The zero meridions in systems III and II coincided on [9]. 1 January 1957, at zero hours UT [10]. Since there evidently is no solid core in Jupiter, and the thickness of the gaseous atmosphere is over 1000 km in any case (see section 2), the rotation rate probably depends on both latitude and depth. The basic mass of Jupiter, which is in the liquid state, evidently has a period of rotation which corresponds to system The magnetosphere and radiation belts rotate with the III. same period.

The linear velocity of rotation at the equator is presented in Table 3. It exceeds the escape velocity on the Earth. The centrifugal acceleration is about 10% of the gravitational.

The inclination of the equator to the orbital plane is 3° 07'.

17

Because of the small inclination, there are no change of season phenomena on Jupiter.

2. Atmosphere

2.1. Chemical Composition

Spectroscopic observations of Jupiter long ago permitted the detection of hydrogen [11], methane and ammonia [12] in the atmosphere of the planet. Summaries of observational determination of these gases can be found in books [13,14]. Helium [15], acetylene [16], ethane [16], water vapor [17] and phosphine [18] have been added to them in recent years. Absolute determinations of the abundance of various gases in the atmosphere of Jupiter encounter considerable difficulty, because of the fact that the absorption lines form in a cloud medium with poorly known properties. In a number of cases, even relative determinations prove to be difficult. Helium in the lower atmosphere cannot beddetermined at all by direct spectroscopy, because of the absence of absorption lines. Its abundance can be estimated, only from the effect of other gases on the lines and from the luminoscity in the high layers of the atmosphere.

Nevertheless, analysis of observational data, including theoretical calculations of the internal structure, permit the highly likely hypothesis to be offered, that the elementary composition of the atmosphere and interior of Jupiter corresponds to the average cosmic abundances [13;14,19]. Consequently, the basic chemical components are hydrogen and helium.

In distinction from the terrestrial group of planets, the basic mass of matter of Jupiter evidently is not in the solid, but in the liquid state [20,21]. It is highly likely that such elements as oxygen, carbon and nitrogen are uniformily mixed with hydrogen and helium, due to convection in the gas and liquid All these considerations give a basis for adopting the shells. following model of the chemical composition of the atmosphere for subsequent calculations. The basic components are molecular hydrogen and helium, in a ratio which corresponds to the average cosmic abundances (90% hydrogen atoms and 10% helium atoms, according to [22]). Oxygen, carbon and nitrogen are bound primarily in H2O, CH4 and NH3 molecules, and their content is proportional to the average cosmic abundance of O, C and H. A model of the chemical composition of the atmosphere of Jupiter constructed in this manner' is presented in 'Table 4. It is in satisfactory agreement with known spectroscopic estimates. The measured C2H6:CH4 and C2H2:CH4 ratios were used directly for ethane and acetylene. For H2O and NH3, the composition model is suitable, only below the corresponding condensation levels, the location of which depends on the vertical structure and which is noted in Fig. 1. Observation and theory do not completely exclude an increased (compared with the average cosmic distribution) helium content in the atmosphere of Jupiter. The maximum permissible He:H2 bulk ratios evidently do not exceed 1. This ratio was adopted in section 2.2, for calculation of one alternate version of the vertical structure model (model II).

/8

2.2. "Vertical Structure of Atmosphere

In distinction from the terrestrial group of planets, the main bulk of the matter of Jupiter does not differ in chemical composition from the atmosphere. The lower boundary of the atmosphere is determined by the phase transition of hydrogen to a degenerate (metallic) state, which evidently is liquid. This

б

transition occurs at a depth of about 15000 km [20,21,23]. The internal heat flux (comparable in magnitude to the flux obtained from the sun on the surface of the planet) produces high temperatures in the interior of Jupiter, and the mixture is in a supercritical state throughout, above the hydrogen-helium interface.

Observational data on the vertical structure of the atmosphere of Jupiter can be divided into several groups:

1. Determination of the rotational temperature and pressure from the width of the CH4 and NH3 spectral lines. They give values in the range of 150-250 K and 0.5-2 atm (see, for example, [12,13,24]). This level corresponds to the visible surface of the clouds.

2. Spectrophotometry of the thermal emission in the infrared range (λ >5 µm). It shows that the temperature is close to 180° at the 1 atm level, increases downward and decreases upward; at the 0.1-0.2 atm level, there is a minimum (115-120°) and, then, the temperature increases with increase in altitude [25-28]. At wavelengths around 5 µm, where the atmosphere of Jupiter is relatively transparent, brightness temperatures up to 300 K are observed in isolated places, which indicates an increase of temperature at great depths [29]. The wavelength averaged thermal emission rate of the planet is characterized by an effective temperature of around 130 K.

3. Thermal radio emission spectrum. Analysis of the spectrum in the 1.25 cm NH3 line region gives $T\simeq130$ K at the 0.5 atm level [30]. The thermal component of the brightness temperature in the 3-10 cm range evidently increases to several hundred degrees. This indicates an increase in temperature at greater depths (see Section 3.3).

7

4. Photometric observations of star occultation by Jupiter [31-35]. They show that, at the $P\simeq 10^{-6}$ atm level, the temperature is in the range from 140 to 220 K. There probably is an increase in temperature with decrease in altitude below this level.

/10

5. Pioneer-10 and 11 radio occultation observations. These measurements gave a tempeature of several hundred degrees at the 1 atm level, which sharply contradicts the group 1-3 data. The atmospheric profile at the 0.1 atm level basically is not consistent with the infrared spectrum. All this group of results are in great doubt. Part of the disagreements may be removed, by means of allowance for compression [36], which was not done in the initial processing program. It is not excluded that horizontal inhomogeneities in the atmosphere of Jupiter greatly reduce the reliability of the method. Below, we will be forced to disregard the radio occultation results in part of the structure of the lower atmosphere. However, radio occultation has provided qualitatively new information on the ionosphere and upper atmosphere of the planet [38,39]. Above the 10⁻⁶ atm level, the temperature increases with increase in altitude, and it probably reaches an asymptote with a value on the order of 700-800 K. This is significantly higher than in previously proposed models [40,41]. The principal electron concentration maximum $(n_e \gtrsim 10^5 \text{ cm}^{-3})$ occurs at an altitude of about 1000 km. There are several secondary maxima. At an altitude of 3000 km, the electron concentration decreases by an order of magnitude.

There are theoretical calculations of the vertical profile of the atmosphere of Jupiter, in the range from several atmospheres to \sim l mb, which take account of the absorption of infrared radiation in the H₂ and NH₃ bands, solar radiation in the

8

CH4 bands and, also, convection in the lower layers [26,27,37]. They give better agreement with the observational data of groups 1-3. It seems likely that, below the 1 atm level, there is an adiabatic gradient at all depths. However, detailed calculations, which take account of the change in opacity with depth, apparently have not been carried out.

The basic parameters of three models of the vertical structure of the atmosphere we have proposed are given in Table 5. They take into account the data listed above and their scatter. T(P) curves for these models are presented in Fig. 1. Model I (average or basic) gives the most likely variation of the Model II (temperature minimum) gives parameters with altitude. an upper limit of density in the lower atmosphere and a lower limit in the high layers. Model III (temperature maximum) gives a lower limit of density in the lower atmosphere and an upper boundary in the high layers. The average molecular weight in models I and III μ =2.28 and μ =3.00 in model II. Below the P=1 atm level, a dry adiabatic gradient was used in models I and III. A gradient equal to half the dry adiabatic with the corresponding composition was used in model II.

The H_2O and NH_3 condensation levels are noted in Fig. 1. Ammonia and water clouds are located above these levels. Nevertheless, the adopted atmospheric composition permits the effect of the heat of condensation on temperature to be disregarded in the first approximation, since the concentration of the condensing components is rather small.

Vertical profiles of the atmosphere are presented in Tables 6-8 and Figs. 2 and 3, for the three models listed (temperature, <u>pressure and density vs. altitude</u>). P vs altitude was calculated from given P(T) profiles, by means of the barometric formula

9

$$P_{2} = P_{1} \exp\{-\int^{z_{2}} dz/H\}, \qquad (5)$$

where P_1 and P_2 are the pressures at the boundaries of some layer of the atmosphere with altitudes Z_1 and Z_2 ,

$$H = \frac{RT(z)}{g}, \qquad (6)$$

R is the gas constant.

In the intervals where T(P)=const (isothermal sections), formula (4) is reduced to the form

$$P = P_0 \exp\{-\frac{z}{H}\}, \qquad (7)$$

/12

in the intervals where T(Z) changes with altitude, the nonlinear approximation

$$T = T_0 (1 + \alpha z), \qquad (8)$$
$$a = \frac{dT}{dz}$$

is used, where

it is the temperature gradient, and formula (4) is reduced to the form

$$P = P_o\left(\frac{T}{T_o}\right)^{\mathcal{X}}, \qquad (9)$$

where the polytropic exponent

$$\mathcal{X} = \frac{9}{R \cdot \sigma T/\sigma z}$$
(10)

In this case, if the atmosphere is in an adiabatic state,

$$\frac{dT}{dz} = -\frac{g}{c_{\rho}}; \qquad (11)$$

$$\mathcal{Z} = \frac{C_{P}}{R} \tag{12}^{-1}$$

The heat capacity values were taken from handbook [42]. The dependence of the H2 heat capacity on temperature was taken into consideration.

It was assumed that the turbopause was located at an altitude. where the numerical concentration $n=3\cdot10^{13}$ cm⁻³ (P $\approx10^{\pm6}$ atm). This corresponds to a turbulent mixing coefficient DT=10⁶ cm²·sec⁻¹ (according to [32], DT=5 $\cdot10^{5}$ cm²·sec⁻¹). In a layer approximately 100 km thick above the turbopause, the helium content becomes negligibly small with increase in altitude, and the average molecular weight above $\bar{\mu}=2$. The degree of 5 dissociation of molecular hydrogen is assumed to be negligibly small at all altitudes.

2.3. Clouds and Winds

The highest directly observable story of clouds in the atmosphere of Jupiter evidently forms, due to the condensation of NH₃ (above the 0.6 atm level in model I). A story of H₂O clouds should be located below (above the 4 atm level in model I). It is proposed [43] that there may also be clouds of a water solution of NH₃ and solid NH₄SH particles in the atmosphere of Jupiter. A diagram of the altitude distribution of clouds of various natures, calculated for chemical composition models which differ little from that used in the present work, is presented in Fig. 4.

To explain the red color of the upper story of clouds, it must be assumed that, besides NH3 crystals (transparent in the visible region of the spectrum), there is some coloring impurity in them. A large number of hypotheses has been proposed, to explain the cloud color (see [14]), but it is not possible to

assign a serious preference to a single one. One recent hypothesis explains the cloud color by a phosphorus particle impurity [44].

Dark reddish bands (sometimes called belts) cross the disc of Jupiter. The light intervals between the bands are called zones. The bands and zones extend along the parallels, which is explained by the predominantly zonal wind direction in the atmosphere.

The general pattern of the distribution of the bands and zones, their type and contrast and fine structure change over The primary details and their nomenclature are shown time. in Fig. 5. The light equatorial zone (E.Z.) extends along the equator. A fine narrow dark band sometimes is noticeable in the middle of it. Dark bands are located on both; sides of the Equatorial Zone: South (S.E.B.) and North (N.E.B.) Equatorial. The South Equatorial Band consists of two components, as a rule. The other bands also frequently are broken down into two components. The North Tropical Zone (N.Trop.Z.) is located, north of the N.E.B., the North Temperate Band (N.T.B.) beyond it and still_further north, the N:N.T.B., N.N.N.T.B., etc. bands sometimes are distinguished. The intervals between them are called the N.N.T.Z., N.N.N.T.Z, etc. The contrast of the bands and zones decreases with increase in latitude and, near 45°, th polar region begins, which has a more or less uniform color.

/14

The bands and zones in the Southern Hemisphere form a similar structure; however, there are some characteristic features here. A dark oval object, the Great Red Spot, is located in the South Tropical Zone, and the southern edge of the S.E.B. bends around it, forming a "gulf." The red spot sometimes fades to total invisibility, but the gulf always remains noticeable.

12

The dimensions of the Great Red Spot are approximately 40000 x 15000 km.

The structure described is typical, but it is subject to changes in individual permods. There are "activity cycles," which are characterized by periodic changes in contrast, frequency of appearance of fast moving clouds and changes in location of the belts and zones.

The numerous atmospheric currents, which occupy more or less definite latitude intervals, are traced from the cloud movement. Velocity discontinuities at the edges of these currents reach 100 m/sec. The bands usually are located on the boundaries between the currents. An intense convection maximum evidently occurs here, and the upward transport of the coloring particles (phosphorous, for example,) occurs here more intensely; a dark band forms as a result. The Great Red Spot probably is a gigantic cyclone [45].

2.4 Electric Fields

Experimental data are lacking on the electric fields in the atmosphere of Jupiter. By analogy with the atmosphere of the Earth, the presence of separate sections, with intensities up to $3 \cdot 10^4$ W/m, several kilometers in size for several hours, must be assumed in the troposphere (below the 0.2 atm level) [46]. The field intensity on a scale on the order of a few centimeters, for a few seconds before the occurence of lightning, can reach 10^6 W/m.

There is a hypothesis, according to which the formation of acetylene and ethane in the atmosphere of Jupiter is connected <u>/15</u>

with electrical discharges in the atmosphere [47]. In this case, the frequency of lightning reaches α

$$\mathcal{N} \simeq 5 \mathrm{EM}^{-2} \mathrm{Hour}^{-1}, \qquad (13)$$

four orders of magnitude greater than on the earth.

3. Electromagnetic Radiation

3.1. Direct and Reflected Solar Radiation

The solar constant at the average distances of Jupiter from the sun (5.2 AU) is

$$Q = = 151.0 \text{ W/m}^2$$
. (14)

Data on the monochromatic illumination E_{λ} produced by the sun at the same distance, the geometric albedo of Jupiter p_{λ} as a function of wavelength, and the average brightness of Jupiter B_{λ} at different wavelengths are presented in Table 9 [16,17]. The sharp fluctuations of a function in the $\lambda > 1 \mu m$ region are caused by powerful CH4,NH3 and H2 absorption bands. The average brightness was found from the formula

$$B_{\lambda} = \frac{E_{\lambda} p_{\lambda} \cos 45^{\circ}}{\pi}$$
(15)

The reflectivity of the cloud layer of Jupiter obeys Lambert's law, in the first approximation. Typical contrast values of the dark and light formations in the cloud layer of Jupiter are presented in Table 10 [48].

3.2. Thermal Infrared Radiation

The effective infrared radiation temperature of Jupiter [13,14, /16 49] is

$$T_{e} = I28 \pm 5 \text{ K}.$$
 (16)

٦,4

It corresponds to the integral brightness of the thermal radiation of the planet

$$B = (4.8 \pm 0.8) \cdot 10^{-4} \text{ W} \cdot \text{cm}^{-2} \cdot \text{ster}^{-1}.$$
 (17)

In the first approximation, T_e and B can be considered independent of latitude, longitude and time of day.

In a narrow wavelength section around 5 μ m, the brightness temperature T_B reaches 200 and even 300 K [']in individual areas of the planet, the horizontal dimensions of which can exceed 10000 km [29].

3.3. 'Radio Emission

Radio emission of three types is observed: a. thermal; b. synchrotron; c. sporadic.

The thermal radio emission forms in the troposphere, and its intensity depends on its temperature and opacity. The brightness temperature of the troposphere is about 150 K in the 0.8-3 cm range, and it probably increases to 600 K at 10 cm. Beginning at 3 cm and at longer wavelengths, the synchrotron radiation intensity of the radiation belts becomes greater than the thermal radiation. The synchrotron radiation is the bremsstrahlung of high energy electrons captured in the magnetic field. The synchrotron radiation flux on the Earth can be considered independent of wavelength in the first approximation and equal to

$$F_{\rm V} = 7 \cdot 10^{-26} \ \text{W} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}. \tag{18}$$

The brightness temperature

$$T_{\rm B} \simeq 5 \cdot 10^3 \, \text{\%}^2,$$

where λ is the wavelength in meters. The synchrotron radiation $\frac{17}{11}$ intensity is almost constant over time. The radiation belts are

15

the source of the synchrotron radiation (Section 4.2). In calculation of T_B , it was assumed that the source is a 6 R_e diameter, 2 R_e thick disc.

At wavelengths of over 7.5 m, sporadic radio emission is predominant. It is a sequence of noise storms, which last from several minutes to several hours. They consist of short bursts, the duration of which varies from milliseconds to minutes, spectral width 0.5 mHz and total energy of up to 4.10° W.sec. The radiation is directional. The frequency of noise storms is on the order of one day (in observations from the Earth). The decameter emission evidently is generated, as a result of plasma oscillations in the ionosphere and plasma captured by the inner part of the radiation belts. The probability of the occurence of noise storms is different at different longitudes (minimum at 0-90° longitudes in longitude system III). There is a strong correlation of noise storm frequency with the orbital position of the Jupiter satellite Io.

4. Magnetosphere

Observations of the radio emission of Jupiter in the decimeter range more than 10 years ago showed that Jupiter has a strong magnetic field, in which high energy particles are trapped. The trapped high energy particles form radiation belts similar to those of the Earth, but much more powerful, both in geometrical dimensions, and in particle concentrations. Direct measurements of the magnetic field and charged particle fluxes in the vicinity of the planet were conducted by the Pioneer-10 and Pioneer-11 spacecraft. They basically confirmed radioastronomy results and significantly refined them in detail. However, it should be noted that a single model of the magnetosphere of Jupiter, which takes critical account of both the radioastronomy and all available

/18

16

direct measurements, has not yet: been developed. Even on such a more or less narrow question as the results of direct magnetic field measurements, there are significant conflicts between different groups of investigators.

4.1. Magnetic Field

In the first approximation, the magnetic field of Jupiter, (on the basis of analysis of both Pioneer-10 and Pioneer-11 data), can be represented as a simple dipole field, with moment $1.3 \cdot 10^{30}$ G·cm³, inclined to $10.5\pm0.6^{\circ}$ at longitude $233\pm8^{\circ}$ (system III) and shifted by 0.16 ± 0.09 R_e towards the point with latitude $9\pm8^{\circ}$ and longitude $169\pm16^{\circ}$. The magnetic moment of Jupiter is 4 orders of magnitude greater than the magnetic moment of the Earth. The field intensity at the magnetic equator (at the P=1 atm;level) is

$$H \simeq 4 G. \tag{19}$$

The quadrupole and octupole moments are 20 and 15%, respectively (which is somewhat greater than on the Earth). This model can be used out to a distance of approximately 10 Re. For greater distances, the field of the magnetospheric currents and magnetopause currents must be taken into account and, for a more accurate calculation of the field at the surface of the ______ planet and within 1-2 radii above it, the quadrupole and octupole terms, as well. A quantitative model of the magnetic field of Jupitér has been published, which contains 23 terms of expansion by spherical harmonics [50], which describe the measurements well, within 20 Re.

At greater distances, the magnetic field of the electric c⁻ currents in the magnetosphere and magnetopause, which are variable

17

and still inadequately determined, play a definite part. The qualitative pattern is that these currents cause a considerable increase in field intensity, so that the dimensions (radius) of the magnetosphere approximately double' due to these currents, to ~ 100 R_e, and the configuration of the currents, in the first approximation, corresponds to a thin ring around the axis of rotation of the planet, distorted by the "bumpiness" of the inclined magnetic dipole.

The magnetopause is a more or less spherical surface, with a radius on the order of 100 R_e , which easily changes this dimension, as a result of variations in the solar wind pressure. Fluctuations of ;tens of Jupiter radii are typical, and compression of the magnetopause to ~ 50 R_e , i.e., by half, has been observed.

<u>4.2.</u> Magnetospheric Plasma

The proton component of the plasma in the 100 eV-4.8 keV energy range, has been recorded aboard Pioneer-10 in the magnetosphere of Jupiter, by means of electrostatic analyzers [51].

It turned out that four characteristic regions can be distinguished from the plasma data: "<u>plasmasphere</u>," inside the orbit of the Jovian satellite Tö, at a distance of $\sim 6 R_e$; "<u>ring current</u>," in the 8-15 Rê region, which is in the form of a plasma filled torus, which then is flattened to a thickness of 2 Re in the equatorial plane and forms the "<u>plasma layer</u>"; between the plasmasphere and the ring current, there is a gap with radial dimensions $\sim 1-2 R_e$, the proton "<u>sporadic flux</u>" zone. These four regions are characterized by the plasma parameters presented in Table 11. It should be noted that all plasma measurements in the magnetosphere were carried out, against a background of strong hard radiation effects (gee following section), they give rise to doubt, and they require further verification.

4.3. Energetic Particles in the Magnetosphere of Jupiter

From the point of view of the energetic particle distribution in it, the magnetosphere of Jupiter can be divided into three regions.

At 50-100 R_e, there is an energetic particle quasi-capture or diffusion region, or <u>outer magnetosphere</u>. Here, electron and proton fluxes of 10^2-10^4 cm⁻²·sec⁻¹ are recorded, with energies $E_e \sim 0.4-1$ MeV, $E_e > 6$ MeV and $E_p \sim 1.2-2.15$ MeV. Periodic variations of flux intensities are observed, with a period of 10 hours. The energy spectra have the form $E-\gamma$, where $\gamma=1.2-$ 2 for electrons and $\gamma=4$ for protons [52].

At 25-50 R_e, the nature of the particle distribution changes. Here, the particles evidently begin to be entrained by the rapid rotation of the planet. The shape of the energy spectrum changes from power to exponential [53]. According to the data of [54], however, the proton spectrum has the form $E^{-\gamma}$, with γ =1.9 in this region. The fluxes of protons with energies of 0.5-2.1 MeV and 1.2-2.1 MeV are $\sim 10^3$ - 10^4 cm⁻²·sec⁻¹ in this region and, of electrons with energies 0.1-2 MeV, 10^4 cm⁻²·sec⁻¹. Finally, there is an <u>inner_region</u> in the magnetosphere, <20 R_e in size, in which stable particle capture by the magnetic field is observed, the 10 hour periodic variations in particle intensity are lacking, and the particle fluxes are 2-3 orders of magnitude greater than in other regions of the magnetosphere.

According to [54], the spectrum in the 13-25 Re region has the form $E^{-\gamma}$, in which $\gamma=2.6$. The flux intensity does not depend on magnetic <u>Matitude</u>, and the angular distribution is basically isotropic.

The characteristics of the energetic particles and their distribution in the inner region of the magnetosphere, at <20 R_e and in the core, at <6-8 R_e , are presented in Table 12 [52-57]. The flux distribution of electrons with energies of over 21 MeV, according to [55], are presented in Fig. 6.

It should be noted that the hard radiation intensity in the magnetosphere of Jupiter is 1.5-2 orders of magnitude greater than the fluxes of electrons and protons of the corresponding energies in the magnetosphere of the Earth, and that the extent of the radiation belts greatly exceeds the extent of the terrestrial radiation belts. The radiation level inside the magnetosphere of Jupiter is very high, especially in the region of the magnetic equator. Pioneer-10 received a radiation dose of about 500000 rad (1000 times more than the lethal human dose).

5. Meteorite Situation

Measurements of the meteorite concentrations near Jupiter and in the interplanetary space between the Earth and Jupiter were carried out by Pioneer-10 and 11 [58-61]. Models of the meteorite situation, constructed on the basis of analysis of these data, are presented in Table 13.

A region of increased meteorite concentration should be expected near Jupiter [62], the existence of which was confirmed for small particles (10^{-5} cm), by direct measurements with the

20

<u>/21</u>

use of micrometeorite sensors [58-61]. The zone of increased concentration evidently is a disc shaped region about $2 \cdot 10^7$ km in diameter and from 2 to $5 \cdot 10^6$ km thick (the planet in the center of the disc). Models of the meteorite situation beyond this region and inside it (zones A and B, respectively), are given separately in Table 13.

In the central portion of zone B, Pioneer-10 noted a two orders of magnitude increase in the impact rate (for $10^{-4}-10^{-3}$ cm and $\sim 10^{-9}$ g particles). This increase evidently is explained by a simultaneous increase in concentration and average encounter velocity. For zone B, the Table 13 data can be considered as only the very first, to the highest degree estimated approximation. They are of the least certain nature for large bodies (10^{-2} cm or more). Here, the spectrum has the same dimensions as in zone A, although experimental data are lacking.

The primary_direction of movement in zone A is straight line (probably, at least 90% of the meteorites move in a straight line). In zone B, the fraction of meteorites in retrograde motion apparently is greater than in zone A.

6. Satellites

At the time the models were compiled, orbital data of 12 Jovian satellites were known. A report on the discovery of a thirteenth satellite has been received. A summary of the Jovian satellite orbits and dimensions is given in Table 14.

Four satellites, Io, Europe, Ganymede and Callisto, are close to the moon in size, and one of them (Io) undoubtedly has an atmosphere, and there is a great probability that Ganymede has one.

The values presented in Table 15 should be taken as the average orbital elements of the Jovian satellites at time T reckoned in days from 0.5 UT January, epoch 1950. They were taken from work [64]. The following designations were adopted in the Table:

i. angle of inclination of satellite orbit to orbital plane of Jupiter, epoch 1950.0;

 $\hat{\omega}$. argument of the pericenter;

 Ω . Longitude: of the ascending node of the satellite orbit in the orbital plane of Jupiter, reckoned from the equatorial equinox of the earth to the ascending node of the orbit of Jupiter at the equator of the Earth and, then, in the orbital plane of Jupiter (the orbital plane of Jupiter, equator of the Earth and equinox of the Earth correspond to the 1950.0 epoch); λ is the mean longitudine of the satellite, equal to $\lambda = \Omega + \omega + v$, where v is the true anomaly. Besides the orbital elements, the value of gravitational parameter μ is given in Table 15.

/21

Data on the physical characteristics of the four largest Jovian satellites are presented in Table 16.

References

- 1. Moroz, V.I., "Working Model of the Atmosphere of Venus," Institute of Space Research Preprint Pr-162, 1974.
- Moroz, V.I. (ed), "Working Model of Atmosphere and Surface of Mars," Institute of Space Research Preprints Pr-240 and Pr-241, Moscow, 1975.
- 3. "Supplement, to Astronomical Annual," Nos. 20-21, Leningrad, 1974.
- 4. Oesterwinter, Cl., and Ch.J. Cohen, <u>Celestral Mechanics</u> <u>5</u>, 317 (1972).
- 5. Kliore, A., G. Fjeldbo and B.L. Seidel et al., <u>Science</u> 188, 474 (1975).
- 6. Anderson, J., G.W. Null and Wong, J.G.R. 79, 3661 (1974).
- 7. Brauer, D. and J.M. Clemens, Planety i sputniki [Planets and Satellites], G. Kuiper, and B. Middlehurst (ed), Foreign Literature Publishing House, Moscow, 1963.
- 8. Dollfus, A., <u>Icarus 12</u>,101 (1970).
- 9. Sharonov, V.V., <u>Pripoda planet</u> [The nature of the Planets], Fizmatgiz Press, 1957.
- 10. Galle, R.M., <u>Planety i sputniki</u> [Planets and Satellites] Foreign Literature Publishing House, Moscow, 1963.
- 11. Kiess, C.C., C.H. Corliss and H.R. Kiess, <u>Astrophys. J</u>. <u>132</u>,221 (1960).
- 12. Wildt, R., Veroff. Univ. Sternwarte Göttingen 22,(1932).
- 13. Moroz, V.I. Fizika planet [Physics of the Planets], Nauka Press, Moscow, 1967.
- 14. Teifel', V.G. (ed), <u>Fizicheskiye kharakteristiki planet-gigantov</u> [Physical Characteristics of the Jovian Planets], Nauka Kaz. SSR Press, Alma-Ata, 1971.
- 15. Judge, D.L. and R.W. Carlson, Science 183,317 (1974).
- 16. Ridgway, S.T., <u>Astrophys. J.</u> 187, L41 (1974).

- 17. Treffers, R., H.P. Larson, U. Fink and T.N. Gautier, <u>AAS Division for Planetary Sciences</u>, 6 Ann. Meet: 17-21 <u>Feb 1975</u>, p. 17.
- 18. (Ridgway, S.T.), Sky and Tel. 50,215 (1975).
- 19. Owen, T., Science 167,1675 (1970).
- 20. Zharkov, V.N., V.P. Trubitsyn and L.V. Samsonenko, <u>Fizika</u> Zemli i planet [Physics of the Earth and Planets], Nauka Press, Moscow, 1971.
- 21. Hubbard, W.B., Astrophys. J. 162, 687 (1970).
- 22. Allen, K.U., <u>Astrofizicheskie velichiny</u> [Astrophysical Quantities], Foreign Literature Publishing House, Moscow, 1960.

/25

- 23. Zharkov, V.N., <u>Vnutrenneye stroyeniye Zemli, Lúny i planet</u> [Internal Structure of the Earth, Moon and Planets], Znaniye Press, Moscow, 1973.
- 24. Lacy, J.H., A.T. Larrabee, E.R. Wôllman et al., <u>Astrophys.</u> J. <u>198</u>,L145 (1975).
- 25. Gillett, F.C., F.J. Low and W.A. Stein, <u>Astrophys. J.</u> <u>157</u>, 925 (1969).
- 26. Hogan, J.S., S.I. Rasool and Th. Encrenaz, J.A.S. 26,898 (1969).
- 27. Wallace, L., M. Praether and M.S. Belton, <u>Astrophys. J.</u> <u>193</u>,481 (1974).
- 28. Houck, J.R., J.B. Pollack, 'D. Schauk et al., <u>Science</u> <u>189</u>, 720 (1975).
- 29. Westphal, J.A., <u>Astrophys. J.</u> 188,2, 112 (1974).

30. <u>Gulkis</u>, S., M.J. Klein and R.L. Poynter, <u>IAU Symp.</u> 65, 367 (1974).

- 31. Taranoga, O.G., Astron. zh. 52,380 (1975).
- 32. Sagan, C., J. Veverka et al., Science 185,901 (1974).
- 33. Rages, K., J. Veverka, L. Wasserman and K.C. Freeman, <u>Icarus</u> 23,59 (1974).

- 34. Vapillon, L., M. Combes and J.L. Lecacheux, <u>Astron. and</u> <u>Astrophys. 29</u>,135 (1973).
- 35. Hubbard, W.B., R.E. Nather, D.S. Evans et al., <u>A.L.</u> <u>77</u>, 41 (1972).
- 36. Hubbard, W.B., D.M. Hunten and A. Kliore, <u>Geophys. Res. L.</u> 2,265 (1975).
- 37. Trafton, L.M. and P.H. Stone, Astrophys. J. 188,649 (1974).
- 38. Fjeldbo, G., COSPAR 18th plenary meeting, Varna, 1975.
- 39. Hubbard, W.B. and J.R. Jokipii, Sky and Tel. 50,212 (1975).
- 40. Shimizu, M., Icarus 14,273 (1971).
- 41. Capone, L.A. and S.S. Prasad, Icarus 20,200 (1973).
- 42. Vargaftik, N.B., <u>Spravochnik po teplofizicheskim svoystvam</u> <u>gazov i zhidkostey [Handbook on Thermophysical Properties</u> of Gases and Liquids], Nauka Press, Moscow, 1972.
- 43. Lewis, J.S., <u>Icarus</u> 10,365 (1969).
- 44. "Red coloring on Jupiter," Sky and Tel. 50,374 (1975).
- 45. Golitsyn, G.S., <u>Vyedenie v dinamiky planetnykh atmosfer</u> [Introduction to the Dynamics of Planetary Atmospheres] Gidrometeoizdat Press, Leningrad, 1973.
- 46. "Nasa Space Vehicle Design [Criteria," SP 8069, 1972.
- 47. Bar-nun Akiva, Icarus 24,86 (1975).
- 48. Teýfel', V.G., <u>Atmosfera planety Yupiter</u>, [Atmosphere of the Planet Jupiter], Nauka Press, Moscow, 1969.
- 49. Ingersoll, A.P., G. Münch, G. Neugebauer et al., <u>Science</u> <u>188</u>,472 (1975).
- 50. Smith, E.J. et al., Science 188,451 (1975).
- 51. Frank, L.A., K.L. Ackerson, J.M. Wolfe and J.D. Mihalov, "Observations of plasmas in the Jovian magnetosphere," Preprint University of Iowa 75-5, Jan. 1975.
- 52. Trainor, J.H. et al., J. Geoph. Res. 79 3600 (1974).
- 53. Simpson, J.A. et al., J. Geoph. Res. 79,3522 (1974).
- 54. Van Allen, J.A. and D.N. Bauer, J. Geoph. Res. 79,35590(1974).

- 55. Van Allen, J.A., B.A. Randoll et al., Science 188,459 (1975).
- 56. Fillius, R.W. and C.E. McIlwain, J. Geoph. Res. 79,3589 (1974).
- 57. Fillius, R.W. et al., Science 188,465 (1975).
- 58. Morrison, D. and D.P. Cruikshank, Space Sci. Rev. 15,641 (1974).
- 59. Soberman, R.K., S.L. Neste and K. Lichtenfeld, <u>Science</u> 183, 320 (1974).
- 60. Kinard, W.H., R.L. O'Neal, J.M. Alvarez and D.H. Humes, Science 183,321 (1974).
- 61. Humes, D.H., J.M. Alvarez, W.H. Kinard and R.L. O'Neal, Science 188,473 (1975).
- 62. di.Benedetto, F., Planet. Space Sci. 21,1605 (1973).
- 63. Lemekhova, E.N., <u>Byull. ITA AN SSSR 14</u> 3, (1975).
- 64. Morrison, D. and D.P. Cruikshank, Space Sci. Rev. 15,641 (1974).

OF JURITE	CR
Радиус экваториальный R _e , км ^а Радиус полярный R _p , км ^b Скатие єс	71455 ± 30 66832 ± 30 0.0647 ± 0.0001
Отношение массы Солнца к ^d массе планеты	1047_355 <u>+</u> 0,025
Macca, Kr ^e	I.90I.10 ²⁷ I.33
Средняя плотность, г.см ⁻³ f	\$\$ \$\$

TABLE 1. DIMENSIONS, MASS AND DENSITY

Key: a. Equatorial radius Re, km
b. Polar radius Rp, km
c. Flattening e
d. Ratio of solar mass to mass of planet
e. Mass, kg
f. Average density, g.cm⁻³

TABLE 2. DISTANCE TO CENTER OF PLANET AND ACCELERATION OF GRAVITY AT P=1 ATM EQUIPOTENTIAL LEVEL VS. LATITUDE*

^а Широта У	^b Расстояние до центра планеты . R _у ,км	с Ускорение силы тяжести д /жж м/сек ²
0	71455	22.60
10	71319	22,73
<u>2</u> 0	70912	23,13
30	70297	23,75
40	69 54 7	24.55
50	68740	25,45
60	67989	26,36
. 70	67375	27,20
80	66975	27.90
90	66832	28.38

*Adopted nominal equatorial radius $R_e=71455$ km. **With rotation taken into account

- Key: a. Longitude
 - b. Distance to center of planet
 - c. Acceleration of gravity, $m \cdot \sec^{-2} **$

1Линейная скорост вращения на эква Ъ :cаСистема Период Область применения orcuera Tope, KM/cend долгот ľ ł, 9 50 30.003 12.38 1. Оптический диапазон видимая поверхность облаков, $\varphi < 12^{\circ}$ 12⁰ 12,27 40,632 9 55 11 $\phi >$ To ze, 9^h 55^m29[°].37 12.28 111 Радиодиапазон, магнитосфера

TABLE 3. PERIOD OF ROTATION

Key: a. Longitudê system

b. Applicable region

c. Period

d. Linear velocity of rotation at equator, km.sec-1

e. Optical range, visible surface of clouds,

f. Same,

g. Radio range, magnetosphere

а Газ	^b Объемное содерхание, %	
^с Водород H ₂ ^d Гелий Не ^e Метан CH ₄ ^f Ацетилен C ₂ H ₂ ^g Этан C ₂ H ₆ ^h Аммиак √H ₃ ⁱ Водяной пар H ₂ 0 j Фосфин PH ₃	$86^{/*}$ $14^{/*}$ 0.04 $\sim 2 \cdot 10^{-6}$ $\sim 10^{-4}$ 0.06 0.12 $/**$	1

TABLE 4. MODEL OF CHEMICAL COMPOSITION OF ATMOSPHERE (GASES POSITIVELY DETECTED SPECTROSCOPICALLY)

*In one model of atmosphere (II, see Tables 5 and 8), 50% H2 and 50% He are assumed.

**There is qualitative identity [21] and no quantitative estimates to time of compilation of model.

- Key: a. Gas
 b. Volumetric content, %
 - c. Hydrogen
 - d. Helium
 - e. Methane
 - f. Acetylene
 - g. Ethane
 - h. Ammonia
 - i. Water vapor
 - j. Phosphine

	Service Street Street Street Street Street Street				-		Construction & a Constant (Constant VC) Constant and Same Same American Constant Constant Constant
a _{stano} me	1 .	Среджий		d Teunep	Средомий гради-		
^а Модель	OO DEMY	молеку- лярный	ма уровне	Тамининум 18	Maspahama	hana pado an has	ohr hommen bland Multinities M
1	•	nec, nc	h-200 JL 67,7X,77,1	erparona∝ yue (P≈0,1arm	g g	(р « 10 ^{тб} мб	1
ייאנגערעניינערעיניינערעעניייניייייייייייייי	S	and a state of the	Contraction in the second s	(L' ~ O s Lavring	B States	L. J M. W. W. W. W.	۲
1. Средняя	86% H ₂ ,14% He	2,28	180	120	160 ···	600	222
11. Минималь- ная по Т (максималь- ная по р в тропосфере)	50% H2,50% He	a 3,00	150	110	130	400	1.6
111. Максималь ная по Т (минималь-							
ная по 9 в тропосфере)86% H ₂ ,14% H	e 2.28	220	125	260	800	2.2
Key: a. Model b. Composi c. Average d. Tempera	ition by volume e molecular wei ature, ^A K	ght,	f. M: g. Me h. Ti	t P=l atm le inimum at st esosphere hermosphere verage tempe gradient in	ratopause	يا. Mi م ایا. Ma	verage inimum T (maximum o in troposphere) aximum T (minimum o in troposphere)

4

TABLE 5. MODELS OF ATMOSPHERE_OF JUPITER: BASIC PARAMETERS

TABLE 6. MODEL 1:

CHEMICAL COMPOSITION: 86% H₂, 14% He; $\mu = 2,28, R_e = 71455$ KM

R _e ,km	z, kn	T, K	P, atm	pskg/m ³	
70755	700	1672,4	1075	17,62	
70805	-650	1569,0	869,4	15,18	
70855	600	1465,7	694,7	12,99	
70905	-550	1362,4	545,0	10,95	
70955	-500	1259,0	419,9	9 ₉ 14	
71005	-450	1155,6	316,6	7,51	
71055	-400	1052,3	232,3	6,05	
71105	-350	949 <u>,</u> 0	164,9	4,76	
71155	-300	845,6	112,6	3,65	
71205	-250	736 ₉ 8	72,95	2,71	
71255	-200	627,9	44,15	1,93	
71275	-180	584,4	35,26	1,65	
71295	-160	540,8	27,60	1,40	
71315	-140	497,3	21,23	1,17	
· 71335	-120	453,7	15,92	9,62•10 ⁻¹	
71355	-100	410,2	11,59	. 7,74	
71365	-90	387,2	9,770	6,91	
71375	-80	364,2	8,147	6,13	
71385	70	341,1	6,697	5,38	
71395	-60	318,1	5,445	4,69	
71405	-50	295,1	4,355	4 ₉ 04	
71415	-40	272,1	3,426	3,45	
71425	-30	` 249	. 2,629	2,89	
71435	-20	226	1,969	2,39	
. 71445	-10	203	1,432	1,93	

ORIGINAL PAGE IS

TABLE 6 (continued) OF POOR QUALITY

R _c , 8Pi	z, km	T ₂ K	P, atm	Po kg/m ³
71455	O	180	1,000 .	1,52
71465	10	163,9	6 ₂ 717•10 ^{~1}	1,12
71475	20	147,8	4,327 -	8,02.10-2
71485	30	131,7	2,651	5,52
71495	40	119,7	1,538	3,52
71505	50	128,3	8,861.10 ⁻²	1,89
71515	60	137,0	5,257	1,05
71525	70	145,6	3,247	6,10.10-3
- 71535	80	-154,3	2,042	3,63
71545	90	160	1,348	2,31
71555	100	160	5,723-10-3	9,80-10-4
, 71575	120	160	2,430	4,16
71595	140	160	1,031	1,76
71615	160	160	4,381010-4	7,50.10-5
71635	180	4 160	1,861	3,19
71655	200	160	7,900·10 ⁻⁵	1,35
71705	250	160	9,281°10 ⁻⁶	1,59°10 ⁻⁶
71755	300	160	1,090	1,867.1077

[Translator's note : commas in tabulated figures are equivalent to decimal points.]

R _e , KM	Z , KM	T, K	Р(H ₂),атм	ρ (H ₂), ^{kg} _{M3}	P(He),arm	ρ.(He), M ³	P(H ₂ +Ho), atm	(H ₂ +He)م
71755	300	160	9,374•10 ⁻⁷	1,408°10 ⁻⁷	1,526°10 ⁻⁷	4,585°10 ⁻⁸		1,87•10
71774	319	160	4,592.	6,90°10 ⁻⁸	3,661•10 ⁻⁸	1,10	4;958•10 ⁻⁷	8.00.10
71800	· 345	180,1	1,824	2,43	5,772°10 ⁻⁹	1,54°10 ⁻⁹	1,882	2,58
71855	400	261,6	4,089-10-8	3 , 76∘ุ10 ^{−9}	2,796°10 ⁻¹⁰	5,14.10-11		3,81.10
71905	450	335,6	1,488	1,06	3,701.10-11	5,30°10 ⁻¹²		1,06
71955	500	409,7	6,618•10 ⁻⁹	3,88°10 ⁻¹⁰	7,324°10 ⁻¹²	8,59°10 ⁻¹³	6,625°10 ⁻⁹	3,89°10
72005	550	483,8	3,367	1,67	1,897	1,88	3,369	1,67
72055	600	557 ,7	1,890	8,14°10 ⁻¹¹	5,975°10 ⁻¹³	5,15,10-14	1,891	8,14.10
72057	602	560,7	1,852	7 ₀ 93	5,736	4,92	1,853	7,93
72123	668	600	9,348.10-10	3,74	1,461	1,17	9, 349° 10 ¹⁰	3,74
72155	700	600	6,784	2,72			•	99
72255	800	60Ó	2,492	9°98°10 ⁻¹²		I.	,	ORIGINAL OF POOR (
72355	900	600	9,152.10-11	3,67			·	OR (
72455	1000	600 .	3,361	1,35			• •	QUALITY
72555	1100	600	1,234	4,94·10 ⁻¹³	•			EIS
72655	1200	600	4,534.10-12	1,82	•	•	,	

TABLE 7. MODEL 111: CHEMICAL COMPOSITION: 86% H₂, 14% He; $\mu = 2,28, g = 25 \text{ M/cek}^2$

Bes m	Z 9 LIM	r, k	P, atm	ρ, kg/m ³
70655	~800	1919,1	913,5	13.04
70705	~750	1815,8	764,7	11,54
70755	-700	1712,4	630 ₉ 5	10,09
70805	~ 650	1609,0	513,6	8.75
70855	-600	1505,7	411,6	7,49
70905	~550	1402,4	324,9	6,35
70955	~500	1299,0	251,9	5,31
71005	-450	1195,6	191,6	4,39
71055	-400	1092,3	142,3	3,57
71105	-350	989,0	102,5	2,84
71155	-300	885,6	71,08	2,20
71205	-250	776 ₉ 8	47,06	1,66
71255	-200	667,9	29 ,25	1,20
71275	-180	624,4	23,64	1,04
71295	-160	580,8	18,83	8 ₈ 88•10 ⁻¹
71315	-140	537,3	14 ₉ 74	7,52
71335	-120	493,7	11,31	6,28
71355	-100	450,2	8,448	⁵ 5,14
71365	90	427,2	7,228	4 ₉ 64
71375	80	404,1	6,128	4,15
71385	-70	381,1	5,139	3,70
71395	-60	358,1	4,274	3,27
71405	-50 -	335,1	3.503	2,86
73495	-40	372,1	2,833	2,49
71425	-30	289,1	2,254	2,14

35

TABLE 7. (continued) ~

- -

		the second line (1) is not in the second line (1)		
R _o , KM	Z ₉ KM	T, K	P, arm	P,kg/m ³
71435	-20	266,0	1.759	1,81 ·
71445	10	243,0	1,343	1,51
71455	0	220	1,000	1,24
71465	10	200,2	7,213•10 ⁻¹	9,87°10 ⁻²
71475	20	180,4	5,028	7,64
71485	_ 30	160,6	3 , 365 [.]	5,74
71495	40	140,8	2,132	4,15
71505	50	125	1,274	2,79
71515	60	130	7,450°10 ⁻²	f₀57 `
71525	70	. 145,2	4,528	8,55°10 ⁻³
° 71535	80	156,1	2,878	5,05
71545	90	167,1	1,883	3,09
71555	100	178,0	1,268	1,95
71575	120	196,0	6,094°10 ³	8,52-10-4
. 71595	140	210	3,114	4,06
71615	160	224	1,649	2,02
71635	180	235	9.082-10-4	1,06
71655	200	246	5,118	5,70°10 ⁻⁵
71705	250 .	260 ·	1,316	[•] 1,39
71755	300	260	3,526°10 ⁻⁵	3,72°10 ⁻⁶
71805	350	240	9,007°10 ⁻⁶	1,03
71855	400	220	2,029	2,527.10-7

			1	TABLE 7, (c	ontinued)			
R _e , im	z, koi	T, K	P(H ₂), STH	$\rho(\mathrm{H}_2), \frac{\mathrm{H}_3}{\mathrm{M}^3}$	P(Ho), atm	$p(He), \frac{kg}{M^3}$	P(H2+He), 877	ρ (H2+H8)
71855 71902 71938 71955	400 44 7 483 500	220,0 220 254,8 278,4	1,745.10 ⁻⁶ 4,833.10 ⁻⁷ 1,945 1,324	1,907·10 ⁻⁷ 5,28·10 ⁻⁸ 1,83 1,14	1.619	6,208 • 10 ⁻⁸ 4,76 • 10 ⁻⁹ 6,65 • 10 ⁻¹⁰ 2,80	5.051.10 ⁻⁷ 1,980 1,340	2,53.10 ⁻⁷ 5,75.10 ⁻⁸ 1,90 1,42
72005 72055 72155	550 600 700	347,9 417,4 556,4	5,047°10 ⁻⁸ 2,294 6,618°10 ⁻⁹	3,49°10 ⁻⁹ 1,32 2,86°10 ⁻¹⁰	4,861°10 ⁻¹¹ 4,042°10 ⁻¹²	3,25°10 ⁻¹¹ 5,60°10 ⁻¹² 3,49°10 ⁻¹³	2,299 6,622°10 ⁻⁹	3,52•10 ⁻⁹ 1,32 2,86•10 ⁻¹⁰
72255 72287 72355	800° 832 900	695,4 739,9 785,8	2,523 1.930 1,130	8°72°10 ⁻¹¹ 6,26 3,45	5,872•10 ⁻¹³ 3,438	4.06.10 ⁻¹⁴ 2,23		8,72°10 ^{–11} 6,26
72376 72455 72555 72555	921 1000 1100 1200	800,0 800 800 800	9,632.10 ⁻¹⁰ 5,321 2,511 1,185	2,89 1,60 7,54°10 ⁻¹² 3,56		ORIG OF F	、	
72655 72755 72855 72955	1300 1400 1500	800 800 800 [°] 800	2,637 1,245	3,98 1,68 7,92.10 ⁻¹³ 3,74		ORIGINAL PAGE IS OF POOR QUALITY	• •	
73055 73155	1600 1700 ·	800 800	5,872·10 ⁻¹² 2,771	1,76 8,32°10 ⁻¹⁴		LITY .	L é	

· ·

37

CHEMICAL: COMPOSITION:

- TABLE 8. MODEL 11: 50% H₂, 50% He, $\mu = 3,00,2$

9 =25м/сен	2
------------	---

T			~ •	* 10
Ze, KM	Z 9 KM	T, K .	P, atm	$\rho_i kg/m^3$.
71215 71235	-240 -220	529,7 498,0	1310 923,0	89.18 66,84
71255	-200	466,4	634,2	4 0 ,04
71275	-180	434,8	424 ₅ 4	35,20
71295	-160	403 ₉ 1	275,2	24,62
71315	140	371,5	173,0	16,79
71335	-120	339,8	104,2	11,06
71355	-100	308,2	59,91	7,01
71365	-90	292,4	44 ₉ 41	5,48
71375	-80	276,6	32,38	4,22
71385	-70	260,7	23,11	3,20
71395	-60	244,9	16,24	2,39
71405	~50	229 ,1	11,09	1,75
71415	-40	213,3	7,386	1,25
71425	-30	197,5	4,765	8.70-10-1
71435	-20	181,6	2,963	5,88
71445	-10	165,8	1,767	3,84
71455	0	150,0 ·	1,000	2,40
⁻ 71465	10	138,8	5,332°10~1	1,38
71475	20	127,7	2,719	, 7,68°10 ⁻²
71485	30	116,5	1,297	4,01
71495	40	110,0	5,855°10 ⁻²	1.92
71505	50	118,9	2,665	8,88°10 ⁻³
71515	60	127,8	1,282	3,62
71525	70	130,0	6,437°10 ⁻³	1,78
8			4 4	

R _e , kn	Z ₉ kri	T, K	P, atm	P,kg/m ³
71535	80	130	3,218	8,93.10-4
71545	90	130	1,608	4,46
71555	100	130	8,037°10-4	2,23
71575	120	130	2,007	5,57°10 ⁻⁵
71595	140	130	5,016°10 ^{~5}	1,39
71615	160	130	1,253	3,48°10 ⁻⁶
71635	180	130	3,130-10-6	8,58010-7
71655	500	130	7,818°10 ⁻⁷	2,168

TABLE 8 (continued)

. TABLE 8 (continued)

The second s	وبريا فيتوجب بتوابيه المرجا الماليا فتتجار الأكا	·						
R_{e} , ion	Z, KM	T, K	Р (H ₂), атм	$\rho(H_2), \frac{kg}{M},$	Р(Но),атм	$\rho(\text{He})_{m}^{\frac{kg}{2}}$	P(H ₂ +Hc),arm	ρ (H ₂ +He), $\frac{kg}{M^3}$
71655	200	130,0	3,909-10-7	7,23*10 ⁻⁸	3,909.10-7	1,44010-7	7,818.10-7	2,16,10 ⁻⁷
71661	206	130	· 2,895	5,35	2,143	7,92.10-8	5,038	1,30
71676	221	140,2	1,144	1,91	3,349°10 ⁻⁸	1.15	1,479	3,06.10-8
71705	250	177,0	3,796°10 ⁻⁸	5,16.10 ⁻⁹	3,686°10 ⁻⁹	1,00.10-9	4,165°10 ⁻⁸	6,16°10 ⁻⁹
71755	300	240,4	8,904.10 ⁻⁹				9.107.10 ⁻⁹	9,31.10-10
71805	350	303,8	2,932	1	2, 1 98°10 ⁻¹¹			2,36
71855	400	367,2	1,193			,	1,197	7,85-10-11
71857	402	369,7	1,154	7,50	3,407	4,43	1,157	7:54
71902	447	400,0	5,728°10 ⁻¹⁰	3,44	8,383·10 ⁻¹³	1,08	00	3,45
71955	500	400	2,583	1,55	,			
72055	600	400	5,750·10 ⁻¹¹	3,46°10 ⁻¹²				
72155	700	400	1,280	7,69.10-13				
72255	800	400	2,849.10-12	1,71				
72355	900	400	6,342°10 ⁻¹³	3,81010-14				
72455	1000	400		8,47.10-15		ingered Averte en CP	1	
WINNEL PLANCEMENT OF TAXABLE	and the second se		a a a a a a a a a a a a a a a a a a a		j 		€.@da.#,;#++######ya.#¶#############################	

40

.....

TABLE 9. INTENSITY OF ILLUMINATION, ALBEDO, BRIGHTNESS

·······			
а Дли-а волны, мки	^D Освеценность на верхней границе облачного слоя ^ж 10 ⁻³ Вт.см ⁻² мкм ⁻¹	^с Геометри- ческое альбедо	^d Средняя яркость/жж облачного слоя IC ⁻⁴ Br.cm ⁻² стер ⁻¹ . мкм ⁻¹
0,3	I,60	C,25	I,28
C,4	4,03	0,37	4,74
C,5	5,19	0,48	7,93
C.6	4,76	C,54	8,17
C,7	3,78	C,44	. 5,30 .
° C,8	2 ,9 5	. 0,37	3,47
I,C	I,90	C,3	2,22
, I,25	I,32	· ~ C, L	1,68
-,5	C,7C	C,15	C,34
1,5	0,58	G,4	Ç,74
`I,8	C,4C	~C,C3	~ C,04
2,0	0,27	~C , I	~0,09
2,3	0,20	~0,03	~ C,02
2,4	C,16	0,05	~0,03
?,7	· C,IC	0,3	~0,I0
3,0	0,05	~0,03	~0.005.

*Sun height above horizon 45°. **Sun height above horizon 45°, phase angle 0°.

- Key: a. Wavelength, μm b. Intensity of illumination at upper boundary of cloud layer,* $10^{-3}~W\cdot cm^{-2}\cdot \mu m^{-1}$
 - c. Geometric albedo
 - d. Average brightness of cloud layer, ** 10^{-4} W·cm⁻²·ster⁻¹·µm⁻¹

TABLE 10. TYPICAL DARK AND BRIGHT FIELD CONTRAST

а цлина вслат, а	-800		5940	-6480
ь Отнопение архо- стей те <u>мных</u> по- лос и наиболее		~		
ярхой светлой зонн	0,80-0,33	,22 -0 .98	0.88-0.97	0,92-0,98

Key: a. Wavelength, A b. Ratio of dark band brightness and brightest light zone

100	о Локализа- ция в мар- нитосфере R _e	° -,,см ⁻³	^d кТ, эв	^е Интенсивность
Плазмосфера ^f		EC-100 ;	100	^g 10 ⁸ см ⁻² сен ⁻¹ ст ⁻ или 10 ⁹ см ⁻² сек ⁻
Спорадичес- кая область ^h i.		1 - 10	-00	¹ 3·10 ⁷ см ⁻² сек ⁻¹ и падает до
Кольцевой тон Плазменный ^k слой	8 - 19 15 ÷ 25		400 400	и падает до 6.10 ⁶ см ⁻² сек ⁻¹ на 11 R _e
слой 	15 ÷ 25		f. Plasmas	

- d. kT,eV e. Intensity

- h. Sporadic region i. $3 \cdot 10^7 \text{ cm}^{-2} \cdot \text{sec}^{-1}$ and falls to $6 \cdot 10^6 \text{ cm}^{-2} \cdot \text{sec}^{-1}$ at ll Re
- j. Ring current k. Plasma layer

TABLE :	12
---------	----

		TABLE 12	V.		
a E . 198	Область на- блюдения ин- тенсивных по токов, Р _е b	Спад ин- тенсивнос- ти на два- три поряд- ка, Р _{е с}	Положе- ние ман симума, ^R е а	сив- ность см ⁻²	Примеча- ние f
	F	^g элект	роны		*
>C _015	<15	> 15		3•10 ⁹	
>0.04	3-15	15-20	1.6	5•10 ⁶ ÷ 3•10 ⁷	
-0,16	2,8-13	-13	3.7 .	3·10 ⁷ -10 ⁸	
-0.55	2.8-3	10-13	3.7	10 ⁸]	Уменьше-
·3		i		1,6.10 ⁸	ние ин-
*5	2.2-8	10-13		5.10 ⁶ - 5.10 ⁸	тенсивно- сти на по- рядок
~ 3	1,6-15	> <u>1</u> 5	1.6	10 ⁵ -2.10 ⁷	вблизи
21	3,4~5	5-10		(3÷5)·10 ⁷	орбиты спутников
∾3£	; 1,6-10	* 11	1.6	4•10 ³ ÷ 5•10 ⁶ ∫	і питера
	è :	іпрот	оны		
0.5-2,1	1.6-25	> 25 C	1.6	$(1+6) \cdot 10^{6}$	ј Быстрый
-55	3,4	3,4-10	3,4	6•10 ⁶	спад ин-
×80	1,6	3-9	1,6	10 ⁵	тонсивно- сти до 10 ³ г.
b. In c. 2	, MeV ntense current region, Re -3 order of ma drop, Re ocation of max ntensity, cm ⁻² ote	gnitude inten imum, Re	sity .	dee ter Jo or i. Pro i. Rap	er of magnitu crease of in- nsity near vian satellit bits

TABLE 13. METEORITE FLUXES

Zone A. Interplanetary Space Between Earth and Jupiter (Including Asteroid Belt) Outside Region of Increased Concentration Near Jupiter

а Радиус,	b Macca,	с Поток, и 2°сут 1						
CM	Г ,	^а средняя модель	^е минимальная модель	^f максимальная -модель				
$4 \cdot 10^{-4}$, 8•10 ⁻¹⁰	;1,0•10 ⁻¹	2,5-10-2	4,0°10 ⁻¹				
1·10 ⁻³	1,2•10 ^{-ô}	5,0•10 ⁻²	1,2.10 ⁻²	2,0.10-1				
110 ⁻²	1,2·10 ⁻⁵	1,5°10 ⁻³	3,9.10-4	6,0.10-3				
1 · 10 ⁻¹	1,2·10 ⁻²	2,5·10 ⁻⁵	6,0.10 ⁻⁶	1,0.10-4				
1.	12	2,0.10-7	5,0.10-8	8,0.10-7				
10 1	12000	1,Q·10 ⁻⁹	2,5.10-10	4.0.10-9				

Zone B. Region of Increased Meteorite Concentration Near Jupiter (Radius About 10⁷ km)

а Радиус,	b Macca,	° Norok, M ⁻² cyr ⁻¹						
СМ	1 ⁵ - T	d Сгедняя модель	е мингиальная модель	f максимальная/* модель				
4.IO_4	8.10-10	I,0 [°]	I,0·I0 ^{-I}	IO				
I.I0-3	I,2·I0 ⁻⁸	5,0·I0 ^{-I}	5,0•I0 ⁻²	. 5,0				
I•10-2	I,2·I0 ⁻⁵	I,5•I0 ⁻²	I,5·I0 ⁻³	I,5·10 ⁻¹				
I•I0 ^{-I}	I,2·I0 ⁻²	2,5.10-4	2,5.10-5	2,5.10-3				
I	I2 ⁻	2,0•I0 ⁻⁶	2,0-10-7	2,0.10-5				
IO -	I2000	I,0·I0 ⁻⁸	I,0.10 ⁻⁹	1,0.10-7				

*Probability for inner part of zone (distance from Jupiter less than 10⁶ km).

Key:	a.	Radius,	cm	с.	Flux, $m^{-2} \cdot day^{-1}$	e.	Minimum model
Ū	b.	Mass, g		d.	Average model	f.	Maximum model

TABLE 14. SATELLITES OF JUPITER

а Спутник	^b Расстояние от планеты, тыс.км		Синодический ,период обра- щения d	^е Наклоне- ние ор- биты ^ж	Эксцентри- ситет ор- биты f	Радиус, км g	Эвездная вели- чина V(1,0) ^{/жж^h}
1.Ио	421,8	1,769	1 ^d 18 ^h 28 ^m 36 ^s	OP)	Малыќ	1820 <u>+</u> 10	-1,68
2.Espona	671,4	3,551	$3^{d} 13^{h} 17^{m} 14^{s}$	OP	и пе- і	1550 <u>+</u> 150	-1,48
З.Ганимед	1071	7,104	7 ⁴ 03 ¹ 59 ^m 36 ⁵	OP 7	ремен-	2 635 <u>+</u> 25	⁻ -2,09
4. Наллисто	1884	16,689	16 ⁻¹ 18 ¹ 05 ^m 07 ⁵	OP)	ный	2500 <u>+</u> 150	-1,05
5. Амальтея	181	0,498	11 ^h 57 ^m 28 ^s	OP	0,003	~100	+6,3
6.Гестия	11500 ·	250,62	260 ⁴ ,0	28,5B	0,155	≈ 80	+8,0
7.Pepa	11750	259,8	276,1	23,0B	0,207	≈ 30	+9,8
8.Посейдон	23500	738,9	631,0	R33B	0,38	° 8	+12,1
9.Гадес	23700	755	626	R24B	0,25	≈1 0	+11,1
10.Деметра	11750	260	276	28,3B	0,140	د 9 _ب	+11,9
11.Пан	22500	696	599 ·	• R16,6B	0,207	~11	+11,14
12.Андратея	21000	625	546	R	0,13	≈ 8	+12,1
13. M I3	****			-	-	≃ 5	+13

*P. inclination to equatorial plane of planet; B. inclination of orbital plane; R. retrograde rotation **V(1.0) visual star magnitude in phase zero, reduced to sun-planet and planet-observer distances 1 AU.

Кеу	b. c.	Satellıte Distance f Sidereal p Synodic pe	erio	l, days	n	f. Ecce g. Radi	inati⊙n of ntricity c us, km magnitude	of orbit	1. 2.	Small and Io Europa Ganymede	variable	ORIGINAL OF POOR
45	4. 11:	Callisto Pan	12:	Almathea Andrathea	б.	Hestia	7. Hera	8. Poseido	'n	9. Hades	10. Demeter	L PAGE I QUALITY

Пара- метр	b Uo	^c EBpona	^d Ганимед	^e Kansucmo
a, km	421758,59	671049,78	1070416,65	1882714,11
e	0,00001	0,00013	0,00139	0,00736
i, rpad	0,032	0,467	0,179	0,245
ω,	266,5000 +	161,8000 +	114,2000 +	317,2000 +
rpad ^f	0 , 1 4875406•T	0,03980417°T	0,00707249∘ॻ	0,00186251•¶
;	171,6000 -	57,5000 -	190,5000 -	340,8000 -
rbas _{t.}	0,13111940°T	0,032289594T	0,00680967∘₽	0,00156486•1
λ,	338,7734 +	285,5142 +	348,8846 +	325,9951 *
rpazt 1	203,48895459T	101,37472359T	50,31760809T	21,57107197I.
ju	5950 <u>+</u> 75	3250 <u>+</u> 75	9940 <u>+</u> 100	7100±215

ł l

TABLE 15. ASTRO DYNAMIC CONSTANTS CONNECTED WITH GALILEAN SATELLITE SYSTEM OF JUPITER

Key: a. Parameter b. Io c. Europa d. Ganymede e. Callisto f. degrees

TABLE 16. GALILEAN SATELLITE OF JUPITER, BASIC PHYSICAL CHARACTERISTICS

а Характеристики	^b ИО .	С	d	-
	110	Европа	Ганимед	^е Каллисто
Раднус, вы	1820+10	1550 <u>+</u> 150	2635 <u>+</u> 25	2500+150
		(2,565 <u>+</u> 0,06) 4,876•I0 ²²	(7,845 <u>+</u> 0,08) I,49I·I0 ²³	(5,603 <u>+</u> 0,17) I,065.10 ²³
Средняя плот- ность, г/см ^{3 ј}	3,36	3,I2	I,95	I,63
Геометрическое альбедо [64] ^k 3190 Å 4330 Å 5640 Å 7300 Å IIIOI Å	0,I3 C,4C C,62 C,7I C,75	0,53 0,56 0,68 0,68 0,52	0,28 0,38 C,43 0,44 0,42	0,II 0,I5 0,I9 0,2I 0,2I
Атнос рерное дав ление у поверх- ности, атм 1		/ <u>*</u> .*	IC ⁻⁶ Р IO ⁻³	/**
Вероятный сос- тав атмостеры ^m		/	<i>М</i> H ₃ , <i>N</i> ₂ , H ₂	/**
Яркостная темпе ратура поверхно сти,64] ⁿ : 8-14мк 17-28мк	и 138+4 К	і I30 <u>+</u> 4 К I20 <u>+</u> 4 К	I42 <u>+</u> 4 K I37 <u>+</u> 5 K	152 <u>+</u> 4 K 150 <u>+</u> 6 K
Вероятный соста грунта ^р	з ^q снег. H ₂ O-	^q снег ^Н 2О	г снег Н ₂ 0+ силикатные настицы	г снег H ₂ O+ силикатные частицы
Вероятный соста недр ^в	в ^t сили- каты	^t сили- каты	и льды H ₂ O,√H ₃ и др. ~IC% силикатов	и др. ~10% и др. ~10% силикатов

*Tonosphere detected ($n_e=10^5$ at altitude of about 100 km) **No data

- Key: a. Characteristics b. Io c. Europa d. Ganymede e. <u>(Callisto</u> f. Radius, km g. Mass Satellite/Jupiter, 10-5 h. i. kg Average density, $g \cdot cm^{-3}$ j. Geometric albedo k. 1. Atmospheric pressure at surface, atm Probable composition of atmosphere m. Brightness temperature of surface n. μm[,] · ο. Probable composition of soil p. H₂O snow q. H2O snow plus silicate particles r. Probable interior composition s. t. Silicates H2 ice, NH3, etc. ∿10% silicates u.
- Key:

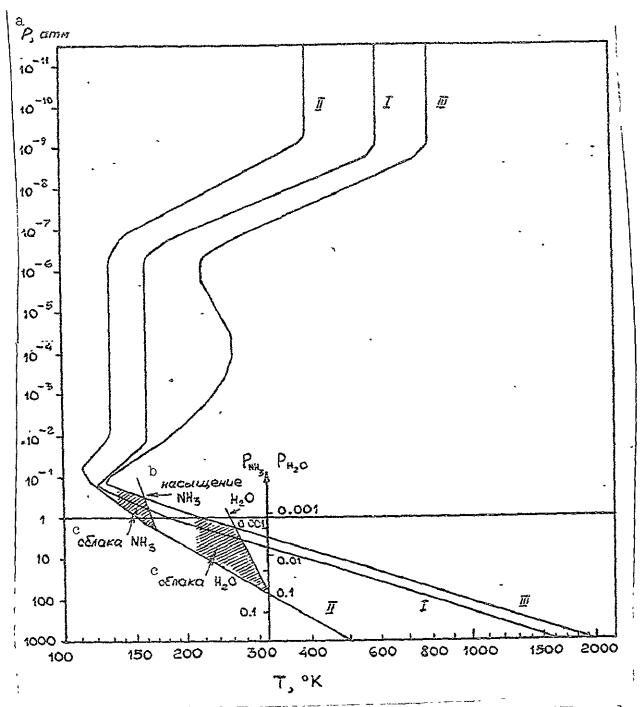


Fig. 1. Function P(T) in three models of atmosphere: NH3 and H2O saturation levels corresponding to lower boundaries of ammonia and water clouds are shown.

- Key: a. P, atm b. Saturation
 - c. Clouds

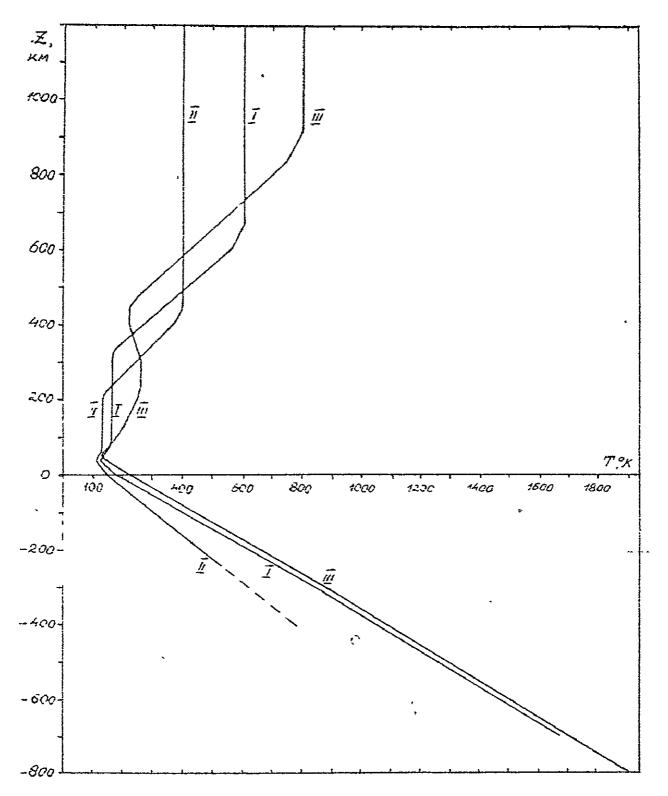
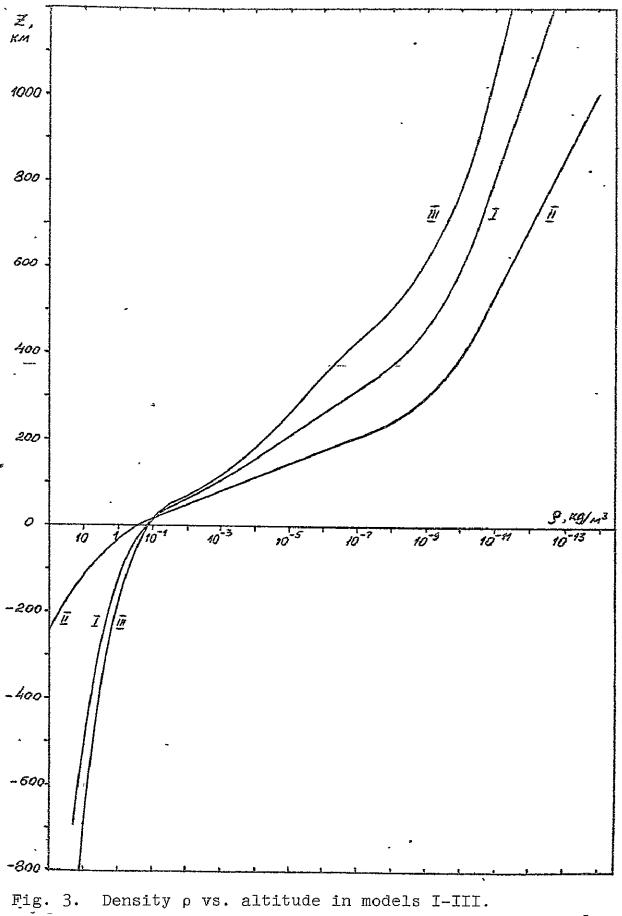
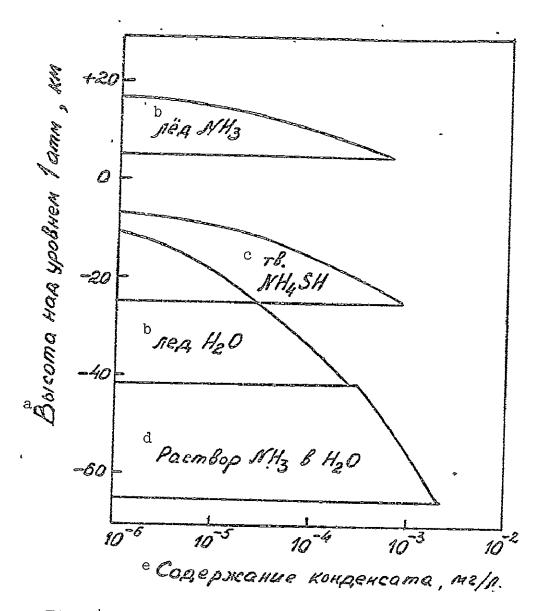
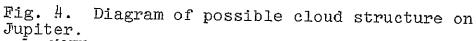
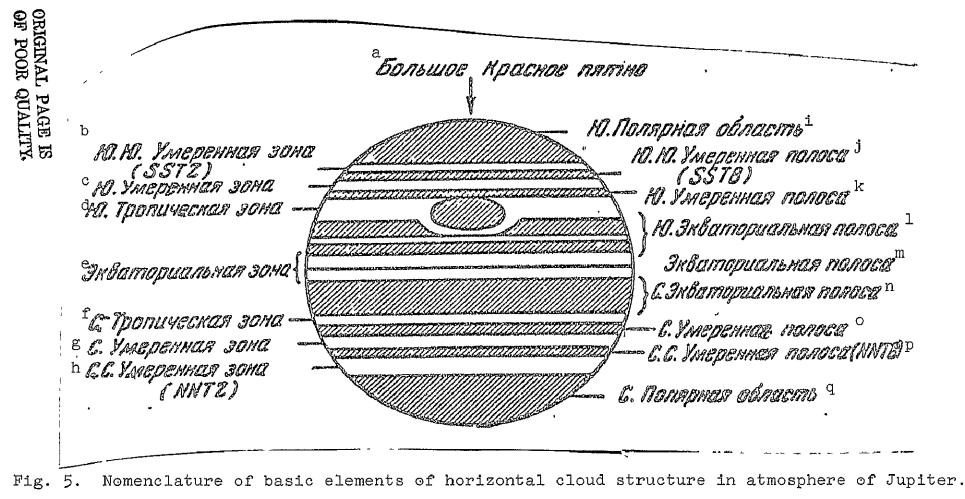





Fig. 2. Temperature T vs. altitude in models I-III.



Density ρ vs. altitude in models I-III.

Key: a. Altitudé aboxe l atm level, km b. Ice c. Solid d: NH3 solution in H20 e. Condensate content, mg/l _

Key: a. Great Red Spot

- b. S.S. Temperate Zone
- c. S. Temperate Zone
- d. S. Tropical Zone
- e. Equatorial Zone

- f. N. Tropical Zone
- g. N. Temperate Zone
- h. N.N. Temperate Zone
- i. S. Polar Region
- j. S.S. Temperate Band
- k. S. Temperate Band
- 1. S. Equatorial Band

- m. Equatorial Band
- n. N. Equatorial Band
- o. N. Temperate Band
- p. N.N. Temperate Band
- q. N. Polar Region

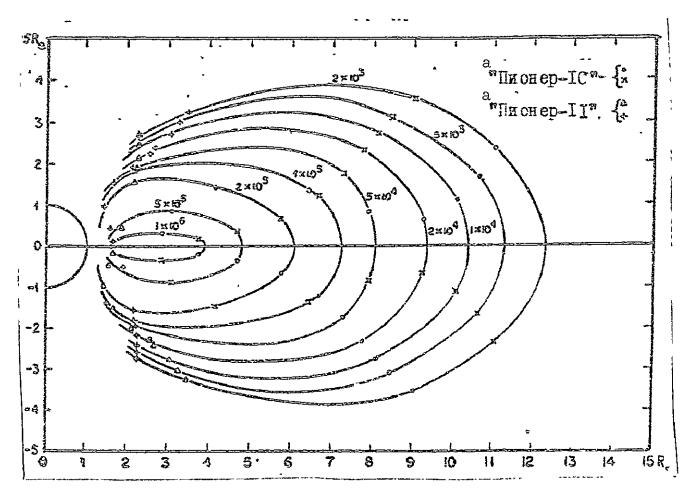


Fig. 6. Distribution of fluxes of electrons with energies E>21 MeV in stable radiation belt according to [55]; to obtain fluxes in particle cm⁻² units, reduced to isoline velocities, count in pulse sec⁻¹ must be multiplied by 23; ordinate, direction of magnetic field of planet; abscissa, magnetic equator.

Key: a. Pioneer