LOUIS J. CUTZONA<br>department ${ }^{-}$applited ohysics and information sciences l:iIVERSITY OF CALIF., SAN diego LA JOLla, CALIFORNIA

## CEDING PAGE BLANK NJT FLrsian

## SUMURY

In deriving the characteristics of a synthetic aperture radar which is carried in a high speed vehicle there are a number of $c$ onstraints as well as a number of degrees of freadom among the parameter values which maj be selected for the radar systern. It is the purpose of this paper to show how these constraints and the available degrees of freedom affect the swath width, resolution, area converage rate, average power, system complexity, and system parametcrs of the radar.

The urganization of th.is paper is as follows: The radar range equation including processing gains for pulse compression and eyntietic apercure gencration is the starting point. System geometry considerations are introduced. For simplicity flat earth geometry is used, although it is realized this is not a good model for satellife borne radars. Next the constraints are introduced. These include those needed to avoid ambiguities in both range and azimuth, those needed to acheive the desired resolution, and those needed to achieve the desired swath width.

It is found, if onl; a single channel radar systcm is used, that the number of degrees of freedom needed are not available. There are a varicty of wây in which these added channels can be introduced. They may be multiple along track beams, or a combination of along track and along ronge beams.

The multiple along track channel case is analyzed in Section 1.0. It is referred to as Case $I$. The multiple along range case is analyzed in Sect:on 2.0. It is referred ts as Case II.

### 1.0 TECHNICAL DISCUSSION OF MULTIPLE ALONG-TRACK CHANNELS

Section 1.0 considers the case of a synthetic aperture radar in which multiple channels in the along track direction are incroduced.

The corresponding analysis for multiple beains in the along track range $\boldsymbol{r} 1$ rection is given in Section 2.0.

Much of the analysis of sections 1.1 to 1.7 is analogous to that used by the author in two papers analyzing the properties of synthetic aperture sonars. 1,2

### 1.1 PRELIMINARY SIGNAL TO NOISE RATIO COMBINATIONS

The signal to noise ratio at the output of a single channci radar usin'z both pulse compressio and synthetic aperture generation is given as

In equarion (1), the first factor gives the usua? radar range signal to noise ratio expressio , the second factor gives tho inprovement fin signal to noise ratio due to pulse compression, while the third factor gives the improvement in signal to nosse ratio due to synthetic aperture generation.

It is useful to introduce he foilowing relations iato equation (1)

$$
\left.\begin{array}{rl}
G_{T} & =\frac{4 \pi H \mathcal{L}}{\lambda^{2}}  \tag{2}\\
A_{\text {rec }} & =H D \\
P_{\text {ave }} & =P_{T} \tau_{i} \text { prf } \\
\theta_{E} & =\frac{\lambda}{H} ; \theta_{B}=\lambda / D \\
B \tau_{0} & \simeq 1
\end{array}\right\}
$$

$$
v-9-2
$$

Combination of equations (1) and (2) gives

$$
\begin{equation*}
\frac{\hat{S}}{\hat{N}}=\frac{P a e^{2} \sigma \lambda}{8 \pi R^{3} k T G_{E}^{2} \delta_{a} V} \tag{3}
\end{equation*}
$$

At this point parameter values in equation (3) are unconstrained. The Hature of the constraints is introduced in subsequent sections. When the constraints have been detemined, they will be introduced into cquation 3.

The definition of quantities used in all equations is given in a glossary of teans. Equations 1,2, and 3 have been previously derived by the author in reference 3.

### 1.2 GYSTEM GIOMPTKY

The geometry used is shown in Figure 1 for the flat earth case. This is done for simplicity eniy.

In Figure 1 , the followifg relations apjly. The quantities $h$, 0 , and $W$ are assined to be the indeneadent variables.

$$
\begin{align*}
& \begin{aligned}
d & =h \cot \\
R_{\text {nin }} & =\sqrt{h^{2}}+d^{2}
\end{aligned} \\
& k_{\max }=\dot{b} \cdot r(d: w)^{-} \\
& \frac{\sin E}{W}=\frac{\sin :}{n_{\text {max }}}=\frac{\sin E}{R_{\text {min }}}  \tag{4}\\
& \mathrm{E}=\mathrm{a}+\mathrm{t} \\
& W=\left(k_{\text {inax }}-k_{\min }\right) \frac{\cos \theta}{\cos \left(0-\frac{1}{E^{\prime 2}}\right.}
\end{align*}
$$

Figure 2 gives a plol of $W^{\prime}\left(R_{\text {max }}-R_{m i n}\right)$.


Figure 1. feometry (flat earth approximation)


Figure 2. Plot of $W /\left(R_{\max }-R_{\min }\right)$ vs $O_{E}$

## i. 3 WNGE SWATH SELECTICN, PNCE AMBIGUITY AVOI LNNCE, AND RNNGE RESOLUTION

 For the geometry of Figure 1 , one first selects $W$. the desired swath width on the ground. Together with $h$, and $e$, this determines all the geometric parameters in Fifure 1 using equations 4.From the last of equations 4 , the quantity $W$ is related to ( $k_{\max }-R_{\min }$ ).

The unambiguous range, $R_{u}$, mav be chosen to have any value greater than $R_{\text {max }}-R_{\text {min }}$ i.e.,

$$
\left.\begin{array}{rl}
E R_{\mathrm{u}} & =\left(R_{\max }-R_{\mathrm{min}}\right)  \tag{5}\\
& \leq 1
\end{array}\right\}
$$

To provent eclipsing one needs also

$$
\left.\begin{array}{l}
\frac{2}{c} R_{m a x} \doteq M T \\
\frac{2}{a} R_{m i n} \geq(M-1) T+T_{1}
\end{array}\right\}
$$

where $s$ is an interer.

These relations are illustrated in Fifure 3 .

The quantit ${ }^{-3}$ s $k_{u}$. $T$, and prf are related by the expresstons

$$
\begin{equation*}
R_{u}=\frac{\llcorner T}{2}=\frac{c}{2 \operatorname{prf}} \tag{7}
\end{equation*}
$$

One edditional requirement is necessary to avoid range ambigulties; namelv: potentially ambiguous ranges masi receive limited lllumination by tailoring the elevation pattern of the beam so that $U_{F}$ is given by the third of squations $\dot{4}$ and, hence, $H$, the vertical antenmi aperture, is given by

$$
\begin{equation*}
\mathrm{H}=\lambda / \theta_{\mathrm{E}} \tag{8}
\end{equation*}
$$



Figure 3. Relations among $R_{\max }, R_{\min }, T$, prf, and $\tau_{i}$,


Figure 4. Doppler freauency shift for a moving antenna.

Having selacted the values for $W, R_{u}$ and $\lambda$, the quantities $R_{u}, T, p r f$ and $H$ are now determined.

Range res slution, $\delta_{r}$, of course depends on the radar bandwidth $B$ in accordance with the relations

$$
\begin{equation*}
\delta_{r}=\frac{c}{2 B}=\frac{c \tau_{\tilde{u}}}{2} \tag{9}
\end{equation*}
$$

### 1.4 AZ]MUTH AMQIGUITY AVOIDANCE

It can be shoin easily that given an antenna with horizontal apertule $D$, moving with velocity $V$ in a direction parallel to $D$ generates a Doppler frequency shift, $f_{d}$, given by

$$
\begin{equation*}
f_{d}= \pm V /_{D} \tag{10}
\end{equation*}
$$

at its three db beam width points. This is illustrated in Figure 4.

Since the radar systems of concern are sampled data systems, one neecs co sample the signals in the antenna beam at a rate at least twice the value given by equation (10). Hence

$$
\begin{align*}
\text { Prf } & =2 \gamma \frac{V}{D} \\
\gamma & >1 \tag{11}
\end{align*}
$$

Recall however, that prf has been set by choice of $R_{u}$. Also $V$ is a paiameter whose value is set by primarily non-radar consideration. Thus equation (11) is really a constraint on the value of $D$ - namely:

$$
\begin{equation*}
D=\frac{2 \gamma V}{P r f}=\frac{4 \gamma V}{c} R_{u} \geqq \frac{4 V}{c} R_{u} \tag{12}
\end{equation*}
$$

In writing the second form of equation (12), use was made of equation (7).

A useful relation is obtained by solving equation (12) for $\mathbf{R}_{\mathbf{u}} \mathrm{V}$. This

$$
v-9-7
$$

quantity is the area rate mapped in the slant range plane. If $\dot{d}$ represents this quantity, one has

$$
\begin{equation*}
\dot{A}=R_{U} \quad V^{\prime}=\frac{C}{4 Y} D \leqq \frac{C}{4} D \tag{13}
\end{equation*}
$$

Thus the area which can be mapped per second is detemined only by $D$ and $\gamma$.

Choice of the value of $D$ according to equation (12) prevents azimuth ambiguities if the sidelobe levels o: the antenna are properly kept below some acceptable level.

### 1.5 ACHIEVEMENT OF RLONG TRACK RESOLUTION

From equations $1:$ or $i 3$ one noces that the value of $D$ is set by the selection of swath width, or by the area rate destred. In some cases the value of $D$ resulting fron these considerations may be greater than $2 S_{a}$, where $\delta_{a}$ is desired along track resolution.

In such cuses, the use of a single beam cannot acnieve the desired resolution, because the width of the segment illuminated by the radar is too short. ${ }^{4}$ Huwever, there is no reason vhy one cannot use multiple beams. What one needs to do is illuminate $a$ segment whose length is at leasi that nceded to achieve the synthetic aperture length one needs.

The length of synthetic aperture needed (non-squint case) is given by

$$
\begin{equation*}
L_{S A R}=\frac{R \lambda}{2 \delta_{i}} \tag{14}
\end{equation*}
$$

Eiven an antenna aperture of horizontal aperture, D, one can form n brams using a cechuique such as that used in a Butler Matrix so that the same aperture is used to form the $r$ beams. in this case the segme:c illuminated at range $R$ is

$$
\begin{equation*}
L_{I}=\frac{n \lambda R}{D} \tag{15}
\end{equation*}
$$

One needs to choose in so that

$$
\left.\begin{array}{c} 
 \tag{16}\\
L_{S A R} \\
a \lesssim a L_{I} \\
a \approx 1
\end{array}\right\}
$$

The multiple beam configurat lon is illustrated in figure $S$. Combination of equations 14,15 , and 16 gives

$$
\begin{equation*}
\left.n=\left[\frac{n}{2 a n}\right]^{3}\right] \quad G E \tag{17}
\end{equation*}
$$

Equation (17) gives the number of heam: necessary. In equation 17 , the symbol $[x]_{G E} f(s$ to be incerpreted as the smallesi integer froater than or equal to x.

The first of equat $\mathrm{i}_{\mathrm{a}}$ as (b) with the equal sign choson can be witte: as

$$
\begin{equation*}
R_{\max }=: \frac{c T}{?}=M K_{u} \tag{18}
\end{equation*}
$$

Thus $x$ may be interpreed as the rumber of pulas simultanocusly in transit during radar opertion.

Use of :quat lons 12 and 18 in equat lan 17 giver

$$
\begin{equation*}
n n=\frac{1}{a}\left(\frac{V R_{m, 1 \times}}{c s_{n}}\right) \tag{19}
\end{equation*}
$$

Thus the product of the number of beams by number of pulses under wis simultaneousiy is fiven by the right himd side of equition 19.

The quatity of $\therefore x_{\text {rax }}$ ic is the time requited for a radar signal to traverse the path irom radar th targe: and then back to the target. Multipllation of this thac by fiows the dist.mee traversed by the radar during this roomdetrip lucerval. This distancs divided by $\delta_{i}$ fives the product i. M Hecded except for the fictors $\gamma$ and a whith relate to an oversampling.
factor and over i!lumination factor respectively.

### 1.6 SIGNAL TO NOISE RATIO WITH CONSTRAIIJTS

In writing the equations leading to equation (3) a single radiated beam was assumed so that $P_{\text {ave }}$ in this equation is the average power in a single radiated beam. Since $n$ beams are required, with $n$ given by equation (17), the total average power, $P_{\text {Total }}$, is given by solving equation 3 for $P_{\text {ave }}$. and then multiplying this quantity by $n$. One has

$$
\begin{equation*}
P_{\text {ave }}=\left(\frac{\hat{S}}{N}\right)\left[\frac{8 \pi R^{3} k T_{N} \theta_{E}^{2} \delta_{a} V}{E^{2} \sigma \lambda}\right] \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
P_{\text {Total }} & =\left(\frac{S}{N}\right)\left[\frac{8 \pi R^{3} k T_{N} \theta_{E}^{2} \delta_{a} V}{D^{2} \sigma \lambda}\right]\left[\frac{D}{2 \alpha \delta_{r}}\right] \\
& =\left(\frac{S}{N}\right)\left[\frac{4 \pi R^{3} k T_{N} \theta_{E}^{2}}{\lambda \sigma \lambda}\right]\left[\begin{array}{l}
V \\
\frac{V}{D}
\end{array}\right] \tag{21}
\end{align*}
$$

From equations 13 and 18 several equivalent expressions for $V / D$ may be obtained: nainely

$$
\begin{equation*}
\frac{V}{D}=\frac{c}{4 \gamma R_{u}}=\frac{c M}{4 \gamma R_{m a x}} \tag{22}
\end{equation*}
$$

Combination of equations 21 and 22 gives

It will be noted that equation (23), evaluated at maximum range, predicts that the aveiage power required varies as the square of maxfmum range.

### 1.7 ANTENNA CONSIDERATIONS

It has been shown in Section 1.2 that

$$
\begin{equation*}
\sin \theta_{E}=\frac{W \sin \theta}{R_{\max }} \tag{24}
\end{equation*}
$$

and that

$$
\begin{equation*}
W=\left(R_{\text {max }}-R_{\text {min }}\right)-\frac{\cos \theta_{E / 2}}{\cos \left(\theta-\theta_{E / 2}\right)} \tag{25}
\end{equation*}
$$

If it is assumed that $\theta_{E}$ is sufficiently small so that

$$
\begin{equation*}
\sin \theta_{E} \approx \theta_{E} \tag{26}
\end{equation*}
$$

then combination of equations 4,8 , and 26 gives

$$
\begin{equation*}
H=\frac{\lambda R_{\max }}{W \sin \theta} \tag{27}
\end{equation*}
$$

One may rewrite equation 25 as follows:

$$
\begin{equation*}
\frac{W}{R_{u}}=\frac{E W}{\left(R_{\max }-R_{\min }\right)}=\frac{B \cos \left(\theta_{E / 2}\right)}{\cos \left(\theta-\theta_{E / 2}\right)} \tag{28}
\end{equation*}
$$

Substitution of $W$ from equation 28 ir.to equation 27 gives

$$
\begin{equation*}
H=\left[\frac{\lambda R_{\max }}{\sin \theta}\right]\left[\frac{\cos (\theta-\theta}{R_{u}-\frac{E / 2}{3 \cos \left(\theta_{E / 2}\right)}}\right] \tag{23}
\end{equation*}
$$

The area, $A$, of the antenna ran be obtained by muitiplying equation 20 by equation 12. The result is

$$
\begin{equation*}
A=H \quad I=\left[\frac{\lambda}{\operatorname{R} \operatorname{R} \max }\right] \cdot\left[\frac{\cos \left(\theta-\theta_{E / 2}\right)}{\cos \left(\theta_{E / 2}\right)}\right]\left[\frac{l_{1 Y}}{c}\right] \tag{30}
\end{equation*}
$$

```
Since \(\beta \leqq 1\) and \(Y \leqq 1\), equation 30 shows that there is a minimum antenna
``` area required.

One also recails with respect to antenna requirements that \(D\) is given by equation 12 and that the number of beams required is given b3 equation 17.

\subsection*{2.0 THE FULTIPLE RANCE CHANNEL CASE}

In section 3 the case in which the multiple channels are in the-range coordinate is analyzed.

One starts by considering a single elevation channel with the value of \(e_{E}^{-}\) at first unspecified. As the analysis proceeds, one will need to frovide multiple elevation channels.

Quantitites whose values difier in Case II fiva their values in Case I are designatry by use of a frime on the appropriate symbol.

\subsection*{2.1 PRELIMINARY SIGNAL TO NOLSE RAIIO FOR CASE II}

Equation (1) Sor the single beam case applies to the multiple range channel case. Equations (2) also apply. For this casc one gets
\[
\begin{equation*}
\left(\frac{\hat{S}}{N}\right)=\left[\frac{P_{\text {ave }} c^{\lambda}}{8 \pi R^{3} k T_{N} \delta_{a} v}\right]\left[\frac{\left(H^{\prime}\right)^{2}\left(D^{\circ}\right)^{2}}{\lambda^{2}}\right] \tag{31}
\end{equation*}
\]

\subsection*{2.2 SYSTEM GEONETRY}

The system genmetry in Figure 1 applies also for Case II as do also equations (4) ex:ept that the elevation angle, \(E_{E}\), will eventually be divIded into a number of elevation channels which wiil span differcnt range intervals. (See Figure 6).

One assumes for this case that \(h\), and \(R_{\text {max }}\), are independent variables. The third quantity to solve the geometry is specified later.

\subsection*{2.3 ACHEIVENEVT OF ALONG TRACK RESOLUTION}

Given a desired resolution, \(\delta_{a}\), the required value for \(D\) is given \({ }^{4}\) by
\[
D^{\prime}=2 a \dot{c}_{a}
\]
\[
\begin{equation*}
\alpha \leq 1 \tag{3!}
\end{equation*}
\]

\subsection*{2.4 AVOIDANCE OF ALONG TRACK ANBIGJITIES AND ACHILVE:IEITT OF LESIKED \\ SWATH WIDTH}

Equation 11 applies to Case II. Horever, in this case, \(D\) has been specified by equation 32 so that equation 11 becomes a specification on prf. This, if course, also specifies \(T^{-}\)and \(R_{u}^{-}\)- namely:
\[
\left.\begin{array}{l}
T^{\prime}=\frac{1}{p r f^{\prime}} \\
R_{u}^{\prime}=\frac{c}{2 p r f^{\prime}}=\frac{c}{4 ; V} D=\frac{c 2 \delta_{a}}{4 \gamma V} \tag{33}
\end{array}\right\}
\]

Comparison uf equat ion 17 with equation 32 shows that
\[
D=n D^{\prime}
\]

Hence
\[
R_{u}=n R_{u}^{-}
\]
and
\[
\begin{equation*}
W=n W^{-} \tag{34}
\end{equation*}
\]

Thus \(n\) beams in elevation are needed to span the desired swath width \(w\).

Fquatior, 27 is valid for Case II. Combination of thefs equation with equation 35 gives
\[
\begin{equation*}
H^{\circ}=\frac{\lambda R_{\max }}{W^{\prime} \sin \theta^{-}}=\frac{n \lambda r_{\max }}{W \sin \theta^{\prime}} \tag{36}
\end{equation*}
\]


Figure 5. Use of multinle ueains to illuminate the sunthetic anerture length.


Figure 6. Partition of \(A_{E}\) into range channels \(\theta_{E}^{\prime}\).

As an approximation, let \(\theta\) be considered as being approximate!y equal to \(\theta^{\circ}\).

Comparison of (36) with equation 27 gives
\[
\begin{equation*}
H^{-}=n H \tag{37}
\end{equation*}
\]

Choice of \(\delta_{a}\) specifies \(D^{\prime}\), and \(R_{u}{ }^{\prime}\). Choice of \({ }^{9}\) (or. W) specifies \(n\). Cholce of system geometry specifies \(\mathrm{H}^{\prime}\).

It will be noted from equations 52, 53, and 54, that for Case II, the value of \(\mathrm{H}^{-}\)is n times the value of lt for Case I , but that \(\mathrm{D}^{-}\)is \(\mathrm{i} / \mathrm{n}\) the value of \(D\) such that the antenna areas remain constant.

The numieer of channels \(n\) for Case \(I\) and II are equal. In Case \(I\), the chainels are in the along track direction; in Case II, they are in the along range dizection.

For both Cases I and II, there is a minimum antenna rea required. This area is proportional to wavelength, \(\lambda\), maximum range, \(R_{\text {max }}\), and satellite speed \(V\). It also depends on geometric factors as shown ia equation 49.

The total average power required 1. ...e same for both Cüses I and II.

From equation 47, one notes that the total average power, P Total, required varies directly as the square of \(\theta_{E}\), and direcily as \(M\), directly with the noise temperature \(T_{N}\), inversely as the target cross sention \(\sigma\).

The dependence of average power with range is as range cubed. However, at maximum range it varies as the scrare of ringe. I.ifs lazter behavit: dua to the fact that ancenno arra must ie macie proportiunal to \(R_{\text {max }}\).

The analysis above has been based un a flat earth 3pproximation only for the simplicity of a first anslysis. It is realized that tie accual geometry needs to be ronsideied. This will be fone at a later date.

\subsection*{2.5 SIGNAL TO NOISE RATIO WITH CONSIRAI"H FOR CASE II}

Equation (31) fives the signal to foi:re for Case It in the absence of constraints. The important constraints for Case II aric given by equations 34 and 37 . If one forms the parduct \(H^{\prime \prime} D^{\prime}\), one gets using these equations
\[
H^{-} D^{-}=\left(\begin{array}{ll}
n & 11
\end{array}\right)\left(\frac{D}{n}\right)=\mathrm{HD}
\]

Use of equarien 38 in equation 31 shows that
\[
\begin{equation*}
\hat{S}_{\text {Case II }}=\frac{\ddot{3}}{\hat{S}_{\text {Case I }}} \tag{39}
\end{equation*}
\]

Thus the signal. tonofse ratio for Cose \(T\) I is identical to that for Case \(I\).

For Case il, one neels the same averade poter as for Case I.

In Case I, \(n\) beams are used ir the alons track case and \(D\) is given by eqtation 12. Far Gouse if n bams .llong the range direction are used.

In Case 1 , the vaide of \(D\) is \(n\) thens reater : han the value of \(D^{\circ}\).

In Case If, the value of if is a times larger than \(H\).

In both cases the area of the antoma nas the same value, - namely: that given by equation 30.

\subsection*{3.0 SLMQURY JF RESLL: 7}

The major results of these analyses are che constraints or parameter values. and the effrets of these constrais: in ditermining the average power required.

For Case I, the primey resiuts are these given 'y equations \(7,12,13\), 14, \(17,18,19.22,29\), and 30 . Thise are repeated on the next page.
\[
y-n-16
\]
\[
\begin{align*}
& \operatorname{prf}=\frac{c}{2 R_{u}} \\
& D=\frac{4 r V}{c} R_{u} \\
& \dot{A}=R_{u} V=\frac{C}{4 Y} D \\
& L_{S A R}=\frac{R \lambda}{2 \delta_{a}}  \tag{43}\\
& n=\left[\frac{D}{2 \alpha \delta_{a}}\right]_{G E}=\left[\frac{2 \gamma V R_{u}}{\alpha c \delta_{a}}\right]  \tag{44}\\
& K_{\text {max }}=M R_{u}  \tag{45}\\
& n M=\frac{Y}{\alpha}\left(\frac{2 R_{\text {max }}}{c \delta} v\right)  \tag{46}\\
& \mathbf{P}_{\text {Total }}=\left(\frac{\dot{\hat{S}}}{\mathrm{~N}}\right)\left[\frac{4 \pi R^{3} \mathrm{kT}_{N^{\theta}}{ }^{2}}{\alpha \sigma \lambda}\right]\left[\frac{\mathrm{cM}}{4 \gamma R_{\text {max }}}\right] \text {. }  \tag{47}\\
& . H=\frac{1}{\beta}\left(\frac{\cos \left(\theta-\theta_{E} / 2\right)}{\cos \left(\theta_{E} / 2\right)}\right)\left(\frac{\lambda R_{\max }}{\sin \theta R_{u}}\right)  \tag{48}\\
& A=H D=4\left(\frac{Y}{B}\right)\left(\frac{V}{c}\right)\left(\frac{\cos \left(\theta-\theta_{E} / 2\right)}{\cos \left(\theta_{E} / 2\right)}\right)\left(\frac{\lambda R_{\text {max }}}{\sin \theta}\right) \tag{49}
\end{align*}
\]

For Case II the primary results are given by equations \(32,33,34 ; 37,38\), and 39. These are repeated below
\[
\begin{align*}
& D^{\prime}=2 a_{a}  \tag{50}\\
& a \leq 1 \\
& R_{u}=\frac{c}{2 \rho r F^{\circ}}=\frac{c}{4 \gamma_{V}} D^{-}=\frac{c \delta_{3}}{2 \gamma V}  \tag{51}\\
& D^{\prime}=\mathrm{D} / \mathrm{n}  \tag{52}\\
& H^{-}-n H  \tag{53}\\
& H^{\prime} D^{\prime}=H D=A  \tag{54}\\
& \left(\frac{S}{N}\right)_{T l}=\left(\frac{S}{N}\right)_{T}
\end{align*}
\]

For Case \(I\), it will be noted that \(R_{u}\) and \(S_{a}\) are chosen indrependently. For Case \(I\) cholce of \(K_{u}\) leads to the specification of \(p r f, D\), and \(\dot{A}\). Choice of \(\delta_{a}\) then leads to a specification of \(L_{S A R}\) and \(n\).

Choice of \(R_{\text {max }}\) and the system grometry leads to the specification \(0: M, H\), and \(A\).

All of these constraints lead to the expression fo: total average power required.

For Case II, \(R_{\text {max: }} \hat{S}_{d}\) : and \(O_{E}\) (or its equivalents such as \(W\) ) are chosen independenti:.
\begin{tabular}{|c|c|}
\hline A, Arec & Area of Receiving Anteuna \\
\hline i & Area mapped per second in slant range plane \\
\hline B & Receiver Bandwidth \\
\hline c & Speed of propagation of radar signals \\
\hline D & llorizontal antenna aperture \\
\hline d & See Figure \(]\) \\
\hline E & Flevation argle (see Figure l) \\
\hline \({ }^{\text {f }}\) d & Doppler frequency shift (sec eq. 10) \\
\hline \(\mathrm{C}_{\text {T }}\) & Gain of Transmitting antenna \\
\hline H & Vertical Antenna aperture \\
\hline h & Ajtitude of radar above earth \\
\hline k & Boltzmann's constant \\
\hline \({ }^{\mathbf{L}}\) SAR & Length of synthetic aperture \\
\hline \(L_{1}\) & length of thluminated segment \\
\hline M & Number of pulses undis way (see eq. 6 and 18) \\
\hline N & Notse power in radar receiver \\
\hline \(n\) & Number of radar clannels \\
\hline \({ }^{\text {Pr }}\) & Peak transmitter power (one channel) \\
\hline \({ }^{\text {a }}\) ave & Average transmitter power (one channel) \\
\hline \(\mathrm{P}_{\text {Total }}\) & Total average tranemitter power ( n channels) \\
\hline R & - Radar Range \\
\hline \(\mathrm{R}_{\text {min }}\) & Minimum kadar Range \\
\hline \(\mathrm{R}_{\text {max }}\) & Maximum Radar Range \\
\hline \(\mathrm{R}_{\mathrm{u}}\) & Unanbiguous Radar Range \\
\hline S & Sigual Power at Radix Output \\
\hline T & Interpulse period \\
\hline \(\mathrm{T}_{\mathrm{N}}\) & Recelver Noise temperature \\
\hline \(v\) & Speed of translation oi radar \\
\hline w & Swath width \\
\hline
\end{tabular}

\section*{GLOSSARY OF TERMS (cont'd)}
a Constant (sce eq. 16)
B constant (see er, 5)
\(Y \quad\) Constant (see iq. 11)
\(\delta_{a}\) Synthetic Aperture Resolution
\(\delta_{r}\) Range Resolution
\(\lambda \quad\) Radar wavelength
o Target cross-sectional area
\({ }_{i}\) Duration of uncompressed pulse
To Duration of compressed pulse
0 Elevation Angle (see Figu:c 1)
0 E Elevation Beamwidth (see Figure 1)

SPECIAL SY:ABOL
\([x]\) GE Signifies smallest integer greater tran or equal to \(x\).

\subsection*{4.0 REFERENCES}
1. Cutrona, L. J., "Comparison of Sonar System Performance Achievable Using Synthetic Aperture Technique With Performance Achievable by Hore Conventional Means, " J. Acoust. Soc. Am., 58, 336-348 (1975).
2. Cutrona, L. J., "Additional Characteristics of Synthetic Aperture Sonar Systems and a Further Comparison With Non Synthetic Aperture Sonar Systems," J. Acoust. Soc. Am., 61, 1213-1217 (1977).
3. Cutrona, L. J., "Synthetic Aperture Radar," In Radar Handbook, M. Skolnik Ed. (McGraw-Hill, New York, 1970) Chapter 23.
4. Cutrona, L. J., W. E. Vivian, E. N. Leith and G. O. Hall, "A High Resolution Radar Combat Surveillance System," I.R.E. Tians. Mil. Electron 5, 127-130 (April 1961).

\section*{CAPTIONS FOR FICURES}

Figure 1. Geometry (Fiat Earth Approximation)

Figure 2. Plot of \(W /\left(R_{\text {mix }}-R_{\text {min }}\right)\) vs \(\dot{G}_{E}\)

Figure 3. Relations among \(R_{\max }, R_{\text {min }}, T, p r f\), and \(\tau_{i}\).

Figure 4. Doppler Frequency Shift For a Moving Antenna

Figure 5. Use of Multiple Beams to Illuminate the Synthetic Aperture Leng th.

Figure 6. Partition of \(\theta_{E}\), into Range Channels \(\theta_{E}\).```

