c. 18931

A Method io Areimme Welght and Dtaneicions of Lange and Smill Gen Turbtwe Enpmer

Final Report

By E Onat and G. W. Kloes

```
(NASA-ER-153491) A METHOD TO FSTIMATE
OETGHT AND DIMENSICNS OF LARGE AVD SMALI CAS
GURBINE FNGINES Final feport (Roeing
Military Airplane Development; 136 F : %C
A07/ME A01
January 1979
```

Boeing Military Arphame Dowlopensant Somele, Wertinten 93124

Prepand for

Nationel Apromoutics and Spece Adminietination NASA-Liwh Ravencte Comeri Contant RAME3-2120s

PAGE
SUMMARY 3
INTRODUCTION 4
L.IST OF SYMBOLS 5
1.0 METHCD OF ANALYSIS 6
1.1 Large Gas Turbine Engines 13
1.? Small Gas Turbine Engines 50
1.3 Other Program Capabilities 62
1.4 Program Validation 64
2.n USER'S GUIDE 66
2.1 'proyram Structure and Deck Stacking 66
2.? Input Description and Format 68
2.2.1 Plot-Print Indicators 68
2.2.2 Length Indicators 72
2.2.3 Mechanical Uesign Indicators 73
ว.ว.4 Desion Values 82
?.3 Output Description and Format 95
2.4 Sample Cases 107
2.5 Program Diagnostics 119
2.6 Program Structure 127
3.n CONCLUSION AND RECOMMENDATIONS 131
REFERENCES 132
IISTRIBUTION LIST 133

a METHOD TO ESTIMATE WEIGHT AND DImensions
 OF LaRGE AND SMaLL GAS TURBINE ENGINES

E. Onat and G. W. Klees

SUMMARY

A method has been developed to estimate engine weight and major envelope dimensions of large axial flow aircraft jet engines and small gas turbine engines. The computerized method, called WATE-2 (Weight Analysis of Turbine Engines), determines the weight of each major component in the engine, such as compressors, burners, turbines and frames. A preliminary desian approach is used where the stress level, maximum temperature, material, geometry, stage loading, hub-tip ratio, and shaft mechanical overspeed are used to determine the component weight.

A relatively high level of detail was found to he necessary in order to obtain a total engine weight within the required $+10 \%$ accuracy. Component weight data for 29 different engines were used as a data hase to develop the method for axial flow aircraft engines. The list of engines includes military and commercial, turbofans and turbojets, augmented and dry, hardware engines and proposed engines, and supersonic and subsonic engines. For small gas turbines, weight correlations were provided through a subcontractor, the Garrett Corporation. Data used in those correlations were proprietary to Garrett and only the selected weight method is shown herein. The small-ergine weight method is probably valid for other manufacturers, however this has not been verified.

The accuracy of the method is generally better than $\pm 10 \%$, on the order of $\pm 5 \%$. The accuracy was verified by applying the method to 9 different engines, some of which were in the original data base and one small gas turbine engine. Engines used in the validation were selerted by NASA after completion of the program.

Aircraft and nropulsion systom studies are frequently conducted by industry and Government. These itudies may encompass a wide variety of enqine concents ranging from relativelv simple turbofans and turbojets to complicated variahle-cirle mbines. The industry in general has acquired an adequate computer canathlit ta evaluate the thermodynamic performance of these diverse engine conconts, however, an accurate method of estimating engine weight aid dimensions has not previously been ayailate. The engine manutacturers have developed suitable methods, however thev are not avallathe la the nuhlic.

One method. (l) that has hern available to the aeneral industry predicted engine weight to it itistical correlations of major cycle characteristics such is airflow, hypass ratio, overall pressure ratio, etc. This method is probahlv capale of rough estimates for conventional phoines: however, it is not applicatole to nonconventional engines and could not oredict woight within tr to to\% as would he required in tupical preliminarv desion stadies.

This proaram develemment was initiated to provide a more flexible and more accurate method based on correlations of component weight and physical charactoristics, such as compressor airflow size, pressure ratio, huh-tip ratio. etc. This tvpe of approach then would be more capable of estimating nonconventional enqines, since the weight of each individual romponent would he accounted for. As shown in the Methods of Analvsis, no dequate correlations could the found and a final rior hod was Ghosen that is hased on a mechanical preliminary decign which is

a	acceleration
A	area
AR	blade aspect ratio
C	hlade chord, or conversent nozzle
C-D	convergent-divergent nozzle
C/S	solidity, blade chord to spacing ratio
0	diameter
F	force
$\underline{0}$	aravitational constant
h	height, or specific enthalpy
h/t	hub-tio radius ratio
H	Total enthaloy
HP	high-dressure spool
J	$778 \mathrm{ft}-1 \mathrm{l} / \mathrm{BTU}$
K	factor for blade volume
L	length
LP	low pressure spcoi
M	mass flow, or Mach number
N	number of elements
p	pressure
PTO	power takeoff
R	radius, or gas constant
RPM	revolutions per minute
S	surface area, or blade spacing
T	temperature.
t	thickness
TLP	turbine l l adina darameter
TR	blade taper ratio
U	tip speed
v	volume
W	Weight, or weight flow rate

t shear stress

λ turbine loading parameter

- Density
ω Rotational Velocity
0 Stress
Y ratio of specific heats $\varepsilon \quad$ heat exchanger effectiveness
θ ratio of local total temp. to stत. temp.
δ ratio of local total pressure to std. pressure

Subscridts:

h hub
t tip
b blade
c case, or corrected conditions
S stator
hw hardware
Stg Stage
0 stagration conditions
bp blade pull
2 Engine inlet station

A thermodyramic simulation of each engine in the data base, Table 1, was mare in crder to obtain corrected airflows, iemperatures, pressures, available for each engine. These computer models contain information that is proprietary to the engine manufacturer, and therefore they are not herein disclosed. These data have been reduced to a nonproprietary form, however, to illustrate the correlation procedure that was ujed. Fioure 1 shows fan and compressor weight of the data base enqines piotted against number of stages. The component weight has been divided by the entry corrected airflow $\frac{W \sqrt{O_{2}}}{\delta_{2}}$ to normalize the size of each compressor. As can be seen, there is a considerable range of scatter in the data that prevents the definition considerable range of scatter in comonents weigh two to three times as a characteristic trend. Some the same number of stages.

Figure 1. Dets Bees Engines: Fan and Compressor Specific Weight

Attempts were made to improve this correlation. The data base information was examined to find if there were any mechanical design features (such as h / t, stage loading, etc.) that might account for the large weight difference. It was concluded that there were several different design characteristics that caused the lack of correlation, such as material properties, hlade qeometry, stage loading, shaft spred, and design life.

A similar problem occurred for turbines (Figure ?), burners and diffusers (Fiqure 3), augmentors (Figure 4), and duct heaters (Figure 5). Some components, however, did correlate well by this method and these are further discussed in the Methods of Analysis. At this point it was found that the correlation method failed to predict many of the major component weights within the desired accuracy, and another method was adopted.

The adopted method was hased on a preliminary mechanical design approach where the design variables are taken into account. In the compressor, for exanple, rotor blade weight is calculated as a function of specified geometric parameters. Blade pull stress is then found, and the disc weight that will support the blade rotational force is determined. This type of oreliminary design approach was also used for the other components (Fioures $?$ through 5). These methods are also discussed in greater detail in the following secton.

The WATE-? method is intended to estimate weight for a given enaine design. It will not design an engine. This function must be performed external to the program. WATE-2 utilizes component state conditions, flow, work, etc., which are generated in the engine cycle portion of the program (NNEP). NNEP operation is described in reference 2.

In normal use of WATE-?, the Hesired engine cvele is simulated in NNEP at sea level static conditions for the engine design ooint. The user of WATE-? must be coanizant of other conditions in the flight envelope of operation where maximum component temperature, work, speed, or flow occur. If these conditions are greater than the design values, they will

Figure 2. Date Base Engines: Turbine Weight

Figure 3. Data Base Engines: Burner and Diffuser Weight

Figure 4. Data Base Engines: Augmentor Weight

Figure 5. Data Base Engines: Duct Heater and Nozzle Weight
size the component and will have a significant impact on weight. WATE-2 allows input of scalers to account for these off-design conditions.

A more accurate weight estimate can be achieved by developing an array of engine cycle data over the intended flight envelope. The WATE-2 program will scan the output data of the engine cycle and select the maximum conditions for each component. This automated procedure eliminates the need for scalars to determine maximum component conditions.

The NNEP simulation of the engine may require the use of components that are required mathematically, but are not desired in the engine weight or dimensions. These can be selectively eliminated.

The methods of analysis described for each component in the following section have been developed to achieve an overall accuracy of $\pm 10 \%$. Since the rotating components comprise the major part of the total weight, considerable detail was necessary in order to achieve the accuracy goal. Normal program users may not have sufficient knowledge to adequately define all of the necessary inputs; however, typical values are given in the User's Guide, Section 2.0.

1.1 Large Gas Turbine Erigines

The methods developed in this section were based on correlations of the data-base family of large gas turbine engines, Table 1. There are certain components that should be equally applicable to small engines such as: annular ducts, burners, rotating splitters, shafts, mixers, nozzles, certain frame types, transmissions or gear boxes, and heat exchancers. Most notable differences between large and small engines are the use of radial-flow components, and relatively thick discs for small axial-flow components. This section should otherwise apply equally well for both large and small enaines.

1.1.1 Axial Flow Fans and Compressors

The general procedure used for f an and compressor weight prediction is a stage-by-stage mechanical design as iliustrated in Figure 6. Rotor blade volume and weight is determined; then, blade pull stress, disc stress and disc volume are calculated. Connecting hardware, stator, blades, and case are then estimated and summed to give the total component weight. The following input data are necessary:

0 An allowable pressure ratio for the first stage which reflects the design approach and technology level. Specific work for this stage will be held constant for additional stages. Number of stages can also be specified as an option.

0 The entrance and exit mach number of the component.

0 The hub-tip ratio of the first stage.

0 Compressor design mode: constant mean-line, constant-hub, or constant-tip diameter.

0 Effective density of blade material: defined as total blade weight divided by total volume.
o Maximum inlet and exit temperatures, if not at design.

- Aspect ratios for the first and the last stage blades.
- $\quad N_{\text {max }} / N_{\text {des }}$ overspeed factor.
- Blade solidity.
- Density of disc material.
o Blade taper ratio
- Blade volume factor, ratio of total volume to blade volume

The total enthalpy change for the component is available in the stored data from the NNEP cycle calculation which precedes the weight method. Equal work for each stage is assumed, and the number of stages required is found by iteration until the first stage pressure ratio is equal to or less than the specified maximum. This iteration is required to obtain equal work per stage with an integer number of stages. When the number of stages is specified, first stage pressure ratio is calculated based on the equal work per stage assumption and the allowable pressure ratio is ignored.

Shaft speed is then estimated by the statistical trend-curve given in Figure 7. This is only an approximation in the event that shaft speed is not known. Shaft speed of additional compressor's driven on the same shaft will be set by the first (upstream) compressor. Turbine blade pull stress and turbine radius ratio are tupical fall-outs of this estimated shaft speed. When the WATE-2 process is completed, these typical engine physical constraints may not be satisfied and must be inspected to determine whether the resultant engine design is reasonable.

As an aid in determining if a valid design is made, diagnstic aids will be indicated in the output data which recommend input changes to bring the engine design within limits. In the event that an existing compressor is being weighed, or the shaft speed has previously been determined, a speed scalar can be applied to the shaft speed found from Figure 7 to permit adjustment of the calculated shaft speed to achieve a desired value. The speed scalar can also be used to obtain a more reasonable estimate of shaft speed for ho compressors where the entry temperature significantly effects the pressure ratio capability, or for external iterations of the engine design.

The first stage flow area is determined by the specified Mach number and by the corrected airflow from the cycle data. Inside and outside

diameters of the flow path are then calculated from the specified radius ratio:

$$
\begin{align*}
& \left.D_{t}=\sqrt{\frac{4 A}{\pi(1-h} / t}{ }^{2}\right) \\
& D_{h}=o_{t} \cdot \frac{h}{t} \tag{2}
\end{align*}
$$

Compressor RPM is determined hy dividing the tip speed (found from Figure 7) by the stage radius (R_{t}).

Dimensions of succeeding stages are based on the design mode selected (constant mean. tip, or hub desiann). In the constant mean-line meithod, the mean radius is based on the mean flow area of the first stage. Corrected airflow at the entry of each stage is determined from calculated state conditions. Stage entry Mach number is assumed to vary proportionally to the number of stages when a different entry and exit Mach number are specified. Tip speed for the downstream stages are then calculated from the stage dimensions and shaft speed. Radius of the mean-area location of other stages is set equal to the first stage mean-area radius.

Blade aspect ratio is determined by assuming a proportional change for each stage if entry and exit aspect ratio are different. Volume of metal in the blades is then calculated by:

$$
\begin{equation*}
v_{B}=\frac{K \cdot n_{B}^{3}}{A R^{2}} \tag{3}
\end{equation*}
$$

Where K is a volume factor which accounts for fir-tree mount volume, taper ratio, and thickness-to-chord variations in typical blades. For
the data base engine, K was found to be 0.055 for f an blades, 12 for compressor blades and for blades with h / t greater than . 8 :

$$
\begin{equation*}
K=.120+.04(h / t-.80) \tag{4}
\end{equation*}
$$

The rotating blade weight of each stage is determined from the blade volume and material density specified. Material density automatically changes from Ti to steel when the stage temperature exceeds a specified maximum, normally $700^{\circ} \mathrm{F}\left(371^{\circ} \mathrm{C}\right)$. Stage temperature is calculated from the NNEP output data and the specified over-temperature ratio. Stator weight and dimensions are assumed to be equal to the rotor blades and include the inner diameter stator shroud.

Stage length is found in the following manner. Blade chord $\left(C_{B}\right)$ as shown in Figure 8, is the quotient of AR and the blade height:

$$
\begin{equation*}
C_{B}=\frac{h_{B}}{A R} \tag{5}
\end{equation*}
$$

For the data base engines, the stator length was found to be equal to the rotor lenath (or blade chord), with 17% of the rotor length required for clearance between rotor and stator and the same clearance between the stator and next rotor. The sum of all stages gives the total compressor lengti. Inlet guide vanes are not included in the compressor weight, but can be included as a frame, see Section 1.1.7.

Total number of blades is found from the specified solidity (C / S) and the chord length determined above:

$$
\begin{equation*}
N_{B}=2 \pi \cdot R_{t} \cdot C / S \cdot \frac{A R}{h_{B}} \tag{6}
\end{equation*}
$$

Figure 8. Blade Schemetic

This value is truncated to an integer number of blades, and the same value is used for the stator.

The maximum blade-pull stress occurs at the blade root and is a function of tip speed, blade height, and material density. Expressed in terms of the nondimensional input blade geometry, the equation for blade-pull stress is:

$$
\begin{equation*}
\sigma_{B P}=\frac{12 \rho U_{t}^{2}}{g T R}\left[\frac{1-h / t^{2}}{2}+\frac{T R-1}{12}(1-h / t)(1+3 h / t)\right] \tag{7}
\end{equation*}
$$

where U_{t} is the product of tip radius, $N_{\text {des }}$, and the overspeed factor $N_{\text {max }} / N_{\text {des }}$.

The compressor discs are a larqe part of the total engine weight and it is therefore necessary to define this weight as accurately as possible. Disc weight is a function of: diameter, blade load carried on the rim of the disc, material type, speed, disc shape (or thickness distribution), and design stress level selected for life considerations. A theoretical functional correlation was developed which showed that disc thickness should vary inversely with the product of blade-pull stress and disc diameter, i.e., the blade load per unit thickness. For those engines in the data base where large-scale drawings were available, several typical discs were measured. Blade-pull stress and disc volume were calculated, and the results were plotted in the form of relative disc thickness versus load per unit thickness, figure 9 .

There is an identifiable trend in these data that show a different characteristic for compressor discs and fan discs. Low hup-tip ratio of the fan probably accounts for the departure from the compressor trend. The allowable stress difference between steel and Ti causes the different trend for the two materials. Further imprcvemente in the accuracy of the disc volume correlations could be made if the number of discs were increased in the data base and the rim loading term was modified hy the

Figure 9. Data Base Engine: Compressor Disk Volume Correlation

Figure 10. Trpical Stage Components
design stress level or maximum allowable. An optional disc preliminary design procedure is also available and is recommended for potential improved accuracy (see sec. 1.2.3).

Figure 10 illustrates a stage coupling method that was used in most of the data base engines. The spacer and nuts and bolts are assumed to be steel, and the spacer was typically a .075-in thick cylinder located at 75\% of disc radius. The connecting hardware $\left(W_{h w}\right)$ is estimated by the following equation:

$$
\begin{equation*}
W_{H W}=.75 \times 2 . \times \pi R_{n} \times .075 \times L_{S T G} \times \rho \tag{8}
\end{equation*}
$$

where R_{h} is the disc radius (or blade hub radius), ${ }^{L_{S t g}}$ is the $s \pm a g e$ iength, and f is the material density.

The outer case is the last item of weight included in the compressor weiaht buildup. Average case thickness in the data base engines was 0.10 in equivalent thickness, including fasteners and flanges. Case weight is calculated stage by stage, and the same material used in the disc is also assumed for the case:

$$
\begin{equation*}
w_{c}=\pi D_{t} \times l_{S T G} \times .10 \times P \tag{9}
\end{equation*}
$$

where D_{t} is the stage tip diameter.

Total stage weight is the sum of rotor blade, stators, disc, connecting hardware, and case. Stage weights are summed to give the total component weight.

Rotational inertia of compressors and turbines is determined by finding inertia of each staqe of each component. It is assumed that hlades have uniform weight/area and the disc is of uniform thickness. This method has been applied to several existing enqines and the results showed good
agreement. The following equations are used for the blades and disc inertias:

$$
\begin{align*}
& I_{B L A D E}=\frac{W T_{B L}}{g} \times \frac{h_{B}^{2}}{3}+R_{h}^{2} \times N_{B} \tag{10}\\
& I_{D I S C}=\frac{W T_{D I S C}}{8 g} \times R_{h}^{2} \tag{11}
\end{align*}
$$

The total stage inertia is the sum of blade and disc inertias

$$
\begin{equation*}
I_{S T G}=I_{B L A D E}+I_{D I S C} \tag{12}
\end{equation*}
$$

The component inertia is the sum of the inertia of each stage.

1.1.2 Axial Flow Turbines

The method described for compressors is generally the sam for turbines. Input data required are:
o Maximum tip diameter of the first stage, or number of stages

0 Inlet Mach number (axial) of the first stage, and exit Mach number (axial) of the last stage

0 Rotor blade aspect ratio of the first and last stages

- Solidity
o Reference disc stress, 0.2% yield point of the material selected

0 Cooling indicator, to modify the blade volume calculation for cooling holes
o Design mode, constant hub radius, constant mean area or constant tip radius

- Shaft overspeed factor
- Turbine loading parameier, $\lambda=U_{t}^{2} / \frac{\Delta h}{N} \cdot 2 g J$
o Blade material density
o Blade taper ratio
o Blade volume factor

Two alternative procedures can be used to size the turbine: (1) specify maximum diameter of the first stage and find the number of stages from the work loading farameter, or (2) specify the number of stages and the diamter of the first stage is found from the work loading parameter. Shaft speed is transferred from the corresponding compressor; and in the case of (1), the number of stages is found by iteration until the resultant tip diameter is equal to or less than the specified diameter. Equal work per stage is assumed. Total component work and state conditions are taken from the NNEP stored cycle data.

Th determine blade height, the flow area necessary to pass the corrected airflow is calculated at the inlet of each stage. When the first stage inlet Mach number is different from the last stage exit Mach number, a proportionate change is assumed for inlet Mach number of the other stages. Hub radius of the first stage is found by subtracting from the stage-projected area the exit-flow area required to satisfy the specified exit Mach number. Dimensions of the remaining stages are then determined from the design mode specification and the calculated exit area.

Aspect ratio and number of blades are determined by the same method used in determining the compressors. Blade volume is also determined ty the
same method, Equation (3), except that $K=0.195$. When the blade is a cooled blade (normally HP turbine blades with relatively low-aspect ratio), the calculated volume is reduced 20% to compensate for cooling-air passages. Blade weight is then found from the sperified material density. Blade-pull stress is calculated by Equation (7).

In a manner similar to the compressur discs, turbine discs were measured in the data buse enginés to produce the results shown in figure 11. The r im luading parameter $\left(\sigma_{B P} \times R_{n}\right)$ was modified by dividing by the 0.2% yield strength (at the max. operating temperature) of the particular material used in each disc. There are many different steel alloys and superalloys that have different strength capabilities for which this correction compensates. Each disc has a different operating temperature, maximum allowable stress, and design life. These factors and other unknowns, such as the effect of hub tip ratio, are believed to be the primary cause of the data scatter. The best-fit curve shown in Figure 11 is used in WATE-?, unless the optional procedure is used where the discs are calculated by a preliminary design procedure developed primarily for small engine discs. This method is recomended hecause it inciudes the effects of blade aspect ratio and disc stress level.

The relative disc thickness is found from figure 11 with the calculated independent variable $\left(\sigma_{B P} \times R_{n}\right)$. Disc volume is found by multiplying the relative thickness parameter $\left(V / D_{h}{ }^{2}\right)$ by $D_{h}{ }^{2}$. Blade-material density is an input; however, disc material is assul to be steel or superalloy with 0.286 density. Since all of the data base engines used steel or superä.loy discs, correlations of other materials could not be made.

Each stage of the turbine is treated as a stator-rotor pair (as opposed to rotor-stator pair in the compressor. Stator blades are also assumed to have the same rumher, volume of material, and dimensions as the rotor blades. The stator weight is calculated hy Equation (3), with $\mathrm{K}=0.144$. Stator-rotor spacing is the same as compressors, 17% of the rotor length. Stator AR is taken to be 83% of the rotor blade AR.

Connecting hardware and case weight are also determined by the same method as used in the compressors. The total weight and length of the turbine component is the sum of disc, blade, stator, connecting hardware, and case. No exit guide vanes (EGV) are assumed in the turbine component. EGV's, if required, can be considered a part of the exit frame weight. Rotational inertia is determined in the same manner as the compressor.

1.1.3 Ducts

It is assumed that the major structural load in a duct is a result of the internal pressure. Also, it is assumed that the inner wall of the duct is the same gage as the outer wall. In the data base engines the outer surface of the $O D$ walls were typically exposed to ambient pressure. The ID wall was subjected to fan pressure, hp compressor exit pressure, etc., and $A P$ for the ID wall could not be generalized. Figure 12 illustrates the duct and nomenclature.

The equation for stress u a longitudinal section of a thin-walled cylinder subjected in an irternal pressure is: ${ }^{(3)}$

$$
\begin{equation*}
\sigma=\frac{P D_{0}}{2 t} \tag{13}
\end{equation*}
$$

and for solving for minimum thickness:

$$
\begin{equation*}
t_{\min }=\frac{P D_{0}}{2 \sigma} \tag{14}
\end{equation*}
$$

where σ is the allowable for the material, p is the internal total pressure, and D_{0} is the duct outside diameter.

Ti is assumed with $50,000 \mathrm{lb} / \mathrm{in}^{?}$ allowable at. temperatures helow $700^{\circ} \mathrm{F}$, and steel is assumed at $70,000 \mathrm{lbs} / \mathrm{in}^{2}$ above this temperature. The appropriate material is selected based on the total temperature of the duct airflar. The weight is ialculated as a function

$$
\begin{aligned}
& A=\frac{W_{C}}{\left(W_{C / A}\right)}=2 \pi R_{\text {REF }}^{2}\left(1 \cdot R^{2}\right) \\
& \text { SOLVE FOR R } R_{H} \text { AND R } R_{T} \\
& \text { MATERIAL IS DETERMINED FROM } T_{O} \quad T_{O}<1,160^{\circ} R-T_{i} \\
& O=\frac{P_{O} R_{T}}{1} \text { SOLVE FOR I WITH SPEC!FIED O } \\
& W_{T}>1,160^{\circ} R \text { STEEL } \\
& { }_{\text {DUCT }}=2 \pi\left(R_{T}+R_{H}\right) t_{P_{\text {MATL }} L}
\end{aligned}
$$

Figure 12. Duct Schematic
of duct length (L), the inner diameter $\left(O_{\mathfrak{i}}\right)$, and the outer diameter $\left(\mathrm{O}_{0}\right)$:

$$
\begin{equation*}
W_{\text {DUCT }}=\pi\left(D_{0}+U_{i}\right) L \rho_{t_{\min }} \tag{15}
\end{equation*}
$$

Duct Mach number is specified as an input, and corrected airflow is determined from the NNEP cycle data. ID and OD are determined as a function of required flow area and the dimerisions of the connecting upstream component. Care should be taken to ascertain whether these assumptions apply for specific engine configurations. For example, a thin-walled cylinder subjected to an external collapsing pressure will fail at a much lower pressure than it would if it were subjected to an internal bursting pressure, as assumed in the duct weight calculation. If both ID and 00 walls of the duct are exposed to ambient pressure, the ID wall should be sized to avoid collapse, such as determined experimentally by Stewart ${ }^{3}$ for lap-welded steel tubes:

$$
\begin{equation*}
P_{\text {MAX }}=1000\left[1-\sqrt{1-1600\left(\frac{t}{D}\right)^{2}}\right] \tag{16}
\end{equation*}
$$

or expressed in terms of minimum wall thickness:

$$
\begin{equation*}
t_{\min }=\frac{D}{40} \sqrt{1-\left(\frac{1-P_{\text {max }}}{1000}\right)^{2}} \tag{17}
\end{equation*}
$$

WATE-2 does not perform the above calculation to determine whether collapsing pressure sizes the 10 wall. It also does not check to determine whether the gage selected is less than minimum gage.

1.1.4 Rotating Splitter

A rotating splitter, Figure 13, is a circumferential separator of two flows within the same compressor. These flows rurally have different pressures and temperatures, and the splitter must perform a sealing

$\begin{aligned} F=m a & =\sigma \text { AROOT } \\ \Delta \sigma_{\text {RIM }} & =\frac{2 \pi}{N B} \rho_{\text {MATL }} U_{S}^{2} \\ \Delta W_{T} & =2 \pi\left(\frac{T}{C}\right) \frac{b^{2}}{A R^{2}} \rho_{\text {MATL }} P_{S} \\ I & =.1 \text { FOR WEIGHT } \\ C & \\ U_{S} & =\text { SPLITTER SPEED } \\ \text { NB } & =\text { NUMBER OF BLADES } \\ \text { AR } & =\text { ASPECT RATIO } \\ b & =\text { BLADE HEIGHT } \\ \rho_{\text {MATL }} & =\text { MATERIAL DENSITY }\end{aligned}$

Figure 13. Rotating Splitter
function. Stages that incorporate rotating splitters are treated the same as compressors; a rotor-stator pair comprises one stage, stator weight and size is assumed to be the same as the rotor blade, and rotor-stator spacing is 17% of rotor length.

The rotating splitter adds weight to the blade and increases the centrifugal blade force. Consequently, the disc must be heavier to carry the added load. Splitter weight, per blade is estimated by:

$$
W_{S P L}=\frac{2 \pi R_{S} c^{?} \times .10}{N_{B}}
$$

where C is the blade chord found by Equation (5) and R_{S} is the radial location of the splitter.

Thickness of the splitter is assumed to be 10% of chord, however, this choice was based on only one engine, the General Electric CJ805-23. The CJ805-23 aft-fan blade has a rotating splitter which has a box section. The solid equivalent thickness of the hollow box was approximately 10% of chord. A more accurate estimatr can be made by actual design of the cantilevered platform to the desired deflection and/or stress levels.

The centrifugal force contribution of the rotating splitter is:

$$
\begin{equation*}
F=M r W^{2}=\frac{W_{S P L}}{g} \times R_{s} \times\left(\frac{2 \pi \times R P M}{60 .}\right)^{2} \tag{18}
\end{equation*}
$$

where RPM is the shaft speed determined in the same manner as compressors. Blade pull stress (Equation 7) is increased by the amount

$$
\begin{equation*}
\Delta \sigma_{B P}=\frac{F_{S P L}}{A_{B}}=\frac{F_{S P L}}{C_{B}^{2} \times t / c} \tag{19}
\end{equation*}
$$

where C_{B} is determined by Equation (5) and t / C is the thickness ratio of the hlade (which is assumed to be 10\%). Disc weight is determined
with the increased stress level using the disc volume correlation,
Figure 9 .
Figure 9.

Shaft speed determination (as described in Section 1.1.1) is only an rotating splitter will cause the blade-pull stress to increase whether or not the stress le? output should be inspected to determine may be required to reduce the stress level.

If shaft speed is decreased, a larger number of stages will be required to accomplish the same work. Alternatively, the radius ratio of the compressor (or turbine) can be increased to restore work capacity (due to higher tip speed). Disc weight of each stage will increase for this compromise, however. The final choice must be iterated external to WATE-2 and may depend on whether or not the flow path is reasonably well matched to connecting components (such as the HP turbine and LP turbine flow path). These secondary effects may he HP turbine and LP turbine engine weight than will the weight of have a much large inpact on should not be ignored.
1.1 .5

Burners

This method is based on a calculated volume of materials, similar to the duct method except for the addition of wall liners and fuel manifold and nozzles, as shown in figure 14. It is used for primary burners, as well as duct heaters, and afterburners. Differences in configuration of these different types of burners are reflected in the specified resiciance time through-flow velocity, and type of burner the specified resiciance time, specified, a frame weight is added burner. When a primary burner is and duct heaters require an input mean Section 3.7). Primary burners while the afterburner is assumed mean radius of the annular flow paths ratio.

Figure 14. Burner Schematic

Burner flow area is determined from the input velocity, the mean radius, and the entry-corrected airflow from the NNEP cycle data. Burner length is found to give the specified residence time based on the input velocity and entry reni.itions.

Flow area is used to obtain the inner and outer dimensions of the turner (R_{t} and R_{h}) with the specified mean radius located at mid-area. nuter-case thickness is determined by Equation (14). The same thickness is used for the inner case. Material assumed is steel with $70,000 \mathrm{lb} / \mathrm{in}^{2}$ allowable stress. Weight and volume of material for the inner and outer cases are found by Equation (15), using burner length (L).

Liner weight is determined in a like manner, assuming 0.055 -in thick steel walls, located at 20% of passage height from the inner and outer case. The burner dome, fuel manifold, fuel nozzles, and other components are estimated by typical geometry taken from the data base engines as determined by the following equation:

$$
\begin{equation*}
W_{\text {DOME }}=.0106\left(R_{t}^{2}-R_{l_{i}}^{2}\right) \tag{20}
\end{equation*}
$$

Total burner weight is the sum of inner and outer cases and liners, burner dome and fuel nozzle system, and frame where applicable.

1.1.6 Shafts

A shaft is assumed to be the power connection between components, see Figure 15. Multiple stages within a compressor or turbine are also connected by a shaft; however, this weight is included in that component's weight huildup.

The required inputs are:

0 The component numbers connected (to determine length, power transmitted and shaft speed).
$0 \quad$ The shaft material density and allowable stress.

0 Radius ratio (of the inner shaft only).

Multiple concentric shafts can also be specified, and will be sized around the inner shaft with 0.20 in radial clearance assumed.

Dimensions of the inner shaft are determined to provided the necessary torque capability at the specified allowable stress. Total shaft power is the summation of work (ΔH) for all turbines on the shaft. Torque is ca?culated by:

$$
\begin{equation*}
T=\frac{\Sigma \Delta H}{\omega} \times J \tag{21.}
\end{equation*}
$$

where ω is the shaft : otative speed, rad/sec.

Shear stress due to the torque load is defined by (3):

$$
\begin{equation*}
\tau=\frac{16 T D_{0}}{\pi\left(D_{0}^{4}-D_{i}{ }^{4}\right)} \tag{22}
\end{equation*}
$$

ENLARGED SEETION OF CONCENTRIC SHAFT

Figure 15. Shaft Schematic
or in terms of the input diameter or radius ratio ($\mathrm{D}_{\mathrm{i}} / \mathrm{D}_{\mathrm{o}}$):

$$
\begin{equation*}
\tau=\frac{16 T}{\pi D_{0}^{3}\left[1-\frac{D_{0}^{4}}{D_{i}^{4}}\right]} \tag{23}
\end{equation*}
$$

Solving for D_{0} in terms of allowable stress ($\sigma_{\text {all }}$):

Weight is then found by :

$$
\begin{equation*}
D_{0}=\left\{\frac{16 T}{\pi \tau\left[1-\frac{D_{0}^{4}}{D_{i}^{4}}\right]}\right\}^{1 / 3} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
W=L \rho \pi \frac{D_{0}^{2}}{4}\left[1-\frac{D_{0}^{2}}{D_{i}^{2}}\right] \tag{25}
\end{equation*}
$$

A similar procedure is used for concentric shafts. The second shaft's inside diameter is found by adding 0.40 in to D_{0}, and Equation (24) is solved by iteration.

While it is assumed in the shaft-weight estimate that torque determines the shaft dimensions, it should be recognized that other design considerations may dictate shaft dimensions. Shaft critical speeds or longitudinal stiffness may actually design the shaft, hut this is a function of bearing arrangement, mount stiffness, location of and stiffness of rotating masses. The calculated shaft weight should be considered to be an absolute minimum, and can possibly be much larger when these other criteria are considered. The rotational inertia of the shaft is not calculated, since it is a negligibie quantity compared to the compressors and turbines.

Figure 16. Frame Types

1.1.7 Frames

A structurai frame is normally required to span the engine flow path from the outer engine case to the shaft, usually to support a bearing (as shown in figure 16) for several typical engines. Mechanical design of the frame would require a definition of all loads imposed on the frame under normal operating conditions, transients, and adverse operating conditions, such as a hard landing. This level of detail is normally not available at the preliminary design stage for which WATE-2 has been developed.

It has been found, however, that the frame weight of the data base engines correlates well with the total frame-projected area. These data are shown in figure 17 for four types of frames commonly used: single-bearing frames with and without PTO, turbine exit, and intermediate. Frame weight is determined from these data, based on the local diameter and the type of frame specified.

1.1.8 Nozzles

Unlike the rotating components, the loads and load paths of nozzles (particularly variable area C-D nozzles) are not readily defined on a general basis. A selected type of nozzle could be subjected to a detailed weight-estimating procedure, however, the trade-offs of internal and external performance with nozzle length and diameter would also be necessary to optimize the desian. This type of data is not likely to be available at the level of development for which WATE-? is intended.

A procedure has been developed that shows proper trends for multiple-stream nozzles and for variable geometry and fixed-geometry nozzles. Nozzle length is specified and should be selected to be representative for the type of nozzle, i.e., C or $C-D$. An effective surface area is calculated based on the diameter of the connecting component and the specified $1 e^{-t h}$.

Figure 17. Frame Weight

Only circular, conical nozzles are assumed, however, coannular nozzles could be represented by specifying a circular nozzle for each flow path. Plug nozzles can be represented by specifying a larger effective length; e.g., from nozzle entry to end of plug. Wall thickness is assumed to be 0.10 -in steel above $700^{\circ} \mathrm{F}$ and Ti below $700^{\circ} \mathrm{F}$. Variable nozzles are calculated in the same manner except that the effective wall thickness is 2. 75 times that of the fixed nozzle.

1.1.9 Mixers

A mixer is a device placed at the point of confluency of two coannular streams to increase the mixing boundary se that thermal mixing takes place in a minimum length. This type of mixer is sometimes called a daisy-mixer, chute-mixer, or forced-mixer.

Flow area of each annular path is taken from the NNEP cycle data, and the inlet radius (R i) of the upstream component is used as a starting point for locating $R_{\text {mid }}$ and R_{0}, as shown in Figure 18. Normally $R i$ will be the hub radius of the last turbine stage.

Mixer length (L) and number of passages (N) are required inputs. The following relationship has been developed that is representative of the surface area of typical mixers:

$$
\begin{equation*}
S=\left[3.93 R_{M}+1.25\left(R_{0}-R_{f}\right)\right] L \tag{26}
\end{equation*}
$$

material assumed is 0.10 -in thick steel.
1.1.10 Annulus Invertina Valve (AIV)

This device has been used in some variable-cycle engines to invert the annular position of two concentric flow paths. It accomplishes the flow inversion within a constant diameter envelope, and with constant-area duct passages. Figure 19 shows a typical example of an AIV. This AIV was designed to vary the byoass ratio in a JT8D engine.

RM IS BASED ON INNER AREA AND \boldsymbol{R}_{1}
$L_{S P} \equiv L \quad 2 A / T \sim$ iNPUT
A - AOUTER + AINNER
L IS DETERMINED
WTM $=\left(K_{1} \times R_{M}+1.25 \times N\left(R O-R 1 A K L \times K_{2}\right.\right.$
$K_{1}=3.927 \quad K_{2}=.028$

Figure 18 Mixer Schemetic

Figure 19. Typmal Anmulus Inverting Valve: JT8D Varrable Byoass Engine Tess

The AIV weight method assumes a construction similar to that shown in Figure 19, except that instead of sheet-metal, the material is assumed to be Ti honeycomb at $1.1 \mathrm{lh} / \mathrm{ft}^{2}$ below $700^{\circ} \mathrm{F}$ and steel honeycomb at $1.87 \mathrm{lb} / \mathrm{ft}^{\text {? }}$ atove $700^{\circ} \mathrm{F}$. If desired, different materials can be specified.

An empirical relationship, similar to the mixer method, has been developed for estimation of the AIV weight:

$$
\begin{equation*}
W_{A I V}=L \times \frac{W}{A}\left[2 \pi R_{i}+2 \pi R_{0}+3.93 R_{M}+1.25\left(R_{0}-R_{i}\right)\right] \tag{27}
\end{equation*}
$$

where R_{i} is the hub radius of the upstream connecting component, and R_{m} and R_{0} are found to satisfy the input Mach number with the entry corrected airflow (see figure 20). The number of passaqes (N) is an input, and material weight per square foot (W/A) is selected depending on the stream temperature. Length (L) of the AIV is calculated from the input specific length, L_{Sp} :

$$
\begin{equation*}
L=\frac{L_{S P}}{\sqrt{4 A / \pi}} \tag{28}
\end{equation*}
$$

Specific lenath is proferred as an innut because it is nondimensional, and it is a majior variable that determines AIV pressure loss. A rolatively anod compromise between size and performance is achieved when $N=3$ and $L_{S P}=0.8$ to 1.0 , which results in a pressure loss between 2.5% and 1.5%.

If the AIV is of the switchina type, where one half indexes in a rotational direction relative to the other half to change flow-path orientation, an actuator weight is estimated at 10% of total AIV weight. Adtitinnal structure to support the rotating half is not incuded and should he represented as an additional frame.

Figure 20. Annulus-Inverting Valve Sshematic

1.1.11 Transmission

A method of estimating the weight of various types of gear systems has been previously developed by Schmidt. ${ }^{4}$ This method is used in WATE-? for gear sets that are typically used in aircraft.

The equation for the total gear box weight is:

$$
\begin{equation*}
W=324\left(\frac{S H P}{\text { RPM }}\right)^{.80} \tag{29}
\end{equation*}
$$

1.1.1? Thrust Reversers

A weight estimating method previously developed for aircraft preliminary desian studies is hased on the weight of i8 different reversers that are in current use. It has been found in correlations of these data hat reverser weiaht (W) is a function of corrected mass flow $\left(\frac{W \sqrt{\theta}}{\delta}\right)$ and nozzle oressure ratio $\left(P_{R}\right)$, and is dependent on whether the stream is hot (primary) or cold (fan). The following relationship has been developer:

$$
\begin{equation*}
W=\left[K_{1} \times \frac{W \sqrt{\theta}}{\delta}+K_{2}\right]\left[K_{3} P_{R}+K_{4}\right] \tag{30}
\end{equation*}
$$

where hot streams $K_{1}=.52, K_{\text {? }}=423, K_{3}=1.004$ and $K_{4}=-.5054$. For cold streams $K_{1}=2.22, K_{7}=11.0, K_{3}=.23$, and $K_{4}=.56$.

The WATE-? method will apply the cold stream equation to a fan stream whether or not it is heated by a duct burner. The hot stream equation is used for turbine outlet streams or mixed-flow exhaust streams.
1.1.13 Heat Exchangers

Both rotary and fixed heat exchangers can he estimated. Methods previnusly developed produce adequate results for preliminary design purdoses, spe Figure $\mathbf{1 1}$.

FIXED.TUBE HEAT EXCHANGER

ROTARY HEAT EXCHANGER

Figure 21. Heat Exchangers

For rotary heat exchangers, a ceramic core is assumed. Weights of this type ofheat exchanger have been determined by the Corning Glass Company 5 and are represented in Table 2 for various levels of effectiveness and pressure loss. These data are developed for a total corrected airflow of $200 \mathrm{lbs} / \mathrm{sec}$. For other sizes,, weights are scaled directly with corrected flow.

Fixed-tube heat exchangers are estimated by $>$ دat transfer analysis 6 whereby the required tube surface area is f, d to give the specified effectiveness. Flow area of the tubes is foun. from an input Mach number, number of tubes, and corrected flow.

Wall thickness of the tuhes is determined by Eauation (14) to satisfy an assumed allowable stress of $50,000 \mathrm{in} / \mathrm{in}$? and a density of 0.168 below 700° F. A stress of $70,000 \mathrm{lb} / \mathrm{in}^{2}$ and a density of 0.286 is assumed above 7000 F . The length of tubes is determined to satisfy the surface area requirement.

Table 2. Ceramic Rotary Regenerator Weight

$200 \mathrm{Ib} /$ ece corrected weight flow						
BPR	3		7		10	
$\Delta_{\rho} / \mathrm{P}(\mathrm{x})$	5	10	5	10	5	10
Weight (lb)						
$\epsilon=80 \%$	674	542	628	445	800	423
85%	971	754	914	640	834	617
90%	1.622	1.188	1.428	1.085	1,313	994

Fixed-tube heat exchanger tube weight (W_{t}) is then found by

$$
\begin{equation*}
W_{t}=\rho L_{t} \pi\left(R_{0}^{2}-R_{i}{ }^{2}\right) \tag{31}
\end{equation*}
$$

where R_{0} and R_{i} are the tube radii and L is the total iongth required. Casings, mounting hardware, manifolds, and other equipment that may be necessary are assumed to be equal to W_{t}. Total heat exchanger weight is $2 W_{t}$.

1.? Small Gas Turbine Engines

Discussed in this section are all of the components that are unique to small gas turbine engines. These include centrifugal compressors, radial turbines, axial compressors, axial turbines, buriers, cross-over ducts, diffusers, compressoi shroud, aear box, and rear frame. Some components utilize the same methods as used for the large engines, and these are noted in the discussion. A typical small-enaine is shown in figure 3 , where the major components are identified.
?.?.1 Centrifugal Compressors
The following input data are required for centrifugal (radial) compressors:

0 Entry axial Mach number

- Max first staqe pressure ratio

0 Padius ratin of the inlet hub to the inlet tip
0 Shaft overspeed factor

If the specified overall pressure ratio is greater than the max allowable first stage pressure ratio, another stage is added and the work is digited equally. Stages are added until the first stage pressure ratio is loss than the max allowed. Tip speed of the second stage of multiple stages is taken th he orad of the first stage tin speed.

Figure 22. Small Engine Components

Hub and tip radii of the entry are found from the input radius ratio, the entry corrected airflow, and the entry Mach no. The tip radius of the outlet of centrifugal compressors is assumed to be 3 times the hub radius of the entry, which is typical for wheels from 10 to 20 in . diameter.

Corrected tip speed is found from the calculated pressure ratio of the stage, Figure 23 , and shaft speed is then found from tip radius and tip speeri.

The shaft speed will normally be set by turbine stress. Since turbine stress is a fall-out calculation in WATE-2 (for axial turbines only), it should be checked to see if it is reasonable, and the input radius ratio should be adjusted if necessary to change the calculated shaft speed.

Centrifugal compressors are assumed to be titanium and the weight is found as a function of tip radius, Figure 24. Length and rotational inertia are found similarly, Figures 25 and 26 . Figure 26 also compares the inertia of radial turbines.

1.2.? Radial In-Flow Turbines

The tio radius of radial turbine wheels is found by the inlet corrected dirflow, Fiqure 27. The technology level, current or advanced, must be specified. Length of the impeller is found from Figure 28, as a function of the tip radius.

Stee turbine wheels are assumed, and the weight and rotating inertia are determined from tio radills, Fiaures 29 and 76 , respectively.

1.2.3 Axial Compressors and Turbines

This method is identical to the larae gas turhines except for the disc weight culation procedu:e. No additional inputs are required, except for the input which activates the optional disc procedure. It was found that the previous disc weiaht correlations were not applicable to small diameter discs. Typicallv, the small discs were 3 to 4 times heavier lor

Figure 23. Corrected Sceed of Centrifugal Compresscrs

Figure 24. Weight of Titanium Centrifugal Compressors

Figure 25. Length of Centrifugal Compressor Stage

Figure 26. Rotating Inertis of Centrifugal Compressors and Radial Turbinee

Figure 27. Tip Radius Estimate for Redial Turbines

Figure 28. Length Estimete for Radial Turbines

Figure 29. Weight Estimate for Radial Tui , ines
thicker) than would be predicted by the original method. A new method was developed specifically for small-engines. It is also applicable to large engines, and may provide improved accuracy.

An inserted hlade is assumed, and the disc material is assumed to be Ti or steel forgings with ultimate strengths of 120,000 and $160,000 \mathrm{psi}$ respectively. The r im of the disc is assumed to be 10% of the blade huh radius or .75 in , whichever is qreater. The remaining disc volume is assumed to he a trapezoidal section rotated about the axis. The thickness of the trapezoin at its outer radius is sized for 75% of the ultimate strength. Thickness of the trapizod at the inner radius is based on 50% of ultimate strength for the tangential stress. This value is selerted hased on an experimentally determined hurst speed margin.

If the averag̣e tangential stress can be satisfied with a constant thicknoss tisc, the hore radius is increased until the lowest weight disc is achieved that iust meets the design criteria.

Stresses are cairylated haced on the total hlade force acting on the nuter circumference of the disc, and it is therefore sensitive to changes in hlato aspect ratio and solidity as well as blade pull stress and huh ratilus. The original method is not sensitive to aspect ratio or soliditv.

1. . A renssnver nuct Integral with niffuser

This inmmonent is onlv used to connect two centrifual compressors, and it has an intenral diffuser. The diffuser outside diameter (0_{0}) is t.anon to he 1.5 timas the first impellor tiameter and the length (L) is ©凶ilme! th he ? ? of the diffuser diameter. Weight of the crossover duct is notimated hy the followind rold innshin:

$$
\begin{equation*}
N T=22.5 \mathrm{~L} \times 10 \tag{37}
\end{equation*}
$$

where 1 and 0 .rn in $f t$.

1.2.5 Diffuser

A diffuser is required when only one centrifugal stage is used. It is normally feeding into a burner directly from the compressor. The outside diameter of the diffuser is also 1.5 times the tip diameter of the impeller, and the length is 7% of the diffuser diameter. The weight is expressed by:

$$
\begin{equation*}
W T=32.8 \mathrm{~L} \times 0_{0} \tag{33}
\end{equation*}
$$

1.7.6 Rear Frame

For small gas turbines, a turbine exit frame is normally required to supoort the turbine bearing, radial loads only. The front frame and front bearing take the thrust loads, and this is sometimes an integral part of the gearbox. The following equation is used to estimate the weight of the rear frame, which includes the tailpipe and nose cone:

$$
\begin{equation*}
W T=55.5 R_{t}^{2}+6.53 \tag{34}
\end{equation*}
$$

where R_{t} is the turbine tip radius (ft).

1.2.7 Centrifugal Compressor Housing

This item is similar to the outer case in an axial compressor. Weight is based on the length and the tip radius $\left(R_{t}\right)$ of the impeller:

$$
\begin{equation*}
W T=163 \times L \times R_{t} \tag{35}
\end{equation*}
$$

1.2.8 Gearhox and Accessories

The existing transmission weight method will give satisfactory results for small enaines. Accessory weight however is a significantly hiaher percentage of total weight. Accessories are typically about 17% of the total angine woight, excluding accessories.

1.3 Other Program Functions and Capabilities

1.3.1 Flight envelope Maximization

In the normal 'use of the WATE-? program, a flight envelope of engine performance will be generated. Since the weight of each component is affected by its maximum work, flow, temperature, and speed, these maximized values are stored for use in the dimensions and weight calculations. Thermodyriamic output data from NNE f is scanned over all points in the specified flight envelope, and the maximum conditions are stored. The flight condition is given in the output data where the maximum condition occurs for each component.

1.3.? Design Limits

As an aid to assist the user to achieve a reasonable engine design, the output data will provide a warning and suggested corrective action to bring the engine design within reasonable limits. These limits can he specified, or default values will be used if not specified. Table 3 shows a list of warnings and corrective actions.
1.2.3 Automatic Airflow Scaling

The WATE-? program will automatically scale the engine to $\pm 0 \%$ of the size that is defined in the NNEP simulation. Up to six selected scale factors can also he specified if the default scale factors of $.8,1.0$, and 1.? are not adequate. A scaling exponent (\mathcal{E}) is calculated for a hest-fit curve between the calculated data points. The curve-fit equation is of the form:

$$
\begin{equation*}
W T=W T_{R E F}\left(\frac{W_{a}}{W_{a_{\text {REF }}}}\right)^{\varepsilon} \tag{36}
\end{equation*}
$$

The scaling exponent (e) and a short-form outnut for each engine size is orovity'd in the output data.
1.2.4 Engine Center of Gravity The center of gravity of each ene mid-onint of its length. The moment

table 3 design limits

WARNing message	ACTION RECOMMENDED	default value TESTED AGAINST
blade Pull stress exceeded	REDUCE SHAFT SPEED (BY RPM SCALAR) OR INCREASE EXIT MACH NUMBER	$\begin{aligned} \sigma & =50000 \mathrm{HPT} \\ \sigma & =60000 \mathrm{LPT} \\ \sigma & =80000 \text { FAN } \& H P C \end{aligned}$
h/t TOO LARGE	REDUCE HUB-TIP RATIO INPUT	h/t $=.93 \mathrm{HPC}$ EXIT
h/t TOO SMALL	INCREASE HUB-TIP RATIO INPUT	$\begin{aligned} \mathrm{h} / \mathrm{t} & =.32 \text { FAN,HPC ENTRY } \\ & =.50 \text { HPT,LPT EXIT } \end{aligned}$
STAGE LOADING TOO HIGH	INCREASE λ INPUT (WHICH IS 1/LOADING)	$\lambda=.28$ HPT,LPT
STAGE PR TOO HIGH	REDUCE STAGE PRESSURE RATIO INPUT	$\begin{aligned} P R & =1.8 \mathrm{FAN} \\ & =1.4 \mathrm{HPC} \end{aligned}$
FLOW VELOCITY TO HIGH	decrease stage inlet MACH NUMBER INPUT	$M_{\text {ex }}=.60 \mathrm{ALL}$ COMPONENTS
blade size too small	CHANGE DES OVERALL PRESSURE RATIO OR REDUCE H/T INPUT	$h_{B} \quad .40$ ALL COMPONENTS

relative to the front-flange of the engine is determined as a function of the position of each component.

For rotating components, the weight of each stage is assumed to act at mid-length of the stage. Moments are summed about the front flange for each stage. The center of gravity of each rotating component and the total engine is calculated. CG locations are shown in the output data for the total engine and each component.

1.4 Proaram Validation

A verification of the accuracy of the method can only be done by applying it to various tvoes of engines and comparing the results with the actual measured engine weight and dimensions or with those estimated by the manufacturer for proposed engines. Since the manufacturer's estimate of proposed engines also includes some error, the real deviation or error of the WATE-2 method can only be found by comparing enaines that have been built in production quantities.

In order to judge the accuracy of the method, the NASA program manager selecten 3 large engines and one small engine for comparison. These included both production and proposed engines. The selection was made after the method was completed and submitted for approval. Results of the WATE-? estimates for these engines are shown in figure 30 . As can be seen, dimensions and weight of the a selected engines are within the $\pm 10 \%$ accuracy goal.

Figure 30. Program Resu/ts Compared to Manufacturers Quotations

2.0 USER'S MANUAL

This section contains a description of input-output data, values of typical inputs and sample cases. WATE-2 is designed to function around a component-type engine cycle analysis program, the "NASA-NAVY Engine Program, Reference 7. The calculated thermodynamic output data of NNEP is not described here since it is unchanged from its normal mode of operation.

The thermo resign point case of NNEP can be used to generate the WATE-2 inouts or additional NNEP off-design points can be run and the output data will be scanned for maximum conditions of shaft overspeed, work, flow or temperature for each component. In order to produce the most accurate weight estimate, the off-design cases should encompass the maximum performance level required of each component. All components that contribute weight must also be included in the NNEP engine model. WATE-? will not calculate weight for components which are not included in the NNEP engine simulation.

WATE-2 also will accept an input weight scaler for each component so that selected components can be increased or decreased for eliminated altocether) to determine sensitivities, etc. Both SI and English units of measure can be used.

2.1 Proaram Structure and Deck Stacking

The overall proaram structure is shown in the foow chart, Figure ?!. NNEP design noint data is stored i i, the "thermodinamic data" for use in calculating weights and dimensions (W / D) in the WATE-2 part of the program. Computer execution time, core storage, and output print requirements have heen increased s'ightlv over the NNEP proaram.

The order of teck stackina of the lob Control cards and NNEP input data are unchanged from the normal operation of NNEP. Two new inputs have heen added to the NNEP indicator set. The indicators, $\mid W T=T R U E$ and

Figure 31. Overall Program Structure

IPLT $=$ TRUE signals that the weight and dimensions calculations are to be performed, and the WATE-? Data Set is required following the NNEP inputs. Figure 3 ? shows a typical card-stacking arrangement necessary to operate NNEP and WATE-2.

2.2 Inout Description and Format

The WATE-? inputs are free-field format (NAMELIST), and begin in Column ?. There is no specified order to the inputs; however, for the following discussion they have been grouped into Plot-Print Indicators, Length Indicators, Mechanical Design Indicators, and Desian Values. Figure 33 shows a complete input set for a typical case.

?.2.1 Plot-Print Indicators

IWT $=0-$ Do not do weight caiculation
$=1$ - Turn on the thermodynamic parameter maximization of the WATE code. Do not do weight calculation
$=$? - Do weight calculation using maximum thermodynamic parameters
$=3$ - Do weight calculation but do rot write maximum conditions for the components

[^0]

Figure 32. Deck Stacking
mole 1 NOW BEING UStD
\＆
$I P L T=T$ ，
ISII＝F。
151しこF，
1JしJCJ＝く，
ILeivbl $1:=2,3,5,0,7,8,4,10,11$ ，
\triangle NMEC（ 1,2$)=$ •FAN $0,1,1,4,3$（，
IWMEC（ 1,3$)={ }^{\circ} S P L T \cdot, 0^{*} 0$ ，

 inMEC：$(1,0)=\left(P_{\text {PUR }}, 1,5 \% 0\right.$ ，

1 WMEC（ $1, \perp \cup)=$ I JUCT： 2,4 ＊ 0 ，

InMEC（1，13）＝${ }^{\text {S SHAFं } 0,2,7,3 * 0,5, ~}$

Jt SVAL $(1,3)=1 ; * 0$.

Ue SVAL（1，5）＝100．．．015．

$D=S V A L(1,>1=1 ; * 0 .$,
U $-\operatorname{SVAL}(1,1 U)=.1,2 \cdot$ ，
ut SVAL（1，11）＝1．，14＊0．．

6：Nu

```
ISII = T - SI units input
    F - English units input
ISIO = T - SI units output
    F - English units
IOUTCD = 0 - Short form-engine weight, length, and maximum radius
    1 - Long form-component weights and dimensions and short form
IOUTCD = ? - Debuq option and long and short form
```


2.2.2 Length Indicators

The ILENG input specifies only those components that contribute to the total additive engine length. The NNEP component number is specified in ILENG in the order that the components would add in length to achieve the total lenath. This must start with the first compressor and end with the furthest downstream nozzle. Figure 34 shows a typical engine and the ILENG inputs for that engine. The ILENG input does not include duct (4), nozzle (5) or shafts (13) and (14) because these components do not contrinute to the total enaine length.

FL OW PATH AND COMPONENT NIUMBERS

Figure 34. Lengeth Inpour

2.2.3 Mechanical Design Indicators

The mechanical design indicators (IWMEC) must be specified for each component of the NNEP simulation, with the exception of the NNEP Controls, Inlet, and Water Injection or any other component not represented in WATE-?.

A number of shaft components may be required to simulate an engine in NNEP, as shown in Figure 35. WATE-? will determine the weight only for connecting shafts of major components, such as the typical HP or LP shaft. In the example of Figure 35, only shaft 15 and shaft 17 would be specified. The smaller component number must always be used on the inner shaft, with increasing component numbers as concentric shafts are added around the inner shaft.

IWMEC is a two-dimensional integer array that contains all of the mechanical design indicators. It is of the form IWMEC (N, M), where M is the component number used in NNEP, and N is the variable number as defined below for each component. Each variable in the IWMEC array for mach component is identified as shown in Figure $\mathbf{3 3}$ in free-field NAMELIST

IWMEC $(1,15)=$
IWMEC (1.17) =

Figure 35. Shaft Input

2.2.3.1 Compressors

IWMEC Array
Location

1 Tvpe of compressor being weighed.

'FAN'	- Typical fan
'FO'	- Outer portion of non-rotating splitter fan
'FI'	- Inner portion of non-rotating splitter fan
'RSFO'	- Outer portion of rotating splitter fan
'RSFI'	- Inner portion of rotating splitter fan
'LPC'	- Low pressure compressor
'HPC'	- High pressure compressor

2 This indicates if the fan or compressor has stators or if the compressor is a centrifugal compressor.

1 - Stator weight is calculated
0 - Stator weight is not calculated
2 - Centrifugal compressor

3 This is the indicator for 'front' frames in compressors.
This input mav be:

0
1

2
4

- No frame
- Sinale hearing frame for turbofans and turbojets with Power Takeoff (PTO)
- Single bearing frame with PTO
- Two bearing frame, such as the frame in front of the HPC in the ITRD or ITAD which extends nutward to the fan outer case and holds two hearings with PTO

4

This is the indicator for the 'rear' frame in a compressor 0 - No frame

1 - Single bearing frame for turhofans and turbojet without Power Takeoff (PTO)
2
4

- Single bearing frame with POT
- Two bearing frame, such as the frame in front of the HPC in the JTED or JT9D which extends outward to the fan outer case and holds two hearings with PTO

5 This is the component number connecting tc this component for split flow comoressors only. If this is the fan Outer, the Fan Inner must be specified. If this is the Rotatina Solitter Outer, the inner splitter must be specified, and vice versa.

Gear box indicator - 0 - No gear or component number of shaft

Number of stages

2.2.3.2 Turbines

Location
?

2
This is the type of turbine
'HPT'

- High pressure turbine
'LPT'
- Low pressure turbine

Indicator for turbine exit frame
0

- No frame
1
- Frame

0	- No frame
1	- Frame

6. Indicator for axial or radial turbine

0

- Axial turbine
? - Radial turbine
Compressor number from which the RPM is determined inlet dimension is used. If 0 , it will use the outlet of the feeding component.

Number of staqes

1 This is the type of turbine

'HPT'	- High pressure turbine
'LPT'	- Low pressure turbine

Component number from which the outer radius limit for the turbine is determined. If the component numher is positive, the outlet dimension is used. If negative, the

2.2.3.3 Burners

Location

1
This is the type of burner being weighed. The input is the burner name in four spaces.

'PBUR'	- Primary burner (airframe will be included)
'OBUR'	- Uuct burner (a mean radius is specified)
'AUG'	- Augmentor (no inner wall)

This is the indicator for frame weight, normally only for primary hurners. This frame includes a bearing.

0 - No frame
1 - Frame

1 Indicator as to type of duct

1	- Dummy - i.e., no weight or length
?	- Lenath input
3	- Length derived as in a duct connecting a splitter and a mixer
4	- Cross over duct for centrifuqal compressors
5	- Diffuser for centrifugal compressors

2 Indicator for primary input node
2.2.3.7 Nozzles
Location Description
1 'NOZ' - Input? Nozzle type
1 - Convergent

$$
?
$$

- C-D variable area
Component number from which the nozzle inlet dianeter canbe determined. If this diameter is taken from the inletof the component, the $(-)$ component number must beentered. If $(+)$, the exit node will be used. If theprevious component determines the diameter, this locationmay be zero.
4 Thrust reverser iype

0	- None
1	- Fan
2	- Primary

The calculated component weight can be adjusted by an imput scaler, DESVAL (15, M), which is a factor applied to the calculated weight. A zero value, however, denotes that no scaling is used. If it is desired to zero-out the weight of a component, the scaler can be set to a trivial quantity such as . 0001 .
2.2.3.8 Splitters
Location
Description1'SPLT'- Input21- If inner stream is not primary
2.2.3.0 Annulus Inverting Valve
1 Input "VALV'? Location of Valve
1 - Inner2 - Outer
3 Component Number of Opposite Duct40 if Fixed, 1 if Movable

2.2.3.10 Heat Exchangers

Location Description

1 Input 'HTEX'
$? \quad$ Type

	l	- Fixed tuhe
3	- Rotary	
Flow Direction		

2.3.4 Design values

Tinis section contains the mechanical and aerodynamic design data necessary to determine the weiaht and dimensions of each component. A summary of this array is shown in Table 4. If desired, the default values, Tahle 5, can be used for any component by not specifying the inouts for that component. The data required is in the floating-point two-dimension al array DFSVAL (N, M, , where M is the comnonent number from NNEP and N is as defined below. A typical range of values is shown in Table 6.

Desian linits are huilt into the proaram, as shown in Table 7 , and cannot he altered hy inputs. If these limits are exceeded, the calculation continues and a warning is orinted out.

Table 4 DESVAL/DEFAUL Array

POSITION	9	10	11	12	13	14	15
COMP TURB BURN DUCTS SHAFTS MIXERS AIV HEATEX NOZ	RMAXO	RPMR		RPMR	RHO BLADE	MODE	RPMSC

Table 5 DEFAUL Array

TYPE	1	$?$	3	4	5	6	7	8	9	10	11	12	13	14	15
FAN	. 55	1.7	. 45	1.5	4.	3.	. 45			1.	$2 .$	$1 .$	$0 .$	0.	0.
LPC	. 5	1.5	. 4	1.5	4.	3.	. 45	0.	0.	1.	0.	2		0.	0.
HPC	. 4	T. 4	. 7	1.5	3.	1.5	. 3	0.	0.	1.0	0.	2.	1.	0	0.
HPT	. 3	. 28	1.5	1.5	1.5	. 45	125000.	2.	1.	640.					
LPI	. 45	. 28	1.5	2.	4.	. 55	125000.	2.	1.	$6^{\circ} 0$					
PBUR	100.	. 015	$13^{\circ} 0$.												
deur	150.	. 015	$13^{\circ} 0$												
AUG	300.	. 015	$13^{\circ} 0$.												
DUCT	. 4	1.	0.	. 1.	$11^{\circ} 0$.										
SHAFT	50000.	. 286	$13^{\circ} \mathrm{O}$.												
MIXERS	1.	8.	$13^{\circ} 0$.												
NO2		$14^{\circ} \mathrm{O}$ 8.		. 5	1.1	1.1	1.1								
AIV HTEX	5000.	${ }^{8 .} .5$. 5												

Table 6 Typical Range of Input Values for DESVALIDEFAUL

TYPE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
				1.1 .5	3.5.	2.3.	. 45.55	0.	0.	1.	0.	-	1.		-
LPC.	. 45.6	1.5-1.8	. 4.5	1.-1.5	3-5.	2.3.	. 45.55	0.	0.	1.	0.	-	1.	0.	-
HPC	.4.5	1.4-1.7	.6-8	1.1.5	2.5.	1.2.	.2-3	0.	0.	1.	0.	-	1.	0.	-
HPY	. 3.4	.2.3	1.1.5	1.-2.	1.2.	. 45.5	100 KSI		1.	0.	0.	0.	0.	0	
LPT	. 4.5	2-3	1.1.5	2.3.	4.6.	.55-6	100 KSI	-	1.						
PBUR	100-150	.01.02	-	-			150 KSI								
OBUR	150-200	. 01.02	-	-											
AUG	200.300	. 01.02	0.	-											
DUCB	4. 5	-													
SHAFB	40.50 KSI	.28.31	$0 . .85$												
MIXERS	1.2.	7.9.													
$\begin{aligned} & \text { NOZ } \\ & \text { AIV } \end{aligned}$	$\|$1.2 8.8 8.1 .2 5000	6. 10.	. $4 \cdot 6$.4.6	-	-									

- not applicaele seetext
table 7 DESLIM array defaul type and values

POSITION	TYPE
	BLADE PUULL STRESS CAN NOT EXCEED:
1	FAN AND COMPRESSOR: 80000 PSI
2	: P TURBINE: 50000 PSI
3	LP TURBINE: $\quad \mathbf{6 0 0 0 0}$ PSI
	HUB/TIP FOR ALL COMPRESSORS CAN NOT EXCEED:
4	0.93
	HUB/TIP CAN NOT BE LESS THAN:
5	FAN AND COMPRESSOR: 0.32
6	TURBINE: 0.50
	TURBINE STAGE LOADING I NPIjT CAN NOT BE LESS THAN:
7	TURBINE: 0.28
	FIRST STAGE ALLOWABLE PRESSURE RATIO CAN NOT EXCEED:
8	FAN: 1.8
9	COMPRESSOR: 1.4
	LAST STAGE EXIT MACH NUMBER CAN NOT EXCEED:
10	FAN AND COMPRESSOR: 0.6
	BLADE HEIGHT CAN NOT BE LESS THAN:
11	COMPRESSOR: $\quad 0.4$ INCH
12-13	NOT USED

2.2.4.1 Compressor
Array
Location Description
1
Compressor face inlet Mach number
? Maximum first stage pressure ratio3
Compressor face hub-tip ratio, R_{h} / R_{t}
Blade solialty, ratio of blade cord to blade spacing
Blade aspect ratio at first stage
6Rlade material density. TERO if WATE-2 is to selectinaterial. $16 / \mathrm{in}^{3}, \mathrm{Kg} / \mathrm{cc}$
12 Compressor design type

1. Constant hub radius design
?. Constant mean radius design
2. Constant tip radius desian

RPM, scaler, normal input is 1. - use to match known RPM of engine

14
Temperature at which a change of material is required. If ZERO $1160^{\circ} R$ will be used, ${ }^{0} R,{ }^{0} K$.

15 Compressor weight scaler, input ZERO if no scaling is desired

Blade volume ratio. TERO input sets 0.055 for fans; 0.17 for compressors

Centrifuqal Eompressors

Description

1 Compressor inlet face Mach numher
$\because \quad$ Maximum firsi stage pressure ratio
i Comurcssor hub tif ratio

4 RPM ratio
s Compressor exit Mach number

6 Gear ratio of the power shaft
, Horse nower of power shaft
3.17 Not used

```
?.?.4.2 Turbines
Location
                                    Description
```

1

2

```
Turbine face inlet Mach number
Turbine loading parameter
\(U_{T}{ }^{2} / 2 q^{j} \Delta h / N_{\text {stages }}\)
Hlade solidity, blade cord/hlade spacing
Blade aspect ratio of first stage
Blade aspect ratio of last stage
Turhine exit Mach number
Disk reference stress - . 2 K viold, \(1 \mathrm{~h} / \mathrm{in}^{\prime}\), Newton's/cm?
Turbine design tupe
1. Constant tip radius design
?. Constant mean radius design
?. Constant hub radius design
: Aaximum speed ratio - RPM max \(/\) RPM desian
Turhine control ratius inches/cm - blank if transferred
from a component
nensitv of material in turbine blades - \(1 \mathrm{~h} / \mathrm{in}^{3} / \mathrm{Ka} / \mathrm{cc}\)
Blade volume factor. TERD indut sets 0.155 for hiah and intermediate turhines; \(0 .!95\) for low turbines
```

Location
Description
15 Turbine weight scaler, input 7ERO. If no scaling is
desired
1% Turbine blade taper ratio. ZERO input sets 1.0 for all
turbines
17 Stator blade volume factor. ZERO input sets 0.155 for
hiqh and intermediate turbines; 0.195 for low turbines
Centrifugal Turbines
1 Turbine face inlet Mach number
2-5 Not used
6 Turbine exit Mach number
7-17 Not used
2.2.4.3 Rurimers
Location Description
1 Burner through-flow velocity. ft/sec, m/sec.
? Burner airflow residency time, sec.
3 Burner mean diameter, in. or cm. If zero, diameter is
calculated to match connecting component
4 Component number for calculating mean burner diameter.
Enter zero if diameter is specified
5 Number of cans for can hurners

```
Location Description
6-14
Not used
15
Burner weight scaler, enter ZERO. If no scaling is desired
16-17
Not used
2.2.4.4 Ducts
1 Duct Mach number2 Length to height ratio of duct, required if mode 2 is usedin IWMEC
3 Duct mean dianeter, in. or cm. If 0 ., duct diameter iscalculated based on node specified below
4 Node number to cilculate mean diameter. Enter 0 , if meandiameter is spec:ified. Enter -1 , if connecting componentis to be used
5-14 Not usen
15
Weight scaler, ZERO. If no scaling is desired
16-17 Not used

\subsection*{2.2.4.5 Shafts}

Location

\section*{Description}

1 Shaft allowabie stress. \(1 \mathrm{~b} / \mathrm{in}^{2}\), Newton's \(/ \mathrm{cm}^{2}\)
\(?\)
Shaft material density. ib/in \({ }^{3}, \mathrm{Kg} / \mathrm{cc}\)

3
Diameter ratio of shaft \(D_{\text {inner }} / D_{\text {outer }}\)

4-7 Component numbers for total spool inertia

8-14
Not used

15
Shaft weight scaler. ZERO if no scaling desired

16-17
Not used
2.2.4.5 Mixers

1 Effective lenoth to diameter ratio of mechanical mixer, \(L / \sqrt{2 A} / \pi\), where \(L\) is the mixer length inlet to exit, \(A\) is the total flow area. Enter 0 . if not a mechanical (forced) mixer
? Number of passages ?or lobes) in mixer of either hot or cold stream.
3.14 Not used

15 Weight scaler. Enter 7ERO. If no scaling is used

16-17 Not used
```

2.2.4.7 Nozzles
Location
1 Length to diameter ratio of nozzle
?.Bypass ratio for mixed flow nozzle for T/R weight
3-14 Not used
15 Weiqht scaler. ZERO. If no scaling desired
!6-17 Not used
2.2.4.8 Splitters
1 Onlv inout if first calculated component in flow path Mach
number in.
? H/T ratin in.
3-14 Blank
15 Weight scaler
16-17 Not used

```
```

2.2.4.9 Annulus Inverting Valve
Location Description
Specific lergth - L L = \sqrt{}{4A/\pi}
2 Number of passages.
3 Mach number of inner passage.
4 Mach number of outer passage.
5 Hub radius in inches/cm or - component number from which
hub radius is taken or blank if feeding component
determines the hub radius.
6 Inner cylinder weight - lb/ft2, Kg/M2.
7 Outer cylinder weight - lb/ft? , Kg/m2.
8 Wall weight - lb/ft'3, Kg/M?.
Q-14 Blank.
15 Weight scaler.
16-17 Not used.
2.2.4.10 Heat Exchangers
1 Number of tubes if "Fixed" tvpe.
2
Mach number in prinary stream.

```

Mach number in secondary stream.

4 Engine Bypass ratio if "Rotary" type.

5-17 Not used.

\subsection*{2.2.4.11 Miscellaneous}
"ACCS" is a one-dimensional namelist array that contains the value of the accessory weight scaler. Default value is 0.1 .
"DESLIM" is a one-dimensional namelist array that contains the mechanical design limit values for the components. It can have 15 values. First 13 values are defaulted. Range of values is shown in Table 4.
"ISCALE" is a one-dimensional namelist integer array which controls the engine scaling loaic of the program.

I SCALE(1) Output indicator

1 Debug option and long and short form for every scaled engine point.
2. Debug option and long and short form for unscaled engine. long form for each of the scaled enaines.

ISCALE \({ }^{(2)}\) Number of scaling points default is three.
ISCALE \({ }^{(3)}\) Not used.
"SCALE" is a one-dimensional namelist array that contains values of scalinq factors. It can have six values. First three values are defaulted to 1., .8, 1.2.
"ACCARM" is a namelist array that contains the value of the centroid distance for the accessories component in the CG calculations. If no value is input, accessories are not included in center of gravity calculations.
"DISKWI" is a namelist array that is used as an indicator for the new disk weight method.
\(0 \quad\) Do disk weight calculations using the old method.

1 Do disk weight calculations using the new method.

\subsection*{2.3 Program Output}

The output from WATE-2 may de selected in any of three output formats. Either English or SI units can be selected. Examples of the output are shown for the short output in Figure 36, the long form, Figure 37, and the debug output, figure 38. This output shows the mechanical design and weight breakdown within the individual component. The units in the output section are shown in Table 8 for English and SI units. The type of units used are noted in the units section of the output.

A flow path layout is also availahle for conventional type enaines. A typical layout is shown in Figure 39. The laycut is scaled such that it will fit on one page of the output.

```

ESIIMATEU TJTAL LENSTH= 2Jo. ESTIMATED MAXIMUM NACIUS= <%.

```

Figure 36. Short Output


Figure 37. Long Output
```

\#*****\#\#\#\#\#\#\#*
OUCI

M NO	v th	T IUT	P TOT	P STAT	AREA	GAM
0.524	570.	51% 。	1905.	1574.	0.9517	1.4005

UTIP STRESS DEN W/AREA TR H/T
$1<58.9<6757.6 \quad 0.168 \quad 2.339 \quad 1.800 \quad 0.450$
LIMPRESSUR 2 MECHANICAL DESIGN

LOADING	NSTG	DIAM	UTIPC	KPM	C RPM
0.874	3.00	39.98	1258.9	7216.9	7216.9

FKNME WT $=95.67$
STAÚE WB WS WN WC CL AHOB RHOD AR
WD 65. 54. by. J. 26. 7.4 0.168 0.168 3.50 PK UEL H MACH AREA K HUB R TIP NS U TIP STR WEIGHT TIN $1.4789 \quad 10.70 .524 \quad 0.9528 .99 \quad 19.44 \quad 541256.926758$ 209. 519.
STAGE 2
WU WB WS WN WC CL RHOB RHOD AR
y1. 34. 34. 51. 21. $6.20 .1680 .168 \quad 3.00$ PK ULL H MACH AREA K HU甘 R TIP NBUTIP STR WEIGHT TIN 1.415 y 16.70 .4995 .18011 .02 16.92 071193.2 20191. 231. 588.
Stale 3
WO WB WS WN WC CL KHOS RHJD AR
>7. 2S. 23. 40. 19. 5.70 .168 i. 168 2. 50
PR UEL H MACH AREA R HUB R IIP NB LTIP STR WEIGHT TIN

```

```

FRAME WT $=2.5 .15$

```
1
\[
\begin{array}{ccr}
\text { N STG } & \text { WEIGHT } & \text { LENGTH } \\
3 & 1 C 29.63 & 28.80
\end{array}
\]

UULT
\(M\) NO VEL \(\gamma\) TOT \(P\) TOT \(P\) STAT AREA GAM
\(U .450\) 2 22 . 727. 3447 . 4743. j.2206 1.3951
\begin{tabular}{lllll} 
PR & ADEF & PU & TO & HP \\
2.8600 & \(U .8700\) & 2447.2 & 726.9 & 16410. \\
\(H 1\) & \(H C\) & \(W 1\) & \(C W I\) & \\
123.95 & 174.07 & 238.50 & 205.00 &
\end{tabular}

TOTAL CUMP WEIGHT IS 1028.080
Figure 38. Debug Output

\section*{ \\ * HPC 5 \\ *}
\(M N O\) VEL \(T\) IUT \(P\) TOT P STAT AKEA GAM 0.45 J 502. 727. 5447. 4743. L.E196 1.3951

UTIP STRESS JEN W/AREA TR H/T
\(1265.1233 .1 .5 \quad 0.108 \quad 0.687 \quad 1.20 \mathrm{C} \quad \mathrm{C} .700\)
CLMPRESSJK 5 MECHANICAL UESIUN


FRAME WT \(=118.22\)
STAUE 1 WS WN WC CL RHUS KHJU AR

HR UELH MACH ARLA R HUB R TIP NSUTIP STR WEIGHT TIN 1.360111 .00 .4501 .320 2.43 12.74 \(301285.123331 . \quad 99.727\).

SIAUE WU WS NN CL RTNUS KHOD AR

PK JLL M MAGH AKLA R HUB K TIP NGUTIP STR WEIGHT TIN


SIAGE NO WS WN WC CL NIDB RHOD AR
WO




STAUE WB WS WN WC CL KHJS RHUL AR
 1.249Y 17.H C. 390 U. 816 10.15 11.86 931191.510527 . 41. 1017.

STAUE \({ }^{\circ}\) WS WN WC CL KHOB RHOU AR
 \(1 .<3<417.00 .310 \quad 0.70110 .2811 .741041180 .1\) 9018. 36.1089. Figure 38. Cont.
```

 SIAuL }
 W: WB W'S WN WC CL KHUN KHOD AR
 Y. *. <. lu. 4. L.8 U.100 0.103 1.07
 HK UELH MACH AREA N HUB K TIP NS U TIP STR WEIGHT TIN
    ```

```

siale y
NU iNE WS NN WC CL RHLSO NHOD AR

```

```

 HK ULLH MALH ARLA K HUB KIIP NB UTIP STR WEIGHT TIN
    ```

```

STAGE y
WU WE WS WIV WC CL RHUB RHOU AR
1%. 2. 2. 1<. S. 1.5 0.280 0.280 1.50
HK ULLH MACH ARLA R HUB K IIP NBUTIN STR WEIGHT TIN
1.14.N 17.U~.330 0.475 10.5. 11.52 130115%.7 1040%. WEIGHT TINN
slaut 10
WU WO US WIN WC CL RHUS RHUL AR
PK UELH MAUH AREA K HUO K TIM N\& UTIP STR WEIGHT IIN
1.14.4 17.3 J.313 0.42t 10.54 11.471401132.8 0343. 33. 1307.
N SIG WEIGHT LENGTH
10 016.4J 25.43
ouct
M NU VEL I TJT P IJT PSTAI AKEA GAM
O.JUC 24a. 1430. %1230. 4324\&. U.3374 1.3534
PR AUEF
Hl HU Nl iwl
174.01/ 352.23 124.75 01.47
******************* TUIAL CJMP Wt1GIvT 15 610.477

BURNE: NUMBEA O
KIN KOUT

```

Figure 38. Cont.
\(*\)
\(*\)
\(*+* * * * * * * * * * 2\)
UUCT
MNU VEL T TUT P TOT P SIAI AREA GAM
0.300 1LEO. 2021. 40112. 39327. J. د977 1.2408

SIAUE I GLAUE VANE HWU CASE AR
 1.3453 と7.j 0.5030 .34810 .1411 .011801100 .0 9820. 42.84 2.02






Figure 38. Cont.

```

I LKXINL O MLCHANICAL UESIGN
H／I N SIL LUAUING AREA
$\begin{array}{rrrrrr}0.105 & 2.000 & \text { U．} 243 & 1.207 & & \text { RHM TOKG } \\ \text { UT } & \text { KIIP } & \text { RHUB } & \text { UEL H } & \text { TOK }\end{array}$
ご． $12.5 \quad 8.8 \quad 80.9$ 1216．9 147693．
SIALE LLADE VANE HWO CASE AK

```


```

$S 1$ Al．t 2
USDK GLAUE VANE HNO CASE AK

```


```

FRAME wI $=107.79$

```

N \(\supset T, L\) NGUH WE IUHT
\(\therefore \quad 1 د .41 \rightarrow 09.18\)

ひしく





Figure 38．Cont．
```

 Nulzle 11
NEJGHT = 500.93 LENGTH= **. <39 TN W1= 0.0
lol

```
\(* * * * * * * * * * * *\)
\(*\)
\(*\)
\(*\)
\(*\)
\(* * * * * * * * * * *\)
SHAR
SHAT T 12
    \(\begin{array}{llllll}3.54 & 3.01 & \text { LENG } & \text { DN } & \text { WT } \\ 3.54 & 3.74 & 0.65 & 46.0=\end{array}\)
```

*

* SHAF 13 *
************2
SmAtT 13
UU 1.01

```


ALis WT = دU1.414

Figure 38. Cont.
```

 WEIGHT INPUT LATA IN ENGL UNITS
 WEIGHI OUTPUT UATA IN ENGL UNITS
    ```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Cuma & wT & CUMP & ACCU & \multicolumn{2}{|r|}{UPSTKEAM} & \multicolumn{2}{|l|}{KADIUS} & \multicolumn{3}{|l|}{DOWNSTREAM} & RADIUS & \\
\hline Nu & ESt & LEN & LEN & RI & KU & RI & RO & R I & RO & RI & RU & NSTAGE \\
\hline 1 & U. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0 \\
\hline \(<\) & 1136. & 29. & 29. & 9. & 20. & 0. & 0. & 13. & 18. & 0 . & 0. & 3 \\
\hline j & ט. & 0. & 29. & 0. & 0 . & 0. & 0. & 13. & 16. & 16. & 18. & 0 \\
\hline 4 & 32. & 62. & 91. & 16. & 18. & 0. & 0. & 16. & 18. & 0 . & 0. & 0 \\
\hline 5 & 078. & 25. & 54. & 9. & 11. & c. & C. & 11. & 11. & 0. & 0. & 10 \\
\hline 0 & 215. & 16. & 72. & 9. & 13. & \(c\). & 0. & 9. & 13. & 0. & 0. & 0 \\
\hline , & 129. & 5. & 78. & 10. & 11. & 0. & 0. & 10. & 13. & 0. & 0. & 2 \\
\hline \(s\) & \(=16\). & 13. & 91. & 9. & \(1<\) 。 & U. & 0. & 9. & 14. & 0. & 0. & 2 \\
\hline , & 0. & 0 - & 91. & 4. & 16. & 16. & 21. & 4 & 21. & 0. & 0. & 0 \\
\hline 10 & 484. & 48. & 139. & 0. & 24. & \(c\) & 0. & 0. & 24. & 0. & 0. & 0 \\
\hline 11 & 0.0 & 48. & 127. & C. & 24. & C. & C. & C. & 22. & 0. & 0. & 0 \\
\hline 12 & 4. & 0. & 0. & 9. & 20. & 10. & 11. & \(n\). & 0. & 0. & 0. & 0 \\
\hline 13 & 16. & 0 O & - & 4. & 12. & 0. & 0 . & 0 . & 0. & 0. & 0. & 0 \\
\hline
\end{tabular}

TOIAL UARE ENGINE WEIGHT=3941. ACCESSORIES=301.41
ESTIMATED TOTAL LENGTH \(=\) 107. ESTIMATED MAXIMUM RADIUS \(=24\).

Figure 38. Cont.

\[
\begin{aligned}
& \text { STATIC INTERFACE CUKRICIEL } \\
& \text { HRESSURE FLIHEFKOK }
\end{aligned}
\]


COMPONENT JUTPUT JATA
\[
\begin{aligned}
& \text { MACAt } \\
& \text { NUMSEK } \\
& \text { STAT20 }
\end{aligned}
\]
\[
\begin{aligned}
& .24 c c o c c \\
& .0 \\
& .0 \\
& .100 \sim u y \\
& 0.117290 \\
& 6.12724 \\
& 60
\end{aligned}
\]


Table 8. Output Units
\begin{tabular}{|lll|}
\hline VARIABLE & SI UNITS & ENGLISH UNITS \\
\hline Velocity & \(\mathrm{m} / \mathrm{sec}\) & \(\mathrm{ft} / \mathrm{sec}\) \\
Temperature & \(\mathrm{o}_{\mathrm{K}}\) & \(\mathrm{o}_{\mathrm{R}}\) \\
Pressure & \(\mathrm{n} / \mathrm{m}^{2}\) & \(\mathrm{lb} / \mathrm{ft}^{2}\) \\
Area & \(\mathrm{M}^{2}\) & \(\mathrm{ft}^{2}\) \\
Stress & \(\mathrm{N} / \mathrm{cm}^{2}\) & \(\mathrm{lb} / \mathrm{in}^{2}\) \\
Density & \(\mathrm{kg} / \mathrm{cm}^{3}\) & \(\mathrm{lb} / \mathrm{in}^{3}\) \\
Weight & kg & lb \\
Length & cm & in \\
Enthalpy & kwatts & \(\mathrm{btu} / \mathrm{sec}\) \\
Horsepower & kwatts & hp \\
Weight flow & \(\mathrm{kg} / \mathrm{sec}\) & \(\mathrm{lb} / \mathrm{sec}\) \\
Weight flow/unit area & \(\mathrm{kg} / \mathrm{m}^{2} \mathrm{sec}\) & \(\mathrm{lb} / \mathrm{ft} \mathrm{m}^{2} \mathrm{sec}\) \\
Radius & cm & in \\
\hline
\end{tabular}

\subsection*{2.4 Sample Cases}

\subsection*{2.4.1 Large Engine}

A simple mixed flow augmented turbofan is used as an example for the WATE-? input and execution. Figure 40 shows a schematic and a block diagram of the engine. From this block diagram, the component numbers are determined.

To construct the input deck the indicator section must first be set, Figure 41. In this example, the units in and out are English, so ISII and ISIO are set false. Since the weight and gas path layout are desired, IWT and IPLT are set true. The debug option is turned on with IOlJTCD set equal to 2 . The length inputs are then entered in ILENG. Since the duct (4) and shaft (12) and (13) do not contribute to the total length, they are not entered. Also, the components are entered as the flow would proaress through the engine.

The IWMEC values are now entered. Since no inlet weight calculations are done, the inlet is not entered. This is true with any component entered in the NNEP KONFIG section; it is not entered in IWMEC if no routine exists to weigh it. In the example, the IWMEC \((1,2)\) card says a "fan" is being weighed. The weight will include stators, IWMEC \((2,2)=1\), a front frame, \(\operatorname{IWMEC}(3, ?)=?\), and an intermediate frame, \(\operatorname{IWMEC}(4,2)=4\). The IWMEC \((1,8)\) card says a "LPT" is being weighed. It has a turbine exit frame, IWMEC \((?, 8)=1\), and it is connected to component 2, (IWMEC \((3,8)=7\). The nozzle has variable area capability, \(\operatorname{IWMEC}(2,11)=?\), and its diameter will be taken from the inlet to the augmentor, IWMEC (3,11i=10. Since the augmentor has constant diameter, the node position for taking the diameter is of no consequence.

The DESVAL inputs follow the IWMEC inputs. Component numbers used in DESVAL must aqree with those used in IWMEC. Inout ol DESVAL data will override the default values. For the example case, the fan design card DESVAL (1, ?) indicates that the compressor inlet Mach number is 0.524 ,


Figure 40. Engine Schematic
```

MOUE }1\mathrm{ NOW BEING USED
EN
IPLT=T,
ISII=F.
IS IO=F.
IOUTCD=2,
IL ENG(1)=2,3,5,6,7,8,9,10,11,
IWMEC(1,2)=IFAN 1, 1,1,4,3*O,
IWMEC(1,3)='SPLT *,6*0,
IWMEC(1,4)="DUCT*,3,5*0,
I WMEC (1,5)=1HPC 0, 1,2,4*0,
IWMEC(1,0)= 'PBUR *, 1,5* 0,
IWMEC(1,7)=1HPT 0, C,5,-5,3*0,
IWMEC (1,8)=1LP T 0,1,2,7,3*O,
IWMEC(1,9)= (MIX 0,6*0,
IWMEC(1,10)= 'AUG ',6*0.
IWMEC(1,11)= NOZ , 2,-10,4*0,
I|MEC(1,12)='SHAF',1,8,3*0,2,
IWMEC(1,13)= SHAF', 2,7,3*0,5,
DESVAL (1,2)=.524,1,7,.45,1,5,3.5,2.5,.45,0.,0.,1.,0.,2..1.,0,1,1,
DESVAL (1,3)=14*C.,1.1.
DESVAL (1,4)=.45,2*0.,11.,10*0.,1.1.

```

```

DESVAL (1,0)=100.,.015,0.,5., 10*0..1.1.
DL SVAL (1, 7)=.5,.28,1.5,1,5,1.5,.055,150000.,3., 1.,5*0.,1.1.
DE SVAL (1,8)=.55,.243,1.5,2., 3.,.6,150000., 3.,1.,5%0.,1.1.,
DESVAL (1,9)=14*(1.,1.1,
DÉ SVAL (1,10)=250.,.016,12*0.,1.1,
DESVAL (1,12)=50000.,.3,.85,11*0.,1.1.
DESVAL (1,11)=1.,13*0.,1.1,
UE SVAL (1.13)=50000...3.12*0.,1.1.
\&END

```

Figure 41. WATE-2 Input Example
the maximum first stage pressure ratio is 1.7 and the inlet hub/tip ratio is 0.45 . The compressor has a blade solidity of 1.5 with a first blade aspect ratio of 3.5 . The last stage has an aspect ratio of 2.5 and an exit Mach number of 0.45 . The inlet and exit temperatures calculated in NNEP will be used for disk material determination, \(\operatorname{DESVAL}(8,2)\) and DESVAL ( \(9, ?\) ) are 0.; the RPM ratio between maximum and desigr is 1.0 . The blade material will also be chosen by the code because DESVAL (11, 2) is 0 . The design of the fan is a constant mean line since the mode, DESVAL (12,2) equals 2. Also, no speed scaling or weight scallig will be done since DESVAL \((13,2)\) is 1.0 and DESVAL \((15,2)\) is 0 . A material change temperature oi \(1160^{\circ} \mathrm{R}\) will be used since DESVAL (11.?) is 0 .

The HP turbine DESVAL \((1,7)\) has an inlet Mach number of 0.5 and a turbine loading of 0.28 . It has 1.5 solidity with inlet and exit blade aspect ratio equal to 1.5 . The exit Mach number is 0.55 . The disk material is a high strength super/alloy with a reference stress of \(150,000 \mathrm{psi}\). A constant tip radius is used in the design, \(\operatorname{DESVAL}(8,7)=3\), and a speed ratio of 1 . is specified for stress calculations.

To end the inputs, a "\&END" is entered. This will initiate execution of WATE-2. The output of WATE-2 is shown in Figure 42 for the example case.
```

DUCI
MNO VEL T TUT P TOT P STAT AREA GAM
0.524 570. 519. 1405. 1574. 6.9517 1.4005
UTIP STRESS DEN W/AREA TR H/T
1<58.7<6757.6 0.168 2.339 1.800 0.450
LUMPRESSUK 2 MECHANICAL DESIGN
LGADING NSTG

```
FKAME WI \(=95.67\)
staú 1
    WD WB WS WN WC CL RHUB RHOD AR
    65. 54. 5\%. O. 26. \(7.40 .168 \mathrm{C} .168 \quad 3.50\)
        PK UEL H MACH AREA R MUB R TIP NBUTIP STR WEIGHT TIN
        1.478910 .70 .5246 .9528 .9919 .44 S4 51258.926758 . WEIGHT TIN
        Stage 2
        WU WU WS WN WC CL RHOD RHOO AR



SIAGE 3

        HK UEL H MACH AREA K HUS R TIP NBL TIP STR WEIGHT TIN

FRGME WI \(=282.15\)
    \(\begin{array}{ccr}N \mathrm{STS} & \text { WEIGHT } & \text { LENGIH } \\ 3 & 1 C \angle 9 . S 3 & <8.8 \mathrm{~J}\end{array}\)
JULT
\(M\) NJ VEL TTJT P TOT P STAT AREA GAM
\(\cup .45 \cup 202.727 .2447\). 4742. \(3.22 C E\) GAM 1.3951

    HI HU NI CWI
    \(123.95 \quad 174.67 \quad 20.50 \quad 205.0 \mathrm{C}\)
        TOTAL CUMP WEIGHI IS \(1028 . E 80\)

Figure 42. WATE-2 Output Example

UUCT
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline M. NO & VEL & 1 lut & P TOI & P STAI & AREA & , 4 \\
\hline 0.450 & 302 & 727. & 5447 . & 4743 . & 1.8196 & 1.3951 \\
\hline
\end{tabular}
UTIP STRESS JEN W/AREA TR H/T
1265.123331 .5 U. 108 C.087 \(\quad 1.20 \mathrm{C} \quad\) C. 700
CLMPRESSJR 5 MECHANICAL LUESIGN
\begin{tabular}{|c|c|c|c|c|c|}
\hline LCALING & NSIU & DIAM & U TIP C & RPM & L RPM \\
\hline v.051 & 1u.uv & 25.58 & 1085.6 & 11515.5 & 4727.5 \\
\hline
\end{tabular}
FRAMEWT \(=118.2 \mathrm{C}\)
staue 1
 S:AuE 2

 Stage \(\quad 3\)
WI WU WS WN WC CL KHJ: KHOD AR
10. 0. 0. \(25.1 . \quad 3.00 .103\) U.16E 1.39
HK JELM MALH ARLA XUB K IIH NO U TIP STR WEIGHT TIN

 HK UTL H MALI GKLA K HUS K IIP IVUUTIH STR WEIGHTTIN
 SIAut:
 HK JELH MALH AREA K HUY K TIP NO LIIJP STR WEIGHT TIN
 Sifue o
WU WH NJ WM K. CL KHOB KHOU AR
HK UEL H MALH AREA K HUG K IIR NE UTIP STR WEIGHT TIV


Figure 42. Cont.


Figure 42. Cont.

DUCI

\begin{tabular}{|c|c|c|c|c|c|}
\hline & STKESS & Dt \(N\) & W／AREA & IN & H／T \\
\hline 1160.0 & ¢819． & 0.286 & C． 240 & 1.000 & 0.922 \\
\hline
\end{tabular}


\begin{tabular}{ccc} 
is STG LENGIH WEIGHT \\
2 & 5.31 & \(1<6.03\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline PK & IK & AO EF & Pu & 10 & Tu． 1 \\
\hline 3.7001 & 1.2928 & 0.8000 & 12435.6 & 2027.7 & 2627.7 \\
\hline H IN & H OUT & AREA & FLOW & HP & \\
\hline －Y\％．as & 5.44 .14 & 5.17 & 1 P． 56 & ． & \\
\hline
\end{tabular}
いいし
```


DUCI
DUCI
IA NJ VLL T IOT P TOT P STAT AREA GAM
IA NJ VLL T IOT P TOT P STAT AREA GAM
O.3دU 1144. 2J28. 12436. 10243. 1.2074 1.3127
O.3دU 1144. 2J28. 12436. 10243. 1.2074 1.3127
******************** TUTAL IURB mEIGHT 1S 126.028
******************** TUTAL IURB mEIGHT 1S 126.028

0.3>0 1i+4.<u<u. 12438. 102+b. 1000% 1.31:%
0.3>0 1i+4.<u<u. 12438. 102+b. 1000% 1.31:%

Figure 42．Cont．

```
UTIP STRESS DEN W/AREA TR H/T
14.0 11708.5 0.280 0.777 1.000 0.705
TunbiNt }6\mathrm{ MLCHANICAL OESIGN
    H/T N STG LUADING AREA
    0.105 2.000 0.243 1.207
    UI RTIP RHUS UELH RPM TORQ
    727.0 11.5 8.8 86.9 7<16.9147693.
SIAve 1
UISK ULADE VANE HWD CASE AR
```



```
Staue 2
    U&SK ULADE VANE HND CASE AK
        0.% 27.0 61.4 34.0 9.3 3.00
    HE UKLH MALH AREA R HUS R TIP NB U TIP STR WEIGHT LENGTH
1.0150 42.4 v.57% 1.052 3.03 12.34 98 780.6 10019. 159.21 4.17
FRAME WT = 167.79
```

 \(\begin{array}{crr}N>T O & L E N G I H & \text { WEIGHT } \\ \vdots & 13.01 & 469.18\end{array}\)
 $\begin{array}{lllllll}\text { ULLT } \\ \text { YNL VLL } & \text { TOT } & \text { P TOT } & \text { PSTAT AKEA } & \text { GAM } \\ \text { U.CCJ } 1154 . & 1722 . & 5594 . & 4436 . & 2.3313 & 1.3249\end{array}$

* *
* avi lu *
* *
Bukivt: vulbti 10

Figure 42. Cont.

```
**************
* NOZ 11 *
*************2
NuZZLE 11
WEIGHT = 508.95 LENGTH= 48.239 TR HT= 0.0
**************
************く
DuCT , 4
KH= 12.78 RT = 17.69 LENG= 02.16
AKEA= 1.4C1 RHO=.100
    LAS WT INC WT WTOT
    1S.j406 13.8550 29.3964
```

```
*************
SHATT 12
    DU
```


ACLS WI = دU1.414

Figure 42. Cont.

> WEIGHT INPUT DATA IN ENGL UNITS WEIGHI OUTPUT DATA IN ENGL UNITS

| 1 | U | | | | | RI | Ro | R | RO | RI | RO | NSTAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $<$ | 113\％． | 29. | 29 | 0. | 0. | 0. | 0. | 0. | | | | |
| 3 | 0 。 | 0 | 29. | 9. | 20. | 0. | 0. | 13 | 0. | 0. | 0. | 0 |
| 4 | 32. | 62. | 29. | \bigcirc | 0. | 0. | 0. | 13 | 18. | 0. | 0. | 3 |
| 5 | 078. | 25. | 9 | | 18. | 0. | 0. | 16. | 18. | 16. | 18. | 0 |
| 0 | 215． | 18. | | $\%$ | 13. | C． | C． | 11. | 18. | 0. | 0. | 0 |
| 7 | 139. | 18． | 72. | 9. | 13. | c． | 0. | 11. | 11． | 0. | 0. | 10 |
| 8 | ¢16． | 13 | 78. | 10. | 11. | 0. | 0. | 10. | 13. | 0. | 0. | 0 |
| 1 | 0. | 13 | 91. | 9. | 12. | 0. | 0. | | 13. | 0. | 0. | 2 |
| 10 | 484. | 48 | 91. 139 | 4. | 16. | 10. | 21. | 9 | 14. | 0. | 0. | 2 |
| 11 | cio． | 48 | 139. | 0. | 24. | \cdots | 0. | | 21. | 0. | 0. | 0 |
| 12 | 44. | 48. | 187. | 0. | 24. | C． | C． | | 24. | 0. | 0. | 0 |
| 13 | 16. | O． | 0. | 9. | 20. | 10. | 11. | | 22. | 0. | 0. | 0 |
| | | 0. | 0. | 9. | $1 う$. | 0. | 11. | 。 | 0 ． | 0. | 0. | 0 |
| AL | ARE | | | | | | | | 0. | 0. | 0. | 0 |

TUIAL DAKE ENGINE WEIGHT＝3941．ACCESSORIES＝301．41 ESTIMATED TOTAL LENGTH $=107$ ．ESTIMATED MAXIMUM RACIUS $=24$.

Figure 42．Cont．

Figure 42. Cont.
originat pacil of POOR QUA

2.4.2 Small Engine

A typical turboshaft engine as illustrated in Figure 22 has been represented by the inputs shown in Figure 43. The general input format for small engines is the same as for large engines. Major differences are the IWMEC inputs that call for centrifugal stages instead of axial, and the IWMEC input that calls for the optional disc weight procedure for the axial-flow turbine.

Component input data should be selected to be representative of this type of engine. For example, biade volume factors may be significantly larger because of the small-size blades. Blade geometry also may be considerably different than the default values. Samll engines generally have larger blade taper than large engines.

Output data for the sample case is shown in Figure 44 . Since the engine geometry and component arrangement does not generalize for mall engines, it is not possible to automate a computer drawn flow path layout as was done for the large engines. Radial component dimensional data also is not readily defined, except for the major envelope dimensions which are shown in the output. The same output options also are available for the small engines.

2.5 Program Diagnostics

The WATE-2 program contains error printout to aid the user in trouble shooting an input deck. A listing of the error messages and their meanings are shown in Table 9 . None of these errors will cause termination of the program. The component routine in which the error occurred will be terminated and the program will continue its calculations. The components calculated after an error may or may not be in error.

```
SW
I&T=2.IP.T=T,
ISII=F,ISIO=F,IOUTCD=2.
ILENG(1)=2.3:4.
JISKNI=1..
ACCS=.17
IWMEC(1,2)=:HPC 0,2*(i,0,0,1,0.
IWMEC(1,3)=PPGUR',:5*N
```



```
IWMEC(i,5)= NOZ , 1,5*C.
IWMEC(1,6)=,SHAF, 1,4,3*,02,
JESVAL(1,2)=.74,5.,048,.724%.0.3,15.,1430.01%*U..,
JESV4L(1.3)=3!...037.12.9.\therefore.013*0.,
```



```
JESVAL(1,5)=1..14*!.,
JESVAL(i.L)=ち!uとi...3.**ว.2..4..1.*...
SEvว
```

Figure 43. Small Engine Inputs

4ax CJVJITIUNS jCCUR AT

| $V S T$, | WEIUHT | LENGTA | CENGFM | IN－RTIA |
| :---: | :---: | :---: | :---: | ---: |
| 2 | SE．E4 | 7.34 | 3.7 | 192.1 |

| －マ | A） 8 F | HO | 15 | 117 |
| :---: | :---: | :---: | :---: | :---: |
| 30．：． | － | 159く3． | 1．3t．c | 214 |
| Hl | HJ | －1 | $\mathrm{C} \cdot \mathrm{l}$ | |
| 123．95 | こここ。 | 12 • | $12 \cdot \therefore 0$ | |

Figure 44．Smell Engine Output

```
#************
MAX CONJITIONS OCCUR AT
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{ALT} & MN & \multicolumn{2}{|l|}{value} & \\
\hline PTUT & 0. & C．ひくい & 117.6 L & UN & \\
\hline TTOT & נ。 & 0．8＊ & 1036.2 & R & \\
\hline CUIN & 人 & 3．00u & 2.1 L 3 & & \\
\hline 3JRNET VU & 4BER & 3 & & & \\
\hline R1N & くOJT & LENSTH & MACH & WSPEC & \\
\hline 3．4？ & 8.450 & 13.32 & －613 & 1.625 & \\
\hline CAS WT & LIV WT & NOでい & INCWT & FRAME & wror \\
\hline 2.5 & 16.4 & 8.6 & 1．1 & 0.0 & 28.6 \\
\hline
\end{tabular}
```


MAX CONJITIONS OCCUR AT

| A_{i} | T MN | | VALUE | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PTOT | 0. | $0 \cdot 0 山$ | 112.2 | L3／SOIN | | | |
| trot | \therefore－ | $3 \cdot 10$ | 2100.0 | JEG R | | | |
| CaOUT | C． | O．iun | 0.0 L3／SEC | | | | |
| ＊＊＊＊ | | | | | | | |
| JJCT | | | | | | | |
| 4 No V | VE，t TOT | P TOT | P STA | AREA | | | GAM |
| － 2 io 4 | 434． 2110. | －16151． | － 15734 | | 901.3130 | | |
| JTIPMAX | x stress | DEN | －／AREA | TR | H／ | T | |
| 1205.2 | 134c3．3 | － 286 | － 547 | 3.290 | | ． 748 | |
| TUマコIN5 | E 4 YECH | HANICAL D | DESIGN | | | | |
| H／t | v STG Lo | OADING | AREA | | | | |
| .746 | 3.260 | ． 42 F | ．19？ | | | | |
| UT | KTIP | RHUE | UEL H | RFM | | MAXPPM | TCRQ |
| 123う．2 | 4.6 | 3.4 | 207.3 | 3：352．6 | 303 | 52.6 | 7429. |

Figure 44．（continued）

$$
H 7=
$$

$$
\begin{gathered}
L \cdot 1 \bar{c} \\
70 \forall= \\
i
\end{gathered}
$$

jej

$$
\begin{gathered}
\text { STAGE } \\
\text { JISX } \\
\text { jej }
\end{gathered}
$$

$$
2.4475
$$

$$
63.1
$$

$$
<31 \text { cs } 51
$$

$$
R
$$

$$
\begin{aligned}
3 C O^{2} G & \geqslant S I C \\
2 & \\
& =O \forall 1 S
\end{aligned}
$$

STAGE 1 \& $3 \cdot 2$ 72.44

```
*************
Max CJVJITIJNS OLCUR at
************************
            ALT MN
PTOT ~. &.O.:.
TTOT &. S.jug
***********************
VJZZL: 5
.EIGTT= 17.7\ni LENGTH= 14.910TRWT= U.:U
*************
MAX TORJUE CUNDITIION
tORQJE
    -3
*************************
STAFI S
    DJ JI LEvg LN UT
    1.5ミ 1.4: 13.32 1.27 2.37
IJTAL IVERTIA O= THIS SPCOL IS 1348.
*************
* accswt
```


Figure 44. (continued)

Table 9 Error Mmoseren
1.
"Compressor, I, pressure ratio is too high" - more than 20 compressor stages calculated. First stage maximum pressure ratio too small.
2. "Compressor, I. stage and blade parameters, meaningless" stage inlet Mach number less than or equal to zero, or hub radius of compressor equals zero.
3. "Duct is not converging - error only called for rotating splitter fan component. Inlet or exit Mach numbers of fan may be input incorrectly.
4. "Error in shaft" - iteration for shaft diameter not converging. Creck shaft inputs.
5. "Turbine, I, work or radius too high, $\mathrm{RC}=$, $\mathrm{X} . \mathrm{XX}$ " - more than 9 turbine stages calculated - turbine loading parameter too small or control radius improperly input.
6. "Turbine, I, stage and blade parameters meaningless" - Mach number or hub radius less than or equal to zero.

2.6 Program Structure

The execution flow was designed to minimize the interaction of the basic NNEP program and the weight estimation routines. The only data flowing between the two is via the common blocks SNGL and DBL and the variables IWT and IPLT. The subroutine THERM is used to obtain thermodynamic properties of the fluid. An assumption is made that the thermodynamic properties are established at each station prior to calling WTEST subroutine, which is flow charted in Figure 45.

WTEST calls the component routines. These component routines are independent of each other, and some use the same lower level routines as some other components. After all weiahts and dimensions have been estimated ENGPLT is called to make the printer plot. For a description of subroutine connectivity, see Figure 46.

The code is in FORTRAN IV and has been checked out on IBM 370/168. The code is single precision except for the values in the Navy-NASA Engine Program (NNEP). The code was designed to minimize conversion requirements to other machines. No subroutines are required beyond those in the IBM FORTRAN IV manual, and there is no character manipulation, only full word tests are used when testing $B C D$ input.

The NNEP/WATE-1 code requires 75843_{15} core $\left(482120_{10}\right.$ bytes) to run without huffers. The execution of a design point followed by a weight estimation and printer plot is 4 seconds CPU time, using an existing load module (all data reference $370 / 168)$.

The following variables in NNEP common blocks may he referenced by a componorit weight estimating routine depending on the component type: DATOUT, WTF, TOPRES, TOTEMP, FAR, CORFLO, ICONF, JTYPE, NCOMP, NOSTAT, NFINIS. In no case is any value changed hy the weight estimation code. Fach call to WTEST routine will cause a NAMELIST read of "W" data. This is the one and onlv read in weight estimation cone. Based on the information in NCOMP and JTYPE the proper component routine is called

Figure 45. Functional Flow Chart of WTEST

Figure 46. Diagram of Subroutine Connectivity
with the compoent number (I) as an argument. Each component is expected to fill WATE (1), ALENG (I), TLENG (I), RO (1, I), RO (2,I), RI (1,I), RI (?,1). Rota+ing components also fill RPMT (I). The shaft component fills DSHAFT (N) where N is the shaft count from the inside out.

The array CONVER in common CONVER are conversion factors to convert English umits to SI units:

| ARRAY \# | VALUE | UNITS ENGLISH | to | $\begin{gathered} \text { UNITS } \\ \text { SI } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2.54 | inch | | cm |
| 2 | . 3048 | feet | | meter |
| 3 | 4536 | lb_{m} | | K_{g} |
| $+$ | .0929 | ft^{2} | | meter ${ }^{2}$ |
| 5 | .02768 | $\mathrm{lb}_{\mathrm{m}} / \mathrm{m}^{3}$ | | $\mathrm{K}_{\mathrm{g}} / \mathrm{cm}^{3}$ |
| 0 | . 689475 | $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ | | Newton/cm ${ }^{2}$ |
| 7 | 4.882 | $1 \mathrm{~b}_{\mathrm{m}} / \mathrm{ft}^{2}$ | | $\mathrm{Kg}_{\mathrm{g}} \mathrm{m}^{2}$ |
| 8 | . 555 | ${ }^{\circ} \mathrm{R}$ | | ${ }^{\circ} \mathrm{K}$ |
| 9 | 1.05435 | BTU/sec | | K WATTS |
| 10 | . 07457 | HP | | K WatTS |
| 11 | 47.88 | $1 \mathrm{~b}_{\mathrm{f}} / \mathrm{ft}{ }^{2}$ | | Newton/m² |

3.O CONCLUSIONS AND RECOMMENDATIONS

The WATE-2 method can provide a reasonable level of accuracy in predicting weiqht and dimensions of large and small gas turbine engines. Flexibility of modeling the engine cycle and gas-path allows virtually any conventional or non-conventional gas turbine engine to be analyzed. Normally, all components can be sized from the stage by stage calculation of state conditions that are accomplished internally.

A number of new capabilities have been added to the original program that will also make it more useful: small gas turbines, rotating interia, airflow scaling, center of gravity, engine design diagnostic aids, and flight envelone maximization of component size. Accuracy of the proaram has also been improved with the addition of a new preliminary design procedure for discs. The disc weight correlations that were previously developed did not include the effects of blade aspect ratio or disc stress; it was onlv sensitive to blade pull stress and disc radius. Both methods are available as options, however it is recommended that the new disc desian procedure be used for all types of enaines rather than the disc weight correlation procedure.

Further improvements to the program are also recommended. An engine desian procedure similar to that described in Reference 8 could be built into the program to eliminate external iterations of the engine design. Exit Mach number in turbines should be used to estahlish blade sizes rather than the entry Mach number as now used. Since there is usually loss variation in the exit anale and exit Mach number than there is at the entry of turbines, this would provide a hetter blade sizina critoria. The proaram could also be changed to a constant-mean ratius desian orocedure rather than the constant-area area definition that is currently used. The former method is more commonlv used in the industry.

REFERENCES

1. Gerend, R. P., and Roundhill, J. P., "Correlation of Gas Turbine Engine Weights and Dimensions", AIAA Paper 70-669, June 1970.
2. Fishbach, L. H. and Caddy, M. J., "NNEP - The Navy-NASA Engine Program", NASA TM X-71857, December 1975.
3. Eshback, 0. W., ed., Handbook of Engineering Fundamentals.
4. Schmidt, A. H., "A Method for Estimating the Weight of Aircraft Transmissions", SAWE Paper No. 1120, May 1976.
5. "Ceramic Rotary Heat Exchanger Cores", Corning Glass Works, 1974.
6. Keith, F., Principles of Heat Transfer, International Textbook Co., 1967, pp. 483-508.
7. Fishbach, L. H., and Caddy, M. J., "NNEP - The Navy-NASA Engine Program", NASA TM X-71857, December 1975.
8. Klees, G. W., and Fishbach, L. H., "Aircraft Engine Weight Estimation Method", SAWE Paper No. 1248, May 1978.

[^0]: $=4$ - Do weight calculation with airflow scaling

 IP!T $=T$ - Gas path lavout

 F - No gas oath layout
 \&W - placed at end of NNEP inputs to signal heginning of WATE-? innuts

