General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
OBSERVATION OF THE 63\,\mu\, (0\, I) EMISSION LINE
IN THE ORION AND OMEGA NEBULAE

Gary Melnick
George E. Gull
and
Martin Harwit
ABSTRACT

We report the first observations of the 63μ fine structure transition $\text{p}^4 : {^3P_1} \rightarrow {^3P_2}$ for neutral atomic oxygen. The measurements were obtained during a series of flights on the NASA Lear Jet at an altitude of -13.7 km.

In the Orion Nebula (M42) our observed line strength is 8×10^{-15} watt cm$^{-2}$ which we estimate to be -0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebula (M17) the line strength is 2.4×10^{-15} watt cm$^{-2}$, and the fraction of the total radiated power is slightly higher. These figures refer to a 4' x 6' field of view centered on the peak far infrared emission from each source.

The uncertainty in the line strength is -50% and is caused by variable water vapor absorption along the flight path of the airplane. Our estimate of the line position is 63.2μ ($+0.1, -0.2)\mu$. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in our field of view.
Introduction.

During the past few years far infrared observations at moderate spectral resolution have led to the discovery of a number of emission lines from multiply ionized atoms in the interstellar medium (Ward et al, 1975, Baluteau et al, 1976, Dain et al, 1978, Melnick et al, 1978). The radiating ions are collisionally excited by the surrounding plasma and then return to a lower excited state through radiative fine structure transitions.

The present letter reports on the observation of \(\lambda 63 \mu \) neutral oxygen emission from the Orion and Omega Nebulae. The \(\lambda 63 \mu \) (0I) line is particularly interesting because it provides information about an intermediate interstellar temperature regime. The temperature, \(T \), for which \(kT \) equals the threshold energy for collisional excitation of the \(^3P_1 \) state is \(228^oK \). Below this temperature collisional excitation still is possible since the excitation rate is
roughly proportional to $T^{1/2} \exp(-228/T)$ (Dalgarno and McCray, 1972), but the excitation is appreciably attenuated at temperatures below ~100°K. The temperature also is likely to be below 6000°K where the optical transitions around (λ6300) (see fig. 1) start to provide dominant cooling. (The optically observed line strength must, however, be interpreted with care if we wish to set limits on the temperature of the region which radiates at 63μ. Dust absorption within the emitting region or along the line of sight can appreciably lower the (λ6300) flux the observer receives.)

The 63μ radiation then appears to come not from within the H II regions but either from the peripheral CII/SII regions—carbon and sulfur respectively are ionized by radiation at 11.3 and 10.4 ev—or from shocks generated in the surrounding neutral clouds. For the Orion Nebula, Wurm and Rosino (1959, 1965) and Gull (1978) have obtained extensive sets of photographs taken through narrow band filters. Effectively these present monochromatic pictures of
the Nebula seen through individual spectral lines. Gull notes that the (OI) (λ6300 Å) emission line (Fig. 1) is nearly as bright in the bar-like structure to the south east of θ1 Orionis as in the brightest central part of the Nebula. Becklin et al (1976) have detected infrared emission from this bar and consider it to be an ionization front—a region beyond which singly ionized carbon and sulfur might be expected. Gull in fact does find strong (SII) emission from the bar and in general remarkable similarity between the appearance of pictures obtained at (λ6300 Å) and with a filter at (λ6725 Å) where the (SII) (λ6717 Å) and (λ6731 Å) emission lines are seen. Abundance ratios of (OII)/(OIII) and (OI)/(OII) according to Gull also increase across the bar as we move away from θ1 Orionis. Other structures observed in (OI) and (SII) emission include a number of condensations noted by Gull et al (1973) and earlier by Wurm and Rosino (1957). Hill and Hollenbach (1978) have recently discussed the effects of expanding HII regions on neutral surrounding gas clouds, and in particular have
estimated the cooling of ionized carbon regions and shocked domains through (OI) 63\mu emission, through the rotational transitions of H\textsubscript{2} and through rotational transitions of CO. It appears that emission through the 63\mu transition may be providing one of the chief cooling mechanisms by means of which CII and shocked regions radiate energy. The estimates of the 63\mu line strength Hill and Hollenbach present in fact suggested to us that a search for this line might prove successful.

Observations.

Observations were undertaken with equipment and procedures identical to those described in previous Letters (Dain et al, 1978, Melnick et al, 1978). Our observations were carried out from the NASA Lear Jet flying at an altitude of approximately 13.7 km. Our liquid helium cooled grating spectrometer was mounted on the 30 cm telescope. Our chopping frequency was 25 Hz and the chopper throw 16'. The instrumental resolving power was ~ 150 for sources small
compared to the 6' x 4' field of view, and the system
noise equivalent power was \(9 \times 10^{-13} \) watt Hz\(^{-1/2}\) including
all losses due to the chopper, the telescope and atmospheric
effects.

We observed the Orion Nebula and M17 each on two nights
and obtained calibration curves for the same spectral regions
by making observations of Mars and Venus. Both of these
planets had virtually identical spectral shapes in the region
of interest. We chose to use Venus, the brighter of the two
sources, as our primary calibrator.

The prime reason for calibrating the spectra is to
remove the effects of telluric water vapor. Atmospheric
\((\text{OI})\) absorption at 63\(\mu\) is not expected to play a major role
since the absorption line is so narrow that the source
Doppler shift removes the astronomical 63\(\mu\) emission line
well clear of the atmospheric feature.

The final source spectra compensated for atmospheric
absorption are shown in Fig. 2. The best estimate for the
The transition wavelength is 63.2 μ. This should be compared to the expected line position, 63.14 μ, obtained from the visual transitions at wavelengths (λ6300.3) and (λ6363.8) shown in Fig. 1 (cf Osterbrock, 1974). The possible error on the long wavelength side is ≤ 0.1 μ. At longer wavelengths the line would be absorbed by the atmosphere's 63.3 μ feature (Fig. 3), and we observe no change in the line strength on individual passes through the spectrum taken at slant paths ranging from 2 to 4 air masses in the course of a flight. On the short wavelength side of the spectrum the error in the line position could be up to 0.2 μ. Here the main uncertainty is our lack of information on the source location within the field of view.

To understand this we must describe the procedure for finding the source during flight. Once the correct star field is identified, the telescope is pointed in roughly the correct direction and the field is scanned to orient
the telescope along the direction in which the signal peaks. For Orion the dominant source in the far infrared is the Kleinmann-Low Nebula. We therefore centered this Nebula in our field of view before starting the spectral scans. If the source of (OI) 63μ emission then lies at a point imaged near one edge of the slit, its wavelength may be registered as longer or shorter than the actual wavelength by as much as 0.2μ; and this constitutes our main source of uncertainty in the line position. Similarly our main uncertainty about the line strength is related to the line position and depends on the proximity of the 63μ line to atmospheric water vapor absorption features.

The 63μ line widths we register are wider than a series of (OIII) 51.8μ emission lines we observed in the same series of flights. This is suggestive of a distributed emitting region whose image extends across the entrance slit.

Discussion.

The 63μ flux we detect is extraordinarily bright. In M42 at 0.5Kpc, it amounts to `600L⊙, in M17, at 2Kpc, to `2900L⊙ in the line.
In order to estimate the minimum temperature of the region we may assume that the emitting region filled our entire field of view $\Delta \Omega$; that the brightness temperature in the line was T; that the line width was the Doppler width $\Delta \lambda_D$; and that the region was opaque within this width. Then the received radiation would be

$$B(\lambda, T) \Delta \lambda_D \Delta \lambda,$$

where $B(\lambda, T)$ is the blackbody function. Taking the full Doppler width to be $(\lambda/c) (1.4kT/m_0)^{1/2}$, where m_0 is the mass of an oxygen atom, it is easy to show that the temperature in our 24 square minute field of view would have to be $T \approx 650^\circ K$ to account for the observed brightness in Orion. At this temperature the Doppler width amounts to a velocity of 0.7 km sec^{-1}. This temperature could drop somewhat if the oxygen occupied a regime in which turbulent velocities or a velocity gradient existed along the line of sight. To be effective in appreciably lowering the required temperature, the velocity spread would have to amount to several kilometers per
second. For Orion a velocity spread amounting to 10 km sec$^{-1}$ along the line of sight would permit a temperature as low as 115°K. On the other hand if there is any correlation between the distribution of oxygen giving rise to the visible and the infrared radiation, then the small fraction of the field of view occupied by the oxygen again would require an increased temperature. We may therefore guess that the emitting region has a temperature of at least a few hundred degrees Kelvin. A very coarse upper limit may be set for the temperature of the emitting region:

Johnson (1968) provides estimates of the strengths of various visual lines in the spectrum of Orion and relates them to the strength of Hβ. He estimates the (\lambda 6300) line to be about 6.5% as strong and the (\lambda 6363.8) line to be 1.6% as strong as Hβ—which Boyce estimates as providing a flux of 7.1 x 10$^{-8}$ erg cm$^{-2}$ sec$^{-1}$ at Earth. The combined strength of the two visual oxygen lines therefore is a factor of 14 lower than the observed 63μ line strength. Even if the absorption of
the two visual lines amount to one magnitude between source
and observer, the 63μ line still is a factor of 5.5 brighter
than the visual line. This suggests a temperature below
-3800°K for the radiating region if we take electron collisions
to be primarily responsible for the line excitation. This
conclusion must, however, be treated with some caution. We
do not know whether electron, proton or atomic collisions
provide the main excitation mechanism; we are uncertain about
the collisional deexcitation that affects the 63μ line
strength; and we are not sure whether the regions from
which the visual lines originate coincide with the source
of 63μ radiation. However, if we take the temperature of
the emitting region to lie between several hundred degrees
and -4000°K, we see that it appears to be distinct from the
H II regions with their characteristic temperature of 7000°K,
as well as from the standard H I clouds at temperatures
below 100°K. Instead we seem to be detecting a neutral
region at intermediate temperature.
Although our observed line strength is strong, five or six orders of magnitude stronger than the 2.6 mm CO line strength in our fields of view in M17 and M42 (Lada et al., 1974, Kutner et al., 1976), we must remember that the transitions between high lying levels of CO, and a 156μ transition due to singly ionized carbon may also be strong and may be effective in competing with the 63μ transition.

The cooling of a gas by collisionally excited oxygen atoms has been described by Dalgarno and McCray (1972). Collisions with atoms dominate in regions of low electron density. Dalgarno and McCray give the cooling rate per unit volume as \(n_H n_O L_{H}(T) \) where \(n_H \) and \(n_O \) respectively represent the hydrogen and neutral oxygen atomic densities, and \(L_{g}(T) \) is the cooling efficiency for collisions with neutral hydrogen. The total flux emitted at the surface of an optically thin nebula with dimension \(d \) along the line sight then
becomes \(B = \frac{1}{2} n_H n_0 L_H d \). For the Orion Nebula our observations correspond to a minimum value \(\frac{1}{2} n_H n_0 L_H d \geq 1.3 \times 10^{-1} \text{ erg cm}^{-2} \text{ sec}^{-1} \) at the surface of the nebula, provided we assume that radiation reaches our detectors uniformly from the entire field of view. Hill and Hollenbach specifically have computed the observable 63\(\mu\) radiation for shocked neutral gas regions and CII domains, and from the D-type ionization fronts in which a shock precedes the ionization front. The highest predicted emission in their models comes from a region in which the initial neutral hydrogen density is \(n_H = 10^4 \text{ cm}^{-3} \), and the gas becomes compressed by a factor of 30 by a shock moving through the neutral gas at 11.8 km sec\(^{-1}\). The expected 63\(\mu\) line emission then is \(5 \times 10^{-2} \text{ erg cm}^{-2} \text{ sec}^{-1} \) which is a factor of 2.5 below the minimum observed value we cite above.

For CII regions Hill and Hollenbach give a surface brightness estimated as
\[B(63\mu) = 1.2 \times 10^{-21} \frac{\text{Ne}^{-228}}{T} \text{erg cm}^{-2} \text{sec}^{-1} \]

if \(n_H \geq 4 \times 10^5 \text{cm}^{-3} \),

\[B(63\mu) = 3 \times 10^{-27} \frac{n_H \text{Ne}^{-228}}{T} \text{erg cm}^{-2} \text{sec}^{-1} \]

if \(n_H \leq 4 \times 10^5 \text{cm}^{-3} \).

Here \(N \) is the column density of hydrogen atoms along the line of sight, and the oxygen abundance is taken to be \(6.8 \times 10^{-4} \). If we assume that the temperature of the gas in Orion is \(-115^\circ\text{K} \), the lowest our previously cited figures permit, then our observed brightness would require a column density \(N \sim 10^{21} \text{cm}^{-2} \) for the case where \(n_H \sim 4 \times 10^5 \text{cm}^{-3} \) in the CII region. This would require us looking to a depth of \(2.5 \times 10^{15} \text{cm} \) at that density. These densities are not unreasonable in the post-shock gas. In this shocked gas we also might expect to find the velocity gradient required to keep the gas temperature low and still provide the \(63\mu \) line intensity observed. At the distance of the Orion Nebula the corresponding mass of the radiating region is \(10^{34} \text{g} \).
If the temperature is permitted to rise, \(\exp(-228/T) \) approaches unity and the required column density and mass can drop by a factor of up to \(-7\). In a region that has been radiatively dissociated as well as shocked, the gas temperature can easily be high enough to provide these conditions. This mass estimate in no way depends on the ionization of carbon and would hold equally well for any gas at the given temperatures. Collapsing protostellar aggregates might therefore radiate at this wavelength as well.

In any case it is only possible here to show that conditions not too different from those permitted by some current models appear to provide fluxes which, though high, agree in order of magnitude with those we observe. We will, however, need to further our understanding by undertaking observations at higher spatial resolution in order to tell the sizes of the regions that emit the 63\(\mu \) radiation.
Other measurements of similar importance would include 63\(\mu\) observations of regions known to be strong in CII or \(\text{H}_2\) emission to check for correlations with the emission strengths obtained from these domains. \(\text{H}_2\) emitting regions have been assumed to be shocked regions, and as discussed above, the CII domains are likely candidates for (0I) emission. If sufficiently high spatial resolution cannot be obtained to tell us which type of region emits strongly at 63\(\mu\), perhaps lower resolution studies in which a larger number of astronomical sources are compared for possible correlations of (0I), CII recombination lines, and \(\text{H}_2\) emission line radiation, would be worthwhile.
Acknowledgements.

We appreciate the assistance we received from
Robert Mason and Charles Buller of the NASA Ames Airborne
Science Division during the course of our flight series,
and we thank the group from Informatics, Inc. for help
during data reduction. Drs. Jesse K. Hill and David J.
Hollenbach kindly made available their preprint prior to
publication. We are especially grateful to Dr. T. R. Gull
for discussing his unpublished data with us and for
sending us one of his remarkable photographs of the
Orion Nebula at (16300). E. E. Salpeter and P. B. Ward
provided us with a number of important comments. This
work was supported by NASA contract NGR 33-010-146.
REFERENCES

FIGURE CAPTIONS

Fig. 1. Level diagram for the lower energy states of neutral oxygen atoms.

Fig. 2. 63\(\mu\) emission lines in M17 (top curve) and M42 (bottom) observed from an altitude of 13.7 km and corrected for atmospheric water vapor absorption.

Fig. 3. Atmospheric water vapor absorption features as obtained from Traub and Stier (1975) showing the measured (01) line position. The grating step size and spectral resolution of our grating instrument also are shown.
OI
Configuration
\((1s)^2(2s)^2(2p)^4\)

Level Structure:

$^3P_0 \leftrightarrow 147 \mu$ $3P_1$
$^3P_1 \leftrightarrow 63 \mu$ $3P_2$

Fig. 1
Figure 3