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Abstract

This paper consists of two parts. The first part describes the

problem of multl-task attention allocation with special reference to

aircraft piloting, the experimental paradigm we use to characterize
this situation and the experimental results obtained in the first ._

phase of our research. A qualitative description of an approach to

mathematical modeling, and some results obtained with it are alsoT

presented to indicate what aspects of the model are most promising.

i The second part of the paper consists of two appendices which (i) dis-

cuss the model in relation to graph theory and optimization and (2) specl-

: fy the optimization algorithm of the model.

J

i. Introduction

We think that an increasingly crucial aspect of piloting an alr-
craft is "multi-task allocation of attention". The pilot must monitor Jl

many more systems than before, most of which are growing in complexity.

In earlier days flying the aircraft "by the seat of the pants" was
difficult, but piloting was_ more or less, a constant task. It was ob-
vious that the pilot could keep track of wha{ was being controlled at _ •
what time and how well that was working because he was doing it; he was

in the loo_and could see or feel it directly.

As systems become automatic the pilot himself tends to lose track

of what signals are coming into what subsystem and what response that

subsystem is making. Most of the time when everything is normal the #

automatic systems do Just fine. Indeed if we demanded that the 2ilot

actually perform all functions which are now automated it is clear he
couldn't do a fraction of such tasks. Yet we expect him to monitor all

such functions, and at the first overt alram or even subtle evidence of

failure we expect hlm to be able to render a quick accurate diagnosis of

the problem and set it straight.

We call the pilot a "flight manager" or "supervisory controller" and

we see hlm in the image of a corporation manager with legions of dutiful

automatic servants doing his will and bringing him information as he de- _

sires it. The problem is that the corporate manager has time to ponder _!iand investigate and weigh evidence and consider his decisions. He operates
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on a human time scale: if the corporation manager sees his "production

vehicle" about to go bankrupt he has at least a few minutes to decide

what's wrong and what to do about it. The flight manager doesn't.

The general research questions implied are:
|

a) What are the expected behaviors and what are the limits of a

person's capability to allocate his attention among many simul-
taneous tasks of varying importance and varying urgency, as a -_

function of the number of tasks, the gelleral pace at which they
occur and other salient parameters?

b) If there is a normative or pptimal way a person should perform
such a task, can it be specified as a quantitative model, and
how close does a trained person come to behaving optimally?

c) What are the implications for improving the design of the man-

machine systems in which the pilot must perform such multi-task
allocation decisions?

2. Experimental Paradigm i

To characterize such a multi-Cask decision-making situation we have

developed a very general experimental paradigm and an associated model. The

experimental paradigm requires the subject (or decision-maker DM) to select

one at a time from among a number of blocks ("tasks") of different heights i
and widths displayed simultaneously on a CRT (Figure i). His selection, J

made by holding a cursor even with the block "attended to" is in order to

maximize his reward, where the earning rate is proportional to the displayed

"importance" (indicated by the height of each block) and the "productivity
rate" (the rate at which the block decreases in width when "attended to").

Blocks appear at random distances from a "deadline" and move at constant
velocity toward that deadline, disappearing when they first touch it. Var-

ious task parameters have to do with the frequency at which new blocks ap-

pear, the speed with which they move toward the deadline, the variability

in importance, the variability in how far from the deadline they first appear,

: and so on. The toal is to "remove" as much block area as possible.

In one experiment blocks continually appear with exponential dis-

tribution in time. In a second experiment all blocks appear at the start

of the run; no new ones appear thereafter.

An important feature of the experiment is that blocks do not queue
_ up for service, i.e., if a block reaches the deadline the opportunity to

earn its reward is lost. We cannot say for sure, however, whether blocks

i queue in the operator's mind for attention in correspondence to the fact

that at any one instant of time there may be some blocks which are far from
the deadline and others which are close. The close ones, of course, may be

of little importance, so often at is better to attend to more important
tasks which are farther from the deadline in order to ensure that all of

the really important ones do get attended to before the deadline.570
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Figure 2. illustrates a means we have used to obtain a time-plot

of which block the subject selects in which queue (column headings).
Printed symbols in each column tell the service time the block requires, ,,
the time the block will be available, and the value to be obtained.

Having informally experimented with this situation with a variety
of parameter combinations we are now in a position to claim that the .J
experiment does seem to simulate various attentional demands which are

placed on the pilot. These vary considerably in duration. Some tasks
" are urgent, but of modest importance; some are urgent and of great impor-

tance; some are not urgent and of modest importance; some are not urgent
but of great importance to be done before the deadline.

3. Experimental Results

As the first phase of the second authorts doctoral thesis, experl-

meuts with human subjects have been run with various experimental para-

meter combinations. Because the number of such possible combinations is

so large we have investlgatedthe effects of changing one parameter at a

time, relatlve to a "baseline condition". Table 1 indicates that for all
runs the subject worked with 3 queues of blocks (tasks) and runs lasted
400 seconds. The baseline parameters are given above. Seven changes in

parameters are indicated below, made one run at a time, all other parameters

matching the baseline condition in each case. For each the values gained /
by each of three subjects, the range of their data, the average, and the

total posslble are given.

In Table 1 it is seen that a considerably higher speed of blocks i
moving toward the deadline (2) reduces the score,but not much, compared
to the baseline (I). Greater variation in block speed (3) makes little

difference. A reduction of interarrlval time (4) of blocks means more

blocks become available - more opporunity is there for earning a score -

but a smaller fraction of these are completed. As the height of blocks
(task value densities) become more variable (5) the net earnings are

little affected, though the presence of a few very lucrative blocks doubles
the total possible score. Giving partial credit (6) for productivity

(allocation) on a task when it hits the deadline increases the earnings

llttle more than one percent, which Is surprising. Lowering productivity

(7) has the most significant effect, as seems intuitively reasonable - but

the reduction in score is not quite in proportion to the forced reduction
in rate of doin 8 tasks.

4. A Mathematical Modeling Approach

To accompany the experimental task, we have developed s mathematical
model which can be run on the computer immediately after any human data run.

! (_he relationship of the model to graph theory in general and the full spec£-
i _ ficatton of the model algorithm given in Appendices 1 and 2 respectively).

572

t •

' 1979007417-551



i

!
ORIGINALPAGE I8
OF POOR qUALITY I

,,. , ,

CO_ON CONDITIONS

3 queues, 400 sec duration

BASELINE CONDITION

Task Interrlval time, exponential distribution, mean = 20 sec/queue

all tasks _ 5 units away from the deadline

al]_ tasks 2.5 units in duration

all tasks speed toward deadline at 0.i unlts/sec.

I productivit 7 on all tasks 0.5 units per sec. ._

value density rectangular distributor 0 - i utiles/sec

No partial credit was given in the baseline case.

TOTAL POSSIBLE

CONDITION % AVAILABLE VALUE GAINED BY SUBJECTS AVG. VALUE (UTILES)

! .... D% KT SJ RANGE

i Baseline, B .913 .931 .942 .029 .929 98.7
............. ,, ,1, i

2 More speed

(2.5 B) .917 .880 .878 .061 .891 98.7

3 Variable speed

(rect, ,05-2.5)I .934 .907 .912 .027 .918 98.7
i,

4 Less interarrlval

time (0.75B) .803 .809 .795 .014 .802 122.2

5 More varied

value density
(rect dist 0-2) .946 .940 .902 .044 .929 197.6

L ,Jl 11 , , ,

6 Baseline, but

with partial
credit .943 .949 .926 .023 .940 98.7

7 Less produc-
tivity (0.SB) .642 .660 .650 .018 .650 98.7

Table I

Some Experimental Results
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The model is essentially a dynamic program which calculates an optimal
"attention allocation trajectory" for all the blocks present, and then takes

the first step of that trajectory. As soon as each new block appears, the

dynamic programming calculation is repeated. The model is constrained by

three parameters to make it human-llke. The parameters may be adjusted
according to various criteria until the model best fits experimental data.

One parameter is a time delay T, simply a,,justed to match human motor reac-
tion time plus decision time.

A second parameter is a linear discounting of importance of later
blocks in various alternative trajectories which the dynamic progra_ing

algorithm compares to determine which trajectory costs least. This dis-

count rate ue call B. Zero 6 means that, in present evaluation of alter-

native trajectories for future action, what the model earns in the more

distant future weights just as heavily as what it earns in the very next

step. Large B means the model discounts the future completely and only

considers alternative next steps.

A third parameter, 7, is a linear discount rate on distance of blocks

(tasks) from the deadline, determined anew at each successive model

iteration. Zero y means that, in declding what to do next, blocks far

from the deadline are just as heavily weighted as those close to it

(multiplied by the blocks' individual importance). Large y means the

model only attends to what is close to the deadline. It is a "putting
out bonfires" strategy.

It may seem at first reading that B and y mean the same thing, but

this is not true, and in fact it was our experiments which led us to see

this distinction: this aspect of the model grew out of the research. The l

point is that time into the future, with respect to alternative sequences

of (planned) action, is quite different from opportunity time available.

In other words, the task which is far from the deadline can be done first,
and the one which is close to the deadline done later. The only absolute
constraint, of course, is that no task can be "done" after it crosses the
deadline.

5. Results from the Model

We now have experimented with the model itself on various multl-task
situations. In those situations cited above where all blocks appear at
the outset we have verified, as expected, that zero _ and zero y are best.
All information is known from the start, and an optimal trajectory as de-
termined by dynamic programming is optimal in an absolute sense.

Curiously, this is not true of the experiment where blocks appear
continually. Let us recall that the dynamic prograu_ing algorithm com-

putes an optimal trajectory based on what blocks are in view at the time,
i then commits itself to the first step of that op::tmal trajectory. Thus,

if there is discounting in "planning time", optimal may be to do a rela-

tively unimportant but about-to-disappear task, since there is just time

574
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C. ¸ _ • ,_

: _ .7 :- • ). . _.

-.i_"i_.Chen to comptece e_tmport_nt t_k wh$ch is the only one avatlable_ But, .!_ _i_

.-_i.._!e doing the unlmpor_ane task, suppose a new Important task appears. " I Y ':_*__
:_ _h e s oppo tunity __ -:_ ': th ame r -_time_s the other _nportant one.,i A choice must : _.... _:._

b_ gads between the _Vo impo_ant taskst,since onI_ _one task_,ca_be _ _ i__ _
attended_to at a time; one important task must_ be l_st. Had the _odel -_ :_ _/
expected _he new Important task was.cominstt_ould'have attended first
to the available _mportant task_ ignortng:theunimportant _lose-to-dead-
line one, and then had ttme avatlabl_ for the new important one. In-
stances of this effect are revealed in simulation _uns described below. [

Our model runs thus far had been made trlth varying T values (rear -_ _......
tion times) and either varying _ or varying _. _ values have been
matched to _verage re-----action times of experimental subjects on a one-
run-at-a-time basis,

_e have let the computer compare human DH results with computer
results sep_rately on the basls o_ _ive different criteria: 1) per-
cent value gained for the given run out o£ the total possible value

, obtainable; 2) percentage of all completed tasks independent of duration
or importance; 3) percentage of time both model and human subject acted
on the same tasks at the same time; 4) squared differences between cumu-
lative value gained by model and human, su_ed over the entire run;
5) squared differences between incremental value gained by model and

human for brief time interval, summed over the entire run,

Figures 3 through 7 show examples of five mode_ runs. Figure 3 is
for subject KT for the baseline experimental conditions, Figure _ is
for the same subject for a speed 2.5 times as 8rest as the baseline.
Figures 5, 6, and 7 are for three different subjects for a productivity
half that of the baseline. On each page are ten plots, each plot repre-
senting a series of model runs at di_ferent values of _ (left column, see
abscissa below for value of 6) with _ = 0, or model runs at different
values of y (right column) with _ - O. Points symbolized by X are model
runs. The horizontal lines represent human data for the given experimental
condition. Circles are comparisons between human and model. Each ro_ iS
for measures according to a different criterion, as indicated. The#all
points on any vertical slice represent the sanm model run. Ordinate
values of the performance criteria age shown at the right.

Thus, considering the plots in order from top criterion to bottom,
the top one is to be mximtzed (or matched to the line for best fit to
human). The X ploc of the second one is to be maximt_od (or m_tched to
the line for best fit to human); the circles on this plot represent g
of tasks which are common to model and hu_n, and are to be maximized.
The third plot is to be maximised, the fourth and fifth are to be minimized.

For the first criterion (_ value 8ained) it is evident that the
• odel closely approximates the human, at lower values of 6 o_ y doint
slightly better (as one _ould expect for little or no discount) while
at higher values dotns slightly worse (where the model Is not allowed

_ to *'plan ahead", i.e., _ is large, o_ is not allo_ed to consider blocks
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far from the deadline, i.e., y is large). Interestingly, however, for

_" data on the first two pages zero 8 is not quite as good as a slightly

| larger _. The theoretical reason for this was discussed above, i.e.,
with a slight discounting of the future the model is more apt to do the

most important block first, and be more open to new blocks which have
high payoff.

In everyday terms, this suggests that a person with lots to do,

little time to do it, and new tasks continually popping up with rela-

tively short deadlines, should not plan too far ahead. Mostly he should "''_

do the most important thing first, ignoring the closest-to-deadline
factor. As he has time to see what's coming farther into the future

and doesn't expect many new opportunities to be popping up, he should
plan ahead.:

With respect to the second criterion (% tasks completed) it is
interesting that the model and human match precisely in a mid range
of 6 which is also the best match of model to human for tasks which

are common to both model and human. This suggests (i) that a 8 in

this range is a good candidate for a model, (2) that the higher task

completion capability of the model in other 6 ranges, without con-

commltant increase in total value gained, meant it was wasting time

on unimportant tasks. The y fits for this criterion are not so good

or so consistent, and we begin to see that y seems not to be a very
mealngful parameter.

As for the next parameter, % of time acting on the same task at

the same time, it appears that the 6 curve peaks at approximately the #

same value for several of the subjects, but again the _ curve is not

very interesting.

The curves for the final two criteria seem to have little to offer,

excepe that the fourth curve consistently takes a jump (gets worse) for
8 values at 0.I or larger.

Further experiments will seek to refine the model, the fitting !

criteria, and possibly add an estimator of future tasks to the op-

timization algorithm.

[

7
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A
Appendix 1. The Model in Relation to Graph Theory

,.°

The paradigm described in the paper will result in a graph GT(t) ffi
G(N;A) with N nodes and A arcs, where each node represents a task and
arcs represent the transfer properties between these taska. Note that

rewards associated with different nodes can be different and delay-(time-)

dependent. Also the processing (or service) and availability times of
the nodes and the transfer times between them can be different. There-

t

fore in a reward-time (r-t) coordinate framework we have graph GT(t) as
shown in Figure AI.

i Note that in A1 values transfer times between
Figure T represent

.... nodes, which incidentally can be dlrection-dependent, such that precedence

constraints can imposed, tR, and are "ready-time",
be tD tP "deadline time"

and _processlng time", respectively. Note that when the rewards associated
i:• with the tasks are constant until they hit the deadline, the r-t curve
E associated with a node will be as shown in Figure-A2a. For the case in

i which the DM can get partial credit, however, the rewards, rather than
being Fixed-Loss, will be as shown in Figure-A2b.

In the Figure A2 tS is the slack time, i.e. the latest time; if,

during which the task is completed all the reward associated with the

task can be gained. Note that '!timeavailable" is deadline-tlme minus

ready-time: tA = tD _ tR"

One interesting observation that can be made from Figure-Al is that

in GT(t) graphs there may not be enough time to get the rewards of all #
nodes N. In fact, we can infer from the same figure that the best

schedule that can be chosen in the particular graph GT(t) is ][= (2,1,4)

_ does not include node (task) 3.
which

At this point we digress and consider this sequencing problem in

i relation to other common combinatorial problems llke Job-Shop Scheduling,

Traveling Salesperson, etc. (Golden and Magnanti, 1977).

We can differentiate the sequencing problems listed in Table-Al
according to the following criteria:

i) Will multiple journeys between the nodes be counted multiple?

2) Can we add extra nodes?

3) Can the rewards associated with the nodes be delay-dependent?

4) Can the transfer delays between different pairs of nodes be
different?

5) Is it imperative to return to the base node?

_ 6) Is it necessary to satisfy the above requirement before a

certain delay, TR?
7) Can the graph G, desrlbing the problem change dynamically in time?

_ See list of symbols at end of Appendix 2.
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{
FIGURE AI. A Schedule_ = (2,1,4) for Multi-Task Attention

i Alloeatlon on Graph GT(t) = G ( N ; A ).

r r d

(¢

FIGURE A2 Reward-Time Curves for a Task (a) when no Partial
Credit is Given, and (b) when Partial Credit is Given.
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Using these criteria we have listed some co,m_on combinatorial optimiza-

tion problems with two new ones:

a) Minimum Spanning Trees, MST (Kruskal, 1956)

b) Steiner Tree Problem, STP (Nijenhuls & Will, 1975)

c) Job-Shop Scheduling, JSS (Elmaghraby, 1968 a_ Sahn!, 1976)

d) HamiltonCycle, HC; alias the Traveling Salesperson Problem

(Held & Karp, 1962) i

_ e) Open Tulga-Path, OPT; alias Multi-Task Attention Allocation,

f) Closed Tulga-Path, CTP

Note that i_ Table-Al the indicator 'o'means that the particular cri-

terion need not b_ satisfied for the problem at hand, while indicator 'i'

is for the opposite case, with 'N/A' indicating that the criterion is not

appllc@ble for the problem. Figure-A3 is a schematic representation of

some of the problems. OTP describes Multi-Task Attention Allocation.

Problems vs.

Criteria: MST STP JSS HC OTP CTP

I 0 0 I i i I

2 0 i N/A N/A N/A N/A

3 0 0 I 0 1 1

4 i 1 0 i 1 i

5 0 0 0 i 0 1

6 0 0 0 0 0 1

7 0 0 0 0 1 I

Table-Al. Properties of Various Sequencing Problems.

Before returning to the Multi-Task Supervisory Control, the reader

can observe from Figure-A3 that, if the requlr_ment was to serve all the

nodes (tasks) with minimum number of controllers (or processors or vehi-

cles or people, etc.) another controller might have been assigned to

node-3 in Figure-A3(lii), and the OTP problem will become an advanced

version of the 'Bin-Packing Problem'. (Johnson, 1974) The reader may

note here the case of computer aiding (2nd. controller) of the human

operator (ist. controller). (Rouse, 1977) Similarly In Figure-AJ(iv) an
extra vehicle can serve node-3 and come back to the base node before

TR; however, unless the return time TR is sufficiently large, node-4

cannot be served whatever the number of vehicles, but as TR increases

3, then 2 vehicles will be enough to serve all the nodes: the CTP then

becomes an advanced 'Vehlcle-Routlng Problem". (Golden, 1976)

We can see from Figure-A3 that Multi-Task Attention Allocation

Paradigm is representable by the OTP Combinatorial Problem when we con-

sider that node 0 (base node) is where the DM currently is, and 4 tasks

584
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FIGURE A4. The Return#for a Taskjas a Function of Time for the Partial
Credit Mode
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are (or will be) available with different properties. The DM will then
act on the first task of the optimal schedule, H° = (2,1,4), i.e. task 2,

Note however, that new tasks may appear on this graph GT(t) probabl-

listically according to the interarrival rates and with the task para-

meters explained in the paradigm section, and the th_g to be maximized

is the reward gained at the end of the experiment, so that tasks that are

going to appear cannot he ignored. That is to say: since graph GT(t)

is tlme-dependent, then the optimal schedules H°(t) on them are time-

dependent too. ....

,%

Appendix 2. Optimization Algorit]_ of the Model

In choosing his control, i.e., which task to et upon, we can model

the DM as an optimal controller who maximizes his expected returns over

a planning horizon. (Koopmans, 1964). In particular, the DM will act

to max_ize his expected total returns over a finite planning horizon,

T, with a discount function B(8, t):

max. r(n) =El T
H

where _(t) = Z Rij(t) " B(8, t)(i,j)e_

in which the summation is over all the tasks (i,j), which collectively ]
make up the ordered task set, schedule H, that the DM expects to act

i upon over his planning horizon. Rij(t) is the return he gets for acting
on (or completing) the task (i,j) during (or at) time t.

For the case in which the DM gets credit continuously while acting

on a task, the Rij(t) will be as shown in Figure-A4.

In Figure-A4, tij, Pij, dij, Pij represent the time at which the
DM plans to start actlng on the task, the value density of the task, the
duration of the task, and the productivity of the DM for the task (i,j),

respectively.

If however, the DM is going to get (full) credit only after success-
fully completing a task, then the Rtj(t) will be as shown in Figure-AS.

' The DM_ in effect, will choose at each decision point a schedule
H° = (H_, H2,...) that he intends to act upon to maximize his expected
returns, and then he will actually act upon the first task _, in this
ordered set of tasks.

It is probable and acceptable that he might have to give up on
acting on.some tasks when their 'available times' are small - due to
their high speed and/or due to their proximity to the deadline - or
when they have comparatively low value densities, especially in comps-
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FIOURE AS. The Returnjfor a Taskjas a Function of Time for the No-Partial
Credit Mode.

i
P_Io_ITY

1
T|MI_

FICURE ^6. Increasing Priorities o[ Different Tasks as They
Wait to be Served.
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tition with other simultaneously available tasks which are preferred in

these respects. Another important parameter, of course, is the trans-

fer time _ii_ between the queues. He has to consider the fact that he
will end up getting no credit for a period of time when he transfers his
control from the i.th queue to the i'.th one.

The algorithm for finding the optimal schedule of tasks H°, to act
upon is:

Algorithm T_PATH ..... "

Input (usage, TR, XiJk' Tii'' B: G)

The input parameter 'usage' Indxcates whether an OTP or a CTP is
desired, and if it is a CTP, TR is used as the required return time to
the base node. T is the transfer-delay time matrix between the queues ...
of tasks and B, and G are discount functions on future returns and on
tasks away from the deadline-tasks with larger slack-times -, respectively.

Note that the system state tensor XiJk specifies the various task
parameters for each given instant o£ time like:

I) whether the tas_ is available (display) or not, Lij (=i or 0) 4

2) the return associated with the task as a function of time,

Rij (t)

3) the processing/servlce time of the Atask t[j(t) J
4) the 'available time' of the task, t_j(t)

Output optimal schedule _o, and discounted present value r(_ °) and
completion time c(_°) associated with it,

Step-I [Initialize]

for i - I to I do

for J = 1 to Jido

while Lij = 1 do /* is the task available ? _/
transform (i,J) to _ and

generate the tuple (r(_), c(_))

r(t) - Rt(t - O)
c(t) = Zot + t_(t - O)
end

end

Note that Rt(t) " f Rlj(t), B(B, _)'d_
_-t

Furthermore, the tasks currently available are summed to give N, which
is also the maximum number of stages, H, the optimal schedule can have.
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i Step-2 [Generate schedules that are m stages deep] ORIGINAL PAGE 18• " for m = 2 to H do OF IK}ORQUALITY

generate all m-member-subsets = 8

and for each task _ES

generate the (r(H_ _ c(_)) tuple(s)

-where lI -(if' g _, i,e, schedule !'[ is schedule _'
with task _ at stage m,

-for each H'_,* order(S-_}, i.e. for each H' _-- {S-_),
-where the '=' operator tests whether each member of one

set is also contained in the other• (Wetnberg, 1971)

r{_l[) = r(]l')+ RE(t = c(11')).

C(]]) " c(]lv) + TEI_ + t[(t = C(]11))

where _' is the last task - task at stage (m-l) in schedule N'9 •

Eliminate schedules according to the rules:

, I) Eliminate tiletuples which are infeasible, that is credit
cannot be obtained from the last task _ in schedule

before it reaches the deadllne_ or if usage is CTP, before

(TR - _o ), where T_o is the transfer time between the
.. queue of task _ and the base node 0,

! ' 2) Eliminate schedule _i if there Is a schedule if2 such that:

nl=xn2

_ and tl _ t2 tl t2or queue of - queue of

-_s are the last tasks -at stage m- in the respective
schedules-

: and r(]]l)_< r(]_ 2)
?

and c(_l)>_ c(_ 2)

.. 3) Eliminate the schedules that are lees than (m-l) stages
" deep.

t

Step-3 [Return to the base node if usage is CTP]

i' _ if usage = Closed Tulf, a-Path then
for all scitedules _ do

r(n) - r(R) + So(t- c(n))
, c(n) = c(n) + Tto

with t being the last task of schedule _.
I

i end
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Step-4 [Optimal]

The optimal schedule Ho is the one with the property:

r(Mo) > r(H) for all H _ HOo

and if

r(M°) = r(n) then c(_ °) < c(R)

Note that when the rewards of nodes are delay-lndependentthen this -J

algorithm reduces to the dynamlc programming formulation of the Traveling
Salesperson_Problem. (Held b Karp, 1962). On the other hand, when trans-
fer delaysbetween all tasks are equal and when rewards of all tasks are
Fixed-Loss, i.e. constant up to a certain delay (time) and then zero, then
the solution will reduce to Job-Shop Scheduling with Deadlines. (Elmaghraby,

1968 and Sahni, 1976).

Several things should be clarified at this point. First, if the model
is permitted to get partLal credit, as in Figure-A4, then the tasks which
will hit the deadline before they can be complted will also be included
in the optimization, although with their returns Rib(t) appropriately ad-
Justed to reflect the gain that can be obtained fro_ them before they
disappear.

q

Another point that should be emphasized is that, since all the dynam-
ics of the tasks are known a-prlorl by the algorithm (and also by the human),
there is no need to repeat the optimization unless there is a new task
arrival; when no new information is presented, the optimal plan, i.e., the /
currently optimal schedule t,ill be followed in real time as the tasks in
this linked list are completed. It has also been proven theoretically
(McNaughton, 1959) that there is nothing to be gained by shifting attention
from cat task to another and back again, even in the case of no time

penalties for doing so. On the other hand, if after a new task arrival
the first task in the new optimal schedule Is not the task that is currently
being attended, then the model will pre-emptively leave the current task to
serve the first task in the new optimal schedule. However, the task that was
pre-emtively abandoned might still be in the new schedule, anti conditions
permitting may eventually be re-attended.

The effect of 6(¥, t s) will be to adjust the return kit(t) for acting
on task (i,j), by changing the effective value density of tSe task (t,J)
as:

s

nij(t) - _lj(t).o(v, ti, j)

where t_j is the slack-tlmaof the task,i.e.,t s - maxo(O,t(xl;)-(dlp)]_,
with x,_,d,p representing the currant position, speed, current duration-
and the productivity associated with the particular task, respectively.
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Note that the idea of weighing tasks according to their initial
priorities plus incremental priority increases as they walt In a quele
(Carbonell,1966 and Jackson, 1965), as shown in Figure-A6, corresponds
to the G(y, ts) function, where the initlal priority is determined by the
initial proximity of the task to the deadline, and this priority in-
creases as the task approaches the deadllne.

It Is'interesting to note also that, as the speeds of the task_
approach zero, l.e., the deadlines are at infinite future tlme - and
if the transfer times between all the tasks are equal, then the DH Is
modeled to choose the new task to act upon, according to:

: max. OijPij
(i,j)

This, of course is the familiar result from the Queueing Thet)ry(Smith,

1956) when we consider the productivity of the DH, P_, as the service .7

rate Pi_ and the value denslty of the task (i,J) 0jj'ds the negative cost
per un£_ tlme delay Clj,

min. cijp_j where ci_ < 0
(i,J) i

List of Symbols

G graph

t time /
, z transect time

' 4r dummy time
r reward available at a node (task)
R reward gained [or a 8tvotl plan

r(_) total discounted return of a schedule_ a schedule
c(_) completion time of a schedule

r(e that schedule which is optimal
TR deadline rime for return to base node
T planning horizon
B discount function on future returns
B dlacount parameter (rate in this case) on incurs returns
G urgency discount function
¥ urBency discount pnrameter (rate in this case)
I total nttml_er of qt_e_loa

_t total nttmber of taekl in queue i,' combination of i & J for any task
_ maxl6um number of stages that optimal schedule can have
m stage index

d duration
A speed
p value density
p productivity
x position
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t_ processing time

tR ready time

tD deadline time
J

tA available time

tS slack time
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