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ABSTRACT

A decision model includingperceptual noise or inconsistency is developed
from expected value theory to explain driver stop and go decisions at signaled
intersections. The model is applied to behavior in e car simulation and instru-
mented vehicle. Objective and subjective changes in driver decision making _.
were measured with chan_es in blood alcohol concentration (BAC). Treatment 4
levels averaged 0.00, 0.10 and 0.I_ BAC for a total of 26 male subjects. D_ta
were taken for drivers approaching signal lights at three timing configura- i
tions. The correlation between model predictions and behavior was highly /I
significant. In contrast to previous research, analysis indicates that
increased BAC results in increasedperceptual inconsistency,which is the
primary cause of increased risk taking at low probability of success signal
lights.

]]TROD[_'_XON

One of the motivations for developing the driver decision model described
here was to measure and analyze the behavior of alcohol-iml0aired drivers. We

desired to separate risk taking into coemonents of risk _ and accept-
• ance. If a driver takes i-no,easedrisks, is it because _ed the--_
i an-_'decided to accept it or because he does not perceive the increased risk?

Expected value theory provides a s_mple construct for making this distinction
i and has been aI_iied in the past to describe impaired driver behavior, (Refer-

ences I, 2, and _).

Here we al_lY a Subjective _xpected Value (8EV) model to explain driver
stopping and going behavior at signaled intersections. Perceptual noise is

i included to reflect one ty_e of driver inconsistency in the decision-making
i process (Reference 3). The model is al_pliedto data collected as pert of an
i automobile simulator stu_/ involving a typical drive-home scenario. Although

measures were taken throughout the scenario on several tasks, we concentrate
'_ here on signal light behavior. We briefl_ present the decision model, the

ezperimental results, and our analysis and interpretationin view of previous
studies.
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I_CISI(N-MAEI_

The model was derived to guide experimental design and measurement, The
expected value approach i_ not new; however, the inclusion o_ perceptual noise
as applied to signal light behavior is original. The basic scenario is a sig-
nal light at an intersectionwhich has changed from green to amber and will
change to red in 3 seconds. Based on his _erception of speed and distance the
driver must then decide whether to stop or go. The kinelaaticsfor this task
have been described previously, Reference h. Here we briefly derive an appro-
priate decision model subject to several assunptions.

We begin by simplifying what is actually a complex decision task, Refer-
ence 11, in a simple two-alternativesituation. Conceptuallywe are assuming
this decision process takes place in parallel with the driver's continuous
speed control behavior as illustrated in Figure I. Perceptions of vehicle '

• _ _ J . L zl . _

DRIVER V.,cep,m ,i,_
. - ($ttmet_ Teklng

NOh;e Blot
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Figure I. Signal Light Risk Acceptance Model

_ velocity and distance to the signal at the time the light changes to amber are

i used to forms subjective estimate of the probabilities of success and failure
i ! for the various alternatives. As indicated in the figure and discussed _r-

ther below, these subjective probabilities are 6tochastlc in nature. They
are weighted _Ith a_ropriate utilitlee or values and the driver selects the

i alternative with the highest expected value. We define 8ubJectlve Expected

Valuec (8BVs) tor the two alterna_ivee, go or s_o_p,respectively: i

s v(stop) . se( s6/stop)v(./sto) +sP( iz/so)v( il/St) (,)

ssv(0o). sP( sslGo)v(  s/oo)+
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where SP(.) and V(.) are conditional subjective probabilities and values,

respectively. From these equations and the several other simplifying assump-

tions, we can express the probability tha_ a driver will attempt to go through

the signal light. Further simpliTying notation so that F = Fail a_d G = Go,
the probability of Going is:

P(G) = ff f[SP(F/G),SP(F/S]_P(F/G)_P(F/S) (3)
Region

where the region is defined by:

P(G) = PESEV(G) _ S_V(S)] (_)

With the assumptions listed in Table I, it can be shown (see Reference 6

for derivation) that the P(G) is the Gaussian integral:

( 2°_P(F/G)

! i• TABLE I. SOME MODEL ASSUMPTIONS

I I. Operator selec_ decision alternative with largest subjective ,__. expected value. Values reflect utilities and are constant. _,

2. 8ubJectlve probabilities are mutually exclusive and exhaustive.

! 3. Subjective probabilities are Gaussian random variables in the

region of interest, i

4. Increased SP(F/G) decreases P(G), i.e., the values discourageI, go-failures.

i 5. The verbal estimates of SP(F/G) linearly reflect subjective 1
perception.

! 6. The threshold value of SP(F/G)_ below which the operator selects i'the go alternative is SPc(F/G ).

= F/G) where P(G) = 0.5
}'

i • is a constant as compared w_th being a random variable i

7. sP(F/s)=.o.
t

,<
:i1

7
2

--, l m li ill |
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A typical example of these concepts is illustrated in Figure 2. Repeated
observations for a given situation, e.g., signals with the same time to the
intersection,result in a distribution of subjective estimates illustrated by
the top probability density curve. Assuming a cutoff subjective probability,
SPc(F/G), as illustrated,the area under the density curve and to the left of
the criterion is P(G). This is illustrated in the bottom of Figure 2, where
the relationship of P(G) as a function of the average subjective estimate,
S-P(F/G),is illustrated. The slope of this relationship is determined by the -
variability of the subjective estimates, aSp. Note that the effect of increas-
ing the variance of the subjective estimates is to increase P(G) for the case
illustrated. Also shown is the consequence of a change in the driver's risk
acceptance, SPc(F/G).

SIP¢(F/G)

:oI ,
1.0 L Ideal Expected

_t,_ J'31 Value Behavior

P(G) .._ Typical Risk

I Acceptance Function
I

.5
I IncreasedNoise,O-sp

Decreose-_ _./ (inconsistency)

Risk +.
Acceptance,_ :

• I !

O0 SP¢IF/@) "* !_(_/GI I =.oI
!
!
!
I
I

I _ J Iv 4, ,

2.0 3.0 4,0
Time (see) to the Intersection

Figure 2. Typical Relationship Between Probability of Going, P(G),
Subjective Probabilitiesof Fail Given a Go, SP(F/G),

and Signal Timing
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A useful empirical relationship is also apparent in Figure 2. Evaluation

of Eq. 5 for the condition SPc(F/G ) = _(F/G) results in P(G) = 0.5. Thus, the
subjective cutoff SPc(F/G ) can be determined empirically from objective behav-

ior probabilities by selecting the value of S'P(F/G) at P(G) = 0.5.

The signal light task was simulated in both a fixed-base simulator and

instrumented vehicle on a closed course as described in the companion paper

(see Beference 14). The signal light timing was controlled similarly in
both simulation and field studies. When the vehicle approached the inter-
section, the signal light initially turned green. At a random-appearing

time later, the signal turned amber. This time was controlled by a circuit

which compensated _'orcar speed such that the time interval to the inter-

section was the same for a given intersection type, regardless of the approach

speed, if the driver maintained that speed. The amber light interval was

fixed at 3 seconds, following which the light turned red. Thus, the proba-
bility for successfully making a light was controlled without placing an arti-

ficial speed restriction on the subject. Five signal timings were automaticlly

commanded. One was set to require a sure stop (early yellow) and another a
sure go (long green). The remaining three timings ranged from a probable stop

to a probable go. The times to the intersection from the amber light typically

ranged from 2.0 to 3.5 seconds. (The kinematics of stopping or going for these

timings are discussed more fully in Reference 4.)

The subjects were instructed to behave as they normally would in a driving

situation with a reasonable motivation for timely progress and a desire to

avoid tickets and accidents. Also, a monetary incentive structure was pro-
vided as a tangible and quantifiable motivation for performance (see Refer-

enceI_).

Subjects were trained until objective performance and subjective estimates

were consistent in the view of the experimenter. Subjective estimate train- i

ing began with a short tutorial written exam used as a basis for discussion

of the concepts of probabilities. Following this, each subject received two i
to three hours of practice driving in half-hour sessions spread over two days.

Feedback on performance and subjective estimates was given throughout these
I training trials.

Subjects completed trials on each of two days. During an alcohol day,

the trials corresponded to an across-subject average blood alcohol concentra- !_
tion (BAC) of O.00 (baseline), O.10 (ascending ---when measured), O.14 (peak),
and 0.10 (descending). During the placebo day, the trials were given at _*
approximately the same time of the day as for the above trials. The day order

was counterbalanced among subjects. '!_

f,

Objective and subjective measures were taken, and the number of stop and
go decisions was recorded. The number of failures and successes for each _

decision was detected automatically and recorded irrespective of whether or !

t _ 635 _
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not the driver received a ticket. Corresponding subjective estimates were
recorded during the run. Subjects were asked to give their estimate of fail-
ure on a scale of 0 to 100 percent immediately following randomly selected
intersections. Nominally, six of each type of intersectionwere selected.
Intersections for which the driver received a ticket were ignored. (A tacit
assumption in using subjective estimates received after the execution of the
signal task is that the subjective probabilities were unbiased by performance
outcomes as perceived by the subject. To test this assumption, a parallel
simulation experiment used selected intersectionswhere the visual scene was
blanked out immediately following the driver's commitment to a decision and
prior to going through the intersection. Thus the driver received no feedback
on his performance for these selected intersections. These results were simi-
lar to the "after the fact" estimates.)

P_SUI_S

The data were examined for each intersection independently over the eight
trial conditions (four trials per session for placebo and alcohol sessions).
Both objective and subjective data were analyzed to differentiate between
changes in risk acceptance vs. risk perception.

In Figure 3 the objective probabilities of going, P(G), and failing
given a go, P(F/G), for both the simulation and field test are compared to
determine driver risk-taking behavior. The probabilities were computed by
dividing the total number of outcomes by the total number of opportunities
(e.go, P(F/G) = Number of go failures/Numberof go's). For example, Inter-
section 2 in the simulation resulted in the subjects always going, P(G) = I,
and the timing was such as to preclude go failures, P(F/G) = O. The timing was
aiso adequate on Intersection 3 to allow safe go's; however, in this case the

Ii drivers did not always i.e., P(G) & 0.75. This behavior was not sensi-
go,

tire to alcohol, and the subjects appear to have been behaving conservatively
on Intersection 3. Subjects did not go very frequently on Intersection _ and
had a high failure rate when they did. There is an indication of increased
go behavior under alcohol for Intersection 4. This is also apparent for all
the intersections in the field test.

Part of the reason for this increased going behavior on some intersection
timing in spite of increased failures is illustrated in Figure 4. Here we
note that the variability of the subjective risk perception, asp, increases
although the average perception of risk, 8-P(F/G),remains relatively constant.
Considering a typical switching criterion, as shown in Figure &, we see that
the increased variability of risk perception with increased alcohol leads to
a greater percentage of subjective estimates below this criterion. The justi-
fication for this interpretationwas validated via statistical analysis of
parameters for the proposed model.
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Figure 4. Changes in Subjective Estimates of the Probability
of Failure Given a Go Attempt, SP(F/G) with BAC Condition

The decision-makingmodel discussed above was used to analyze driver risk
acceptance behavior. This was accomplished in three steps. First, driver
risk acceptance thresholds, SPc(F/G), wer_ computed for each experimental
treatment. Then the threshold data were analyzed to investigate changes under
intoxication. Finally, the various risk perception data were combined accord-
ing to Eq. _ and resulting computed or estimated values of the probability of
going, P(G), were compared with actual P(G) data to establish model validity.

Risk acceptance thresholds were computed for each subject and each run
by curve fitting a risk acceptance function (Figure _) to P(G) and _(F/G)
data for the three intersectiontimi_g conditions. A trigonometric function
was used to describe the risk acceptance function:

1 __r_ ._ '_ SPc (F/G)P(G): _ I + _,,c_.-_.,_,,)- ] (6)

1979007417-615



z
_,_ m

_ _ 9_ l= I" /

" _ ,,i,,,_D- _ ....... -,
.,* / 0 o it; .__._" _ cg_>_s= ... o_

m/-e"_ i .__ _ I_...I .,- -_
,., 1 I o/ I .=
la.. '-

"-' I I = _ "_

," _ , I , I ] I , I , - ._°
_o. _. _. _. _. ° u ._o

_, or_l_/ol
:

l+l+o__° ° °_ oo ,,., _= _ I o
= I I /JZ u__ =_ i-- "P

" u ,= _ o

01 _ _ _r .......... -J _ I

+ °,-,-- , ',+-+.i
l _' '- _ _"

O ">_t_, I
+ t Ill

_ ,

i (9)d +o0 to/(l!l!qoqoJd
• ,_

+_ 639 i

L_ I t p



By rearranging this formula we obtain a relationship which can be used for
a linear regression fit:

a_i(F/G ) - aSPo(F/G) = sin"1[_pi(G) - I] (7)

The data input for this regression fit is the mean subjective probability of
failure and probability of going for each intersection. The derived values
are then a and the risk acceptance threshold SPc(F/G). The parameter a des-

cribes the slope at the midpoint of the risk acceptance and is inversely pro-
_ortional to the risk perception variability asp.

i The SPc(F/G) were computed and analyzed with no indication of alcohol
i effects on driver risk acceptance. The _Pc and SP(F/G) data were then used

to compute probability of go estimates, P(G), according to Eq. 9. These
compare favorably as shown in Figure 6. Analysis of covarianceprocedures
were employed to compare the actual and estimated values of P(G). The F
ratios indicated that P(G) was highly correlated with the computed estimate
_(G), Reference 6.

These results suggest that the alcohol effects on the drivers' subjective
risk perception, both SP(F/G) and _SP, are responsible for drivers increased
going behavior while intoxicated. They also validate the usefulness of the
model in analyzing that behavior.

There are other possible interpretationsof these results. An intuitive
one is that the variations in subjective estimates are due to variations in

I the time of the decision and not to variations in perception for a given time

p and distance relation. However, a preliminary analysis of the time histories
for several of the subjects indicated that the response times did not change
significantlyunder alcohol, Reference 7. In addition, there are other models
which could be applied to the observed signal light behavior. A potentially
fruitful approach is the signal detection model as developed byGreen and Swets,
Reference 8, expanded for application to man/vehicle problems by Curry, et al.,
Reference 9, and applied to the lane change maneuver by Cohen and Ferrell,
Reference 10. Other types of criteria suggested in this work, such as likeli-
hood ratio threshold and Newman-Pearson strategy, may be applicable. However,
it is apparent from Figure 6 that the additional refining assumptions used in
these models may not be necessary for interpreting the major effects of alcohol
on decision behavior.

While increasing frequency of driving decision errors with increased
BAC has been found by other researchers, the interpretationof which behavior
component is primarily responsible for this increase has been inconsistent.
Comparison between studies is confounded becau,e of differences in tasks,
reward and penalty conditions, alcohol treatmentmethods, and analytical
approaches. However, the results can be interpretedand compared as follows.
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In agreement with our results, four of the five other studies commented
on here found increased risk taking with increased alcohol intake. Cohen,
Dearnaley, and Hansel, Reference I, in evaluating bus drivers' willingness to
drive through a cone-delineatedgap found the n1_ber of attempts increased
with alcohol intake. Lewis and Sarlanis, Reference 11, using a simulated traf-
fic signal, found the number of go responses significantly increased under
alcohol. Light and Keiper, Reference 12, also found an increased number of
attempted passes in a simulated overtaking and passing task. Finally, Elling-
stad, McFarling, and Struckman, Reference 13, in evaluating lserformanceon
laboratory analogs of automotive passing tasks with multiple discriminant

-. analysis, found the discriminant "riskiness/indecisiveness"increased with
alcohol. This discriminantincluded a positive loading on passing attempts.
The only exception to this trend was presented by Snapper and Edwards, Refer-
ence 2, who found no significant change with Ea.Cin the number of attempted

i lane changes through a given gap size on their closed course.

i The interpretationof these data as resulting from changes in psychomotor
skill, perceptual ability, or cognitive risk acceptance varies between authors.
Re-analysis is difficult because only two of these studies took sufficient
measures to delineate changes in decision strategies. Cohen, et al., Refer-
ence I, asked the bus drivers to indicate levels of confidence expressed as
the number of times out of five the driver thought he could succeed in driving
through the different size gaps. The estimates did not change significantly
on the average for the narrowest accepted gap; however, the accepted gap size
decreased with increased alcohol intake. Therefore, he assumed "If the diffi-
culty of the task remained unchanged, they became more optimistic and attached
a higher subjectiveprobability to the task." The variances in the estimates
were not reported. Cohen concluded that the primary effects of alcohol were
to decrease psychomotor skill and deteriorate "judgment,"where we interpret
judgment to include mean perception. Snapper and Edwards, on the other hand,
asked their subjects for subjective probabilities and found no significant
change in the mean for a given gap size. As they found no change in the mean

i subjective estimates and no increased risk taking, but with increased failures
in execution, they concluded that the primary effect of increasing BAC was

I degraded psychomotor skill. Again, no data on the effects of BAC on the consis-
tency or variability of the subjective probabilities were presented.

By comparison,our findings agree with most of these results but not with
the authors' interpretations. As in most of these studies, we found increased
risk taking and no change in risk acceptance, i.e., no change in the mean sub-
jective estimate for a given intersection. However, our data suggest that
increased risk taking is primarily due to increased variance or inconsistency
in perceptual estimates. This interpretationcould also explain the results
found by the first four authors mentioned above if data on mean and variances
of subjective estimates were available. The disparity between this conclusion
and Snapper and Edwards' conclusionmay be due to at least two factors. Their

lane chan_task placed m?re emphasis on psychomotor execution than does the
_r'reB'_signallight task, hence their results may have been more sensitive
to this type of degradation. In fact, we found considerable degradation in
the consistency of psychomotor performance in the other tasks in our driving

! scenario (Reference7). In addition, a fundamental difference between our
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simulated driving tasks and those of both of the previous studies using sub-
Jective estimates is addition of temporal pressure. Our subjects were required
to form their estimates in "real time" as opposed to the "stop action" type of
judgments and driving scenarios used in previous studies.

Thus, the behavior skills required for the decision-making tasks of the
other researchers are somewhat different from those studied here. Allowing

i::.,these differences, the other studies may have had the same cause for the
_ic_'easedrisk taking as measured here, namely, distorted perception, but they
did not present sufficient data to determine it.

In summary of previous decision-making studies, those aspects of our
results which are directly comparablewith previous research largely agree

with those findings. Risk _ generally increased with increasing BAC.
Interpretationof previous work beyond this point is difficult because of
insufficientmeasures. However, that work does not disagree with the current
conclusion that the_e is no change in risk acceptance. Our interpretation

of these results, that perceptual distortion is a primary cause of alcohol-
induced increased risk taking observed for simple tasks, is new.

C_CI_SZCa8

An expected value model accounted for the effects of perceptual noise
on decisions for drivers in a simulated signal light task. With this mod:,
analysis of the significant changes in behavior for increasing BAC indicaGed
no changes in risk acceptance; that is, subjects did not change their subjec-
tive criterion level. The primary cause of the increased risk taking found
for intersectionstimed with a low probability of succese was increased incon-
sistency or variance in their subjective perceptual estimates.

These results have ramificationsboth for researchers in this field and

those attempting to apply the results. In future human decision-_king work,
measures of inconsistency in perception should be given as much attention as
measures of central tendency. Also suggested by these results is that one
method of reducing drinking driver errors may be to improve the driver's per-
ceptual environment to decrease his inconsistency. We could expect these
results to generalize the effects of alcohol on other such real-time decision
tasks as aircraft and spacecraft control. In addition, the analytical frame-

i work used here may be useful in evaluating the effects of other drugs and
stressors on human decision behavior.

This work was supported by the Department of Transportation,National
Highway Traffic Safety Administration,under Contract No. DOT-ES-_-OO999.
The views expressed in this paper are those of the authors and do not neces-
sarily represent those of the National Highway Traffic Safety Administration.
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