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_" ABSTRACT

The human operator Is prone to making errors in quick choice reaction 1
time tasks. Many studies have shown that subjects can correct their own

errors of movement more quickly than they can react to external stimuli. In
the control of movements, three general categories of feedback have been ]:
defined as follows: I) Knowledge of results, primarily vlsually mediated, 2)

Proprioceptive or kinaesthetic such as from muscle spindles and Joint recep-

tors, and, 3) Corollary discharge or efference copy within the central nervous

system.
Experiments were conducted on four normal human subjects to study the

effects of these feedbacks on simple reaction time, choice reaction time, and
error correction time. The movement used was plantarflexton and dorsiflexion

of the ankle joint. The feedback loops were modified, 1) by changing the sign
of the visual display to alter the subject's perception of results, and 2) by
applying vibration at 100 ltz simultaneously to both the agontst and antagonist
muscles of the ankle joint. The central processing was interfered with when
the subjects were given moderate doses of alcohol (blood alcohol concentration

levels of up to 0.07%). I
Vibration and alcohol increase both the simple and choice reaction times.

However, the error correction time is not influenced by either. This data

relnforces the concept that there Is a central pathway which can mediate error
correcting responses.

INTRODUCT ION

The human operator is prone to maki._ errors ;n., quick choice reaction
time (RT) task. The speed with which the operator can recognize errors and
correct them is an important consideration in many industrial tasks. Many

s,udies have shown that subjects can correct errors ,-_f m_vement more qut¢.k]y

/(
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than they can react to external stimuli. (For a review of the liter=,'u_, _e,

Schmidt, 1975, 1976; Angel, 1976; Schmidt & Gordon, ]977.)

In the control of movement by skeletal muscles, three general a; _ories

of feedback have been identified (Evarts, 1971). These feedbacks a_;se as

follows: first, "knowledge of results" from the externa] environment i_ :cl-

marily visually mediated. Second, proprioeeption from internal receptors

stimulated as a consequence of muscular contraction and joint rotation is

primarily spindle and joint receptor mediated. Third, "ef[erence copy" or
"corollary discharge" (Von Holst, 1953) from structures and pathways within

the central nervous system may operate before muscle contraction occurs.

Currently, the first and second categories of feedback are perhaps

better understood than the third, although the role of efference copy in ._
saccadic eye movements has received considerable attention (Robinson, 1971,
1976; Lehmann, 1971). These three categories of feedback may be anatomically

interconnected, especially the proprioceptlve and efference copy mechanisms
(Oscarsson, i970). It is postulated that the cerebellar anterior lobe is

important for correcting errors in motor activity elicited from the cerebral
cortex and carried out by command signals through pyramidal and extrapyramidal

pathways.

Recent work of Angel and his colleagues (Angel & Higgins, 1969; Angel, q

1976) has attempted to quantitatively approach efference copy by measuring

RTs to correct movement errors and the accuracy of these corrections. It has

also been noted (Poulton, [974) that the many studies which have measured RTs
for the correction of movements have found these times to range from essen-

tially zero to in excess of 300 milliseconds.

Since a rather wide range of error correction times exists, it could be
hypothesized that the three general categories of feedback each have their

own range of operating times which together contribute to the overall wide

range of these times. Under this hypothesis, if a sufficient number of

measurements were 1_de, a it|modal distribution might be found. The minimum

duration for processing visual feedback from a movement appears to be over 190
msec (Keel & Posner, 1968). The kinaesthetic RT is of the order of 120 msec

(Chernlkoff & Taylor, |952). This RT Is of the same order as the time for
"Functional Stretch Reflex" (Melville Jones & Watt, 1971; Erects, !973;

Gottlieb & Agarwal, 1978). Dewhurst (1967) has reported values of kinaesthetic
RT based on recordings of muscle activity in the biceps as short as 50 msec.

However, he did not give any range for kinaesthetic RT or the mean value in
his experiments.

The experiments of the present study were designed to enable comparison
of correction times measured under normal conditions with those measured under

conditions in which tile proprioceptlve mechanisms was interfered with. It was

possible to do this by applying vibration to the tendons of the muscles
involved. (Hagbarth & Ekiund, 1966; Goodwln, McCloskey & Matthews, 1972;

HrCloskey, 1973; Craske, 1977). [n some experiments, central processing was

interfered witl_when the subjects were given moderate dos_ of alcohol (blood

alcohol concentration (BAC) levels of up to 0.07%). Alcohol F¢oduces a depres-
s|v( effect on th,'CN_ ,,,oh as a general anesthetic does and the degree of

depression appears to be dose related (Wailgren & Barry, 1970.)
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Four subjects were used in the present study. Two of the subjects (GCA
_ and GLG) had extensive previous experience with the experimental apparatus as6

subjects in other tracking type experiments, while the other two subjects had

no such experience. Parts of these experiments were also done on several
_: other subjects.

A schematic of the experimental apparatus is shown in Figure I. (This

apparatus has been used in several studies, for details see Agarwal & Gottlleb,
1977).

.... The svbject sat in an adjustable height chair facing an oscilloscope
display positioned at a slight angle in front of him, His right foot was

• strapped to a one degree of freedom foot pedal (rotation in plantar-dorsal #'

directions) with velcro straps. Self adhesive surface electrodes were posi-
tioned over the soleus and anterior tlblal muscles to record the electromyo-

grams (EMGs) of these muscles. A ground electrode was placed on the thigh
Just proximal to the knee. The EMGs were full wave rectified and filtered

before recording on the digital tape at a sampling rate of 500 per sec.

The oscilloscope display consisted of two dots. The first was the target
dot which was under the control of the computer. It was defocussed to ap-

proximately 2 mm diameter. This dot assumed only one of three positions at

any instant of time, either in the center of the screen or ±4.0 cm vertically

away from the center. The second dot was the response dot which was under the

control of the subject. It was focused to s sharp point approxlmately 0.5 mm J
in diameter. The subject could vary the position of the dot continuously
along the vertical axis of the oscilloscope. The crucial part of the experl-

ment was the "polarity" of the subjects' control of the response dot. This

polarity was under the control of the computer. Normal or positive polarity

meant that when the subject moved the pedal down (up) the response dot also

moved down (up). Inverted or negative polarity meant that when the subject
moved the pedan down (up), the response dot moved up (down). The purpose of

this provision for polarity reversal was do decouple the proprloceptlve feed-
back from the visual feedback and induce the subject to make errors in move-

ment. The use of polarity reversal has been prevlously described by Gibbs
(1965) and Angel and Higgins (1969).

The target dot was controlled by the computer as follows. The experiment
began with the target dot in the center. After • random delay of 3 to 5 sec,

the ta:geC dot stepped randomly up or down. The new position was maintained

for a random period of 3 to 5 sac and then returned to center. Ten initlal
trlals stepping out and returning to zero were performed at normal polarity.

Following these ten initial trials, the computer reversed the polarity of the

response dot. A random number (8 to 12) trials were performed at the revef_ed

polarity, after which, the polarity again reversed for th6 next group of
trials. The response immediately following a polarity reversal was always

discarded, since it could be expected to contain a higher proportion of

, visually mediated error corrections than other responses.
This scheme of target dot movement also provided the opportunity to study

simple and choice RTs, since the majority of responses were correct. When the
target dot moved from the center, it moved randomly up or down, forcing the
subject to choose before reacting. When the target dot next moved, it always
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returned to zero, allowlng the subject to make a slmple reaction.

The subjects were instructed to make the response dot follow the movement
of the target dot as quickly as possible with as much accuracy as possible,

but to favor a fast response.
In the vibration experiments, two Hagbarth type vibrators (TVR vibrator -

model #TMT-18, Heiwa Electronic industrial Comp., Japan) were attached to the
distal tendons of soleus and anterior tiblal muscles (just above the ankle

joint) with surgical tape. The vibrators were operated at [00 Hz continuously
during the tracking task.

In the alcohol experiments, the subjects were given alcohol proportional

to the body weight such that the ultimate BAC was in the range of 0.06 to !

0.07%. The BAC was measured using a Hark II Incoxlmeter (Gas Chromatography _._

Unit by Intoxlmeters, Inc.). 'I
The measurement of the RTs were done off llne by displaying the Indivl-

dual responses on a four channel oscilloscope using a cursor to indicate the

time measurement after the input. The accuracy of these measurements is i

equal to the sampling interval, i.e., 2 msec. The RTs measured are indicated

in Figures 2 and 3. i
The staclstical analysis included means and variances of the sample data

and the t-test of equality of the means of two samples whose variances are

assumed to be unequal (Sokal & Rohlf, 1969, Chapter 13).

RESULTS i

Data were collected on separate days for each subject and for each exper-
imental paradigm. The first day experiment was always under not_a] conditions.

Typical responses are shown in Figure 2 for a correct response in a choice RT
and for error response in Figure 3. The four traces are the angular rotation

(8), EMGs of the anterior _ibial (AT) and gastrocnemlus-soleus (CS) muscles
and the angular velocity (0). The angular velocity was obtained by digital
dlfferentiatton of angular rotvtion. The simple and choice RTs (SRT & CRT),
ti=cerror reaction time (ERT), and the error correct2on time (ECT) wer_

measured using both the -------------------_MGand velocity data. In tha following tables only

the EHG related measurements are reported. The final conclusions would have
been exactly the same using the velocity data.

Table I shows the simple and choice reaction times under normal condi-

tions with positive and negative polarity movements. With the exception of

subject GA, and GG'_ SRT, the RTs for the other three subjects with positive

and negative polarity were not significantly different. In general there was
a slight increase tn the RTs with negative polarity. Since the RT differences

with alcohol and vibration were more sJgnlflcant, the positive and negative
polarity data was lumped together.

Table !I shows SRTs for all subjects in three paradigm conditions. Note
that in general, alcohol as well as vibratlon Increased the SRT. This Is also

true for CRT shown in Table III. The t-test comparisons are made be.r.n the

normal and altered conditions. In Table lI, six out of eight t-test values

are significant at P < 0.01 level, In Table III, seven out of eight t-test
values are significant at P < 0.01 level.

Table IV shows the error recctlon times in the three paradigm conditions.



Most errors occured in the choice reaction condition. There was a significant-
_ ly larger number of errors with negative polarity than with positive polarity

i feedback. The error rates for the two conditions ranged between 16% and 33%. !
In these data, four out of eight t-test values show significant differences at

P < 0.01 level.
!

Table V compares the data from Tables III and IV for choice RT and error
_ RT under normal conditions. Note that error RTs are larger than the choice

_ RTs and only one out of four t-test values show significant differences at i

! P < 0.01 level.
Table VI shows the error correction times for the four subjects under _

!_ our three paradigms. The error correction time is significantly less than the

; choice or error RT. None of the eight t-test values between normal and altered

conditions show significance at P < 0.01 level. !
Table VII shows the error rates for individual ezperiments as well as

! combined error rates for all subjects. The vibration input did not influence
the error rates. Alcohol tended to increase the error rates in three out of

four subjects but the t-test values do not indicate any significance. For

n = 4 the t-test values are not very meaningful.

DISCUSSION

The paradigm of incompatible display has been used by Gibbs (1965), Angel

& Higgins (1969), and Angel (1976). There is a clear increase in the SRT as

well as CRT with negative polarity display (Table I). This increase was
significant at P < 0.01 level for subjects GA and GG whose RTs were fastest.

The significance of positive and negative polarity disappeared with increased

RT of subject RJ and FM.
Vibration and alcohol increases both the SRT and CRTfor correct movements

as compared to the normal condition (Tables II and III). Carpenter (1962) has
reviewed the literature on the effects of alcohol on psychological processes

and concluded that in most studies, RT is lengthened at relatively low blood
alcohol levels. Vibration of a tendon in humans causes a predictable increase

in the contractile activity of the agonist, caused by autogenous reflex exci-

tation of the'alpha motoneuron (Hagbarth & Eklund, 1966). This leads to

involuntary movements and illusion of movements (Goodwin et al 1972; McCloskey,
1973; Craske, 1977). In our experiments, vibrators were attached to both

agonist-antagonlst tendons and subjects reported numbness in the vibrated ankle

Joint. The significant increase in the SRT and CRT with vibration could indi-

cate that large irrelevant position signals from the vibrated Joint delays

processing of visual information and command selection.
Tables IV and V show that the choice reaction time and the error reaction

time (initial movement in the wrong direction) are not significantly different

under normal conditions. This agrees with Gibbs (1965) findings that the

response latencles of correct and incorrect responses were virtually equal on

equlprobable steps. Although the response latencies for the four subjects are ;9
significantly different, there is no correlation between the response latencles
and the errors of subjects (see Table VII), i.e., the subjects who responded

most rapidly did ,lotmake the most errors (Gibbs, 1965). The ERT in most
cases is longer than the CRT, suggesting that there was no temporal antlclpa-
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tion of the target (A paradigm which has been used by Schmidt and Gordon (1977)

in their study).

The surprising result of this study is that whereas the SRT and CRT are
influenced (increased) by vibration and alcohol, the error correction times

are not significantly affected as given in Table VI. The average error correc-
• tion time is shorter than the CRT for individual subjects. This is in agree-

! ment with findings by Gibbs (1965), Rabbitt (1966), and Angel and Higgins
(1969), Megaw (1972), and Angel (1976). '

The histograms of error correction times for the four subjects under three

paradigm conditions are shown in Figure 4. For subjects GA and GG who had the

most experience in tracking studies, most errors are corrected in less than

250 msec, i.e., less than their normal choice reaction times. For subject RJ

a significant number of ECTs are larger than 250 msec. For subject FM, his j

RTs were the slowest and larger percentage of ECTs are above 250 msec. ._
The conclusion of Higgins & Angel (1970) and Angel (19_6) that the origin

of feedback from error responses is central rather than kinaesthetic is rein-
forced by the invariance of ECTs with vibration on the llmb. The vibration

increases the SRTs and CRTs which implies an influence of the !erlpheral input

in motor command decision making.
Alcohol which is known to produce a depressive effect on the CNS also

increases the SRTs and CRTs but does not significantly influence the ECTs with

BAC levels of 0.07% or less used in these experiments.
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TABLE I: Effect of DisPlay Polarity on Simple and Choice Reaction Times

!_ Positive Polarity NEGATIVE POLARITY
SUBJ MEAN SD N t MEAN SD N

Simple Reaction Times

GA 216 32 113 -3.99* 248 78 II0

GG 222 51 129 -2.52* 240 71 164

RJ 270 76 130 -1.42 283 78 156

FM 359 75 133 0.59 354 69 161

Choice Reaction Times

GA 235 57 98 -2.79* 272 102 73

GG 256 42 III -2.00 271 70 122

RJ 268 80 83 -1.12 282 84 90

FM 338 76 112 -1.46 359 69 112

• *P < 0.01 J

TABLE II: Simple Reaction Times

VIBRATION NORMAl, ALCOHOL

SUBJ MEAN SD N t MEAN SD N t MEAN SD N

GA 246 45 150 -5.99* 219 39 233 -4.48* 235 42 297

RJ 316 92 156 -4.50* 277 77 286 -7.75* 333 96 269

FM 371 78 274 0.58 375 86 294 -5.68* 420 98 256

GG 311 84 164 -10.46" 232 64 293 -1.24 240 54 290

11
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TABLE III: Choice Reaction Times

VIBRATION NORMAL ALCOHOL

SUB.__/J MEAN SD N _ t _ MEaN SD N _ t MEAN SD N

GA 317 111 131 -5.58* 253 80 171 -0.64 258 59 152

RJ 333 83 98 -5.27* 277 86 173 -8.25* 355 88 166

FM 409 96 211 -7.43* 348 73 224 -11.28. 443 I00 212

GO 330 85 136 -6.98* 272 61 233 -3.34* 288 61 230

TABLE IV:Error_Reaction,,T_mes ._

VIBRATION NORMAL ALCOHOL

SUB___JMEAN SD N _ MEAN SD N ____!____t MEAN SD N

GA 274 60 19 -1.03 257 62 47 -0.56 263 59 104

RJ 342 65 55 -2.90* 311 55 80 -3.57* 343 69 III

FM 387 75 59 -1.83 363 72 68 -5.72* 443 70 41

GG 332 84 32 -2.42* 289 63 42 -0.08 290 60 45

TABLE V: _f CRTS.wit___h_hERTS under Normal Conditions

CHOICE ERROR

REACTION TIMES REACTION TIMES

SUB___JMEAN SD N _ t MEAN SD N

GA 253 80 171 -0.37 257 62 47

RJ 277 86 173 -3.79* 311 55 80

FM 348 73 224 -1.50 363 72 68

GG 272 61 233 -1.62 289 63 42

12
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_ TABLE Vl: Error Correction Times

VIBRATION NORMAL /_LCOtlOL
:: _SUBJ MEAN SD N t MEAN SD N ------.t MEAN SD N

i GA 137 69 19 0.32 143 72 47 0.67 135 59 104

RJ 194 101 55 -1.71 166 81 80 -1.62 186 88 111 "

!_ FM 259 72 59 2.18 293 103 68 2.23 251 90 41

; GG 170 84 32 -0.05 169 72 42 -0.68 150 74 45

TABLE VII" Rate of Errors in Percent

SUBJ VIBRATION NORMAL ALCOHOL

GA 0.063 0.107 O.188

RJ 0.178 0.148 0.203

FM 0. II0 0.116 0.081
I

GG 0.096 0.074 0.080

VIBRATION t ------_NORMAL t ALCOHOL

MEAN 0.I12 -0.04 0.III -0.74 0.138

SD 0.048 0.030 0.067

N 4 4 4

i
.i@

7

&
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Figure I

A schematic of the experimental apparatus. Electromyograms (EMGs) are

measured using disk surface electrodes placed over the bellies of the gastro-
cnemius-soleus and anterior tlblal muscles, EMG amplifiers (A) are differen-

tlal amplifiers (bandwidth 60-600 8z), filters (F) are third order averaging
(tO msec averaging time), display oscilloscope (D) is a dual-beam Tektronix
502, dlgital computer (C) is a General Automation SPC016/65. The torque

motor (M) and the torque measurements (z) were not used in these experiments.

The angular rotation (e) is measured by a continuous transformer-type
transducer, this signal is fed into the computer on an A/D input channel
multiplied by +I or -I and outputed on D/A channel. This channel is operated
independent of the data channels at a rate of l KHz.

14
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I Sec

Figure 2

Typical response in a choice reaction with a display gain of +1 and a i
movement fro_ central position to plantarflexlonof the ankle Joint. The
choice reaction time (CRT) is measured from the Jump of the target to the

t

first EMG burst in gastrocnemlus-soleus(GS) muscle. There is no EMG
activity in tileanterior tlblal (AT) muscle. Total display time is I sec.
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Figure 3

Typical response in error movement and subsequent correction. The
display polarity is again +1. The error reaction time (ERT) and error

correction time (ECT) are measured from the initial burst in the antagonist
and agonist mulcle E}_s. Total display time is 1 sec.

16
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Figure 4

Histograms of the error correction times (ECTs) for the four subjects
under normal (N), alcohol (A) and vibration (V) input paradigms. The time

Interval on abclssa is 500 msec. (continued on next page) _
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Figure 4 (continued)
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