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Many useful mathematical models for manual control monitoring and
aecisim-maktng tasks in man-ma_lne systems have been designed and
successfully applied. However, critical comments have occasionally been
made_ mainly by practitioners concerned wlth the design of complex 1
man-machine systems. They blame especially models which seem to explain
only data from abstract subtask experiments designed particularly for these
models •

In thls paper, an initial apprcaoh to bridging the gap between these
two points of v!ew is presented. From the manifold of possible human !
taaks_ a very popular baseline scenario has been chosenj namely car _!
orivlng. A hierarchy of human activities is derived by analyzing this task i
in general terms. A structural descrlptlonleads to a block diagram and a
tt_e-sharing computer analogy.

The range of applicability of existing mathematical models is
considered with respect to the hierarchy of human activities in real
complex tasks. Also, other mathematical tools so far not often applied to
man-maline systems are discussed. The mathuatical descriptions at least
brlet'ly considered here Include utllity_ estimatlcn, cuntrol_ queueing_ and
fuzzy _et theory as well as artificial intelligence techniques. Some
thou_ts are given as to how these methods might be integrated and how

further work _tght be pursued,

* This research was supported by the National Aeronautics and
Space Admlntstratl_ under N_3A-_mes Grant N_-2119.

_tPer_anent address: iiesearoh Institute for ttumn
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khen desi_ning such systems as automobiles, aircraft, power plantsj
and management information systems, it is very important to understand the

i human's role in .the system and design the man-mad_tne Interface

appropriately. The engineering approach_ which leads one to represent the
machine in terms of differential equationsj networks, eta, suggests that
the human can also be represented as a set of mathematical equations for
the purpose of systems analysis and deslgn, Thus, considerable effort has
oeen devoted to developing mathematical models of human behavior.

; _esplte the criticisms of those who find the analogy between humans
ant equations unpalatable, many models have been reasonably successful
within the limited domains that they addressed. In fact, if we accept the
premise that human behavior mainly reflects the external environment [1],
then it is not surprising that man and machine can be described In similar
terms. _ulte slm_ly, since the human adapts hls behavior to the machlne_
hls actions become somewhat machine-like. (Of course, from a design point

, of view_ one tries to avoid requiring the human to adapt to the machine to
any extreme extent.)

On the other hand) the success of models In limited domains has not
' hao substantial impact !n realistically complex domains, For example,

manual control models are not everyday tools for the aircraft designer.
further, as the reader will see ,annual control models capture only a small
portion of the _ task of drlvln8 an automobile. For these reasons_
_esigners have been known to claim that mathematical models of human
behavior are not particularly useful, khile the authors only partially
aaree with thls oplnlon_ even as it relates to currently available models,
•uch statements have motivated the work upon which thls paper is based.

_tthtn this paper_ the authors present a realistically complex task
(I.e.) automobile driving) and illustrate the various aspects o£ the task
by usins written protocols o[ subjects' behavior. A hierarchy of human
activities is derived by analyzing this task in general terms. A
tLme-aharlng computer analogy and block dlagram are presented. Numerous
mathematical methodologles appropriate to representlng such a model are
discussed, finally the state-of-the-art is summarized and the prompeota
are considered •

A _ALIbTIC T_K

; In considering alternative realistic task domalna, the authors
discussed a variety of domains inoludin_ alrcra£t piloting, industrial

i process monitoring, and automobile driving. After substantial dlscusslonp
•_ it became quite clear that the domain to which both the authors and
, potential readers could mo_t relate was automobile drivingo
¢
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I - ................................The '.experiment- involved a hypothetical trip from the driveway of one
author's house (GJ) to the home of the other author (_tR). Two subjects
participated (OJ and WR). Their task was to explain In de_ what they
would be doing throu_out .he hypothetical trip. Each subject
independently generated a written protocol of the trip. The two resulting
protocols were merged to produce Figure I.

The activities in this figure can be categorized into several levels
of behavior:

1. Reaching) twisting, and listening
2. Steering, accelerating, and braking i
3, Locking around and estimating i

q Ulxlattng and evaluat!ng i

5. Planning6. Reflecting and daydreaming

The authors would like to suggest that a theory of human behavior In
realistic tasks should be able to model levels 1 through 5. In pursuit of

i this possibility, this li_t vas somewhat co:pasted to yield the follovin8
aspects of behavior to be modeled:

I
. Sensing and Interpreting inputs

2. Planning
3, Zmplementtng plans

To consider these three topics, an overall framwork vil! be discussed In
the next section and then, specific approaches to modeling will be
considered in the subseauent section,

STRUCT.URAL DESCRZPTIOH

Locking at the hierarchy of human activities di3cussed above as
Infatuation processing activities, a time-sharing computer analogy seems to
be a very ap_ealin$ approach to understanding the etructurel
interrelat lonshlpg.

Figure 2 shows a sketch of such a tim-sharing computer analogy.
There are several possibilities for the central nervous system (CN$) to
interact _lth the peripheral input and output devices (i.e., the sensory
and the sotor systeu8 including speech _eneration). The CNS Is vle_,ed as
being divided Into an operating system and four clasMs of Jobs," l,e.,
prqram/data files (see, e.g,, (2], [3]). Hereby, a multi-processor syate_
allowlr_ a mixture of parallel and serlal information processing Is mat
likely to be a reasonable assumptlm for the humanoperator [_].

The operating system Is responsible for sehedulln_ the programs An a
tlme-sl_red manner by usln$ a priority interrupt policy. Conflicting
criteria with respect to prlcrity have to also be evaluated by the
operating systea. This alight be a crucial task, especially in urgent
situations.
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'lne four classes of program/data files relate to a central-nervous i

representation of tasks the human operator has to perform. Each of these

program classes is structured into main programs and interrelated
_ subroutines o

Program/
DataFiles

\ ClassNo..!. ClassNo.2 /

Ooss No.4

fP-$140

Eigure 2: 3ketch of a Time-Sharing Computer

Model of the Huron Operator

Class No. I comprises input-related programs, e.go_ human monitoring
tasks and looking around procedures. Class No. 2 is similarly related to

output activltes_ e._.) the structural organization of motion patterns

(e._.; in reaching) and speech. Class No. 3 prog,rsms describe strict
input-output relationships as in tracking-type control and choice-reaction

tasks. All three classes contain programs wlth a high level of autonomy,

perhaps carried out by peripheral processors. The operating system has to
initiate and supervise these autonomous processes. Additionally, the

_. adaptive control of the sampling process in parallel tasks has to be
aocompilshed by the operating system °

i

:, Class No. _ represents the long-term memory of the human which

; includes a knowledge base o[ facts_ modelsj and procedures The programs
of class _o. _i are concerned with interna£ processes such as reflecting

and planning which have access to the knowledge basej thereby occasionally
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modifying it, The operating system is responsible for searchln E through

the knouledge base (see, e.g., [5]_ [3]). "

. The time-sharing computer analogy outlined here is mainly "assumed as a
possiOle framework for future thinking about complex man-_achine systems.
To further illustrate the hierarchical multi-level structure of human

activities within this framework, a block diagram is shown in Figure 3.
Only the most important information flows between the different levels are
outlined •

°,

, Bose "(Facts,

._1 Planning I- Models,_• Procedures

_: Controlling Response
i Generation :.
_. _ I ,L

, -_[ Reaching

_ figure 3: Hierarchical Multi-Level Structure of Human Activities i

: Lo_er level processes (bottom of Figure 3) are normally characterized '4

by events occurring at a high frequency as compared to higher level

processes (top of Figure B), lhis refers to different time scales for !_

different levels. However_ because lower level processes may be

I autonomous, the difference in time scales does not mean that these _,
• processes have to be considered by the operating system more frequently.

In Figure 3) planning is denoted as a major activity, With data from
_:, the knowledge base and those from lower-level looking around procedures_

sometimes influenced by higher-level reflecting, planning is the

development of procedures to achieve overall goals and subgoals for
lower-level processes , i,,odifylng the knowledge base as well as

goal-setting for controlling and reaching are shown as examples,

Controlling itself Is also best described as a multi-level structure/ being
a subset of the overall multi-level structure of Figure 3 • Controlling and
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reaching procedures result in output actions of the human operator via

' response generation which refers to the peripheral output devices in Figure
2. Correspondingly, the peripheral input devices of Figure 2 extract
task-relevant features from sensory input information. This process is

very Closely linked with looking around procedures wl_ich are also indicated

in _igure 3.

• MATt_EMATICAL MODELS

• Sensing and Interpreting Inputs
.r.

'" Reconsidering the task analysis of car driving, how does the driver

. recognize stop signs, other cars_ children I etc? Could one, at least in

i theory, develop an algorithm t_at successfully performs these aspects of
dri vir_?

1'o pursue this questlon_ the literature of pattern recognition and

artificial intelligence was considered. Fortunately, the literature in
these areas has recently Oeen summarized in t_e Systems, Man, and

Cybernetics Review [6]_ by Sklansky [7], and in books by kinston [8], [9]
for pattern recognition and artificial intelligence respectively.

Two approaches to pattern recognition have received particular
attention: statistical methods and syntactical methods, lhe statistical

methods use discriminent functions to classify patterns. This involves

extracting a set of features from the pattern and statistically determining
how close this feature set is to the a priori known features of candidate

classes of patterns. The class whose features most closely match the
r.masured features is chosen as the match to the pattern of interest_ with

of course some consideration given to the a priori probabilities of each

class and the costs of errors.

The syntactic methods partition each pattern into subpatterns or

pattern primitives. It is assumed that a Known set of rules (a grammar) is
used to compose primitives into a pattern, une approach to recognizing

primitives is to use the statistical approach noted above.

Another aspect of pattern recognition involves image processing.

nerep each picture point (pixel) is classified according to gray level.

Then, thresholds are used to se_ent the picture. More elaborate
approaches use multi-dimensional classification of each pixel and then, use

an appropriate multi-dimensional clustering of similar pixels.

Artificial intelligence researchers have devoted considerable effort

to scene analysis. _,ith emphasis on understanding scenes composed of
somewhat arbitrary collections of blocks_ methods have been developed to

pick particular blocks out of scenes_ even if the desired block is
partially hidden.

Most of the methods discussed above have worked reasonably well within

llmited domains, _,hen the context with in which one is working is

well-understooa_ it is often possible to successfully sense and interpret
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inp_tsl although considerable computational power may be needed.

_hlle the advent of inexpensive microelectronics might allow one to

utilize large amounts of computational power in a model of human sensing

and interpretation of _ata, there are bigger problems to be solved.

Namely, it is difficult tO deal with realistic contexts in a static manner.
_hat a human sees depends on what he is looking for, what he expects to

see_ and the costs of not seeing it. These aspects of seein_ cannot be
considered out of context and without reference to the specific individual
involved • "'"

Several investigators have considered the issue of how the human

allocates his attention among multiple displays f10]a [11], [12]_ [13]j

LIq]. howeve r, these models have only been tested in fairly
well-structured situations and thusj are as yet unproven in reallstlcally
complex tasks. Further, it is by no means obvious that these models will

ever be able to handle looking around in the sense it appears in the

ariving scenario •

Thus, a general mathematical theory of human sensing and interpreting

of inputs is far from available) especially if one would like to program |
this theory to drive a car. On the other hand, the disciplines of pattern

recognition and artificial intelligence are beginning to succeed in

specific applied domains such as industrial inspection L15], [16] and

medical diagnosis [17]. Perhaps a concatenation of specific successes wlll
lead to new insights into the problems of context and individual !
differences.

Planning

Studying the task analysis of car driving, it is readily apparent that

much of the subjects' conscious activities were devoted to developing,
initiating, and monitoring plans. This observation agrees with analyses of
verbal protocols In several other task domains [1]. In fact, one might

expect this result within any purposeful activity for which there are ._oals
as yet unfulfilled.

To discuss planning, one first must emphasize the distinction between

the process of developing plans and the process of executing plans [18].

Within this section only plan development will be considered, while the

followir_ section will discuss plan execution. One way to illustrate the
difference between these two activities is to characterize plan development

as a problem solving activity, while plan execution is looked at as a
program execution activity [I].

One develops a plan in hopes that its execution will achieve some

goals. _hile one usually accepts the overall goal as given (e._._ land the
aircraft)a the process of developing subgoals is often left to the human.

i'he partitioning of goals into subgoals and then subgoals into lesser
subgoals_ etc. reflects a hierarchical mode of planning that has received

considerable attention [;9], [20].
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The hierarchical approach allows one to develop plans that are broad
and sketchy as opposed to detailed and concise. Thus, low level subgoals
can be temporarily ignored until their immediacy demands attention.
_imilarly, future actions which require preconditions that are not as yet
assured can perhaps be temporarily ignored if one feels that the
environment is hospitable to one's goels [20].

On the other hand, low level subgoals must eventually be dealt with. ,-.,-

Then, a concise system dynamics model such as Carbonell's probably provides
a reasonaole description of human behavior [21]. This model assumes that

the human is uealing with a system describable by quantitative state
transitions and amenable to quantitative control actions.

Such low level planning is probably unconscious. From the perspective
of a computer analogy, one might say that high level conscious planning is

llke executing an interpreted program. (An interpreted program is one

where the computer consciously has to interpret the meaning of each

statement as it is executed.) On the other hand, low level unconscious

planning is similar to executing a compiled program [I]. in fact, it ,_ight
be claimed that low level planning cannot really be called planning.

Instead_ such activities are only the details of implementatlon_ which are
ciscussed later in this paper.

Planning appears to include the following aspects:

I. Generation of altematlve plans_
2. Imagining of consequences,

3. Valuing of consequences,

4. Choosing and initiating plan_

5. Nonltoring plan execution,

6. Debugging and updating plan,

where the latter three aspects deal with observir_ plan execution and
subsequent replanning, but _ with actual Implementatlon_

Bow mlght one model the generation of alternative plans? One can look

at a plan as a linked set of subplans [20]. }io_ever_ at some level,
subplans must be specific, in many tasks, the alternatives are clearly
defined _t the outset. On the other hand, there are many interestlns tasks
(e.g.; engineering design) where the human must create alternatives. In

such casesa humans usually first consider alternatives that have been
successful in previous situations.

One might use Newell's Pattern-evoked production systems as a model of
ho_ the human accomplishes this search for alternatives [1]. A production

£s a rule consisting of a situation recognition part that is a llst of

things to watch for_ and an action part that is a list of things to do.
(The bord eproductioni_ as it is used here_ has absolutely nothing to do
wiUl the manufacturing connotation of the word.)

I 146

_, --"--_'-'---- ............ _,-i_, ,.._i

1979007417-147



J

iAs an alternative to production systemss the idea of scripts n_ght

provide a reasonable model, "A script is a structure that describes
appropriate sequences of events in a particular context [22].

The ideas of production systems and scripts are both related to the

idea of the human having an internal model. However, as the reader will

see_ it is very different from the type of' model assumed in the system

dynamics domain. L,amely_ productions and scripts provide forecasts of
typical consequences rather than models of internal state transitions.

i Sometimes a new alternative is recededand it is very difficult to say

how a totally new idea is generated. Linking the idea of associative

memory 123]_ [2_] with the idea of' production systems or scripts, one can

I conjecture that new ideas are generated when the criterion for matching the
_ new subgcal with past experiences is relaxed and/or non-standard features

of the situation are emphasized.

Long-term plans that will not be immediately implemented are probably

developed at the highest level in the goal hierarchy with only major goals
considered. _uch a plan might be a somewhat vague verbal statement or

perhaps a sketch of activities and relationships. It is interesting to

speculate upon (and perhaps research) what plans look like in the "mind's
eye.D' _or examplej are plans list-like or are they more spatial, such as

Warfield s interpretive structural models [25].

i _hort-term plans that will require immediate implementation cannot be
quite so sketchy. In this case_ the human has to consider specific
actions. One would probably be reasonably successful in modeling this type

of plan using production systems, in this case_ specific features of the
_: environment would automatically evoke particular responses. This type of _
! behavior falls into the category of class No. 3 programs as defined in the

tlme-sharlng computer analogy introduced earlier. Realistic examples of
_.. application of this idea include aircraft attitude instru_nt flying [26]

and air traffic control [27].

Given a set of candidate plans_ the human must forecast or imagine the

consequences of implementing each plan. One might assume that the human
performs some type of mental simulation of the plan. For example, the

human might use his current perception of the system dynamics to?

_ extrapolate the system s state as a function of planned contrx)l strategy. :_
house has developea a model that describes this type of behavior.
Sueclnctly, the model assumes that the human has both a long-term and

short-term model of the system with which he is dealing and, that he uses a

• compromise between the two state precictions obtained from these models as

a basis for decision making [28].

however_ when plans are sketchy, at least in terms of intermediate
preconditions_ the human probably does not actually calculate consequences

but instead simply maps plan features to previously experienced

consequences. Then, until evidence forces him to reject the assumption, he

_ assumes these previously experienced consequences will prevail. This type
of behavior is represented quite nicely by the scripts concept [22].
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Imagined consequences are then compared to goals. _or low level

plansj the comparison might be based on a well-defined criterion function.

however, this is probably not the case for high level plans. Since high

level goals and imagined consequences may Ve verbal and rather vague, it is
likely that the human only tries to satisflce rather than optimize. One

might represent this phenomenon using multi-attribute utility functions

L_g] that have broad"optima. Alternatively, concepts from fuzzy set theory

[30], L31] might be used to consider the membership of a set of
consequences in the fuzzy set of acceptable consequences. _'he utility
function approach is probably appropriate if' one assumes that the human has

a _airly precise knowledge of the possible consequences, and subsequently

values some more than others. On the other hand, the fuzzy set approach

would seem to be applicable to situations where the human s perception of
the consequences is actually _zzy.

I The human chooses the most satisfactory plan and initiates its
_. execution. If none of the available plans meets an acceptable level of

satisfaction, the human either tries to debug the set of plans under

consideration or perhaps tries to develop new plans. Debugging of
partially failed plans may initially involve local experimentation to

determine the cause of plan failure rather than a global reevaluation and

complete replanning [32] • One approach to modeling debugging or

trouble-shooting of plans is with fuzzy set theory [33].

Assuming that a plan has been initiated, the human monitors its
execution and only becomes involved (in the sense of planning) if the

unanticipated occurs or execution reaches the point that some phase of the

plan must be more concisely ceflned. Monitoring for the unexpected might
be modeled using production systems that trigger when the preconditions are

no_ satisfied. Other approaches, based on filter theory [34] or pattern

reco&nition methods [35]j are also available but beyond the scope of the
discussion here,

Once the unexpected has been detected, planning might shift into the

above mentioned debugging mode. •On the other hand, the need to shift from

_Ketchy to concise planning may involve abandoning, lot the moment_ the

_road hierarchical mode and shiftlng to a detailed partially pre-programmed
mode.

How do all these bits and pieces fit into an overall model of

planning? khile it does seem that the hierarchical approach to planning
combined with the productlc_ system and script ideas provide a reasonable

framework, the state-of-the-art certainly does not allow one to construct a

context-free plannlng model in the form of an executable computer program.
This may be an inherent limitation if one accepts the premise that much of

human behavior is merely a reflection of the task environment [I]. Xf this

premise is true, then one should be very caretS1 that laboratory

abstractions capture a sufficient portion of the real world environment and
thereby allow results to actually be transferable. Otherwise, one is on;,;

developing a theory of human behavior in laboratory games.
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As a final comment on planning_ a very important issue concerns the

level at which one's study of planning behavior should be addressed. While
an approach at the neuron level [36] _a_ eventually lead to a successful

i ,Ddel of human planning behavior_ such an approach is unlikely to lead to

success in the near future. _Iternatively, one might try to develop models

that explain or predict whether or not a plan will be successful. However_

this type of model" would yield little information about the planning
process. It seems that one must approach studies on the conscious planning

level using either verbal protocols [I]_ [37]j [38] or at least methods

that require plans to be explicitly measurable. Then, the variety of
approaches to modeling discussed in this section can be applied to %

describing the p_nning process. _

IMPLEMENTING PLANS .i_

Implementing plans refers to human action, mainly controlling and

i reaching in the multi-level structure of Figure 3. Two basic approaches
for mathematically describing these actions can be distinguished. The

first approach includes time-line analysis, queueing theory, and simulation

techniques, whereas the second includes the control theoretic approach in a

more general sense.

In time-line analyses, the execution times of all particular task
elements of a certain multi-task situation are assessed as well as the

total task time needed [39]_ [40], [41], [42]. Available time margins or
expected time pressure of the human operator can be calculated in order to

estimate total task system performance and human operator workload. This

mthod has teen applied to evaluating .-ather complex man-machine systems by

taking these apart in very much detail_ e.g._ to the level of reaching
times for single switches.

A related but more analytical approach is the queueing theoretic one

C11], [12]_ C43], C44], C45], C_6], C47]. It is suitable not only for
analysis but also for design purposes. The different tasks of a
multi-task situation are considered as customers in a queue waiting to be
serviced. Arrival and service rates as well as the waiting time for the

tasks are characteristic measures. Service with a priority policy is

possible. Also several servers (e.g., the human operator and a computer)
may share responsibility for the total task.

Both approaches, time-line analysis and queueing theory, look at the

implementation of actions in terms of time expenditure. If the accuracy of
the actions is also to be taken into account, these methods have to be

combined with others, Simulation techniques seem to be a reasonable

approach where micro-subroutines simulate dynamically such human operator
behaviors as short-term memory recall and movement of hands and feet [48].

This leads back to the time-sharing computer analogy. A goal-oriented

priority interrupt structure for handling all tasks appropriately in a

multi-task situation is ,Dst promising. However, this results in a more
artificial-intelligence oriented simulation, using heuristics and data
handling algorithms_ rather than an analytical description.
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A different approach for the description of human actions in

i man-machlne systems applies control theory. Models for continuous manualcontrol are well establlshed. Numerous summaries in the forms of reports

and books exist (e.g., [49], [50], [51]). Most popular are the

i quasi-linear and the optimal control models. The quasi-linear modelsdescribe the human control behavior by some task-speclfic modification of a

generalized transfer function which is best satisfied in the crossover

frequency region for many controlled element dynamics. In addition, an
internal human noise source (the remnant) summarizes the portion of the

human's output which cannot be explained linearly.

The optimal control model [52] includes two noise sources and also has i

a time delay and a neuromuscular lag term with a time constant similar to i
that of the quasi-linear model. A Kalman filter estimates the states of

, the controlled element, whereas a predictor compensates for the time delay.
The optimal gains are calculated with respect to a criterion function which i

is a weighted sum of mean squared values of state and control variables.

The control theory models have been aoplled in several domains

including aircraft piloting, automobile drivln_, ship piloting, and
anti-alrcraft artillery. Further, several display design methodologies

have been developed. A recent special issue of _ _ reviews many

applications of control theory models [53].

With both the crossover model and the optimal control model, a

stochastic reference input, either forcing function or disturbance, has

been assumed. Therefore, these models are mostly applicable to the inner
loops of manual vehicle guidance and control tasks. In the case of the

optimal control model, key elements of this have also been applied to

monitoring and declsion-maklng tasks.

Many realistic tasks exist, however, in which deterministic inputs are
dominant. Taking the ba-ellne car driving scenario as an example, a more

complloated deterministic input exists, i.e., the course of the street.

For this task, a two-leve! model has been proposed which has a closed-loop

stabilization controller and an anticipatory open-loop guidance controller
working in parallel C5q], [55]. The perceptual aspects of the anticipation
of changes in the course of the street have been explained. However, it
has been assumed that the driver tries to eliminate all deviations from the
middle line of the street.

To overcome this simplification, the street might be viewed as a

target tube in which the driver is allowed to move his car. Interestingly

enou_, many other human control tasks in vehicle guidance and industrial
process control also require controlling the state of the system within a

target tube rather than along a single reference llne. Such a criterion
makes the_c tasks much more relaxed than one often assumes in man-machine

systems experiments.

Revlewing the control theory literature, some applicable methods for
controlling within a target tube were found. They have never been used

with man-machine systems problems. One approach assumes a criterion
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function which puts less weight on small errors by taking the fourth power
of the error instead of the second power as in the optlmal control model
[56]. The other approach is called unknoun-but-bounded control [57], [58],
[59]. Figure 4 illustrates how the controller tries to keep the state (X)
of the system always in an effective target tube to assure that it will
never cross the boundaries of the outer target tube under all expected
dlsturbances.

Taraettube XN
/ _ Modtfled _ l

/:i !/-: I :'o,-"o" I /, ;, ! / / I I

" 6 !;, I-t,, ,/,'r ..... iF.-,,'/ i i / ;, i !: "' " " I Ill / / i I I ! I ;

/_ | I ' / I ___ ._ 4--q--J._....

XN-0x,
Figure q: SchematicPresentation of the State of the System (X)

_ as Affected by the Action o£ the
Controller (C) to Counteract Disturbances (N) for

Reachsbility of a Target Tube
(from(57])

The unknoun-but-bounded control approach combines state variable with
set theoretic descriptions. Due to the higher mathematical effort, thls
approach has infrequently been applied in automat!o control situations.
However, 1_ seems worthwhile to consider this approach In modeling
blological or sociological systems. Human behavior in general is
goal-oriented and the goal is very often defined as bringing or keeping
some state variableswithin a certain target set or target tube. .:

In the baseline scenario, the target tube of Figure _ would be the
width of the street or one o£ its lanes. The effective target tube is
planned by the driver as an area inside of which no control actions are
necessary (see linear-plus-dead-band control laws !n Glover and Schweppe
[58]). Planning the effective target tube might also include some
fuzziness. Whether the unknoun-bub-bounded control approach can be
combined with fuzzy set theory which has recently been applied In
industrial process control [60] has not as yet been investigated.

Another interesting Issue Is the notion of the internal model which
has been considered to some extent in the discussion of the planning
process. In modeling how the human chooses amon_ alternative courses of
action, an important issue concerns whether the human possesses a correct
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internal model of his environment or, whether the model is tncorreot as in
learning situations or, very approxtmetive as in large-scale systems (see,
e.g., [61]). The process o£ building up an internal model during learning
and how to u_e it by changing oontrnl laws or choosing among different
kinds of oontrol laws in time-varying systems, should be further
investigated. The literature on adaptive manual control shows, For
example, that the models assume a set o£ predetermined control laws matched
with a set o£ dtr£eront system dynamlos (see e.g., [62]).

This leads to the idea o£ a memory For =otor patterns. Instead o£
having an input-output transfer behavior, the human operator Initializes
predetermined motor patterns in many situations. These patterns are
slightly ocrreoted during their aotual exeoutton (see,e.g., [63]). Good
examples are walking, bloycle riding, and piano playing. Also, the
aoo,dtnatton and timing oF a series or dlsorete manual rontrol actions, _.
e.g., in trouble-shooting tasks or in checking procedures o£ airoraft
pilots or pro_ess operators, oan be explained by predetermined motor
pat t ern s.

DISCUSSION AND CONCLUSIONS

q

In ocnsldering various approaches to tying all o£ the dlsuusslons In
this paper together, the authors found the diagram In Fl_ure 5 to be most

useful. This diagram Is a variation o£ a diagram discussed by Johannsen j
[6q] For vehicle control tasks and Sheridan [1976] For human control o£
vehtoles, ehemiQal plants, and Industrial robots.

Humon

£ A. 'I

Figure 5: Hterarohy or Huron Behavior
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I
This diagram can be used to represent well-deflned man-mad_ine systems

tasks such as those discussed by Johannsen [64] and Sheridan [65] as well

I less well-structured tasks. For could mean in
as example, goals success

life, plans could mean a career outline, subplans could mean a scheme to
succeed in a specific Job, and actions could mean one's daily activities.

Thus, diagram applicability.the has broad

How can one analytically deal with such a general descrlptlon? If one

looks at control theor, with a very general perspective that includes
control with respect to continuous events as well as discrete eve,ts, then& 4

one can subsume most analytical methods (e.g., linear systems theory and |
queueing theory) within the category of control theory. This {

generalization, and willingness to expand the set of tools one utilizes,
e,ables quantitative analysis of a larger portion of the hierarchy of
behavior.

Howe,mr, there are limits to context-freeanalytical modeling. First,
there is the very important idea that human behavior mainly reflects the
task environment. Thus, searching for a specific analytical model of
general human behavior may only be frultful to the extent that all task
environments are common. Perhaps then, one should first search for
commonality among environments rather than intrinsic human characteristics.
In other words, a good model of the demands of the environment may allow a
reasonable initial predictionof human _erformance. Thus, it is reasonable
to initially assume that the human will adapt to the demands of the task
and perform accordingly.

A second limitation to analytical modeling is due to the human's lack
of analytical thinking, especially at upper levels of the hierarchy. First
of all, the human is more of a satlsflcer than an optimizer. Thus, ideas
such as a target tube wlthln control tasks, fuzzy set theory, and some
concepts from utility theory deserve more study and application within
man-machlne systems. What this means is that one should lock at
optimization with respect to broad criteria that allow multiple
satisfactory solutions. An alternative approach to this issue is to
discard optimization, but this would leave the modeler stripped of one of
his most important tools and without a viable alternative.

Beyond the idea of satlsflolng, another important limitation to i
analytical modeling Is that humans simply do not worry about details until
it becomes necessary to do so. Thus, plannin¢ can be sketchy, perhaps in
the form of scripts. Such sketchy planning can mean a drastic reduction in
mental workload and also, that the human has the resources left to deal

,_ wlth more tasks as well aa the flexlbillty to react to unforeseen events.
These characteristics are precisely the reasons why humans are often
included in systems.

_ However, the scripts idea presents a problem. While everyone might
agree that humans use scripts to expedite performance of' many tasks.
knowledge or their existence is not sufficient to predict performance. One
must kno_ what the script specifically is. Thus) in complex tasks, one
must reassurenot only performance (e.g., RHS error) but also the script.
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This suggests that verbal protocols (perhaps analyzed by a computer that
understands natural language) may be Increasingly important research tools.

To conclude, this paper has ,resented a fairly _eneral, but mainly
verbal, model of humanbehavior In complex tasks. The ideas discussed have
been based on analysis of a speoifto complex task (oar drtvtna) as well as
a thorough review .of the literature. Three very specific ideas have
emer._ed. First, control should be looked at in a broad sense,
incorporating a wide range of analytical methodologies. Second, the human
satlsftces rather than optimizes and criteria should refleat this. Third,
higher-level activities such as planning require approaches that allow
incompleteness, and approaches that capture the process oF thes,_ activities
and not Just the results.
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