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A PERSPECTIVE OF SYNTHETIC APERTURE RADAR FOR REMOTE SENSING j '"/'"

MERRILL I. SKOLNIK
RADAR DIVISION

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C.

SUMMARY

:< -

Because of its unique capability for providing good resolution in the cross-

range, as well as the range dimension, synthetic aperture radar has proven

to be of considerable interest for remote-sensing applications over both the

land and the sea. In this tutorial report the characteristics and capabil-

ities of synthetic aperture radar will be discussed so as to identify those

features particularly unique to SAR. Brief comparison is made betv/een SAR

and optical images. SAR is an example of radar that provides more infor-

mation about a target than simply its location. It is the spatial resolu-

tion and imaging capability of SAR that has made its application of interest,

especially from spaceborne platforms. However, for maximum utility to remote

sensing, it has been proposed that other information be extracted from SAR

data, such as the cross section and the variation of cross section with

frequency and polarization. Several of the special problem areas that might

possibly limit the utility of SAR are mentioned, such as complexity, swath

and resolution, image interpretation, need for calibration, EMC, as well as

the handling of the large amounts of data generated from remote sensing

applications.

1.0 INTRODUCTION

The synthetic aperture radar (SAR) has the uniqv 2 capability of providing

good resolution in the along-track, or cross-range, dimension as well as in

the range dimension. This ability to provide an image-like high-resolution

*This report is an extended version of the keynote paper presented at the
Synthetic Aperture Radar Technology Conference, March 8-10, 1978, Las Cruces,
NM, sponsored by the NASA Johnson Space Flight Center and the New Mexico
State University Physical Science Laboratory.
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display has caused the SAR Co be of considerable interest for remote sensing

of the sea and land. This paper reviews some of the background of synthetic

aperture radar as it relates to remote sensing, and discusses some of the

issues involved in its application. The intention is to provide an intro-

duction to the Technology Conference. The point of view is that of a radar

systems engineer interested in the application of SAR technology, and is not

that of a specialist involved in the daily pursuit of improved SAR technol-

ogy. Thus, the comments presented here can be considered as the impressions

of an interested observer iewlng a dynamic and important radar field that

has attrac -ed much interest for its potential applications.

The SAR offers promise for remote sensing because of its unique character-

istics that have already been demonstrated, as well as its as yet undemon-

strated potential for extracting further information about an object, to

supplement that already provided by the spatial resolution.

In this report a brie?.' description will be given of the synthetic aperture

radar concept and its special characteristics that make it of interest for

remote sensing. This will be followed by a listing of some of the major

applicat^ jns of SAR and its proposed use in remote sensing. The emphasis

is on the application from satellites. Several of the special problems in-

volved in the use of SAR will then be discussed. The tone of the report is

part tutorial and part "ei'itorial," in that it is both a technical review

and a means for expressing the writer's opinions and impressions of SAR as a • ,<
4 • ' >

radar tool for remote sensing.

The SAR concept is indeed a significant radar accomplishment. One version

of where it fits, within the major accomplishments in radar during the- last

40 years might be as follows:

1930's - Early development of the basic concept of radar.

1940's - Microwave radar development.

1950"s - Practical utilization of coherent (doppler) radar

as in synthetic aperture radar, MTI and cw.

1960's - Digital processing, and HF pTH radar.
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1970's - Extraction of information, other than "blob information"

from radar signals.

Thus SAR ranks high in the inventory of radar accomplishments. The develop-

ment of digital processing ,n the late 60' s haa enhanced the practical util-

ity of SAR. Also, the SAR has contributed significantly in the 70 's to thf

increased extraction of information from the radar signal.

fc

2.0 THE S\R CONCEPT

The SAR may be considered from one of two viewpoic:«:s depending on whether

the frame of reference is at the target or at the rati.or. These are:

1) as a sequentially synthesized array antenna of large effective aperture

or 2) as the use of the doppler-frequency domain to spatially resolve dif--

ferent parts of objects having different doppler-frequency shifts becawe of

different relative velocities with respect to the radar. Both points of

view have been successfully utilized In che analysis and development of SAR.

It is not uncommon in SAR analysis to switch from one model to another,

depending on which is the more convenient for describing some particular

property of the system. Although SAR is usually thought of in terms? of a

synthesized antenna, it was the doppler viewpoint that first guided the

original experimenters in this area. When viewed as the use of the doppler

domain to acheive the equivalent of angle resolution, it can be seen that

SAR is related to the scatterometer that uses a broad fan beam with doppler

filters to achieve resolution in elevation. The use of doppler by the radar

astronomer to image the planets (also called range doppler imaging or

inverse synthetic aperture) is also based on the same physical principle as

SAR.

\ .

I;

The real-aperture antenna of a synthetic aperture radar is generally direct-

ed perpendicular to the flight path of the vehicle. In this configuration

it is a sldelooking radar that produces a strip-map image of the terrain.

The real-aperture antenna may also be directed forward or aft of the

perpendicular. This is called the squint mode and also produces a strip

map. Synthetic aperture processing can also be employed with a circular-
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scanning antenna to provide enhanced resolution on a P?T, except in a sector

centered about the forward or aft direction of the vehicle trajectory. This

is called the doppler beam - sharpening mode. A positionable antenna can be

made to dwell on a particular srea to achieve a longer observation time, and

thus provide better resolution than a fixed aperture. This is called the

spotlight mode. It is also possible to obtain multiple looks of a particu-

lar scene with a fixed real-aperture antenna by trading resolution for 'a

number of independent observations. The noncoherent superposition of these

multiple looks of lower resolution produces a less speckled image than does

a single observation of higher resolution. SAR has also been employed to

obtain stereoscopic images of terrain.

The development of SAR began in the early 50's and took almost a decade to

reach significant levels of application. The development of SAR and its

original application were sponsored by the military, primarily for all-

weather battlefield surveillance and as a reconnaisance sensor. Although

it has seen important application for the military, it has been more pf a

complement to other military sensor rather than as a supplement.

Compared to othev radars, SAR has the unique capability of obtaining resol-

ution in the cross-range, or along-track, dimension comparable to the resol-

ution obtained in range. With other radars the resolution in cross-range is

determined by the antenna bearwidth and is usually considerably greater than

the range resolution. The SAR is able to image a scene and obtain informa-

tion about the scene by the spatial relationships and contrasts provided by

the high resolution. The imaging and mapping qualities of SAR allow terrain

.features ar.d man-made objects to be recognized, and their spatial relation-

ships identified and utilized. In this regard its output is somewhat like

an optical photograph, but with some important differences. The search for

additional information that can be extracted from the received signal in

both SAR Jnd conventional radar continues. In the area of remote sensing

it is especially iuportant to extract other information about the objects

being viewed. The resolution provided by SAR allows the isolation of the

various objects of interest from those that might contaminate the measure-

ment.
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• i
I
(

A cursory examination of a FAR image and an optical or IR image of the s-ime >-

scene, especially from long range., might give tl-e impression that the active i

radar and the passive <pflr?.l and IR images are similar and t'uiis competi- j

tive. Actually, there* are c '.̂ nifleant differences between these sensors.

These may be described as:

a) The almost 10s different iv: wavelength between rauar and optical

(visual) frequencies means that the t.jo sensors will respond re

different size scatterers, as well as require significantly dif-

ferent equipment technology Scattering occurs from those scslv- :

sizes that are comparable tc- the it. -idrnc wavelength. Thus SAR j

will detect scattering from those scatterars with dimensions of i

the order of centimeters. Optical imaging sensors are res;onsive

to scatterers of the order of microns. Thus "radar eyes" are dif-

ferent than "optical eyes." The information provided is different,

and diCferent criteria are required in the interpretation of the }

images obtained by SAR than the usual techniques of photographic

interpretation. I

i
b"> Another major difference between the two classes of sensors is i

that the radar responds to its own illumination. Visual imaging ,'

sensors (and some IR sensors) require ambient illumination, as j
I

from the sun, and are thus limited to daylight and by the location i

of the sun relative to the sensor. IR imaging sensors depend on i

differences in the temper.iture and emissivity of the various ,'

objects of the scene. Areas near the poles with visibility and }
. i

sunlight conditions poorly suited for photography can be readily

imaged by SAR since it does not depend on sun angle. The usual

viewing angles of radar can result in shadows produced by high

relief such as hills and mountains,, which can be used to obtain

information regarding the three-dimensional character of the ter- j

rain. These shadows are generally not evident in optical photo- j
«

graphs. j

)
1

c) Since optical and IR passive sensors view objects with incoherent j

ambient illumination or incoherent radiation from the objects 1
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themselves, the result as an image '.o which the eye is accustomed. The

image produced by a coherent SAR, however, is of a speckled nature, not

unlike that seen by an object with laser light. The speckled nature of the

scene can make its interpretation difficult, and can cause r.i nfusion to an

interpreter not familiar with this effect. To minimize the exfect of speck-

le, SAR radars sometimes superimpose multiple independent images of the same

scene taken with different frequencies and viewing angles.

d) The resolution of a "focused" SAR is independent of rangf, whereas

that of passive imaging systems is worse with increasing distance.

This makes SAR of interest from spacecraft where the ranges are

large.

e) Radar has the advantage of being able to operate any time of the

day or night and under weather conditions that make IR or optical

sensors inoperative. This advantage, in the writer's viyw, is not

necessarily a major reason for using radar in remote sr.esing. Most

remote sensors do not reauire "timely" data. If it is raining on

one pass it might not be on the next pass. If an optical sensor

capable of operating only in the day, passes over an important area

at night, consideration can be given to using a second satellite

to insure at least one pass in daylight during a specified time.

Radar can be all-weather when used for imaging the spatial rela-

tions of the elements of a scene. But if other specific infor-

mation is needed such as for soil moisture measurement or crop

identification, the effect of rain might degrade the ability of

SAR to provide reliable data.

3.0 APPLICATIONS OF SAR. ESPECIALLY FOR REMOTE SENSING

Although SAR does a different job than any other radar, and has unique cap-

abilities, it has not enjoyed the wide application experienced by the more

classical radar. The "bread and butter" application that would sustain a

major segment of the electronics manufacturing industry has yet to appear.

1-2-6



Nevertheless, its continual development is pursued and there continues to

be sit, if leant Interest in its application.

In short range remote sensing from aircraft, the classical noncoherent high-

resolution radar that obtains cross-range resolution with a physically

large antenna with narrow beamwidth has proven competitive to coherent SAR.

When its resolution is adequate, Che lower cost, absence of sophisticated !

processing, and an image relatively free from speckle make it the preferred !

approach in many applications. However, at long range, as from a satellite, •

the resolution ot a conventional antenna is inadequate for most purp< ses j

and synthetic aperture must be used to achieve resolution. The increased ]

integration time (or effective apertur.. length) of the SAR with increased

range helps compensate in part for the lower echo signals at longer ranges. i

4

The specific applications of SAR from spaceborne platforms will not be dis- j

cussed here since that is the subject of another papaer in this Conference j

("Applications of Spaca-Borne SAR Data," by Fawwaz 1. Ulaby) The general

application areas that are contemplated or proposed may be described as

follows:

a) Measurement of sea state and sea spectrum

This is the objective of the NASA SEASAT-A. The resolution of the

SEASAT imaging radar is coarser than might be desired, but it is

a first attempt to demonstrate the utility of SAR tor remote

sensing from space. Other radars and other sensors can obtain a

measure of sea state, but SAR is the only p.ll-weather remote sen-

sor (other than HF OTH rad:r) with the potential for obtaining the

two dimensional sea spectrum. This SAR capability was first demon-

strated by the Soviets using conventional imaging radar fron air-

craft.

b) Geological and mineral exploration

This is the prime objective of t'..e NASA SIR-A (Shuttle Imagine

Radar) experiment. Conventional nocoherent imaging radar on air-

craft have been widely accepted as a tool for petroleum explore-

tion. Imaging radar has also been used for mapping and mineral
*

exploration of inaccesible areas by several South American
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countries, presumably with success.

c) Agricultural Measurements

The chief measurements desired in this area are soil moisture and

crop classification. This is the objective of SIR-B. These are

difficult m-iaburements to make with radar. There has been much

preliminary work in this area, but it is not as far advanced as the

other twc application areas mentioned above since it is a more

difficult task. Determination of soil moisture, as now proposed,

requires an accurate, absolute measurement of the radar cross-

section as well as a_ priori information about the rat:"re and

roughness of the scattering cl -;cts. It has been ,oropos;d that

rrop identification can be pencru'Cd using multiple frei1uency and/

or multiple polarization observations. The degree of success of

these twc measurement of soil moisture and crop identification

Viave yet to be determined.

d) Other Remote Sensing Applications

SAR also has been demonstrated or suggested to be used for

mapping of watersheds and flooded regions, ice mapping and identi-

fication, oil-spill detection, measurements of snow water-content,

observation of precipitation, urban land-use monitoring, among

others. It has also been used, of course, for military purposes.

Of the above, SEASAT is planned for launch in 1978, SIR-A has been approved

as a NASA program and is planned for July 1979 launch. The above applications

of SAR are not without competition by other sensors. Almost all of these

measurements might be obtained by other means, even though such a competitor

as optical and IR imaging arj not all-weather, and microwave radiometry,

another serious competitor, is not capable of the same resolution as SAR.

4.0 ATTRIBUTES OF SAR }
:

The features of the SAR that make it of interest for remote sensing include :
i

the following:

a) Good resolution in the along-track, or cross-range coordinate as

well as the range coordinate. This provides a map-like presenta-

tion which permits rhe identification of objects by their spatial
i
1
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relationships, nize, and shape. i
i

b? Resolution cell size Independent of range. i

c) Ability to produce images from satellite ranges. j

d) All weather. !

e) Poter.t5.al ability to extract information regarding roughness, «

symmt-try, and dielectric properties of scattering media within the )

resolution cell - I

f) Additional information possible with multiple frequency, dual polar-

ization, and bpati 1 diversicy observations.

g) Real-time processing and display either on board the sensor platform.

or bv remote transmission of radar output.

h) Information can be obtained from scattering objects not possible

with optical or IR sensors, because of the use of microwaves. f_A

good example is that of geological prospecting wnere information ci

lineaments is found with microwaves not found with optical photo-

graphs.)

i) The technology of SAP. is we.ll developed and there nas been consider-

able experience with it. «; application as an imaging .'evice so that its

current limitations are understood.

j) The SAR technolog> is applicable over a wide .range of frequencies,

from VHP to millimeter Vavelengthsi

5.0 ISSUES AND CONCERNS IN THE POTENTIAL APPLICATION OF SAR

As with any device, SAR cannot do everything that may be desired of it. In

this section, some of the areas, of concern in its use are briefly mentioned.

(The listing below is in no special order.)

a> Complexity and resolution

The SAR i:. more complex and expensive than ordinary radar, as might

be expected. However, there have been continual improvements made

in the hardware, especially in r.he signal processing.

The complexity of a SAR is related tc the resolution aestred. It

seeing conceivable that better resolution than is now utilized .can be

obtained, especially at the higher microwave frequencies. However,

it has been found in some applications that the ultimate in resolu-
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tion. is not always needed or even desirable, even if expense and

complexity are not deciding factors. That is, the optimum resol-

ution for any particular application is not necessarily the small-

est resolution cell that can be obtained. It might evi_-n occur th.it

too much resolution is harmful to the type of information desired.

Traditionally, in mapping radars the along-track resolution and

;he range resolution are made equa], or nearly so, in order to pre- j3

sent conventional-looking imâ e.?. Perhaps practice ought to be re-

examined critically for remote-sensing applications. It is far

easier to obtain high resolution in the range dimension than in the

along-track dimension. If asymmetrical resolution can be tolerated, U

simpler radar will rcsul.

The highest resolution obtainable with a SAR is with a focused

system that corrects for the curvature of the wave front experienced

when using imaging objects in the Fresnel region of the synthetic ^

antenna. An unfocused SAR is not capable of as great a resolution

as a focused system. Also the cross-range, or along-track, resol-

ution of an unfocused SAR is not independent of range, but varies

as the square root of the range. In spite of such limitations, the |
<r:

lesser complexity of the unfocused SAR might make it a contender for
Wk

those applications for which the ultimate in resolution is not re-

quired.

b) Magnitude of Data Available from SAR

The high resolution of the SAR results in a high data rate and a £|

large amount of information. The handling of large quantities of

data as can be obtained with an SAR can saturate and overwhelm come

users interested in the radar information. Careful planning is re-

quired in what information is to be obtained, and in its efficient

analysis. Some users believe that the increased data rate from a

SAR will result in more information than they can digest. This

might indeed be true, but it should not Le a reason for restricting

the resolution to a lesser value than might be desired. As mention-

ed above, there is generally an optimum resolution for any particu-

lar application, determined by what is to be imaged and Ihe

1-2-10 ,
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information desired. Tf th~ total amount of data that can be

handled is limited for some reason, then the choice between a large

quantity of images of poorer resolution, or a lesser quantity of

images of optimum resolution, must be carefully .considered. The

proper handling of large amounts of data is an area requiring more

attention. • ,

c) Swath

There is a limit to the coverage, or swath width, obtainable with

a SAR, the swath depends on the resolution. This is due to the

ambiguities in both angle and range when a sampled (pulsed) radar

system is used. A high prf is necessary to achieve high resolution

images without ambiguitites causing overlap and superposition of

images. On the other hand, a lov prf is necessary in order to

image a large swath in the range coordinate without the range am-

biguities causing iraage overlap. Thus, there is a trade between

swath width S and resolution 6 , which is given by
w a '

S

& 4v cos*
i-*

where v is the velocity of the vehicle.-, c the velocity of propa- tj

gation and <!» is the grazing angle. This equation was derived as-

suming optical processing, a flat earth and a vertical beam shaped ^
i «i

to illuminate only the swath S . It vould have to be modified when \iw S-
the curvature of the earth cannot be neglected. For a spacecraft \]

with a velocity of 7500 m/s, with cos$ 1, a swath of approximately

100 km Js theoretically possible with a resolution of 10 m.

;l
Ir addition to the fundamental limit on swath and resolution set

by the complexity of the available signal-processing technology and ) ']
f

the limited ability ot il user to handle large amounts of infonna- i

tion." f

Thus one of the severe limitations of a SAR for space application

?s the limited swath width, which might bo no more thnn several

hundred kilometers, or less. Although this might seen; to be
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adequate for many applications and is comparable to that achieved

by optical and IR images on Landsat, it does not take full advan-

tage of the coverage that can be viewed from a satellite, which

can be in the vicinity of 1000 to 3000 km for low and medium orbit

heights. The limited swath means that many satellites must be

used to obtain world-wide-daily coverage, or that only limited parts

of the earth will be covered if a single satellite is used. This

is another reason for using only Che resolution needed for the

particular application, and no more. (The paper by J. Eckerman and

J. P. Claassen in this conference, entitled "A System Concept for

Wide Swath Constant Incident Angle Coverage," proposes a multiple

beam radar configuration for increasing the swath.)

Space systems that view the earth's surface should have a lar»e

swath coverage in order to obtain timely information over a large

part of the earth in an economical manner. Unfortunately, large

swaths with SAR are obtained at the expense off poor resolution. If

SAR is to provide full benefit in space applications, its swath

should be larger than has generally been considered. At present,

there do not appear to any simple solutions available.

d) Coverage anJ Revisit Time

A swath coverage of about one hundered kilometers typical of the

experimental SARs proposed for remote sensing appljCations from

space results in a long revisit time of the same area on the surface

of the earth. This might be 10 to 15 days in some cases. Several

of the proposed applications of SAR require more timely revisits.

This means a larger and more complicated satellite radar vich a

large swath is required, or there must bn more satellites. The

need for proper coverage and revisit time might be of little concern

for the expl 'ratcry phases of remote sensing on which NASA is now

embarked, but it is an issue which cannot be neglected when opera-

tional systems are considered where cost-benefit is a criterion for

the spending of funds. ir.li :s a fundamental issue that must be

f-ccd by the technologists.
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e) Image Interpretation

An Image produced by a SAR is similar to an optical photograph.

However, there are significant differences between the two, so that

someone trained to interpret optical photographs might not extract

the proper information from a SAR image. Even with the same reso-

lution there can be significant differences between the two because

of the large difference in wavelengths of the two sensors and the

speckle in the SAR image. Each sensor responds to those scattering

objects with dimensions comparable to the wavelength. With SAR

there will likely be greater variation in echo strength as a

function of viewing angle than with optical imaging. Thus differ-

ent 'passes over the same area with SAR caa result in differences

in the images. The coherent nature of microwave radiation results

in a speckled image due to constructive and destructive interfer-

ence. This does not occur with optical or IR imaging which depends

on incoherent radiation. Speckle can be reduced in tht SAR by

observing the same scene with different frequencies and/or from

different viewing aspects, and noncoherently superimposing the

resultant images.

f ) Signal nnd Data Processing

Past improvements in digital processing circuitry have resulted in

improved real-time processing either on- or off-board the satellite.

Developments in digital processing are continuing and further

improvements for SAR can be expected.

g) Equipment

Unfortunately there do not r.ow seem to be any significant develop-

ments in spaceborne radar transmitters that would lead to signifi-

cantly smaller, more efficient packages for space application. If

radar in space is to be a permanent tool for operational remote

sensing, basic work in transmitters is indicated. The present con-

ference includes a number of papers on antenna design, indicating

an awareness of the importance of the antenna to a spaceborne SAR.

Cost of equipment is an important consideration. The cost is not

only in dollars, but in the space and weight that must be accom-

modated in a spacecraft. Radar is not small. If radur can perform
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a desired function for remote sensing, then one should not be

afraid of large systems and should strive to obtain what is needed, •
i

rather than what would be tolerated. ]

h) Information Extraction j

Work has been underway to obtain information about the objects j

within a scene based on a measurement of the absolute value of the ;

cross-section within a resolution cell, as well as by measuring t

cross section as a function of frequency, polarisation,, or both. j

The measurement of the absolute value of cross section per unit

area, as has been suggested as needed for certain remote sensing

applications, is a difficult measurement to make to the desired

accuracy. If useful measurements are to be derived from other than

the ~patial relationships, some other measurement is needed. A

method for extracting information, that seems as yet untapped. Is

the employment of pattern recognition or two-dimensional matched

filtering comparison to classify one type of terrain from another-

on the basis of the spatial pattern of the return. For example,

in a one square mile of terrain there are approximately 3800 re-

solvable, cells when the radar has a resolution of 30 m, and about

34,000 cells with 10 m resolution. It would seem that there are

distinctive elements that might be uncovered by proper processing.

i) Frequency and Space Diversity

Some proposed SARs for Earth Resources Survey are to view the same

scene with more than one frequency and at more than one aspect.

The purpose of these multiple images is to superimpose them so as

to smooth out the speckle that appears with coherent radar and

obtain a less grainy image more like that seen with incoherent light.

The potential benefit from frequency diversity and spatial diver-

sity and spatial diversity will make it likely that such SARs will

be considered further, possibly along with nolarization diversity.

Such diversity likely would improve the ability of pattern recog-

nition to recognize one type of scene from another.

J) Statistics of Land and Sea Echo

Several of the papers in this conference (Korwar and Lipes, Pierce,
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and Korwar) assume the statistics of the echo within a pixel or

resolution cell are described by the Rayleigh probability density

function. This may be true of receiver noise and low-resolution

radar, but it is generally not true of land and sea backscatter.

It is well known that with high resolution, the probability density

function for both sea and land echo have higher "tails" than that '

given by Rayleigh statistics. The log-normal pdf is sometimes

used as a model for the extreme case of non-Rayleigh statistics,

but the Weibull pdf, which lies between the Rayleigh and the log-

normal, seems better able to model most examples of non-Rayleigh

and the log-normal, seems better able to model most examples of

non-Rayleigh clutter. Different constants (such as mean-to-median

ratio, standard deviation, or Weibull coefficient) apply for differ-

ent terrain and sea conditions and for different radar resolutions.

It is not obvious what effect rhe non-Rayleigh pdf has on those

analyses in which Rayleigh statistics are assumed, but it is a

consideration that needs to kept in mind. It is suggested that a

Weibull or some other suitable non-Rayleigh pdf be used in analyses

of SAR remote sensing.

The fact that different forms of terrain and sea conditions result

in different Weibul coefficients might be usr.d as a means for

identifying one form of terrain from another. Measuring the para-

meters of the pdf of a patch of terrain might be one method for

obtaining" classification, but there might well be others,

k) Calibration, Accmacy, and Precision

The measurement of soil moisture as proposed for remote sensing

from space with SAR requires the absolute measurement of the radar

cross section per unit area o°. The scatterometer also requires

an absolute measurement of o° for many of its proposed applications.

Absolute measurements require good calibration and good stability

of the radar. From past experience with attempts to measure the

absolute value of radar cross section, it is unlikely that the

measurement of o° can be consistently made to an accuracy better

than + 3 dB, or at best + 2 dB. (The precision of mcdsurement might
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be better than this.) There is no fundamental reason why a sore

accurate measurement of o° cannot be made, btfi.--t.his seems to be a

practical limit that has been hard to make better. A + 3 dB

accuracy is apparently not satisfactory tor soil tnoislure measure-

ment or for accurate measurement of wind with a scatterometer.

Several of the papers in this conference treat the problem of radar

calibration. It is an important problem that is one of the major

limitations in several remote sensing applications.

Even if it were possible to calibrate the radar to any accuracy

desired, there is still the problem of statistical variation of

the measurement itself which can limit the ability to obtain

average values with small variance. The o° of the terrain might

not be uniform, and the speckle associated with coherent radar

observations might require long-term averages to obtain raeaningfiil

measurements. It is not unusual for two passes ov..-- the same ter-

rain to give as much as 10 dB difference in measured a".

At the present time SAR is best usec where absolute measurement

of o° are not required. The chief attribute of SAR is to provide

the resolution needed for imaging and for recognizing effects by

the shape, position, and relative intensity of the scattering

objects.

1) Millimeter Wavelengths (Frequencies greater than AC GHz)

There has always been interest in the application 'of milli-

meter wavelengths for radar, above K band. One of the reasons
o

millimeter wavelengths have not had application is the large

attenuation through-the earth's atmosphere, especially at low

grazing angles. If higher grazing angles can be utilized, milli-

meter waves might be of interest since their scattering properties

might be different than at lower frequencies. (There is no evid-

ence at present that would suggest tj,at millimeter Wcives will

provide significant new information not attainable with lower

frequencies, but the possibility that it does should not be over-

looked.)

1-2-16



m) Synchronous Orbits

Synchronous satellites have the advantage of being able to observe

contlnously a large portion of the earth's surface. A synthetic

aperture radar cannot be precisely synchronous since relative

notion is required between the radar and the scene being viewed,

hence the.term near-synchronous SAR. (One approach is described

by the paper by Toioiyasu.) A satellite in near synchroaous orbit

requires larger real antenna apertures and large powers in order

to achieve the necessary signal-to-noise ratios from such large

distances, it is not likely tl.at near synchronous orbit SAR will

be seriously considered (that is, large funds spent) before

closer orbit satellites or aircraft SAR have proven the value of

the measurements to be made.

n) Electromagnetic compatibility (EMC)

The potential interference between a satellite radar and ground

equipment can be quite serious. Not only is the mutual inter-

ference problem aggravated by the large ground area within the

line~of-sight of a SAR in a satellite, but a SAR for remote

sensing applications will bt of high power and with a broad signal

bandwidth. In some applications there is proposed multiple fre-

quency operation, which further complicates the EMC problem.

If a conflict results between a spaceborne radar and ground

electromagnetic services, the application with greater economic

impact (or greater military of national need) will likely be the

one given priority i'or the use of the electromagnetic spectrum.

As the SAR proves its worth for remote sensing, the potetial

problems of EMC and spectral occupancy must be kept in mind. If

SAR does create a serious interference problem to other services,

its.use will have to be justified. It is thus important to pay

special attention to the needs of the potential users of SAR so as

to maximize its economic potential.

o) Sustaining Applications and Competitiors

There have been a whole host of applications proposed for the

spaceborne SAR. There are many potential users of the information

1-2-17



derived from such a sensor. However, there seem to be few. If any,

potential users of SAR who are serious enough to pay the large

costs involved for a useful operational system, even assuming

developmental costs are paid by someone else. There is insuffi-:

cient knowledge available at present to allow a prudent investor

to make that kind of decision. Mere information is needed regard-

ing what such systems will eventually be able to do. If a sus-

taining "bread and butter" application is not found, interest in

SAR for space application likely will wane. More effort is

required in fereting out suitable applications for SAR. Mere

"Interest" by some user is not sufficient. Evidence is required

to prove that SAR has the potential for performing an important

function not capable of being fulfilled by some other sensor, or

that it can perform a needed function more effectively or more

cheaply than by any other method.

6.0 DISCUSSION

Synthetic Aperture Radar certainly offers potential for unique capabilities

for remote sensing from space. Current SAR technology can provide more

information than will be obtained wit'.i SEASAT-A or SIR-A. There exists an

available hardware base from which to draw, as well as new technology

developments as evidenced from Chis meeting and the continued developments

under NASA sponsorship. Theoretical analysis, ground experiments, aircraft

experiments, as well as the interests of potential users, all support the

need for further efforts. However, the current base of knowledge is still

inadequate to r-arch confidently into the future with a definitive plan that

will lead to operational spaceborne SAR systens performing some needed

function in an economical affordable manner. Conferences such as this one

are important if that goal is to be reached. There are certainly unresolved

problems with SAH for remote sensing. If there were none, then there wnuld

be no need for R&D. Problems are a natural consequence of pioneering

efforts.

SAR must provide something other than is provided by IR and optical images,

or by microwave radiometers. With its use of microwave wavelengths, its
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own controlled source of illumination, sbili.y to use many octaves of the

spectrum, control of polarization, its potential wide swath and adequate

resolution, SAR offers some significant differences over the othor stnsors.

These differences should be exploited for remote sensing applications.

It must also be shown that operational satellite-borne SAR offer a competi-

tive cost-benefit advantage over aircraft-mounted SAR.

One thing this paper has not done, since it is not within the capability of

Lhe writer to do so, is to describe what SAR needs that it does not now

have, that would allow it to be a major sensor for remote sensing from

space. Before it will be widely use-4 it must be verified that SAR from

space can achieve an important remoi sensing capabiltiy better and/or

cheaper than any other means, and that this capability is something of

economical or societal value.

\y
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SUMIARY

Absolute calibration of radar return signals has been a goal of radar

system engineers almost since radar vas inventor1. A large degree of

success .ias been obtained in the development of calibration techniques for

instrumentation ani fire control radar s/stems.

However, calibration of imaging radar systems has proven more difficult.

Most past attempts to provide calibration to such systems have consisted of

sampling the transmitted signal, and re-inserting this signal into the re-

ceiver in known quantities. This approach has had limited success, and does

not address the question of cud-to-eud calibration.

This paper will present an unconventional approach in that it considers the

entire system, including the imaging processing as a measurement instrumciic

to be calibrated. The technique makes use of a calibrated aircraft sca-cter-

ometer as a secondary standard to me'sure the backscatter (sigma zero) of

large units of constant roughness. These measured roughness units when

viewed by an imaging radar system can be used to provide gray-scale level

corresponding to known degrees of roughness.

To obtain a calibrated aircraft scatterometer, a homogeneous smooth surface

vas measured by both the aircraft scatteroraeter and a sphere calibrated

ground system. This provided a measure of the precision and accuracy of the

aircraft system. The aircraft system was then used to measure large rough-

ness units in the Death Valley, California area. Transfer of the measured

roughness units to radar imagery was; demonstrated.
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1.0 INTRODUCTION . j

Absolute calibration of radar return signals has betn a goal of radar j
i

system engineers almost since radar was invented. A large degree of success ;

has been achieved in the development of calibration techniques for instru- ;

mentation and fire control radar systems. j

However, calibration of imaging radar systems ' -•> prcven moi-e difficult.
t

Most past attempts to provide calibration to sucl systems have consiste'. of '•

sampling the transmitted signal, and re-inserting I,1.is signal i tl1--

receiver in known quantities. i
I

One such use and evaluation of this technique was reported by the Environ-

mental Research Institute of Michigan (ERIM) ir. 1973 . Thrs approach i

has had limited success, and does not address the question of end-to-en'i j

calibration. !
i\
I

Imaging radar was originally developed to provide information for mapping j
i

and target recognition. j

In the did-1960*3, t.he Department of Defense (DOD) developed techniques and '•

ranges for evaluation of imaging radar s^jtems. A suunary of the DOD effort ,
\2\ '•was presented by Marden in 1967 . The DOD effort was related to defection ,

i
of cultvjral targets in various types of backgrounds and evaluation of geo- ,

metric fidelity. j
i
i

In the late 1960's and early 1970'o as Investigators started using radar [
i '

imagery in Earth Resources investsgavior>, tlie lad: of end-to-end system j

calibration quickly became apparent. Most early imaging rpdar systems used !

optical recording and correlation techniques. Procedures and techniques for !

control of image quality during recording and correlation have been developed.

Control of image processing will provide a uniforrs image output, but in no j

way addresses the end-t'o-end calibration problem. Variations in imaging ;

radar systems performance, unknowns about the antenna characteristics, and '

atmospheric effects all must be accounteu for to ensure end-to-end calibration. (

I
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At the Johnson Space Center, studies of the potential u.xe of iiiiaging radar

in Earth Resources investigations were begun in the late i960'a. The

results of one of these early studies by Stafford outlined a concept of

a large radar target range with varying degrees of known roughness. This

target wo\ild be overflown frequently to give a means of relatively known

image roughness to unknown image roughness.

The need for end-to-end calibration of imaging radar systems for Earth

Resources investigations was not clearly established until the mid-19701s

when, investigators working in the fields of water resources and soil mois-

ture areas began to realize the importance of radar backscatter data in

their investigations. The inadequate performance cf imagine radar systems

with regard to end-to-end calibration have hindered meaningful investiga-

tions in these two important areas of Earth Resources.

2.0 END-TO-END RADAR CALIBRATION CONCEPT

Traditional approaches to imaging radar calibration generally involve the

independent measurement of subsystem parameters, the calculation of total

system transfer function and prediction of error bounds. Unfortunately,

the error bounds associated with this approach may range as liigh as i3db

which is excessive for a number of applications investigations using extended

scene radar signatures. In addition to the difficulty o* obtaining absolute

calibration with reasonable error bounds, the problem of determination of

the precision of the measurement exists.

In 1976, Johnson Space Center (JSC) initiated a program to establish the

precision and accuracy of 1.6 GHz and 13.3 GHz scatterometers flown on the

Airborne Instrumentation Research Program (AIRP) C-130 aircraft. This pro-

gran as initially conceived involved the following:

(l) Creation of a known signa zero (OQ) scene by performing

in situ measurements over a smooth homogeneous surface using a

sphere calibrated ground scatteroroeter system operating at 1.6 GHz

and 13.3 GHz.
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j
(2) Overflight of this scene with the aircraft 1.6 GHz and ^

13.3 GHi scatteroaieters.

(3) Determination of the aircraft systems precision and

accuracy by analysis of the data gathered on the flights over

the known sigma zero scene (calibration site).

In the course of determining how to evaluate the precision and accuracy of

the aircraft scatterometer systems, the question of how pure roughnew and j

its effect on signa zero could also be^evaluated, was addressed. A paper

by Schaber, Berlin, and Brown in 1976[5] presented data indicating that

sufficient studies and ground truthing of the roughness units in the Death

Valley Area of California had been perforned to allow it to be used for

evaluation of roughness. However, gathering of ground scatterotieters d-'.ta

for sigma zero verification would be extremely difficult.

A comparison of the terrain features and soil characteristics of the site

'chosen for the precision and accuracy evaluation (Northrop Strip, White

Sands Missile Range, New Mexico) and the Badvater Basin region of Death

Valley indicated many similar characteristics. This lead to the concept of

extending calibration from a known and tested ground site to a training site,

via aircraft scatterometer systems. The training site would contain rough-

ness units varying in roughness from smooth to extren-ely rough.

A concept of end-to-end radar calibration as shown in Figure 1 was derived. (

This concept would function as follows: 4
Step 01: The calibration site sigrca zero curves for a smooth j

homogeneous surface would be derived by performing measurements lj

with a calibrated ground scatt^rometer system.

Step #2: This site would then be overflown with the airborne

scatterometers and the precision and accuracy of the aircraft

systems established.
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Step ff3' The training site would be overflown with the aircraft,

scatterometer systems and sigma zero curves for the pure roughness

units in the test site derived.

Step f/h: The sigma zero curves derived for the test site would hc>

used to relate gray-scale levels to roughness in imagery taken

over the test site.

Step ffy: The gray scale to roughness relation Oarived from

imagery taken over the test site would be used to evaluate the

amount of roughness and/or variations and deviations in roughness

in radar . imagery taken over unknown sites. Knowledge of the grey

seals to roughness relation is an important piece of .information

in evaluating radar imagery.

Certain criteria must be applied to the sites selected for calibration and

training sites. Each must be devoid of vegetation and have surface charac-

teristics that are stable with time. Once measured, they must, be controlled

to ensure that manmade changes such as construct ion do not alter their

characteristics .

On the calibration site, the surface must appear smooth at the highest fre-

quency that data "ill be gathered at. The site must be accessible for ground

scatterometer testing.

The training site must contain ro-ughness units varying from a smoothness

approaching the calibration site and increasing in roughness graduations to

the largest degree of roughness available. These units must be large enough

to provide sufficient independent samples for precise measurement?.. The

sites chosen for the calibration and training sites meet all of these criteria.

3.0 CALIBRATION SITE

The si1.? cho^cu for t.'e calibration site is the Northrop Strip located on

the White Sands Missile Kangt in New Mexico. Northrop Strip is e 10, 000- foot

long by 300- foot wide eme.'g' -'V landing strip built on a dry lake i<ed. The
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TABLE I

MEAN VALUE OF MEASURED DIELECTRIC CONSTANT

NORTHROP STRIP, WSMR

(10.

Real

Imaginary

1968

0 GHz)

U.12

3.01

June 1977

(13.3 GHz)

U.76

2.37

Nov. 1977

(13-3 GHz)

5.31

1.63
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pur face is packed gypsum sand with a high alkaline content. This site was

chosen for a number of reasons as follows:

(1) The entire area is naturally smooth with the runway surface

graded and packed.

(2) The site is located in an arid area, devoid of vegetation

and not subject to seasonal variations in surface moisture.

(3) The high alkaline content of the soil will tend to make it

a highly reflective surface at the frequencies of interest.

(U) Radar reflectivity and soil dielectric constant data had

previously been gathered on the site as part of the Apollo Lunar

Reflectivity Program in 1968 J- '

(5) The runway is well raarkea with visual aids for repeatability

of aircraft flight lines.

\i

Ground truth data acquisition at the site was initiated in June of 1977 by

taking a series of soil samples and measuring the dielectric constant in the

same manner as reported by Dickerson. Additional samples were taken in

November 1977. Table I shows the average results of these samples. This

data shows that there are no long-term (yearly) or short-term (seasonal)

variations in the surface properties of the soil at the site.

To ground truth the site, a ground scatterometer utilizing the FM/CW approach
[7]reported by Bush and Ulaby in 1973 was constructed. Initial plans were

to ground truth the site in June of 1977 coincident with the aircraft over-

flight, but mechanical difficulties with the antt tna system prevented the

ground measurements from being made until November of 1977.

U.O TRAINING SITE

The use of known terrain scattering properties to provide a convenient method

of calibrating airborns radar systems was first suggested in 1>60 by Cosgriff
f 81et al . Recent work by Schaber (1976) has delineated the characteristics

of geologic units on radar iuages of Death Valley. The unique combination
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of large pure roughness units, unchanging electrical surface properties, and'

time constant roughness units makes Death Valley an ideal training site for

imaging radar calibration. The well-documented characteristics of the region,

the absence of rainfall and vegetation ensure tje temporal stability of the

backscatter coefficient obtained. For these reasons Death Valley was chosen

as a potential training site.

A series of scatterometer flights were flown over Death Valley in June of

1977. Flight lines were chosen such that sufficiently large areas of con-

stant roughness were overflown to ensure adequate sampling.

5.0 PROGRESS TO DATE

As stated previously, aircraft scatterometer data wan gathered over the

Northrop Strip, WSMR calibration site and the Death Valley, California test

site in June of 1977- The calibration site giound scatterometer data was

gathered in November of 1977.

Analysis of this data has progressed slowly because of difficulty in pro- ^

cessing of the aircraft data. To data, only the precision or repeatabili-

ti'.s cf the data sets has been addressed. Attempts to arrive at an accuracy

estimate by comparison of ground and aircraft data sets has not proved com-

pletely successful.

Some of the-differences between scatterometer data sets and the ground

scatterometer data sets may be due to problems in the data reduction methods

for the two systems. Analysis of the data reduction techniques is presently

underway to resolve the differences.

The following paragraphs will discuss the results of the data analyzed to

date:

5.1 DATA ACQUISITION

Ground scatterometer calibration site data was acquired for two frequencies

(1.6 GHs and 13.3 GHz) at six locations spaced 500 feet apart along the

Northrop Strip runway center line. This provided a 2500 foot long sample

II-L-9
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area. Azimuth rotation of the -uiter.na systems provided multiple samples

at each location. Incident angle data was acquired at 10, 20, 30, too, 50,

and 60 degrees.

The aircraft scatteroraeter data was acquired by multiple flights over the-

same sample aree as used by the ground scatterometer. A total of 16 dita

runs were made on two successive days with four morning and four afternoon

runs etioh uay. Five ddtu runs were made over the Death valley training

site to establish the relative magnitude of the radar reflectivity datt

from the wide range of surface roughness conditions available.

The aircraft flew at a 1500-foot altitude and a ground speed of 150 knots.

The radar antenna footprints at this altitude were 225 feet ind "75 fee: for

the 1.6 and 13-3 systems, respectively.

In order to gather 13-3 scatterometer sample? only over the Northrop Strip

runway, the aircraft flight had to satisfy the conditions of either being

exactly over the runway centerline with a combined roll and drift of less

than three degrees or be less than 100 feet off the centerline with no

roll or drift- Photography obtained during the data runs was used to es-

tablish aircraft flight path relative to runway csnterline. The LTN-51

inertial navigation system was used to determine aircraft roll and drift.

For the 16 runs flown, these conditions were satisfied on ten runs thus

defining tne data set that was used for analysis.

5.2 DATA PROCESSING

Ground scatterometer data was reduced as it was gathered by the use of a

Hewlett-Packard 9̂ 20 programmable calculator operating in conjunction with

the scatterometer systems.

The aircraft seatterometer data is recorded on FM analog recorders and

returned to JSC for playback, analog to digital conversion and digital pro-

c^ssing. The data processing is accomplished on a PDP-11/70 minicomputer
[o]

using the algorithms developed by Krishen.
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The program output is j.n the fern of time correlated signa zeros at angles

of 5, 10, 15, 20, 30, UO, 50, and 60 degrees off nadir. The sampling times

used were O.U2 seconds and 0.1 seconds for the 1.6 and 13.3 systems repec-

tively.

5.3 DATA AHALYSIS RESULTS

5.3.1 Northrop Strip

5.3.1.1 Ground Scatterometer

Figures Two and Thiae are plots of meai and standard deviations of the «'ata

gathered by the ground system. Mean standard deviation for the 1.6 GHz data

is 0.77 db. Mean standard deviation for the 13-3 GHz data is 1.0 db. This

is a limited data set since the sigma zero values for angles of 10° and 20°

represent a small number of statistically independent samples.

5.3.1.2 Aircraft Scatterometers

Curves of relative mean radar reflectivity versus incidence angle have been

developed to illustrate the precision of measurement obtained. Figures k

and 5 represent mean values for 1.6 GHz W and HH data acquired on four runs

over two successive days. Figure 6 represents mean values for 13.3 GHz

data acquired on ten runs over two successive days. The day-to-day repeat-

ability of the aircraft systems is excellent as indicated by the less than

1 db standard deviation of all data acquired.

The data standard deviations within a run and between runs on the same day

provided in Table II are lower than those obtained when considering data

acquired on different days. This should oe expected since the conditions

under which the data was gathered could not be rigidly controlled from day

to day, hence the mean values of the data sets are different.

5.3.2 Death Valley

Data acquired over che Death Valley site has not yet been processed, however,

analog time histories provide information on the dynamic range available at

this site. Figures 7 and 8 are radar reflectivity cime histories illustra-

ting the changes present at the transition from the roughest geological
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FIGURE 2, RELATIVE MEAN RADAR REFLECTIVITY
-GROUND 1,6 GHz VV - WHITE SANDS
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FIGURE 3. RELATIVE MEAN RADAR. REFLECTIVITY
- GROUND 13,3 GHz W - WHITE SANDS
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FIGURE 6, RELAUVE MEAN RADAR REFLECTIVITY
- A/C 13,3 GHz VV - WHITE CANDS
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TABLE 11 : ]
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STANDARD DEVIATION OF A/C DATA

1,6 GHz
1,6 GHz

- 1,6 GHz
1,6 GHz
1.6 GHz

- 1.6 GHz
13,3 GHz
13,3 GHz

- 13,3 GHz

VV

VV

VV

HH

HH

HH

VV

VV

VV

WITHIN RUN

RUN-TO-RUN SOME FLIGHT

DAY-TO-DAY

WITHIN RUN

RUN-TO-RUN SOME FLIGHT

DAY-TO-DAY

WITHIN RUN

RUN-TO-RUN SOME FLIGHT

DAY-TO-DAY
j

10° 20°. 30° 40° 50°

0,4 0,5 0,5 0,5 0,5
0.6 0.5 0,7 0,8 0.7
0,8 0,9 1,0 0,7 0,8
0,3 0,3 0,4 G,5 0,5
0,5 0,5 0,6 0,6 0,7
0,7 0,7 0,7 0,6 0.8
0,3 0,4 0,5 0,5 0,6
0,4 0,4 0,7 0,7 0,9
0,5 0,5 1,0 1.0 1,1
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FIGURE 7, RADAR REFLECTIVITY TIME
HISTORIES - 1,6 GHz W - DEATH VALLEY
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FIGURE 9, RADAR REFLECTIVITY TIME
HISTORIES - 1,6 GHz VH - DEATH VALLEY
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unit in Death Valley (Devil's Golf Course) to the smoothest (Badwater

Basin). The linear polarized return changes by about 15 db at 50° inci-

dence angle. An even more dramatic change, 25 db at 1*0°, is observed on

the cross-polarized return as shown in Figures 9 and 10. The total system

dynamic range indicated is in excess of 50 db.

It can be observed that no strong angular dependence is present for these

extremes of random surface roughness.
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WAVEGUIDE-EXCITED SLOT ARRAYS FOR SYNTHETIC ARRAY RADAR APPLICATIONS

D. E. BOSTROM, D. J. LEWIS, AND F. C. RUPP
ANTENNA DEPARTMENT
RADAR SYSTEMS GP.OOP

HUGHES AIRCRAFT COMPANY
CULVER CIT\, CALIFORNIA 90230

SUMMARY

The planar a.-ray antenna configuration offers many advantages compared with

reflector antennas when microwave efficiency, precise control of the beam

shape, and stowed and deployed volumes are important considerations. Of

planar arrays, those with waveguide-excited slots provide better performance

than arrays of printed-circuit radiators or dipole radiators because the

dissipative losses essociated with the waveguide feed system can be maJe to

be very small. In this paper, the basic design considerations for waveguide

slotted arrays are reviewed, with emphasis on those design requirements that

are most significant to both airborne and spaceborne synthetic array radar

(SAR) systems. As an illustration of both design procedures and performance

capability of slotted waveguide planar arrays, an L-band planar array was

designed, fabricated, and tested. This array has an aperture approximately

one meter wide by two meters high and was designed to be a typical submodule

of a larger antenna. Measurements, of radiation patterns, gain, and VSWR were

recorded and are presented, together with the performance characteristics pre-

dieted on the basis of theoretical analysis.

1.0 INTRODUCTION

The use of planar array antennas for large spaceborne SAR systems has many

advantages compared with reflector types of antennas. These advantages J

include high aperture efficiency, precise control of the aperture distribution ••

function, excellent packaging and stowage characteristics, freedom from non- j

uniform solar illumination due to feed shadowing, and reduced surface ]

tolerances. The latter are permissible because the aperture acts as a j,

generator or source of the microwave energy rather than as a reflector. The t

use of slotted waveguide and waveguide feed structures has the further ;
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advantage of extremely low dissipative loss. In addition, there is a wealth
of design data, computer programs, and experience available for slotted array

design that generally assures achievement of predicted performance levels.

An example of an X-band array which was designed, fabricated, and space-
qualified for a SAR application at the Hughes Aircraft Company some years ago
is shown in Fig. 1. This antenna, which was roughly 7.27 meters (24 feet)
long by 1.2 meters (4 feet) high, was found to have outstanding microwave
performance characteristics most of which were directly attributable to the
use of a waveguide feed and slotted waveguide radiating sections. The subject
of the present pacer is a feasibility dpr.xnstr-ation model of a planar array
wi-th a similar design configuration but developed at L-band. It is shown that,
at L-band as at X-band, the slotted waveguide type of planar array can provide
superior performance.

2.0 GENERAL DESIGN CONSIDERATIONS

Typical SAR system requirements call for a radiation patten with a fan beam
Snape, with the antenna oriented so that the broad section of the beam provides
the desired swath coverage. The fan beam pattern requirement naturally leads
to the use of a long narrow aperture of the type shown in Fig. 1. Typically
ir, * planar array, the aperture is divided both electrically and mechanically
into a number of modules or suba(rays as shown in Fig. 2. The modules are
electrically combined with a corporate feed structure as indicated. The sub-
division of the aperture provides a useful frequency bandwidth, allows for
thermal expansion joints to prevent aperture bowing, simplifies fabrication
of the antenna, and facilitates folding if required for stowage during launch
and retrieval.

In Fig. 3, it is possible to see most of the essential details of the con-
struction of a single module of an array. In practice, the modules in a given
array are usually identical, so that Fig. 3 actually characterizes a complete
antenna system. As shown, the radiating elements of the module are formed I
from resonant slots cut in the broadwalls of a number of sections of waveguide.
Each section of waveguide thus becomes an individual linear array. The module

aperture is formec by joining thess waveguide sections together in the manner ]
illustrated. The individual linear array elements are slot coupled to a cross I
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Figure 1. Space-qualified X-band array for SAR applications.
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feed guide that runs across the hack of the module. The cross feed is in turn
slot coupled to a flanged module feed guide section. This feed guide is the
common feed point for all the slots in a given module.

In the module configuration of fin. 3, it is generally most convenient to
employ a resonant, or standing-wave design, for both the cross feed and the
linear array element guide sections. For good pattern characteristics to be
obtained over a wide frequency range with this type of design, the number of '
elements that appear in series in any given element must be limited. Tyni-
cally, for example, it has been found that square arrays of 16 slots can
provide useful bandwidths of about 10 percent.

The aperture distribution in the slot array can be tailored to provide pre-
cise cort*ril of the antenna beam shape. The mechanisms for ruch control are
simple: tie amount of power radiated by any individual slot is controlled by
the amo-'.it the slot is offset from the centerline of the waveguide in which
it appears, the power coupled from the crocs feed to any individual linear
array element is controlled by the angle at which the coupling slot is cut
with respect to the guide axis, end the resonant frequencies of the slot? are
determined by the slot lengths. In the interest of mechaniccl simplicity, it
is common to use separable aperture distribution functions in the E- and
H-planes; this approach Ic-ads to a design in which all waveguide array ele-
ments have identical radiating slot patterns.

An indication of the degree of flexibility possible in the design of the
module is provided by the equivalent circuit representation of Fig-. 4. Each
of the slot susceptances is individually controllable, as is the impedance
transformation ratio of each of the coupling slots. Thus, various drsign

i
configurations involving both different aperture distributions and different j
internal impedance levels can be easily realized. Because both radiating and i
coupling slot characteristics are well documented on both theoretical and
experimental levels, design of a module for any desired set of pattern, band- j
width, gain, and impedance characteristics is a straightforward process. In
general, the effects of such factors as mutual coupling between slots are
accounted for during the design process by the use of the appropriate slot I
data.
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The design procedure for most cases can be summarized neatly:

o The antenna gain and pattern requirements determine the aperture
s.ize and shape.

o The radar signal bandwidth requirements then establish the maximum
module size.

o The radiating ->nd coupling slots are then selected to generate the
aperture distribution corresponding to the beamshape requirements.

e The impedance levels and resonant frequencies of the slots are
designed to provide a good input impedance match.

3 . 0 DRASSBOARD MODEL OF AN L-BAND ARRAY MODULE

Fig, 5 presents a photograph of an array module that was fabricated to demon-
strate the performance capabilities of a slotted waveguide array at L-band
frequencies. This module contains six waveguide linear array elements; each
wavsguide element has 13 radiating slots. The cross feed runs across the
back of the apertu t; between the 6th and 7th rov:s of radiating slots. The-
input guide couples into the center of the cross fe^d. Half-height wavec/nde
(4.6 cm or 1.6 inch high) was used throughout to minimize the thickness of
the structure. The module was designed for use in an array of eight such
modules. The various components of the module are easily identified by a
comparison of Fig. 5 and Fig. 3.
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The radiation patterns in both E- and H-planes, gain, and VSWR of the brass- .
board module were measured. Results are illustrated and discussed below.

3.1 RADI ATIdN PATTERNS

The measured principal plane radiation patterns of the brassboard model are
shown in Fig. 6. The aperture distribution along the long dimension of thf

module was designed to give a first sidelobe level of 16.5 dB. The small
crosses on tie corresponding H-plane pattern (Fig. 6b) indicate the desiqn or
predicted levels and positions of the sidelobe peaks. As can be seen, the
agreement between theory and measurement is excellent. Intercardinal plane

patterns, ivMCh were also recorded, showed no indications of spurious lobes.

In the Erpl.'ne the array was designed for a uniformly weighted aperture along
both the arv-ay and the module. This leads to an interesting dilemma peculiar
to the desi in of the module as a demonstration piece rf hardware: if the
module is designed to generate a uniform distribution in the E-plane when it
is part of ,\ full array of eight modules, it ' i l l almost certainly have a
nonuniform weighting when used separately. If, on tht other hand, the module
is designed to have a uniform E-plane .listribution when used as a separate
module, the array amplitude distribution w i l l be nonuniform when a number of
modules an> joined together, "ihe reason for this behavior is the strong
E-plane mutual coupling that exists between the radiating slots. In a large
antenna norly ell th? slots see a common E-plane environment, and the mutual
coupling is usually accounted for in the radiating slot data used in the
design. In a small antenna, such as the module, if a uniform aperture excita-
tion is required, the coupling slots in the cross feed are used to correct for
the edije effects and compensate for the different behavior of the slots located
close to vhe side of the array.

In the present design the module was designed and laid out as if it were part
of a ful1 array. As a result, the mutual coupling results in an effective
amplitude taper in the module, r.nd the sidelobe levels are considerably lowpr
than the 13.3 dB normally to be expected. While it ic quite feasible to
calculate what the sidelobe levels should be, in the interest of economy this
step is '.jenerally not done because the computation and the acquisition of the

specific slot data required are relatively expensive. For those reasons, an

I
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estimate of the module E-plane sidelobe levels was not made. However, the

E.plai,e sidelobes of the full, eight module array can confidently be predicted

to be 13.3 dB.
Two oarticular aspects of both the E- and H-plane patterns that should be
observed are the symmetry of the sidelobe levels and the deep clean nulls.
These characteristics indicate good tolerance control of the module and
small microwave and mechanical design and construction errors.

The measured performance of the module with respect to radiation pattern
characteristics is summarized in Figs. / and 8 which show the first sidelobe
level and 3-dB beamwidth as functions of frequency. The predicted curve tor
the 3-dB beamwidth of the H-plaw pattern is a.so plotted in Fig. 8. The
E-m.~. 3-uB beamwidth for the module was not predicted because the mutual
coupling effects that lead to low sidelobes in this plane also produce a

broader beamwidth than would otherwise be observed.

IS

1.78
FREQUENCY. GHi

Figure 7. Measured sidelobe levels.
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Figure 8. Variation of 3-dB beamwidth with frequency.

3.2 GAIN
The maximum theoretical gain of a planar slot array is relatively simple to
calculate with a high degree of precision. The procedure is to compute the
so-called area gain from the well-known expression

where

A = aperture area

X. = wavelength

and then subtract the losses associated with the aperture weighting function
used for sidelobe level control and beam shaping.

A gain cf 26.9 dB was calculated for the brassboard module for the design
frequency of 1.270 GHz. A loss allowance of 9.10 dB, which included the
calculated value for the H-plane weighting and an estimated value, based on
experience, for the E-plane weighting, was made for the aperture weiohtinq.
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The measured gain of the.module is plotted as a function of frequency in
Fig. 9. For purposes of comparison, the maximum theoretical gain (G) achiev-
able with an aperture of the module dimensions is also plotted on tho same
figure. The difference between the two curves at any frequency represents the
losses due to random manufacturing errors, waveguide dissipative losses,
design errors, and input mismatch.

The aperture efficiency is defined at Hughes as 100 times the ratio of the
measurrd ga'.d to the maximum theoretical gain of the aperture. When defined
in this TM(ir:r>"r, the efficiency becomes a measure of the success of the
antenna desigr. in terms of achieving the theoretical pattern and gain charac-
teristics. In the case of the L-band module, the aperture efficiency measured
at 1.270 GHz is approximately 94 percent.

It should be noted that the gain data of Fig. 9 were measured th-ouqh a
stepped half-height to full-height transition and a coaxial-to-vaveguide
adapter. The gain was corrected for the gain reduction introduced by the

waveguide transition and adapter dissipative losses. The inpuc mismatch
losses, however, were left in thp data.

3.3 MODULE VSWR

The input voltage standing-wave ratio (VSWR) of the module, also measured
through a stepped half-height to a full-height, waveguide transition and a
coaxial-to-waveguide adapter, is plotted in Fig. 10. As c; n be seen, the VSWR
remained below 1.4:1 over most of the bandwidth. No matching or tuning devices
were employed to obtain these results.
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Figure 9. Measured gain of brassboard module over design bandwidth.
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Figure 10. Measured voltage standing-wave ratio of module.

3.4 SUMMARY OF MODULE PERFORMANCE CHARACTERISTICS

The performance-of the module, as characterized by the microwave measurements,
is summarized in Table 1. The design objectives, which were based on theoreti-
cal values, ere also tabulated for the purposes of comparison. Exact values
of the cross polarization components of the radiation field are not given in
the table because the measured values were so low that they implied that the
module cross polarization was significantly better than that of tha trans-
mitting source used for the pattern measurements.

3.5 FULL SCALE ARRAY PERfORMANCE

As a final step, the measured module data were utilized as the basis for a
prediction of the performance characteristics of a full-scale array of eight
modules. These results are given in Table 2. It is believed that the numbers
shown represent the full array performance with the same high degree of
accuracy provided by the module data in Table 1.

The estimate of the array weight was based on the use of thin wall (51 mm or
0.020 inch) aluminum waveguide for the mod-lie panels and corporate feed and
an aluminum honeycomb support structure. The physical design of array and
support was predicted on the assumption of a structural resonant frequency
requirement of 25 Hz. The mechanical design did not provide for aperture
folding. Techniques for forming and maintaining the necessary waveguide cross
sections with the thin wall aluminum waveguide have been developed and demon-
strated at Hughes under both funded and company-sponsored research efforts.
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TABLE 1. PERFORMANCE OF L-BAND BRASSBOARD MODULE

Parameter

Gain, d8

Beamwidth, degrees

H-plane

E-plane

First sidelobe, dB

H-plane

E-plane

Input VSWR

Bandwidth (GHz)

Cross polarization,
d3

Efficiency (relative
to weighted aper-
ture), percent

Aperture dimensions

Design Objective

26.87

5.9

NA

16.5

NA

<1.5:1

1.265 to 1.285

<30

>90

1.04 x 2.12 x 0.04 meters
(41.1 x 83.28 x 1.6 inches)

Measured
(at 1.270 GHz)

26.60

6.0

13.2

-15.8

-17.4

<1.3:1

1.255 to 1.285

<30

94

1.04 x 2.12 x 0.04 meters
(41.1 x 83.28 x 1.6 inches)
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TABLE 2. PROJECTED PERFORMANCE FOR ARRAY OF EIGHT MODULES

Parameter

Aperture

Gain (eight times module gain less
corporate feed losses), dB

Bandwidth

Beamwidth, degrees

H-plane

E- plane

First sidelobe levels, dB

H-plane

E-plane

Input VSWR

Cross polarization, dB

Weight (array panels, structural suppjrt,
thermal control systems), pounds

Performance

2.12 x 8.33 meters
(83.28 x 323 inches)

35.3

1.255 GHz to 1.285 GHz

6 0

1.31

-15.8

-13.3

<1.5:1

<30

220

4.0 CONCLUSIONS

The measured performance characteristics of the L-band module described in
this paper demonstrate the feasibility of slotted waveguide planar arrays for
L-band SAR systems. In every respect the module exhibits a superior level of
microwave performance, and it was established .that excellent agreement between
predicted and measured performance can be obtained by-the use of simple,
straightforward design procedures.

The relatively low microwave frequencies for which this module was designed
represent the lower end of the range for which waveguide slotted arrays are
most attractive. Below L-band the dissipative loss characteristics of
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striplines and coaxial lines are sufficiently low as to warrant their considera-
tion for use as the feed elements. As the frequency is increased, however,
the loss advantages of the slotted waveguide configuration become increasingly
great. At the same time, the waveguide dimensions decrease rapidly to the
point at which the volume savings that can be obtained through the use of TEM
line configurations have no particular significance.
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EFFECT OF WEIGHTING ON TIME SIDELOBE SUPPRESSION*

ALAN DI CENZO
- JET PROPULSION LABORATORY
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PASADENA, CALIFORNIA 91103

-•-CEDING PAGE BLANK KQT. F&$-jffl
SUMMARY

Weighting is a well known technique for shaping the compress*.i puls= wavefonr

it. radar processing. Usually, weighting is applied to the transfer function

»md has the effect of sacrificing the time nainlobe width (resolution) in

exchange f T decreasing the height of the neighboring siielobes. This paper

reports on simulations of weighting in the time dom-.iu, as used to shape the

ti're-compressed pulse wavefomi. The digital input radar data is 32 bit

I,Q, and simulates data from a point target as imaged by a Seasat-A type

system. Weighting functions tested include stepped-amplitude distributions,

(with 1 through 5 steps), anc the cosine-squared plus prdestal distribution.

Effects treated include mtdnlobe broadening, peak energy reduction, the

intigr&ted sidelobe ratio, signal to noise ratio, and nearest sidelc/be

suppression.

1.0 INTRODUCTION

Pulse compression in radar is commonly accomplished through matched filtering.

A radar point target return s(t) is correlated against a T-shifted version

of its conjugate s*(t) over a time interval T, to yield an output at tine T:

/•T/a

J-T/2

S(T) =J s(t)s*(t - T) dt. (1)

-T/2

* This paper presents the results of one phase of research carried out at the
Jet Propulsion Laboratory, California Institute of Technology, under Contract
No. HAS7-100, sponsored by the National Aeronautics and Space Administration.
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The estimate S(T) yields a prediction of the return from a target at the

•location specified by T. The function |S(T)| usually has multiple peaks, j

and thus creates detection ambiguities when there is large signal dynamic

range. For example, if s(t) is a linear FM signal, S(T) approximates e sine ;

function with high 1-13.2 db) sidelobes. . .

The relation (l) may also be expressed in the frequency domain. Set

s (t) = s*(-t).

Then (l) becomes

/•T/2

s(t) sr

•J-T/2

s®s r (T) .

(T - t) dt (2)

If capital letters denote fourier transforms, then (2) Implies

S(w' = £(w) • S(w). (3)r

The inverse transform of F(w) is of course S(T). In (3) we can multiply

S (w) by a weighting function W(w) to obtain a new output S :

S^w) = S(w) • Sr(w) ••W(w). (li) j

•|
.]

The inverse transform, s..(r)» is now only an approximaticn to S(T)- The goal of i

frequency domain weighting is to select a function W in (It) such that s.. (T) is * j

a good local approximation to §(T), but has lower sidelobes.

It is known that weighting of the tine domain signal can produce similar

effects, particularly if the signal it- linear FM. In time weighting the

weighting function is multiplied with the return signal
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ŝ t) = s(t) wft)

or with the reference function s'Ut)

sj(t) = s*(t) w(t), |

prior to filtering. li
!
iii

Tliis paper reports on simulations o*" time-weighting, performed OP. digits". ft

SAR data of the type expected from satellites such as SEASAT-A. j]

ii
It is shown that use of a cosir.e-squared-plus-pedestal tine-domain weighting '!

scheme can result in sidelobe suppression down to -36 db, with mair.lobe '[

broadening of less thsn 30$ for the simulated data.

Section 2 gives a brief description of the frequency domain weighting rpprosch,

which is tb'in used to motivate the ideas on time weighting presented in

section 3. Finally, section 3 contain;; th? numerical results extrapolated

from the simulations.

2.0 FREQUENCY DOMAIN WEIGHTING

Let the signal givpn by eq. (5) be receivad at the radar receiver at tine t.

<
exp j J (fot + Y- M f or -T <_ t <_ T

( ° ' (5).
0 elsewhere.

The matched filter response at time T is

/•-* , ,-*
). ( e

3^ •""> .-JU"
•'-

'dt. (6)
'-T

Ij
.T-T *i. . t 1 /. o \ i

V-8-3



By elementary calculation, we have

-Jf T sin (bit - |-
8(0- Me °._L__JL (T)

Usually, the range of interest is such that T is small compared to T, so that

the approximation

S(T) = 2Te~
JfoT sin (bTT)

bTr
(8)

a

= 2T sine (bTr) x (phase factor)

ic valid. Ignoring the phase factor, we see that S(T) peaks at T = 0. There-

after, sidelobes 13.2 db below the peak intensity occur near T = ± 3w/2bT.

These sidelobes can mask weaker peaks corresponding to neighboring targets,

as shown in Figure 1.

By slightly mismatching the filter response, (and hence sacrificing signal to

noise ratio and nainlobe width), the sidelobe levels of the filter output can

be decreased. The process is most easily understood when mismatching is

Fig. 1. Sidrlobes Masking Weak Peaks
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\Here B is proportional to T, r>y virtue of (8)). When the three sine functions

are nlded, a new "quasi-sinc" function results with lower sidelobes. (See fig-

ure 2).

Thus weighting by W(w) = [1 + a cos 2nw/B] can lower the time sidelobes. In

the radar case, we vould actually be confronted with a superposition c-f sine

functions at the unweighted filter output. Each sine function vould be centered

on its own resolution element. However, by the linearity of the fourier trans-

form operation, one weighting function applied to the superposition spectrum

serves to suppress the sidelobe? of ali sine functions til. once.

3.0 TIME DOMAIN WEIGHTING FOR TIME SIDEr.OBE SUPPRESSION

Time domain weighting is accomplished by multiplying the return signal or time

reference function by a properly designed weighting function. Since the weights

can easily be incorporated as part of the time doinain reference function, the

technique is a promising one for application to real-time spacecraft 3a board

processors, ihe effect of time weighting on time output can often be easily

determined [l],

.1
TJj

•'<!

For example, let the radar signal s(t) be the linear FM signal given in (5).

Then, in a rough manner of speaking, there is a one-to-one correspondence between

time and frequency. That is, each time interval At corresponds to a frequency

interval aw in the spectrum. Hence a time weighting function W(t) would have

about the same effect as the frequency weighting function W(t = w). Thus a first

order estimate of the effects of time weighting by W(t) may be obtained through

— = SUPERPOSITION OF
SINC FUNCTIONS

2. Superposition of Sine Function and Scaled Echo
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frequency weighting with W(w). More precisely, it is known that for the

linear FM signal (5), the filter time output g(t) resulting from a tine

weighting w(t), satisfies

ls(t)| = J-57 W(T) exp {Jbtrl dt1C- (13)

For further details, see [l] p. l8Y.

In SAR processing, the azimuth aperture is generated by u sensor moving linearly

with constant velocity over the aperture length. Thus, to a reasonable

approximation, the azimuth matched filter function is a linear FM chirp, and the

above time weighting approximations (e.g. (13)) aoply. However, the a:-.imuth chirp

is a sampled (discrete) function, t'.nd the results mo smnewhut different.

Therefore, to discover the effects of weighting vjth discrete time functions,

actual simulations were performed. The weightings were applied along the azimuth

direction of simulated ?KASAT-A SAK data. Kach datT inpr.t point war. quantised

to U bits, as was each reference and weighting coefficient. The ground spacing

between adjacent data input points was around ') meters. A total of -iC96 input

points was used to process a b-look output data pouit. Ihus each look required

filtering of 10214 points, or 102'( separate weighting coefficients. The

spacing between output data points wan around 16 meters. The simulated input •

data was designed to represent the return from a point target so that the effects

of weighting could be easily observed. The output image was ]6 (range) by 512

(azimuth) points.

The weighting functions selected for simulation were i.he stepped amplitude

distributions and the cosine - squared plvu; pedestal, function [3], ['*]» [5].

The stepped i'tnplitude distributions are given in table 1 for 1 through 5 steps.

(Gee also figure 3)- These distributions were chosen for their optima]ity in

antenna pattern adjustment, and their ease of imploiaentat.ion [3]. Koto that

T is proportional to N = 10f?-'i, the number of weights-.
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TABLE 1

STEPPED AMPLITUDE TIME WEIGHTING FUNCTIONS

1

0.

0.

0.

0.

5

35

25

300

• *

0.

0.

0.

0.

.

5

35

25

225

• •

0.

c.
0.

.

.

30

25

235

0.

0.

. • • •

• * * *

. •••

25

170 0.070

1

1

1

1

1

0.

0.

0.

0.

.

5t

625

78

72

• • •

• • •

0.350

0.5̂

0.5't 0.36 0.18

3. £

It is defined

w(t) = H

l.o

b,T

J_
°N

ULl

for

T

(14)

-\ '



where

H = pedestal height (0 <_ H < l)

T = pulse timewidth.
•

For the simulation, we select H = 0.05 to approximate Hamming weighting, which

produces the lowest sidelobes attainable ,/ith this type weighting in the

frequency domain [5]. The resulting weighting is similar to the 'j'ayior

approximation to the physically unrealizable optimum Dolph - Chebyshev weighting

[2], [6], and represents a practical approach for digital processing.

Table i gives the total energy in decibels in the 3 center lines about the peak.

(By "line" is meant a range line of 16 data points centered around the azimuth

peak. See figure l».)

TABLE 2

PEAK ENERGY AND INTEGRATED SIDELOBE RATIO

Weighting Technique Total Energy in 3 Center Lines Peak Energy

Rectangular 103.109 100.067

2 step amplitude 103. '4 58 99.66?

3 step amplitude 103. 51^ 99-^15

»4 step amplitude 103. 51*0 99.359

5 step amplitude 103.552 99.362

cos".+ pedestal 103. ''78 98. 7 W

Note: Total energy in 512 lines is 203.671 db for each type of weighting.

t
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0

o

o

o

0

° - AZIMUTH

O

o

Fig.

Since the total energy in each 16 x 512 image was normalized to 103.671 db,

the energy in the center lines reveals in a rough way how mu^h energy is left

over for sidelobe generation. This data can of course be used to compute the

"integrated sidelobe ratio" in decibels, defined by

j;

( i
total energy outside muinlobe

; — : : :—rtotal energy in mainiobe
(3 center lines)

The results are summarized in table 3, for both U and 32 bit quantisation, and

give a fair estimate of the 2-dinensional integrated sidelobe ratio.

TABLE 3

INTEGRATED SIDELOBE RATIO, DB FOR VARIOUS WEIGHTINGS

Weighting

Rectangular

(no weighting)

2 - step amplitude

3 - step amplitude

b - step amplitude

5 - step amplitude
2

cos + pedestal

Integrated Sidelobe Ratio

1) bits
- 12.1 db

- 13.3 db

- 114.5 db
- 15.6 db

- 15.7 db
- 17.3 db

32 bits

- 12.8 db

- Il4.3 db
- 16.1 db

- 17.8 db

- 18.0 db
- 21.7 db
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I * , - . - • ! ' —«=.— '- r, *-7^\J-

'.'able C also gives an indiotvtion or loss in signal to noise ratio in terms of

peak energy, i'ince ea>%h weighted output has the sume total energy, Uie p«*:ik

onors.'.' in the second column iiulicut.es the loss in PNK rathor sioi'uj-iitojy. Thf
?

Ki'ojttest loy.; (3.319 db) relative to tiie unweighted case oecurr. with eo.">' +

Table -i is iuu?vl to derive the nninlobo broaiicninp i*esultins t'ro::i vt»i|r.hti:ic,. A:1.
>

o\pi»»:tcd, the \.ort-.t, broadonint; it- seen to occur with cos" + pod vci»:htin>:, w ' o l i

o n l y H S vlh ::uppre:ir..ion -l6 meter:; from the potik. Tu I l i i ?

i .-•• .!e;;:'.'t>"ie»i to .\0 motors.

the < ilb ro •o

The value:- in TtiMo !i can he used to derive t'!\v.-ly vr-^'iso- valuer for the

••«.•:•.,* Int . ion achieved w i t h each woit:htinf: scheme, in the -following s.annor. Tho

output. i M l t e r t'l.tiction i^ mode.1Jed na a sine Ainotiou wli ioh is plf.sel.y track'^d

:!! l.he ratif'o of intoivst by a quadrat ic . Ur-in;: La^ran.-u'1 a intorpolat i . -n p> iy-

i i o n - ' a l , w i t h the peak a:ut .? nearest nol«shbors a;; input ' point:'. , the dii-.taree to

the J «il% na in lobo threshold is calcuhited. The results -\re shown in table ?.

TA'^LK •'.

inirn\::;v-ro:i AT NKAHK-.'-T NKJ^H'.VK, IM«

\\oif.htinj*. Te

:? step aopl i tu>ie

3 step -uiiplitndo

•i step :oplitUvie

') step air.plitnde
^ t

Ovus" •*• pedestal

m i n
a

- m a x
o

6
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TABLE 5

RESOLUTION ACHIEVED WITH WEIGHTING

Weighting

Rectangular

(No weighting)

2 - step amplitude

3 - step amplitude

'» - step.amplitude

5 - step amplitude
?

Cos + pedestal

Resolution

2'. m

27.2 m

28.8 m

28.8 m

28.8 m

30.1* m

Ki'.ially, table 6 gives the side Lobe suppression act willy achieved with each

weighting scheme. Each technique generated 2 sidelobes of generally different

heights; hence the min and max suppressions are both tabulated. The best
•.•>

suppression is achieved by cot;" + pedestal weighting, with a -3o db meusure-

;:ient j:t the highest sidelobe. (The sideiobe asymmetry results from tho

true peak occurring borween two data output points).

TABLE 6

NEAREST SIDKLOBE SUPPRESSION, DH

Weighting Tech:iique

Koctangular

2 step amplitude

3 step amp] itudo.

l» step amplitude

5 :itep amplitude
o

Cos" + pedestal

Sidelode Suppression, db

min uax

20 -2!»

22 . JS

26 29

30 3?

29 33-
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U'eii:ht i:i»i in tho tine do.i::iin i'or Lino si dejobe- suppression pivr.ent.s an attru

t Lvo al ternative to frequency domain weight ing, especially if Mno-.i.-n.-i i-t
^

anirnvil i : prices t- hiji 2o T.O be ncooaplishod. The :;imul.'itiQnr. show tlint. i-r>p' •»

ivJo.jlul weir.htin t; achieved 36 db sidelobe suppression with n Sf.'K J. ':-.*•. oT u:n

l.!i:in i.5,vlb, and resolution loss of u'nnmd ?5I*.

The -rithor would like to t.h:uik Dr. i\ Wu Tor valuable' srl'tvara u:-d ji:>.:i::::;.ir>

,-!:-.,i sij.!»o H. !He:vso.n, W. Arena, and V. Tyr^e for helpful siiiv:estionf. Ii 'v.-il

aid wuj furnishon by B. L'arkan.
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MEANS TO ACHIEVE WIDE SWATH WIDTHS

IN

SYNTHETIC APERTURE SATELLITE BORNE RADARS

LOUIS J. CUTHONA
DEPARTMENT 07 APPLIED "HYSICS AND INFORMATION SCIENCES

tn.'IVERSITY OF CALIF. , SAN DIEGO
LA JOLiJV, CALIFORNIA

. . .CEDING PAGE BLAMK

SUMMARY • \

I
In deriving the characteristics of a synthetic aperture radar which is carried j|

in a high speed vehicle there are a number of constraints as well as a number j;

of degrees of freedom among the parametc-r values which may. be selected for the j
i

radar system. It is the purpose of this paper to show how these constraints I

and the available degrees of freedom affect the swath width, resolution, area >
I;

converage rate, average power, system complexity, and system parameters of t!ie

radar.

The organization of this paper is as follows: The radar range equation includ-

ing processing gains for pulse compression and <:yntiietic aperture generation is

the starting point. System geometry considerations are introduced. For simpli-

city flat earth geometry is used, although it is realized this is not a good

model Tor satellite borne radars. Next the constraints are introduced. These

include those needed to avoid ambiguities in both ranf.e and azimuth, those need-

ed to acheive the Desired resolution, and those needed to achieve the desired

swath width. .

It is found, if only a single channel radar system is used, that the number of

degrees of freedom needed are not available. There are a variety of ways in

which these added channels can be introduced. They may be multiple along track

beams, or a combination of along track and along range beams•
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The multiple along track channel case is analyzed in Section 1.0. It is re-

ferred to as Case I. The multiple along range case is analyzed in Section

2.0. It is referred to as Case II.

1.0 TECHNICAL DISCUSSION OF MULTIPLE ALONG-TRACK CHANNELS

Section 1.0 considers the case of a synthetic aperture radar in which multiple

channels in the along track direction are introduced.

The corresponding analysis for multiple beaas tn the along track range Direction

is given in Section 2.0.

Much of the analysis of Sections 1.1 to 1.7 is analogous to that used by the
1 2author in two papers analyzing the properties of synthetic aperture sonars.

/A(s) .
Wout

P-G.. °AT T rec

_ < 4 , 0 * R < ; c T N B _

"Ti"

.V I

1.1 PRELIMINARY SIGNAL TO NOISE RATIO COMBINATIONS

The signal to noise ratio at the output of a single channel radar usin-j br>th

pulse compressio and synthetic aperture generation is given as

f. RX

26* V

In equation (1), the first factor gives the usual1 rsd=»r rangs signal to noise

ratio expressio . the second factor gives the i-nprovement in signal to noisi

ratio due to pulse compression, while the third factor gives the improvement in

signal to noj.se ratio due to synthetic aperture generation.

It is useful to introduce be following relations into equation (1)

rec.

ave

HD

. A/D

BTO - 1 '

(2)
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"X

in.'ix min cos (0 - f /2)

Figure 2 gives a p lo t of W ' ( R - R . ).' max nun

,,:3 '

!si

Si

Combination of equations (1) and (2) gives

P D2 o X ,-.
avc (3)

8!i R3 kT 0 2 6.V
N £ a

At tills point parameter values in equation (3) are unconstrained. The

nature of the constraints is introduced in subsequent sections. When

the constraints have been determined, they will be introduced into equation

3.

The definition of quantities used in all equations is given in a glossary

of terms. Equations 1,2, and 3 have been previously derived by tho author

in reference 3,

1.2 SYSTEM CUOMKTKY

The geometry used is shown in Figure 1 for the flat earth case. This

is done for simplicity rniy.

In Figure 1, the followi-ig relations apply. The quantities h, 0, and W are

assumed to bo the indonewlont variables.

d = 11 cot '••

R . = v'h"' + d"1
n i n

X = v Ir' r (d :• w)~
max

I1'!!?! liiL!: JiinJL (M I
w ~ :i R . ?!ra.ix mm g

0 = :',_. + K '-'-
cosfi ,/2

, -ill
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Figure 1. Geometry (flat earth approximation)
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i . 3 R\XC_E SWATH SKLECTION, BINGE AMBIGUITY AVOI 1ANCE, AND RANGE RESOLUTION

For the geometry of Figure 1, one first selects W, the desired swath width

on the ground. Together with h, and 0, this determines all tl.e geometric

parameters in Figure 1 using equations 4.

IIs
-̂

From the last of equations A, the quantity W is related to (K - R ).

The unambiguous range, R , tn.iv he chosen to have any value greater than

R - R , i.e.,
max min

R R = (R - R . )u max mm

To prevent eclipsing one nceJs also

- R < M Tc max =

- R > (M - 1) T +
e rain -

where >i irf an integer.

Those relations are illustrated in Flgur? 3.

Tlie quantit'':s R , T, and prf are related by the expressions

" - ~

(5)

»a1,5

si?,
3

?'

I

— ̂ T o c\i 2 2 prf (7)

One additional requirement is mn-essary to avoid range ambiguities; namelv:

potentially .iir.biguous ranges must receive limited llluminnttr>n by tailorlr.g

the elevation pattern of the beam so that Q- is given by the third of

equations 4 .ind, hence, II, the vertical antenna aperture, is given by

H = \/0
E

(3)

V-9-5



•"•>1.
r
•i

<a T-*

MT

V"- 1 } T

Rmin

6T

'R - R .; ma/ mm
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Figure 3. Relations among R , R . , T, prf, and T.,

T

1
-V/D

Figure 4. Dopplur frenuency shift for a moving antenna.
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Having selected the values for W, R and X, the quantities R , T, prf and

H are now determined.

\
\

Range resolution, 6 , of course depends on the radar bandwidth B in accord-

ance with the relations
\

c T.
I

2 (9)

1.it AZ7MUTH AM3IGUITY AVOIDANCE

It can be sho-.fn easily that given an antenna with horizontal apertuie D,

moving with velocity V in a direction parallel to D generates a Doppler

frequency shift, f ,, given by

(10)

at its three db beam width points. This is illustrated in Figure 4.

Since the radar systems of concern are sampled data systems, one needs to

sample the signals in the antenna beam at a rate at least twice the value

given by equation (10). Hence

prf = 2Y

Y - 1 (11)

Recall however, that prf has been set by choice of R . Also V is a parameter

whose value is set by primarily non-rr.dar consideration. Thus equation

(11) is really a constraint on the value of D - namely:

prf R ̂  R
C U C U

(12)

In writing the second form of equation (12), use was made of equation ('7).

A useful relation is obtained by solving equation (12) for 3 V. This
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quantity is the area rate mapped in the slant range plane. If A represents

this quantity, one has

• c < £
A u « Y D = *" ° (13)

Thus the area which can be mapped per second is determined only by D and y.

Choice of the value of D according to equation (12) prevents azimuth ambig-

uities if the sidelobe levels o." the antenna are properly kept below some

acceptable level.

1.5 ACHIEVEMENT OF ALONG TRACK RESOLUTION

From equations I/ or 13 one noccs that the value of D is set by the selection

of swath width, or by the area rate desired. In some cases the value of D

resulting from these ccnsiderar Ions may be greater than 25 , where 6 is
a a

desirc-d alo.ig track resolution.

In such Cuses, the use of a single beam cannot acnieve the desired resol-

ution, because the width of the segment illuminated by the radar is too

short. However, there is no reason vhy one cannot use multiple beans.

What one needs to do Js illuminate a tegment whose length is at least that

needed to achieve the synthetic aperture length one needs.

The length of synthetic aperture needed (non-squint case) is given by

LSAR * W (H)
u

Given an antenna aperture of horizontal aperture, D, one can form n brams

using a technique sucli as that used in n Butler Matrix so that the same

aperture is used to form the r. beans. 7n this case the segm<v:c illuminated

at range R is

TLI D (15)
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One neuds to choose n so that

(16)

n M
M C- ' (19)

Thus i Ins product i<f the number of beams by mmber of pulses under way

simultaneously is given by ihe right hand side of equal ion 19.

Tito quantity of .:.:i /c is the time required for a raclnr sipn.nl to traverse
ir>»» \

the path front radar to tarRot and tlu-n back to tho Carpet. Multiplication

of this tlaio by V j;ives tlio. :1istancf traversed by tho r.iJar liurinj; this

round-trip interval. This distance divided by <S p.lvi-s the product i. M

needed except for the factors \ and a which relate to an over samp Hnp,

V-9-9

LSAR " " LI
< ,

ft «= I

The multiple beam configuration is Illustrated in Kigure 5.

Combination of equations 14. 15, and 16 gives

[2lUVJ GE . (17)

Equation (17) gives tho number of be.im:< r.t'ces:sarv. In equation 17, :hc

symbol l>0,,,. is to/ be interpreted as thesraallo.si integer greater than or

equal to x. ]
I

The first of ecj.iat ions (6) with the equal sign chosen can b-? .Titter, an

S = :i ~ = M K N
max -' u (18)

Thus M may be interpreted .is the rumher of pul.;es siiuul tanoously in transit

during radar oportion.

Uso of equations \2 and 18 in equ.it ion 17 giver.

/ V2R
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factor and over illumination factor respectively.

1.6 SIGNAL TO NOISE RATIO WITH CONSTRAINTS

In writing the equations leading to equation (3) a single radiated beam was

assumed so that P in this equation is the average power in a single

radiated beam. Since n beans are required, with n given by equation (17),

the total average power, P ., is given by solving equation 3 for P ,

and then multiplying this quantity by n. One has

> •I'1)ave \ N /

8n Rs k 6 V
d

D2 o A (20)

and

Total
D2 o X

o A

2n 6

>• (21)

From equations 13 and 18 several equivalent expressions for V/D may be

obtained: namely

V
D

c M

max (22)

Combination of equations 21 and 22 gives

Total

4ir R3 k T 0 2

N E

a o Y
M

c M

•«•» Rmax . (23)

It will be noted that equation (23), evaluated at maximum range,

predicts that the average power required varies as the- squ.-.re of maximum

range.

V-9-10



1.7 ANTENNA CONSIDERATIONS

It has been shown in Section 1.2 that

, „ W sinesin 8,
E Rmax (24)

and that

W - (R - R < , C°S 6E/2" max min) 75—5cos(6 -9

If it is assumed that 6,, is sufficiently small so that
*•*,

then combination of equations 4,8, and 26 gives

X R
H

sin 0£ * 0E (26)

W sin 6 (27)

One may rewrite equation 25 as follows:

W 6 W 8 cos (0£/2)

R = TR- R . ) cos (6 - 6 /,) / 2 f iNu max rain E// \.tot

Substitution of W from equation 28 ir.to equation 27 gives

[ X V-J [ -co* (e-e
E/2) 1

« - L ,IP e J [RU -3 cos (6E/2> J (29)

The area, A, of the antenna .-an be obtained by multiplying equation 20 by

equation 12. The result is

[A Rnmx1 IC°S l"~ *E/2;I I /,yV I (30)A = H r«= ——— '" - "F.//I<°* «w2> Ji-
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Since B = 1 and y = 1, equation 30 shows that there is a minimum antenna

area required.

One also recalls with respect to antenna requirements that D is given by

equation 12 and that the number-of beams required is given b> equation 17.

2.0 THE MULTIPLE RANGE CHANNEL CASE

In section 3 the case in which the multiple channels are in the range

coordinate is analyzed.

One starts by considering a single elevation channel with the value of Q'
'. *•*

at first unspecified. As the analysis proceeds, one will need to provide

multiple elevation channels.

Quantitites whose values differ in Case II f'..vm their values in Case I

are designate.! by 'une of a prime on the appropriate symbol.

2.1 PRELIMINARY SIGNAL TO H01SE RATIO FOR CASE II

Equation (1) for the single beam case applies to the multiple range channel

case. Equations (2) also apply. Tor this case one gets

P c A
ave

Bit R3 k T., 6 V
N a

(H')2 (D-)2

(31)

2.2 SYSTEM GEOMETRY

The system geometry in Figure 1 applies also for Case II as do dlso

equations (4) except that the elevation angle, P', will eventually be div-

ided into a number of elevation channels which will span different range

intervals. (See Figure 6).

One assumes for this case that h, and R , are independent variables.max
The third quantity to solva the geometry is specified later.
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2.3 ACHI:IVEl-i~IT OF ALONG TRACK RESOLU'fION 

Given a desired resIJlution. ca' the required value for D ,is given4 by 

D~:. 2 Q ~ 
a 

Q < 1 = 

2.4 AVOIDA.'1CE OF ALONG TRACK MmrG:JI1'IES A.~D ACl/rL:VE~JI::NT OF liESlhED 
SIMTH WIDTH 

Equation 11 applies to Case II. Ho\:ever. in this r.ase, D has been specifie~ 
by equation 32 so that· equation 1] becomes a specification on prf. ThIs. 'If 
course. also specifies r~ and R~ - namely: 

u 

R~ 

u 

1 
prf" 

~D 
I",-V 

Comp-'lr1son ufcquat ion 17 with equation 32 shows that 

D = n D' 
Hence 

R :. n R" 
u u 

and W = n I"" 

Thus n beams in elevation are needed to span lhe desired swath Width W. 

F.quatior; 27 is val1d for Case II. Combination of t~:!d equation with 
equation 35 gives 

>. R .1 .\ ~ 
H ~ =. m':IlC = 77"~_r.._.,-:x_ 

w' sin e~ W sin O· 
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(34) 

(36) 
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SAR

Figure 5. Use of mjltinle
aperture length.

s^s to illuminate the synthetic

Figure 6. Partition of 6r into range channels Or
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As an approximation, let 6 be considered as being approximate.'.y equal to 6'.

Comparison of (36) with equation 27 gives

H' = n H

Choice of 6 specifies D', and R '. Choice of 0 (or. W) specifies n.
3. U E

Choice of system geometry specifies H'.

(37)

It will be noted from equations 52, 53, and 54, that for Case II, the

value of H' is n times the value of It for Case I, but that D' ia 1/n

the value of D such that the antenna areas remain constant.

The number of channels n for Case I and II are equal. In Case I, tho

channels are in the along track direction; in Case II, they are in the

along range direction.

For both Cases I and II, there is a minimum antenna t-rea required. This

area is proportional to wavelength, X, maximum range, R , andmax
satellite speed V. It also deponds on geometric factors as shown in

equation 49.

The total average power required i*. .,,e same for both Ĉ ses I and II.

From equation 47, one notes that the total average power, P j, required

varies directly as the square of 9 , and directly as M, directly with the

noise temperature TN, inversely as the target cross section o.

The dependence of average power with range is as range cubed. . However, at

maximum range it varies as the sonare of r^nge. II.is latter behavicr . du:

to the fact that an'enna arra must L,e mace proportional to Rmax

The analysis above has been based on c flat earth approximation only for

the simplicity of a first analysis. It is realized that the actual

geometry needs to be ronsideied. This will be done at a later date.
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2.5 SIGNAL TO NOISE RATIO WITH CONST -UI-"" fQR CASE II
{

Equation (31) ",ives the signal to :ioiae for Case IT in the absence )

of constraints. The important constraints for Case II arc given by [j
1*equations 34 and 37. If one foms the product H D , one gets using M

these equations i)
- ' 'A

D ' ' 1
H'n' = (n 1!) e.) = H D . '.J8) j

Use of equation 38 in equation 31 shows that " j

,\ • f.
S_ S
N Case IT N Case 1 (39)

Thus the signal to noise ratio for Case TT is identical to that tor Case I.
i

1
For Case II, one iitfc.ls the sane average power- c.s ic* Case I. ]

In Case I, n beams are usod ir. the. tilonj; track case and D is given by

CT sat ion \2. Fv->r Case II n lu-ams .ilnng the range direction are used.

In Case 1, the v.iiao of i) is n t iror. orcater vhan the vaU-c cf D'.

In Case II, th>-. value of H' is n times larger than H.

In both ca^cs the area of the anti-mia has the same value, - nanely: that

given by equation 30. j
i

!
3.0 SUMMAKY JF RESULTS !. ^ j

The major results of these analyses arc the constraints on parameter values- \

and the ctfrcts of these constro•'• ,T •» in d-.terrcininr, the average power T

required. I
j

For Case I, the prfmrry rcsluts are these giver, '.y equations 7, 12,'13, i
I

1A, 17, 18, 19, I!1, i9, npd 30. These arc repeated on the next page. i



(40)

D - _ Rc u

D (42)

SAR (A3)

Lac4

R = MRmax u

/2R \
n „ . I _H^ J

o \ c 6 /

(45)

t,i.\(46)

Total (A7)

cos(B-6E/2)

cos(9E/2)

A = HD = 4 | j[- l( cos(eE/2) -)
(48)

(49)
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For Case II the primary results nre given by equations 32, 33, 34; 37, 38.

and 39. These are repeated below

2 a 5a (50)

= 1

c
Ru = = ~ D'

I)' = D/n (52)

11' - n H (53)

H'l)' = H D = A (54)

*\ f*
N /In = IN/ r (55)

For Case I, It will be noted that R and 5 are chosen independently. For
U tl

Case I choice of R leads to the r.pecification of prf, D, and A. Choice of
u

6 then leads to a specification of L nnd n.
a bAK

Choice of R and the svstem geometry leads to the specification oi' M, H,
max

and A.

All of these constraints lead to the expression for total average power

required.

For Case II, R , 5 . and 0,, (or its equivalents such as W) are chosen in-
nvx <j E

dependent!;,.
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GLOSSARY OP TERMS

A, A
rec

A

B

c

D

d

E

f ,

H

h

k

LSAR

M

N

n

ave

PTotal

R

R ,min

R
max

R
u

S

T

TN
V

W

Area of Receiving Antenna

Area mapped pur second in slant range plane

Receiver Bandwidth

Speed of propagation of radar signals

Horizontal antenna aperture

See Figure J

Elevation angle (see Figure 1)

floppier frequency shift (see eq. 10)

Cain of Transmitting antenna

Vertical Antenna nperture

AJtitude of radar above earth

Boltzmann's constant

Length of synthetic aperture

Length of Illuminated segment

Number of pulses unu?r way (see eq. 6 and 18)

Noise power in radar receiver

Number .of radar channels

Peak transmitter power (one channel)

Average transmitter power (one channel)

Total average transmitter power (n channels)

-Radar Range

Minimum Radar Range

Maximum Radar Range

Unambiguous Radar Range

Signal Power at Radiv Output

Interpulse period

Receiver Noise temperature

Speed of translation of radar

Swath width
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GLOSSARY OF TERMS (cont'd)

a Constant (see eq. 16)

fj constant (see eq. 5)

Y Constant (see oq. 11)

6 Synthetic Aperture Resolution

6 Range Resolution

A Radar wavelength

o Target cro&s-sectional area

T. Duration of uncompressed pulse

T Duration of compressed pulse

0 Elevation Angle (see Figure 1)

0 Elevation Benmwldth (see Figure 1)
c*

SPECIAL SYMROL

]„_, Signifies smallest integer greater tl-an or equal co x.
GE
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Figure 1. Geometry (Flat Earth Approximation)
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Figure 4. Doppler Frequency Shift For a Moving Antenna

Figure 5. Use of Multiple Beams to Illuminate the Synthetic Aperture
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SYNTHETIC APERTURE RADAR TECHNOLOGY CONFERENCE

Summary Session

March 10, 1978

Panel Members:

K.R. Carver - New Mexico State University, Physical Selene.- Laboratory

R.H. Duncan - White Sands Missile Range, New Mexico

K.K. Moore - Remote Sensing Laboratory, University of Kansas

R.G. Fenner - Microwave Systems Section, NASA Johnson Space Center

F.T. Barath - Jet Propulsion Laboratory

n. Held - Jet Propulsion Laboratory

(transcribed from tape)

K.R. Carver (moderator)

The panel members of this moriiing's session are the chairmen of their re-

spective se3oio:i3. We would like to equally divide the time we have,

roughly an hour or so, between the topics that were covered -in the indi-

vidual sessions. The purpose of the session is to tvj to highlight some of

the points raised during the conference and to provic*-- an overview of where

ue now stand with respect to -synthetic aperture rad'ir technology. It seems

to me t':it there are two points which are made wher you begin to talk about

this field. One is the problem of getting thf program funded. The other

is what should we do to moke thiny, better; these, of course, arc not

necescanly compatible.

I would like to legin with some comments on the opening session; for those
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of you uho got here late, Dr. Merrill Skolnik and Dr Fawwaz Ulaby both gave

very interesting overview talks. It seems to me that their comments and

several of the following papers have highlighted two key problems that we

irrust face. One certainly ia swath vidth ard we have heard a great deal,

about that. Going along with that is the re-.<ieit time, as Dr. Skolnik

pointed out. The other problem uaa also brought up by Dr. Skolnik on a

vieunraph which listed the issues oonccminj the applications of SARt and

he titled it Sitstai-ninrj applications end Competitors, '̂ou can equate that

to LANDSAT rr whatever you like, but certainly there is anple competition

for SAR and I think we all realize that. ' Faunae Ulaby mentioned several

applications of SAR data, mostly in the context of remote sensing ard ex-

tended targets; among these were applications requiring the use of SARs at

higher frequencies, specifically at C-Band and X-Band. As far as space-

borne remote sensing SARs are concerned there are at present systems designs

based primarily on the L-Band SEASAT and SIR-A requirements; so we are faced

uith a number of technical problems in the near future stemming from the

need to go to shorter wavelengths.

Ve will now go to each respective session chairman and take about five or

ten minutes each; after that, we will attempt to address the specific

questions that have been ffubmitted on cards by soite of the audience. The

first session was on SAR Calibration and was chaired by Dr. Dick Duncan

of White Sands Missile '.iange.

R.H. Duncan (chairman of SAR Calibration Session)

J have a note here for us old diehards around who still use ths term
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megacycles instead of megahertz; we also use letter band designations such

ao C-Band, X-Band, etc. I just want to let you know that you are In viola-

tion of the Department of Dcfcnae directives and varioua Army regulations;

you have my sympathy. I ulso noticed that I'm tne only session chairman

who did not present a paper. I don't know why Keith invited me—probably

because ue're old friends.

The first thing that I heard about calibration is that it is very difficult

and not very important. But then someone said that relative calibration

is very important. I then started to grapple with this problem of "Uhy

calibrate?" Unfortunately the usual answer that you want to calibrate is

like the guy who says he wants to climb the mountain because, it's there.

Then, realizing that SAR is a system which is to deliver a product to its

user, I said "Aha, I'll leak at this from a systems engineering point of

view. Miy would he want to calibrate?" So it didn't take very long to

decide that systems engineers need to calibrate, either absolutely or rela-

tively. I take it for granted that most of you, whom I assume to be systems

engineers, want good calibration. Then I turned my attention to the users;

I found I had to listen to some material in other sessions. I decided to

look at some of these nice images that got put or, the board. I wasn 't

getting anywhere with that because it's kind of like a grandmother who shows

you a picture of her new baljy and >jou say, "Gee, ain 't that a nice picture. "

So I looked at some of this imagery and the speaker said that it was a one-

look image and I said, "Gee, ain't that a nice picture." Then he showed

another one and said that it was an average of four looks and I said, "Gee,

ain't that a ni?e picture. " So I Utisn't getting anywhere because I Was
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not a trained user. But I think it is an important point ro Hgjentify what

the user wants, having, eatabliehed that the system engineer Var.ts to do

the best job of simulation and design. I then thought al>.out what does the

user know about calibration and why would he want to calibrate.

I he')en't answered all those questions of which users need what, but I did

get seme ideas. I heard one speaker talk about classification of mobile

homes. I mentioned this to Keith who said the "you have ju;t discovered

that there are hard target userb and there are soft target users. " I noted

that mobile homes oi-e detectable 37 times out of 37 and that sometimes wheat

looks like corn. So I've decided that maybe that if you're a herd target

fellow and are looking for mobile homes, missile sites, convoys of tanks

and things like thac., who cares? If you can detect it 37 times out of 37,

who cares aboui what is ssen being relatable to a calibrated image. I don't

know if I've reached the wrong conclusion.

I also decided maybe i could take these various kinds of users and put them

on a totem pole as to who cares about calibration and who doesn't. I found

one guy who doesn't care about calibration - and that was that f'lghter pilot.

He is in a see and shoot situation. Whether or not what he sees is related

to a calibrated image, he couldn't care less. So I put him down at the

bottor.i of the totem pole. He doesn't cstre about calibration, although he

may have the indirect benefit of calibration information obtained in the

design and simulation process. Then I thought that the rest of the job

would be easy; I would identify all the users and.put them on the totem pole.

He doesn't c<ire about calibration, although he may have the indirect benefit

of calibration information obtained in the dcciyi and simulation process.
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Then I thought that the rest of the job would be easy; I would identify all

the users and put then on the totem pole. That's when I flunked out. yes-

terday evening, I found out from Dick Moore that the people who are inter-

ested in ground moisture and changes thereto are really interested in rel-

ative calibration; so I put the ground moisture people on top of the totem

pole. If I've made a mistake and anybody else wants up there, it's all right

by me.

I'm not going to try to summarize the-papers in my session. However, I did

talk to Walt Brown (JPL) briefly and asked him a point blank question about

what he believes the state-of-the-art to be in calibration today. He said

that he believes that it is around 1$ dB, which sounds pretty good, and with

some work we can get it down to -V dB. I asked him what is the most critical

element in the whole end-to-end job, and he said it is in getting a good

measure of transmitter paaer. I did hear one speaker cay that the absolute

antenna gain was a problem. I don't think that antenna people are going to

agree with that. J was certainly delighted to see the use of deliberately

selected noise spectra to go from the receiver to the image density. I did

note that all my speakers are well down the road in what they're doing; they

all say they have more work to do. So I'm somewhat reminded of the young

bride who complained to her mother that her husband had not yet consummated

the marriage. She said, "Mother, you keep sitting on the -edge of the bed

and telling me how good it's going to be "

K. R. Carver: The nc.xt session was the one <w Irvige Simulatim and Inter-

pretability, chaired by !>ick Moore fror>< the University of Kansas.

R.K. Moore (chairman of Image Simulation & Interpretation Session):
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I don't knou hca I can live up to Dick Duncan; I don't hive sunh short stor-

ies and I'm not sure mine are ao tellable. When I lived in Albuquerque I

used to have some stories about New Mexico ASM, but I've forgotten them;

they tell me it wouldn't be appropriate here anyway.

My session dealt with simulation and related topics such as what rerolutions

would be and so on. It is obvious that there is a need for good simulation

programs and that these things do exist, and thit the need is for a couple

of different kinds of simulation programs. One kind is c. system simulation

program; Gary Crow talked about one and system simulation programs exist in

various other places. JPL has one that I've seen the documentation on.

When I walked into the meeting, I was handed a copy of one that wria produced

by the European Space Agency. So a lot of these synthetic aperture in space

simulation programs are around; I just wish that I had the time or that

somebody had done it right ro we could really stick a program onto every-

body's Computer and then anytime that we wanted, all we would have to do

is go type a few things into the remote terminal. Although I have seen the

documentation on some, I hope someone will tell us which cne is the easiest

one to implement on everybody's computer (wliatever kind of computer he has)

so we can get that done. I think all of us need to use these programs as

we do this kind of study. Obviously it is an important activity, because

there is just no way like programming a big computer to beat the cost of

putting a system up in space and making a big mistake.

The other kind of simulation that we need is image simulation. Jo Abbott

talked about one type of image simulation program; no doubt there are a lot

of others around. But I think one of t'ie most significant things i-s that
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a lot of questions relating both to system parameters and to user needr, are

unanswered. Some of then can be answered by additional aircraft flights

and sorr.p. of then will be answered by looking at what the SEASAT-SA3 observes,

but a lot of them can really be answered bent, I think, by going through

some kind of a simulation exercise or starting with original irrtges and

degrading then, as we did in the study that I talked about. Questions like

these need to be answered aid simulation seems like a good w/iy tj do it,

including such things as what resolutions do you need or what aspect ratio

between length and width can you get away with?

Do the radiometer guys really have something when they say you can measure

soil moisture with their system, which has a hard time distinguishing one

state from another? It certainly can't distinguish one county frcm another,

unless it's in a state like Texas or New Mexico where counties are big and

they count the area by the ;nmber of acres per cow. If those people are

right, then I don't know what we're about in the soil moisture business.

On the other hand, I suspect they are net right and that the guy that wants

to count the stars on the general's shoulder board may have a problem in

that he's got a lot more data, than he n?eds for soil moisture.

Maybe the real aperture radars, for example, will do some of the tasks, if

we get the range resolutions short enough, or it may be that unfocused radars

will be good enough. Every time you increase the resolution it costs you

something in complexity and perhaps in power; we ought to answer these ques-

tions for the different problems. The only reason I would consider a ?cal-

aperture radar in space is that it's the ultimate way to beat the swath width

problem that was talked about this morning, .iaybe *or some uses it's OK̂
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but i)e'II never know unless we do it by some k',nd of simu'uiiion or someone

puts one up so we can use it.

We really do need to know what are the right kinds of pixel dintensions and

how much averaging is needed. Some studies have been done at the University

of Texas on the advantage of over-sampling. 2'f you just bar̂ l'j sample at

the Nyquist rate, your samples ave independent, but if you sample at twice

the Nyquist rate that doesn 't say that the samples are 1(>G% correlated.

So you get some advatage from that theoretically and the pictures do look

better.

I think that these studies need to be done with reference to very specific

applications because each application is going to hav?. a different xzed for

all of these image and system parameters and the guys who know that appli-

cation ought to be the ones to help us in doing thip. This is not to say

that you nat'e a special system for each one, but if you have each one do it,

then maybe you can group systems into a few classes and have one class serve

one group of users and another claps serve another group of users.

Mr. Rasco (U.T. at Austin) talked about his various kinds of variance, the

last two of which I would call textures. It looks like that if there is

some texture information available between the multiple looks, we would like

to find out. The problem I had was that his study hasn't gone far enough;

he showed he could do some good by using all four looks, but he didn't slow

what he could do by ur.ing the average all by itself, so we don't know what

the gain was from that. It would be interesting to find cut about, some of

these things. The kind of study I was taking attout in terms of getting the

users to work was exemplified by the paper by Herskberger (hughes Aircraft)
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where he got thctte tactical operators to show what happens, fliat'c a very

specific class of users. Lota of others need to work with these real and

simulated images with various performances.

There are problems also that were addressed having to do with what's the

appropriate distribution; I think I've got a pretty good idea on what the

right distribution is for different things where the log normal maj be good

and where the Rayleigh rmy be good. But Rome of the answers we 'really don't

have and there needs to be some more work and actual data to pin this down.

I think some of the problems come up because people mix apples and oranges

with regard to these distributions.

Finally, I thought the paper on the inverse synthetic aperture W(.K inter-

eating. I know there has been a lot of work done on inverse synthetic aper-

ture, not just in radar aatronomj, but. in looking at things fiying around

in space from the earth. I haven't come up with -i.he way this kind of infor-

mation can be made to fit directly into the problem that we are involved in

and looking dasn at the earth, but I can't help but think that there is

something there that we ought to be thinking about that will give us some

new ideas as to how to do what we want to do. I hope other people are

thinking like I am, only more successfully.

K.R. Carver: The next session was the one. on Antennas, chaired by Dick

tenner from NASA Johnson Space Center.

R.G. Fenner (chairman of Antenna? Session):

Looking at the antenn:is session, 1 came aaay with a strong feeling that we

hyve really crossed a milestone in Synthetic Apertitre Radar systems in space.

We are moving from the period of feasibility studies and definitions into
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a period of actually building some fine hardware. SEASAT as a radar ft/«if<—(

ia a reality, in final tenting at JPL, and due to be. launcJied this m<w.vi«.

Slil-A ia past the definition as a progran and harduare haa been built, ft)

me, that's exciting; it's exciting io be a part of that and certainly in n

combination of the long period of effort by a lot. of people starting in'Hi

Lou Cutrona (who io sitting in the audience}, Dick '-Score on my left <»uf l-'î i

Baruth on my right. These gentlemen ha,)e been a part of this much Icti^m1

thati 1 have. It ought to be satisfying to all of us that we'ri making that

quantum jump of finally getting the radar out in cpace. You might not l{̂ <'

that specific radar and it rr.-ight not do everything you want it to do, iut

the first step is frequently the hardest part of any program for a new flert-

sor - namely, in getting one up there that you can talk about. The FKAFAT

and SIR-A antennas represent a really ncu concept in spaccborne radaru, /»!

thai- they are probably come of the lar.jcst that have ever been flown, 'I'he-i

represent one of the first space-borne applications of printed circuit, cj*

strip Line techniques for antennas. The antennas described (in the SciHifrn)

show that those printed circuit techniques can satisfy the space rcquin"

ments, which is a credit to the people that specified and designed th«>'..

However, the development of these large antennas has highlighted tli-i fivl'»

lems of testing antennas. It is very difficult to test an electricall[i ?iii':

antenna, and there were numerous techniques presented that described 'let'

you ought to test them. The papar by Fob :it:al (from ATI. - Johns ffopkittfl)

presented a technique t-hat had been uac.d nucccr.r.fiiily in t'V. past and /'ri'«

haps would not satisfy these more stringent rcquirrir.c*:tr, of ivnnf.r .•»..tn/i/»!i;,

but that technique has been used and it wa-kn. The near-fir id ttMurtiiif
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which Keith Carver and Allen Newell talked about is a relatively new tech-

nique for evaluating antennae* The problem is, as Keith said, one of emo-

tion rather that: its ability to do the job* One of the things that I felt

strongly about was that the modelling efforts that have been done at New

Mexico State and other places on these antennas has really highlighted the

difficulties in building large antennas. Some of the products that have

come out of these studies have shewn us what the effects of the environment

are on the antenna system. Certainly, without thoce modelling efforts and

without the products they put out, we would have a really difficult problem

in trying to understand the ar:-enna after we've got it into space.

The paper that was presented by henry Burger from Goodyear showed an appli-

cation Oj' the relatively new technology in polarization control - by a

unique way. I'm told by the antenna professionals that this meanderline

technique represents a push of the state of the art. Certainly, it was

something that had not been achieved before, in that approach to changing

the polarity of an antenna. Finally, the paper by Dave Lewi? (Hughes Air-

craft Co.) waa very interesting and shows that you can make en antenna for

a space application using some well-known, old, established waveguide tech-

niques, rlhen we first got into the business of defining large antennas for

space application of SARs, I isaid that we 'd never build an L-Band space

antenna ucing waveguides. 1 think that Hughes and Dave Lewis have put that

idea to bed; he showed that you can, at least on a one-time basis, build

an antenna like that. And it really does compete with the microstrip and

stripline techniques.

K.R. Carver: The next session was on Data Processing and was chaired by
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Frank Barath from JPL.

F.T. Barath (chairman o1.' Data Processing Session):

It is evident that we are in the middle of a revolution for the SAP data

processor design and implementation. Until, now, as you all-know, most of

the data processing from SARs was done optically for a number of :>easons.

One, of course, is the relative theoretical simplicity of such a process.

A lot of the short-conr.ngs of this kind of processor han been realized at

the onsst and a numJjer of electronic processors have been also developed

in parallel with the optical processors. These are exemplified by the

FLAI-S4R processor. The optical correlators suffer from a number >/f problems

• which necessitate going through these visual processors. Ther.j -is a problem

with the quality of the data that comes out, there is a swat'n width limi-

tation problem, dynamic range problems (since you're going in and out of the

film), bulk; cost and so forth. The glamour of the SAPPHIRE processors

represents the alternate to these optical processors and they also suffer

from shortcomings. They have a fairly narrow swath or are highly special-

ized to a particular type of system. There are a number of developments,

two principal developments in fact, that are changing this picture dras-

tically. One is the advent of non-military synthetic aperture radar systems,

particularly space-borne systems such as the SEASAT-A and SIR-A. As Dick

Fenner pointed out, these are hard realities of today. This is due to the

recognition that visible/IR type of imaging sensors have their limitations,

and also the recognition on the other hand that radar, particularly of the

synthetic aperture type, has very distinct advantages and unique capabil-

ities. It is highly desirable to process the data from these SARs in real

VIII-1-12



time and hopefully on board 'the vehicle where .t̂ e system is carried. The

other'major development is the incredibly fast advance of oemi-conductor

device technology. Ve can now put on a chip just a few millimeters square

the equivalent of a wriole rack of electronics from juot a few years ago.

TJiis not only shrinks the size of the volume of the necessary gear but

reduces the power requirements to levels compatible with spacecraft use.

The task of designing arid building these veal-time, possibly on-bocrd,

correlators is enormously complex as you found out and very costly. They

are also quite specialized. I see a couple of problems in this arena. One

is the possible over-specialisation of these processors. It's very easy to

take the specific requirements of a particular radar system and tailor-make

va correlator to it. It ic important in my mind to keep the system archi-

tecture that we're developing a/id the devices that were designed to implement

them as general as possible. Another problem lies in the area of how do

we integrate a digital correlator, real-time, on-board into the radar 'system

as a whole. We have to handle serial inputs into the correlator from the

spacecraft and for bhe determination of the system, the orbit parameters

and so forth. There is a real ccmcern on my part, shared by many in the

design of the systems, on how all these things play together into a workable

system. There are several places where this type of work is going on, with

thoughts on how possibly to make these correlators self-sufficient and self-

contained. By that I mean that there is an attempt and there are some

thoughts that in designing correlators we can derive the parameters that

they need for their successful processing of the data directly from the

synthetic aperture raw data itself. Ms heard a paper by Dr. f/u, who



described for instance a clutter-lock system tliat looks after multiple-look

imagery and determine!} where the nero-doppler is. These -kinds of thoughts

and this kind of approach, which have tried to make this pijsicm as self-'

miffiaient ac possible-, are a very desirable goal and unless we keep these

in mlr.d right from the onset, we might jet into problems.

I'm confident that all these problems will be overcome and within a feu years

we will in fact see correlators doing their job in veal-time and as part of

the synthetic aperture systems themselves, so that essentially they will

become a part of the system and there will be correlators inseparable from

the 5AR as a whole. Of course, the result of all this is that we will net

imagery coming out of the synthetic aperture radar-just like imagery now

canes out of the optical/visible sensors for direct application by the users.

K.R. Carver: The next speaker is Dor. Held of JPL, who chaired the session

on SAX System Design.

D. Held (chairman of the SAR System Design Session):

Editor's note: Due evidently to a microphone placement problem, Dr. Held's

comments were nearly inaudible on the tape playback and could not be accur-

ately transcribed.

Following Dr. Held's comments, a round-table discussion on major problems

in SAR technology was held and several questions submitted by members of

the audience were discussed. These were also insufficiently clear on the

tape recording to allow an accurate transcription.
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