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FOREWORD



The work reported was performed by technical staff personnel of the



following General Electric components: Energy Systems Technology Divi­

sion, Large Steam Turbine Division, Corporate Research and Development,



and TEMPO (Center for Advanced Studies). Overall project direction was


provided by Eldon W. Hall, Energy Technology Operation, ESTD. A number



of highly qualified consultants, both within and outside General Elec­

tric, assisted intheir area of expertise. These, too numerous to list



here, included many of the proponents of specific concepts and the


authors of references or source documents who freely supplied addi­

tional information upon request. Some of these, as appropriate, are



named in the text.



One of the in-depth reviews of Task I preliminary results was by a


Review Panel consisting of General Electric managers and representatives



of electric utilities and an architect-engineering firm.



III 



SUMMARY



The project objective is to examine the field of proposed concepts


for thermal energy storage systems (TESSI and select, conceptually

design, and analyze the m6st promising for near-term electric utility


applications. This report describes the task concerned with selecting


up to three promising concepts for more detailed design and analysis.



Over forty TESS concepts 1geaned from the literature and personal


contacts were examine ordpo~sible application to two reference plants,


an 800 MWe high-sulfur coal plant, and an 1140 MWe light water nuclear


reactor. A preliminary screening on near-term-a&vailability and appli­

cability reduced the set to twelve selections, someof-i-eh-e-om'ae.


the elements of several concepts.



Modifications to the plants favorable to TESS were incorporated in


a thermodynamic computer model, which considered the operation of the


Turbine Island (turbine generator and associated parts of the plant)

under normal conditions, under storage charging conditions, and under
 

storage discharging conditions for the case inwhich a peaking Turbine


Island provided fractional increments of power up to 50 percent of


reference plant rated power, and for the case of feedwater heat storage

with an enlarged main turbine. The program permitted defining size and


performance requirements on the TESS components and the system turn­

around efficiency, ie the ratio of peaking electric energy produced to


the electric energy reduction during storage charging. Sensitivity


analysis for the principal parameters was performed.



Storage media included inthe twelve selections included high


temperature water (HTW), hot oil, molten salts, and packed beds of


solids such as rock. Of these the HTW required high pressure contain­

ment; steel vessels, prestressed cast-iron vessels, prestressed con­

crete pressure vessels, excavated underground caverns, and natural


aquifers were considered.
 


The economic or costing methodology was based on the recommended


values in the EPRI Technical Assessment Guide which represents custom­

ary electric utility planning practice. Capital costs of plants are


expressed intotal plant costs or in dollars per kilowatt ($/kW) on a


TOTAL cost level which includes interest during construction, spare


parts, contingencies overhead, and other elements not normally included


ininstalled or direct costs of equipment. Variable annual costs such


as fuel and associated O&M are levelized, ieconverted to a uniform
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annual payment equivalent to the assumed fuel escalation scenario over


the plant life. These two practices lead to higher $/kW and cost of


electricity values than found in many studies.



Capi-ta-l costs for the TESS and associated components such as the
 

peaking Turbine Island were derived for the twelve selections in specific


TOTAL costs ($/kW) using the same costing basis as used for reference


plants. Power-related and energy-related components of cost were


expressed separately as well as the sum.



The ranking incost was compared with subjective rating considera­

tions in technical risk or near-term availability, suitability for util­

ity applications, conservation potential, growth potential, hazards and


environmental problems, and diversity of approach to make recommended


choices among the twelve selections.



The recommended choices as approved by DOE/EPRI/NASA for further


study and conceptual design in the remaining project tasks were:



" 	 An underground cavity in hard rock with steel liner and concrete


between liner and rock. HTW is contained. High pressure steam


is injected into the water for storage charging. Lower pressure


steam is withdrawn for peaking turbine output.



" Storage is in tanks packed with solid particles, eg rock. The


voids between particles contain a heat transfer fluid, eg oil or


molten salt which passes through heat exchangers to charge stor­

age with energy from condensing steam and to discharge storage


by producing lower pressure steam for a peaking turbine. These


two choices are applied to the 800 MWe HSC plant.



" Prestressed cast-iron vessels (PCIV} are used as containment for


HTW. The feedwater mode of-storage-is used n-which-excess hot


feedwater is stored during off-peak hours, reducing the feed­

water heating needs during peaking.



" 	 The dual-media concept of the second choice above (oil or salt


with packed beds) is used in the feedwater storage mode. The


third and fourth choices are applied to the 1140 MWe LWR plant.
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SECTION 1



INTRODUCTION



This report describes work done by the General Electric Company



between December 1977 and May 1978 on projects sponsored by the Depart­


ment of Energy, Conceptual Design of Thermal Energy Storage Systems for



Near Term Electric Utility Applications (NASA-Lewis Research Center



contract DEN3-12), and by the Electric Power Research Institute, Inc.,



Comparative Analysis of Utility Sensible Heat Storage Systems (EPRI



contract RP1082-1). This report is the required output of a systems



selection task that identifies the thermal energy storage system (TESS)



concepts, of the many considered, that warrant more detailed conceptual



design and economic analysis in the remaining tasks of the project.
 


BACKGROUND



There is a need in electric utility operation for an economic means



of supplying the varying demand for electric power. While there are
 


seasonal and weekly demand patterns, the daily load pattern is of pri­


mary concern in this project. Load-following with conventional base load



generating capacity may not be the most economic way since its high
 


capital cost and low fuel cost per unit of energy delivered favor con­


tinuous operation over all available hours (ienot unavailable because



of forced outages or scheduled maintenance outages),



Two alternatives for meeting peak load demands are the use of gas



turbines and the use of energy storage. The former has a low capital



cost per kilowatt of capacity but uses petroleum, a fuel that ismore



costly than coal or nuclear fuel, and the use of which is to be mini­


mized by utilities as a national policy. Energy storage has long been



used in pumped-hydro form where off-peak power moves water from a



lower to an upper reservoir, and electricity is generated during peak­
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demand hours as the water returns to the lower reservoir through a



hydraulic turbine.



The final reports prepared by the Public Service Electric and Gas


Company of New Jersey (PSE&G), An Assessment of Energy Storage Systems



Suitable for Use by Electric Utilities, EPRI EM-264 Project 225, ERDA



E(ll-l)-2501, identified and compared a number of energy storage con­


cepts including above- and below-ground pumped hydro, compressed air


storage, thermal energy storage, battery storage, and flywheel storage.



Thermal energy storage was identified as a potentially viable contender



because of its technical and economic features and potential for early



commercialization.



The stated objective of this project is to confirm the apparent



attractiveness of thermal energy storage and, if confirmed, to select



and conceptually design the most promising systems for near-term utility



applications.



SCOPE



To accomplish the project objective, the study scope was defined to


examine the widest range of thermal energy storage concepts and to per­


form comparative, design-, and economic analyses as specified by the



following tasks:



" 	 System Selection: A large number of thermal energy storage


systems (TESS) concepts are identified and defined by searching



the literature, consultation with industry, universities, and



government agencies, and by combination or innovation. A method­


ology for comparative evaluation is used for two successive


screenings: first, the ensemble of concepts is reduced to a


maximum of 12; then, on approval of the results of the prelimi­


nary screening, a more detailed comparison selects a maximum of



three systems for conceptual design,



" 	 Conceptual System Design: For each of the selected systems a



detailed conceptual design is prepared, after redefining and



optimizing the parameters of the TESS and the baseline plant



designs.
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" Benefit Analysis: The characteristics of the conceptual system



designs and their value to the industry are evaluated, and eco­


nomic and benefit analyses conducted. The market potential, a



practical scale implementatTon, and related conservation bene­


fits are estimated,



" 	 Development and Demonstration Program Recommendation: A recom­


mended program for the development and near-term power-plant



demonstration of the designed systems are outlined.



The project considers TESS concepts under criteria of particular



interest to utilities and evaluates TESS operations in a utility system



context (rather than a single plant context) by hour-by-hour simulation



to determine production costs over an annual cycle. Summary plant



booklets describing the three systems carried through conceptual design



are also required.
 


In the context of the above description of the task sequence, this



report confines itself to the description of the methodology and results



of the system selection task.



PROCEDURES AND CONSTRAINTS



Thermal energy storage differs from other storage forms for electric



utility applications as shown on the right of Figure 1-1, In conven­


tional generating capacity, there is a flow of energy from fuel to the



load or consumer, w4th conversions in form in the boiler and in the



turbogenerator. The furnace and boiler convert the chemical energy to



high pressure steam; the turbogenerator converts it to electrical



energy, which is transmitted and delivered to the load. Other storage



forms are charged by extracting the energy as electricity, For TESS as



shown, energy is extracted as steam, between boiler and turbogenerator.


I' 

The daily and weekly energy demand cycle of a "typical" electric



utility over a summer week* is shown at the left of Figure 1-1. It



Shown is Synthetic Utility D from EPRI Report EM-285, Synthetic Elec­

tric Utility Systems for Evaluating Advanced Technologies Reference 229).
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Figure 1-1. TESS and the weekly load curve.



varies from 100 percent down to 50 percent of the peak load. Base load


generating plants, with lowest fuel costs, operate as many hours as


they are available, supplying the full time load below 40 to 50 percent


of peak demand. If base load capacity is increased to be larger than



50 percent of the peak load there would be unused capability during the


troughs. By storing base load thermal energy during the troughs, to



produce electricity for use in peak hours, fuller use can be made of



efficient base load capacity, even if it is increased to 70 percent of



peak demand.



With thermal storage the boiler can operate at a constant power



level corresponding to the average power output of the base load plant.



Turbine generator capacity must be provided to handle the peak-hour


demands. The energy charged into TESS during off-peak hours is shown



shaded. The energy converted to electricity during peak hours is shown



crosshatched. There is a relationship between the two areas called the



turnaround efficiency: the electric energy output from storage (cross­

hatched area) divided by the electric energy not generated in order to



charge the storage (shaded area). The fuel costs of any system are


inversely proportional to efficiency, so high turnaround efficiency may
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may be necessary to compete with other generation alternatives avail­


able during peak hours.



Constraints



In performing the system selection task, constraints on the scope



are imposed by the work statement in order to focus attention on near­


term commercialization by electric utilities.
 


The application of TESS is confined to new plants, planned and



designed to incorporate the system. The new plants considered are con­


ventional coal and nuclear fueled, which represent the large majority



of expected electric utility capacity additions between now and AD 2000. 

As nuclear plants, only light water reactors (LWR) are considered; as



coal-fired plants, only conventional types with flue gas desulfurization



(FGD) when high-sulfur coal is to be burned are considered. All plants



employ a steam driven turbogenerator for conversion to electricity and a



fired boiler or nuclear reactor as a steam supply.
 


The requirement for near-term availability requires interpretation
 


since the planning and construction cycle for large conventional plants
 


is eight to twelve years, Concepts to be considered must be capable of



demonstration before 1985 so that manufacturers can offer to supply, and



utilities can plan and order with confidence over all or most of the



period 1985-2000. By this criterion, penetration of the market will be



small until the latter part of the period,



It is recognized that stringent electric utility requirements must



be met, to match the standards set for performance and required of con­


ventional plants. These include high reliability, flexibility and sta­


bility of operation, meeting environmental standards for emissions and



for hazards to life and property, and low maintenance requirements.



Not least of utility requirements is that a TESS plant be economic com­


pared to the generating capacity alternatives available to the utility



for comparable duty.



Another "constraint" is that the ensemble of concepts considered be



comprehensive. Many concepts have been suggested, analyzed, or tested
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by many proponents both in the United States and abroad. In the screen­


ing .process all those identified are to be considered.



Methodology



The sequence of subtasks for Task I, System Selection, is shown in



the flow chart, Figure 1-2. Initial effort was on data gathering and



structuring, performed in parallel as Taxonomy and Literature Survey.
 


From the data gathered, a comprehensive listing and description of rele­


vant concepts was derived and a preliminary screening performed on the



basis of near-term availability, comparative economic viability, and



suitability for utility operation,
 


REFERENCE 
SYSTEM PLANT 

TAXONOMY DESIGNS 

SYSTEMCONCEPTS COMPARATIVEEVLATO TOPICALREPORT 

12SRE I 1.6 AND


SELECTIONI



REVIEW OF PRELIMINARY


LITERATURE 
 CONCEPTUAL



DESIGNS


DOE/EPRI/NASA


DOE/EPRI/NASA REVIEW



APPROVAL AND APPROVAL



Figure 1-2. Flow diagram of Task 1.



In the second half of Task I, reference plants were selected and



the problems of integrating the selected concepts with a conventional



plant were addressed. The thermodynamic performance of the reference



plants modified for TESS inclusion, and for the TESS systems, was com­


puter modeled for comparative evaluation. Costs of storage materials,



containment, other TESS components, and of the power conversion compo­


nents of the reference plants were derived for economic comparisons.
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Consultation with electric utilities and manufacturers of conventional


plant components, TESS containment, and storage media provided informa­


tion on other criteria for evaluation. The rating process in the com­

parative evaluation resulted in the selection of two concepts as best
 

meeting all major criteria, with several others suggested as alterna­


tives.



Subtask 1.9 is the preparation of this document, the Topical Report.'



PLAN OF THIS VOLUME



The sections of this report follow the subtask pattern shown in


Figure 1-2, with some combfnations. An extensive data base was assem­

bled for the preliminary screening. Much of this is presented indetail



as Appendices A, B, and C, and is more briefly described inSections 2



and 3. Sections 4 through 8 describe the procedure and results of the



comparative evaluation, narrowing the concepts from twelve down to


those recommended for approval, as presented to personnel of DOE/EPRI/



NASA on May 22, 1978.
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SECTION 2



IDENTIFICATION OF CONCEPTS



LITERATURE SEARCH



The initial source of literature references was recent project



reports of ERDA, DOE, NASA, and EPRI that were relevant to thermal



energy storage. Each of these, in its reference lists, provided addi­


tional sources that were obtained. Consultation with government agency



program managers, industry project managers, and consultants provided



additional sources.



A computer search was made, with relevant key-word combinations.



The following data bases were searched from years as early as 1964 up



to 1977: Science Abstracts, Energyline, Compendex (Engineering Index),



NTIS, Nuclear Science Abstracts, ERDA Energy Data Base. The printout
 


of abstracts from the selected key-word combinations were scanned, and



about thirty-five references not previously identified were ordered.



The bibliography or literature references list continued to grow



during the course of the project as information on particular materials,



technologies, methodology, or concepts became of interest. Listed in



Appendix A in Volume 2 are the 237 entries to date.



Each entry is assigned a number for ease in referencing in the



concept descriptions (Appendix C) and in the text of this report. The



numbers were assigned chronologically as references were received, but



it will be noted that those in hand by the beginning of January 1978



were arranged in alphabetical order. For ready cross referencing,


Appendix A contains a list of reference number versus author, and a



full bibliographic reference list alphabetical by author or institu­


tional source.



A limited cross reference by principal subjects is also provided,



by number and author, for the convenience of the reader.
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TAXONOMY



Taxonomy, the science or technique of identification, naming, and



classification or ordering of a data base, is a useful method of



structuring the many thermal energy storage systems that have been



proposed, so that their common elements and their differences can be



recognized. The basic structure connecting these elements is illus­


trated in Figure 2-1.



All of the thermal energy storage systems identified have one or



more storage media, a form of containment for the storage media, a



fluid for heat transfer and heat transport, a source of heat derived



from the reference power plant, and a means for conversion of the



stored thermal energy into electricity.



Major classifications are given within each box. A more extensive,



numbered taxonomy was prepared to use in classification of the many



concepts being collected frbm the literature. It aimed at being com­


prehensive, considering all possibilities. Many of the categories



defined were found to be empty: no proposed concept used them, nor



were they considered sufficiently attractive to warrant creation of a



concept. This taxonomy may be fo6nd in Appendix B, and is used in



Appendix C in characterizing concept definitions.



A summary of the alternative components can be presented as shown



in Figure 2-1. For utility applications, the only thermal energy



sources relevant to this project are steam and hot boiler feedwater.



Some concepts identified from the literature used as sources hot



gases: helium from gas-cooled reactors, or solar thermal towers; hot



sulfur trioxide from solar towers; hot air from compressed air storage



systems. Other components of these systems: containment, storage



media, reconversion to electricitywere considered but non-steam-cycle



thermal sources were discarded.
 


Sources



The steam source used can be at various pressures and temperatures.



Live steam, the high pressure output from a coal-fired boiler, may have
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a pressure from 16 to 24 MPa (2400-3500 psig), at 540C (10000F).



After passing through the high pressure turbine the pressure may be 4.8



MPa (700 psi) at 305'C (585°F). This is often called cold-reheat steam



(CRH); after passing through the reheater tubes of the boiler, itagain



has a temperature of 540'C at a slightly reduced pressure and is called



hot-reheat steam (HRH). From a LWR the steam pressure is 6.8 MPa (1000



psi) at 280°C (540VF).
 


Another possible source of steam isbetween the intermediate pres­


surT (IP)turbine and the low pressure turbines, This point is called



the crossover; the steam conditions here are 1.1 to 1.2 MPa (160-180



psi) at about 3600C (690'F) for the coal-fired plant, or 2800C for the



LWR,
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In addition, there are extraction points in the turbine generator


sets for six or seven feedwater heaters, which permit limited with­


drawal of steam at intermediate temperatures and pressures.



The condensate flow from the condenser is heated by the feedwater



heaters (FWH) to successively higher temperatures, so in principle



feedwater may be extracted, inserted, or stored at any of the tempera­


tures between FWHs. After the highest temperature FWH, at the boiler


inlet, feedwater temperatures are 215-225°C (420-440'F) for LWRs and



up to 265C (510'F) for fossil-fired plants.



Storage Media


The lowest cost storage medium is water. Even water purified to



boiler feedwater quality has a cost of much less than $1 per Mg (90t/


ton). High temperature water (HTW), of adequate quality, also has the



advantage of being usable directly in the boiler/turbogenerator cycle,


without such interface equipment as heat exchangers. HTW has the dis­


advantage of requiring high pressure containment for temperatures much


above 100'C (212'F). All the other common storage media considered



can be stored at close to atmospheric pressure.



The penalty in cost of containment of HTW can be indicated by the


temperature/pressure relationship of saturated water shown in Figure



2-2. The saturation pressure is roughly an exponential function of



temperature as indicated by the curve fitting equation in the figure.


Since the stored energy in HTW increases only linearly with tempera­


ture, storage as HTW is limited inmaximum usable temperature unless



very low cost pressure containment is available.



Alternatives to HTW as a storage medium are organic compounds


such as aliphatic or aromatic petroleum compounds, and derivatives


that may also contain chlorine, fluorine, silicon, or oxygen. Many



of the major oil companies have trademarked lines of heat transfer



fluids with the maximum temperature for operation with acceptable


degradation rates varying from 310'C (600F) for relatively low cost
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media to as high as 400'C (750'F). Many of these fluids are low vis­


cosity liquids, pumpable down to ambient temperature.



Also mixtures of indrganic salts are available whose melting point



is below the lowest temperature in the range over which the storage'



medium is to be cycled, and is liquid and stable (low degradation rate)



to very high temperatures. One example used in a number of the con­


cepts proposed is the eutectic of sodium and potassium nitrates and



nitrites (0.07 NaNO3, 0.53 KN0 3, 0.40 NaNO 2). This salt has a melting



point of 148'C (2880F) and has been used in industrial processes for



over 20 years as a heat transfer fluid and as a quenching and annealing



bath at temperatures up to 500°C with low degradation rates. It is



offered by different companies by tradenames such as HITEC (duPont) and



PARTHERM 290 (Park Chemical). Other salts are available with lower or



higher melting points and with higher upper temperature limits-and with



lower cost materials. Selection must consider all the requirements.



Less expensive than the oils'and molten salts are various solid



materials. These range from crushed granite or other rock, through



river-bed gravel, sand, pellets of sintered iron oxides such as



taconite pebbles and Feolite, to ceramic spheres or bricks, cast iron



balls and scrap steel. These can be used in stationary-packed beds,


with a heat transfer fluid passing through the bed for direct contact



heat exchange to cbarge and discharge the bed. As the heat transfer



fluid may be present in significant quantities to fill the voids in



the packed beds, such a system concept is called a dual-media storage



system. Ifthe fluid and the solid are compatible at high tempera­


tures, the-lower cost of the solid can reduce the overall cost of 11



storage.



Other'sensible storage media suggested include molten metals ahd'



alloys, such as sodium, NaK (eutectic of sodium and potassium), lead,'



etc. Two of the industrial chemicals with the lowest cost n reason­


ably pure'form are sulfur and sulfuric acid. Both are liquid'in the



temperature range of interest for thermal storage for utility applica­
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tions. Sulfur has been proposed for utility applications and sulfuric



acid for another application.



Another large class of storage media are phase change materials



(PCM). These are materials which melt and freeze at a particular tem­


perature of interest and have a large latent heat of fusion and crystal­


lization. They have the advantage over sensible heat storage ,of a



higher energy density of storage per degree of temperature change over



the ljmited temperature range surrounding the fusion point.



Each of the above forms of storage media has good features and bad



features, advantages and disadvantages. The weighing of these in the



context of concepts is an important part of the preliminary screening.



Containment



For sensible heat storage in solids (eg packed beds of rock) and



heat transfer liquids (eg oils and molten salts) at atmospheric pres­


sure, steel tanks are adequate. Very large storage volumes are



required so multiple tanks in modular sizes can be selected for cost



and convenience. The American Petroleum Institute (API) provides



specifications on a range of modular sizes suitable for estimating in


preliminary conceptual designs. They are cylindrical with a height 

under 15m (50 ft) and diameters from 6mto 90m (20-300 ft). 

For pressure containment above one megapascal (1 MPa or 145 psi)



the wall thickness of steel required in steel tanks increases propor­


tionally with pressure and with diameter, so the thickness becomes



excessive for welding and inspection at very high pressures and vol­


umes. For assurance against reduced life and catastrophic failures,



boilers and pressure vessels must comply with very detailed ASME codes.



Modular sizes, small enough for rail transport which permit factory



assembly, welding, test, and inspection, and with wall thicknesses



under 0.15m(6 inches) are often more cost effective than field assem­


bled larger tanks. Because special steels, often in short supply are



required by the codes, the costs and delivery times for steel pressure



vessels encourage consideration of alternatives.
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Prestressed concrete technology is over thirty-five years old. 

High tensile strength steel cables and "tendons" are incorporated in 

concrete beams and structures for bridges andbuild-ings, and preten--­

sioned to place all parts of the concrete in compression under all 

load conditions. Application of the technology to pressure vessel 

containment for nuclear reactors is roughly ten years old, but has 

undergone rapid development. None have as yet been built for pres­

sures and temperatures that would be typical for thermal energy stor­

age systems (eg 4-6 MPa, 260°C). Prestressed concrete pressure ves­

sels (PCPV) would be almost completely field fabricated. For the



nuclear reactor application ASME code specifications have been formu­


lated, but not for the temperatures and pressures of interest.



A more recent concept is the prestressed cast iron pressure vessel



(PCIV), 'conceived and under development by Siempelkamp Giesserei GmbH



(Federal Republic of Germany). The concept uses factory-cast cast-iron



arcs, six to a full circle, which can be quickly field-assembled into



multiple cylindrical layers using key ways. External cable wrapping



and vertical tendons are used to prestress the cast-iron to assure it



is in compression. To contain boiler-quality feedwater or HTW a thin



alloy steel liner woulld, be welded in-direct contact with the cast iron.



An external thermal insulation is proposed.



While a small PCIV has been built, and conceptual design studies



of the application of PCIV to HTW thermal storage have been done
 


jointly by Professor P.V. Gilli of the University of Graz, Austria,



and Siempelkamp, no full scale models for high pressure and temperature



have been built.



An alternative to pressurized containment above ground is under­


ground containment at depths where the overburden or hydrqstatic presr,



sure is compati;ble with the storage pressures required. Natural cav­


erns, excavated caverns, solution mined caverns in salt domes, and



aquifer storage have been proposed. Natural caverns with a depth,,



volume, and location suited to plant siting would be a rarity. Hard
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rock that is stable and competent and at suitable depths can be found



in many parts of the United States.



To contain HTW in a hard rock cavern, without loss or contamina­


tion, requires a thin liner and means to transfer the pressure stresses



from the HTW to the rock without danger of rupturing the liner. One



means proposed is a poured layer of high temperature, high strength



concrete between the liner and the rock. This permits heat conduction



into the rock, with a significant steady state temperature gradient



extending for many cavern diameters. For large caverns the annual



fractional heat loss is low. An alternative to concrete stress trans­


fer is the use of a free standing liner surrounded by compressed air



that is in equilibrium with the HTW pressure. This permits insulation



external to the liner that can reduce heat losses, and limit the tem­


perature rise in the rock by continued cooling of the compressed air.



Salt domes and salt beds can be solution mined to form cavities at



a lower cost per unit volume than hard rock excavation. However,



suitable formations are very limited geographically, and no means of



installing a liner to contain high quality water has been suggested.



Storage of hot brine or hot oils in direct contact with'the salt may



require no liner but associated problems may be difficult to solve.



Confined aquifers, water laden porous layers contained above and



below by impermeable layers, are common in sedimentary geographic



areas which encompass much of the United States. Hot water can be



injected and recovered, but of groundwater quality, not of boiler feed­


water quality, so aboveground heat exchangers would be required. It is



not currently known how high a temperature of injected water can be



used without solution, precipitation, and other changes in the



minerals of the aquifer over a reasonable life.



Conversion



The major conversion of interest is from expanding steam to elec­


tric energy. In some cases there are several intermediate conversions



between the stored energy and the conversion to electric energy, eg,
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conversion from water to steam in evaporators or heat exchangers from



a heat transfer fluid to boiling water.



The two major variants -on the conversion of steam to electric


energy are the 6se of an oversized version of the turbine generator



which has been designed for base load plus peaking load flow rates,



and the use of a separate peaking turbine for the increased capacity-,



leaving the main turbine essentially unchanged in size. In the latter



case, the peaking turbine is designed for inlet steam at the tempera­


ture and pressure at which it can be derived from storage.



In the former case, steam derived from storage can only be inserted



between turbine casings, ie between the high pressure (HP) turbine and


the intermediate pressure (IP)turbine or between,the IP and low pres­


sure (LP) turbines. Since the process of storage degrades the quality



of the steam available, the point of injection is at a lower pressure



level than the source thermal energy.



With the oversized main turbine, another option is to pass a larger



steam flow through the IP and LP turbines than normal by reducing the


multiple steam extractions used to heat the condensate from the low



temperature at the condenser output to the desired boiler inlet temper­

ature. Manipulation of the water flow through the feedwater heaters


(FWH) is known as feedwater storage. To charge storage, a greater



steam extraction than normal is used to heat either additional HTW or


another'heat transfer fluid, which transfers the energy to storage.



More steam extraction reduces the power output of the turbine. For


peak output, steam extraction is reduced, increased power is derived


from the greater steam flow, and needed additional energy for feedwater



heating is discharged from storage, Combinations of deriving steam


from storage and manipul-ating the FWH steam extraction are sometimes



used in concepts.



The conversion of the stored thermal, energy in pressurized HTW to



steam may be done in several ways which are illustrated here because



references to the terminology will occur repeatedly. In utility and
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industrial parlance, a pressure vessel containing HTW for steam gener­

ation is called a steam accumulator or just "accumulator."



VARIABLE PRESSURE ACCUMULATOR. The variable pressure mode of


operation is shown in Figure 2-3. When fully charged, almost all the



volume is filled with saturated HTW, with a small "cushion" of satu­

rated'steam (at the same temperature and pressure) above it., In this


mode steam is drawn from the top; as the pressure in the steam cushion


decreases, some of the water in the vessel will flash to steam. 
 All


evaporation or steam generation is internal to the vessel. As flash­

ing to steam is continued the water will decrease in temperature, the


saturation pressure will decrease and the water level will move down­

ward by the amount of water converted to steam. If the useful range


of temperature and pressure is limited, only a small fraction (15-25


percent) of the HTW volume may be flashed to steam. The remaining



volume of water acts as a reservoir inwhich to store the thermal


energy to produce steam. To recharge the accumulator, steam is


injected. While, in discharging, flashing to steam occurs throughout


the water volume and provides good mixing, during charging the water



must be mixed with the steam to assure that the entire tank becomes



heated and colder denser strata do not remain at the bottom and reduce



the energy storage capacity.



EXPANSION ACCUMULATOR. This mode of operation is shown in Figure


2-4. When fully charged, the accumulator is almost full of HTW with a



small steam cushion, as in the variable pressure mode. As hot water is


drawn from the bottom during discharge, enough of the contained HTW


flashes to steam to fill the tank volume. As indicated in the figure,


this flashing reduces the pressure and temperature of the saturated



water and. steam slightly, but not nearly as sharply as in Figure 2-3.


All of the water can be removed with a reduction in pressure of only


about 30 percent. Alternatively, if it is thermodynamically valuable


to keep the pressure and temperature uniform during discharge, a small


amount of saturated steam from the source may be injected at the top



as water is removed from the bottom.
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The HTW removed must be flashed to steam in evaporators external



to the expansion accumulator, as shown in Figure 2-4. The water is



throttled to a pressure P1 lower than the storage pressure, and the



resulting steam and water are separated in a drum. The steam is dis­


patched to a turbine. The water may be throttled to a still lower



pressure P2 for generation of more steam at this pressure. This can



be dispatched to a separate inlet on the same turbine or a separate



peaking turbine. Additional stages of flash evaporators may be used



similarly.



During discharge the water drained from the last flash evaporator



must be collected and stored. Its volume will be more than half of



the initial volume of HTW but it is at a low pressure and temperature



so this "cold storage" is not costly. The variable pressure accumu­


lator also required cold storage, but of a much smaller volume corre­


sponding to just the volume of water flashed to steam.



To recharge the expansion accumulator requires simultaneous injec­


tion of hot water and saturated steam, until the whole volume except
 


for the small steam cushion is refilled with saturated water at the



desired pressure and temperature.



DISPLACEMENT ACCUMULATOR. In a third mode of use an accumulator



is always completely filled with water. When fully charged with



thermal energy, it is filled with HTW at the desired temperature; when



fully discharged, the water contained is all cold. As shown in Figure



2-5, hot water is injected at the top during charge and removed from



the top during discharge. Cold water leaves and enters at the bottom.



Since hot water is less dense than cold, it will float at the top. A



fairly sharp temperature gradient called the thermocline separates the



hot and cold water. It remains stable and sharp ifmixing currents are



avoided, and is ultimately limited by the thermal conductivity of water.



During discharge, one or more flash evaporators are used to gener­


ate steam for the peaking turbine(s). The drain from the evaporators



and the condensate from the turbines is returned to the vessel as cold



water, so the large cold-storage described for the expansion mode is
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not required. However, since hot water and cold water differ in den­


sity a small supplementary storage is needed for the net change in



volume.



During charge, steam is mixed with cold water taken from the bottom



of the tank to raise the water to the desired temperature. Cold water



equivalent in mass to the steam is returned to the boiler inlet feed­


water to generate more steam.



HEAT EXCHANGERS. When the storage medium is not HTW, the stored



thermal energy must be transferred to water before conversion to steam



can take place. This requires a heat exchanger. While direct contact



heat exchangers are possible, in which the storage medium or input



heat transfer fluid is in direct physical contact with the output heat



transfer fluid, eg HTW, the water quality requirements for boiler and



turbine operation make physical separation of the two fluids necessary.



An example of the heat exchanger complement required when an atmospheric



pressure sensible heat storage system is used is shown in Figure 2-6.
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Steam from the heat source chosen can go through three specialized



heat exchangers in cascade. The entering steam may be superheated,



ie at a temperature considerably higher than the saturation tempera­


ture for its pressure. The first heat exchanger or desuperheater



removes the superheat producing saturated steam. The condenser then



removes the latent heat of vaporization at constant temperature. The



condensate water at saturation temperature may be subcooled in a third



heat exchanger (HX) to further increase the thermal energy stored, and



to match the temperature at which the output water is to be reintro­


duced into the source cycle.



In general tube-in-shell heat exchangers are used, in which one



fluid is contained inside a bank of parallel closely spaced tubes, and



the other~fluid is exterior to the tubes but inside a containing shell.



The heat transfer fluid to storage may be more likely to "foul" the



heat exchange surface, ie produce deposited l'ayers which impede heat



transfer, than is the steam or HTW. The inner surface of the tubes is



easier to clean than the outer surface, by means of access through the
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tube headers. This disposes designers toward using the interior of



the tube for the storage heat transfer fluid. On the other hand,



containing the high pressure steam and HTW in the shell requires a



much thicker shell.



The different design problems for each temperature range makes it



convenient to have the three heat exchangers ohysically separate.



While the desuperheater can be designed as a s-hell-and-tube HX, a



simpler, less expensive alternative is to spray just enough water into



the superheated steam to remove the superheat. 
 This is called an
 

attemperator, and is shown in Figure 2-6.



On discharge of the storage,,water (condensate) from the peaking



turbine is heated successively in a preheater (to raise it to satura­


tion temperature), in a boiler (to add latent heat at constant temper­


ature to convert it to steam), and a superheater (to increase the



steam temperature above saturation to the extent made possible by the



maximum temperature available in storage).



The storage unit shown comprises multiple packed rock beds with



hot oil as part of a dual-media system and as the heat transfer fluid.



The storage tanks operate in the displacement mode with a thermocline



separating hot and cold oil/rock, as described for HTW accumulators.
 


OTHER ANCILLARY EQUIPMENT. The need for pipes, pumps, valves,



control systems, safety systems, and other ancillary equipment should



not be forgotten nor treated lightly in considering concepts. These



contribute a substantial but not major part of the capital costs, and



for pumps particularly a required diversion of useful power output.
 


For the preliminary screening of Task I, these are considered as



lumped into the installed costs of the major components described.



PROPONENTS AND CONCEPTS



The literature collected represents the state-of-the-art, both in



experimental data and in concept formulation. Many of the references



contained useful data on the many elements in the taxonomy described,
 


but did not describe a concept of a thermal energy storage system
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(TESS) directly applicable to the objectives of this study: near-term



utility applications for conventional coal and nuclear plants. Such



references were considered source material.



However, a large number of references proposed and described ther­


mal energy storage systems or major components thereof that could be



considered relevant to the study. Either they were originated with
 


this specific application in mind, or it was clear that some important



and perhaps novel features of their proposed concepts should be consid­


ered in the preliminary screening process in order to explore a wide



range of approaches.



These proposers or proponents of concepts were identified and



their concept was defined in outline form as it might be applicable to



this study. In Table 2-1, a list of proponents, the institution(s)



and one or more individuals directly associated with the project or



reference describing the concept, is given. It is not implied that



said institutions or individuals are advocates or originators of the



concepts, but only that they were named in the source material used.



The proponents listed on Table 2-1 are classed principally accord­


ing to the storage medium used; HTW, other sensible heat materials,



and phase-change materials. Within each class, some institutions and



individuals are grouped as joint authors or as describing closely



related concepts.



The numbers assigned to proponents refer to Volume 2, Appendix C,



in which the outline concept definitions formulated are given. In



some cases two or more concept variants will be found for the same
 


proponents in that appendix.



CONTACTS



In the course of collecting, digesting, and using the references



in defining the set of concepts, performing the preliminary screening,



and the subsequent evaluation and concept selection, telephone and/or
 


correspondence contacts were made with almost all of the institutions



or individuals listed above. The cooperation received from proponents
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Table 2-1. Proponents of concepts.



HTW Concepts



1. 	 Graz University (Austria) 
 
Waagner Biro (Austria) 
 
Siempelkamp GmbH (FRG) 
 
Deutsche Babcock (FRG) 
 

2. 	 R&D Associates 
 

3. 	 Ontario Hydro 
 
Atomenergi (Sweden) 
 

4. 	 University of Houston 
 
Subsurface, Inc. 
 

5. 	 General Electric-TEMPO 
 

Other Sensible Heat Concepts



21. 	 EXXON Corp. 
 

22. 	 McDonnell Douglas 
 
Rocketdyne 
 

23. 	 Martin Marietta 
 

24. 	 Honeywell, Inc. 
 

25. 	 Bechtel Corp. 
 

26. 	 General Atomic 
 
ORNL 
 

27. 	 General Electric-Space Div. 
 

28. 	 University of Minnesota 
 

30. 	 Jet Propulsion Laboratory 
 

31. 	 Energy Conversion Engrg. 
 

32. 	 Boeing Company 
 
33 	 University of Houston 
 

Subsurface, Inc. 
 

Phase-Change Materials Concepts



41. 	 Xerox Corp. 
 

42. 	 Naval Research Laboratory 
 

43. 	 Comstock & Westcott, Inc. 
 

44. 	 Inst. of Gas Technology 
 

45. Clemson University 
 

46 Honeywell, inc 
 

47. 	 Boeing Company 
 

48. 	 Grumman Corp. 
 
49. 	 General Electric-CR&D 
 

50. 	 Rocket Research Corp 
 

51. 	 Swiss Federal Inst. for 
 
Reactor Research
 


Paul V. Gilli 
 
Georg Beckmann


F.Schilling, L Gulicher


E.Bitterlich



J. Dooley, S. Ridgway 
 

A.G. Barnstaple, 0.J. Kirby 
 
Peter Margen 
 

R.E. 	 Collins 
 
K.E. 	 Davis



C.F. 	 Meyer 
 

R.P. 	Cahn, E.W. Nicholson 
 

G Coleman 
 
J. Friefeld



F.Blake 
 

J.C. Powell, R.T. LeFrois 
 

William Stevens 
 

R.N. 	 Quade, D. Vrable 
 
E. Fox, M. Silverman


E. Mehalick 
 

M Riaz, P. Blackshear 
 

R.N. Turner 
 

Allen Selz 
 

J. Gintz 
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was excellent, and the authors of this report wish to express their



gratitude and thanks. Questions were answered, additional reference



material supplied, and referrals made to experts in the subsystems and



materials areas.



Many additional sources were consulted including authors of the



references considered as sources rather than proponents. Inmost



cases information was freely supplied. Where additional or special
 


information or effort was required that was not part of a current or



recent funded project, some respondents were compensated by small sub­


contracts or consulting agreements. These included William Stevens of



Bechtel National Corp., J. O'Hara of R.M. Parsons Inc., Professor



Paul V. Gilli of Graz, Austria, and Professor G.J. Janz of the



Rensselaer Polytechnic Institute Molten Salts Data Center.
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SECTION 3



PRELIMINARY SCREENING



PURPOSE



The purpose of this preliminary screening isto compare the concepts



defined and described, and to delete, combine, and integrate them into a



set of twelve or less for more detailed study. Comparing and selection



requires criteria to be defined and structured as to relative importance.



CRITERIA FOR SELECTION


A number of criteria were used. At this stage of screening, their



use was largely qualitative, and their comparative use was largely based



on the statements and data inthe proponents' reference documents. The



criteria were formulated as a check list for this screening, to be used


more quantitatively in the second stage of screening, to concepts for



analysis inTask II.



The major categories of criteria are that concepts should:


" Be Compatible with Near-Term Application



* Be Economically Viable inthe Mid-Term



* Meet Utility Operational Requirements


" Be Environmentally Sound



" Have Conservation Potential



" Be Broadly Applicable



* Have Potential for Future Growth/Improvement



• Be Diverse inType



Each of these will be described briefly with an indication of the


major subcriteria therein. As listed above they are roughly inthe



order of importance for preliminary screening.
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Compatible with Near Term Application



The phrase near-term has been considered to mean thepresent to



1985 in policy and planning documents. The result of thisx-study might



be an empty-set if significant commercial utilization were required to



be in place by 1985, since the time required from initial order or



electric utility decision to buy is over ten years fornuclear plants,



several years less for large fossil fuel plants, and a large part of



the seven years remaining until 1985 even for small, coal-fired, envi­


ronmentally acceptable plants. The most feasible interpretation of



this requirement is that the concept must be able to be demonstrated



and operated before 1985 to the extent that in and after 1985 a utility



can decide with confidence to order a plant incorporating thermal



energy storage systems for load leveling.



The primary deterrent for near-term application is technical risk:



the level of uncertainty in the technologies involved, and in the com­


mitments of effort needed to resolve the uncertainties. "Confidence to



order" will require resolution of problems in all the other named cri­


teria, but the primary emphasis in this criterion is on the time scale



of technologies to achieve the desired performance.



For judging the current status of concepts, a scale from best to



worst would include:



* Complete system has been demonstrated at plant or pilot-scale



" All subsystems have been so demonstrated



" All technologieg required are mature in other applications



* All technologies are known and no major problems foreseen


" Problem areas are'known but likely solutions have been proposed



" Serious ,problems recognized, solutions are speculative.



Quantitative measures of the above, not readily available for this



level of screenihg, include:


" R.D&D time required



" R.D&D 6osts required



" Probability of development success



" Plant Construction Time after demonstration,
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Economically Viable in the Mid-Term



Economic viability in the mid-term, 1985-2000, implies first the 

resolution of the technical problems and successful demonstration, then 

that fixed charges and variable costs attributable to the plant modifi=-­

cations required by a concept lead to an annual cost per kilowatt of ­

incremental capacity that is less than or comparable to the alternative 

ways of achieving such incremental capacity and load leveling.' That 

is, it must compete with the other thermal energy storage concepts con­

sidered in this project, as well as with other forms of storage and 

peaking capacity. 

The last two, nonthermal storage and peaking capacity are not to be



considered in Task I but must be ultimately addressed in recommenda­


tions concerning development of concepts in Task IV. Task I must con­


sider the comparative economics of the concepts defined herein.



It is clear that there are costs primarily determined by the maxi­


mum increase in power desired, and costs which are determined by the



amount of energy to be stored, which is related to the cycle and pat­


tern of delivery of the increased power.



Capital costs of changes in the turbine generator, feedwater heat­


ing system, cooling and waste heat disposal, additional equipment for



mass and heat transport and transfer are included in the first category,



power related costs. Capital costs of the storage medium and of its



containment are the principal part of the second category, energy



related costs.



The power related costs depend very much on the details of the



thermodynamic cycle chosen to implement a concept, including the state
 


properties of the source of heat delivered to storage, and the state



properties of heat delivered to the Rankine cycle steam turbogenerator



system. They are roughly independent of the storage medium and con­


tainment except as these constrain the input and output state condi­


tions and require more complex conversion equipment such as heat



exchangers and evaporators.
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The energy related costs for different storage media and different



forms of containment can separately be listed in a rough order of



increasing cost, but unfortunately the lowest cost storage media­


require the highest cost forms of containment. Table 3-1 is an



approximation of relative costs, with media shown in the first column



in order of increasing cost and containment means shown in the second



column in order of decreasing costs.



Table 3-1. Approximate relative cost relationships.



Storage Media Containment



Water High Pressure Vessels



* Welded Steel 

R Prestressed Concrete


S u A* Prestressed Cast Iron


SSulfuric Acid c


* Lined Underground Caverns 

Sulfur 
Oils eHydrocarbon
Unlined Salt Dome Cavities 

(eg, Caloria HT43) * Aquifers V) 
V­

0 Salts i


(eg, HITEC) Ambient Pressure



Steel * Stainless Steel~s



Other Metals e Carbon Steel



Silicone Oils



The approximate nature of this ranking must be emphasized. The bar



in each column indicates the division between high pressure and ambient



pressure. Water at high temperatures requires high pressure contain­


ment for storage. The containment forms above the bar - the most



expensive - are required for this medium. Below the bar theretwill be



a considerable pfice range for each of the media depending on:the units



of measurement and on the special requirements put on them.



The units which measure a storage medium's effectiveness vary from



the cost per kilogram, the units in which it would usually be purchased,
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3
 stored over a fixed small temperature
to cost per 11, cost per k 

range, cost per k over the working temperature range in a particular 

concept, and cost per kJ over the maximum possible working range of the 

medium. Beyond this, materials such as salts or eutectics of salts 

would differ widely according to the salts contained and to the purity 

required. There can be an order of magni-tude difference between the



cost of the technical grade and CP grade. Cnsiderations of corrosion,



stability, need for more expensive containment material, and environ­

mental hazards may outweigh any advantage from using the cheaper grade. 

Economic viability is also affected by the turnaround efficlency, 

defined as the ratio of the electricity actually proddced from the



energy delivered from storage to the electricity that could have been



produced from the energy that was diverted to storage. The effect of



low turnaround efficiency is to increase the fuel required per kilo­


watt hour to generate the electricity delivered during peak hours.



Other variable costs such as operating and maintenance costs may



be critical to economic viability, for example if fouling or corrosion



requires frequent attention in heat exchangers. If a storage medium



used at high temperatures degradesso that continual makeup or peri­


odic replacement is needed, this adds an annual cost to be considered



in levelized annual costs over the life cycle of the plant.
 


Utility Operational Requirements



Electric utilities have conventional methods of assuring the



delivery of electricity reliably, to all customers, when needed, over



their entfre service area. To be considered, a new system must meet



their needs in the various categories outlined briefly below.



o Site Flexibility 

To serve customers effectively there is need for plants
 


distributed over their service area. The geologic needs of a



concept, such as competent hard rock, salt domes, or aquifers



may not be met in the desired load area. Water needs, land



requirements, aesthetic acceptability of a conceptual design,



or catastrophic risks to the community beyond the plant area



may limit siting flexibility.
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o Operating Flexibility 

Principles of di-spatchtng pTants to meet current and 

expected load fluctuations include lowest incremental cost,



and ability to maintain high reliability. Some aspects of



the thermal energy storage systems and the associated conver­


sion equipment that will be of interest include the following: 
- Startup time of a cold plant or peaking turbine, the time 

for conversion from storage charging to discharging and 

vice versa, and the shutdown time 
- Capability for rapid load following over a range of denands 

- Part load efficiency as well as full load efficiency 

- Minimum load that can be safely met 

-Ability to maintain the boiler island (nuclear or fossil) 

at constant output, free from transient demands



- Flexibility to provide load leveling according to the dif­


ferent daily and weekly load patterns of different seasons


- Ease of control and transient stability.



" Reliability



Reliability of a particular plant is measured in terms of



its availability, ie the fraction of the year that it is avail­


able to produce its rated output. It may produce less than



rated output for some hours of the year if the demand or the



utility dispatch procedures warrant. Both scheduled or



planned outages and forced outages reduce the availability.



Planned outages for maintenance and minor repair can generally
 


be scheduled to seasons when demand is low. Forced outage



probability, found by experience, largely determines the



amount of reserve capacity the utility must own or have on



call to meet its overall standard of reliability, eg insuffi­


cient available capacity to meet peak demands should not



exceed a probability of one day per ten years.
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For the thermal energy storage load leveling systems, the



technologies employed should be tested adequately to insure



low forced outage rates. In selecting concepts, those which



permit continual operation of the main turbine generator



despite a forced outage of the peaking turbine or parts of



the storage system have added value. Ability of the.peaking



turbine to operate when the main turbine is on forced outage



has value. Ability of either or both turbines to meet some



level of load from thermal storage when the boiler island



output is reduced to zero also has value.



One of the significant although unquantified benefits



expected from thermal energy storage load leveling systems is



improved reliability and lifetime of the boiler island if its
 


required output does not fluctuate. Currently 50 percent of



forced outages of fossil plants larger than 600 MW are caused



by problems in the boiler island (Reference 231).



Operating Hazards



The addition of a thermal energy storage load leveling



system adds operational flexibility, but may, if improperly



designed, jeopardize the conventional system with which it



operates. The reliability and life of the turbine generator



system are critically dependent on a very carefully controlled



quality of boiler feedwater. Unwanted solids, liquids, or



gases in the feedwater can impair boiler heat exchange by



scaling, can cause corrosion in the boiler or turbine, can



cause erosion or even blade breakage if sizable pieces of



scale enter the turbine. The steel used in the turbine, in



heat exchanger tubes, and in pipes must have special proper­


ties. The liners used for HTW storage and the heat exchangers



for other storage media must have these same properties.



When the sensible-heat storage or heat transfer fluids



have properties which would cause major system damage if they



3-7 



leaked into the feedwater loop, due precautions must be taken



that leakage is avoided, or is in the opposite direction and



is quickly detected.



Some of the concepts of turbine operation require off­


design-point operation of the turbine. Thermal stresses,



transient stresses, different vibration modes and all other



possible consequences of the deviations from conventional



practice must be considered.



Environmentally Sound



In part the environmental constraints are subsumed in Lhe above



criteria in that siting flexibility, economic viability, and opera­


tional flexibility all are affected by the national and local environ­


mental standards and requirements. As a summary in its own right,



environmental effects to be evaluated in comparing thermal energy



storage load leveling systems include:
 


" 	 Normal operation must not be accompanied by unacceptable



air or water emissions such as: conventional pollutants,
 


NOx , CO, particulates, hydrocarbons, radioactive material
 


" 	 Aesthetics, water use, and land use must be locally



acceptable



c 	 Special emissions/waste disposal problems must be acceptable 

- Leakage of storage oils or salts 

- Fumes from degradation of materials 

- "Blowdown" products of periodic makeup or replacement 

" 	 Catastrophic risks must be demonstrably minimal or tolerable



- Seismic damage 

- Storm or flood damage 

- Pressure vessel failure 

- Toxic material leakage into air, or surface or ground water 

- Fire or explosion danger from flammable materials. 
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Conservation Potential



As all thermal energy storage systems will suffer some losses and



degradation of the energy through charging and discharging storage,



more energy may be required than from operating a base load plant in



a load following mode. However certain comparisons will show energy



conservation, in the sense of conserving the scarcer and more criti­


cal resources, eg oil and gas.
 


To the extent that the concepts here considered replace the use 

of oil in gas turbine peaking capacity, they represent conservation 

of oil and progress toward reduction of imported oil. If the heat 

rate of the low-capital cost gas turbines is higher than the incre­

mental heat rate of a thermal energy storage system, including its 

turnaround efficiency, there is a saving of net energy. If the thermal 
energy storage system replaces old, low-efficiency fossil plants that



have been used for intermediate range duty, there may be a net savings



in energy.



Finally, if the turnaround effiency is higher than that of an



alternative storage system, such as pumped hydro storage, conservation



of energy may be achieved.



Broadly Applicable



The commercialization of a system is easier if its range of appli­


cability is large, both geographically and in size and type of heat



source. All else being equal, a system that can be applied to nuclear



plants and to small and large fossil plants has more market potential
 


and is preferred to specialized types.



Potential for Future Growth/Improvement



Some systems can be synthesized from components that are consid­


ered near-term but could be improved in performance or cost if tech­


nologies not yet demonstrated can be developed. (For example: molten



salt alone is near-term, molten salt and compatible packed bed may not



be near-term.)



3-9 



-

Some storage materials may have a high current price because of low



demand. The effects of large continued demand should be considered.



Some systems may be more sensitive than others to net escalation of



the fuel used by the load leveling plant (coal or nuclear), or by the
 


competing peaking options (oil or gas). Long-range as well as near­


term economic relations should be considered.



Diversity



Another criterion that must be seriously considered is diversity



of concepts. Even if it should appear that a dozen variants of one



particular concept were superior on all criteria to all the other con­


cepts, it would be unwise to so narrow the set to be considered in



more detail in the second half of Task I. The preliminary nature of



this first screening relies in part on proponents' data and analysis,



and each analysis cannot be relied upon to be comparable in assump­


tions to that of other proponents and concepts.



To the extent possible within the limits of twelve or less surviv­


ing concepts, major components and concepts not clearly rejected by



failure to meet important criteria should be retained. Closely



related concepts and variants may be combined into a single concept



to accomplish this objective.



THE SCREENING PROCESS



The screening of the many defined concepts (numbered as in Table



2-1) and their variants down to a maximum of twelve, without detailed



analysis, required primary emphasis on just a few criteria:
 


" Suitability for the utility application as defined



" Near-term availability



" Higher economic ranking than similar concepts



" Retention of diversity.



At this stage other criteria, such as siting limitations, were



considered but not used to reject a concept unless clearly overriding



disadvantages were recognized. Considerable judgment was required,
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considering that the descriptions by proponents were often not of



complete systems, or were described for another application such as



solar-thermal storage.
 


On the other hand, the concepts and variants defined often have



much in common, either in components or in system configuration, and



do not require separate analysis. It was clear that a containment



concept proposed to operate with one system configuration of conver­


sion to steam andto electricity can work perhaps equally well with



alternative conversion concepts, and similarly that each conversion



concept can work with several alternative containment concepts. With



sensible heat storage, the various alternatives of oils, salts, metal,



rock, sulfur, etc, are virtually interchangeable within a configura­


tion, with cost of storage medium, compatibility with other materials,
 


stability at high temperatures, and characteristics that determine
 


heat exchanger costs as the principal parameters to determine a



relative ranking.



Each concept defined CAppendix C) contained a feature or features



that are different, To meet the diversity criterion and reduce the set



to twelve candidate concepts for further study, combinations of con­


cepts that incorporate one or more of the unique features appeared to



be necessary. Thus, the candidate concepts chosen are often an inte­


gration of the condepts of several proponents, and will be called



Selections, or selected concepts.



The selected concepts are introduced by summary figures, with a



brief textual amplification of the considerations involved in proposing



each. The selected concepts have been grouped. The first seven selec­


tions emphasize different forms of HTW pressure containment. The



remaining five emphasize low vapor pressure (LVP) storage media.



These twelve were presented to the NASA program manager and his



review board for approval, in accordance with the subtask structure in



Figure 1-2, and with the consent of DOE/NASA/EPRI were approved for



further study in the second half of Task I.
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SELECTED CONCEPTS



#1 - Prestressed Cast Iron Vessels (PCIV) 

This selection features the prestressed cast iron vessel (PC;V) as



-the containment for high temperature water (HTW) under pressure. This



is the first of seven selections using HTW as the storage medium and



differing in the form of containment and the conversion to electricity.



Reference 45, and Concept Definition #1 (CD-I) in Appendix C, describes



different modes of use of the PCIV, that are almost equally applicable



to the other forms of HTW pressure containment.



Professor Paul V. Gilli, now with the Graz University of Technology,



Austria, has been prolific in descriptions of concepts for thermal
 


energy storage systems for utility applications; with various coauthors,
 


including G. Beckmann, K. Fritz, and F. Schilling, he has published



over 15 papers in the field. Initial papers in the early 1970's used



steel pressure vessels, as were used in the Berlin-Charlottenburg



steam plant which has operated with storage since 1929. The PCIV, pro­


posed by Siempelkamp Giesserei KG of Krefeld, FRG in the late 1960's,



was adopted as a more satisfactory containment in recent papers. Both



Gilli and Siempelkamp are listed as proponents in Figure 3-1 and in



Table 2-1.



In a study of Thermal Energy Storage Using PrestressedCast Iron 

Vessels (PCI-!) for ERDA CReference 45) Gilli and Schilling detail their 

ideas. For Selection #1 the variant described as CD-I.3 is selected as



seemingly favored by Gilli for its high turnaround efficiency, high



energy storage density, and ability to put out more power than a purely



feedwater storage system. The source is both live steam and feedwater



to fill an expansion mode accumulator. One stage of evaporator steam



generation is used with the steam going to a peaking turbine and the



water discharge of the-evaporator being delivered to the boiler inlet



as feedwater. The same configuration could be equally well used with



prestressed concrete pressure vessels CPCPV) or steel vessels.



ADVANTAGES. The PClV direct costs per m3 of capacity as optimized



by Gilli are lower than estimates by others on PCPV and steel vessels
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SOURCE CONTAINMENT GENERATION 

LFIVESTEAM PCIV A PEAKING TURB.., 
EEDTER 6 -8 MPA.,, FEEDWATER 

ROPET() MEDIU
P.V. GILLI		 A. EVAPORATOR


B. EXPANSION ACCUMULATORP-7HTWrSIEMPELICAMP 

CD #s 1, 1, 1, 1, 2, 1, 3 

* CHARGE: STEAM FROM BOILER PLUS FEEDWATER FILLS ACCUMULATOR


* 	 DISCHARGE: HTW FROM STORAGE THROUGH EVAPORATOR (STEAM AND WATER)



STEAM TO COLD REHEAT POINT (CRH)


PEAKING TURBINE FROM CRH AND CROSSOVER (CO) STEAM


WATER TO BOILER INLET EFF. = 0.80-0,85



* PCIV


PRESTRESSED 	 CAST IRON VESSEL



COST OF CONTAINMENT $1248/m3



SAFETY



EASE OF ASSEMBLY


rtI 

,J. lower flat plate.I 

(Reference 45)



Figure 3-1. Selection #.
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(respectively 1248, 1600, 4000 $/m3). The cycle combines the merits



of a feedwater storage system and a flash evaporator system. A turn­


around efficiency of 0.80 to 0.85 is estimated. PCIV shares with PCPV 
a safety advantage over steel pressure vessels. PCIV can be easily 

site assembled from factory made castings. 

DISADVANTAGES. Cost of containment is higher than underground con­

tainment concepts. While small sizes of PCIV at moderate pressures



have been built and tested, nothing has yet been demonstrated at the



size, temperature, and pressure levels required for this application



(eg 6 MPa, 250°C), Current concept requires external thermal insula­

tion, part of which, under the prestressed cable shoes, must be pres­


sure resistant. The cast iron operates hot. Effects of thermal and


pressure cycling on the prestressing system have not been tested. This



is the reason Gilli chooses the expansion accumulator mode, as most



constant in P and T. (Note: Siempelkamp indicates they are developing



an insulation internal to the liner which would be compatible with


boiler quality feedwater. No details available.) The technology



resides in Siempelkamp; transportation costs to the U.S. would be


large; alternatively, developing a comparable technology in the U.S.



by license or independent development may not be "near-term available."



#2- Prestressed Concrete Pressure Vessels (PCPV)



Prestressed concrete has been used in many applications, and as


pressure vessels (PCPV) for nuclear reactor secondary containment for



over 10 years. Bechtel Power Corp. lists 59 PCPV's they have engi­


neered or constructed, There has been no specific proponent for a TES



system using PCPV for thermal storage, but they can be considered for


any HTW storage concept requiring pressure containment. None have



been built or tested for the pressure and temperature range of inter­


est (the reactor containment vessels were rated under 0.5 MPa (60 psi)).



The candidate concept selected is shown in Figure 3-2. The vari­


able pressure accumulator mode is named, for diversity, although as



indicated it can be considered with the steam cycle configurations of
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SCOOLING SYSTEM 	 TURBINE



PROPONENTS 	 I 
CEGE


ORNLW 	 TO 360 

T.Y. LIN INT.


R.M. PARSONS/


J.O'HARA



CD #6



* CHARGE: 	 LIVE STEAM THROTTLED TO REFILL VARIABLE PRESSURE



ACCUMULATOR (OR USE EXPANSION MODE ACCUMULATOR WITH



LIVE STEAM PLUS FEEDWATER).



* DISCHARGE: SAME AS #1PCIV, OR #4UG CAVITY



"	STEEL LINE ISSURROUNDED BY THIN


INSULATING CONCRETE AND COOLING



SYSTEM. REINFORCED PRESTRESSED



CONCRETE SURROUNDS THE LINER AND



SYSTEM, 

COST OF CONTAINMENT, 1600 $/M


Reference 200



(Greenstreet).



Fig. S.I. PCPV versus steel vessel


(particular details for HYGAS gasifier).



Figure 3-2, Selection #2.
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Selections #1 and #4 as well. Listed as proponents are groups inter­


ested in high pressure, high temperature PCPVs, These include Ian



Glendenning of the Central Electricity Generating Board, UK, for ther­


mal storage for compressed air energy storage systems; W.L.kGreenstreet,



et al, at ORNL for coal gasifier containment; and James O'Hara of R.M.



Parsons Inc. and Philip Chow of T.Y, Lin, International who have com­


pleted a Department of Energy study of conceptual designs of PCPV for



four coal gasifier process components.



ADVANTAGES. PCPV is considerably cheaper per m3 contained than



steel vessels for comparable duty, according to reports both by O'Hara



and Glendenning. It can be built on site in large unit sizes. The



redundancy of prestressing cables and tendons reduces the chances of



catastrophic failure by cracking. There is a high level of confidence



in the technology through experience (but not for P and T of inter­


est). ASME Code Section III Div. 2 applies to Concrete Reactor Ves­


sels, and would be a start toward code approvals of a higher pressure



and temperature PCPV,



DISADVANTAGES. Not built and tested for temperatures and pres­


sures of interest. More costly than PCIV (ifthe cost assumptions by



the several estimators are comparable). Must be site assembled, labor



intensive, long construction time. Bulkier than PCIV or steel, exter­


nal size much bigger than internal capacity; possible aesthetic/land­


use objections. PCPVs require cooling to protect the concrete and



reinforcing bars from high temperatures; the cooling systems are



expensive and imply thermal energy losses.



#3 - Steel Vessels
 


The use of thick wall steel tanks as pressure vessels has been



referred to in Selections #1 and #2. They have long been used. Experi­


ence in construction, inspection, test, and use of them is long stand­


ing; they are a mature technology. At high temperatures and pressures



the cost of containment in them is high compared to the estimates made



for PCPV and PCIV. However, steel pressure vessels definitely qualify
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as near-term available; the others may not,'and the cost estimates on



the undeveloped systems may prove to be overl y optimistic.



In a recently completed contract, the Jet ropulsion Laboratory



explored the use of steel as a thermal storage medium and containment



means. A number of concepts were proposed andexplored sequentially.



Initially, emphasis was put on steel as the stor age medium; thick bars



or slabs contained passages for HTW which would heat the steel. Recog­


nizing that steel was far more expensive as a storage medium than water,



the emphasis shifted to the configuration shown in Figure 3-3.



In this configuration, thick slabs of common steel areelectroslag



welded to form a square channel to contain HTW. As shown the steel is



60 percent of the area, 90 percent of the weight, and stores 40 percent



of the thermal energy. Stacking such units ctosswise as shown was



postulated to make a compact, stable storage system.



A distinctive feature proposed in Reference 181 is deriving the HTW



from the steam drum inside the fossil-fired steam supply. Water here



can be at over 375°C (700'F) and at 17 MPa C2500 psia). Interfacing



charging and discharging at this point would require major design



changes in the steam supply, as discussed in Section 4. However, the



containment concept can be applied to many other TESS cycles using HTW



storage.



Later concepts abandoned the large slabs of 61 steel and proposed



many small diameter tubes with a wall thickness designed for the pres­


sure, and with sand packed between tubes as the storage medium.



Estimated TESS costs and containment component costs were not made
 


available for these concepts by JPL.



A well-known constructor of steel pressure vessels, Chicago Bridge



and Irdn, was asked to provide cost estimates as an added check on the



estimates made by non-proponents of steel tanks. The cost estimates
 


were not received during the performance period of this task.
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FEEDWATER 
FROMTEAM DRUM 

SLAB STEEL 
CONTAINMENT-

ELECTROSLAG WELD 

FEED WATER 
TO 

STEAM DRUM 

PROPONENT I 

JPL/ R. TURNER HTW AND STEEL 

* CHARGE: WATER AT SATURATION T


EXTRACTED FROM BOILER/STEAM


DRUM. PUMPED INTO STEEL


PIPE/TANKS MADE OF WELDED 	 ELECTROSLAG/



WELD TYP. SQUARE
STEEL SLABS, 
 
FLOW PATH 3 '
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Figure 3-3. Selection #3.
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ADVANTAGES. Steel pressure vessels are near-term available with



years of design and operating experience at pressures and/or tempera­


tures over those required for thermal storage. Made in modular sizes



they can be factory built, inspected and tested, and transported by



available rail cars. ASME codes spell out in detail the requirements



on materials, methods of construction, inspection, test, and use for



the protection of the user and the public. Steel pressure vessels



will be used for other components of TESS Ceg evaporators, heat



exchangers) and of the utility plant.



DISADVANTAGES. Cost is a major disadvantage. Any emphasis on



steel as storage is probably even more expensive than steel as contain­


ment. The volume to be contained for thermal storage may be in the



hundreds of thousands of cubic meters, a far larger volume than most



pressure vessel applications. Although building and testing to code



should minimize the danger of catastrophic failure, the large number



of modules at risk may prove unacceptable.



#4 - Underground Cavity- Concrete Stress Transfer
 


This is the first of three candidate concepts featuring underground



storage of high temperature water CHTW), Selection #4 as summarized in



Figure 3-4 features an excavated cavity 30 meters or more in diameter,



in competent hard rock, with a steel liner fabricated within the cavity



and high-temperature high-strength concrete poured between liner and



rock for stress transfer. The means of stress transfer distinguishes



this candidate concept from Selections #5 and #6.



The proponents are James Dooley and his colleagues at R&D Associ­


ates, Marina del Rey, CA (Reference 28). In an excellent section on



Cavity Considerations, the procedures and precautions for excavation



of cavities are explained. A shaft is excavated to a depth where the



overburden will sustain the pressure of storage. Upper and lower



horizontal tunnels at this depth provide access to the planned loca­


tions for one or more cavities. A small shaft is drilled between the
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upper and lower tunnel and the rubble or muck from all subsequent



excavations is removed via the lower tunnel and the main shaft.



Spherical cavities from 30-100 m (100-300 ft) in diameter are



described as a baseline concept but it is indicated that shape of cav­


ity may be of secondary importance.
 


In excavating the cavity from the top down, by drilling, blasting,



and removal of muck, additional operations are needed such as rock



bolting to reduce slippage of rock along natural weaknesses; grouting.



and shot-creting to control water flow and reinforce weak areas; and



mounting panels of the steel liner to rock-bolts. After welding and



X-ray inspections, the high strength concrete is injected between



liner and rock.



The use of the lined cavity proposed is as a variable pressure



,accumulator. Live steam charges the water in the cavi'ty to saturation



temperature. For storage discharge the pressure is reduced and a



fraction of the water flashes to steam. This mode requires piping



only steam through the vertical shaft; expansion mode or displacement



mode accumulators would require pumping HTW, to and from the surface



against a head of 300-600m while maintaining saturation pressure in



the HTW in all pipes.



Including both the estimated direct costs for a 60m' (200 ft)



diameter cavity and for the vertical shaftthe estimated cost of stor­


age is about 250 $/m3, considerably less than the aboveground pressure



containment. By restricting the fraction of the water flashed to



steam, hence the change in pressure and temperature of the steam, a



turnaround efficiency of 90-95 percent was estimated by the proponent.



ADVANTAGES. Low cost of storage per unit volume. This permits



reducedidemands on pressure swing for high turnaround efficiency.



Unit size of storage volume can be quite large; multiple storage vol­


umes can share a common shaft for further cost reductions. Low insula­


tion cost, and low "equilibrium" thermal losses. Low visibility of



storage system; low hazards to personnel and public. Excavation tech­


nology is near-term available where precedent exists.
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DISADVANTAGES. Underground cavities in competent rock are limited



in siting. Map estimates in Reference 28 show about 30 percent of the



area of the U.S. as likely sites; these areas probably touch utility



areas serving over half the U.S. population. Excavation technology at


the larger sizes (lOOm diameter) stretches current technology and may



be more costly than estimated. Systems exposing the rock to high tem­


perature and periodic pressure cycling have not been built and



demonstrated.



#5 - UG Cavity-Air Supported



Following a concept described by Peter Margen of Studsvik



Energiteknik AB Sweden (formerly AB Atomenergi Sweden), Ontario Hydro


of Toronto, Canada, proposed and explored an underground cavity for HTW



storage in which the stress in a thin steel liner is minimized by use



of compressed a-jr between liner and rock (Figure 3-5). Stress transfer



is by compressed air at or above the saturation pressure, rather than



by concrete as in Selection #4. An equalizing tank connected



to both HTW and air limits pressure differences to that caused by the


head of water in the tank. Excavation, shaft, and piping costs are to



a first approximation much the same as for Selection #4.



The power conversion concept used in CD #3 and CD #8 is feedwater



storage. To charge storage, extra HTW is generated by excess steam



extraction. To discharge storage, HTW is withdrawn from storage and



delivered to the nuclear steam supply system inlet, and an oversized



main turbine produces more power because of reduced steam extraction.



Ontario Hydro proposes a limited size of tank, of domed cylindrical



shape, but postulates that the excavation can be a gallery 30m wide



and as much as ten times as long, so multiple tanks can be placed



within the gallery.



ADVANTAGES. The same advantages for underground cavities apply as



for the previou, selection.. Compressed air stress transfer permits
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Figure 3-5. Selection #5,
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external thermal insulation on the tanks the compressed air is cooled



so that rock temperatures are near ambient. Feedwater storage gives a



high energy density in kWh/m 3 and a high turnaround efficiency.



DISADVANTAGES. Many of the disadvantages for the previous selec­


tion also apply. Site selection is limited by geology. Leakage of



compressed air out of, or of groundwater into, the cavity may be hard



to control by grounting or shot-creting. Has not been demonstrated.



Use of displacement mode of storage with a thermocline imposes thermal



stresses on the steel tank. HTW must be pumped down and up again



without flashing to steam; extra pumping may be costly. A purely feed­


water storage system can provide only a limited amount of peaking



capacity. Without major changes in the nuclear steam supply, peaking



is limited to about 15 percent of rated reference plant capacity; to



attain even this much requires turbine modifications and redesign that



may not be near-term available for large nuclear plants.



#6 - UG Cavity- Evaporators



This candidate concept uses the underground cavity technology with



compressed air stress transfer as described in Selection #5. The



unique feature is a three-stage steam generator using flash evaporators


at 2.6, 0.9, and 0.2 MPa CFigure 3-6). A larger power swing (ratio of



peaking capacity to rated capacity) is achievable than with pure feed­


water storage. The displacement mode with thermocline is still



utilized in the underground cavity.



ADVANTAGES, The principal advantages of selections #4 and #5 apply.



Use of the three-stage evaporator permits a larger power swing. The



peaking turbines are available technology, using modules, eg 2 two-flow



LP turbines, to stay within the capabilities of available sizes.



DISADVANTAGES. These are as listed for the preceding underground



cavity concepts.
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#7 - Aquifer Storage



Storage of HTW in aquifers, ie porous layers of water-saturated



gravel, sand, or sandstone confined between impermeable layers, as



illustra-ted in Figure 3-7, can have an extremely low energy related



cost. The aquifer is available over a wide range of sedimentary geo­


logic areas without excavation or modification. However, the power
 


related costs are significant for they include the cost of drilling



and casing the wells, the cost of pumps and pumping energy, and the



cost of heat exchangers. The doublet well concept illustrated permits



recycling hot and cold (or warm) water to and from the same aquifer to



minimize resource usage. The temperature range over which aquifer



storage can be effective is unknown, experiments or demonstrations



have not been made except at nearly ambient temperatures.



CD #4 (References 26, 169) proposed to store very high temperatures



at great depths for containment (350'C and 1500 m) so that withdrawn



HTW could be used to generate steam for power production. At these
 


temperatures, using aquifer storage, increased solution of minerals



and/or chemical changes occur so that cycling of the water temperature



could soon cause precipitation and scaling, plugging the aquifer and



the heat exchanger. Dr. Collins from the University of Houston no



longer favors this approach.



A lower temperature range, 100-200°C is believed usable by the pro­


ponents of CD #5 (Reference 125). This range may be usable for feed­


water storage (ifup to 2000C is feasible) or for district heating



to supply space heating,residential hot water, and industrial heat



loads in this temperature range. This use of storage may be an



adjunct to some of the other candidate concepts for storage,in that a



daily cycle of storing thermal energy during off-peak hours, thus



modifying the electric output supply, can be combined with seasonal



withdrawal from aquifer storage for space heating.



ADVANTAGES. Very low cost of storage per kWh (essentially zero:



only losses and maintenance are energy related). Capacity for very



large amounts of energy storage for weekly and seasonal cycles as well



as smaller daily cycles.
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DISADVANTAGES. While aquifers are widely available, their usabil­


ity will be site-specific. Some areas not suitable. There will be



constraints against using or endangering aquifers containing potable



water. Geochemistry effects versus temperature not understood or fully



explored. Not near-term available in that tests or demonstrations of



significant size and useful temperatures have not been made.



#8 - Oil Storage of Feedwater Heat


The next four candidate concepts selected use sensible heat storage
 


in media other than HTW. This selection features the main turbine/



feedwater storage approach. Two proponents are the Bechtel Corp. which



studied the possibility of retrofitting existing plants with thermal



storage for ERDA (W.Stevens, Reference 6); and the EXXON Research and



Engineering Co., which made an in-house study of the application of



their high temperature oils to thermal storage applied to the Pressur­


ized Water Reactor (R.Cahn, References 16,17,66). General Electric's



Large Steam Turbine Division assisted in the latter on Turbine Island



performance and costs. CD #25 and #21, respectively, describe their



proposed configurations.



As shown in Figure 3-8, extraction steam from the various accessi­


ble extraction points is used as a source, with some live steam used to



trim the heat exchange to oil, ie raise the temperature enough so that



on discharge the feedwater produced is at the desired inlet temperature.



For retrofit configurations, unless a derated boiler is available, the



accessible extraction po'nts for steam are more limited; without major



modification of the main turbine, extraction cannot be increased



greatly except at the cross-over (LP turbine inlet), cold reheat, and



main steam points.



As with HTW feedwater storage concepts, to charge the stordge



excess steam extraction is condensed to produce an extra mass flow of



a fluid, HTW or hot oilwhich goes to storage, During storage dis­


charge, the hot fluid transfers its thermal energy to heat condensate water



to boiler inlet temperature; steam extraction for feedwater heat is



reduced so the steam flow can produce more electricity. Heat exchang­
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Figure 3-8. Selection #8. 
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ers are required to separate hot oil and or other sensible heat fluids
 


from boiler quality feedwater. The heat exchanger can transfer heat



from condensing steam to heat the oil directly, or an intermediate heat



exchanger, ie added feedwater heater capacity, can produce HTW which is



used in a heat exchanger to heat the oil. The latter course was used



by both proponents. It provides some added security against oil enter­


ing the feedwater loop but imposes added capital costs,



For the retrofit case, if the plant has a steam supply at full



rated output, a separate peaking turbine can be used for the added



peaking capacity, since main turbine modification for oversizing is



impractical as a retrofit measure.



The two proponents differ slightly in the proposed storage of oil.



Exxon uses separate hot and cold tanks fully sized to each contain the



full quantity of oil. Bechtel proposes more than two tanks, at least



one of which is empty. By switching, when one tank's contents have



been fully transferred to the empty one, it in turn becomes the empty
 


one for a continuance of the transfer.
 


ADVANTAGES. Atmospheric pressure containment is a major advan­


tage: roughly it is 35 $/m3 compared to the range from 250 to 4000



$/m3 for pressure containment. The hazards of catastrophic failure of



the container are less. Pumping pressures and costs are less. Oils



similar to Caloria HT43 are near-term available; they have been used



as heat transfer fluids for many years.



DISADVANTAGES. Oil is more expensive than HTW. It takes about
 


twice as many cubic meters of oil as water to store the same energy



over the same temperature range. Heat exchangers required are added
 


power related costs. Fouling of heat exchangers by degradation prod­


ucts of oil is a potential problem, so that periodic maintenance will



be required. Oil is flammable and degrades slowly at high temperature;



an inert gas cover must be provided for the oil. Leakage of oil can be



a fire hazard and a pollution hazard.
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#9- Oil and Packed Bed/Thermocline



Use of thermal storage for solar thermal applications, to condense


steam from the solar receiver and to reconvert to steam for electricity



generation has been examined by a number of contractors in parallel



procurements. The concept proposed by the McDonnell Douglas/Rocketdyne



team (CD #22; Reference 62), as well as by others, reduces the quan­


tity of oil needed by filling the storage tank with rock and sand



(Figure 3-9). Oil need only fill the voids and be the heat transfer



fluid between heat exchangers and storage tanks. The tank is used in



the displacement mode, ie hot oil floats on top of cold oil; in charg­


ing storage cold oil is withdrawn from the bottom and heated oil is



returned at the top. A fairly sharp horizontal discontinuity, a thermo­


cline, separates the hot oil and rock from the cold oil and rock. As the



tank is charging the thermocline moves down; in discharging it moves up.



The heat exchanger configuration for charging must be designed to



first remove the superheat, then condense the steam, then subcool the



condensate. In discharging again three steps are to preheat the con­


densate, boil it (convert to steam), and then superheat the steam.



Usually for design convenience each of these functions is packaged sepa­


rately. In some configurations some functions are combined or deleted.



ADVANTAGES. The thermocline tank Ccompared to oil alone) saves



tankage. The dual media storage, rock and oil, reduces the storage



cost per kWh stored, as rock ismuch cheaper than oil per unit of



energy stored. Steam generation for use in a peaking turbine avoids the



maximum peaking capacity limitation of feedwater storage. Higher pres­


sure sources (live steam and cold reheat) can be used as sources;



higher pressure steam can be generated for electric production, sub­


ject to the temperature limits on the oil. Pilot size demonstrations



have been made giving some confidence in near-term availability.



DISADVANTAGES. Some previously mentioned still apply. Heat



exchanger fouling is still of concern because of reduced performance and



the increased maintenance required. Flammability of oil requires precau­


tions. Tests and demonstrations have not yet been adequate for assur­
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Figure 3-9. Selection #9,
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ance of long-term (10 to 20 years) degradation rate of the oil



(requiring replacement or refurbishing), compatibility of oil with



rocks of various chemical compositions, sizes, and shapes, and stresses



that may be put on the tankage by the thermal cycling. This is an



effect called ratcheting, hypothesized but not yet experienced, in



whichwhen the tank expands more than the rock, the rock bed will



settle, but not move upwards again when the tank shrinks during the



next half cycle.



#10 - Oil and Salt Storage 

In this concept, illustrated in Figure 3-10 and described in CD #23



and #24 (References 51,61), both hot oil and molten salt are used as



storage media for different temperature ranges. Caloria HT43 is



usable up to 3150C (6000F) which is adequate for the HTW sub­


cooling and preheating, and for the condensing and boiling heat



exchangers. To retain the high quality of the steam expected from the



Solar Thermal receiver, both Martin Marietta and Honeywell chose to



use a molten salt loop for desuperheating and superheating. HITEC (a



Dupont trademark) or PARTHERM 290 (the equivalent trademark of Park



Chemical Co.) is a eutectic of sodium and potassium nitrates and



nitrites with a melting point of 142C (248°F), and which is reason­


ably stable to temperatures over 5000C (9000F).



Figure 3-10 shows the Martin Marietta configuration



for the steam generator. It comprises multiple oil tanks (seven with



one empty to store hot or cold oil and to transfer between tanks dur­


ing charging and discharging by use of the extra tank. The hot oil is



used to preheat the feedwater to the saturation temperature, and then



to convert it to steam by use of a boiler and steam drum. Saturated



steam passes through a superheater to raise its temperature to 422°C



at 3 MPa. A pair of molten salt tanks, one hot and one cold, supply



the thermal energy for superheat. A similar set of heat exchangers is



used for desuperheating, transferring heat to the molten salt, and a



condenser and subcooler, transferring heat to the oil.
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The principal difference in the Honeywell, Inc. donfiguration,



which also uses Caloria HT43 and HITEC loops, is that the oil storage



is a rock packed bed with thermocline as described for Selection



#9,



ADVANTAGES. The distinctive feature, the addition of HITEC stor-­


age for superheating, can potentially improve the turnaround effi­


ciency and improve the performance and cost of the peaking turbine



system. This must be traded off against the added cost of salts, tank­


age, and superheater heat exchanger. Molten salts, particularly HITEC



Cand its other trade names) are definitely near-term available. They



have been used for over 20 years as a quenching bath for heat treating,



and as a heat transfer fluid in many industries. The nitrates passi­


vate carbon steel so corrosion is not a problem below 500'C, and they



can be used up to 600C with special steels. There is little or no



fouling problem below 500'C and the heat transfer coefficient ismuch



higher than that of oil.



DISADVANTAGES. For the oil and oil/rock storage media in this



concept, advantages and disadvantages are as previously described.



The molten salt subsystem has its own disadvantages. While not flam­


mable, molten nitrates are a powerful oxidizer and must not be exposed



to flammable material. There is slow degradation of HITEC above 5000C



that requires the maintenance of makeup, replacement, or other process­


ing. HITEC is considerably more costly per unit of energy stored



than oil (lower specific heat, higher cost per pound). One proposed
 


way to mitigate the cost is to use HITEC and rock in a thermocline



mode, While tried, there is not yet sufficient data on long-term



effects of the molten salt on the rock or of rock on the molten salt



to assure they are compatible. Another disadvantage of molten salts



as a heat transfer fluid is the high melting point. In case of shut­


down, provision must be made to trace all pipes and tanks with steam



pipes or electric heaters to reestablish a flow path. One source,



American Hydrotherm (Reference 1), has licensed a technology to facili­


tate shutdown and startup of a HITEC system by adding water at an
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appropriate rate during the cooling period to assure that the medium



stays liquid. DuPont has technical data sheets on the use of HITEC/



water mixtures to give any desired melting point and a corresponding



upper limit at which the vapor pressure exceeds one bar. It is claimed



that none of these mixtures will corrode carbon steel.



#11 - All Molten Salt



In a variant, CD #23.1 (Reference 61), Martin Marietta Corp., and



its subcontractor The Georgia Institute of Technology, propose that



only one medium be used: molten HITEC. Three storage tanks would be


used instead of four, with the salt temperatures 2380C, 294°C, and



482°C. The configuration of tanks and heat exchangers is shown in



Figure 3-11.



The lower tdmperature tanks are larger and use a small temperature



drop for effective heat exchange between a sensible heat medium and a



condenser or boiler. A fraction of the salt from the middle tank is



further heated in the desuperheater, and is later used to provide



superheat.



The General Atomic Co. and ORNL have also proposed all molten-salt,


concepts (CD #26; Reference 95), Their application is the high­


temperature gas-cooled reactor, so the heat exchange to charge storage



is from helium to molten salt. For storage discharge, a HITEC to



water/steam steam generator is used to produce live steam and hot



reheat steam.



ADVANTAGES. The basic motivation for all-salt rather than two


media is simplicity. The complexity of two separate storage systems



is avoided, tankage requirements are reduced, some of the salt is


effectively used for the full temperature range from 238% to 482°C,



and the possible hazards from having flammable material (oil),in close


proximity to strong oxidizers (nitrates) are avoided.



DISADVANTAGES. HITEC and Partherm 290 cost more than Caloria and­


far more than rock. One can conceive of salt and packed rock bed



configurations with thermoclines, either to cover the full range from
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234 to 432°C or a large tank covering 238 to 294°C plus a smaller tank



covering 294 to 432°C, but compatibility of rock and molten salts has



not yet been adequately demonstrated. Other disadvantages previously



listed for oil and for salt also apply.



#12 - Phase Change Materials (PCM)



Many of the references are concerned with phase change materials.



CDs #41 through #51 (see Table 3-2, p 3-43) describe concepts using PCM,



with various distinctive features such as the salt or other material used,



and the method of heat exchange. The beneficial effect sought from



PCM is either: a high bnergy storage density per cubic meter, because



of the large heat of fusion as well as sensible heat capacity over the



working temperature range; or a gain in thermodynamic efficiency by



heat exchange to and from a boiling or condensing fluid (eg water) at



almost constant temperature hence with high heat exchanger effective­


ness and a minimum AT.



The latter advantage has proven difficult to achieve, not in the



melting or storage-charging phase but in the freezing or storage­


discharging phase. In conventional heat exchangers,-the freezing



material tends to build up on the heat exchange surface, so that heat



exchange must include conduction through a solid layer of low thermal



conductivity. In fluid to fluid heat transfer, the heat exchanger



design assures adequately turbulent flow to make the film thickness



limiting heat transfer very thin. A buildup of several millimeters or



more of PCM reduces heat transfer by an order of magnitude, and



consequently increases required area and costs.



A number of ingenious ways to minimize this problem have been



proposed. Some are illustrated in Figure 3-12. CD #46 (Reference 176)



by R. LeFrois of Honeywell, Inc. describes a mechanical scraper



system to keep solid material from adhering to the heat exchanger
 


tubes. Shown at the lower left of the figure is a tube surrounded by



a number of scraper bl'ades with an elliptical hole as shown by the



projection. The blades are fast~ned to two strips; rings, one of



which is a sprocket for a chain drive, hold the blades to the tube with
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a close clearance. Performance tests have been successful in showing



a high heat transfer coefficient. An off-eutectic mixture of NaNO 3


plus a small percentage of NaOH-forms a slurry which is kept circulat­


ing by the chain drive systems.



Several other approaches try to greatly increase the heat transfer
 

area by encapsulation of the PCM. CD #48.1 (Reference 132) by Grumman



Aerospace Corp. describes a macro-encapsulation of PCM, illustrated at


the upper right of Figure 3-12. The PCM is contained in long plank­


shaped containers of very thin wall steel. The upper sketch indicates



that the horizontal faces can bulge to accommodate changes in volume



with freezing and melting. The shaped notches on the sides facilitate



stacking with passage space for the heat transfer fluid, as shown in



the lower sketch. Grumman also mentions microencapsulation of PCM as



lO0 particles, without details on a technology to coat such particles



of salt witha metal or plastic coating.



Another approach, essentially increasing the area of heat transfer,



is use of a direct contact heat exchanger. The PCM, as a slurry con­


taning lOto90 percent of solidified material, is placed in direct



contact with an immiscible fluid, This is usually an intermediate heat


transfer fluid. Prof. Taube at the Swiss Federal Institute for Reactor



Research (Eidgendssischen Instituts fUr Reaktorforschung) has proposed



a system illustrated at the lower right and described in CD #51


CReference 208). It has been analyzed but not built. The intermediate



heat transfer fluid is octane. Condensing steam boils the octane



Cmaintained at a suitable pressure); the octane vapor is bubbled



through a slurry of off-eutectic NaOH, reducing the percentage of



solids in the NaOH returned to storage. For storage discharge, reduc­


tion of the octane pressure allows the slurry to vaporize octane,



which condenses, generating steam in the right-hand heat exchanger.



T.A. Chubb, et al at the Naval Research Laboratory combine the use



of an intermediate working fluid and macroencapsulation in the CD #42



CReferences 213,103). The eutectic salt is contained in small



metal cans, hung or stacked in a large pressurized tank. For solar
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applications the solar receiver delivers hot gases which heat-exchange


in the bottom of the tank with a reservoir of the heat transfer fluid,


eg terphenyl, boiling it. The vapor condenses on the cans, melting


the PCM, then dripping back to the reservoir. Again, by reducing the


pressure and passing water through a heat exchanger at the top of the


tank, terphenyl condenses, boiling the water and dropping onto the



cans, where it is vaporized as the PCM solidifies.



This variety of PCM concepts is combined into one selection



as a means of retaining flexibility to determine in the final


selection process whether any of these concepts can be called near­


term available, economically competitive with the other candidate con­

cepts, or strongly indicated by improved turnaround efficiency or



utility operating advantages.



It should be noted that the heat transfer between oil or salt and



rock in a packed bed involves similar thermal conduction through a


solid. The solution here is that very large heat transfer areas are



achieved at low cost. The use of sand and gravel with a size not



much over a centimeter in diameter, plus a very large cross section


(5 to 15 m diameter) at the thermocline, And a very slow motion of a



finite thickness thermocline, leads to a negligible AT between outside



and inside of the individual particles.



ADVANTAGES. The thermodynamic loss of availability is reduced by


latent-heat to latent-heat heat transfer, as compared to sensible



heat transfer to boiling and condensing steam. Direct contact heat



exchangers combined with latent-latent heat exchangers may be less


costlythan the sensible heat transfer systems previously described.



DISADVANTAGES. Because of problems of solid phase PCM either


settling or freezing on heat exchange surfaces there are strong reser­


vations that any of the concepts are near-term available. While


3
energy storage density per kg or per m may be higher than competing



materials for some applications, there isgreat doubt that any PCM



could compete in energy stored per dollar, if rock beds are found to


be compatible with either oils or salts.
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DISPOSITION OF OTHER CONCEPTS



The foregoing listing of twelve selected concepts for further


analysis subsumes more than twelve of the listed Concept Definitions



and variants in Appendix C. Some of the selections described indicate


Concept Definition numbers included as variants. There are others that


can be considered as minor variations subsumed by one of the twelve, or


potential growth directions when they become near-term available. Some


are rejected as not being directly applicable to conventional fossil



and nuclear plants. Some are rejected as not as near-term available as



those chosen. A brief review is in order to show the disposition of



the Concept Definitions by inclusion in Selections 1 to 12 or by



rejection. This is shown in Table 3-2.



SUMMARY



A summary table of the approved candidate concepts concludes this


section. Table 3-3 indicates the distinctive feature(s) of each, and



the selected basic configuration.



Table 3-3. Twelve candidate concepts ­ summary. 

Selection 
Number - Feature(s) Other Data 

I 
2 

PCIV 
PCPV 

Expansion Accumulator, 1 Evaporator
Variable Pressure Accumulator, etc 

3 
4 

Steel Tanks 
UG-Concrete Stress Transfer 

Displacement Accumulator, etc. 
Variable Pressure Accumulator 

5 
6 
7 
8 
9 

10 
11 

UG-Comp. Air Stress Transfer 
UG-Comp. Air Stress Transfer 
Aquifer 
Oil/Feedwater Storage
Oil/Packed Rock Bed/Thermocline 
Oil and Salt Loops
All Molten Salt 

Displacement/Feedwater Storage 
Displacement/3 Evaporators 
Feedwater Storage 
Hot and Cold Tanks 
Steam Generator, Peaking Turbine 
Steam Generator, Peaking Turbine 
Steam Generator, Peaking Turbine 

12 PCM Materials Various Heat Exchanger Concepts 
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Conp Table 3-2. Disposition of the Concept Definitions.


Concept .

 -=-


Definition Selection


Number Proponent Number



I & Variants P. Gill1 - Graz Univ. of Tech. 1



2 3. Dooley - R&D Associates 4



3 A. Barnstaple - Ontario Hydro 5



3.1 A. Barnstaple - Ontario Hydro 6


4 R. Collins - Univ. of Houston 7



5 C. Meyer - General Elec. Co 7



6 J. O'Hara - R M. Parsons Int. 2


8 P. Margen - AB Atomenergi 5



21 & Variants R. Cahn - EXXON R&D Co. 8



22 G. Coleman - McDonnell Douglas 9



23 F. Blake - Martin Marietta 10



23.1 F. Blake - Martin Marietta 11



24 J. Powell - Honeywell 10



25 Vt.Stevens - Bechtel National 8



26 R. Quade - General Atomic Co. 11


The HTGR application is not considered.



27 E. Mehalick - General Elec Co. 9


Trickle charge is a growth direction if shown to be superior



Sulfur not proven near-term available but may be growth potential to replace oil or salt.
 


Hot helium to refractory brick not applicable for fossil and nuclear steam.



Hot oil in salt dome not near-term available. Problems of salt plasticity, heat


exchanger fouling, workable pumping concept



Drained bed systems are a growth direction if shown to be superior.



Presents only merits of PCM systems, no concept.



Concepts for solar applications



Preliminary concept for solar application.
 


Immiscible fluids HX for low -?mperature application.



PCM chosen (Tm=6400C) and hot helium from solar receiver not applicable to this project.



Multiple PCMs at different temperatures isa combination of sensible and latent heat



Thin-walled macroencapsulation.



Another variant of immiscible fluid HX Application is only the HTGR.



Proposes use of sulfuric acid and water heat of reaction. Sulfuric acid is low cost


sensible heat storage and heat transfer fluid ifcontainment problems are solvable.



28 M. Riaz - Univ. of Minnesota


Air heat transfer to rock beds not applicable for fossil and nuclear steam



30 & Variants R. Turner - Jet Propulsion Lab. 3



31 A. Selz - Energy Conv. Eng Co. 9,11



32 J Gintz - Boeing Eng. & Const.



33 R. Collins - Univ. of Houston



35 W. Hausz - General Elec. Co 9



41 J. Carlson - Xerox EOS Lab. 12



42 & Variants T. Chubb - Naval Research Lab. 12



43 R. Cohen - Comstock & Westcott 12



45 D. Edie - Clemson University 12



46 R. LeFrois - Honeywell 12



47 J. Gintz - Boeing Eng. & Const.



48 A. Ferrara - Grumman Aerospace



storage. Not believed to be near-term available or economically viable



48 1 A. Ferrara - Grumman Aerospace 12



49 H. Vakil - General Elec Co. 12



50 E. Clark - Rocket Research Co.



51 M. Taube - Swiss Federal Inst.
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SECTION 4



REFERENCE PLANTS



SELECTION



The context for comparison of the twelve TES concepts selected



during the preliminary screening includes the baseload plants ­


nuclear and fossil fueled - into which they are to be integrated.



Selection and description of new-capacity plants for installation in



the period of interest, 1985-2000, will provide a frame of reference



for comparing economic, technical, environmental, and operational



advantages and disadvantages of the various TESS.



The major additions to capacity during the period are expected to



be a mix of LWR nuclear plants and coal-fired plants with flue gas



desulfurization (FGD). The fraction of each is uncertain, as both



suffer site approval, fuel escalation, and intervenor problems.



Roughly equal shares is most likely. Where low sulfur coal is acces­


sible, minimal or no FGD may be needed; this affects the economics of



the fuel supply, processing, and waste disposal and has only a minor



impact on the comparison of TESS. There will also be additions of gas



turbine plants, combined cycles, advanced nuclear reactors, and alter­


native forms of storage. These are not considered as reference plants



for TESS installations.



Utility planned purchases of LWR plants are mostly in the 1000­


1500 MW capacity range. Planned coal-fired plants range up to 1200 MW,



but most units planned by large utilities are in the 600 to 800 MW



range. Smaller utilities will have need for units in the I00 to 400



MW range.
 


To cover this range of sizes, three reference plants on which



suitable data are available have been selected. Basic data on these



are given in Table 4-1. To be most useful as reference plants, not
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Table 4-l. Key plant parameters - reference plants.



Plant Number
 

1 2 3



Rated Output - MWe 800 1140 225



Fuel Type Hi Sulfur Coal PWR HSC



Steam Pressure at Turbine - MPa (psia)



Superheater 24.2 (3512) 6.72 (975) 16.6 (2415)



Reheater 4.4 (637) 1.13 (164) 3.2 (491)



Steam Temperature at Turbine - °C (OF)



Superheater 538 (1000) 284 (544) 538 (1000)



Reheater 538 (1000) 284 (544) 538 (1000)



Steam Flow Rate per Hour - 106 Kg (106 Ibs)



HP 2.64 (5.81) 6.23 (13.72) 0.73 (1.60)
 


IP 2.36 '(5.19) RH65 (1.42) 0.65 (1.44)



Net Station Heat Rate-J thermal/J electric (Btu/kWh) 

HR 2.78 (9482) 3.0 (10224) 2.86 (9750) 

Thermal efficiency-percent 36 33.4 35 

Condenser Pressure-kPa 5.8/8.5 8.5 11.9



(in.HgA) (1.7/2.5) (2.5) (3.5)



The reheater flow from the PWR.



only the technical data and thermodynamic performance, but also a



detailed and consistent data base on the cost elements of the standard



cost accounts should be available. Recent ERDA/DoE and EPRI studies



by United Engineers and Constructors, Inc., Bechtel National Corp.,



and others have been used by these agencies as data base for computer
 


codes (CONCEPT) and cost scenarios for utility planning purposes.



The first reference plant selected is an 800 MW high sulfur coal­


burning plant as documented in NUREG-0244, Volume 3, produced by
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United Engineers and Constructors (Reference 212). The second is a



PWR nuclear plant as documented by NUREG-0241, Volumes 1 and 2, by the



same authors (Reference 93). To cover the lower end of the size



range, for which no similar documentation was available, a 225-MW coal



plant, for which technical data was available, was selected, and the



costing was derived using the scaling laws built into the CONCEPT IV



code.



Figures 4-1, 4-2, and 4-3 picture the configuration and the flows.



They suffer in reproduction by reduction from the foldout size in the



original documents but are adequate for a general picture. The many



details of flow and heat balance of these reference plants are not



relevant to what will be used in comparing TESS concepts.



ECONOMICS



The reference plants are base load plants that can produce elec­


tricity at the lowest possible cost in the time frame stated, if they



are operated at their rated output power for as many hours per year as



their reliability permits. They are the starting point for system



concepts that modify these plants by the addition of thermal energy



storage systems (TESS) and other cycle modifications as needed to give



improved and economic load-following (mid-range and peaking loads).



A number of assumptions must be made, and terms and methodology



defined, for understandable and consistent economic analysis of differ­


ent plants and different storage system concepts in different future



years. The Electric Power Research Institute (EPRI) has issued a Tech­


nical Assessment Guide (TAG) (Reference 172) as an aid to comparative



evaluations. Its intent is to supply a consistent set of assumptions,



organized in an economic methodology familiar to and accepted by elec­


tric utilities, so that studies made by different groups and contrac­


tors can be more easily compared. To the greatest extent possible the



methodology and the recommended numerical parameters in this guide



(TAG), revised to August 1977, are used-.
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Some key assumptions:



* All dollar values are given in mid-1976 dollars. Future costs
 


are expressed in 1976 dollars.



" 	 All capital costs are assumed to escalate at a constant general



inflation rate of 6 percent/annum. Compatible with this is a



fixed charge rate (FCR) of 18 percent to convert capital costs



into uniform annual fixed charges over a 30-year life of plant.
 


For other equipment lifetimes an adjustment in FCR must be made.



" 	 Fuel costs are expressed in 1976 dollars but are assumed to



escalate faster than general inflation at net rates given in



TAG. The fuel costs over a time period, reduced to 1976 dol­


lars, will be higher for later dates of initial plant operation.



For simplicity in this analysis 1990 is assumed as the initial



operation date for all analyses.



• Single unit plants are assumed, of the capacity given in Table



4-1. The TAG prefers to give specific costs (dollars per kilo­


watt - S/kW) for twin units at one site, but gives relation­


ships to find the cost of the first unit and the cost variation



with plant capacity.



* As there are regional differences in costs, plants located in



the East Central region are assumed, as suggested in the TAG,
 


as roughly average for the nation.



As implied in these assumptions, the TOTAL cost of each reference



plant ismade compatible with the TAG by using the scaling laws given



therein to convert twin-unit to single-unit costs (factor 1/0.92),



and to convert the TAG reference plants at 1000 MW capacity to 800 MW



for Reference Plant #1 (HSC Coal), and to 1140 MW for Reference Plant



#2 (PWR). The scaling law used is exponential:



C#I = C100  (800/1000)
0.85 for the coal-fired plant,



= C1000 (1140/1000)0.7 for the PWR. (Interms of $/'kW rather 

than total cost in MS, the exponents would be -0.15 and -0.3 

respectively.) 
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http:800/1000)0.85


Cost Components of Reference Plants



Table 4-2 compares the costs of the three reference plants and



illustrates the various components of the cost and levels of cost. AlI



figures are in millions of dollars (M$) except the $/kW summary at the



bottom.



Table 4-2. Cost accounts of reference plants.



#1 - HSC Coal 800 MW per UE (NUREG 0244 V3) and EPRI (TAG)



#2 - PWR 1140 MW per UE (NUREG 0241) and EPRI (TAG)



#3 - HSC 225 MW



#1 - 800 MW #2 - 1140 MW #3 - 225 MW



Grouped Cost Accounts 'Millionsof Dollars



20 Land 2.0 2.0 1.4


21 Structures 38.0 101.4 14.6


25 Misc.. Plant 8.7 11.8 5.6



22 Steam Gen. Plant 120.1 133.4 38.3



23 Turbine Plant 65.2 111.3 20.8


24 Electric Plant 28.9 39.4 15.3


26 Heat Rej. System 12.0 21.6 4.9



A Total Direct 275.0 421.0 100.9


=
xi.22 = xi.35 xl.3 =



B Base Cost 335.2 568.8 131.0


xi.77 = xi.57 = xl.5 

C TOTAL Cost 594 894 197


direct to TOTAL x 2.16 x 2.12 x 1.95



$1kW 

Direct Cost 343 370 448


Base Cost 419 500 583


TOTAL Cost 743 785 874



The several sources use cost accounts to indicate at a two-digit



level the major cost elements or subsystems, and at a level of three



or more digits the elements of the subsystems down to individual parts



(eg pumps, motors, tanks) and construction materials (eg pipes, con­


crete, reinforcing steel). At the two-digit level, Table 4-2 presents



the account numbers, the account title, and the "direct cost."
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It is important to note and understand some of the terminology



used in the cost accounting system. There are many echelons of costs,



and serious errors in comparing concepts or systems can be made by not



assuring that the costs of each are at the same echelon, with the same



assumptions.



For example, plant #2 has at the lowest subaccount echelons the



costs of factory equipment, the onsite labor costs, and the onsite



material costs. The sum of these three is the direct cost, also often



called the installed cost. Some illustrative examples of the echelons



of cost accounts from Reference 93 are shown in Table 4-3.



Table 4-3. Illustrative cost breakdown of cost accounts


(millions of dollars - 1976$).



Direct



Account Number Factory Labor Materials Cost



231.11 Turbine Factory Cost 53.22 .... 53.22



231.1 Turbine&Accessories 53.22 2.57 0.24 56.03



231.2 Foundations -- 1.34 0.83 2.17 

231. Turbine Generator 54.87 5.19 1.29 61.36



23. Turbine Plant Equipt. 82.63 23.34 5.32 111.28



2. Total Direct Costs 229.10 133.14 66.72 420.96



9. Indirect Costs 95.92 19.45 32.50 147.87



Total Base Costs 317.02 152.59 99.22 568.83



It can be seen that some 4-digit accounts are all factory equip­


ment cost, some are all onsite costs. The sum of all turbine and



accessory accounts give a 3-digit Turbine Generator Account. To this



must be added the condenser, feedwater heating equipment, and other



parts of the Account 23 Turbine Plant Equipment. Adding the reactor
 


equipment, electrical accounts, land and construction accounts, and



miscellaneous gives the Account 2 Total Direct Costs. Yet to be



added are the indirect costs such as home office and onsite overhead



costs. Including these gives the echelon called Total Base Costs.
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Sometimes a multiplier is used on factory equipment costs to give



a rough estimate of direct or installed costs. It can be seen that



this can vary from 1.0 to infinity. On the level of aggregation of



Total Direct and Total Base Costs the multiplier of Factory Equipment
 


Costs is 1.84 and,1.79, respectively. Similarly, since overhead costs



are not directly allocable to the specific direct cost accounts, a mul­


tiplier can be used to convert a direct cost to a base cost. In this



case it is 1.35, as is indicated in Table 4-2 in the 1140 MW PWR column.



Not included in the base cost as estimated by United Engineers and



Constructors (References 93 and 212) are a number of cost elements



that must be included to form a proper estimate of the investment



required by a utility to make a plant operational. Reference 93 indi­


cates some of these as:



" Owner's costs for consultants, site selection, etc



" Fees, permits, State and local taxes



" Spare parts



" Interest during construction (or AFDC - allowance for funds
 


during construction)



" Contingency allowance.



The EPRI Technicat Assessment Guide, in order to provide a complete



cost estimate acceptable to utilities, and to be useful in comparing the



plants they describe and other energy options being studied, include



the above cost elements, but exclude certain components such as switch­


yards, which are common to all plants. From the TAG total cost in



$/kW times the capacity in kW, a TOTAL cost in millions of dollars is



found, which included the above cost elements. To couple these TOTAL



cost estimates from EPRI to the detailed data base on the direct cost



of plant subaccounts, a multiplier on the total direct cost is



derived. It can be seen that for the three plants this multiplier



does not vary widely; it is 2.16, 2.12, and 1.95, or may be conven­


iently called 2.1. As our interest is in converting direct costs to



TOTAL* costs, base costs are not further used in this report.



TOTAL is used to emphasize this sense where ambiguity with other uses


of Total, meaning sum, is to be avoided.
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FIXED PLANT. The basic concept of thermal energy storage for



electric utility load-following applications is that the steam gener­


ating plant, Account 22, will operate to the maximum extent of its



availability. During part of the daily or weekly demand cycle, the



steam may be fully used in a turbine generator at the rated -electric



output of the plant. During off-peak hours, electric output is



reduced and the thermal energy generated is used to charge a storage



reservoir. During peak hours this stored energy is discharged to pro­


duce additional electric power in a supplemental turbine. The parts



of a plant may be allocated into those not affected by the storage



cycle and those which must be modified or changed in size for the



load-following application. This is developed inTable 4-4. In the



former category are the steam generator, land, miscellaneous equip­


ment, and much of the structures and improvements: respectively,



Accounts 22, 20, 25, and 21. The accounts which vary in proportion



to the peak electric output are the Turbine Plant, Electric Plant, and



Heat Rejection System (cooling towers), Accounts 23, 24, and 26. This



will be called the Turbine Island.
 


A portion of 21, Structures and Improvements, represents the



Turbine Generator building, housing for electrical switchgear and



controls, etc, and will vary in cost with the addition of storage. An



amount to account for this is subtracted from Fixed Plant (often
 


called Boiler Island) and added to the Turbine Island.



The total of direct costs of the elements shown as Fixed Plant is



159.4, 230.7, and 56.6 million dollars for the three reference plants.



By dividing by the kilowatt capacity of the plants, the direct costs



in $/kW electric are found as 199, 203, and 252. Since the Fixed



Plant is dominated by the Boiler/Reactor costs it is interesting to



also divide the direct cost by the rate at which fuel is consumed, in



kilowatts thermal, to get the cost in $/kWth shown as 70, 68, and 88.
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Table 4-4. Direct cost allocation to fixed and


load-following subsystems.



Accounts #1 - 800 MW #2 - 1140 MW #3 - 225 MW 

Fixed Plant 

20, 25, 21, 22 168.8 248.7 59.9 
Less 213, 218H,J,K,etc. - 9.4 - 18.0 - 3.3 

159.4 230.7 56.6



Turbine Island



23, 24, 26 106.1 172.3 41.0


Plus 213, etc. 9.4 18.0 3.3


Less 25 percent of



231, 234, 24, 213 - 17.0 -- - 6.6 

98.5 190.3 37.7



23A HP Turbine Account 17.0 -- 6.6



Total Direct Cost 275 421 101 

TESS Plant



Peaking Turbine 98.5. P 190. P 37.7. P 

$/kW (electric)



Fixed Plant 199 (70)* 203 (68)* 252 (88)*
 

HP Turbine 21 (85) -- 29 (116)



Turbine Island 123 (164) 167 167 (223) 
Peaking Turbinej - - -

Total Plant 343 370 448 
$/kW of thermal output. 

TURBINE ISLAND. The parts of the reference plants that must match



the load-following demand by drawing on thermal storage as well as the



Fixed Plant steam supply include the Turbine Plant Equipment, the



Electrical Plant Equipment, and the Main Condenser Heat Rejection



Equipment (iecooling towers), Accounts 23, 24, and 26. As indicated



above,, certain parts of Structures and Improvements (21) were deducted



from Fixed Plant and are added to the Turbine Island, in Table 4-4.
 


What is considered as fixed in output and what is considered as



load-following will of course depend on the source of heat for TES.
 


In the case of the supercritical (24 MPa, 3500 psia) 800 MW plant and
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the similarly high pressured 225 MW plant (16 MPa, 2400 psia) there



can be great cost in storing at or near these pressures, and consider­


able penalties in thermodynamic efficiency in degrading the steam to



a much lower pressure for storage. An alternative source is between



the high pressure and intermediate pressure turbines, where work has



been obtained by passing the steam through the HP turbine before



diverting some to storage. At the output of the HP turbine the pres­


sure is 4.9 MPa (700 psia) in the 800 MW plant and 3.8 MPa (545 psi)



in the 225 MW plant.
 


With IP turbine inlet steam as the TES source the HP turbine will



be running at rated load whenever the Fixed Plant is operating. In



order to be able to separate the HP turbine from the remainder of the



Turbine Island, cost accounts relevant to the HP turbine were allo­


cated in proportion to the kW (electric) output of the HP turbine.



The HP turbine supplies about 25 percent of the electric output in



reference plants 1 and 3. This percentage of the turbine generator



(231), the feedheating system (234), the electric plant equipment (24),



and the turbine bay (213) were subtracted from the Turbine Island and



made a separate account: 23A HP Turbine. The condenser and heat



rejection accounts are considered only related to the LP turbine.



The nuclear plant has only two turbines, considered as the equiv­


alent of the IP and LP turbines, so no HP turbine account is separated



out.



For the 800 MW plant the combined cost of the Turbine Island and



the HP Turbine Account is 115.5 M$, which leads to 144 $/kW of total



electric output (115.5/0.800). For the separated accounts this amounts



to 123 and 21 $/kW of total electric output. However, since the HP



turbine outputs 200 MW and the Turbine Island 600 MW, a better estimate



of the HP turbine cost per unit output is 85 $/kW (17/0.200) and of the



Turbine Island is 164 $/kW (98.5/0.600).



The estimate of the specific cost of the Turbine Island is useful



in estimating the cost of a supplementary or peaking turbine system



operating at similar temperatures and pressures, hence the bracketing
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of Peaking Turbine with Turbine Island in Table 4-4. If a supplemen­


tary Turbine Island is added to Plant #1 of comparable size to the



original (600 MW), a first-order approximation of its cost would be



164 $/kW . The weak assumptions in this estimate are many but are at 

least partially self-cancelling. If a completely separate Turbine



Island were used, and the turbine used the same quality of steam as



the original, the estimate would be good. However, the discharge from



storage will usually be degraded in steam pressure by about 2:1, which



would require higher specific costs for the condenser, cooling system,
 


feedwater heater, and the turbine. On the other hand, if some parts



of the two turbine islands are shared, gaining the economies of scale



of a factor of two, the specific costs would be reduced. The electric



plant equipment, the structures and improvements, and perhaps the con­


denser and cooling system would benefit from this effect.



The specific costs of Plant #3 are considerably higher because of



its smaller size. Rather than being linear (exponent 1.0), there are


"economies of scale" for the different components of cost that have



exponents x from 0.3 to 0.9; the specific costs, $/kW, then decrease



with size with exponents Cx-1) from -0.7 to -0.1. The exponent for



the combination of turbine plant equipment, electric plant equipment,



and the heat rejection system is about 0.75, or Cx-l) is -0.25.



Annual Costs of Reference Plants



Economic comparison of plants is usually done by comparing the sum



of all costs converted to uniform annual costs over the life of the



equipments. Capital or investment costs are discounted forward (eg



AFDC) or backward (eg replacement costs) to the date of initial opera­


tion and multiplied by a fixed charge rate (FCR) that considers the



required return on equity and debt, taxes, insurance, allowable



depreciation, and other factors that are capital dependent. Since



practices of assigning and using the FCR differ among utilities, the



recommendations in the EPRI TAG will be used. TAG recommends a FCR of



0.18 as compatible with a 6 perc6nt annual inflation rate, 30-year



plant life, and other assumptions listed therein. There are operating
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and maintenance costs that are fixed (independent of~annual energy



output) that are usually expressed as an annual amount per kW, but
 


which can be expressed as a multiplier to the FCR or capital costs.



Table 4-5 develops the componentsof the annual costs for the



reference plants using the recommended values, -Values are taken
 


directly or derived from the EPRI TAG, August 1977 revision.



Table 4-5. Annual costs for reference plants,



Plant



#1 -800 MW #2- 1140 MW #3 - 225 MW 

Capital Cost - Direct - M$ 275 421 101


TOTAL - M$ 594 894 197



Fixed Charge Rate 0.18 0.18 0.18


Annual Fixed O&M - M$ 3.4 5.5 1.1



Annual Fixed Cost - M$ 110.3 166.4 36.6



Fuel Used HSC* Nuclear HSC*


1990 Price (1976$)


$/MBtu 1.06 0.70 1.06


$/MWh 3.62 2.39 3.62


Levelizing Factor 1.959 2.482 1.959


Level - $/MWh 7.09 5.93 7.09



Availability 0.723 0.723 0.82


Heat Rate (Efficiency) 9482 (0.36) 10224 (0.334) 9750 (0.35)



Annual Fuel Cost - M$ 99.9 128.3 31.9



Annual Variable O&M - M$ 15.8 16.8 4.5



Annual Variable Costs - M$ 115.7 145.1 36.4



Total Annual Costs - M$ 226.0 311.5 73.0


Annual Cost - $/kW 283 273 324


Energy Cost - $/MWh 44.60 43.14 45.14



4.0% S Eastern Bituminous Coal



The echelons of costs that were described in connection with



Tables 4-2 and 4-3, from factory equipment costs to TOTAL costs must



be kept in mind. Reference sources that do not clearly state their



assumptions on the type of costs that are given and the basis of dol­


lars used (eg 1976$) are difficult to compare, and can be misleading
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by factors of two or more. While direct costs will be used in this



report in combining and comparing costs at the component and sub­


account level, the analysis of investment costs and annual costs must



include all the adders required to give TOTAL costs. The factors



derived in Table 4-2 are used for the three plants. The annual capital



charges are the total capital cost multiplied by the fixed charge rate.



To this is added the annual fixed operation and maintenance cost, given
 


in TAG in $/kW/a, and levelized as described below. The sum is the



annual fixed cost inmillions of dollars. For future use on other



capital costs (eg storage), fixed O&M can be expressed as a multiplier



to the fixed charge rate (594 • 0.18 + 3.4 = 110.3 = 594 - 0.18 • 1.032),



the factor 1.032 in this case.



The other major cost components are the variable costs, principally



the cost of fuel. The amount of fuel used is related to the annual



output of electric energy by the heat rate (or the thermal efficiency).



The cost of fuel can be expressed in metric or English units ($/GJ or



$/MBtu) but is best stated in $/MWh (thermal) for convenience in com­


bining power and energy costs. The TAG gives price scenarios for



nuclear fuel and coal over the time period 1975 to 2000. Coal in the



East Central Region is postulated to escalate in cost at 6.8 percent/a



from 0.95 $/million Btu in 1976. With a general inflation of 6 per­


cent assumed, this is a net escalation of 0.8 percent. The.1990 price



in 1976$, which would be unchanged if there were no net escalation,



requires correction for 14 years and 0.8 percent (1.00814), which
 


gives 1.06 $/million Btu. Conversion gives 3.62 $/MWh; similarly, a



net escalation of 2.3 percent/a for nuclear fuel gives 2.39 $/MWh.
 


A coal price of 3.62 $/MWh in 1990 and a total escalation rate of



6.8 percent/a gives a fuel cost at the end of the assumed 30-year



plant life of 26 $/MWh in 2020. Converting this escalating stream of



annual fuel costs into an equivalent uniform or Zevelized stream of



payments requires finding a fuel cost intermediate between the



extremes that has the same present worth as the escalating stream.



The August 1977 revision of TAG gives levelizing factors as a func­


tion of the total or gross escalation rate for the assumed values
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of 10 percent discount rate, 6 percent general inflation, and 30-year


life (Reference 172, p VI-li). GE's levelizing method is lower than



EPRI by one year's escalation of the quantity being levelized. Incor­

porating this correction, the proper levelizing factor for coal with 6.8



percent escalation (0.8 percent net escalation) from 1990 to 2020 is



1.959. For the higher net escalation rate of 2,65 percent for nuclear



fuel (assumed to continue to 2020 the rate given by TAG for 1990-2000)


the levelizing factor is 2.482. The levelized cost of fuels over the



period is 7.09 and 5.93 $/MWh for plants #1 and #2 respectively.



The capability of each plant to produce electric energy is limited


by periods of reduced output or zero output caused by scheduled mainte­


ance or forced outages. The fraction of the maximum theoretical out­

put that can be obtained is called the availability. Again, TAG pro­


vides recommended values based on current experience, eg 0.723 for both


the 800 and 1140 MW plants. Currently, plants over 600 MWe have sig­


nificantly lower availability than small plants, in part because of


immaturity of the technology.



,Combining these factors with the thermal efficiency leads to the



annual fuel costs to produce maximum output as limited by the avail­

ability. Variable O&M costs are given in TAG in $/MWh in 1976$.


Escalating to 1990 in 1976$ by the net escalation rate for fuel and



applying the same levelizing factors used for fuel gives the annual



variable O&M costs shown. These plus annual fuel costs give Annual



Variable Costs.



Combining Fixed and Variable Costs gives Total Annual Costs.



Dividing by the number of MWh produced annually gives the specific



cost of energy in $/MWh Cthe same as mills per kWh). The 225 MW coal


plant, with a higher capital cost and a slightly lower efficiency, was



credited with a higher availability, so its specific costs are almost



as low as for the 800 MW coal plant. The higher capital cost per


kilowatt of nuclear plants plus the higher net escalation rate for



nuclear fuel gives a specific energy cost close to that for coal



derived power. The net escalation factor used assumed no reprocessing.
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With reprocessing and plutonium recycle, the specific energy cost for


the nuclear plant would fall to 36$/MWh.



Load Following by Reference Plants



The data of Table 4-5 are for a specified capacity factor, ie the


maximum availability of the plant. For lower capacity factors Cratios


of actual annual energy output to the energy output if operated at


rated power 8760 hours/year), there will be lower annual fuel costs



but the same annual capital costs; the specific energy cost will be


higher. The relationship between total annual cost and capacity fac­


tor or hours per year is linear, as shown on Figure 4-4. Data on


advanced gas turbines burning oil are also shown, taken from the data


in TAG, The reference plants described are intended for base load


operation, that is they would be operated for close to their maximum


availability, over 6000 hours per year, at rated load. Other older


plants, oil/steam plants and less efficient fossil plants, have higher


production costs than base load plants, and would normally be reduced



in load or shut down to follow daily and seasonal load variations,



rather than load-following with the reference plants.



103 HR/A 0 1 2 3 4 8,76 
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Figure 4-4. Screening curve - annual costs per kilowatt vs 
capacity factor or hours per year. 
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However, a reference plant can load-follow by throttling the flow 


rate and pressure into the turbine generator, hence the output of the 

boiler. There are economic penalties. Less annual output than the 

maximum available means less revenues to liquidate the annual fixed 


costs, hence a higher specific cost in $/MWh. Also, although the heat 

rate and efficiency do not change much between rated load and 80 per­


cent load, the efficiency declines rapidly below 50 percent load. 

Figure 4-5 is illustrative of the change of heat rate with load for 


a plant similar to reference plant #1. K 
)!VA .01AGL, 

- 1 H L iMWW- 800 MW ,,4 HP -,I+-- kWht:-74 @2.5" Hg A, 24.1 MPa, 5380C MY kwht 
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-- , r,--_For Study Purposes Only -

This Curve Not Guaranteed



T-410,500 
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Figure 4-5. Net station heat rate versus load.
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As an example of the impact of load following on efficiency, a load­


following pattern that produced full, two-thirds, and one-third load



for equal times (8hours each per day) would have efficiencies relative



to full load efficiency of 1.0, 0.98, and 0.89. The average daily



efficiency would be 0.975, or about 2.5 percent more fuel would be



needed for load following than for the same energy output at full load.



Inaddition to economic penalties, it has been suggested that



there are less quantitative penalties associated with load following



with a base load plant. These are effects on reliability and on oper­


ational flexibility. This iswell founded inthat excessive rates of



change of temperature inthe turbine can cause severe damage, and



plants that are completely shut down and started up frequently have



poorer reliability records than those operated at rated load. Pro­


longed operation at very low loads, ie below 20 percent can cause



problems for nuclear reactors and for turbines. However, utilities



consulted* did not seem to feel that limited load following impaired



reliability ifdone properly, iefrom say 50 percent load to full



load, with temperature, pressure, and flow limited inrates of change



by manufacturers' specifications and by experience. Apparently both



steam supplies and turbines can change output over this range inmin­


utes iftemperature changes are not required, but itwill take 10 to



24 hours to bring a large turbine up to full load conditions from a



cold start.



Operational flexibility limits include these rate-of-change con­


straints, which may be more severe on a large base load plant than on



smaller units specifically designed for cycling operation. Also



supercritical plants (eg reference plant #1)and plants with flue gas



desulfurization may be less amenable to load following than older sub­


critical plants without FGD. A number of parallel trains of FGD



equipment process the stack gases, five modules in reference plant 1.



* 	 Commonwealth Edison, Southern California Edison, Public Service 

Electric and Gas Co. of New Jersey, and Niagara Mohawk. 
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Rather than operating any of these partly loaded, one or more are shut



down if plant output is reduced, and the operating problems of shut­


down and startup are encountered for each major load swing.



The principal basis for comparison of thermal energy storage con­


cepts in this study is against each other: on near-term availability,



on economic criteria, and on other criteria. The economic basis for



comparison is the cost of electricity produced by the TESS, in associa­


tion with a reference plant, and following a specified pattern of charg­


ing and discharging the storage to match a daily load pattern. This



cost comparison is dependent on both the capital cost of the components



added for TESS operation and on the turnaround efficiency of the inte­


grated system.



While the reliability and operational problems with load following



reference plants must be given some weight, interest in thermal energy



storage to keep the boiler or nuclear reactor at rated load while the



Turbine Island load follows will depend principally on the economic



advantage such storage may have. One reference value against which to



compare thermal energy storage concepts is the base load reference



plant used in a load-following mode.
 


There is one additional aspect of load-following base load plants



that must be addressed before the incorporation of TESS is discussed.



By definition, base load plants have low production costs through use



of the lower cost fuels (nuclear and coal) and through higher effi­


ciency than older plants. Utility dispatchers are motivated to use



such base load plants to the limit of their availability. Only when



there is more base load capacity in a utility system than the minimum



daily load is there a motive to seek other applications for unused
 

"off-peak power." Many or most U.S. utilities do not now have excess



base load capacity. Many will not have excess base load capacity



within the next 15 years. However, some utilities, eg Commonwealth



Edison, have a significant fraction of their capacity in nuclear



plants and find itcurrently worthwhile to add cycling coal-fired



plants and to consider storage alternatives.
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MODIFIED PLANT DESIGNS FOR TESS



The plant designs shown in Figures 4-I to 4-3 are quite complex,



including many small flows of steam from bearing and stop-valve steam



seals, and to auxiliaries such as turbine driven pumps. For computer



modeling there is no disadvantage to eliminating or neglecting these



flows appropriately. Other simplifying changes in plant design were



also made. Figure 4-6 shows the configuration used for reference



plant #1.



In making changes for ease of comparison or for ease of integra­


tion of the plant with TES systems, it is desirable that:



* Changes should not affect the rank ordering of TES concepts on



economic or other criteria. The changes may alter absolute



values of the criteria, or odify relative values slightly.



* Changes should be generally favorable to storage, or not
 


unfavorable.



o 	 Changes should improve, or not handicap the near-term avail­

ability of the plant modifi-cations required to integrate with



TESS.



One of the major changes made is the elimination of the reheater



between HP and IP turbines. If the source of energy for storage is to
 


be either live steam (24.2 MPa, 538°C) or cold reheat steam (4.9 MPa,



307'C), the steam flow to the boiler reheater tubes will be decreased



while the flow through the main boiler and superheater tubes remains



unchanged. Operating the boiler as designed in this mode, variable



flow ratio between superheater and reheater, can cause serious prob­


lems of excess reheater tube temperature, and increased forced out­


ages. The alternatives to avoid this seem to be



" 	 Redesign the boiler for variable flow ratios.



* Use hot reheat steam (output from the reheater) for storage



instead of live steam or cold reheat.



" 	 Eliminate the reheater, so that cold reheat or live steam can



be used.
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Figure 4-6. Cycle configuration for TESS fossil plant. 



A telephone conversation with a leading boiler manufacturer*



indicated that a conventional boiler could not tolerate more than



small variations in flow ratio wi-thout danger of increased reheater
 


tube failures, and that a new boiler could be designed to accept



changes in the reheater flow by some means of damper controls to



change the relative flow of hot gases and redirect energy to reheater



and superheater. The total boiler thermal output would be reduced



during the charging of storage with live or cold reheat steam, unless



the superheater, boiler, and economizer tubes were increased in the



design revision.



For the second alternative the relative effectiveness of live



steam, cold reheat, and hot reheat steam as a source for storage were



compared as described in Section 5. For a given swing in the initial
 


temperature and pressure of storage to the temperature and pressure at



the end of storage it was found that the turnaround efficiency ranked



highest for cold reheat, next for live steam, and lowest for hot



reheat. The second alternative thus does not appear attractive.



The third alternative, eliminating the reheater tubes in the steam



generator has the disadvantage of also being a major change in the



steam generator design. However, it is in the direction of simplicity,



reduced heat, higher reliability, and known technology. It is a



reversion to practices before reheat cycles were common. Per unit of



heat transferred, the reheater is more expensive than the superheater



and boiler tubes and more sensitive to hot spots and failures if



inadequately controlled and maintained. Within the ground rules of



this study, the third alternative appears most satisfactory. It is
 


achievable in the near-term, retains flexibility to use in this study



live steam or cold reheat steam, preferred for turnaround efficiency,



and provides a less costly, more reliable boiler.



Elimination of reheat will increase the required flow for the same



thermal output from the boiler, and will reduce the quality (increase



* Telecon with Walter Gorzegno, Foster-Wheeler Corp., 17 March 1978. 
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the wetness) of steam in various stages of the IP and LP turbine.



Moisture separation is desirable and necessary to minimize turbine



efficiency reduction and the danger of blade erosion. A moisture



separator is shown between LP and IP turbine and increased moisture



separation at the extraction points for feedwater heating will occur.



The absence of reheat will increase the heat rate by about 5 percent,



and the increase in required "back end" steam flow of almost 20 per­


cent for the same power will increase proportionately the cost of con­


denser, cooling system, and feedwater heaters. The turbine cost will



roughly increase in this proportion but generator and electrical costs



will not increase since the output is still 800 MWe' Simplification



of the boiler by reheater omission should reduce its cost to partially



cancel the added Turbine Island costs.



Itmay be decided that the loss in efficiency is not acceptable



to utilities or that redesigning the steam generator for a variable



reheater flow is simple enough to be considered near-term available,



or this improvement can be considered a growth potential to be incor­


porated later. In any case, the changes in flow, heat rate, and costs
 


are not sufficient to adversely affect the comparative merits of TESS



concepts or of their comparison with a base load plant, providing that



the cost and performance data used for the TESS comparison are both



for the modified reference plant cycle.
 


Reference plant #2, the 1140 MW PWR, does not have three turbines



in tandem, so is not considered to have a HP section. Although the



reference plant diverts part of the live steam to a moisture separator/



reheater in order to superheat the steam to the LP turbine section, it



was decided for convenience in modeling to retain the moisture separa­


tor but eliminate the reheater. This makes the configuration of ref­


erence plant #2 the same as that for #1 except for the elimination of



the HP turbine.



GE-Steam Turbine Division personnel suggested that omission of the



nuclear reheat would not change the heat rate much, and that for rapid



load-following the required variation of the reheat flow could present
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added problems of control and reliability. Within the accuracy limits



of our simplified model, the heat rate isunchanged but the mass flows



through the turbine and back end components are increased-by 5-to 1-2



percent, implying some cost increase.



As with reference plant #1,the simplifying modifications should



not impair comparative ranking of TESS concepts. The discussion in



this section applies to the main turbine. The parallel peaking turbine



and storage system modeling are covered inSection 5.



The reference plant #3 (225 MW HSC) is ingeneral similar to refer­


ence plant #1 except in size. It isassumed to be modified in the



same way: elimination of reheat, inclusion of a moisture separator,



elimination of minor flows to seals and auxiliaries. Performance was



not separately modeled as the principal difference expected is inthe



specific costs of the system because of its smaller size.



What have inthis section been called reference plants, then



modified plant designs, will in subsequent sections be simply called:



* Plant #1,or 800 MW coal plant



" Plant #2,or 1140 MW nuclear plant



" Plant #3,or 225 MW coal plant,



or generically, a baseline plant when a plant modified to interface



with a TESS ismeant.
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SECTION 5



MODELING TES SYSTEMS



This section describes the modeling of the various TES systems
 


necessary to provide data for the comparative evaluation. It begins



by describing the thermodynamic modeling of the steam turbines, and of



the individual TES concepts integrated into the baseline plants, and



concludes with a discussion of the economic modeling.



TURBINE ISLAND MODELING



Plant #1 - 800 MW HSC



The two key considerations in attaching a TES system to a power



plant are the source of thermal energy to charge the system and the



use of the energy during discharge, Figure 5-1 shows a schematic



representation of a fossil-fired plant indicating the various sources
 


of thermal energy for charging the TES system. Any one, or a combina­


tion, of these sources may be used. During discharge the stored



energy can generate steam, which provides an additional source for an



oversized main turbine or powers a separate peaking' turbine, or it can



be used to supply heated feedwater to the boiler, thereby reducing the



steam,extracted from the turbine for feedwater heating,



For modeling steam generation from storage, the use of an oversize



main turbine was not considered. The capacity which could be added in



this way, within the current state of the art on large turbines is



limited. Assuming a parallel peaking turbine permits sizing the capac­


ity addition at anything from zero to a very large peaking swing. A



small peaking turbine would simulate adequately any oversizing of the



main turbine in all respects but cost, which can be addressed



separately. A separate peaking turbine permits much greater operational



flexibility and offers improved availability if the peaking unit can be



powered directly from the boiler as well as from the TES system,
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Figure 5-1. 	 Sources of thermal energy for charging the


storage system.



Steam Generating TES Systems



From Figure 5-1 it is clear that diverting either live steam or



cold reheat steam t9 charge the TES system reduces the flow through



the reheater tubes. This creates an imbalance of flows through the



boiler and requires extensive modification of the boiler and additional



control equipment.



TES systems using High Temperature Water (HTW) as the storage



medium store hot water at saturation pressure (or higher). Thus',



charging steam must be desuperheated and condensed, generally with a



spray condenser, before storing, If the steam has significant super­

heat, this process results in a loss of availability and, consequently,



a reduction in system turnaround efficiency. For example, a crude cal­

culation of the turnaround efficiency for reference plant #1 indicates



that charging with hot reheat steam (280'C superheat) results in a



turnaround efficiency about 5 percentage points lower than charging
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with cold reheat steam (45C superheat). TES systems using other



storage media can make beneficial use of the superheat, but generally



the cost of a desuperheater heat exchanger more than offsets the



benefits gained.



As related in Section 4, pp 22-26, the reheater was eliminated in



plant #1 so that live steam or cold reheat (the output of the HP tur­


bine) can be used to charge storage.



Figure 5-2 shows a simplified flow diagram of plant #1 as modeled.



The main unit has 3600 rpm HP and IP turbines on one shaft and an



1800 rpm LP turbine on a separate shaft. The IP turbine is coupled to



the small, high-speed, HP turbine to provide inertia and simplify



over-speed control. The lower speed LP turbine is necessary to mini­


mize bucket erosion with wet steam. In order to simplify modeling,



the steam seal regulator and stop valve flows are neglected. The



steam flows to the combustion air preheat coils and the boiler feed



pump turbine are omitted and electrically driven feed pumps assumed.



The peaking unit, powered by steam from the TES system, uses 1800



rpm IP and LP turbines on the same shaft. Three feedwater heaters are



provided, primarily to permit moisture removal from the LP turbine.



Feedwater Heating TES Systems



The simplest form of feedwater heating TES systems simply heats



extra feedwater for storage as HTW during the charge cycle. During



the discharge cycle the stored feedwater is pumped to the boiler inlet



and an equal mass of cold feedwater removed from the feedwater heater



train, Figure 5-3 shows the flow diagram appropriate for these HTW



systems. In order to provide a valid basis for comparison, the basic



plant layout is identical to that used for the steam generating TES



systems, with the deletion of the peaking turbine and some lines.



Some of the sensible heat storage systems circulate feedwater



through heat exchangers to heat an intermediate heat transfer fluid,



such as oil or molten salt. During discharge the flow through the



heat exchangers is reversed and the feedwater is heated by the inter­
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mediate fluid rather than the standard feedwater heaters. Because of



the temperature drops inevitable with heat exchangers, these systems



require a small amount of steam flow to heat the intermediate fluid



above the final feedwater temperature. Figure 5-3 is also appropriate


for this type system. An alternative approach is to use extraction



steam to heat the intermediate fluid in a train of condensing heaters



comparable to the feedwater heaters. A separate set of heat exchangers



is required to heat the feedwater from the intermediate fluid during



discharge.



Plant #2 - Nuclear



Adapting the 1140 MW nuclear plant to operate with TES systems



involves much the same considerations as described for the coal plant.



Of course, the major difference is the lack of high pressure super­


heated steam in the nuclear plant. In fact the nuclear prime steam



supply is similar to the output steam from the HP turbine in plant #1.1



STEAM-GENERATING TES SYSTEMS. The major modification made to the



nuclear plant is the removal of the reheater preceding the LP turbine,



since control of the reheater under varying loads may present diffi­


culties. Figure 5-4 shows a simplified flow diagram of the modified



nuclear plant coupled with a steam generating TES system. This dia­


gram is essentially the same as that for plant #1 (Figure 5-2), with



the omission of the HP turbine and its associated feedwater heater.



This permits combining the main unit IP and LP turbines (both at 1800


rpm) on the same shaft. The peaking unit uses an identical arrange­


ment, and is essentially the same as that shown in Figure 5-2 except



that the feedwater return temperature is adjusted to match that of



the nuclear plant.



FEEDWATER HEATING TES SYSTEMS. Figure 5-5 shows the flow diagram



appropriate for the nuclear plant with HTW TES systems. It is also



applicable for sensible heat storage systems using the feedwater to



heat an intermediate fluid.
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Modeling Assumptions and Approximations



In order to provide the capability to rapidly evaluate the perform­


ance of the plants under various operating conditions, computer models



of the four basic flow diagrams shown in Figures 5-2 through 5-5 have



been developed. Each model consists of an executive program which



calls individual subroutines for each of the components in the system.



The component subroutines were developed by GE-Energy Technology Opera­


tion and utilize the computerized steam tables from the Large Steam



Turbine Generator computer library.



Because the primary emphasis in this study is to identify the



three most promising TES concepts, simple models are used. The goal



is to include all phenomena that would affect the relative ranking of



the various TES systems, but to omit complexities that would affect



all systems equally. It is important to bear in mind that the models
 


are not intended toduplicate existing equipment, but rather to be a



reasonable representation of future equipment capability.



In implementing this philosophy, numerous assumptions and approxi­


mations are made. The most important ones relating to the turbine



performance are:



" 	 Linear expansion line, ie,enthalpy is a linear function of



entropy through the expansion.



" 	 Pressure distribution is independent of steam flow rate,



therefore enthalpy at extraction ports is constant even when



large quantities of steam are diverted to charge the TES



system.



" 	 Separate moisture removal at the extraction ports is not



modeled.



* Turbine efficiency is constant independent of moisture content



and steam flow rate. Table 5-1 lists the efficiencies assumed.



" For the main unit LP turbines the enthalpy of the output steam



is increased by a leaving-loss correction to approximate the



effect of steam flow rate on heat rate or cycle efficiency.
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Table 5-1. Turbine efficiencies.



Main Unit Peaking Unit


HP and IP LP IP and LP


Turbines Turbine Turbines



800 MW Coal Plant 85 91.5* 85



1140 MW Nuclear 80 83 * 80


Plant



* These are modified by the leaving-loss correction


so that at normal rated output the effective


efficiencies are 85 and 80 percent respectively.



Figure 5-6 shows the leaving-loss correction curves used for



saturated steam, as a function of the exit velocity. The exit



velocity is calculated from the mass flow rate of the vapor as



e 3600 Ae



where



Me = mass flow rate (kg/hr)



ve = specific volume of saturated vapor (m3/kg)



xe = quality of steam


2).
A = turbine exhaust area (m
e 

The leaving-loss correction from Figure 5-6 is then modified



by an empirical relationship to account for the moisture



content as



Ahe = [0.35 xe+ 0.65 x2] Ahesat (5-2)



The moisture separators are assumed to remove all of the



moisture and put out saturated steam. For plant #1 the sepa­


rator input steam contains only 4 percent moisture so that



separator could probably be eliminated with negligible effect.



o The condenser pressures are assumed constant, independent of



steam flow. This implies a variable coolant flow rate as the



5-10 



I I I I I I I I I I 

200 - OPERATING POINT FOR 

DESIGN OUTPUT 


eNUCLEAR 

PLANT #2 
1140 MW 

Z
0oCOAL 

< /PLANT #1 
800 MW 

100 

0 

-J 1 I 4 %F 

030 I00 I000 


TURBINE OUTPUT STEAM EXIT VELOCITY, Ve (m/s) 


Figure 5-6, Leaving-loss correction for saturated steam. 




heat rejection requirements vary. However, auxiliary power



requirements for the cooling system are neglected.



Pressure drops in the system are assumed to occur at discrete
" 


locations - at moisture separators, deaerators, and at the



steam supply system.



" 	 The feedwater pumps are assumed to be 65 percent efficient and



all other pumps 60 percent. The generator efficiencies are



taken as 98.7 percent.



Performance Estimates for Plant #1



For the coal plant shown in Figure 5-2, the boiler produces 3.09 x



10§ kg/hr (6.81 million lb/hr) of supercritical steam at 24.25 MPa



(3512 psia). During normal operation of the main unit (TES system



inactive) the gross plant output is 849 MW, with a net output of 800



MW. The condenser heat rejection rate is about 1.03 GWth C3.52 x 109



Btu/hr).



Because the various TES systems differ greatly in the combinations



of steam and feedwater required for charging, the plant output during



the TES charge cycle is different for each one. However, a typical



example is useful at this stage. The sensible heat, steam-generating



TES systems divert intermediate pressure (IP)steam from the input of



the IP turbine, condense and cool it,and pump the condensate back to



the inlet of the high pressure feedwater heater. The HP turbine and



its associated feedwater heater are thus unaffected by the charging



operation. The maximum charge rate is determined by the minimum allow­


able flow through the IP and LP turbines. For this analysis it is
 


assumed that the minimum flow to the condenser is about 20 percent of



the normal design flow. Figure 5-7 shows the net output and condenser



heat rejection as a function of the steam flow rate into the TES sys­


tem. Note that the minimum output is about 385 MW, or 48 ,percent of



design output. The HP turbine accounts for about 300 MW, independent



of charging rate, with the remainder coming from the IP and LP turbines.
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Figure 5-7. Performance of plant #1 during TES charge cycle.



Performance Estimates for Plant #2



The nuclear steam supply of the modified nuclear plant shown in



Figure 5-4 produces 6.80 x 106 kg/hr (15 million lb/hr) of saturated



steam at 6.72 MPa (975 psia). During normal operation of the main unit



this produces 1166 MW gross output and 1133 MW net output. The con­


denser heat rejection rate is about 2.23 GWth (7.61 x 109 Btu/hr).



To charge the sensible-heat steam-generating TES systems, live



steam is diverted from the nuclear steam supply (NSS) outlet, condensed
 


and cooled, then pumped to the NSS inlet. Figure 5-8 shows the net



output and condenser heat rejection as a function of the charge steam
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Figure 5-8. Performance of plant #2 during TES charge cycle.
 


flow rate. Note that the minimum output is about 216 MW (corresponding



to a condenser flow about 20 percent of design flow). The nuclear



plant thus gives a mUch larger downward power swing than obtained with



the coal plant because the steam flow through all the turbines is



reduced.
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HIGH TEMPERATURE WATER TES MODELING



The proposed HTW system concepts all store water under adequate



pressure to prevent vaporization. They differ only in the design of



the containment vessel and the method of operating it. The design of



the containment vessel essentially influences only the thermal losses



during storage and the auxiliary power requirements. Since all methods



of containment can be designed to lose less than one percent of the



energy stored, thermal losses are neglected in the modeling. The



auxiliary power requirements may differ somewhat depending on whether



the vessel is located underground or on the surface. The density of



steam is so small'(about 1 lb/ft3 or 16 kg/m 3) that this difference



can be safely ignored for systems that transport steam in and out of



underground storage vessels. For systems that transport water the



auxiliary power may be significant. However, it is neglected here on


the assumption that any power used in removing water from storage can



be recovered from the water injected into the storage, with the



exception of pumping losses.



This leaves the method of operating the accumulator as the major



difference among the candidate TES systems. For steam generating sys­


tems all three accumulator modes (ie,variable pressure, expansion,



and displacement) are appropriate. For feedwater storage systems, no



steam iswanted, and the temperature and pressure of the-HTW dis­


charged should remain constant unless some steam extraction is used



for trimming between storage and the boiler inlet. The,displacement



mode would seem most appropriate if the means of containment issuit­


able for this mode. The expansion mode would require a large supple­


mentary storage for cold feedwater.



There-are numerous design parameters that affect the performance



and cost ofa combined power plant with a TES system attached.



Although it is l.ikely that an "optimum" (eg, minimum cost) set of



parameters exists for each combination of power plant and TES system,



no attempt is made to determine these optimum designs. Rather, one



plant-TES combination (the 800 MW coal plant with a Variable Pressure
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accumulator storage system) is selected for sensitivity analyses with



the major design parameters. A "good" setof parameter values is



chosen as the base case to be evaluated for all other system configu­


rations.



There are also numerous performance indices that can be used to



describe the various systems. For convenience in later work (and hope­


fully, also for clarity) the "turnaround efficiency" and "specific out­


put" are chosen as the primary measures of performance. Turnaround



efficiency is simply the ratio of the peaking electrical energy gen­


erated during the discharge cycle to the reduction of electrical energy



during the charge cycle. For these analyses, where constant power gen­


eration is assumed during each cycle, this becomes simply



(Pd -Pn)td 
I (Pn c)tc 5-3) 

where



Pd = power generation during discharge cycle (MW)



PC = power generation during charge cycle (MW)



P = power generation in normal operation (TES system
 


inactive)



td = discharge time (hr)



tc = charge time (hr). 

Specific output is the ratio of the total electrical energy generated



during the discharge cycle to the total volume of storage required to



produce it,or



(Pd- Pn)td . 103 kWh/m3 (5-4)



where Vs is the storage volume inm3.



Variable Pressure Accumulator - Plant #1



Figure 2-3 shows a schematic'diagram of a variable pressure accu­


mulator. When fully charged the cushion of saturated steam is a few



percent of the total volume. During discharge steam is drawn from the
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top, reducing the pressure in the vessel and causing some of the HTW



to flash to steam to restore equilibrium conditions. The temperature
 


and pressure in the vessel thus decrease steadily throughout the dis­


charge cycle. The throttle in the output line is necessary to control



the rate of steam generation and to provide steam to the turbine at a



constant pressure.



Recharging the accumulator is essentially the reverse process. In



order to return to the same conditions existing before the discharge,



the mass and total enthalpy added must equal the mass and total,



enthalpy removed. When charging with superheated steam from the coal



plant it is necessary to mix in a small amount of feedwater to obtain



the balance. Charging with saturated steam from the nuclear plant



requires removing a small amount of the stored water. The throttle in



the input line is simply to control the rate of charge.



Since the variable pressure accumulator is a non-equilibrium



thermodynamic process, it is modeled by assuming equilibrium processes



are valid for small changes in the storage pressure and temperature.



Thus the 'accumulator performance during discharge is evaluated by the



iterative computational procedure diagrammed in Figure 5-9. Figure



5-10 shows a typical discharge cycle for an initial storage pressure



of 4.65 MPa (675 psia).



During recharge the input steam is assumed to have a constant



specific enthalpy, so the model is much simpler. The differences in



mass and total enthalpy between the charged and discharged states are



calculated, thereby determining the specific enthalpy required in the


input steam. The enthalpy of the charging steam from plant #1 exceeds



the requirement, so the amount oF feedwater to be mixed with the charging



steam is calculated. The saturated steam from plant #2 does not meet



the required specific enthalpy, so some HTW must be removed from the



accumulator. The most efficient procedure would be to remove the HTW



before recharging. However, the amount is so small that the overall



TES system performance is not significantly affected by the technique



chosen. For convenience the HTW isremoved continuously during the



charging and returned to the inlet of the NSS.
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SENSITIVITY ANALYSIS. In order to select a reasonable combination



of design parameters, sensitivity analyses are performed for the 800



MW coal plant with a variable pressure accumulator TES system. A



tentative base case set of values is chosen for the critical param­


eters and the system performance evaluated. The parameter values are



then varied, individually and in combination, to determine the change



in performance. These are used together with a preliminary cost



analysis, and consideration for operational constraints, to define the



base case set of parameters for use with other systems. For some of



the key parameters it is unrealistic to select a single value, so a



limited range is retained. Table 5-2 lists the critical parameters,



the values selected for the tentative base case and the range of



values used in the sensitivity analyses.



Table 5-2. Design parameter values for sensitivity analyses.



Tentative Base . Range of Values 
Parameter Case Value for Analyses 

Charge Steam Pressure 4.86 4.86 and 1.19 
(MPa) (IPsteam) 

Storage Pressure 4.65 4.65 to 1.03 
(MPa) 

Output Throttle Pressure 2.24 2.41 to 0.52 
(MPa) 

Ratio of Discharge Time 0.75 1.00 to 0.37 
to Charge Time 

The choice of charge steam condition is limited to three discrete
 


values corresponding to the steam at the turbine inlets: 24.3 MPa,
 


5380C at the HP turbine; 4.86 MPa, 306% at the IP turbine inlet; and



1.19 MPa, 1880C at the LP turbine inlet (crossover). HP steam is



costly to store as HTW; at full pressure it could cost 3 to 6 times



as much for containment as IP steam. Throttling the steam to inter­


mediate pressures and removal of superheat loses available energy



which could produce electric output if it were passed through the HP



turbine. Use of LP steam necessarily implies low storage pressures,
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lower pressures in the steam generated, and consequently large low



pressure peaking turbines. The IP steam condition is selected as the



best base-case compromise between high-pressure high-cost storage ves­


sels, and low-cost storage with high-cost turbines, condensers, and



heat rejection systems. The LP steam is retained as a case to be



evaluated in verifying this selection. The HP steam case can easily be



rejected, since the benefits of HP and high temperature are obtained



from the HP turbine. Only the available maximum power swing is limited



by rejecting HP steam for charging.



In general the storage pressure should be as close to the charge



steam pressure as possible, since throttling to lower storage pressures



represents an unrecoverable loss. Hence the base case storage pressure
 


is chosen to be 0.21 MPa (30 psi) below the charge steam pressure. The



range listed in Table 5-2 includes storage 0.16 MPa (23 psi) below the



LP steam pressure. These storage pressures are chosen as round numbers
 


in the English System (675 and 150 psia) which represent reasonable



pressure drops from the charging steam.



In order to limit thermal stresses in the storage vessel due to



temperature cycling, the output throttle pressure is selected to permit



about a 400C temperature drop during discharge. For the 4.65 MPa stor­


age pressure the throttle pressure is varied between 2.41 and 1.72 MPa



(350 and 250 psia). Throttle pressures below these correspond to



lower storage pressures, and are chosen to be approximately one-half



the storage pressure. The accumulator is allowed to discharge until



the internal pressure drops to the throttle pressure. In practice it



could be discharged further, but the peaking turbines would then be



receiving reduced flow. This flexibility may be an operating advantage.



SENSITIVITY - CHARGE TIME. In selecting the ratio of discharge



time to charge time Cthe discharge/charge ratio) several factors must be



considered. The peaking turbines are assumed to be operating at their



design output, hence varying the output implies varying the size of the



peaking turbines. Because of this assumption the peaking unit steam



rate (kg steam/kWe) and efficiency are independent of the output. Thus
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the discharge time and rate affect the required stored volume, but not



the specific output or turnaround efficiency.



The main unit isassumed to be a fixed size operating at reduced
 


load during 	 the charge cycle. The leaving-loss correction effectively



modifies the efficiency as a function of steam flow through the tur­


bines. A glance at Figure 5-6 shows that there is a minimum steam flow



rate, and hence an optimum rate at which to charge the TES system with­


out loss of efficiency. As exit velocity and mass flow rate are



roughly proportional, a 30 percent decrease in mass flow (and in power



output) has little effect on efficiency but a much greater decrease in



mass flow would carry an efficiency penalty (see Figure 4-5). For a



given discharge period and peaking swing, eg 6 hours and 50 percent



swing, the optimum charging period may be longer than reasonably attain­


able for the utility daily load pattern ratio of off-peak hours to peak



hours. To explore this effect, daily charge periods of 6 to 16 hours



are considered for 6 hours charging, ie ratios of 1.0 to 0.37. A ratio



of 0.75 is chosen for the base case.
 


Table 5-3 shows the accumulator performance for the tentative base



case. This 	 is the same case as shown in Figure 5-10, except that the



discharge is stopped when the pressure drops 2.41 MPa to 2.24 MPa (325



psia). Figure 5-11 shows the net electrical output from plant #1 while



Table 5-3. 	 Variable pressure accumulator performance


for base case.



Charge

Output Steam Charge Steam Feedwater



Mass (fraction of


initial HTW 	mass) (R0) 0.1032 (RC)0.0955* 0.0077



Pressure (MPa) 	 2.24 4.86 29.51



Specific Enthalpy 2805.6 2956.1 947.6


(kJ/kg) (average)



Temperature (°C) 218.6 306.4 218.4


(average)



* To balance mass and enthalpy in the accumulator, feedwater 
from the inlet of the high pressure feedwater heater is


mixed with IP steam in the indicated ratio.
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charging and discharging the variable pressure accumulator. Note that



the discharge portion of the curve is a straight line with a slope of



0.186 kWh/kg independent of the swing in MW and the discharge time.



The specific volume of HTW saturated at 4.65 MPa is 0.00128 m3/kg



(steam tables). Using these numbers and the fraction of the stored



mass (and volume) that is converted to steam, 0.1032 (Table 5-3) gives



0.186 kWh kQ 
3 = 15 kWh/m 3 as the specific output from
kg 0.00128 m 0.1032 
 

storage. The peaking unit condenser heat rejection is 2.44 kWth/kWe
 


(Figure 5-10).



The charge portion of Figure 5-11 is non-linear so the turnaround



efficiency will depend on the peaking output and discharge time as well



as the charge time. The turnaround efficiency is calculated from the



data in Figure 5-11 and Table 5-3. The desired peaking output is



chosen and the corresponding discharge steam flow found in Figure 5-11.



The required charge steam flow is then computed as



td Rc


= WDtd) RD (5-5) 

where



WD= discharge steam flow (kg/hr)



RC = ratio of charge steam to initial HTW mass from Table 5-3



RD = ratio of output steam to initial HTW mass from Table 5-3.



The output during charging can then be obtained from Figure 5-11 and



used in Equation 5-3 to get the turnaround efficiency. For example, a



peaking output of 1040 MW (30 percent above the design output or a 30
 


percent peaking swing) requires WD = 1.30 x 106 kg/hr. Choosing



td/tc = 1 and using RC = 0.0955 and RD = 0.1032 from Table 5-3 gives



C = 1.20 x 106 kg/hr. This corresponds to an energy-cycle output of



532 MW and a turnaround efficiency of 89.6 percent.



Figure 5-12 shows the turnaround efficiency as a function of the



discharge/charge time ratio for several values of peaking swing. Fig­


ure 5'12 makes it clear that long charging times are desirable, par­


ticularly for large peaking swings. This is true simply because the
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main turbines 	 can operate closer to their "optimum" output when long



charging times are available. However, operational considerations



impose constraints that prevent extremely long charge times. A 6-hour



discharge time and an 8-hour charge time (corresponding to a ratio of



0.75) are chosen as representative of typical daily-load curves and are



used for all remaining calculations, bearing inmind that longer charg­


ing times would improve the efficiency.
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Figure 5-12. 	 Effect of discharge/charge time ratio


on turnaround efficiency.
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SENSITIVITY 	 - THROTTLE PRESSURE. Using a higher output-throttle
 


pressure increases the electrical output for a unit mass of steam, but



decreases the total mass of steam generated. Conversely, low throttle



lressures provide less output per unit mass but more total mass.



Table 5-4 lists the accumulator performance and specific output for



throttle pressures of 2.41 and 1.72 MPa (350 and 250 psia), with other



parameters set at the base case. Figure 5-13 shows the turnaround



efficiency as a function of throttle pressure for several values of



peaking swing. From these results it is apparent that the higher



throttle pressure results in less throttling loss and a higher turn­


around efficiency. The heat rejection requirements are also reduced,



permitting a less expensive condenser. However, the specific output is



reduced so a larger storage vessel is necessary. Preliminary cost



analyses indicate that the minimum cost system occurs for throttle



pressures lower than 1.72 MPa (250 psia).



Table 5-4. 	 Variable pressure accumulator performance


for varying throttle pressures.



Throttle Pressure (MPa)

2.41 1.72 

Output Charge Charge Output Charge Charge 
Steam Steam Feedwater Steam Steam Feedwater 

Mass (percent 9.45 8.74 0.71 13.14 12.15 0.99 
of initial 
HTW mass) 

Pressure 2.41 4.86 29.51 1.72 A.86 29.51 
(MPa) 

Enthalpy 2805.8 2956.1 947.6 2804.6 2956.1 947.6 
(kJ/kg) (average) (average) 

Temperature 222.2 306.4 218.4 207.1 306.4 218.4 
(0) (average) (average) 

Specific Output 
(kWh/m3) 13.88 18.17 

Peaking Unit 
Hfeat Rejection 2.40 2.61 
(kWt,/kWe) 
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Figure 5-13. 	 Effect of throttle pressure on


turnaround efficiency.



SENSITIVITY - STORAGE PRESSURE. Reducing the storage pressure



reduces the unit cost of the storage vessel, but increases the throt­


tling losses if the source of charge steam remains the same. The first



two columns of Table 5-5 list the important accumulator performance



parameters for storage pressure of 2.41 and 1.03 MPa (350 and 150 psia)



when charged with IP steam. For comparison purposes the throttle pres­


sure is chosen as one-half the storage pressure. Figure 5-14 shows the



turnaround efficiency as a function of the storage pressure for several



values of the peaking swing. Besides the two pressures listed in Table



5-5, the value for a storage pressure of 4.65 MPa and a throttle pres­


sure half as big (2.33 MPa) can be derived from Figure 5-13. The



slight change from 2.24 MPa to 2.33 MPa gives specific output as 14.44


kWh/m3 and condenser heat rejection as 2.42 kWth/kWe
.
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Table 5-5. Variable pressure accumulator performance


for varying storage pressure.



Storage Pressure (MPa)


2.41t 1.3 1 03T 

Output Steam 
Mass (percent of initial 7.62 5.81 5.81 

HTW mass) 
Pressure (MPa) 1.21 0.52 0.52 
Enthalpy (kJ/kg) 2797.9 2767.1 2767.1 
Temperature (°C) 192.0 158.8 158.8 

Charge Steam Mass (percent 7.02 5.26 5.75 
of initial HTW mass) 

Charge Feedwater Mass 0.60 0.55 0.06 
(percent of initial 
HTW mass) 

Specific Output (kWh/m 3) 10.24 6.57 6.57 
Peaking Unit Heat Rejection 2.85 3.60 3.60 
(kWth/kWe) 

* 	 Charge steam and feedwater conditions are the same as 
those shown in Tables 5-3 and 5-4. 

t Charge steam pressure and enthaloy are 1.19 MPa and

2787.4 kJ/kg respectively. Charge feedwater pressure and


enthalpy are 1.19 MPa and 798.3 kJ/kg.
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Figure 5-14. Effect of storage pressure on turnaround efficiency.
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It is clear from Figure 5-14 that the throttling losses incurred



by charging with IP steam are significant for the lower storage pres­


sures. One method of avoiding such losses is to expand the charging



steam through the IP turbine rather than a throttle, ie, to charge



with steam from the crossover. The third column of Table 5-5 lists



the accumulator performance parameters for a 1.03 MPa storage ,pressure
 


when crossover steam is used for charging. Note that the output



related parameters are identical to those for the same accumulator



when charged with IP steam. The resulting turnaround efficiency is



shown in Figure 5-14 for peaking swings of 15 and 30 percent. Note



that for small peaking swings the efficiency is essentially the same



as that achieved with storage pressure of 4.65 MPa (675 psia). How­


ever, it falls much faster with increased swing, because all of the
 


swing is now accomplished in the LP turbine, causing it to operate



further from the optimum output.



In summary of the sensitivity analyses, the very low storage pres­


sures are not an attractive option unless charged with crossover steam.



This limits the storage pressure to either 4.65 or 1.03 MPa (675 or



150 psia), or values reasonably close to these. The lower storage and



throttle pressure dictate very large peaking turbines and condenser.



The base case throttle pressure is chosen to be one-half of the stor­


age pressure, but excursions below that are retained to permit evalu­


ating the effect on system costs. The base case cycle is assumed to



be 6 hours TES discharging and 8 hours charging. Two values of peak­


ing swing (15 and 50 percent) are retained. The lower one permits a



comparison of all systems on equivalent terms and the higher one shows



the effect of large swings on those systems that are capable of them.



Variable Pressure Accumulator - Plant #2



A briefer analysis with fewer excursions from a base case i§



described. The highest steam pressure available in the nuclear plant



(Figure 5-4) is 6.72 MPa (975 psia). The storage pressure is chosen



as 6.21 MPa (900 psia). During charging of the accumulator a small



amount of the stored HTW is removed and pumped to the nuclear steam
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supply inlet. Table 5-6 lists the accumulator performance parameters



for output throttle pressures of 3.10 and 2.59 MPa (450 and 375 psia).



Figure 5-1-5 shows the plant electrical output as a function of steam



flow for the charge and discharge cycles. The resulting turnaround


efficiencies for 15 and 50 percent peaking swings are included in


Table 5-6. It should be noted that the maximum charge rate permits



peaking swings in excess of 75 percent.



Table 5-6. 	 Variable pressure accumulator performance


with plant #2 - LWR.



Output Throttle Pressure (MPa)


3.10 2.59 

Output Steam 
Mass (percent of initial 11.30 13.57 
HTW mass)

Pressure (MPa) 
Enthalpy (kJ/kg) 
Temperature (0C) 

3.10 
2800.4 
235.7 

2.59 
2801.6 
225.7 

Charge Steam Mass (percent
of initial HTW mass) 11.46 13.77 

Mass of HTW Removed (per­
cent of initial HTW mass) 0.16 0.20 

Specific Output (kWh/m 3) 15.39 17.88 
Peaking Unit Heat Rejection

(kWth/kWe) 
2.40 2.52 

Turnaround Efficiency 
15 percent swing
50 percent swing 

93.0 
90.0 

90.0 
87.0 

Expansion Accumulator



Figure 2-4 is a schematic representation of an expansion accumula­

tor with the output HTW used in flash evaporators. When fully charged


there is a small steam cushion on top of a large volume of HTW, as in


the variable pressurelaccumul~ator. During discharge, HTWis.withdrawn


from the bottom of th&'storage vessel, lowering the internal .pressure.


the steam cushilon expands and some of the remaining HTW flashes to



steam to restore equilibrium,. The temperature and pressure in the


vessel decrease steadily throughout the discharge cycle but not as


much as in a variable pressure accumulator. In this mode of operation
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Figure 5-15. 	 Output of plant #2-1140 MW nuclear plant ­
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nearly all of the stored HTW can be withdrawn for external steam genera­


tion.



The HTW removed from the accumulator is throttled to a lower pres­

sure in a flash evaporator. The output steam is then used in a peaking



turbine. The evaporator drain water can be pumped into the main tur­

bine feedwater loop, stored, or throttled to a still lower pressure in



another flash evaporator. Any number of evaporators may be used, but


this requires multiple peaking turbines or a multiple inlet turbine.



To recharge the accumulator a mixture of steam and feedwater is


admitted to the storage vessel, gradually raising the pressure and tem­


perature until the initial charged condition is reached. Because of



the latent heat of steam the mass flow of feedwater greatly exceeds



that of steam in the charge mixture.



In many respects the thermodynamic processes in the expansion



accumulator are similar to those in the variable pressure accumulator.



Thus the modeling approach is similar. The performance during dis­


charge is evaluated using the iterative procedure shown in Figure 5-16.


Figure 5-17 shows a typical discharge cycle for an initial storage



pressure of 4.65 MPa (675 psia). Note that the final pressure, with


all the HTW removed from storage is about 70 percent of the initial



storage pressure. A large fraction of the HTW can be removed with very



little pressure and temperature drop. For recharging, the mix of feed­


water and steam required is calculated by a mass and enthalpy balance


between the charged and discharged conditions. It is assumed that the



mix remains uniform during the entire charging process, although this



implies that initially the feedwater will flash to steam and be recon­


densed later in the cycle as the internal pressure rises.



Early in the study consideration was given to using a combination



of steam generation and feedwater supply with the expansion accumulator



(Section 3, Selection 1). The drain from the final flash evaporator is



pumped into the feedwater loop at a point where the temperatures match.



This scheme requires a sizeable surge/storage tank to accommodate the



cold feedwater replaced by the drain water from the evaporators. The
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Figure 5-16, 	 Computational procedure for discharging


expansion accumulator.
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Figure 5-17. Typical discharge cycle for expansion accumulator.
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peaking swing is also severely limited because the discharge rate of



the accumulator is restricted by the boiler feedwater flow. In fact



the maximum swing is not much greater than for a pure feedwater storage



system. For this reason the concept is dropped from further considera­


tion and all analyses assume that the evaporator drain water is stored



in a supplementary storage vessel at an intermediate pressure.



PLANT #1. Table 5-7 lists the performance parameters for an expan­


sion accumulator with a storage pressure of 4.65 MPa (675 psia) charged



with IP steam and feedwater from the inlet of the high pressure heater.



Data are shown for systems using 1, 2, and 3 flash evaporators. In all



cases the drain is stored at a pressure slightly above that of the



final evaporator. The third evaporator is chosen to operate at 0.16



MPa (23 psia) so that the drain water can be stored at low pressure.



It requires a large low-pressure turbine and condenser which likely



offset any cost savings due to the low pressure drain storage.



Table 5-7. Expansion accumulator performance with plant #1.



Number of Evaporators 1 2 3 


Output Steam Mass (percent 

of initial HTW mass) 


2.24 MPa (325 psia) 8.45 8.45 8.45 

1.21 MPa (175 psia) - 6.12 6.12 

0.16 MPa (23 psia) - - 12.20 

Drain Water Mass (percent 
of initial HTW mass) 

89.44 83.31 71.11 

Drain Storage Volume (percent 
of accumulator volume) 

83 74 59 

Charge Steam Mass (percent 
of initial ITW mass) 

7.67 13.43 24.48 

Charge Feedwater Mass (per­
cent of initial HTW mass) 

Specific Output (Kwh/m3) 

90.22 

11.33 

84.46 

18.92 

73.41 

28.26 

Peaking Unit Heat Rejection 
(kWth/kWe) 

2.44 2.60 3.50 

Turnaround Efficiency 
15 percent swing 
50 percent swing 

88.0 
81.8 

84.3 
78.3 

68.8 
* 

* Maximum peaking swing is 40 percent with efficiency 
of 64.6 percent. 
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PLANT #2. Table 5-8 lists performance 'parameters for an expansion



accumulator with a storage pressure of 6.21 MPa (900 psia) charged



wifh live steam and feedwater from-the boiler inet The drains are ­

again stored at a pressure slightly above that of the final evaporator.



Table 5-8. Expansion accumulator performance with plant #2.



Number of Evaporators 1 2


Output Steam Mass


(percent of initial HTW mass)



3.10 MPa (450 psia) 8.84 8.84


1.21 MPa (175 psia) - 9.70 

Drain Water Mass


(percent of initial HTW mass) 78.65


Drain Storage Volume



83 68
(percent of initial HTW volume) 
 

Charge Steam Mass


(percent of initial HTW mass) 8.67 18.57


Charge Feedwater Mass


(percent of initial HTW mass) 88.52 78.62


Specific Output (kWh/m 3) .0-87_-21- 31-

Peaking Unit Heat Rejection



2.40 2.74(kWth/kW) 
Turnaround Efficiency


15 percent 86.4 79.6


50 percent 83.4 76.6



DisplacementAccumulator



Figure 2-5 shows a schematic representation of a displacement



accumulator with the output HTW used in flash evaporators. When fully



charged the storage vessel is full of HTW at slightly above saturation



pressure. During discharge HTW iswithdrawn from the top of the ves­


sel and throttled to one or more flash evaporators. The drain from



the final evaporator is pumped to the bottom of the vessel, creating a



sharp temperature gradient (thermocline) between the HTW and the drain­


water. If care is taken to avoid mixing, the thermocline can be main­


tained reasonably sharp. Because some steam has been produced and the



drain water has a lower specific volume than the HTW removed, water at



the drain temperature is required from a supplementary storage tank to



keep the accumulator full. Note that the temperature and pressure of
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the output HTW are constant throughout the discharge until the thermo­


cline reaches the top of the tank.



To recharge the accumulator, cold water is circulated from the



bottom of the tank, mixed with charging steam and returned to the top



of the tank, pushing the thermocline down. Because of the steam added



and the increased specific volume, excess cold water must be removed



and returned to the supplementary storage. In general the mass of



water returned to storage during charging is not equal to that removed



during discharge.



Modeling the accumulator is relatively straightforward since only



equilibrium thermodynamic processes are involved so no detailed



description is given. All that is required is to maintain a mass,



volume, and enthalpy balance. The thermocline is assumed to be per­


fect; thermal losses and pressure drops are neglected.



The thermal stresses introduced by the motion of the sharp thermo­


cline can be a serious problem. This imposes a limit on the tempera­


ture difference across the thermocline, which restricts the allowable



pressure drop in the evaporators and the quantity of steam generated.



A combination of steam generation and feedwater supply is not appro­


priate for the displacement aacumulator. From the preceding descrip­


tion it is clear that the accumulator would be providing feedwater



during the charge (off-peak) cycle and requiring excess feedwater



during the discharge or peaking cycle.



PLANT #1. Table 5-9 lists the important performance parameters



for a displacement accumulator with a storage pressure of 4.65 MPa
 


(675 psia) charged with IP steam. Data for systems with 1 and 2 flash



evaporators are included. A comparison of Table 5-9 with Table 5-7



indicates that the displacement accumulator gives slightly higher



turnaround efficiency and specific output than the expansion accumula­


tor. It also requires a smaller supplementary storage tank.



PLANT #2. Because the results for a displacement accumulator with



the coal plant are so similar to those obtained for an expansion



accumulator, no evaluation was performed for the nuclear plant.
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Table 5-9. Displacement accumulator performance with plant #._o



Number of Evaporators 1 2 

.
Output Steam Mass 


(percent Of initial HTW mass) 

2.24 MPa (325 psia) 10.57 10.57 

1.21 MPa (175 psia) - 6.12 

Supplementary Storage Volume 
(percent of initial HTW volume) 

17 
17 

26 
2 

Charge Steam Mass 
(percent of initial HTW mass) 9.56 15.21 

Temperature Difference Across 
Thermocline (0C) 

40.4 70.1 

Specific Output (kWh/m3) 13.90 21.30 

Peaking Unit Heat Rejection
(kWth/kWe) 

2.44 2.60 

Turnaround Efficiency 

15 percent Swing 88.8 85.2 

50 percent Swing 83.0 79.4 


Feedwater Storage Systems Modeling



HTW feedwaterstorage -systems-are -jus-t-what-the-name-ffrn-ib'.-
During the charge cycle excess feedwater is drawn from a cold storage 


reservoir, heated in standard feedwater heaters by extraction steam, 


and stored in a pressure vessel just above the saturation pressure. 


When extra electrical output is required, the stored HTW is pumped td 


the boiler inlet, replacing a part of the normal feedwater. This



reduces the extraction steam flow, allowing more steam to flow,through



the entire turbine and producing extra power. No large steam turbine



is currently capable of operating with all (or most) of the extraction



steam-shut off, The maximumjpeaking swing is estimated by various



authors and proponents at 6 to 35 percent. Some assume quite low boiler



inlet temperatures (Selection #5), others assume very high boiler inlet



temperatures (Selection #8) in part accounting for the variance. Con­


ventional ,near-term available plants are most likely to be limited to



under 20 percent.



A displacement accumulator or a two-tank system are suitable for



feedwater storage. Since boiler quality feedwater should not be



exposed even to inert gases, the "cold" tank of a two-tank system



should be near 100C with a steam cushion. Except for the thermal
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stresses developed in the displacement accumulator there is essentially



no other difference between the two, so a two-tank system is modeled



here. In order to handle the extra steam flow during peaking operation,



the exhaust area of the main turbines in both the coal plant and the



nuclear plant are increased by 25 percent, giving a slightly increased



output at the design flow rates.



Table 5-10 lists the performance for both the coal and nuclear



plants as shown in Figures 5-3 and 5-5. The maximum peaking swing for



both plants is about 17 percent. Both plants achieve very good turn­


around efficiency and high specific output.



Table 5-10. Performance of feedwater storage systems.



Plant #I - Plant #2 -
800 MW Coal Plant 1140 MW Nuclear Plapt 

Increase in Output at Design Flow 
(percent) 1.2 0.9 

Maximum Peaking Swing 
Percent Above Output at 

Design Flow 
Percent Above Nominal Output 

17 
18.3 

17 
18.0 

Temperature Difference Cold to 
Hot (°C) 188.8 146.3 

Specific Output (kWh/m 3) 40 30 

Heat Rejection (kWth/kW) 
Maximum Charge Rate 0.90 1.85 
Design Flew 1.26 1.94 
Maximum Peaking 1.57 2.04 

Turnaround Efficiency at 15 Per­
cent Swing Above Design Flow 88.0 90.8 
Output 

Summary



Table 5-11 presents a summary of the HTW TES systems for easy



comparison. It is interesting to note that there are no significant



differences in the TES system performance between the coal plant and



the nuclear plant.



The parameters common to data in the summary should be recalled.



All are for 6 hours discharge, 8 hours charge (or D/C = 0.75). The
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Table 5-11. Summary of HTW systems.



Plant #1- 800 MW HSC Plant #2 - 1140 MW LWR


Turnaround Turnaround


Efficiency Efficiency



Steam Specific (percent) Steam Specific (percent)


Pressure Output Swing Pressure Output Swing



Concept (MPa) (kWh/r 3) 15 50 (MPa) (kWh/m 3) 15 50



Variable Pressure 2 41 13.9 95.4 89.2


Accumulator 2.24 15 0 94 2 88.0 3.10 15.4 93.0 90.0



1.72 18.2 89.7 83 6 2.59 17.9 90.0 87.0


0.52 6 6 70(94) <65



Expansion Accumulator


I Evaporator 2.24 11.3 88 0 81.8 3.10 10 9 86.4 83.4


2 Evaporators 2.24,1.21 18.9 84.3 78.3 3.10,1.21 21.3 79.6 76.6


3 Evaporators 2.24,1.21 28.3 68.8 <63



0.16



Displacement 
Accumulator


1 Evaporator 2.24 13.9 88.8 83.0


2 Evaporators 2.24,1.21 21.3 85.2 79 4



Feedwater Storage 40 88.0 - - 30 90.8 

charge steam pressure for plants #1 and #2 are 4.86 MPa (705 psia) and 

6_72 -MPa (-975 -ps-a-. There-is one exceptin.-Wh -ic soer team at 

1.16 MPa (168 psia) is used as charge steam, the turnaround efficiency



is the higher value shown in parentheses (last line of variable pres­


sure accumulator data).



ONE-BAR TES SYSTEMS MODELING



The "one-bar" or atmospheric pressure thermal energy storage sys­


tems are characterized by the use of low vapor pressure (LVP)fluids as



a heat storage medium, as a heat transfer fluid to a solid phase for



heat storage, or in both roles. The primary requirements on the fluid



are its low vapor pressure at the temperatures of interest,which per­


mits containment in conventional atmospheric pressure steel tanks,



large heat capacity, sufficiently low viscosity, and stability under



repeated heating/cooling cycles.



In Sections 2 and 3, a number of sensible heat storage concepts



employing low vapor pressure fluids were described which differed in



the configuration and mode of operation of the storage system itself.



The point was made in the preliminary screening discussion that there
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is a large degree of independence between the heat exchangers which



interface with the utility power plant and the tankage which contains



the heat storage medium. Thus, with the same interface and mode of



use of stored thermal energy, the storage system can be configured as



multiples of variously sized liquid-filled tanks or of packed-bed



thermocline tanks operated such that the void volume is kept filled



with fluid or is drained once the unit has been charged to its upper



temperature. In modeling these systems, it is found that the nature



of the interface with the power plant (ie,the design of the heat
 


exchangers) and the physical properties of the heat transfer fluid



dominate the power-related aspect of the TES system and that these



factors are significantly decoupled from the configuration and mode of



operation of the heat storage units which dominate the energy-related



aspect of the system.



The two ways of utilizing the stored energy in these sensible heat



systems are the same as those investigated for the high temperature



water (HTW) systems: feedwater heating, allowing the main turbine to



operate with reduced extraction thereby generating additional power



during peak demand periods; and steam generation, employing the stored



heat to generate steam for admission to a separate peaking turbine



when demand rises. The one-bar, sensible heat systems differ from the



HTW systems in that provision must be made to keep the heated medium



physically separate from the working fluid by the use of appropriately



designed heat exchangers.



Steam Generation Systems Modeling
 


Thermal energy stored as sensible heat in a fluid or fluid plus



solid medium during the off-peak or charge phase of a load cycle can



be used to generate steam for admission to a separate peaking turbine­


generator to provide increased power during the on-peak or discharge



phase. The virtually complete decoupling of the main and peaking tur­


bines results in flexibility of equipment design and operation for the



charge and discharge phases. An essential part of the analysis of



these concepts is to investigate their performance and cost as a



function of certain primary design parameters. 
 541 



GENERAL CONCEPT DESCRIPTION. In the most general sense, thermal



storage steam generator systems consist of a train of three heat



exchangers (desuperheater, condenser, subcooler) which serve as a



storage heater, and transfer enthalpy from the charging steam supply



to the storage medium; tankage, piping, and pumps to circulate the



heat transfer fluid between heat exchangers and storage; and a train



of three heat exchangers (preheater, boiler, superheater) which serve



as a steam generator and from which steam is fed to the peaking tur­


bine. Some obvious variants are possible. If the charging steam is



superheated, the desuperheater heat exchanger may be replaced by an



attemperator or spray desuperheater; if saturated, the steam may be



admitted directly to the condenser. Similarly, the steam generator
 


output may be taken directly from the boiler if saturated steam is



desired or may be superheated if that is economically preferable.



PRIMARY DESIGN VARIABLES. The qualitative temperature relation­


ships among the charge steam, the storage medium, and-tbe-generated_ -­

steam are displayed in Figure 5-18. The highest temperature profile



represents the charge steam; in general, the major part of its total



enthalpy decrease occurs as the latent heat of condensation is trans­


ferred to the storage medium at saturation temperature.



The intermediate sloping line represents the heat transfer fluid


to the storage system, which may also be the storage medium. As long



as the temperature dependence of the heat capacity of the storage



medium is small, its temperature profile can be represented by a line



of essentially constant slope, indicating that all the energy trans­


ferred to it is in the form of sensible heat, ie,no phase change



occurs. A useful choice of the two parameters required to specify the



position of this line is the temperature difference between it and the



hot end of the condenser, and its slope. The temperature difference



specifies the fluid temperature approach or "pinch point," and is a



result of the effectiveneas of the heat exchangers, The slope speci­


fies the temperature swing of the storage medium and depends on the



mass flow ratio between the heat transfer fluid and the charge steam;
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Figure 5-18. 	 Sensible heat storage:


representative temperature profiles.
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a large ratio corresponds to a smaller slope and a smaller fluid temper­

ature swing than isthe case with a small ratio.



- The impact of the position of the-fliid temperature profile line


on the character of the steam that can be generated is evident from


the solid and broken lines inthe figure. Note that, for a given


boiler inlet temperature approach, the large mass flow ratio (solid


lines) permits a higher generated steam temperature (and pressure) than


does the smaller mass flow ratio (broken lines), since the pressure is


the saturation pressure at the boiling temperature. Although superheat­

ing may produce almost the same output steam,temperature inthe two


cases, the available energy of the steam isgreater inthe higher



pressure case.



The-conclusions to be drawn from this qualitative discussion are


that once the configuration of this kind of system is known (charge



steam properties, choice of storage medium, etc), the key parameters


-which-define-the thermodynami-c-perfarmance-f-fi§ys em arethW­

values of the temperature approach at all heat exchanger pincIh points


and the ratio of the quantities of heat storage fluid and charge steam


involved. Once these parameters are specified, the properties and



flow rate of the generated steam can be determined.



COMPUTATIONAL PROCEDURES. The unique element inthe thermodynamic


modeling of the steam generator systems isthe quantification of the


temperature profiles shown in Figure 5-18. The results sought are the


characteristics of the output steam: its properties and normalized



flow rate, ie,kg of discharge steam per hour per kg of charge steam


per hour for a given charge/discharge time ratio. These enable speci­

fication of the performance and design requirements for the storage


heater and steam-generator heat exchangers and, combined with the


downswing performance of the main turbine during the charge phase and


the upswing performance of the peaking turbine in the discharge phase,


permit specification of the turnaround efficiency, system size pa'am­

eters and costs.
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Heat Exchangers. Figure 5-19 displays a generalized system diagram


with the main components and state points (nodes) identified. TES



charging,steam is admitted at node 1, where a three-way option exists:



if the steam is superheated, it may flow through either a desuper­


heater (node 2), or an attemperator Cnode 2') where it is mixed with



return feedwater (node 6); if the steam is saturated, it is passed



directly to node 2". The steam/water states and flow rate at nodes 1



and 7 are the primary independent variables. The state at nodes 2 or


2" is saturated at the node I pressure, If an attemperator is speci­


fied, the intensive properties at 2' are the same as those at 2, but



the flow is increased by the factor 1+ (h1 -h2)/Ch2 - h6) as a result 
of feedwater added from node 6, where the h's represent specific



enthalpies and the subscripts identify the node.



At the condenser outlet, node 3, the state is saturated water at


the pressure and temperature of node 2. This condensate is subcooled



at node 4 to a state such that the temperature at the feedwater return



pump output, node 5, matches that specified for the main cycle feed­

water return, node 7. As is the case throughout this section, feed­


water pumps are assumed to have a constant efficiency of 60 percent.



Intensive properties are identical at nodes 5, 6, and 7; the flow



rates, however, depend on whether water is diverted to the attempera­


tor, node 6, as discussed above.



The temperature profile of the counterflowing heat transfer fluid


(nodes 10 to 13) is determined as a function of the two major param­


eters of the system: temperature approach, a, and fluid to charge



steam mass flow ratio, Mc' For the selected approach, the fluid



temperature at the hot end of the condenser, T12, is T2 -a, where T2


is the steam condensation temperature at node 2. This represents the



specified pinch point as described in connection with Figure 5-18.



The fluid temperatures at nodes 10, 11, and 13 are now determined by



equating the enthalpy change in each segment of the steam profile with


the enthalpy change in the corresponding segment of the fluid profile.



For example, for a fluid where heat capacity, cp, is independent of
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temperature (eg, molten salt mixtures such as HITEC): h -h2 = 

Cp(T 13-T1 2)Mc where hl and h2 are steam-specific enthalpies at nodes 

1 and 2 and TI3 and TI2 are fluid temperatures at nodes 13 and 12; 

whence TI3 = T12 + (h1 -h2)/CpM c . 

Similarly, for fluids whose heat capacity may be represented as:



cp = cI +c2T where c1 and c2 are constants (eg, heat transfer oils



such as Caloria HT-43), the equivalent relationship is:



T c + T\2 + 2(h I-- (5-6) 
13 cc T12) Mcc c2 

The identical method is applied to determine the remaining fluid



temperatures, T10 and Tll. This completes the specification of the



steam/water and fluid states in the storage heater as appropriate for



the charge, phase of the cycle. The performance specifications of the



three heat.exchangers are now determined. In each case, the capacity



rates of the two streams are defined as the product of the mass flow



rate and the heat capacity. In general, the main heat capacity of the



steam/water stream in an exchanger is best calculated as the enthalpy



change diviied by the temperature change, while that of the fluid



stream is best evaluated at its mean temperature, Tm. Since for



charging, the steam/water stream is the hot stream and the fluid is



the cold stream, we have



Ch = Wc Ah/AT (5-7)



Cc = Wfc cp(Tm) (5-7a)



where Ch and Cc are the hot and cold capacity rates, Wc is the charge



steam mass flow rate, and Wfc or Mc. Wc is the fluid mass flow rate.



Note that in the condenser, because of the isothermal phase change,



the hot stream capacity rate becomes infinite.



The capacity rate ratio, R, is defined as Cmin/Cmax ,where those



quantities are the minimum and maximum of Ch and Cc, respectively. If



a phase change occurs, R is zero.
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The effectiveness (6)- number of thermal units (Ntu) method is



used to characterize the heat exchangers. Basic theory (Reference
 


236) defines the effectiveness as<



Ch (THi -TH2) - Cc CTc2TCl) (5-8)


Cmin CTHl -Tc)


= min CTHl -T 1 ) 


where the temperature subscripts designate hot streamtor cold stream



(H,C respectively) and inlet or outlet (1,2 respectively). The



number of thermal units relates the UA-product to Cmin:



(5-8a)
Ntu = UA/Cmin 

where 	 U = overall heat transfer coefficient: kJ/(m• h - K) 

A effective heat transfer area. 

For counterflow heat exchangers, it can be shown that



1 In I-ER 	 (5-9)
Ntu 
 1-R 
 1-
 ' 

which reduces to (-ln(l - e)) for phase change exchangers where R = 0. 
Thus, the capacity rates and temperatures which characterize a heat 

exchanger determine the UA-product, and an independent calculation of 

U determines the effective area required, hence the size and, with 

other specifications such as design type and operating pressure, the 

cost of the exchanger. 

Overall heat transfer coefficients, U, were estimated by standard



methods (Reference 215, Section 10) from inside and outside film



coefficients, constant fouling resistances, and steel tube-wall con­


duction assuming nominal 2.5 cm (1 in.) outside diameter tubes of



0.4 cm (0.15 in.) wall thickness. Film coefficients were calculated



using Colburn (i-factor) correlations for forced convection under con­


ditions of fully turbulent flow. In general, standard tabulated



values were used for film coefficients of water or steam as tube-side



material, and film coefficients were calculated for the various heat



transfer fluids or shell-side material flowing normal to staggered



tube banks.
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Once the quantification of the storage heater performance is com­


plete, the cal-culation proceeds to determine the comparable values for



the steam generator. Given the state of the feedwater returned from



the peaking turbine (node 30), the problem is to find the maximum boil­


ing temperature that can be developed (node 31) by the available sup­


ply of hot fluid stored at TI3 = T20. In principle, the boiler temper­

ature, T31' is at the intersection of the peaker feedwater heating



curve (nodes 30 to 31) and a line below the fluid temperature profile



by the amount a to account for the specified temperature approach at



the boiler inlet (see Figure 5-18). If the heat capacities of both



substances were constant, both lines would be straight and their inter­


section could be determined directly. Since this is not the case, an



iterative computation is necessary. An initial boiler temperature is



assumed and the temperature of the heat storage fluid at the correspond­


ing node 22 is calculated by enthalpy balance over the preheater. If



the difference between the assumed T31 and the calculated T22 differs



from a by more than an arbitrary allowable error (0.028°C or O.050°F



was used), the value of T31 is altered and the calculation is repeated.



The algorithm used employs the first two trials to extrapolate an



estimate, usually adequate, based on the assumption of constant heat



capacities. When necessary, further estimates of T31 are obtained as



the mean of the current T31 and T22 -a and the process is repeated.



Once T31, the boiler temperature and its saturation pressure are



known, the remainder of the discharge steam profile is calculated



directly. If saturated output steam is desired, the discharge steam



flow rate is determined by the requirement for an overall enthalpy



balance, with the fluid being cooled to its original temperature, T10 ,



in preparation for another cycle. If superheated output steam is



--desired, its temperature is assumed to be a below the hot fluid tem­


perature, TI3, and again the overall enthalpy balance determines the



now somewhat smaller discharge steam flow rate.



Mass conservation of the heat storage fluid, given the relative



duration of the charge and discharge phases, establishes the fluid
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flow rate on discharge, Wfd" This flow rate, the discharge steam flow



rate, and the temperatures at the nodes of the steam generator permit



computation of the performance characteristics CR, c-, Ntu, and UA) in



an entirely analogous manner to that described for the charge heat



exchangers.



In summary, the calculation described defines the quantity and



characteristics of the output steam that can be generated per unit of



specified charge steam for a given temperature approach and fluid-to­


charge-steam mass ratio. The heat transfer area of all the exchangers



involved is also determined.



The complete concept analysis of the steam generator type of TES



system requires two additional kinds of calculations: one defines the



power swings of the composite (main plus peaking unit) steam plant as



a function of the charge and discharge steam flows, and the other pro­


vides the sizing and costs of the heat storage medium. The first cal­


culati-n-is-accompl -shed-by-the-set-of-computer-c-do--whh--model the



various steam cycles and plant configurations; these are described



earlier in this section. The related up- and downswings of system



power and the relative duration of the charge and discharge phases



determine the turnaround efficiency of the storage cycle.



Energy Storage. For the base case, the energy storage calculation



assumes the use of rock and gravel packed-bed thermocline tanks with a



bed volume fraction of 0.75, operated in the filled mode so that the



fluid volume fraction is 0.25. Cost sensitivity excursions about the



base case are made by varying the bed volume fraction from zero, ie,



an all-fluid storage medium with no packed-bed, to unity, ie,an "all­


bed" or drained-tank storage medium.



The weight fraction of rock in the storage medium, xr is given,by
, 
 

YrPr 

Xr yyrPr + (-y)p 
 (5-10) 

-0r f
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where 	 yr = volume fraction of rock in storage medium
 


pr'pf = density of rock, fluid taken at mean cycle temperature.



The specific enthalpy change of the dual media when cycled between the



discharged (low) temperature and its charged (high) temperature is then



Ahm = xr Ahr + (]-xr) Ahf 	 (5-11) 

where Ahr Ahf are the specific enthalpy changes of the rock and



fluid, respectively, between the same limiting temperatures, calcu­


lated by integrating the heat capacity expression with respect to



temperature.



Given the total energy (enthalpy) to be stored, AH, as determined



by the duration of charging and the heat flow, the total weight of



storage medium required is then AH/Ahm , from which the weights and



volumes of the rock and fluid components are directly calculated. The



sum of the component volumes, based on each component's density at the



high storage temperature, determines the total tankage volume.



Cost Estimating. Relationships were developed for the three main



components of sensible heat storage systems: the heat exchangers, the



tanks, and the heat storage media. Two costing approaches were used



for the 	 heat exchangers: the method given by Guthrie (Reference 216)



and a simplified expression derived from feedwater heater cost data



contained inthe NUREG-0241/2/3/4 reports (References 92,93,211,212).



Guthrie's method estimates a base cost as a function of heat transfer



area and 	 modifies this by factors reflecting design type, tube pres­


sure, shell pressure, shell/tube materials, cost escalation, and



installation labor and material factors to obtain direct costs. The



simplified expression takes account only of heat transfer area and



design pressure, and takes the form
 


6
C = 300 	 (A/929)0.67 (P/6.9)0 . (Metric)

4067 	 (5-12)(English)



= 300 (A/104)
0 67 (P/10 3)0'

6 
 

where 	 C = heat exchanger direct cost (thousands of 1976 dollars)
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A = heat transfer surface area m2 (sq ft)



P = design pressure MPa (psia).



Comparison of the two cost formulations for the types and sizes of heat



exchangers required indicates that they are in good agreement for design



pressures below about 5 MPa (700 psia), but that the pressure dependence­


of the simple formula is too extreme above this value. Consequently, the



simple formula is used at the lower pressures and the Guthrie approach
 


at the higher. In the analysis, individual heat exchangers were limited



in size to a maximum surface area of 2800 m2 (30,000 ft2) per unit. This



is achievable in a counterflow, tube and shell unit of 1.8 m (6ft) o.d.



and 14.6 m (48 ft) length using 0,025 m (1 in.) tubes with a triangular



pitch of 1.25 times the tube diameter. The cost of multiple units, when



needed, is taken as the same multiple of the unit cost.



The cost of storage tanks is based on the estimating relationships



given by Guthrie (Reference 216) for large, field erected, welded stor­


age tanks with conical roofs to API specifications. Assuming a nominal



size tank as 40m(131.2 ft) in diameter and l0m(32.8 ft) high with a



capacity of 12,190 m3 (430,000 ft3), an estimate of the cost of insula­

tion was made and incorporated as a constant factor for tanks of all



sizes. The direct cost of the nominal size tank was found to be



$295,700 in 1976 dollars; when required, multiple tanks are costed as



multiples of the unit cost.



PARAMETERS OF SYSTEM PERFORMANCE. In the analysis of TES systems
 


appropriate for plant #1, intermediate pressure steam is used to charge



the storage system for reasons having to do with the design and opera­


tion of the furnace, the boiler, and the HP-turbine, as discussed



earlier in Section 5. This IP-steam is at 306'C (5840 F) and 4.86 MPa



(705 psia). Saturation temperature at charge steam pressure is 262°C



(5040F), so there is about 440C C800F) of superheat. Condensate is to
 


be subcooled to 217'C C423°F) before being pumped back to boiler entry



pressure.



Because of the relatively low maximum temperature encountered in



the cycle, a hydrocarbon heat transfer oil such as Exxon's Caloria



HT-43 is the fluid of choice on the basis of its high heat capacity
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to cost ratio, given that its operating temperature range is not



exceeded. Thus, the baseline system configufration to be investigated



for plant #1 employs Caloria HT-43 as the heat transfer fluid, and



rock-bed thermocline tanks with a 75 percent bed volume, operated



filled with oil as the heat storage--medium to reduce the system cost



below that of an all-oil system.



Once the charge steam and system configuration are defined, the



remaining parameters are temperature approach, a, and fluid to steam 

flow ratio, Mc* These quantities are varied systematically, a between 

2.8% (5°F) and 11.10C (200F) in steps of 2.8°C, and Mc between about 

8 and 20 (subject to the limiting values which correspond to slopes of 

the--oi-l- temperature profile which violate the specified temperature 

approach at one or another pinch point). In addition to the a and 

Mc variation, the computation is performed for two system configura­

tions; one employing a desuperheater heat exchanger, and one with a 

spray desuperheater or attemperator. For each case, the output data 

comprise the state variables of the steam or water and the heat trans­

fer oil at each system node, and the effectiveness, number of thermal



units, and UA-product of each heat exchanger.



Figures 5-20, 5-21, and 5-22 display the results of this analysis



by showing the discharge steam pressure, the (normalized) discharge



steam flow, and the turnaround efficiency, respectively, as a function



of the oil to charge steam ratio, Mc for various values of the temper­
, 
 

ature approach, a. Note that the discharge steam pressure (as a mea­


sure of thermodynamic availability) increases with Mc:, as the fluid


temperature profile becomes more nearly horizontal, the boiling tem­


perature and saturation pressure increase. It decreases with a: as



the fluid profile is depressed, the boiling temperature decreases.



The discharge to charge steam ratio of Figure 5-21 displays a com­


pletely inverse dependence as itmust to satisfy the constant enthalpy



change condition: recall that all these results derive from the same



flow of charge steam of a specified state, and differ only in the heat
 


exchanger (a)and the oil flow rate Mc). As is to be expected, the
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Figure 5-20. 	 Output steam pressure, p, versus


fluid/charge steam ratio, Mc

'



turnaround efficiency of the storage process, Figure 5-22, parallels



the thermodynamic availability of the steam; a large oil,-to-charge­


steam ratio and a small temperature approach makes for a more efficient,


albeit a more 	 expensive, system.
 


SELECTED SYSTEM CHARACTERISTICS. Comparing the parameterized sys­


tems under constant conditions of 50 percent swing, 8-hour charge, and



6-hour discharge periods, and taking account of the cost of both the



main and peaking plant components, a minimum cost system configuration



can be selected to represent the sensible heat storage, steam genera­


tion class of TES systems. The parameters of the selected system are
 


summarized i-Table 5-12 and of its heat exchangers in Table 5-13; the
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Figure 5-21. 	 Discharge/charge steam ratio, Rd,


versus fluid/charge steam ratio, Mc.



Table 5-12. Selected system characteristics.*



Configuration: Charge steam attemperator



Heat transfer fluid: Oil (Caloria HT-43)



Temperature approach 5.60C (10.OF)



Oil to charge steam ratio: 15



Storage unit. Filled thermocline tanks,


granite gravel packed bed,


bed volume fraction 0.75



Charge steam rate: 2.0 •0 6 kg/hr (4.4 106 lb/hr)



Discharge steam rate: 2.2 106 kg/hr (4.9 , I06 lb/hr)


pressure: 2.02 MPa (292 psia)



temperature* 251-C (484°F)



Turnaround efficiency: 83 percent



Storage tanks: 16 units


diameter: 42.5 m (139 ft)


height: 12.7 m (42 ft)


volume* 18.1 103 m3 (48 106 gal)



Gravel (total). 560 . 106 kg (616 1O3 tons) 
3

Oil (total), 	 57.5 " 103 m (15.2. 106 gal) 

* For 8-hr charge, 6-hr discharge, 50% swing, Plant #1. 5-55 
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Figure 5-22'. Turnaround efficiency, n, versus 

fluid/charge steam ratio, Mc* 

Table 5-13. Selected system heat exchanger characteristics.*



Required Area er Unit 
Unit Effecti'veness Number C10 3 m2) (103'ft 

Condenser 0.882 35 2.78 29.9 

Subcooler 0.851 5 2.74 29.5 
Preheater 0.947' 5 2.89 31.1 
Boiler 0.867 30 2.52 27.1 
Superheater 0.873 51 1.99 21.4 

For 8-hr charge, 6-hr discharge, 50% swing, Plant #1.
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temperature profiles of the system are shown in Figure 5-23 along with


the steam/water state points. Direct cost of all heat exchangers is


30.6 million dollars;-of the storage tanks and media, 28.2 million



dollars.
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Ftgure 5-23. Temperature profile for selected system example,
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Feedwater Heating Systems
 


Of the various configurations identified as concepts, the one



chosen for modeling is thermodynamically simplest and involves the



smallest number of special components (heat exchangers), but would



have a number of practical drawbacks if actually implemented. As



modeled, however, it should be the least expensive version of this



type, and so should compete most favorably among alternative systems.
 


The application described here is evaluated for plant #2, the 1140 MW,



LWR.



SYSTEM DESCRIPTION. The system employs Caloria HT-43 oil as a



heat transfer medium and rock and gravel packed-bed thermocline tanks



kept filled with oil as the heat storage medium. As shown in Figure



5-24, cold oil is drawn from the bottom of the tanks at temperatures



below 930C (2000F) during the charge (off-peak) phase of the cycle,



and is passed through a separate circuit in the feedwater heaters or



separate train of heaters of similar design in parallel, with the nQr­


mal-feedwter return flow, where it is heated by the increased flow



of extraction steam caused by its presence. The oil circuit enters



the feedwater heater chain above the lowest pressure heater (which is



physically located in the condenser), where the feedwater is at about



80C (177°F), passes through five heaters in series, and leaves the



highest pressure one at 2270C (440°F), the same temperature as the



feedwater being returned to the nuclear steam supply system. To



increase the oil temperature above this point, it is passed through a



"trim heater" fed from the main steam line at 283°C (5410F) where its



temperature is raised to 238°C C460°F) to ,provide for the 110C (200F)



temperature approach assumed for the discharge heat exchanger.



From the trim heater, the hot oil is directed to the top of a



discharged thermocline tank where it transfers its heat to the rock
 


bed as it flows downward, leaving as cold oil to repeat the circuit.



During the discharge (on-peak) phase of the cycle, the turbine's



output power is increased by diverting a fraction of the return feed­


water flow from its normal path through the extraction heaters to the
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S-y_stem _discharge heat exchangers, where it is heated to boiler
_3 
 

entry temperature in countercurrent flow against the hot oil drawn



--fromatop of charged thermocline-tanks. A separate feedwater pump



in the diverted flow line raises the pressure to its boiler entry



value of 8.3 MPa (1200 psi).



SYSTEM PERFORMANCE. The calculations referred to here are based



on maximizing the power swing of the main turbine. As the fraction of



feedwater to be reheated by the hot oil increases, that which passes



through the regular extraction heaters decreases until a point is



reached at which the feedwater flow is incapable of accepting the



enthalpy of the flow from the moisture separator (following the IP



turbine exhaust) without violating the fixed boiler-feedwater-input



conditions. This effect is increased by the fact that the reduced



feedwater flow leads to reduced extraction of flows from the IP tur­


bine which in turn result in a larger quantity of wet steam at the IP



turbine exhaust and a consequent increase in the amount of separated



moisture.



Assuming the discharge heat exchanger to be characterized by the



same 110C (20F) temperature approach at both ends, this limit is



reached at a feedwater flow of approximately 5455 Mg/h (12 million lb/



hr) heating by the oil and 1364 Mg/h (3million lb/hr) heating in the



extraction heaters, At this point, the limiting discharge power swing



is +17.6 percent and the requisite oil flow rate is 10,100 Mg/h (22.27



million lb/hr). To heat enough oil for the assumed 6-hour discharge
 


period during the assumed 8-hour charge period requires a downswing in



power of -15.4 percent, corresponding to a turnaround efficiency of



85.3 percent.



SYSTEM CHARACTERISTICS. The heat exchanger characteristics



required for this feedwater heating system can be derived from the hot



and cold stream temperatures and flow rates indicated by the thermo­


dynamic model of the system. From these data, the heat exchanger



effectiveness, number of thermal- units rating, overall heat exchange



area, and cost are determined; the results are presented in Table 5-14.
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Table 5-14. Heat exchanger characteristics for plant #2


feedwater heating system.
 


Discharge Phase Charge Phase Charge Phase



Heat Exchanger Feedwater Heater Extraction Heaters "Trim" Heater
 


Hot Stream Fluid Oil Condensing Steam Condensing Steam 

Temp., inlet, 0C (0F) 238 (460) 107-234 283 (542) 
(224- 453) 

outlet, °C (°F) 92 (198) 86-193 238 (460) 
(187 -379) 

Flow, 106 (kg/hr (lb/hr)) 10.14 (22.3) 0.48 (1.06)a 0.13 (0.28) 

Cold Stream Fluid Water Oil Oil



Temp., inlet, °C (OF) 81 (178) 92 (198) 227 (440)



outlet, °C (°F) 227 (440) 227 (440) 238 (460)



Flow, 106 (kg/hr (lb/hr.)) 5.45 (12.0) 7.59 (16.7) 7.59 (16.7)



Capacity Rate Ratiob 0.987 0.0 0.0



Effectiveness 0.929 0.948 0.197



Number of Thermal Units 12.06 2.95 0.22



Overall Heat Transfer 
Coefficient U,U/m2 C 483 522 522 

(Btu/h ft2 . F) (85) (92) (92) 

Heat Transfer Area,

103 (m2 (ft2)) 164 (1750) 28 (300) 2.3 (25)



Direct Cost, N$ (1976) 19.490 3.306 0.311



aTotal flow to five extraction-steam oil heaters.



bThe minimum capacity rate stream ineach case isthe cold stream.



The discharge oil-to-feedwater heat exchanger is larger and more



expensive than the charge unit for three reasons: it is a sensible



heat exchanger between two condensed fluid phases operating under



almost balanced conditions (capacity rate ratio 1
1) rather than a



latent heat exchanger taking advantage of a phase change; it is sized



for the higher flow rate of the six-hour discharge portion of the



cycle rather than the eight-hour charge portion; and the overall heat



transfer coefficient for the water-oil interface is less than that



for the condensing steam-oil case. Another factor accounting for the



much greater cost of the discharge heat exchangers is the 8.3 MPa



(1200 psi) pressure rating as compared with the graduated pressures of



the charge heaters ranging downward from 6.7 MPa for the small trim
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heater to 3.0 MPa at the last extraction heater and less than 140 kPa



at the first heater. Cost estimates of these heat exchangers are



based on data and procedures presented by Guthrie (Reference 216),



employing multiples of a basic module having 2800 m2 (30,000'ft2) of
 


heat exchange surface,



The energy storage components of this system are rather modest by



comparison with the heat exchangers. Assuming packed rock bed thermo­


cline tanks with a 25 percent void volume filled with oil, the require­


ment is for 123 106 kg (136 - 103 tons) of gravel for 2.05 M$;


3
 .
14.4 103 kg (3.8 . 106 gal) of oil for 2.89 M$; and 63.5 103 m
 

(16.7 106 gal) of tankage for 1.53 M$; for a direct cost of 6.47 MS.



ECONOMIC MODELING



The objective of economic modeling (really cost modeling) is to



put together the costs of the components of the TESS concept configu­

rations being compared, along with the costs of required modifications



of-the-peak-ing turbine and-other-Turbine-I-sland accounts, in--a un-iform-­


procedure for comparative evaluation. The parameter for economic com­


parison is the incremental cost in dollars per kilowatt ($/kW)



incurred in adding the TESS to the modified reference plant. That is,



the sum of all increments of capital cost is divided by the increment



in peaking capacity that is provided.



As discussed in Section 4, in connection with Tables 4-2 and 4-5,



results will be presented at the TOTAL Cost level with all adders,



compatible with the $/kW costs given in EPRI's TAG (Reference 172)


for other generating capacity. At the component level it is convenient.



to start with direct costs (installed costs), and convert to TOTAL



Costs for the system level using the factor given inTable 4-2.



The use of $/kW givds a convenient comparison independent of size


of plant and th6 magnitude of the peaking swing added to the reference



plant. It will of course vary somewhat with economies of scale. For



comparability of costs with other forms of storage it is instructive to



separate the system cost into a portion that is power related and a
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portion that is energy related. The former includes the cost of the



peaking turbine (or incremental costs for modifying the main turbine),
 


and heat exchangers, evaporators, pipes, pumps, etc which are energy­


flow and mass-flow dependent. The latter includes the costs propor
 


tional to the energy stored such as the storage media, and tanks or



containment. Using the nomenclature:



CT = Total costs charged to TESS concept, $/kW 

CES = Energy related costs of storage, S/kWh 
C = Power related costs of storage, $/kW 

Cpp = Costs of incremental power capacity, $/kW 

H = Equivalent number of hours of storage discharge at 
full rate 

CL = A capital cost equivalent of the turnaround efficiency, 
S/kWh (CL * H in $/kW will be called L) 

the system cost is: 

CT ($/kW) = (CPS + Cpp) + (CES + CL) H (5-13) 

The first term is the power-related cost, Cp. The costs of the



incremental Turbine Island capacity are separated from storage costs
 


because they are in general independent of the internal details of the



TES system and common to a number of concepts that have the same inter­


face parameters between TESS and the baseline plants.



The second term is the energy-related cost, CE. If the energy
 


stored can supply the incremental turbine capacity for H hours, mul­


tiplying by H converts this term to $/kW also.



The customay comparison of storage systems is in terms of capital
 


costs and turnaround efficiency separately. For a fairer and easier



comparison, a way of expressing the energy loss from the turnaround



efficiency as a capital cost term is derived in this section. Since



the energy lost per kW of capacity is proportional to the hours of



discharge, it is properly Dart of the energy related cost.



Cost Comparisons with Baseline Plants



Turnaround efficiency, as the ratio of the electricity generated



from stored thermal energy divided by the electricity not produced
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because of the diversion of thermal energy to storage, clearly



requires thermodynamic comparisons between the daily electric output



attainable with the baseline plant operated in its normal mode and



the same plant operated with a daily charging and discharging of



storage. The term baseline plant, rather than reference plant, is


used here to indicate the reference plants modified as described in



Section 4 to model and meet the needs of storage.



Significant technical modifications were made, such as elimina­


tion of reheat, which modify thermodynamic performance, but not, it



is believed, enough to modify the ranking of concepts to be compared.



Similarly, the cost elements of the baseline plant will not be



identical to those of the reference plants as defined in Tables 4-1



through 4-5. Itwas pointed out that the elimination of reheater



tubes should significantly reduce the cost of the coal-fired steam



supply, and hence that of the Fixed Plant. At the same time the mass
 


flow of steam through the turbine set must increase-to produce the -­


same electric output, so the cost of many parts of the Turbine Island



will increase. To a first approximation these cost differences cancel



and can be neglected for this comparison.



The cost of the IP and LP turbine are particularly affected by the



increase in mass flow, since the costs of the condenser, the heat



rejection system (cooling towers), the feedwater heaters, and the tur­


bine itself are all roughly proportional to the energy- or mass-flow



through them. The electric plant and some miscellaneous parts of the



Turbine Island (eg Instrumentation and Control) are not flow sensitive,



so partially mitigate the cost increase in $/kW for the Turbine Island.



For flow increases of 10 to 20 percent for the nuclear and coal-fired



reference plants, as estimated in Section 4, the cost increase in the



Turbine Island for the baseline plant will be only 6 to 12 percent.



This will be neglected, and the cost elements in Section 4 will be



used. This assumption is not likely to alter rankings and is cer­


tainly favorable to storage, since the peaking turbine costs will be



related to the baseline system Turbine Island costs through the ratio



of peaking turbine flows to baseline system flows.
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BASELINE PLANT - $/MWH. The cost of electricity in a baseline



plant in its normal (non-storage) mode is:



-COE CFixed + CVariable ' CF 10+6 C$/MWh) (5-14)
8760 • CF ; PMW 
o=(CFixed + 103bi (5-14a) 

or -(+ Cvariable) 8.76 PMW



where CFixed are the annual fixed costs in M$
 


CVariable are the annual variable costs in M$


-(for 1.00 capacity factor)



CF is the capacity factor or fraction of the rated
 

annual energy output that is produced.



It was indicated in Section 4 that the availability or maximum



capacity factor achievable was assumed as 0.723 for reference plants 1



and 2. If a baseline or reference plant is used for load following it



is convenient to separate the availability from the capacity factor:



F = CF/0.723



Where F is the fraction of the avaiale energy oroduced. As an 

example, referring to Table 4-5, plant #1: 

C 110.3 + I15.7F 106 = 21.77 +22.83 ($/MWh) 
COEBaseline 8760. 0.723 F 800 F 

(5-15) 
or a minimum of 44.60 $/MW when F = 1.0. 

BASELINE/TESS PLANT - $/MWH. In a plant incorporating storage, a



specific cost of electricity can be similarly derived, assuming a cycle



of operation of storage charge and discharge that corresponds to the



capacity factor CF, or the factor F defined above. The TESS plant will



be assumed to use the Fixed Plant components at the maximum availabil­


ity level, ie operating at full rated output whenever available.



The Turbine Island components are augmented by the addition of a



peaking turbine, similar to the tandem IP and LP turbines of the main



turbines of the baseline plant, or its equivalent in increased capacity



of the main turbines. As discussed earlier in this section, the nor­


malized parameters describing the magnitude of the peaking addition is
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called the swing, power swing, upward swing: for example a swing of



0.5 or 50 percent would be 400 MW inthe 800 MW baseline plant. It



should be noted that in this -plant the 400MW is not 50 percent of the


main IP and LP turbine but of the total turbine complement including



the HP turbines. In the baseline plant, the HP turbine output isover



300 MW because of the increased mass flow of steam. Thus, the 400 MW



peaking turbine isalmost as big as the 500 MW main IP-LP turbines.



The parameter p will be used to express the swing as a fraction.



The TESS plant will include all the capital equipment of the base­


line pl'ant, plus the additional costs of the TESS system and the peak­


ing turbine. The cost of electricity inthe storage mode is:



CFixed + CVariable * CF + C1 CS I06 ($/MWh) (5-16)
COETESS = 8760 -CF • PMW (I-C2)



where CS = (Cpp+CPS)+CEs -H,the sum of storage components in $/kW. 


.- C-is-the-constant-de-d-tf6-convert the storage cost components 


to annual costs inMS. For the 800 MW baseline plant, this isthe 


of pPMW/1 000 
product , the peaking capacity inGW; the fixed charge 


rate, 0.18; the factor to include fixed O&M, 1.032; and if CS is in 


direct costs, the factor 2.16 to convert to the TOTAL cost level. If 


the storage costs are already converted to TOTAL costs, as will now be 

assumed inthis analysis, the last factor will be omitted, and 


Cl = 0.149. 

The denominator of Equation 5-16 represents the annual energy out



of the baseline/TESS plant. The fixed plant isassumed to operate at



its maximum availability so that CF is0.723. The electric energy out


of the peaking turbine is



E = CPMw 
 0.723
(H/?4) *8760 (5-17)
 

and electric energy lost during storage charging isE/.. Therefore C2, 

the fractional reduction inplant output due to the turnaround effi­
ciency is I1) p - (H/24). Retaining C2 for the moment but cy2

inserting other values for plant #1 from Equation 5-15 gives:
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110.3 + 115.7+0.149 CS p 106



COETESS = 8760. 0.723. 800 (1 -C2) 

= (21.77+22.83+0.0293 CS p)/(l-C 2) ($/MWh) (5-18)-


If both baseline and TESS plants are to operate at the same capac­


ity factor, load following daily with the same ratio of peak output to



average output, then p and F are related: 


Peak Power for ba-eline + for TESS (5-19) 
Average Power (0 a 1
-

For COEBASELINE = COEBASELINE/TESS (S/MWh)



21.77 + 22.83 21.77+22.83+0.0293 CS -p (5-20)-

F (1-C 2 ) 

=21.77 (F ) + 22.83 - 22.83 C2 - 21.77 - 22.83 0.0293 CS p (5-21) 

21.77 p-22.83 (1- -1I) pH/24 0293 CS P ($/MWh) (5-22)1743- 2.8 0 1- H/2 =0.0.093-C S $Mh (5-23) 

= 743-32.0-H-(-) = 743 -CL H ($/kW TOTAL cost) (5-23) 

It will be recognized that the first term is the specific capital



cost ($/kW) of the reference and baseline 800 MW plant (Table 4-2).



The breakeven cost of the storage components must not exceed this value
 


less a loss term, L, previously called CL. H. Thus, for breakeven:



=
C= CS+CL• H (Cpp+ Cps) +(CEs+32.0(1-I)) -H= 743 (5-24)



By similarly using the data on Reference Plant #2, the 1140 MW 

nuclear plant, the breakeven cost snd value of CL are: 

C = (Cp+Cp) + (C +28.5 (1I)) H = 785 (5-25) 

T Cpp P) (ES T 

CAVEATS. The above analysis has accomplished two objectives: It



has derived a loss term, L, with dimensions of $/kW that will assist



in comparing TESS that differ both in capital costs and in turnaround



efficiency. It has also set a breakeven cost or target value to be
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met by TESS plants if they are to be preferred over load-following



base load plants.



Not much importane -should--be-placed-on the 5ecoad dbjective at 
this time in the study. The goal of this task is the comparison of


TESS concepts with each other. Non-economic factors may make TESS or


other storage systems preferable to load-following with large base


load plants. The assumptions made include in the TESS turnaround effi­

ciency the reduction in turbine efficiency at low load; the correspond­

ing effect in a load-following plant is not included since the variable


costs are assumed linear with capacity factor.



Peaking Turbine Cost Accounts



Costs for the peaking turbine and all associated power related


equipment must be derived that are consistent with the cost data for


the reference plants and for the other TESS costs derived in this


section. The peaking turbine capacity is the largest power related


-comporit-f-TESS-cost. 
 InTable 4-4, the combination of accounts


for the Turbine Island on Plant #2, 1140 MW nuclear, gave a direct


cost of 167 $/kW. For Plant #1, 800 MW-HSC, by separating out a por­

tion of those accounts associated with the high pressure turbine, a


similar cost of T64 $/kW was derived for the remaining IP-LP turbines


and other accounts of the Turbine Island. 
 At the Total Cost level


these are both 354 $/kW. This coincidence probably results from com­

pensating effects of economies of scale favoring the nuclear plant,


and better steam quality favoring the coal-fired plant.



Itwas noted that modifications made to'the steam cycle for the


baseline/TESS plants, such as eliminating reheat, would probably


increase these turbine costs by 6 to 12 percent, but that this would


be neglected, as common to all TESS concepts considered.



The Turbine Island configuration is considered the prototype for


the peaking turbine; the same 354 $/kW will be used if the peaking


turbine is operated under steam conditions comparable to the main tur­

bine. However, the different TESS concepts considered and the differ­
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ent parameters explored within each concept will alter the steam con­


ditions for the turbine, hence alter its design to produce the desired



output. This effect must be considered in the comparison of concepts.



For HTW storage concepts in which part of the water is flashed to



steam during storage discharge, saturated steam at about constant



pressure and temperature is delivered to the oeaking turbine., A



throttle between storage and the turbine assures the constant pressure



for constant turbine output. This constant, throttled pressure must



be lower than the HTW storage pressure. The lower the pressure the



larger the fraction of the HTW that can be flashed to steam, and the



higher the storage density in kWh/meter3. But the lower the saturated



steam pressure, the greater the steam mass flow rate required per



kilowatt of electric output from the turbine generator. .The cost in



$/kW of a number of the cost elements of the Turbine Island are almost



directly proportional to the mass flow. As the turbine inlet pressure



decreases, the specific cost of the peaking Turbine Island will



increase.



There is a similar decrease in the turbine inlet pressure from



charge steam used for storage in a sensible heat storage system, eg



oil/rock, and the discharge steam deliverable from the storage output
 


heat exchangers. In this case, however, TESS design may provide some



-superheat in the reduced pressure steam delivered to the turbine.



Only a rough estimate of 1the variation of peaking Turbine Island



specific cost can be derived, as detailed turbine plant redesign and



costing for each input steam condition is not feasible for this



screening.



FLOW DEPENDENT ACCOUNTS, Between the extremes of considering the



peaking Turbine Island costs as constant in $/kW and as proportional



to the enthalpy flow per kilowatt at the condenser (hence roughly also



in the cooling towers and feedwater train) is the more rational course



of allocating the cost accounts to these extremes or some intermediate



level.
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The cost of the generator and the whole electric plant account #24


is clearly constant per kW (ie independent of steam quality). Table



5-15 indicates the relevant cost accounts for plants #1 (800 MW HSC)


and #2 (1140 MW Nuclear), the direct costs in M$, the specific costs



in $/kW (direct cost), and designates by A, B, C the share of each


that is allocated to the HP turbine account (800 MW plant only)-, the



peaking turbine plant, and the peaking electric plant.



Table 5-15. Cost account allocation.



Account Plant #1 Plant #2



_A B C (M$) B -C 

21 Struct. & Improv.


213 Turbine Bay 1.8 5.0 1.0 9.0 2.8


218 Misc. Struct. 1.4 0.2 5.8 0.3



23 Turbine Plant


231 Turbine Gen. 7.9 11.9 11.8 41.4 20.0


233 Condenser 8.9 15.0


234 Feedwater Htr. 10.8 15.0



-- 23X-Mi--cr-Au-x. -T0'4F 3.5 14.0 5.9
-

24 Electric Plant 7.3 21.6 39.4



26 Heat Rej. Eq. 12.0 21.6



Sum-Direct Costs 17.0 60.4 38.1 121.8 68.A



98.5 190.2


TOTAL Costs $/kW


23A HP Turbine 184


23B Peak. Turbine 217 227


24C Peak. El. Plant 137 127



Sum 354 354



Fraction 0.613 0.387 0.641 0.359



The result of the tabular analysis in Table 5-15 is that the elec­

tric plant component of c6st, which is roughly constant in $/kW, is


-between 35 and 40 percent of the total, andthe flow dependent account


23B is 60 to 65 percent of the total. Thus, if for some input steam


condition at the peaking turbine inlet the enthalpy flow to the con­


denser per kilowatt hour is double that for the main turbine steam
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conditions, the incremental cost of peaking power capacity should be


estimated at 1.63 x 354 or 577 $/kW.



FLOW DEPENDENCE ON STEAM CONDITIONS. For the 800 MW baseline



plant, cold reheat steam, which feeds the main IP turbine and is used



to charge storage, is at conditions 4.8 MPa C700 psi), 307% (583°F),



2946 kJ/kg (1269 Btu/Ib). Similarly, the 1140 MW nuclear plant steam



condition, used for the main turbine and to charge storage is,6.8 MPa



(980 psi), 283°C (541°F), 2765 kJ/kg (1191 Btu/lb). The latter is



saturated, the former has about 450C of superheat.



Both for HTW storage and reconversion to steam by evaporators,and



for sensible heat storage in oil, rock, molten salts, etcthere is a



drop in pressure from the charge steam to the discharge steam. For a



reasonable specific output (in kWh electric per cubic meter) the drop



is at least two to one. When, to increase specific output, two- or



three-stage evaporators are used, the pressure drop may exceed ten to



one. Each factor of two drop in pressure decreases the work output



available per kg of steam by a roughly constant amount. Thus, steam



expanding from 10 MPa to 10 kPa (afactor of 1000 is about 210) will



produce about 10 percent of its work output for each factor-of-two



pressure drop. A mass flow of steam that enters the turbine at half



the pressure will produce about 10 percent less power output.



Computer calculations of steam flow through the peaking turbine



can give a better estimate of the power output per kg/hr of steam or



its inverse the kg of steam per kWh output. This is a function of the



steam input conditions expressed as pressure and specific enthalpy



(kJ/kg), or its equivalent using temperature, degrees of superheat, or



steam quality as a parameter, Figure 5-25 is derived from such runs



for the plant #1 peaking turbine. The output scale is given both as



the enthalpy flow through the condenser and heat rejection system per



kWh of peaking output and as the equivalent estimated TOTAL cost of the



incremental power capacity, Cpp, in $/kW. The dashed line minimum



indicates a constant $/kW, and the maximum indicates the extreme if the



turbine cost were exactly proportional to the enthalpy flow. Both
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Figure 5-25, 	 Specific cost of peaking Turbine Island for plant #1


as a function of throttle pressure.



saturated and 	one example of superheated steam input are given to show
507



the effect of superheat on cost.



Figure 5-26 is the equivalent display for the plant #2 peaking



Turbine Island.
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Figure 5-26. 	 Specific cost of peaking Turbine Island for


plant #2 as a function of throttle pressure.
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SECTION 6



COMPARATIVE EVALUATION



In this section the preliminary selections described in Section 3



are compared, principally on performance and cost criteria. There is



a large cost difference between alternative forms of containment and



storage media, and therefore in the specific cost of TESS in dollars



per kilowatt. All else being equal, the lowest specific capital cost



C$/kW) and the lowest specific energy cost C$/MWh) are to be preferred.



The next section will address the less quantitative criteria to evalu­


ate where they have sufficient impact to alter the rank order on



strictly economic criteria.



COMMON ASSUMPTIONS



For comparability, the candidate concepts selected, #1 to #12,



must be evaluated on a common basis of assumptions. Many of these



have been explicitly or implicitly stated earlier. In brief review,



the major assumptions are:



" The methodology for comparing alternative forms of generation



capacity is that described in the EPRI Technical Assessment



Guide CTAG), (Reference 172, 1977). This includes use of



TOTAL costs (see Section 4), a fixed charge rate for levelizing



annual capital costs, and a levelizing factor to derive uniform



annual fuel costs and O&M costs for assumed escalation



scenarios.



" 	 The total eost of reference plants, and plants #I and #2 as



modifi d to suitably interface TES systems, are based on the



cost data in TAG. So are fuel costs, and O&M costs. Detailed



cost accounts for the subsystems and components of plants are



derived from a series called Commercial Electric Power Cost



Studies, prepared for ERDA and the Nuclear Regulatory Commis­


sion by United Engineers and Constructors, Inc. Specifically
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NUREG-0241 (Reference 93, Capital Cost: Pressurized Water



Reactor Plant) is the basis for plant #2, 1140 MW LWR. NUREG­


0243 (Reference 212, Capital Cost: Low and High Sulfur Coal



Plants - 800 MW0) is the basis for plant #1 - 800 MW HSC.



" 	 Mid-1976 dollars are used for all costs, as in the above



sources. The direct costs (installed costs) for the separate



accounts in the NUREG series are converted to total costs



compatible with the TAG by a multiplier CTotal costs (TAG)/


Sum of all direct costs (NUREG)) which is virtually the same 

for plants #1 and #2: 2.16 and 2.12 respectively. Other 

capital costs, such as TESS components, will be converted from 

direct costs to TOTAL costs with the same factor. It is 

assumed that the rationale for loading all such components 

with the same adders subsumed in TAG TOTAL costs is as good 

as, and much simpler than, developing a set of adders for each 

component, yet having them compaable for- concept-evaluation. ­

" The assumed escalation scenarios, in TAG are for 6 percent



annual inflation on capital costs and capital related O&M and



installation costs, from 1976 to beyond 2020. A 10 percent



discount rate and an 18 percent fixed charge rate are assumed



as compatible with this general inflation. Each fuel has a



specific escalation rate higher than 6 percent, so has a net



or real escalation, Variable O&M is assumed to have the same
 


escalation rate as the fuel, to keep them proportional. For



analysis a plant starting operation in 1990 with a life of 30



years is assumed, ie even though 1976 dollars are used, the



net escalation effects from 1976 to 1990 are included for cost



elements not escalating at the general inflation rates, and



the continuing escalation from 1990 to 2020 is included in the



levelizing factors on variable costs.


/ 

" In the interfacing of a power plant with a TESS, two basic



configurations suffice: that for steam generation and power



production with a separate peaking turbine, as shown in Figure
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5-2 for plant #1 and Figure 5-4 for plant #2; and that for



feedwater heat storage, with increased main turbine capacity,



as shown in Figures 5-3 and' 5-5. Other possibilities, such as



the use of a larger main turbine with steam generation concepts
 


or a separate peaking turbine with feedwater heat storage con­


cepts, would make at most minor differences in Turbine Island



costs, insufficient to change relative rankings of TESS concepts.
 


o The range of peaking swings from 15 to 50 percent of nominal
 


rated output has been explored. Most comparisons are made at



50 percent swing as potentially of more interest to utilities.



" As a means of comparing TESS selections, the specific capital



costs C$/kW) of the TESS is the preferred measure. For com­


parability with other storage systems studies these costs are



divided into energy-related and power-related portions,



HTW SELECTIONS



Selections 1 through 7 postulate high temperature water CHTW)



storage. They differ principally in the means of containment of HTW



under pressure, and in the\mode of use of the pressure vessel as an



accumulator. These options are largely separable; each form of pres­


sure vessel can be considered with each mode of accumulator use for



use with either plant #1 or plant #2. As the cost of the pressure



vessel is a large fraction of the total TESS cost the comparative cost



of the vessel alternatives in Selections 1-7 will be developed before



specific costs of TES systems are developed.



Specific Costs of Pressure Containment



The alternative forms of pressure containment for HTW in Selections



1 through 7 are:


Selection 

" Prestressed Cast Iron Vessels CPCIV) 1 

" Prestressed Concrete Pressure Vessels(CPCPV) 2 

" 

" 

Steel Pressure Vessels (Steel) 

Underground Cavity Containment CUG Cavity) 

3 

4,5,6 

" Confined Aquifer Storage (Aquifer) 7 
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The cost of containment of HTW in these vessels is a functi'on of



both the design pressure and the volume. It is. also a function of



temperature. Pressure and temperature effects are closely correlated



for saturated HTW so will be treated together. The cost versus volume



relationship is not necessarily linear for a single pressure vessel,



but when the volume required is many times the largest unit size



believed to be practicable a linear relationship can be assumed. The



measure of the cost of containment is dollars per cubic meter ($/m3).



PCIV. Prof. Paul V. Gilli in Thermal Energy Storage Using Pre­


stressed Cast Iron Vessels (PCIV) (Reference 45), a 1977 study per­


formed for ERDA/STOR, makes estimates on ,PCIV costs for a range of



volumes and pressures. His baseline case, 8000 m3 and 6 MPa, cost


3
1248 $/m . The cost items listed (Reference 45, Table XIV, p.96)



approximate the direct cost level. Transportation costs are specific­


ally excluded, some items are included for erection and foundation, a



small amount is included for engineering and testing, _



Data given for other volumes and pressures can be approximated by:


3
$/M = 1248 (0.953 + 376/V) C0.264 + 0.1226 P), where V is in-m3 and



P is in MPa. In order to display the comparative costs graphically,



this relationship is shown on Figure 6-1 for the 8000 m3 size. It



will be noted from the above that only a few percent savings could be



expected from larger size so 8000 m3 will be taken as the module.



For 400 MWe and 6 hours peaking, ie 2400 MWh stored, a volume of


120,000 m3 could be required if the specific output, eo, of a TES



system were 20 kWh/m 3. Thus 15 modules of PCIV could be required of



8000 m3 size.



PCPV. No proponent has specifically studied the use of prestressed



concrete pressure vessels for containing HTW in the 3-10 MPa range.



Cost data from several ,sources on PCPV versus pressure were-Jocated



and compared as shown on Figure 6-1.



Ian Glendenning of the British Central Electricity Generating



Board displays, in a study on compressed air storage systems using a
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Figure 6-1. 	 Comparison of the specific costs of pressure vessels 
for TITW containment. 65 



rock-bed in PCPV for thermal storage (References 152, 153), a graph of


3
$/m versus pressure for the PCPV alone. This is approximated by:



1600 C0.264 + 0.1224 P) for the only size shown, 28,800-m
3.


$/m = 

Again multiple modules would be required for the duty described above.



It was found that the Ralph M. Parsons Inc. were performing a study



for the Department of Energy (Fossil Fuels) on the cost of PCPV con­


tainment of several coal gasifier process modules. The assistance of



Messrs. James O'Hara and Richard Howell of that project was solicited.



They separated the cost of the PCPV containment and liner from the



process machinery internal to and external to the pressure vessel in



their process studies.



The three modules conceptually designed had pressure,temperature



and volume requirements as follows:


3A. Absorber - 1620 m _ 7.5 MPa - 66°C



B. Dissolver/Separator - 4400 m3 - 13.8 MPa - 455°C 


C._Gaslftier_ - 1860 m3--7r5-MPa -I650°C 


The cost figures derived by R,M. Parsons were base costs, in



December 1977 dollars. To reduce these to direct costs in 1976 dollars



a factor of 1.4 was used. The three cases are represented on Figure



6-1 as points labeled 3. Two at the same pressure 7.5 MPa are above



and below the Glendenning values. The upper one representing C above



has excessively high temperatures; a significant part of the cost was



the cooling system: both refractory bricks inside the steel liner, a,



thick layer of high temperature concrete, and an elaborate cooling



system of firned tubes within the high temperature concrete. The



arrow indicates it should' be moved downward for comparability. Sim­


ilarly the lower point at that pressure representing A is at a low



temperature and should probably be raised for comparability. Both A



and C are smaller in Volume than the 28,800 m3 for the curve 2 so



might well be higher in specific cost, The higher pressure point for



case B similarly falls a little above curve 2.



STEEL. Pressurized vessels of welded steel conforming to ASME



Boiler and Pressure Vessel Codes are necessarily limited in volume if
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wall thicknesses are not to be excessive. Both Glendenning and O'Hara



of R.M. Parsons Inc. derived costs for both the PCPV and steel vessels



of comparable volume and pressure/temperature rating. Glendenning's



result is a straight line, indicating that it comprises multiple small



modules optimum for the pressure rating. R.M. Parsons found it neces­


sary to use two to nine steel vessels to match the capacity of PCPV



cases A, B, and C. Curve 4 represents Glendenning's curve, points 5



represent O'Hara's results. The latter are considerably higher than



the former.
 


For a single steel vessel of a given size, the variation in cost



with pressure is given by Guthrie CReference 216, Process Plant Esti-


P06
mating and control) as , shown as curve 6.



UNDERGROUND CAVITIES. Two proponents emphasized underground cavity



containment of HTW; James Dooley of R&D Associates (References 28,181)



and Allen Barnstaple of Ontario Hydro CReferences 2,3). Their esti­


mates for the cost of excavating underground cavities and preparing



them for use as storage were reasonably comparable. James Dooley



(Reference 28, Feasibility Study of Underground Storage Using High



Pressure HTW) listed cost items in a more convenient way to derive



costs comparable to the other forms of containment so was used to



derive curve 7.



There are significant costs both for the cavity itself and for the



shaft(s) from the surface that are needed to access the cavity, remove



the muck during construction, and to carry steam pipes and other ser­


vices from cavity to surface during operation. Dooley chose to con­


sider the cavity as an energy-related cost and the shaft as a power­


related cost since its principal role during operation is to carry the



steam flow to and from the cavity or cavities.



The cost elements as a function of cavity size are given, summed



both to direct costs and to total costs. The direct costs will be used



to be comparable with the other costs on Figure 6-1. No indication of



sensitivity of completed cavity cost to pressure is given. It is



assumed that the cavity depth i proportional to pressure so that the
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rock overburden pressure will be compatible with the storage pressure.



Probably the costs of excavation, rock preparation, lining, and inject­


ing high strength concrete between rock and liner will -not be very sen=



sitive to the pressure or depth. However, the shaft costs contain cost



components that are proportional to depth and hence more related to



energy storage pressure than they are power-related. An approximation



of the pressure sensitive component of shaft costs was ,transferred to



the cavity costs as a better estimate of the division between energy­


related and power-related costs.



3
For the smallest cavity described-, 29,000 m , the direct costs of


3
the cavity, 5.03 M$, gives a specific cost of 172 $/m . For larger



cavities this varies roughly as V Shaft direct costs are esti­


mated as 15.27 M$ and 20.98 M$ for depths of 360 and 720m (for storage



pressures of 6.9 and 13.8 MPa). The depth and pressure proportional



components of these are principally shaft excavation and muck disposal,



shaft preparation and lining, and steam pipinng.T-hesetota-Lroughi-y-­


51M$ out of 15.27 and 10 M$ out of 20.98 M$, The remainders, 10.27


and 10.98 MS, are roughly independent of depth and pressure. These



values are for a shaft designed for 500 MW power capability or 10.5/



0.5 = 21 $/kW power-related cost.



A 500 MWe power capability for 6 hours discharge (3000 MWhrs)


3
requires at 18 kWh/m 3 about 6 cavities of 29,000 m . Distributing the



pressure dependent part of the shaft cost over the cost of these cav­

3
ities leads to an energy-related specific cost of (172 + 4P) $/m .



Using similarly the R&D Associates data for a 200 MW shaft, and two



cavities, such as might be suitable for 15 percent swing, gives a



power-related component 6f 48 $/kW and an energy-related cost of



(172 + 9P). These energy related costs are shown as the lower and



upper-curves 7 on Figure 6-1.



It is evident from the exponent of cost versus volume of cavity



and from the decrease in shaft costs per kilowattwith increased



capacity that underground excavation costs ,are more susceptible to



economies of scale than the other forms of containment for which mul­


tiples of reasonably small modules seemed to be required. Since the
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UG Cavity costs are considerably less than the other forms, no attempt



will be made to justify larger cavity sizes than the one described.



The upper curve 7 will be used for small swings and the lower one for



large swings.



AQUIFERS. Since aquifer storage requires no excavation of cavities,



construction of liners or other volume-dependent expenditures, it comes



close to having zero energy-related costs. It relies upon natural



formations confined at top and bottom to isolate it from other aquifers.



These may extend for thousands of meters with heights of 10 to 100



meters, so extremely large quantities of energy can be stored for long



times, making seasonal storage feasible. The only costs that can be



considered energy-related are the operating costs, including thermal



losses in the aquifer and pumping energy costs, and maintenance costs



such as heat exchanger cleaning, well treatment to reduce plugging,



etc.



There are, however, power-related costs for aquifer storage.



Charles Meyer (Reference 108, The Role of the Heat Storage Well in



Future U.S. Energy Systems) uses $150,000 to $450,000 per installed



doublet well including pumps for a 20 MW thermal capability of heat



injection and withdrawal. Using $400,000 gives 20 $/kW direct costs.



The heat exchanger CFigure 3-7) will cost an additional 20 $/kW,



totaling 40 $/kW. The above assumes a storage temperature of 175-200°C



and a return, or supplementary storage, temperature of 70
0C.



Selected Case for Sensitivity Analysis



The first selection, the use of PCIV storage with steam generation



for a peaking turbine 
 can be used as the exemplar for the methodology
 

used in determining the cost elements of a TESS concept and combining



them. The format will not differ significantly, although the numbers



will, when other forms of containment are used, or various storage and



throttle pressure levels are used with various accumulator modes of



operation.



VARIABLE PRESSURE ACCUMULATOR. Section 5 treated as a base case,



pages 5-20 to 5-25, plant #1 with charge steam pressure of 4.86 MPa
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(HP turbine outlet), storage pressure of 4.65 MPa, peaking turbine 

throttle pressure of 2.24 MPa (325 psia), p = 0.50 (50 percent swing), 

6 hours discharge and 8 hours charge .time.. The--criticai-parameters 

for costing for these base case conditions are a specific output e0 of 

15.0 kWh/m 3 and a turnaround efficiency of 0.880 (Figure 5-12).



For the storage pressure 4.65 MPa, the specific cost of PCIV capac­


ity is 1041 $/m3, from Figure 6-1 or the text equation. The TOTAL cost



(using this specific cost, 6 hours storage, a specific output of 15.0



kWh/m 3 and 2.16 conversion from direct to TOTAL cost) is



(1041 6 , 2.16)/15,0 = 900 $/kW.
 


The turnaround efficiency determines the loss component L as
 


32.0 1- (Equation 5-23),32.88 -1) x 6 = 26$/kW 

The specific cost of the peaking turbine is determined by the



throttle pressure from Figure 5-25 as 400 $/kW.



The sum of the energy-related costs is9I26j$fkW;._snce-ths-i-s-for-­


six-hour discharge, it corresponds to 154 $/kWhr. The sum of the



power-related costs is 400 S/kW. The specific cost of the whole TES



system is 1326 $/kW.



The data and results for this base case are shown in the first



column of Table 6-1, as are the results for a number of other cases



to be discussed below.



Lower Throttle Pressure. The next two cases keep the storage pres­


sure constant and reduce the throttle pressure at the inlet to the
 


peaking turbine, More' bf the stored HTW is flashed to steam since



(PSToR - PTHROTTLE ) is larger, so the specific output increases. At



the same time, the decrease in turnaround efficiency increases L, and



the design of the peaking turbine for lower pressure inlet steam
 


increases Cpp. Over the range explored, 1.72 and 1.03 MPa, the net



effect is favorable, reducing the total specific cost to 1123 $/kW.
 


Still lower throttle pressure should be explored, However, there is



clearly a limit; at a throttle pressure equal to condenser pressure,



output is zero. The high specific volume of steam at pressures below



1 MPa requires very large pipes and expensive turbine technology.
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Table 6-1. Summary of TESS costs; plant #1 - HTW systems.



Mode Variable Pressure Accumulator Expansion Displacement FWS 

PSTOR - MPa 
PTHR -MPa 

4.65 
2.24 

4 65 
1 72 

4 65 
1.03 

1.03 
0.52 

2.41 
1 20 

4 65 
2.24 

-
-

4 65 
2.24 
1.21 
-

4.65 
2.24 
1,21 
0.16 

4.65 
2.24 

-
-

4.65 
2.24 
1.21 

-

4.65 
2.24 
1 21 
0.16 

5.0 
-
-
-

n - TA Effic. 
eo 
p 

- kWh/m 3 

- Swing 

$/kW 
PCIV - Tank 

- Supp. 
-L 

0.88 
15.0 
0.50 

900 
-
26 

0 836 
18.2 
0.50 

742 
-
38 

0.768 
22.5 
0.50 

600 
-
58 

0 940 
6.6 
0.15 

870 
-
12 

0.775 
10.24 
0.50 

884 
-
56 

0.818 
11.33 
050 

1194 
641 
43 

0 783 
18 9 
050 

714 
261 
53 

0.600 
28.3 
0.50 

477 
69 

128 

0.830 
13.9 
050 

971 
107 
39 

0.794 
21.3 
0.50 

634 
93 
50 

0.610 
30.6 
0.50 

441 
55 

123 

0.880 
40.0 
0.15 

340 
49 
26 

Energy Related 926 780 658 882 940 1878 1028 674 1117 776 619 415 

Evap. 
Turb. 
FWH 

-
400 

-

-
420 

-

-
465 

-

-
535 

-

-
446 

-

10 
400 

-

10 
422 

-

20 
536 

10 
400 

-

10 
422 
-

20 
468 
-

-
359 
136 

Power Related 400 420 465 535 446 410 432 556 410 432 488 495 

Total $/kW 1326 1200 1123 1417 1386 2288 1460 1230 1527 1208 1107 910 

PCPV Tank 950 699 635 498 

New Total 1407 1383 1246 1019 

Steel Tank 2300 1479 1367 1054 

New Total 2,758 2231 2033 1624 

UG Cavity 
Tank 
New Ce 
New Cp 

New Total 

134 
172 
477 

649 

114 
257 
489 

746 

80 
257 
545 

802 

82 
108 
667 

775 



Lower Storage Pressure. Several cases of reduced storage pressure 

were explored, namely 2.41 MPa and 1.03 MPa. Since the cost of PCIV 

containment goes down with reduced pressure (from Figure 6,1), the_ 

specific cost of the PCIV is 699 and 488 $/m , compared to 1041 $/m 

for the base case. In each of these cases the pressure ratio of stor­

age to throttle pressure was kept at 2:1. The specific output 

decreases as rapidly as the specific cost of the PCIV decreases so 

there is a negligible gain in CES from storage pressure reduction. 

Inspection of the five cases leads to an empirical relationship: 

(PSTOR -
THR )


eo -STOR 

This would indicate that higher storage pressures and a low throt­


tle pressure would lead to larger values of eo, and should be explored.



Itdoes not assure that the loss term or turbine cost changes would



not overbalance any improvement.



For a constant source of charge steam, turnaround efficiency



decreases and L increases as throttle pressure decreases. For a low



throttle pressure such as 0.52 MPa, a turnaround efficiency of 60-65



percent could be expected with 4.65 MPa charge steam (Figure 5-14). If



the charge steam comes from the crossover (LP turbine inlet) at 1.03



MPa, the turnaround efficiency is much higher since the steam has been



passed through the IP turbine generating work down to 1.03 MPa instead



of being throttled to that pressure. This case, also from Figure 5-14,



is shown as the fourth case in Table 6-1. The low specific output and



the high Turbine Island cost outweigh the higher turnaround efficiency
 


and lower storage pressure.



Summary. Of the Variable Pressure Accumulator cases explored, the



third column gives the most favorable results with energy-related costs
 


of 658 $/kW, power-related costs of 465 $/kW, and TOTAL specific cost



of 1123 $/kW.



EXPANSION ACCUMULATOR, The procedure for Expansion Accumulators is



similar, except that external evaporators are used for steam generation
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and, when there are multiple evaporators in cascade, steam at two or



three throttle pressures is fed into separate turbines. Almost all



of the HTW is removed from the expansion accumulator; that which is



not flashed to steam must be stored in a separate tank at the drain



pressure and temperature. For a single evaporator, as shown in Table



5-7, the supplementary tank or drain storage volume is 83 percent of



the storage tank volume, and must stand a pressure of 2.24 MPa. Also



the specific output is lower than for the variable pressure accumula­


tor at the same throttle pressure, As a result, the costs of storage



tank, supplementary tank, and loss term gives an energy-related cost of



1878 $/kW.



Evaporators are very small in volume compared to storage volumes,



are very simple and low in cost. Including the valves and piping



associated, the cost is estimated at 10 $/kW within a factor of 2.



Since the third evaporator at very low pressure will be larger the



specific cost is arbitrarily doubled, Neither of these values play a



significant role in screening. The resultant total specific cost for



a single evaporator is 2288 S/kW.



Multiple Evaporators. The specific output is markedly improved by



multiple evaporators and a lower steam pressure at the final evaporator.



Both the size and the pressure of the supplementary tank required for



drain storage are reduced, leading to further reductions in cost. How­


ever, with multiple steam supplies generated, a turbine for each



throttle pressure must be costed. The share of the output power pro­


duced by each turbine is in proportion to the increment in specific



output: 11.33, (18.9-11.33), C28.3-18.9). Combining the specific



turbine costs, Cpp, for two and three evaporators in these proportions



gives the values shown in Figure 6-1.



Despite the higher L and Cpp, the three-evaporator case costs
 


less than the two-evaporator case. However, the use of very low pres­


sure steam at 0.16 MPa (23.5 psia) for a fairly large power capacity



Cover 130 MWe) may pose very difficult turbine design problems.
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DISPLACEMENT ACCUMULATOR, As with the expansion accumulator, evap­


orators are required, and some supplementary storage. However, in the



thermocline mode, the bulk of the HTW is always in-the main pressure



vessel, either as hot or cold water. Only enough supplementary tankage



is needed to account for the expansion of the water when heated. The



specific output of the first evaporator is about 20 percent higher than



the corresponding expansion accumulator case. The significant decrease



in the cost of both storage and supplementary tanks reduces CES to 1177



$/kW, with a corresponding reduction in the total $/kW since L and Cpp



are comparable.



Multiple Evaporators. The improved specific output of the first



evaporator improves the combined specific outputs for the two- and



three-evaporator cases reducing the energy-related costs below the



expansion accumulator counterpart. Since the highest pressure tur­


bine produces a larger share of the total power produced, the turbine



cost, C , is also less_ and_fEortbree=evaporaor-ease-the-toa-l--11-O7­

$/kW, is closely comparable to the best value found with the variable



pressure accumulator, ie 1123 $/kW.



FEEDWATER STORAGE, Feedwater storage, or manipulation of the



relative mass flow in the feedwater heat train during the charge and


3



discharge cycle, has inherently a high specific output ie 40 kWh/m
 


As also is shown in the last-column of Table 6-1, 340 $/kW for the PCIV



tank is the lowest of all the cases.



A displacement accumulator, or a two-tank system can be used for



feedwater storage; a two-tank system is assumed in Table 6-1, so the
 


cost of the supplementary tank reflects the large volume for cold



water that must be stored between discharge and charge. For the dis­


placement mode, this cost item would be reduced by a factor of about



four. The high turnaround efficiency gives a low value for L. As



noted earlier, feedwater storage cannot be used at 50 percent swing;



15 percent swing is assumed in this case, which also makes the turn­


around efficiency higher.
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To estimate the cost of increased capacity in the main turbine,



allowance must be made for the increased requirement of feedwater



heaters for increased steam extraction during the charge cycle, and


the fact that the added turbine capacity during discharge does not



require feedwater heaters. A cost item for a major addition of feed­

water heaters to the main turbine complement is in part balanced by a


deletion of the feedwater heater cost from the added turbine cost



relationship given by Figure 5-25.



For the 15 percent swing, it is found that the mass flow of steam



at the IP turbine inlet and outlet increase by 6 and 20 percent



respectively during discharge. The mass flow at inlet and outlet of


the LP turbine increase 20 and 31 percent. In the normal mode of



operation the rated output of the P turbine is about 160 MW and of
e 
 

the LP turbine is about 320 MW, The average increase in steam flow


through the IP turbine stages, about 13 percent, corresponds to added



capacity of 20 MWe*



A separate peaking turbine with 20 MW in the IP turbine and 40 MW


in the LP stages would be in the same proportion as the main turbine.



The added turbine capacity is estimated to be equivalent to a 60 MWe



turbine at IP inlet pressure (4.86 MPa) and the balance of (120-60)


60 MWe at LP turbine inlet pressure C1.2 MPa). Combining 354 $/kW for


the former and 455 $/kW for the latter in equal shares gives 405 $/kW.


From Table 5-15, the feedwater heaters are (10.8/98.5) or 11 percent



of the Turbine Island cost. Deleting 11 percent from 405 gives 359



$/kW as shown in Table 6-1.



During charge the feedwater flow is increased by 70 percent.



Added feedwater heaters increase the system cost by 10.8 M$.0.70 2.16=



16.3 MS; allocating this to the 120,000 kW of peaking capacity gives


136 $/kW as an added power-related cost unilque to feedwater storage



systems.



The total $/kW for this case is 910 $/kW: 415 energy-related and



495 power-related. It is lower than any of the other cases explored.



6-15 



PLANT #2 CASES. A similar set of analyses were made for the 1140



MW nuclear plant, and results are shown in Table 6-2. The methods
 


already described were used; there were no surprises.



Table 6-2. Summary of TESS costs: plant #2 - HTW systems
 


Variable Pressure 
Mode Accumulator Expansion FWS 

PSTOR-MPa 6.21 6 21 6.21 6 21 3 70 
PTHR -MPa 3.10 2.59 3.10 3.10 

- 1.21, 
TA Eff. 0.90 0.87 0.834 0.766 0.88 

eo kWh/m 3 15.4 17 9 10.9 21.3 30 0 
p - Swing 0.50 0 50 0.50 0 50 0.15 

$/kW


PCIV - Tank 1078 927 1522 779 388 

- Supp. - - 794 213 50 
-L 19 26 34 52 23" 

Energy Related 1097 953 2350 1044 e51



Evap. - - 10 10 -
Turb. 394 412 394 435 375 
FWH - - - - 7



Potter Related 394 412 404 445 462



TOTAL $/kW 1491 1365 2754 1489 923



UG Cavity

Tank 141 118 100


New Ce 167 209 167


New Cp 478 511 633



New Total 645 720 800



A higher IP inlet steam pressure is available in plant #2 than in



plant #1. This makes a higher storage pressure feasible (6,21 MPa).



This increases both the specific $/m3 cost of PCIV and the specific



output eo. For the throttle pressures considered, the net result is a



CES that is higher than the corresponding cases for plant #1. The



insight gained from the plant #1 cases would indicate that a lower



throttle pressure, say 1.16 MPa -the LP turbine inlet pressure,



would have a specific output of 25 kWh/m 3. This would reduce CES to



664 $/kW, probably increase L to 60 $/kW, and Cpp to 490 $/kW giving a 

total $/kW of 1214 $/kW; a drop comparable to that found with plant #1. 
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The feedwater storage case is the least costly, as with plant #1.



The specific output is 30 rather than the 40 kWh/m 3 found for plant #1,


due mostly to the smaller temperature differential from hot to cold



feedwater.



Selection #1 - PCIV



The PCIV form of containment has been examined for a variety of



storage configurations and input and output conditions. In all cases



the specific costs of incremental capacity added by the TESS is higher



in $/kW than the 743 $/kW and 785 $/kW of the reference plants #1 and



#2 when used in a load-following mode.



The lowest equivalent capital cost 910 $/kW (including the term L



as the capital cost equivalent of turnaround efficiency losses), is in
 


the feedwater storage mode in plant #1 (Table 6-1). Plant #2 in the



same mode was very close, 923 $/kW. These have the disadvantages of a



limited swing, ie 15 percent, For larger swing capabilties, a vari­


ble accumulator mode with low throttle pressure, and a three-evaporator



displacement mode proved lowest in cost.



The proponents of Selection #1 had suggested a combination of an



expansion mode and a single evaporator with feedwater storage as a



concept, selecting the drain temperature from the evaporator to be at



boiler inlet temperature. This was not explored. It could produce



some improvement for small swings.



Further judgments on Selection #1 must await comparison with the



other selections.



Selection #2 - PCPV



Prestressed Concrete Pressure Vessels are closely analogous to



PCIV containment, The data in Figure 6-1 and accompanying text suggest



that PCPV may be higher in cost than PCIV by a factor of 1,28, The



impact of this on a subset of the PCIV cases analyzed is shown in



Table 6-1. The resulting higher value of the main tank cost is shown



for the selected cases. This is followed by the new total cost in $/kW



which includes the incremental costs on both the main and supplementary



tanks. ­
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For the assumed costs, there is no economic basis for selecting PCPV



over PCIV. However, there is an uncertainty level in the costs of each



form of containment, It is considered unlikely that the PCIV would cost



less than if-di-nted; it could'easily cost 20-40 percent more than indi­


cated, since there is little background of experience. The PCPV could



also cost more, particularly with special requirements imposed, such as



the thermal cycling of a thermocline in the displacement mode. There is



some possibility of overlap in the costs of these two containment forms.



Selection #3 - Steel Vessels



Steel Vessels were found to be considerably more expensive than



PCIV and PCPV as illustrated in Figure 6-1. A factor of 3.1 over PCIV



is a fair estimate over the pressure range for the cost ratio $/m3.



The resulting Total $/kW for cases shown in Table 6-1 are clearly non­


competitive with other forms of containment or with alternative storage



systems.



The high costof s-eelv.essels-.is in-par-t-due -to-Gode-requ-irements-z--

A history of catastrophic accidents has caused agreement on a set of



specifications on the quality and properties of steel used, the tech­


niques of welding, methods of inspection and testing, and factors-of­


safety in design that minimize to "acceptable" levels the risk of fail­


ure. The specific concept described as Selection #3 tried to reduce



the cost of steel containment by using a lower cost, more available



grade of steel'and an efficient low cost method of welding. No cost



and risk estimates were available from the proponents. It is esti­


mated that by the time the design was modified and codes were modified



to make this concept acceptable it would be at least as costly as the



current technology steel vessels described by Figure 6-1.



Selection #4 - UG Cavity- Concrete Stress Support



The discussion earlier in this section developed the rationale for



dividing the costs of HTW storage in an. underground cavity into an



energy-related, and a power-related component. Using the lower curve 7



from Figure 6-1 for the 50 percent swing cases gives at 4.65 MPa a



specific cost of 190 $/m3. A factor of 0.18 adequately relates this
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to the cost of PCIV, although the pressure dependence of the two are
 


not quite parallel.



The comparison with PCIV in the second column of Table 6-1 shows 

an 82 percent reduction to 134 $/kW for containment. The power­

related costs include, in addition to the same turbine cost as, for the 

PCIV, the power-related cost for the shaft: 21 $/kW. 2.16- 500/400 = 

57 $/kW. This modifies the directs costs of 21 $/kW for a 500 MW



shaft by ratio of 500 MW/400 MW and converts to TOTAL costs.



The proponent of Selection #4, J. Dooley of R&D Associates,



favored the variable pressure accumulator mode. For a low specific



cost of containment, the tradeoffs effects of storage and throttle



pressure on specific output, turbine cost, and turnaround efficiency



are opposite from those found for PCIV. Going to a lower pressure



(third column of Table 6-1) will reduce CES, but the increase in Cpp


and L will exceed this reduction. Going to a higher throttle pres­


sure Ccolumn I) again has compensating effects leading to a slight



improvement in total costs.



Selection #5 - UG Cavity- Air Supported



This selection differs from Selection #4 in several respects. A



steel liner in the UG Cavity is separated from the rock by a layer of



compressed air for stress transfer of the HTW pressure to the rock.
 


A displacement mode accumulator is used, with a moving thermocline



separating hot and cold water during charge and discharge. A feed­


water storage TESS configuration is proposed as the source and utiliza­


tion of the stored energy.



The sizing of components for the feedwater storage application is



done in the last column of Table 6-1. The sum of the main tank and



supplementary tank for PCIV is multiplied by 0.21 rather than 0.18



because the upper curve 7 of Figure 6-1 applies for the limited 15



percent swing. The result 82 $/kW is taken as the cost of the dis­


placement accumulator in an air supported cavern. The power-related



cost for the shaft is 48 $/kW - 200P. 2.16 = 172 $/kW, corresponding120
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to an adjustment from direct to TOTAL costs and the small swing of 120



MW. Combining the cost elements gives a total cost of 775 $/kW. For



plant #2 the total cost. is.8Q0 $/kW.-


Selection #6 - UCavit-Evarators



This selection closely parallels the last one except that the method



of utilization proposed is multiple evaporators to generate steam. The



costs for both two- and three-evaporator cases are developed inTable



,6-1 by multiplying the PCIV containment costs by 0.18 and adding the



power-related shaft costs of 57 $/kW as was done for Selection #4,



because these cases are also for a 50 percent swing. The displacement



mode is assumed. The evaporators and supplementary tanks are assumed



to be above ground. They each operate at or contain HTW at a different



pressure than the main storage tank, so that a different pressure of



compressed air would be required to support them if they were under­


ground. The two-evaporator case is preferable to the three-evaporator


-- case, 

A displacement accumulator with thermocline poses potential prob­

lems of fatigue and failure from cyclic thermal'stresses. A thin steel



shell, compressed adr supported, may be easier to design for these con­

ditions than the concrete stress support of Selections #2 and,#4. In



Selections #5 and #6 there is the additional problem of pumping water



to the surface,and restraining its flow from surface to cavity in both



the charge and discharge cycles. Prevention of low pressure causing



steam flashing br overly high pressure endangering the thin shell must



be guarded against.



Selection #7 - Aquifer Storage



Aquifer storage is an anomalous form, in that although energy is


stored as HTW, energy is also stored in the sand and gravel of the


aquifer, and the HTW used in the aquifer is not the boiler quality



feedwater so a heat exchanger must be used. There are strong resem­


blances to rock-and-oil systems, with the groundwater, like oil, being



considered as a heat transfer fluid.
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Although the use of aquifers at elevated temperatures cannot be



considered as near-term available since demonstrations and data are



missing, there can be a reasonable degree of confidence that it is


feasible to some temperature level, on the basis of long experience in



well drilling and use, both for injection and withdrawal.



If it should prove that aquifer storage is feasible to temperatures



between 2000 and 250°C, without major added O&M costs to maintain the



wells and heat exchangers over the system lifetime, the concept can be


compared with the feedwater storage concept discussed as 'Selection #5.



The specific output and turnaround efficiency should be comparable.



The 100 $/kW cost of storage volume and the 172 $/kW cost of shaft are



replaced by the well and heat exchanger costs. At 40 $/kW (thermal)


direct costs, the power-related TOTAL cost for the aquifer storage would



be (40/0,24) 2,16 = 360 $/kW (electric), Here the 0.24 is an estimate



of the conversion efficiency. For plant #1 this would lead to energy­


related costs of 75 $/kW, power-related costs of 855 $/kW, and a total



$/kW of 930. This is higher than for Selection #5 and comparable to



the PCIV.
 


If aquifer storage is limited to lower temperatures than 2000C,



the available maximum swing decreases and the cost of conversion



increases.



LP SELECTIONS



Low Vapor Pressure CLVP) systems, also called sensible heat sys­


tems, atmospheric pressure, or one-bar systems, is the second major



class of selections considered. The names above describe related



characteristics of the systems; a liquid is used for heat transfer and


storage that has a low vapor pressure (less than 0.1 MPa) at the tem­


peratures of interest for storage, so that containment may be at atmos­


pheric pressure (ie,one bar), This results in low cost containment



compared to those discussed for HTW containment. The system data used


as an example in the modeling description in Section 5 (page 5-52)



3
gives a direct cost of $295,700 for a tank of 12190 m , or a specific


3



cost of 24.3 $/m
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To use such low cost containment, storage media of higher cost


than HTW must be used, and heat-exchanger trains must be used to keep



the ITW and steam separate from the.storage-media yet-transfer heat-to



and from storage. The costs of these items must be compared to the



reduced containment cost in order to evaluate Selections #8 through



#12.



Selected Case for Sensitivity Analysis



In order to describe adequately the modeling of heat exchangers



and the conversions of charge steam to storage to generated steam for



peaking, a set of selected system characteristics were described in



Table 5-12. To the parameters there considered, the specific cost of



the peaking Turbine Island, and a loss term L, to include turnaround
 


efficiency in specific capital cost comparisons, can now be added.



The selected system characteristics were for plant #1, with


charge steam at IP turbine conditions 4.86 MPa (705 psia),_ 306°C 
 -

-5840F-r,-440C su-erheat (90 F). The baseline case generated discharge


steam at 2.01 MPa C292 psia), 2510C (4840 F). Storage was in granite



rock-beds with the voids filled with the heat transfer fluid, Exxon



Caloria HT-43 or its equivalent. Itwas assumed that the volume of



the storage media was 25 percent oil and 75 percent rock.



The discharge steam conditions are determined by the heat exchanger



parameters assumed. For the baseline case, giving the discharge steam



conditions stated above, the approach, a, is 5.60 C (100F) and the mass



flow ratio, Mc, of oil to charge steam is 15.0. These parameters,



along with the properties of the oil, such as specific heat, density,



and viscosity as a function of temperature, dominate the design of the



heat exchanger. The properties of HTW and steam also contribute to the
 


heat transfer coefficient, determining the area of heat exchange



systems required for each part of the heat exchanger train as shown in



Table 5-13. The requirements there given are for a 50 percent swing.
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The direct cost of these heat exchangers is 30,6 MS. Converting to



specific TOTAL costs for 50 percent swing gives 165 $/kW. This is one



of the power-related components of storage cost, shown in Table 6-3 in



a format similar to Tables 6-1 and 6-2,



Table 6-3, Summary of TESS costs: plant #1 - LVP systems.



Fluid Oil Oil Oil Oil Salt Salt Salt


Fraction 0.25 0.25 1.00 0 1.00 0.25 0



Rock


Fraction 0.75 0.75 0 1.00 0 0 75 1.00


a *C 5.6 8.4 5.6 5.6 5.6 5.6 5.6


Mc 15.0 .12.5 1D.0 10.0 20.0 20.0 20.0



1.24 1.81 1.81 1.81
PTHR MPa 2.28 1.47 1.24 

n 0.831 0.781 0.759 0 759 0.755 0.774 0.794



$/kW 

CTM 154 134 281 68 1138 370 75


L 39 55 61 61 62 56 50



Energy Related 193 188 342 129 1200 426 125



CHX 165 123 125 125 85 85 85


Cpp 400 418 435 435 416 416 416


Power Related 565 541 560 560 501 501 501



Total $/kW 758 729 902 689 1701 927 625



The peaking Turbine Island cost is found as before from Figure
 


5-25 to be 400 $/kIl for 2.01 MPa throttle pressure. The turnaround



efficiency determines L as 39 $/kW.



The costs of the tankage and storage media, CTM? are dependent on



the media used, their configuration, and the assumed costs of the media.



As indicated above, the selected baseline system uses Caloria HT-43 and



rock in packed beds. The assumed 1976 cost of Caloria is 246 $/Mg



(223 $/ton; 80/gal). The assumed cost of rock as river bed gravel is



16.5 S/Mg (15 $/ton).
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For the baseline case the oil required is 57,500 m3 (54,750 tons;



15.2. 106 gal). The rock required is 560,000 Mg (615,700 tons). The


3 6 3 -
tankage required is 289,000 m C10.2 -0 6ft3) (See Table 5-12.) The



cost of these may be totaled: 12.21 MS for oil, 9.24 MS for rock,



7.02 MS for the 16 tanks, totaling 28.47 MS direct costs. TOTAL costs



in $/kW = 28.47. lO6 . 2.16/400,000 = 154 $/kW.



The total TESS cost for this case, given in the first column of



Table 6-3 is 758 $/kW.



SENSITIVITY TO a AND Mc. The various elements of cost are affected



differently by changes in the design value of. approach at heat exchanger


"pinch-points,"and in the ratio Mc of the flow of heat transfer fluid



to the flow of charge steam, In general, a decrease in the value of a 

will increase the cost of the heat exchanger; improve turnaround effi­

ciency, hence reduce L; raise the discharge steam pressure and tempera­

ture, hence reduce Cp. A decrease in the value of M will derecease­
pp


-he-amount-of--oil -Fo-k, and tankage required, hence CTM; decrease the 

cost of the heat exchanger because of lower flow rates and a larger AT; 

decrease the turnaround efficiency, hence increase L; and decrease the 

pressure and temperature of discharge steam, hence increase Cpp. 

The counteracting trends do not clearly show in a tabular display



of many cases because of the non-linear variation of each cost component



with the two parameters. Figure 6-2 is a map of the total energy­


related costs versus the total power-related costs for three values of



Mc; 10, 12.5, and 15. Along each of the curves, the other parameter a



is varied in increments of 2.80C (5OF) from 2.8 to 11.2C. The circled



point is the selected case described in column 1 of Table 6-3. The



diagonal dashed lines represent constant total cost of 750 $/kW and



725 $/kW.



A rough optimum, within the range explored, is the point represent­


ing Mc = 12.5, a = 8.4 The values for this case are given in column 2



of Table 6-3. The improvement, from 758 to 729 $/kW is only 4 percent.
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Figure 6-2. 	 Map of effects of parameters Mc and a on



energy-related and power-related costs.



cost of TESS 	 is also sensi-
SENSITIVITY TO MEDIA COST. The total 
 

tive to the properties of the storage media, including their specific



3
cost in $/kg or $/m . For the selected case, the share of the cost



item CTM is 0.429 oil, 0,324 rock, and 0.247 tankage. Use of a more



expensive oil such as Therminol, at 10 $/gal versus 0.80 $/gal would



Rock costs in most of the United
increase CTM by a factor of 4.9. 
 

States can be as low as 3 to 6 $/ton for crushed granite or similar



rock, washed and screened to a size class, eg 1.9 to 2.5 cm (3/4 to



The more rounded river bed gravel 
 can cost 13 to 15 $/ton;
1 in.). 


$15 was used in the selected case. Special solid materials such as



taconite pellets, alumina, or magnesia spheres can be considered more



costly; taconite has been estimated at 40 $/Mg (36 $/ton).
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If lower cost rock can eventually be used, ie, is found to be



compatible with oil over the temperature range of the selected case,



for long periods of time with low makeup and-ma-intenance-costs, the



value of CTM could be decreased. For rock at $5 rather than $15/ton



the value of CTM would be decreased by a factor of 0.784.


It should be noted that the changes in CTM in $/kW give only a



first estimate of the changes in the total $IkW for TES. First, the



analysis must be corrected for the different density and specific heat



of the altered fluid or solid storage medium. Second, any major
 


changes in one component would require design changes in the other com­


ponents to reoptimize the system. For example, with a very costly oil,



a lower value of heat exchanger approach and a smaller value of Mc



would decrease the amount of oil required but increase the cost of the



heat exchanger, the turbine, and the loss term. A stepwise increase



in the cost of other components to decrease the cost of oil by a



larger amount could be continued_ui]tLanew-optimum-was-foundz-


SENSITIVITY TO PACKING VOLUME FRACTION. Deviations from the



assumed ratio of a packing volume fraction of 75 percent for rock and



25 percent for oil can be considered. At one extreme the rock packing



fraction can go to zero, ie only oil is used. At the other extreme are
 


"drained bed" concepts (Concept Definitions #27 and #35) in which the



voids between pebbles are normally filled with inert gas, and the oil



is only used as a heat transfer fluid during charge and discharge. Much



less oil is required for these concepts; as a limit, the cost of the



TESS with 100 percent of the thermal storage in rock can be considered.



Using oil alone, without a packed bed, has been proposed, both with



a thermocline, and with separate hotand cold tanks, eg Selections #8 

and #10. The relative properties of rock and oil are shown in Table 

6-4, They are compared in cost per unit weight ($/Mg), weight per 

unit volume (kg/m3), and in specific heat (kJ/kg • 0C). The last col­

umn in each group is a ratio R showing how oil compares to rock which 

is taken as 1.0. Oil cost 14,9 times as much per unit weight, is 

0,267 times as dense and has 2.66 times the specific heat. The specific 
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Table 6-4. Summary of media parameters - LVP systems. 

Cost Dens i ty Specific Heat 

$/Mg (¢/lb) R$ kg/m 3 (Ib/f ) R kO/kg.°c (BTU/Ib.0 F) RcppI


Oil (Caloria) 245. 11,16 14 9 711 44.3 .267 2.616 .626 2 66



Rock (RB gravel) 16.5 0.75 1 0 2663 166 1.0 0.982 .235 1 .0
 


heat indicates the relative energy stored per unit weight for a given



range in temperature. Rcp indicates oil has the advantage by the rate



2.66. The product of Rcp and Rp, 0.710, indicates the relative energy


stored per unit volume; oil contains less energy than rock. The ratio



Rcp/R$ , 0.178, indicates the relative energy stored per dollar; oil is



inferior to rock by more than five to one.



For 75:25 volume ratio of rock and oil, the energy stored in each



are respectively 80.8 and 19.2 percent. To replace the rock by all oil



requires 1/0.192 or 5.21 times as much oil. More volume is required,



hence more tankage by the ratio 1.305. From the data on page 6-24 the



direct costs of media and tankage, which were 28.47 M$, become 12.21



5.21 + 7.02 • 1.305 or 72.77 M$, or a TOTAL specific cost of 393 $/kW



for CTM' To lower this cost component, one should move in the direction



of lower Mc* An example for Mc = 10, a = 5.6 is given in the third col­


umn of Table 6-3. CTM is reduced by more than 100 $/kW, CHX is reduced



by 40 $/kW, while the components Cpp and L, dependent on turnaround



efficiency, increase by only 60 $/kW over their column one values.



At the other extreme, drained rock-beds in which the oil only 

functions as a heat transfer fluid, the results for the same Mc and a 
are shown in the fourth column. The cost of rock alone plus tankage 

makes CTM equal 68 $/kW, rather than 281 S/kW. Note that all the other 

cost components remain unchanged. 

Several intermediate values of CTM for other volume fractions of



oil were explored. For 0.10, perhaps a more reasonable approximation



to a drained bed to allow for filling the pipes and heat exchangers and



wetting the rock with oil, CTM is 84 $/kW. For 0.25, CTM is 100 $/kW.



The relationship is smooth, although not linear, so other values
 


can be interpolated. 
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OTHER HEAT TRANSFER FLUIDS. Other materials than Caloria HT-43 can



be used as the heat transfer fluid. Many are more expensive but have



advantages such as less degradation at high temperatures, better com_



fatibillty with low cost rock-beds, or better heat transfer capability.
 


Two such fluids proposed are molten salts, such as HITEC or PARTHERM



290 and molten sulfur. A table of values similar to those in Table 6-4



are given inTable 6-5. As before the ratio columns are normalized to



rock as 1.00.



Table 6-5. Summary of media parameters (continued).



Cost Density Specifl, Heat 
$/Mg (t/Ib) R$ kg/m (lb/f j) Rp kJ/kg'°c (BTU/lb F) R CP 

HITEC 605 27.5 36.7 1909 119 .717 1.558 .373 1.58 

Sulfr 75 3.4 4.5 1733 108 .651 1.149 .275 1.17)



The relative energy per unit volume, Rc Re, is 1.13 for HITEC and



-0:762-fosulfur-ieexceeds rock for the former and is between that for



rock and oil for the latter. Three cases for using HITEC as the heat



transfer fluid are included inTable 6-3.



The relative cost per unit energy (for a given AT) is 23.2 for HITEC



and 2.90 for sulfur. It is clear from Table 6-3 that the economics of



an all molten salt system (100 percent volume fraction) is not favorable



compared to the other LVP systems and many of the HTW systems. On the



other hand when a drained bed is assumed, with very low volume fraction



of salt, the comparison is favorable with all except the best under­


ground cavity systems considered.



The drained bed case with salt is less costly than the drained bed



case with oil because the heat transfer characteristics of molten salt



are better than oil. A fouling factor must be included in considering



oil as a heat transfer fluid, since the high molecular weight degradation



products tend to coat the heat exchange surfaces; HITEC is sufficiently



clean that no fouling factor need be assumed. Comparing literature



values and those offered by some proponents indicates that the heat trans­
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for coefficient, U, for HITEC and comparable salts may be as much as



an order of magnitude better than for oil. This particularly impor­


tant for the boiler and condenser heat exchanger, when the liquid­


side contribution to U dominates, but has appreciable impact on super­


heaters and subcoolers as well.



The cost of the 25 percent volume fraction case is higher than that



for oil, but reasonably comparable. The three salt cases have not been



separately optimized. It is reasonable to expect that exploration of



the range of Mc and a would improve all three and bring them closer



together, by tradeoffs between CTM and CHX' but the effect is not



expected to alter the ranking of cases.



FEEDWATER STORAGE. The feedwater storage mode is proposed in



Selection #8, using Caloria HT43, and separate tanks for storage of hot



oil and cold oil (with inert gas as ullage in empty-tanks). The heat



exchanger configuration is different as illustrated both in Figure 3-8



and Figure 5-24. For discharge, an oil to water counter flow heat



exchanger is used to heat feedwater from 800C to 2270C, in the case of



plant #2. During the charge cycle the steam extraction from the main



turbine is increased at all extraction points to heat oil to a tempera­


ture higher than 2270C by the approach a to be used in the discharge



heat exchanger design.



As in the feedwater storage case with HTW containment, the added



heat exchangers for extraction steam during charge must be included,



but during discharge less steam extraction is required so the Feedwater



Heater account in the incremental Turbine Island costs may be deleted.



For the case analyzed in Section 5 pages 5-58 to 5-62, ie plant #2



and 17 percent swing,the turnaround efficiency is 0.853. The value of



a assumed is 11.10%; since this a determines the inlet and outlet temper­


ature of the oil, the value of Mc is determined. It is about 2 for the



oil to water discharge heat exchanger, and about 12.5 for the steam to



oil extraction heaters.
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The cases studied in Table 6-3 showed that an all-oil system is



considerably more costly than one with 25 percent volume fraction of



oil in a packed-bed thermocline system. Use of hot and cold tanks



instead of a thermocline would make it still more costly. In order



to compare feedwater storage most favorably to steam generation systems,



the packed-bed thermocline system will be assumed. The added cost for



all-oil can be estimated.



The components of CTM are 2.05 MS for rock, 2.89 MS for oil and



1.53 MS for tankage, for a direct cost of 6.47 MS. Conversion to total 

cost gives CTM = 80 $/kW. This is considerably lower than for the steam 

generation cases in Table 6-3, As with HTW feedwater storage cases, 
3


feedwater storage gives a high specific output in kWh/m . The loss com­


ponent L is 29 $/kW for the stated turnaround efficiency.



The same method used with HTW feedwater storage is used to find the



incremental turbine costs. The added capacity is about 0.23 in the IP



turbine and 0.77 in the LP turbines. For normal operation the ratio is



0.38 for IP versus 0.62 for LP. As a set of two peaking turbines each



operating from a given inlet pressure down to condenser pressure,



the outputs required are again found to be roughly equal. Therefore



the Turbine Island cost is found as the average of that for 6.72 MPa,



IP inlet conditions, and 1.16 MPa, LP inlet conditions, on Figure 5-26,



The average of 354 and 484 is 419 S/kW. However a part of this must be



deleted which represents the feedwater heating account. For plant #2,



in Table 5-15, this account is 15 MS out of 190 MS or .0789. Deleting


=
this fraction from 419 gives Cpp 389 $/kW.



The three heat exchangers have direct costs (from Table 5-14) of



3.31 MS for the charge phase extraction heater, 0.31 MS for the trim



heater and 19.49 M$ for the discharge phase feedwater heater. The sum



of these can be converted to 253 $/kW.



The energy related costs are 109 $/kW. The power related costs are



642 $/kW, giving a total of 751 $/kW. It exceeds the comparable steam



generation cases principally in the high cost of the discharge heat
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exchangers. This case has not been optimized; the use of the same 

a = 11.10C on all the heat exchangers is arbitrary. For a liquid-to­

liquid heat exchanger, the cost is roughly inversely proportional to a. 

It can be estimated that using a = 22.2°C (40'F) would halve the cost of 

the discharge heat exchanger. The trim heater must be doubled, and 

there will be some increase in the loss term, L. The net result is a 

reduction of total cost to 670 $/kW. 

Selection #8 - Oil Storage of Feedwater Heat



This selection features oil, specifically Caloria HT43, used for



feedwater storage, use of separate hot and cold tanks, and several



variants in the heat exchanger configuration. The analysis above chose



as the basis for comparison with other concepts the use of the oil and



packed bed of rock in a 25:75 volume ratio as most likely to be competi­


tive.



The effect of using oil only and the extra tankage can be estimated.



Five times as much oil will be needed for the same stored energy, the



tankage will increase by more than a factor of two. This would increase



the cost CTM from 80 $/kW to 217 $/kW. The 670 $/kW total cost would



increase to 807 $/kW.



For simplicity in analysis with some expectation it would be most cost



effective, the case analyzed above in this Section assumed extraction



steam-to-oil heat exchangers for charging. Figure 3-8 and other variants



by the proponents assumed increased extraction steam-to-water (feedwater



heater) capacity and used the hot feedwater in the same oil-to-water



heat exchanger used for the discharge phase. There are both advantages



and disadvantages to this use of an intermediate heat exchange during



charging. Advantages include the reduced likelihood of oil leaks into
 


the feedwater system. The intermediate loop pressure can assure that



leaks can only be in the reverse direction. Also, the technology of



steam to water feedwater heaters is more certain than that of steam to



oil. The cost of the latter is certain to be greater than that of steam



to water for expected heat transfer coefficients with oil. The principal
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disadvantage is that the intermediate loop will reduce the turnaround



efficiency. It was noted above that optimizing the TESS cost by reducing



the cost of the oil to water heat exchanger might requi~re an a of 20'C



or more. If this AT is encountered twice, on charge and discharge, as



well as the AT in the feedwater heaters, the turnaround efficiency could



be down to 70-75 percent.
 


For comparison purposes the configuration analyzed above in this



section will be retained as the recommended form and its cost assumed



as 670 $/kW.



Selection #9 - Oil and Packed Bed Thermocline



The features of this selection are the use of a packed bed of rock



or gravel in tanks, with the voids filled with oil, Clearly the thermo­


cline mode must be used when rock is the major storage medium. This



selection also generates steam for use in a peaking turbine.



The foregoing sensitivity analysis, and the comparison in Selection



#8 of LVP systems that use oil only with those using a packed bed, pro­


vide the data for comparative evaluation of this selection. From the



cases considered, the use of 25 percent volume fraction of oil, 75 per­


cent of rock, a mass flow ratio Mc of 12.5, and an approach of 8.4%
 


(15°F) appears roughly optimum, at 729 $/kW (Table 6-3, column 2).



For a 50 percent swing, 400 MW peaking in plant #1, the storage tanks



and heat exchangers are best built in multiple units. Tables 5-12 and



5-13 indicated 16 storage tanks and 80 separate heat exchangers. No



desuperheater heat exchanger is recommended for this selection; an



attemperator (or spray desuperheater) is used instead. Comparing cases



analyzed with desuperheater and attemperators indicated that the desuper­


heater heat exchangers added 20-30 $/kW while the reductions caused in



the other cost components only totalled 10-15 $/kW.



The postulated void volume of 25 percent for oil is arbitrary.



Close packed uniform spheres in various crystal lattice configurations



leave a void volume of about 26 percent. This would not be achieved



with random packing of non-uniform spheres of one size grade; the void
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volume might exceed 40 percent, according to the literature, unless



great care is taken in assuring maximum settling layer-by-layer as



installed. The opening between three touching spheres will pass a



smaller sphere with a diameter less than one-third of their diameter,



so particles smaller than this can partially fill the voids between


spheres. A close packing of one size sphere, say 3 cm diameter, and



void filling by smaller spheres, say 0.3 cm diameter, could approximate



a void volume of 7 percent, so that even imperfect packing should



attain less than 25 percent voids. The proponents of this selection


have experimentally used river gravel plus coarse sand as such a two­


size mixture.



Another approach to minimize the ratio of oil to rock needed is the



drained-bed concept (CD #27 and #35). The first variant uses trickle­


charging. The voids in a packed bed contain an inert gas. To charge



a tank, hot oil is distributed over the top layer, trickling down, to



cause a thermocline to move downward. The cold oil is removed from


the bottom; when charged the tank contains hot rock and inert gas.



To discharge, cold oil trickles down from the top, and is removed hot


from the bottom. The thermocline again moves downward leaving the



discharged tank filled with cold rock.



The second variant was a result of this current project. An



alternative way to reduce oil requirements is to fill with oil the voids



in only three of the many tanks (eg 16 in the case discussed). A filled



tank is charged and discharged conventionally, with hot oil going in and


out at the top and cold oil out and in at the bottom. While one tank is



being charged or discharged, the oil from an already charged or discharged



tank is drained and transferred to the next tank to be processed.



These concepts have not yet been tested sufficiently to be considered


near term available, but are growth potential directions to reduce cost.



Therefore, the comparison value for this selection will be assumed



as 729 $/kW, as in column 2 of Table 6-3.
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Selection #10 - Oil and Salt Storage



The features of this selection are use of dual media, both Caloria



HT43 and HITEC, primarily to extend the temperature range of storage



to a higher temperature than that for which Caloria was acceptable.



The molten salt, HITEC, is operated over the range 300-4500C to desuper­


heat and superheat steam from a central solar thermal system. The oil,



usable to about 3100C is the heat transfer fluid in the condenser/boiler



and the subcooler/preheater.



No judgment ismade about the merit of this combination for the



solar application. In this project the concepts being compared do not



require temperatures above 300C in the storage medium because,for



reasons already given, the source of energy for storage is the IP inlet



steam in plant #1 and the live steam from the nuclear reactor plant #2.



Both are at under 3000C. For these steam conditions the degree of super­


heat to be removed ismuch less than in the solar application considered



by the proponents of this selection. As has been discussed, there was



not found to be an advantage in using a desuperheater rather than an



attemperator. As shown in Figure 5-23 a superheater is used but only



produces about 400C of superheat.



As the use of molten salt as the sole medium is treated as Selection



#11, Selection #10 will not be treated further.



Selection #11 - All Molten Salt



This variant of Selection #10 uses only molten salt for storage.



As shown in Figure 3-11, three tanks are used; there are two large ones



for a high mass flow ratio Mc in the boiler/condenser and the preheater/



subcooler. A smaller tank is used at the highest temperature 482°C, used



for desuperheating/superheating.



As this selection does not propose the use of packed beds with the



salt, it most resembles the column in Table 6-3which is headed Salt:l.00.



The specific cost for such a system is 1701 $/kW. This high cost results



solely from the high cost of HITEC compared to oil and to rock. At



605 $/M (27.5 ¢/Ib)(1976$), HITEC costs about 4.3 times as much as oil
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and 24 times as much as rock, per unit of energy stored. To make this



selection economically viable, it must be modified inone of three ways.



The first is to use packed-bed/thermocline tanks with HITEC as the
 


heat transfer fluid. Honeywell, Inc. has been considering this (Refer­


ence telecon with R. LeFrois), and DOE (V. Berolla: Sandia Livermore)



has been conducting static tests of degradation rates of oil and molten



salt at high temperature in the presence of various minerals such as



granite and taconite pellets. Some catalytic increase in the degrada­

tion rates may occur from rock/fluid interactions, but the data does



not yet seem adequate for judgment in the range of interest for this



project, ie 200-260°C rather than the higher temperatures contemplated



for other applications. Table 6-3 indicates that a low void fraction,


by use of multiple size grades in packed-beds or use of drained-bed



technology, could give attractive costs between 20 and 5 percent volume



fraction of salt.



A second approach is a decrease in the cost of the molten salt mix.



HITEC, using quite pure sodium and potassium nitrates and sodium nitrite,



has a higher cost than some alternative salt mixes. The eutectic of



sodium and potassium nitrate, also known as draw salt, is offered by



Park Chemical as Partherm 430 with a melting point of 220'C and 430'F.


Park Chemical indicates a cost thirty percent less than Partherm 290,



their equivalent of HITEC. Both of these are high purity and have been


found to cause little corrosion to low carbon steel for many years if


used at the temperatures required by the cases here analyzed (References



1, 30). Commercial and fertilizer grades of sodium and potassium nitrate



have costs, according to the Chemical Marketing Reporter, as low as 65­


75 $/Mg (3-4t/lb). The costs of corrosion resistant materials compatible


with the impure salt grades, or intermediate levels of removal of spe­


cific impurities to retain the low corrosion levels of carbon steel,



would require a tradeoff study.



The third approach is the use of other inorganic materials that are


inherently low in cost at high purity levels. Two chemicals, sulfuric



acid and elemental sulfur, are near the top of the list in the annual
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quantity produced, and cost about 80 $/Mg (3.6¢/Ib). Problems of corro­


sion, of their use as a heat transfer fluid, and of the feasibility of



using them in packed rock beds have not been adequately explored, so



they cannot now be considered near-term available.
 


For this selection the lowest cost version that can be considered



as near-term feasible is the same packed-bed thermocline configuration



used in Selection #9, but with molten salt rather than oil, as represented



by the column headed Salt:0.25 in Table 6-3. The comparative cost is



927 $/kW.



Selection #12 - Phase Change Materials CPCM)



This selection was included to assure that the merits of phase



change materials were considered, despite the fact that many of the



proposed materials and configurations cannot be considered near-term



available. Two reasons for consideration were stated in Section 3:



the possibility of reduced storage media plus containment cost because


3
of higher energy densities stored per m , and the possibility of



improved thermodynamic performance by latent-to-latent heat exchange



with a small differential temperature.



Unless the concept of packed-beds of rock with voids filled with oil



or molten salt is found invalid, because of possible problems inmedia



compatibility, or ratcheting (settling) effects in the rock bed which



endanger the containment, it is difficult to see a PCM medium matching



in cost the rock plus heat transfer fluid (of 0.25 or less volume



fraction). Rock cost at 16.5 $/Mg or less must be compared with salts



at 60-200 $/Mg for commercial grade purity and 400 $/Mg upward for



grades currently used for low corrosivity heat transfer fluids. For a



working temperature range of say 500C as has been found roughly optimum



in the cases explored, the energy density per kg of the PCM material



(from its specific 'heat plus latent heat of phase changes) would have



to be more than an order of magnitude better than that of rock, This



appears unlikely.}
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The other potential advantage of PCM, thermodynamic improvement,



would result if higher temperature and pressure output steam could be



achieved by a lower slope of the storage fluid profile as shown in



Figure 5-18 and 5-23. Such a slope corresponds to a higher value of the



mass flow ratio Mc when sensible heat exchange is used. With true latent­


to-latent heat exchange, the storage medium profile could be parallel to



the charge steam and discharge steam profiles, so that the discharge



steam temperatures could be only twice the approach temperature dif­


ference a below the charge steam temperature. The impact of this could



be a lower value of L and a lower value of Cpp, from a higher turn­


around efficiency and higher turbine inlet pressure. Conceivably this



could lower the sum of these two terms by 60 $/kW, which the increased



cost of the storage medium would negate.



The TESS costs of this selection will be taken as higher than the



927 $/kW for rock and salt and approaching all-salt, say at 1500 $/kW.



This plus the doubts on near-term availability due to heat transfer



problems places the selection low in ranking.
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SECTION 7



DISCUSSION OF SELECTION CONSIDERATIONS



In Section 6 the primary emphasis was on economic comparison of the



twelve selected concepts, with sufficient sensitivity analysis to give



perspective as to the reasons for higher and lower costs. Summary



Table 7-1 indicates the results in $/kW e for the case chosen to repre­


sent each selection. For ready reference, the energy-related and power­


related costs are also given in separate columns. Since all cases were



treated for six hours discharge, the e~ergy-related costs in S/kwh can



be found by dividing CE by sAx. The rank ordering by TOTAL cost CT



charged to the TESS concept is given in the sixth column.



Table 7-1. Economic and near-term availability ranking.



Selection Short CE Cp CT Rank - Rank -

Number Title $/kW $/kW $/kW Economic Availability



1 PCIV-FWS 461 462 923 6 4



2 PCPV-FWS 524 495 1019 9 4



3 STEEL-FWS 1129 495 1624 11 1



4 UG-C-VARP 172 477 649 1 3



5 UG-A-FWS 108 667 775 5 6



6 UG-A-EVAP 180 487 667 2 4


7 AQUIFER 75 855 930 8 6


8 OIL-FWS 132 538 670 3 5



9 OIL/ROCK 188 541 729 4 
 3 
10 OIL/SALT .. .. ..



11 
 SALT/ROCK 426 501 927 7 . 4 

12 PC >1000 -- -1500 10 8
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Although the economic ranks are numbered sequentially, it is



apparent that there are several groups with relatively small cost dif­


ferences. In sequence, #4, #6, and.#8 are all in-the 649 to 670 $/kW



range; #9 and #5 are in the 725-775.$/kW range; #1,#7, #11, and #2 are



in the 900-1020 $/kW range; #12 and #3 are distinctly higher. Within



each of the groups little attention should be paid to ranking. The



degree of optimization and the certainty level on many of the cost com­


ponents does not warrant it, An uncertainty in each of the storage



system components of ±20 percent is easily credible at the quartile



level.



However, for the purposes of this report it should be noted that



components common to many of the selections should affect those selec­


tions similarly. For example, the peaking Turbine Island is a signifi­


cant part of all the concepts, ranging from 400 $/kW to 530 $/kW.



While revised estimates from detailed design of specific turbine con­


figurations could move these costs upwards or downwards, they would



probably move comparably and not affect the ranking among the above



groups.



Some of the components with significant cost are unique to one
 


selection or a small subset. They may be uncertain in cost because of



uncertainties in technology that have not been resolved by adequate



development and testing to date, These uncertainties can be considered



as a factor in judging the near-term availability of the selected



concepts.



For near-term availability, and other criteria that are in part



subjective, ranking should not only indicate the best and the worst,



but should indicate groups that are very comparable in rating and



places in the sequence where there is judged to be a large gap, The



scale of one to ten is used, one best and ten worst, with the same



rating on similarly valued selections and omitted numbers where there



is a large difference in value.
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NEAR-TERM AVAILABILITY



A subjective ranking of near-term availability ismade in the last



column of Table 7-1. None of the selections is completely available



off-the-shelf. The definition of near-term availability used in the



ranking judgments is that the technical uncertainties have either been



resolved by demonstration, or could be so resolved in the near future



by industry or government action, so that an electric utility customer



could order a TES system with "reasonable confidence" by 1985, for



delivery and operation during the period 1985 to 2000,



The principal purpose of discussing the relative value of the selec­


tions on this and other criteria discussed in Section 3 is to assess



the impact that particularly good or bad features may have on the pre­


liminary ranking by cost. A major fault could move a selection down­


ward, or a unique advantage move it upward. Minor differences will not



be emphasized, nor are they likely to alter rankings unless a conflu­


ence of many advantages seems to merit it,



Judgment of near-term availability ismostly concerned with techni­


cal problem areas not yet resolved. The principal problem areas,



potential solutions that have been proposed, and their status will be



briefly discussed as justification of the rank ordering assigned. In



most cases it is a key component, not common to the other selections



that is discussed.



STEEL TANKS. Steel pressure vessels for containment of materials



at temperatures and pressures to and beyond those needed for TES


(Selection #3)arestate-of-the-art. Design practices are well codified



and backed by years of operating experience.



UNDERGROUND CAVITIES, The technology of excavating shafts and



cavities is well known, from mining, tunneling, and other industrial



applications, Problem areas specific to Selection #4 include:



* Competent rock must be found. This limits sites to specific



regions and requires exploratory drilling on specific sites.



Until actual excavation some uncertainty remains.
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" Applications that keep the rock at high temperature have not


been demonstrated for long-life effects. Precautions in rock


conditions selected, use of adequate reinforcement near the



cavity, use of adequate high-temoerature high-strength concrete



for stress transfer are suitable solutions,



" Cycling in temperature and pressure on a daily cycle has not



been demonstrated for long-life effects. The proposed mode of


operation as a variable pressure accumulator with modest swings


in pressure and temperature should minimize these effects.



o Underground cavity volume required is larger than demonstrated


by current technology. Until moderate size cavities (30,000 m
3)
 

have been thoroughly demonstrated, larger cavities such as lOOm



diameter cannot be considered near-term available.* Multiple



smaller cavities around a common shaft can be used for larger



volumes,



UNDERGROUND CAVITIES -AIR SUPPORTED. Selections #5 and #6 are


rated somewhat lower than Selection #4 because of additional problem



areas.



* The use of compressed air support for a low pressure contain­


ment vessel has, not been demonstrated. While there are advan­


tages in accessibility to the cavern components, the problems


of air leakage out, water leakage in, pressure seals for access


doors, cooling of the compressed air, risk of severe pressure



swings despite the equalization tank have more technical risk



than the concrete-supported cavity.



Correspondence and discussions with Dr. Andrew Merritt (Vice President


of Deere and Merritt, Inc., consultants in engineering, geology, and


applied rock mechanics, Gainesville, Florida) indicated that 30m span

inweakest rock direction is state-of-the-art; that height of 30-40m


and length up to lOOm or more are usually feasible, but that the


problems and costs for lOOm diameter cavities could be much worse


than estimated by proponent R&D Associates,
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OIL/ROCK. The use of a thermocline tank with oil as a heat transfer



fluid,and gravel and sand as the storage medium has been demonstrated



for a limited time. Some confidence has been gained, but long-term



stability requires demonstration.



" 	 Degradation of the oil by temperature, presence of the rock, or



the combination causes maintenance expenses. Removal of solid



and vapor decomposition products by sludge removal provisions,



vapor recovery systems, and refurbishment or replacement will



be required. Heat exchangers where thin film fouling can affect



performance must be designed for easy cleaning, eg, oil inside



the tubes rather than the shell.



" 	 Uncertainties in heat exchangers. General references on heat



exchangers give condensing steam to oil heat transfer coeffi­


cients as seven to ten times lower than those for condensing



steam to water. Partial reasons are lower heat capacity, lower



density, higher viscosity for the oil. It is suspected that a



large part of the difference is the assumed fouling in such



references. The oil and the fouling conditions assumed are not



stated. Caloria HT 43, highly purified may be much better.



This report, following Martin Marietta's report (Reference 61),



used U = 92 (English units), about one-fourth of that used for



water. There may be an uncertainty of two to one in heat



exchanger costs for oil.



* Settling behavior of rock beds has been suggested as a problem



area. If under daily thermal cycling the rock bed contact with



the steel tank increases the tensile stresses in the tank as



the rock settles, leakage or failure could occur. The effect



was not found in the Rocketdyne test of an oil/rock bed. If



found to be a problem, possible solutions include: use a form



of solid medium that has an expansion coefficient similar to



that of the tank, such as taconite; test whether smooth river­


bed gravel and sand is better than other shapes such as random



size crushed gravel, several mixed sizes with low void fraction,
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etc; use partial thermal insulation on the inside of the tank


so that tank expansion is reduced to match rock expansion.



PCIV, The prestressed cast iron vessel of Selection #1 has not


been demonstrated at pressures and temperatures of interest.



* Current emphasis (Reference 45) is on a hot-going PCIV, with



external insulation. Operating with the cast iron hot and pre­


stressing,cables and tendons cold has potential problems of


fatigue failure and creep under diurnal temperature and pres­


sure cycling. Some of the external insulation must withstand



high pressure loading. Ample design margin and periodic test


and adjustment of cable stresses is one approach to the solu­


tion. Finding a form of thermal insulation suitable for use


inside the steel liner of the PCIV is another. Itmust be com­


patible with boiler quality feedwater and able to withstand



high pressure while retaining low conductivity. Siempelkamp



is reportedly working on such an insulation (Reference 175)


but has supplied no details. Discussions with GE Corporate R&D



Laboratory personnel* indicated one possible approach.



* Expansion accumulator mode gives lowest daily changes in pres­


sure and temperature. This would require, for the feedwater


storage mode of operation chosen for greatest economic viabil­


ity, a cold storage volume comparable to the hot PCIV volume.


A displacement accumulator mode would eliminate the large cold



Telecon with Dr. F.P. Bundy referenced article, "Flat Panel Vacuum


Insulation" by H.M, Strong, Bundy, et al, in Journal of Applied

Physibs, Volume 31, 1960, describes mat of glass fiber layers, alter­

nating in direction, built up to 2 cm thickness with thousands of


layers, encased in 0.1 mm stainless steel foil and evacuated. Conduc­

tivity approached that of Dewar flask. Was tested to 4-5 bars but not


to 40 to 50 bars required for PCIV.
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tank, but to operate in a thermocline mode the internal thermal



insulation would be required. Such insulation would not only



greatly reduce the thermal stress caused in the liner by a



thermocline but would greatly reduce the vertical conductivity



effects in the internal liner which tend to degrade a thermo­


cline.



PCPV. The prestressed concrete pressure vessel, like the PCIV, has



not been demonstrated at the temperatures and pressures of interest.



Many very large PCPVs have been used at lower pressures (0.3 MPa and



one example at 3 MPa). There can be considerable confidence in the



technology and design principles. Hot-going systems are not feasible



so some kind of cooling system is required outside the liner and layer



of high temperature concrete.


* Cooling systems to maintain desired temperature distribution



yet minimize thermal losses from storage must be devised,



Active systems can be used in which finned tubes, water-cooled,



are embedded at the outer interface of high temperature con­


crete. Internal insulation can play a role, particularly if



the disDlacement accumulation is to be used.



SALT/ROCK. There has been less reported experimentation on the



compatibility of molten salt and rock than that reported for oil/rock.



Sandia Livermore is conducting static tests on degradation rates.



* Degradation rates could be excessive with some forms of rock,



eg, dissolving of some rock constituents. Exploration of



alternative low cost rocks and minerals is one approach. Filter



for solid degradation products, refurbishment, makeup, and



eventual replacement of the salt and/or rock would be mainte­


nance and operating expenses, to be considered in economic



evaluation.



* Heat-exchanger fouling does not appear to be a problem with 
pure salt, heat transfer is very good, comparable to water.



Effect of degradation products from interaction with rock are



not known.
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* Lower cost forms of molten salt such as impure HITEC and draw



salt are not near-term-available until thorough tests on cor­


rosion and materials compatibility are made.



AQUIFER AND PCM. Both of these have been labeled as not near-term­


available. They are also low in economic ranking.



SUMMARY. Although Selection #3, STEEL, is most available, it is
 


also most costly. Availability is not considered to overcome the cost



obstacle. Four out of the top six in availability are also in the top



six in cost ranking. Selection #6 ranks better than Selection #5 on



both criteria, suggesting that only #6 of these two similar selections



be retained unless other criteria indicate otherwise strongly.



UTILITY OPERATING REQUIREMENTS
 


Site Flexibility



Of the twelve Selections, four are limited to suitable geologic



areas. Selections #4, 5, and 6 require competent rocks, suitable for



excavation with minimum reinforcement and minimum risk of catastrophic



failure or seismic damage. Granite rocks, and other intrusive igneous



and crystalline basement type rocks are preferred (Reference 28). Lime­


stone, marble, and other metamorphic rocks not excessively fractured,



and old, well-cemented sandstones are also feasible. The above refer­


ence displays a map suggesting that roughly one-third of the United



States is underlain by potentially suitable rock formations. Including



the major mountain chains, all of New England, Wisconsin/Minnesota/



Dakotas, and scattered areas in the rest of the country, the suitable



regions probably are included in the utility areas serving well over



half of the population.



Reference 28 also suggests massive salt deposits as suitable.



While excavation costs can be very low, using solution mining, these



have not been included in any selection on the grounds of technical



risk. Extensive use of such cavities has been made for storage of



natural gas and reserves of petroleum. The salt is somewhat plastic



under high pressure, even at ambient cavity temperatures. There have
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been reported cases of partial closing in before enough gas or oil had



been emplaced to match the ambient pressure at depths. At high temper­


atures, using liners that contain pressurized HTW, the problems of leak­


proof containment and avoidance of failure from salt plasticity do not



appear to have near-term available solutions.



Selection #7 requires suitable aquifers. Sedimentary geology with



potentially suitable groundwater layers underlies about half of the



United States. Suitable regions are widely dispersed and probably



occur within the utility areas serving over two-thirds of the popula­


tion. In addition to the existence of aquifers, site selection must



consider that they must be deep enough to support the pressure of


injected HTN without flashing to steam; must be confined, ie, having a



retaining impermeable layer of clay above the aquifer and preferably



also below it; and must not interfere with potable aquifers for munici­


pal water supplies.



Other aspects of site flexibility are land requirements and



aesthetic acceptability. The underground selections use little land



and show little visible profile. Disposal of the muck from an excavated



cavern poses an aesthetic problem or disposal problem, but often it is



salable or can be used for other on-site construction. The PCIV and



PCPV require large arrays of storage vessels. The proposed PCIV module



is 70 meters high; two or three would be needed for Selection #1 as



feedwater storage. As many as twenty could be required for a 2400 MWh



TESS. The PCPV would orobably be designed with a lesser height to



diameter ratio, but would have very thick concrete walls giving a large



total visible volume. Location near populated centers might encounter



aesthetic objections.



Operating Flexibility



POWER SWING. In the course of the study, discussions with several



utilities indicated less interest in small peaking increments such as



5, 10, or 15 percent of the base load plant capacity, than in larger



peaking increments such as 30 to 50 percent. On this basis, large
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power swing capabilities were emphasized over the limited swing avail­


able from feedwater storage. Some of the points discussed were:



" Commonwealth Edison is currently purchas-ing 500 MW coal-fired



cycling plants (shut down but kept hot overnight).



" If TESS are economically viable, introduction into the genera­


tion mix would be faster with 400 MW peaking capacity suoport­


ing each added base-load plant than with only 100 MW peaking
 


capacity per plant.



" Generation control for short-term load-following is only



applied to a few plants. If load-following with a TESS while



keeping the Boiler Island at constant output proves advanta­


geous, fewer plants with larger peaking capacity are preferred.



On this criterion, Selections #1, #2, #5, and #8, small swing feed­


water storage, would be somewhat downgraded compared to the other
 


selections.



In the course of modifying reference plants for Baseline/TESS, a



number of the changes made in Section 4 were for ease of control and



transient stability, and for a capability of rapid load-following.



These of course apply to all selections.



DISCHARGE HOURS. Operating flexibility is also concerned with the



number of hours of discharge at full capacity that is available. The



energy-related component of cost is roughly proportional to the hours



of discharge whereas the power related component is not. For this study,



6 hours discharge and 8 hours charge were selected as a uniform basis for



comparison. Since the relative cost of the energy-related and power­


related components differs for the selections, the ranking may be altered



for a different design with more or fewer hours of discharge. This is



illustrated in Figure 7-1.



The TESS cost in $/kW is plotted against the number of hours of



discharge capacity built into q TESS plant. At zero hours, the points



represent power-related costs alone from column 4 of Table 7-1. At six
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DESIGN DISCHARGE (hours) OF STORAGE



Figure 7-1. 	 Comparison of capital cost of selections


from different discharge cycles.



hours the points are the total costs in column 5. Some of the high­


cost-per kWh systems such as PCPV and PCIV cross over the oil/rock sys­


tems with higher power-related costs at about two hours discharge capa­


bility. Aquifer storage, not very attractive for short discharge



designs, has a low slope, and would cross all the other lines by 48



hours discharge requirement, It is thus most suitable for long-term or



seasonal storage.



The display in Figure 7-1 resembles the "screening curve" in Figure



4-4 in which annual costs per kW are plotted against capacity factor



or hours of output per year. The resemblance is deceptive but the



differences do not alter the crossover points (in hours of discharge)



of the TESS selections.
 


ORIGINAL PAGE IS 7-11 
OF POOR QUALITY 



Figure 7-2 shows the differences in graphic form. Two hypothetical



selections are shown, #1 and #2, which intersect. The scale for ordi­


nate can be $/kW as in Figure 7-1 or can be changed to .capital costs



per year by using the fixed charge rate as a scale factor. The fuel



costs or variable costs per year can be added to both selections so the
 


scale represents total $/kW-a. Since the fuel assumed for both is the



same and differences in the turnaround efficiency have been included as



a capital cost equivalent in C the same amount is added to each as



shown by lines IA and 2A.



1A



1B1



#2-


DISCHARGE (hours) HOURS,/YEAR CAPACITY FACTOR 

Figure 7-2. Alternate scales for comparisons


of TESS selections.



The hours of discharge can be converted into hours per year or a



capacity factor if suitable assumptions are made. One can assume that



for all designs the TESS operates for its rated discharge period on 250



days a year, ie weekdays but not weekends. This will not alter any of
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the curves if a scale factor is used such that 6-hour capability equals



1500 hours per year equals 0.17 capacity factor. The lines, however,



still represent distinct plant designs with specific maximum discharge



capability for each point. A specific plant, rated 6 hours discharge,



would have a screening curve indicated by dashed line IB if for various



reasons it were to be operated at more or less than 250 days per year,


up to a maximum of 365 days per year at capacity factor equal to 0.25.



The capital cost CE' in the plant is committed; only the fuel cost



varies with capacity factor, so the slope of line IB is less. For



designs with other discharge capabilities, the screening curve would be



parallel to IB but higher or lower.



Another point can be made with this generalized figure. As plant



designs incorporate more or less hours of discharge capability, the



capital cost would not be a straight line if each plant were optimized.



One would expect the true curve to be concave downward as shown by dot­


dash line 2C,



Reliability



One of the objectives of the use of TESS is to improve the boiler



island outage rates by minimizing the output variations required of it.



It has also been indicated that reliability could be improved (avail­


ability increased) if the peaking turbine can be operated from storage
 


when the boiler island is shut down or from the boiler island steam



source if the main turbine is shut down, Both appear feasible at some



cost. In any case effects apply equally to all selections except the



feedwater storage selections using an enlarged main turbine. Even the



feedwater storage selections could use a separate peaking turbine repre­


senting the differential capacity that would have been added to the
 


main plant. Turbine design would probably be more difficult and costs



higher than shown in Table 7-1.



Reliability can of course be affected by forced outage rates, and



the amount of scheduled maintenance required of the TESS components.



It is difficult to judge relative proneness to outage except as a func­


tion of technical uncertainty, as imbedded in the absence of adequate
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demonstration of performance. The highly modular construction incorpo­

rated in the various selections to use sizes that have least technical



risk (eg 3 to 20 PCrVs; 16 oil/rock storage tanks; 5 to 35 parallel



heat exchangers) should assure reliable operation providing isolation



devices such as stop-valves and control features are adequately



designed.



Maintenance requirements of heat exchangers can be expected to be



more time consuming in selections using oil than in those using molten


salt or HTW. Maintenance in an underground cavity, while hopefully



seldom needed could require an outage of many weeks to many months



while cavities are emptied and cooling is used to make manned access



feasible. Molten salt systems, if shut down and allowed to cool below



their freezing point will require electric or steam tracing in all



pipes, heat exchangers, and storage tanks to restore flow after repairs.



An alternative is to use a system that introduces water as the molten


salt cools down, so that a liquid or slurry is maintained down to



ambient temperatures (Reference 1), Extra equipment and more tankage



would be required.



OPERATING HAZARDS



It can be expected that electric utilities would be reluctant to



adopt a TESS concept that potentially endangered the conventtonal plant


components such as boiler or nuclear steam supply, main turbine genera­


tor, electrical, and heat rejection systems. Such hazards would most


likely occur at the interfaces of the TESS with the main power plant.



Precautions must be taken that the quality of boiler feedwater, for


example, is maintained at utility standards. Small leakages of foreign



materials into it can cause corrosion and scale. Fairly small parti­


cles of scale, knocked loose and passing through the turbine can cause



blade erosion 'or even blade failure. Any appreciable incursion of oil



or molten salt would make necessary an expensive decontamination outage.



Oil and salt, and potentially granules of rock and sand, interface



with HTW and steam in heat exchangers. In case of heat exchanger leak­

age, it is preferable to arrange the pressure on the water/steam side
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to be everywhere greater than on the oil or salt side. HTW storage



systems will probably have lesser hazards from boiler feedwater con­


tamination, but all parts of the storage systems, tanks, pipes, and



pumps must be cleaned and kept clean, and be of suitable corrosion



resistant materials.



Avoiding risks to the boiler island in a conventional plant was one



of the reasons for opting to eliminate the reheater from Plant #1 as



was discussed in Section 4.



ENVIRONMENTAL ACCEPTABILITY



Environmental requirements on the main plant ilay a major role in



site selection, so limit site flexibility. Inaddition to main plant



constraints, unique features of the TESS selections must be considered



for their environmental acceptability. All of the aboveground selec­


tions require a large volume of tankage. Many tanks can be fairly low



and comparable to other structures of the main plant. Of the various
 


selections, the PCIV, Selection #1, probably has the greatest height



and visibility, about 70m, but not in excess of fossil plant stack



heights.



Particularly noxious materials, in terms of odor and toxicity, have



been avoided in the selections being considered. Sulfur and sulfuric
 


acid, while potentially very low cost heat transfer fluids, may com­


plicate site approvals by environmental objections.



Containment of the storage media in case of a catastrophic failure



must be provided for in the case of oil and molten salt, but probably



not for HTW. The danger from major release of hot oil is fire. The



danger from the release of hot molten salt is less if the, area around



the tank is kept well cleared of oxidizable material.



CONSERVATION POTENTIAL
 


Conservation objectives include the saving of energy, and especially
 


the saving of depletable and imported fuels such as petroleum and



natural gas. Thermal energy storage and other storage systems do not



save energy in that the turnaround efficiency indicates less electric
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energy is being produced from fuel than could be obtained from the



base load plant. Although load-following with a base load plant will



give a poorer heat rate at low load operation, it would in general



average more efficient than a TESS equipped plant.



However, if a TESS is compared to alternative methods of storage



there can be energy savings. The turnaround efficiency of a pumped



hydro plant is about 0.65 to 0.70. In the analyses in this study the



turnaround efficiency found is quite high for the selected concepts.



It is roughly in the range 0.85 to 0.91 for the HTW systems and 0.79 to



0.85 for LVP systems. This is significantly better than pumped hydro



and than most of the other storage means can claim.



These results are somewhat higher than those given by some of the



proponents in the references cited. This is in part due to selection



of a steam source and peaking turbine throttle pressure that do not



unduly penalize turnaround efficiency to get a high specific output.
 


It may also be due in part to assumptions that are more optimistic than



used by said proponents.



The use of cold reheat steam, or IP turbine inlet steam, as a 

source minimizes the availability losses from throttling and loss of 

superheat on charging. Use of a conservative throttling range on 

variable pressure and multiple evaporator systems keeps the turnaround 

efficiency up. Use of a large mass flow ratio Mc in LVP systems also 

gives a higher inlet pressure and temperature at the peaking turbine. 

Itmust be acknowledged that some of the turbine assumptions made



may be optimistic. Elimination of reheat in both Plant #1 and Plant #2



for ease of control, and simplicity of analysis will increase the mois­


ture content of the LP steam flow. While the steam extraction points



will serve a moisture separation function, the possible reduction of LP



turbine efficiency by higher moisture content has only been allowed for



qualitatively. Effects of this should affect the selections comparably,



without reversals in ranking.
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Heat exchanger assumptions may also be optimistic, as has been men­


tioned. If heat exchanger costs are found to be higher than assumed,



reoptimization would suggest a larger value of the approach c%,at some



penalty in turnaround efficiency.



OIL SAVINGS. When compared not to load-following by base-load



plants, but to the alternative peaking means, such as gas turbines which



use distillate or low sulfur petroleum fuels, or to compressed air stor­


age which uses some oil fuel during the discharge cycle (about one-third



as much as the gas turbine), there is conservation potential in thermal



energy storage.



If the TESS charging cycle uses nuclear or low-cost coal as fuel and
 


the peaking turbine output replaces gas turbine power output, oil is



conserved. The amount and type of fuel replaced by TESS operation is



most accurately determined by an hour by hour simulation of the dispatch



procedures used by electric utilities with a given mix of generating



capacity types and a given pattern of daily, weekly, and annual demand



variation. Some of this simulation is planned for a later task in this



project. Some preliminary results indicate that in an assumed utility



system with generating capacity that is 27 percent nuclear, 39 percent



coal, 19 percent oil/steam, and 15 percent gas turbines, more coal and



less oil were burned when TESS was used, even when the TESS was a part



of a nuclear plant.



The explanation of what fuel effectively replaces the peaking fuel



(oil) arises in the utility dispatch procedure, and is illustrated in



Figure 7-3. In most cases the utility dispatch is done on a production



cost basis, ie when the demand is increasing the reserve unit with the



lowest variable cost per kWh (fuel and variable O&M) is started, and



when demand decreases the operating unit with highest variable cost per



kWh is reduced in load, or shut down. In some cases environmental dis­


patch may override economic considerations on occasion (eg Southern



California Edison). Capital costs of units are not considered since



they are committed and unchanging. Current fuel costs, not levelized,
 


are used.
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Figure 7-3, Criteria for judging utility dispatch of storage. 



The daily demand swings shown in Figure 7-3 are extreme to illus­


trate several points, and may represent days in different seasons, week­


days, and weekends. At the right is an illustrative set of numbers



indicating the production cost in $/MWh of the type of generating capac­


ity normally started or stopped when demand moves through that power



level. If the trough in off-peak hours is as low as is indicated at A,



area A can represent energy charged into storage at nuclear fuel costs



of about 12 $/MWh. It is discharged at B at a level where gas turbine



or oil/steam costs are about 20 $/Mlh. To be competitive for this



application, the turnaround efficiency has to be greater than the ratio



of production costs at A and B, 12/20 or 60 percent.



On another occasion, when the trough does not go to the base load



level, a nuclear plant TESS could be used, with the energy represented



by area C used for charging, However, to meet the demand, this means



that a unit at the 16 $/MWh level must be kept operating to deliver the



energy in area D. With the energy discharged at area E, the turnaround



efficiency must be at least 16/26 or 62 percent to be economic dis­


patch. Note that in this case the fuel effectively used for charging
 


is-probably coal rather than nuclear, and may be oil/steam in areas



where coal plants are not prevalent (eg Southern California Edison).



The hour-by-hour simultions have given other preliminary results



concerning the usefulness of TESS plants for different levels of pene­


tration of TESS (ie percent of total capacity represented by TESS) and



with discharge capabilities longer or shorter than six hours. Figure



7-4 illustrates the effect of penetration, ie the third increment of



penetration is not used to generate as much energy per week as the



first 5 percent increment, therefore has less value to the utility.



The variation with discharge capability in hours shows that the energy



generated per year by the TESS varies linearly with the storage capabil­


ity in hours up to about four to five hours, but is saturated by six



hours and increases very little from six to ten hours.
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Figure 7-4. Weekly load profile of energy storage action.



Since the power-related costs of TESS are independent of the stor­


age hours capability, the effective cost of electricity produced by



TESS will decrease from infinity at zero hours capability to a minimum



near six hours, and then rise again as the energy-related costs



increase without corresponding energy output.



DIVERSITY



The last criterion, as listed in Section 3, is diversity. Judgment



must be used to assure that all selections recommended for further con­


ceptual design are not simply variants of one concept. For example, on



the basis of the foregoing discussion, all recommendations should not



be underground cavities, though three out of the top ranked five (Table



7-1) are UG cavity concepts. Nor should all be variants of LVP systems



with oil as the heat transfer fluid. All should not be regionally



limited by geology. Growth potential considerations, frequently men­


tioned in the preceding sections, should be considered so that selecting
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the most available does not foreclose future improvement in cost and



performance.



Some judgments on the basis of diversity, bearing in mind the other


criteria,are fairly easy. Because of geologic specificity, at most one



selection should be underground, Since Selection #4, the UG cavity,



concrete supported, variable pressure accumulator concept comes out



best of all in economic ranking, it should be one of those selected,



excluding Selections #5,#6, and #7.



The similarity inall system details except the pressure vessel of



Selection #1, PCIV, and Selection #2, PCPV, suggests that at most one



of them should be included. Present data favors somewhat the PCIV; if



more detailed conceptual design indicates problem areas or major cost



revisions, a conversion to the alternative pressure vessel can be made.



LVP systems are fairly similar in configuration, whether oil, mol­


ten salt, or another medium is used. All appear relatively unattractive



if difficulties are found with the dual media concept of oil/rock/



thermocline. At 25 percent or more volume fraction of fluid, oil (Sel­


ection #4) appears to rank higher than molten salt (Selection #11) in



economics and availability. For drained-tank concepts or for cost



reductions of salt through purity/compatibility studies, molten salt



offers more promise. As these growth directions are not as near-term,



Selection #9 must be preferred to #11.



Although feedwater storage systems are limited in peaking capacity,



they are attractive in specific output as illustrated in the comparison



of Selections #8 and #9. Although diversity considerations would not



indicate that oil/rock systems should be two out of three selections



chosen, both could be considered in a group of four choices. If



desired, one of these could emphasize oil and the other emphasize mol­


ten salt to inject an additional difference. In this case, oil is



indicated for the feedwater storage because of the larger temperature



swing used, which would extend below the freezing point for HITEC.
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COST OF ELECTRICITY



Another sometimes useful economic measure of storage concepts is



the cost of electricity (COE) in dollars per megawatt hour (-$/MWh)



which is numerically equal to mills per kilowatt hour since a mill, in



metric terminology, is a millidollar (m$). Itwill be noted that to



this point the emphasis in comparing storage concepts, the primary



objective of this report, has been on the capital cost of the storage­


related components rather than the COE.
 


In Section 5 (pages 5-65 to 5-66) the equations for the COE of a



baseline plant and the COE of a plant incorporating a thermal energy



storage system were compared. Each was defined for the load-following



situation in which a peak power level was produced for H hours a day,



a minimum power level was produced during off-peak hours, and an inter­


mediate or normal power level was produced for the remaining hours per



day. The daily load pattern was defined in terms of H and the ratio,
 


p, of the power increment between peak and normal power to normal power.



The equations differed in two ways. The Baseline/TESS system included



in the numerator a term including the power-related and energy-related



capital costs of storage in $/kW, and in the denominator a loss term



that is dependent on the turnaround efficiency. This permitted deriv­


ing L, a capital cost equivalent of the turnaround efficiency in the



various concepts to be compared (page 5-67). A byproduct of the analy­


sis was a value for the capital cost of storage that would give a COE



identical to the baseline plant load-following in the same pattern as



the Baseline/TESS plant, ie (743 - L) $/kW for Plant #1 and (785 - L)



$/kW for Plant #2.



The value for COE of a Baseline/TESS plant can be useful in giving



additional perspective in the comparison of TESS plant concepts, or in



the comparison,of TES with other forms of storage or with other-means of



peak-load generati'on. However, great care must be used in assuring that



all the economic assumptions made in COE for TESS plants match the



assumptions made in the other systems to which they are to be compared.



There are many more assumptions involved in the COE than there are in
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the comparison of capital costs, and correspondingly, chances for error



and ambiguity. These will be explicated.



Dedicated Plant Concept



As the storage concepts of interest are dedicated storage attached



to a specific power plant and not separately operable (as are battery,



flywheel, magnetic, and pumped hydro storage),one obvious way to con­


sider the COE of the concepts considered in this report is as the COE



of the entire plant. The COE of the reference Plants #1 and #2 were



found to be respectively 44.60 and 43.14 $/MW (page 4-15). This was for



the series of assumptions made on financial practices, fuel cost scena­


rios, and the availability (0.723) as derived from Reference 172 (EPRI,



Technical Assessment Guide, August 1977).* These base-load plants can



load follow, and do so to some extent in practice. If operated in the



same load-following pattern as a Baseline/TESS plant with a peaking


swing, p, of 0.50, the base-load plant would be at full load 6 hours



per day, two-thirds load for 10 hours and at about one-third load for 8


hours corresponding to the discharge, normal, and charge modes of oper­


ation. The capacity factor would be less than 0.723 to account for the



reduced energy output per day: F = 6. •1 +102 +8L " I =
 0.639

24 24 3 24 3=0.3



(see page 5-65). From Equation 5-15, the COE for Plant #1 load-following



is 57.00 $/MWh, and from Plant #2, 56.20 $/MWh.



A Baseline/TESS plant, with the same load-following cycle and same p


would have the same COE if the capital cost in $/kW of the added TES



components equaled the baseline plant capital cost less the loss factor.



A higher cost than this for TES would give a higher COE and vice versa.



As an example, for two extreme cases inTable 7-1, Selections #3 and



#4, the COE derived from the equations on page 5-67 and the data on page



6-11 are 51.70 and 53.80 $/MWh, even though the capital costs of storage



for these cases are respectively 1624 and 649 S/kW. The inversion,



Note: 	 The newly available June 1978 version raises the estimated


availability by 10 percent, and makes minor changes in many


other parameters.
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lower COE for the more expensive storage, results from the fact that



Selection #3 is a feedwater storage case with only 15 percent peaking


while Selection #4 has 50 percent peaking. Inboth cases the economic,



comparison of storage concepts isstrongly diluted by the base load



output of the plant which greatly exceeds in energy the peaking output.


The dilution is greater for the smaller peaking output.



Incremental Costs of Storage
 


For comparison of TES concepts with each other and with other
 

sources of electricity a better approach to COE isthe segregation of



the TESS-related capital costs and fuel costs as though itwere a stand­


alone system. This also has its pitfalls.



Table 7-1 gives both the power-related, Cp.o and energy-related, CE'



capital costs of the TESS for the selections considered. These include



the cost of the peaking Turbine Island, Cpp, and the loss term, L. The



former isappropriate to retain; the latter, as given inTables 6-1,



6-2, and 6-3, should be subtracted, and turnaround efficiency included



infuel costs.



As inEquation 5-14 (page 5-65), the COE isfound for such an



incremental system by combining the fixed and the variable costs per



year and dividing by the amount of energy produced during the year.



COE = C" 1000- 0.1857 )+ 7.09 • 1.158 $/Mwh (7-1)\8760 - 0.723 • 6/24_ 0.36 -n



The first term represents fixed costs, Cs is the TOTAL cost of the


storage system in$/kW. The factor 1000 converts itto $/MW; 0.1857



includes the fixed charge rate on capital and the fixed O&M (Table 4-5).



The denominator represents hours of operation per annum: 0.723 - 8760



available hours out of which 6 hours out of 24 are for storage discharge.
 


This product, 1583 h/a issimilar to the 1500 h/a often assumed. The



second term isvariable costs. The levelized cost of coal, 7.09 $/MWh,



a factor 1.158 to include variable O&M, and 0.36, the Plant #1 cycle



efficiency, are also from Table 4-5. The turnaround efficiency, n, is



included in the denominator to increase the fuel cost incurred per MWh



electric.
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The two parameters that characterize the selections in Table 7-1



are CS and n. Using the values from the tables in Section 6, the last



column of Table 7-2 shows the range of COE when the dilution effect of



an associated baseline plant is removed. It now ranges from 99 to over



200 $/MWh.



Table 7-2. Cost-of-electricity comparisons. 

Selection Short (CTCS- L) COE in $/MWh 

Number Title $/kW Fuel:Coal



1 PCIV-FWS 900 129.70



2 PCPV-FWS 993 142.44



3 STEEL-FWS 1598 213.44



4 UG-C-VARP 611 98.99



5 UG-A-FWS 749 113.80



6 UG-A-EVAP 617 101.13



7 AQUIFER 904 132.00



8 OIL-FWS 640 102.58



9 OIL/ROCK 674 109.35



11 SALT/ROCK 871 131.57



Which Fuel is Used?



Although physically the storage system of one of the TESS plants



considered is charged by energy derived from the fuel used by that plant



(coal in Plant #1, nuclear fuel in Plant #2), the discussion on pages



7-17 to 7-19 indicates that in effect another more expensive fuel may



control the actual production cost of charging. This applies when the



utility's base load capacity with less than a particular production cost



is not large enough to have idle generating capacity during the off-peak



hours. If the nuclear plus coal base load capacity is greater than the



minimum demand, as shown at A in Figure 7-3, then column 4 in Table 7-2



is a reasonable cost estimate of COE.



If,at some future time, the nuclear capacity alone is greater than



the minimum demand troughs, TESS systems associated with Plant #2 can
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give the lower COE associated with nuclear energy production costs.


For illustrative purposes, in Table 7-3, the same TESS costs are com­


bined with the nuclear fuel costs of Table 4-5 in the third column for



selected cases. The combination of lower current nuclear fuel costs, a



higher escalation rate and levelizing factor and slightly smaller vari­


able O&M costs makes the nuclear plant production costs about 13 per­


cent smaller than the coal plant costs inTable 7-2.



Table 7-3. Cost of electricity: variations with assumptions.



Selection Short Cost of Electricity - $/MWh


Number Title TESS Plant Alone Baseline/TESS



Nuclear Oil



I PCIV-FWS 126.53 199 47.35 #2 

4 UG-C-VARP 95.71 172 54.90 #1



8 OIL/FWS 110.69 183 46.39 #2



9 OIL/ROCK 105.71 190 55.50 #1



11 SALT/ROCK 127.93 212 59.53 #1



Even if the TESS is applied to Plant #2, if the nuclear capacity is



insufficient, and base-load coal plants are at the minimum demand level



as at D in Figure 7-3, Table 7-2 would apply. If,as is currently the



case in the Northeast and in California, the marginal capacity dis­


patched at the minimum demand level is oil-fired steam plants with less



than the efficiency of the most modern plants, the COE in column 4 of
 


Table 7-3 would apply. This is derived from the TAG assumptions on oil


of 2.84 $/million Btu by 1990 in 1976 dollars, and a levelizing factor



of 2.6. An efficiency of 0.30 for such an older intermediate plant


gives 84 $/MWh as the production cost used for column 4.



For ready reference, the dedicated pZant COE for these selected


cases is shown in the last column of Table 7-3. These were derived, as



described on page 7-23 using Plant #1 (coal) with Selections #4, #9,



and #11, and Plant #2 (LWR) with Selections #1 and #8.
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Thus it can be seen that the COE is very much a function of many



utility parameters and not a unique number. Other forms of storage and



peaking capacity will also involve these parameters so comparison with



TESS plants may be made, hut must be done very carefully and explicitly



to avoid ambiguity and error.



CONCLUSIONS



On the basis of the considerations discussed in this section, the



selections in Table 7-1 are ranked as follows:



A. 	 Selection #4



Underground Cavity in Hard Rock; high strength concrete stress



transfer from liner to rock. Use in variable pressure accumu­


lator mode. Apply to Plant #1, 800 MW high sulfur coal.



Design for peaking capacity -400 MW.



B. 	 Selection #9



Oil/Rock-Bed with Thermocline; heat exchangers with oil on



tube-side. Oil is Caloria HT 43, rock is riverbed gravel of



at least two sizes for <25 percent void fraction. Apply to



Plant #1, 800 MW HSC coal. Design for peaking canacity -400 MW.



C. 	 Selection #1



PCIV as expansion mode accumulator. Use for feedwater storage



configuration. Apply to Plant #2, 1140 MW LWR, Design for



peaking capacity of 180 MW.



D. Selection #8



Oil/Rock in feedwater storage configuration. Apply to Plant #2,



1140 MW LWR. Design for peaking capacity of 180 MW,



E. 	 Selection #11



Molten Salt/Rock, similar to B except that HITEC or equivalent



is used.



The first three, A, B, and C, are recommended as a minimum, balanced



set of concepts warranting more detailed conceptual design. The fourth



one isan alternate that is attractive in its cost per kilowatt unless
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heat exchanger assumptions made are too optimistic. The feedwater


storage mode with low peaking capacity but high turnaround efficiency



and specific output would be explored w-ith both HTW and LVP storage



modes if this were included.



For diversity, D is considered as applied to a nuclear plant, as is



choice C. While the use of increased main turbine capacity is gener­

ally assumed with feedwater storage, the use of a separate shaft tur­

bine generator for the increased capacity should also be examined.


Nuclear plant turbines approach the limit of current technology in


present sizes, so that three duel-flow LP turbines are currently neces­

sary to achieve the desired capacity. Rather than an eight-flow tur­


bine or development of increased flow-area turbines, a separate turbine


might minimize development time and the lengthy approval time for any


changes in nuclear systems.



The fifth selection named could be an alternative to B if it were


decided that two oil/rock systems did not give enough diversity. Mol­

ten salt is currently somewhat behind oil in proven availability and in



cost of the storage medium but the growth potential is attractive.



The cost information on these recommended selections is summarized



in Figure 7-5.
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SECTION 8



SUMMARY OF RESULTS



The project task reported is the identification and screening of



many thermal energy storage concepts for their relative merit for elec­


tric utility applications. Criteria for evaluation emphasized cost,



near-term-availability, ability to meet utility operational requirements,



and conservation potential. Geographic applicability, environmental



requirements, growth potential and diversity of type were considered in



the screening process.
 


PRELIMINARY SCREENING



From literature search and followup contacts, over forty concepts



and variants thereof were identified and described. Additional refer­


ences without system concepts supplied data on materials and components.



The distinctive features of the concepts defined were classified as to



storage media, form of containment, source of the thermal energy and



its properties, and means for converting the stored energy to electric



energy, so that other combinations of elements could be synthesized if



advantageous,



Preliminary screening of these concepts and their elements, primar­


ily for applicability to the electric utility application and for poten­


tial near-term availability, ie commercialization in the period 1985­


2000, was used to synthesize a preferred set of twelve selections that



incorporated the most promising concepts and component elements. These



twelve included as means of containment of high temperature water (HTN)



at high pressure the following:



" Prestressed cast iron vessels (PCIV)



* Prestressed concrete pressure vessels (PCPV)
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" 	 Steel tank pressure vessels



" 	 Underground excavated cavities, steel lined, with high­


temperature high-strength concrete for s-tress-transfer between



liner and rock



" Underground excavated cavities with free-standing steel tanks,



surrounded by compressed air for stress transfer to the rock



" Underground aquifers of water-saturated sand and gravel



confined by impermeable clay layers.



Inaddition to HTW as a storage medium the twelve selections



included as low vapor pressure (LVP) media:



" High temperature oils



" Molten salts for their sensible heat



" Phase change materials (PCM) for their latent heat of melting,



such as salt eutectics



o Rock or minerals as low cost media which require oil or molten



salt as a heat transfer medium.



The containment of these LVP media included:



* 	 Separate hot and cold tanks.



* Single tanks inwhich hot fluid (oil or salt) floats on top of



cold fluid, and the boundary between them (thermocline) moves



up and down with the storage discharging and charging cycle.



" Dual-media thermocline tanks inwhich packed rock-beds fill the



tank and oil (or salt) fills the voids and is pumped as a heat



transfer fluid.



A reference nuclear plant and both a large (800 MW) and a small



(225 MW) coal-fired plant were considered as sources of thermal energy.



Within them, various points can be the thermal energy source:



" High pressure (HP) turbine inlet steam



" Intermediate pressure '(IP) turbine'inlet steam



" Low pressure (LP) turbine inlet steam



" Intermediate steam extraction points and feedwater heater (FWH)



outputs in the FWH system to raise condensate back to boiler



inlet temperature.
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Means of conversion of the stored energy to steam included:



" Flashing HTW to steam and lower temperature water by throttling



the pressure, then passing steam through a peaking turbine



(steam generation system)



" 	 Using the HTW as boiler inlet feedwater, thus reducing the



energy.diverted for feedwater heating from the main turbine,



increasing its output (feedwater storage system)



" 	 With HP storage media, using heat exchangers to transfer the 
energy to cold feedwater, producing either superheated steam, 

or hot feedwater. 

FINAL SCREENING



For performance analysis of the twelve selections, computer pro­


grams were prepared to simulate the thermodynamics of the reference



plants, modified to best interface with thermal energy storage systems



(TESS), and of the charging and discharging cycles of TESS operation,



In a preliminary analysis it was found that use of IP turbine inlet



steam had advantages over the other steam sources for both the coal­


fired and the nuclear plant. As the nuclear plant has no HP turbine



(pressures of 13 to 24 MPa or 2000-3500 psig) the analyses for the two



,plants were then comparable. For more reliable boiler and nuclear



steam supply operation when used with TESS for load-fol'lowing, the



reheater, section of the coal-fired boiler and the reheat heat exchanger


for the LWR were deleted because of probable operational problems.



Plants so modified were called baseline plants, Plant #1 for 800 MW4 HSC,



Plant #2 for 1140 MW LWR. For comparison of the selections a cycle of



eight hours of storage charging and six hours of storage discharging



per day was used.



Consistent economic procedures were adopted for comparison. Direct



costs (equipment plus installation) of the TESS components were derived



from the references supplied by the proponents, consultants, and other



industry sources. For cost information and methodology applicable to



the conventional reference plants the EPRI TechnicaZ Assessment Guide



(August 1977) and detailed cost estimate documents on PWR and high­
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sulfur coal (HSC) plants by United Engineers and Constructors for the



Nuclear Regulatory Commission and for ERDA (DOE). To direct costs must



be added overhead costs, cost of spare parts, contingency allowance,



all0Wance for funds during construction (or interest during construction),



consultant fees, site selection costs, etc. For the two reference



plants the ratio between TOTAL costs, including all these adders, and



direct costs is over 2.1. For comparability, all direct costs of TESS



components were raised in the same proportion to give TOTAL costs, where



the capitalization is used to indicate this specific meaning and not



just the sum of component costs.



Also described inTechnical Assessment Guide are the levelizing



factors to express an escalating set of annual fuel costs over the life



of a plant Ceg 30 years) as a uniform set of fuel costs over the period



that has the same present worth. Such a levelizing factor more than



doubles the actual fuel cost in the first year of operation. Thus, the



conservative costing, consistent with utility planning practice, gives



capital costs and fuel costs roughly twice as great as used in some



other studies not following these practices.



The cost of the TESS components, and the modifications they



required to the baseline plant (eg peaking turbine, or enlarging main



turbine and modifying feedwater heaters), were determined in terms of



dollars per kilowatt electric of increased or peaking output ($/kW).



The energy-related costs, CE, and the power-related costs, Cp, were



also separated to permit some extrapolation of design for longer or



shorter discharge periods. The often used energy-related cost in S/kWh



can be found approximately by dividing CE by six hours.



Figure 8-1 summarizes the conclusions reached from comparing the



twelve selections, and variants thereof tested as sensitivity analysis.



The basis for choice was not only cost but technical risk (or near-term



availability), ability to meet utility operating requirements, environ­


mental soundness, conservation potential, and prospects for future



improvement. Except for cost the comparative judgments are largely



subjective.
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Figure 8-1. Summary of data on recommended choices for further study.



The five bars shown in Figure 8-1 represent the recommended choices
 


and alternates presented to DOE/EPRI/NASA personnel on May 22, 1978 as



the conclusion of this task. The left-hand scale of TOTAL cost in $/kW



applies to all the horizontal divisions. At the top of each bar is the



total cost of TESS in $/kW. At the right of each bar are the separate



costs, CE the energy-related cost at the top, and Cp the power-related



cost at the bottom.



Each of these has major components, the relative size of which is



of interest, The legend at the top identifies the space marked T as
 


being the'$/kW cost of the peaking Turbine Island: turbogenerator plus



all related accounts allocable. Storage vessels costs are labeled V,



heat exchangers H, and storage media M, In underground concepts at
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least part of the drilled shaft is considered a power-related cost and



is labeled SH.



These bars all include L for the losses due to the turnaorund



efficiency: the ratio of the extra electric energy out in a discharge



cycle to the reduction in electric energy out during the charging of



the TESS. The value of the losses per kilowatt of peaking has been



capitalized, ie the present worth of the extra fuel and O&M from turn­


around efficiency losses gives a cost component to make comparable TESS



of different efficiencies. Itwas derived by comparing the cost of



electricity in $/MWh (mills per kWhl of the TESS plus baseline plant



with the defined reference plants operating with the same load cycle:



6 hours at peak, 8 hours at low load, and the balance at the average



load. On this basis a rough comparison can be made between the cost of



each TESS, and the $/kW cost of the reference plants which are 743 to



785 $/kW, the former for the coal-fired plant and the latter for the



nuclear plant, all in 1976 dollars.



Power plants are also compared in terms of the cost of electricity



(COE). Table 8-1 shows the choices A, B, C, and D and the levelized



cost of electricity for combination baseline plant and TESS operating



as defined in the Conclusions which follow. If the capital costs of



the TESS including peaking Turbine Island or main Turbine Island modi­


fications are used as though the plant were able to operate standing



alone, an incremental COE can be found. The variable fuel costs are



used of the plant(s) being dispatched or shut down during the storage



charge hours, and may be nuclear, coal, or oil/steam plants depending



on the load pattern and generation mix available to a utility. Such



incremental costs are higher than the dedicated Baseline/TESS plant in



which the baseline plant energy dilutes the COE measure.



The values of COE for the nuclear and coal base-load reference



plants are shown for comparison. The availability or maximum capacity



factor (CF) of each is assumed to be 0.723. If the reference plants



load-follow with a peak power swing 15 percent greater than the average



output, as in choices C and D, the CF is reduced to 0.605. If the peak
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Table 8-1. Cost of electricity-alternative approaches.



COE in $/MWh


Baseline TESS Plant Alone



Selection Plant /TESS Nuclear Coal Oil



A Coal/Steam 54.90 96 99 172



B Coal/Steam 55.50 106 109 190



C 
 LWR/FWS 47.30 127 130 199



D LWR/FWS 46.40 ill 103 183



Comparative Reference Plant Values:



Nuclear Coal 
CF Plant #2 Plant #1 

All energy available 0.723 43.14 44.60 

15% swing (as in C&D) 0.605 47.60 -­

50% swing (as in A& B) 0.462 -- 57.00 

power swing is 50 percent, as in choices A and B, the CF is reduced to



0.462. It can be seen that the Baseline/TESS plant has a lower COE



than its reference plant counterpart in a load-following mode.



CONCLUSIONS



Choice A is an underground cavity at a depth of about 300 m (1000



ft) to contain HTW at 4.65 MPa (675 psia), for the Plant #1, coal-fired



800 MW. Energy stored permits an additional 400 MW out for six peak



hours. The underground cavity has a steel liner connected to the rock



by a layer of high-temperature, high-strength concrete. For charging,



steam is diverted from between the HP and IP turbine and condensed-in



the cooler HTW remaining in the cavity. During discharge the pressure



is reduced so part of the HTW flashes to steam which goes to the sur­


face, is throttled to 1.72 MPa (206 psia) and drives the peaking turbine.



This choice is most favorable economically at 649 $/kW, is believed



to be well within the state-of-the-art in drilling, excavating, and



lining, and is quite efficient. A disadvantage is that it is viable



only in areas with suitable geology.



8-7





Choice B, also applied to Plant #1,800 MW, and with the same peak­


ing swing of 400 MW, uses Caloria HT 43, a high temperature heat trans­


fer oil as both the heat transfer fluid and part of the dual-media



storage. The other storage medium is packed beds of rock, such as



riverbed gravel, in atmospheric pressure tanks. About 80 percent of



the energy is stored inthe low cost rock. Again IP turbine inlet



steam is used, heat exchangers to oil transfer energy storage, and on



discharge separate heat exchangers convert the stored energy to super­


heated steam to drive a peaking turbine.



This choice, 729 $/kW, is somewhat higher than choice A but still



below the comparative value, 743 $/kW, for the reference plant. Some



demonstration has been done, confirming technical feasibility, but long­


term materials stability and compatibility are not yet proven. It is
 


not geographically sensitive.



Choice C applies the PCIV as the storage containment for HTW, The



cost of the PCIV per unit volume is higher than choices A and B. The



lowest cost application is feedwater storage for the Plant #2, nuclear



at 1140 MWe . Output for this mode of conversion to electricity is



limited to 180 MW. The total cost is 923 $/kW, higher than A and B and



than the reference cost of 785 $/kW for nuclear base load capacity. It



represents a choice that is above ground and not geographically sensi­


tive and that confines storage to HTW of boiler feedwater quality so



there is no possibility of contamination of feedwater by other media



such as oil or salts.



Choice D is also a feedwater storage system applied to Plant #2.



However, it uses the dual-media packed rockbeds and Caloria HT 43 for



storage, as did choice B. It is lower in cost, 670 $/kW, than B with



the same storage media, and than C with the same turbine configuration.



Like C it is limited to 180 MW peaking output.



Choice E is similar to choice B except the dual media are rock and



a molten salt such as HITEC or PARTHERM 290, both trade names for a



eutectic mixture of sodium and potassium nitrates and nitrites. E has
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a considerably higher cost, 927 $/kW, because of the current cost of



the salt eutectic.



Conclusions presented on May 22, 1978 were that choices A and B



were strongly recommended as warranting more detailed conceptual design



and analysis in the next tasks, As an addition to these two, the pre­


ferred third choice was choice C, on the grounds of diversity. It



would permit exploration of the feedwater storage mode of operation and


storage of HTW in pressure vessels above ground. While the PCIV was



selected, the major design considerations would be similar for the PCPV.



Choices D and E were offered as alternates rather than additions to



the task goal of recommending three systems for further study. If pri­


mary emphasis were placed on economic viability, it is superior to C as



a feedwater storage system. However, if it were selected instead of



choice C, there would be two oil/rock dual media systems. In that case



it was suggested that molten salt be considered despite its current



high cost; that is replace B with E.



There are cost improvement directions that have been suggested for



both oil and salt systems that could reduce the cost of the media or



the quantity of heat transfer fluid needed. They are not considered



near-term available but have future promise meriting research and devel­


opment with both media.



Upon deliberation by the attending DOE, EPRI, and NASA personnel,



approval was given to perform the continuing study on choices A, B, C,
 


and D under DOE/NASA contract DEN3-12 and parallel EPRI contract



RP1082-1. By the proviso that B and D be studied as dual-media systems,



the alternatives of oil/rock and salt/rock were both retained.
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SECTION 9



ADDENDA



LIST OF SYMBOLS



a - Annum (year)



--Area (m2) x 10.76 = (f2
A 
 

A - Turbine exhaust area


e 

C - Specific heat capacity (kJ/kg-°C) x 0.239 = (Btu/lb -F)



C - Heat capacity rate (inheat exchanger design, W x cp)


(kJ/h) x 0.95 = (Btu/h)



ChCc - Heat capacity rate of the hot and cold streams


respectively



Cmin' Cmax - Heat capacity rate of the smallest and largest of


hot and cold streams



C - Specific cost: C$/kW) for power, ($/kWh) for energy,



($/rn2) for volume, etc



Cp - Cost of power-related TESS components (S/kW)


Cpp - Cost of peaking turbine ($/kW)


Cps Cost of power-related storage components (heat



exchangers, pumps, etc) ($/kW)


CHX - Cost of heat exchangers ($/kW)



CE - Cost of energy-related TESS components ($/kWh) 
CES - Cost of storage media and containment ($/kWh) 
CTM - Cost specifically of dual-media plus tankage for 

6 hours discharge ($/kW)


CL - Cost representing capital equivalent of turnaround
 


efficiency (5/kWh)



CT - Total cost of TESS components (Cp + CE * H) ($/kW)



CS --CT less the term CL



CF - Capacity factor (annual average power/rated power)



COE - Cost of electricity ($/MWh) = (mills/kWh) 
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eo 	 - Specific output (from storage medium) (kWhelectric/m 3)
 


F - Load-following factor (fraction of available energy that is


produced)



h 	 - Specific enthalpy (kJ/kg) 	x 0.430 = (Btu/Ib)



Ah - Leaving loss (turbines) correction for saturated 
esat vapor



Ahe - Leaving loss correction for wet steam



H 	 - Enthalpy (k) x 0.948 = Btu



AH - Hours of storage discharge 	capacity



L 	 - Loss factor, defined as (CL * H) ($/kW)



M 	 - Mass flow ratio: (kgoil/kgsteam )



Ntu - Number of thermal units: 	 a dimensionless ratio used in heat


exchanger design



p 	 - Power swing, a ratio of the added peaking power output to the



normal or rated output of the plant without TESS



P 	 - Power (MW),



P - The normal power level, ie power output when storage is 
neither charging or discharging, and by analogy output 
level in a load-following plant that is intermediate 
between the peaking and off-peak-hour level. Approximately,


average power.



Pd - Plant power output during storage discharge hours


Pc Plant power output during storage charging hours



P 	 - Pressure-megapascals (MPa) x 145 = (psi)



PST0R - The pressure in storage containment at end of charging
cycle


P -The throttle pressure of storage discharge steam that is

THR admitted to the peaking turbine



R 	 - Ratio (dimensionless)



RC - Ratio of charge steam mass to original HTW mass


RD - Ratio of discharge steam mass to original HTW mass


R$- Ratio of cost per kg of other storage media to rock


RP - Ratio of density of other storage mddia to rock


Rcp-Ratio of specific heat of other storage media to rock
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t - Time ­ hours (h) 

td ­
tc -

Time duration of storage discharge 
Time duration of storage charge 

T -Temperature (oC) x 1.8 + 32 = (0F) 

U - Heat transfer coefficient (W/m2 . C) x 1.75 = (Btu/f2 . F- h)
 


ve - Specific volume of saturated vapor (m3/kg) x 16.1 = (f3/lb) 
Ve - Exit velocity from turbine (m/s) x 3.28 = (f/s) 

=
V - Volume (m3) x 35.31 (f3)



Vs - Volume of storage medium



-Mass flow rate (kg/h) x 2.2 = (lb/hr)



c - Charge steam flow rate


VP - Discharge steam flow rate



xe - Quality of steam (percentage as vapor)



Xr - Weight fraction of rock in dual-media storage



Yr - Volume fraction of rock in dual-media storage



Greek Alphabet



a - Temperature approach (inheat exchangers), minimum AT between


input and output streams (°C) x 1.8 = (OF)



- Effectiveness (inheat exchangers). Measure of performance as


fraction of the theoretical maximum heat transfer rated


actually achieved.



n - Turnaround efficiency. Measure of the degradation and loss of


thermal energy in the TESS processes. Ratio of peaking elec­

tric energy produced during discharge hours to the reduction


in electric energy output during charge hours (for uniform


boiler output rate).



p - Density (kg/m 3) x 0.0624 = (lb/f 3)



Pr- Density of rock in dual-media storage


pf - Density of heat transfer fluid in dual-media storage
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GLOSSARY



This list collects terms that which are defined at least once in


the text but which are repeated a number of times in different sections.


It concentrates on terms where a particular meaning is used in this


report that may not be generally familiar. No attempt at defining


generally familiar terms is intended.



Accumulator - A pressure vessel to contain high temperature water (HTW)


for later conversion to steam (see variable pressure, expansion and


displacement accumulators).



AFDC - Allowance for Funds During Construction (also called interest


during construction). A component of TOTAL costs (q.v.).



Boiler Island - Those components and cost accounts of a power plant


that produce the steam supplied to the Turbine Island (q.v.). The


components include the fuel processing, the boiler (innuclear


plants called the Nuclear Steam Supply - NSS), fans, stacks, and


stack gas processing.



Capital Costs



Direct Costs - The cost (inM$ usually) of purchased equipment plus on­

site labor and materials costs needed for installation.



Base Costs - Direct costs plus on-site and home-office overhead costs.



TOTAL Costs - Base costs plus other capital investment allowances


necessary for initial operation, including spare parts, contingency


allowance, allowance for funds during construction, site selection


and approval costs, etc.



Specific Capital Costs - Any of the above expressed per unit of power
 

out, ie $/kW.



Levelized Annual Capital Costs -The present worth of the capital


investment required as of the year of initial operation (iethe


construction costs antedating said year are discounted forward to


said year and any required periodic capital replacements are dis­

counted back to said year) is multiplied by a fixed charge rate


(FCR) to convert the capital costs to uniform annual amounts over


the life of the plant (eg 30 years). Certain taxes and insurance


annual payments that are capital related are usually included in


the FCR, as is the allowable depreciation schedule, debt/equity


ratio, investment credits, etc. The FCR must be compatible with


the scenario of assumed future general inflation and discount rates.



Fixed Costs (Annual) - This includes the Levelized Annual Capital Costs


plus Operation and Maintenance costs that are capital dependent
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rather than fuel dependent, ie are independent of the capacity


factor of the plant. They are levelized, ie converted to uniform


annual cost with the same present worth as the expected actual non­

uniform costs.



Variable Costs



Levelized Fuel Costs (per MWh) - The cost of fuel in the year of initial
 

operation in whatever thermal units are convenient is converted to


$/MWh (thermal) and multiplied by a levelizing factor which is a


function of the expected fuel escalation rate over the life of the


plant. Dividing by the plant efficiency gives a uniform annual fuel


cost ($/MWh electric) that has the same present worth as the


escalating actual cost of fuel.



Levelized Annual Fuel Costs - These are the total annual costs incurred
 

for fuel for the rated plant capacity in MW and the annual equiva­

lent number of hours of rated power output.



Variable Annual Costs -To the Levelized Annual Fuel Costs the variable


Operation and Maintenance costs (O&M) are added. These are O&M


costs that are roughly proportional to annual hours of operation.


These O&M costs are also levelized.



Total Annual Costs - The sum of annual fixed and variable costs.



Specific Annual Costs - All of the above annual costs may be specified


per kWe by dividing by the rated kWe output.



Production Cost -The specific variable costs of a plant per MWh (elec­

tric), ie, fuel costs plus variable O&M. These are used for dis­

patching plants so are actual costs for the current year, not


levelized.



Displacement Accumulator - A pressure vessel containing HTW, with no 
steam cushion. When fully charged it contains all hot water. Dur­
ing discharge HTW is removed from the top and an equal volume of 
cold water enters the bottom. The thermocline (q.v.) rises until 
when fully discharged it contains only cold water. Charging 
reverses the flow. 

Expansion Accumulator - A pressure vessel almost completely full of HTW


at high pressure when fully charged. The mode of discharge is to
 

extract HTW from the bottom, allowing a small amount of the remain­

ing HTW to flash to steam and fill the volume.



FWH 	 - Feedwater Heaters - Steam condensed in the condenser is returned


as water to the boiler inlet by passing through a train of feed­

water heaters. Each is fed by steam from spaced extraction points


in the turbine train, so that the temperature of feedwater is
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raised in steps, for efficiency, to the desired boiler inlet


temperature.



FWS - Feedwater Storage - One mode of use of TESS is to extract excess


,steam to heat excess feedwater during off-peak hours. This is


stored and during peak hours permits less steam extraction hence


more power output from the turbfnes.



LVP - Low Vapor Pressure storage media - A generic term for those


media, liquid or solid, that do not require pressurized containment.



PCIV - Prestressed Cast Iron Vessel - A form of pressure containment


comprising cast iron blocks that can be assembled into rings and


stacked for the desired height. A cylindrical steel liner contains
 

the pressurized fluid. Steel cables around the exterior, and


exterior tendons connecting to top and bottom end caps, ensure that


all parts of the cast iron structure are always in compression.



PCPV - Prestressed Concrete Pressure Vessel - Similar in principle to


PCIV. A steel liner is surrounded with a layer of high-temperature,


high-strength concrete, then the required additional thickness of


reinforced concrete is built around the core. Reinforcing bars and


cables within or exterior to the concrete keep it in compression.



Plant


An electricity generating unit, from fuel input to electricity


output.



Reference Plant - One of the described current technology base-load


plants.



Baseline Plant - A reference plant modified to better interface with a


TESS.



Baseline/TESS Plant - The combination of a baseline plant and a thermal


energy storage system.



Plant #1 - 800 MW high sulfur coal plant.



Plant #2 - 1140 MW Light Water Reactor plant (PWR).



Base-Load Plant - A plant with low variable costs, designed to operate


at rated load for as many hours per year as it is available (6000­

8000).



Intermediate Plant - Plants with higher production costs than base-load


plants and generally operated for fewer hours per year (2000-6000).



Peaking Plant Plants specifically designed for supplying capacity


during peak hours of peak days (<2000 hours per year). Low capital


cost is emphasized over low production cost.



Load-Following Plant - A plant that varies its output in a pattern


similar to the utility load variations. (N.B. - Usually intermedi­
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ate, plants but can be base-load plants. Some follow load in detail,


with elaborate controls; others operate principally-at full load or


no load, as dispatched. The latter are often called cycling plants.)



Specific Output - A measure of performance of a TESS configuration that


gives the number of kWh (electric) produced during discharge per


cubic meter of storage media.



Thermocline - A steep vertical temperature gradient between hot and cold


fluids (or dual-media). By control of convection, the hot fluid


floats on the cold fluid without much mixing.



Turbine Island - That part of a power plant that encompasses the turbo­

- - generator, the electrical equipment, and associated cost accounts. 

The interface with the Boiler Island is the live steam inlet pipes; 
the output of the Turbine Island is electricity to the network. 

TES - Thermal Energy Storage (influids such as high temperature water


(HTW), oil, or molten salts and/or in solids such as rock).



TESS - Thermal Energy Storage System. The aggregation of components for


thermal energy storage including the storage media, the containment,


heat exchangers and pipes for energy conversion and transport, and


the peaking Turbine Island to convert the stored energy to electric­

ity. Where necessary to speak of TESS less the peaking turbine it


may be called Thermal Energy Storage Subsystem.



Turnaround Efficiency - The measure of losses of energy and availability


during a charge/discharge storage cycle. It is the ratio of the


peaking electric energy produced during the discharge cycle to the


reduction in electric energy production during the charging cycle.



Variable Pressure Accumulator - A pressure vessel containing HTW except
 

for a small steam cushion at the top. When fully charged the steam


cushion is smallest and the temperature and pressure are at their


maximum. During discharge, steam is withdrawn causing some of the


HTW to flash to steam to fill the steam cushion volume. The pres­

sure, temperature, and HTW level continue to drop during discharge


until withdrawal is stopped.
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