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PREFACE 

The Soil Moisture Workshop was jointly sponsored by the National 

Aeronautics and Space Administration, Goddard Space Flight Center 

(NASA/GSFC) and the United States Department of Agriculture Science 

and Education Administration (USDA-SEA). The joint sponsorship of the 

Workshop by NASA and the USDA emphasized the widespread interest in 

soil moisture which served as the catalyst to encourage participation 

of tbose individuals involved with the various facets of soil moisture 

measurement and application. The keynote addresses by Carl Carlson of 

the USDA and Leslie Meredith of GSFC depicted the USDA's needs for soil 

moisture information and NASAls role in addressing those needs. 

The Soil Moisture Workshop was held at the United States Depart­

ment of Agriculture National Agricultural Library in Beltsville, 

Maryland on January 17-19, 1978. The objectives of the Workshop were 

to evaluate the state of the art of remote sensing of soil moisture; 

examine the needs of potential users; and make recommendations con­

cerning the future of soil moisture research and development. To 

accomplish these objectives, smal~ working groups were organized in 

advance of the Workshop to prepare position papers. These papers 

served as the basis for Chapters 3, 4, and 5 of this report. 

The chairmen and committee members of the Workshop working groups 

were the key to the successful dialogue and exchange of ideas. The 

chairmen for these groups were: Ray Jackson, Reflection and Thermal 

Infrared; Ted Engman and Chris Johannsen, Applications and Users; 

Thomas Schmugge, Microwave and Gamma Radiation; and Don Moore, 
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Recommendations and Summary. The members of the working groups are 

listed in Appendix C, and their contributions are gratefully 

acknowledged. 

The concensus of the Workshop committee on Recommendations and 

Summary are listed in Chapter 7. The Workshop members concluded that 

significant progress had been made in the development of remote sensing 

techniques for estimating soil moisture and that some useful applica­

tions for soil moisture information had been demonstrated to substan­

tiate a research-oriented program for the development of an operational 

system for the remote sensing of soil moisture. 

Special thanks are due to Ted Engman and his staff at the USDA­

SEA Hydrology Laboratory who served as the hosts for the conference 

and Lynette Nelson of the Remote Sensing Institute at the South Dakota 

State University for her assistance in the organization of the Workshop 

and the preparation of the initial manuscript. 

The recommendations and conclusions presented in this conference 

publication are those of the Workshop members and do not necessarily 

represent the policy and program direction of NASA and USDA. 
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CHAPTER 1 

FORMATION OF THE SOIL MOISTURE WORKSHOP 

The need for repetitive soil moisture data over broad land areas 

has become apparent for such applications as crop yield forecasting, run­

off prediction and general circulation modeling. Limited research pro­

grams related to remote sensing of soil moisture have been undertaken by 

the USDA, NOAA, USDI, and NASA using the reflected solar, thermal infra­

red, microwave, and gamma ray regions of the electromagnetic spectrum. 

To optimize the results of these investigations, a need for improved 

coordination of these research efforts was recognized. Similarly there 

is also a need for establishing lines of communication with potential 

users of soil moisture information to inform them of the current state 

of the art in soil moisture sensing. Recognizing these needs, NASA 

funded the Remote Sensing Institute of the South Dakota State University 

to organize a Soil Moisture Workshop to bring together the principal 

agencies and individuals who were investigating the remote sensing of 

soil moisture or who had soil moisture requirements. The objectives of 

the Workshop were to: 

1. Evaluate the state of the art of remote sensing techniques 

2. Examine needs of potential users 

3. Make recommendations as to the future of soil moisture re­

search and development 

To accomplish these objectives small working gy'oups (5 to 10 mem­

bers) consisting of appropriate scien'tists, engineers and users were 

organized. Each group issued a position paper from their respective 
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meetings. These position papers formed the basis for one-half day 

presentations at the Soil Moisture Workshop by each of the work groups. 

The Workshop, held in Beltsville, Maryland on January 17-19, 

consisted of keynote speakers from USDA and NASA, three one-half day 

sessions involving presentations and discussions, and a summary and 

recommendations session to finalize the Workshop report. 
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CHAPTER 2 

REMOTE SENSmG AS A TOOL IN 
ASSESSING SOIL MOISTURE 

Carl W. Carl son 
Assistant Administrator 

Agricultural Research Service 
U.S. Department of Agriculture 

Washington, D.C. 

The responsibilities of providing adequate food and fiber for 

future generations while conserving our soil, water, and air resources 

is of great concern to our national leaders and scientists. If we are 

to meet these }'esponsibilities, the precision of our prediction 

capability has to be improved. 

We will continue to live with a delicate balance between the 

supply of and the demand for essential food and fiber. This balance 

is so delicate that the variability in our normal climate can upset 

it. We will continue to have periods of excess rainfall which will 

be randomly interrupted by periods of rainfall deficiency. Half of 

our agricultural production comes from the semi-arid and arid regions 

where droughts are the most severe and frequent. The area also 

experiences seasons with excess rainfall. 

A combination of low farm prices and drought can be disastrous. 

The IIDust Bowl" days of the Thirties are an important part of 

American history. The current unrest among farmers stems from low-

farm commodity pri ces and uncertainti es associ ated with drought 

conditions similar to the Thirties. 
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Variability in precipitation accounts for the large recent 

i rri gation development in thi s country. I Y-ri gation gi ves the farmer 

and the banker security. Although only about 10 percent of the 

cultivated land in the U.S. is irrigated, about one-fourth of our 

gross agri cultural income is from these lands. Every drought results 

in the drilling uf additional irrigation wells and the depletion of 

reservoir water. The large well development is responsible for the 

groundwater mining that has occurred in this country. That agri­

cultural demands account for 85 percent of the overdraft is causing 

the urban population and politicians concern. Every indication 

suggests the competition for water between the rural and urban 

communiti es wi 11 become more intense. 

Because of an adequate supply of surface and ground water in the 

recent past, agriculture has not made the most efficient use of our 

water resources. Speci al i sts in the fiel d estimate that i rri gated 

crops benefit from only about half of the water applied. The 

competition for water and the overdraft on our groundwater resources 

make it imperative that agriculture make more efficient use of water 

in the future. 

Excess water can also upset the balance in our food and fiber 

production. Many of our serious plant diseases flourish during wet 

periods. Excess rainfall during the ripening stage and harvesting 

of our feed grains can reduce crop yields and quality appreciably. 

The wet period late in the 1977 season in Canada and the Northern 
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Plains caused reduced \'/heat yields and poor quality. An appreciable 

portion of the 1977 corn crop in the Southeast could not be marketed 

because of aflotoxins. Aflotoxins develop when the crop is subjected 

to prolonged wet periods after the grain has matured. 

Yields on lands with poor surface drainage can be seriously 

.reduced by crop innundations. Frequently, yields are reduced because 

of delayed planting on poorly drained lands. High rainfall at planting 

time also causes most of the erosion that occurs on these lands. 

We urgently need better techniques for relating the i~pact of 

water stress or excess water on crop yields. The accuracy with which 

we cat; predict how too much or too little water will affect crop 

yields depends largely on how well we understand the interaction of 

soil water and plants. There is a real need for a better understanding 

of how too much or too little moisture affects crops at their different 

phenologic stages. When these relationships are understood, they can 

be reduced to a mathematical model. The effecti veness of these 

models must be confirmed by field data and the use of tools like 

remote sensing. 

So;l moisture is the critical variable in all prediction models. 

It is basic to scheduling irrigation, to predicting runoff. and to 

forecasting soil erosion. The farmers schedule field operations 

based on soil moisture conditions. Agribusiness uses regiGnal soil 

moisture data as a tool in developing their plans for the movement 

of fertilizer and pesticides. 
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Man has used remote sensing since the beginning of civilization .. 

He climbed hills to scan for game. When he gained access to the small 

airplane, he periodically flew over his farm or ranch to survey his 

crops. When aerial photography became available, it was accepted 

rapidly by the agricultural community. 

When satellite imagery became available, the photograph received 

an unbelievably harci sell. This hard sell promised a data base for 

solving most of the problems facing agriculture. In the past, many 

were impressed by the "pretty pictures. II The fact that the payoff to 

agriculture from satellite imagery has been limited has caused some 

to become obsessed with the desire to deemphasize the satellite 

program. Congress and OMB plan to schedule hearings to gain a better 

understanding of the contribution made by space sci~nce. This 

information will be used to set budget priorities. 

The Secretary of Agriculture has given crop prediction a high 

priority and has requested that research and action agencies provide more 

reliable and rapid methods for monitoring and predicting domestic and 

global crop conditions. If we are to meet the request, the Department 

has to have better mathematical models to work with. Confirmation of 

these models will require the input of remote sensing techniques. The 

capability of surveying large areas on a recurring basis is most 

important. 

In the Department, the best known crop yield prediction project 

is the Large Area Crop Inventory Experiment (LACIE). In this 
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experiment, satellite sensors are used to estimate the acreages planted 

to different crops. However, statistical and climatological yield 

prediction models are used to arrive at harvest figures. Therefore, 

LACIE does not yet have a remote sensing operationally implementable 

crop yield model. The models used depend on ground-based measurements 

and agronomic data. 

For sometime ARS scienti sts have emphasi zed the need fo\" a better 

under-standing of crop response to such environmental stresses as moisture, 

temperature, and solar radiation. Recently, our administrators pro­

vided the resources to support these studies which will assess the 

importance of stress to crops at various phenological stages. 

Although we are quite excited about the feasibility of measuring 

soil moisture by i~ernote sensing, we recognize the problems involved. 

Albedo measurements can be used to delineate the three classical 

stages of soil drying, but use of this technique is limited to 

bare soil. 

The use of microwave technology appears to be useful for measuring 

near surface soil moisture. This information is of importance to agricul­

turalists for predicting such things as wind erosion, crop germination, 

and water infiltration rates. Although microwave systems are experimental 

to date, there appears to be a good probability that data will become 

available in a format compatible with other data sources. While the all­

weather capability of the microwave system has real appeal, the application 

of data from this tool does have limitations. Surface soil moisture 
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can be ephemeral. Land surfaces ha Vel· ground cover duri ng mos t of the 

growi ng season. However, the assessment of crop stress for a 

combination of canopy temperature and ·albedo measurements appears to 

have great potential for predicting crop yields by remote sensing. 

This technique utilizes the innate ability of the plant to integrate 

soil and atmospheric moisture. 

What can the scientific community do to ensure that agriculture 

~ets maximum benefit from remote sensing? Firstly, it is important that 

the experiments be done by scientists with agricultural training and ex­

perience. I emphasize this point because we must understand a system 

before we can describe it. The plant response to water stress or water 

excess differs depending on the plant and the phenological stage. 

Plants reflect stress in different ways. Some crops, like alfalfa 

and beans become darker when deficient in water. Tobacco plants wilt 

when subjected to excess water for an extended time. 

Secondly, interpretation of remote senSing data (from film or 

computer printouts) is not different in principle from the interpre­

tation of other experimental data. Because of the area involved, 

however,ground truth validation can be very costly. A working 

knowledge of the soil resources can be a real asset for obtaining 

ground truth data. 

Thirdly, most of the attempts to use remote sensing in prediction 

models has been to modifying existing models to take advantage of 
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the capabilities of new sensor techniques. There has been sufficient 

success to convince scientists that ren~te sensing can be a good tool. 

The real benefits will come when prediction models are developed to 

take advantage of our capabilities in remote sensing. 

It has been said that if we can land men on the moon there 

is no reason why we can't predict crop yields from satellit~i.-· -­

However, science and technology in the problem-solving area is not 

looked upon as it once was. We have seen a new era of realism in 

political attitudes toward the problem-solving capability of research. 

The fact that the war on cancer, which was declared in 1971 and 

conducted at a cost of billions of dollars, is now recognized to: have had 

a negligible effect on cancer survival rates creates a credibility 

problem for science. In the energy field, little credence is now 

given to the proposition that research and development are the keys 

to energy independence in the U.S. The once endless frontier 

associated with research is now regarded as very limited. 

I am not saying that there is a mood of defeatism about research. 

I am saying that we must face reality and recognize that in applying 

remote sensing to agriculture we have problems of poor resolution, 

infrequent data, and slow data process'lng that have to be resolved. 

Landsat gets data every 18 days; crop growth, energy balance, and 

hydrologic models increment daily. The long periods required to 

acquire data tapes reduce their value i~ predicting yields. 
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Finally, I would like to identify a few high ptiority researchable 

problems in the remote sensing area. First, any procedure which could 

spectrally estimate ground cover would provide a tool badly needed in 

agriculture. One of the values would be for predicting crop yields 

and fOr providing "ear1y warning changes II in the quantity and quality 

of our important crops. Methods for quantifying soil and atmospheric 

water and relating these values to crop ~2rformance would be invalu­

able. These water values would also be valuable for hydrological 

predictions. The quantification of water resources in storage on a 

routine basis should be rather easy to obtain and would be valuable 

to natural resource managers. Whether one is studying vegetation 

resources~ crop production constraints, or aspects of the hydrologic 

cycle, there is a need for good weather data on a daily basis. There­

fore, our cooperative efforts need the inputs of NOAA's meteorological 

satellite data applications program. 

In summary, I think all of us are optimistic about the use of 

remote sensing data in agricultural decision-making. Few remote 

sensing programs in agriculture are operational, but several will be 

eventually. Agricultural scientists are now asking how remote 

sensing can be used to verify a mathematical crop model or test a 

hypothesis. The high cost of remote sensing research makes it 
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imperative that NASA, NOAA, andi:JSDA work together toward a common 

goal. I am confident that, if we can work together, remote sensing 

can contribute to the data base that will be required by tomorrow's 

farmer in his decisicn making. 
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REMOTE SENSING OF SOIL MOISTURE 

A NASA VIEWPOINT 

L. H. Meredith 
Acting Director of Applications 
NASA/Goddard Space Flight Center 

Greenbelt, Ma~yland 

Since my field of specialization is not soil moisture, I hope 

you'll no~: take my comments as being those of a technical expert. Rather 

they should be interpreted -as being from an individual who has had ex­

perience with many NJ\.SA technici:\.l programs.. Carl is truly an expert in 

soil moisture and he has outlined many af the possible uses of such infor-

mation. I will try to add a few points in terms of where NASA might be 

able to help by providing observational and information handling 

capabil i ti es. 

To determine how NASA could help, it is necessary to understand the 

function of the Agency.. First of all, it should be recognized that NASA 

has no operational responsibilities for satellite observational systems. 

We are basically a research and development group. However, we want to 

develop space technologies that will be useful. As a result, meetings 

like this can be very helpful in terms of synthesizing the observational 

needs of a broad spectrum of users and providing guidance in terms of the 

areas in which it would be most beneficial for NASA to concentrate its 

research and development activities. The second point I want to highlight 

"is that in addition to building space hardwciTe, NASA has very active pro-

grams dealing with the pro~essing and manipulation of data. These include 

programs aimed at putting data into forms useful for researchers or 
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demonstration projects. For many programs, the efforts necessary to put 

the data into useful forms will be even more technically challenging 

than the building of the space hardware. As a final point, it is im­

portant that the applicability and usefulness of the data obtained be 

determined. In some cases NASA does this unilaterally but in many cases 

this requires close cooperation with other Agencies. 

To date there have been a number of flights of observing instruments 

on both airplanes and satellites by NASA which have shown that it is pos-

sible with remote sensing instruments to make measurements which seem (;0 

be related to soil moisture. While the observations are generally also 

sensitive to other parameters, it appears that there is now a reasonable 

basis for optimism that remote sensing can be useful in making soil 

moisture measurements. These observations have been in the visible, 

infrared, and active and passive microwave areas. 

The problem is to formulate a program which best meets the most 

important applications. Such potential applications could include: crop 

yield predictions, water runoff, farm management, climate forecasting, 

pest control, fire potential, extent of rainfall, plant disease prediction 

and wind erosion potential. To formulate such a program, it is necessary 

that for each appli~ation of soil moisture information the measurement 

requirements be quantified for system parametars such as: spatial reso'u-

tion, temporal resolution, depth of measurement, accuracy of measurement, 

timeliness of data, format of data, and correlative information. The 

first four of these parameters are generplly recognized; however, the last 

three are at 1 east equally important -and need to be recogni zed if the data 
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is going to serve a useful function. Specifically, when the observing 

system is designed it is important that the plan include provisions for 

making the information available when it is needed and in a form which 

is useful for the particular application. Finally, it needs to be 

recognized that space observations only provide one source of data re­

lated to soil moisture. The total system should include the ability to 

incorporate the space data with the data obtained from other sources 

such as weather stations, geologic maps, ground truth test sites, etc. 

With this information as background, it is clear that there are 

many questions which this Workshop should consider. First, should NASA 

initiate a program to further develop the ability to remotely measure 

soil moisture? While my personal opinion is that there is a basis for 

optimism that such a program could provide significant soil moisture 

information, you should assess whether this view is correct or whether 

other means of obtaining soil moisture information would be better. 

Secondly, if a development program is justified then what should be its 

objectives in terms of capability for measuring soil moisture? Thirdly, 

what are the initial and intermediate steps that need to be taken to 

meet these objectives? Finally, what types of research pt'ograms should 

be implemented that meld space and non-space measurements and study the 

resulting soil moisture measurement capability. 

It is important in your considerations that you not look at just 

passive microwave, or just active microwave, or just infrared when con­

sidering the possibilities for making remote observations of soil moisture. 

It may well be that a multiple instrument observing system is best. The 
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working group structure that has been established for this workshop tends 

to split microwave observations from visible and infrared obs2rvations. 

As a result, communications between the working groups may be appropriate 

to see whether a combined system might not be desirable. It is also im­

portant to recognize that in addition to any space observing system de­

signed especially for so~l moisture measurements, there are many other 

satellites in orbit that can provide information applicable to the soil 

moisture problem. Included are the NOAA and Landsat satellites. It may 

be that significant effort should be placed on getting the data from 

these other satellites into forms useful for soil moisture studi.es. The 

final point that I want to make is one that I have mentioned previously 

but wanted to stress again. It is that space observations are but one 

potential source of soil moisture information. We need to make sure that 

we do not focus only on the space observations when considering the soil 

moisture program. 

With these comments, I hope you have a very producti ve wor.kshop and 

thank you for your giving me this opportunity to express my views. 
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CHAPTER 3 N79-163·33 
APPLICATIONS OF SOIL MOISTURE INFORMATION 

CONTRI BUTORS 

C.J. Johannsen and E.T. Engman - Co-Chairmen 
B.J. Blanchard, O. Bockes, D. Brueck, J. Deardorff, 
J.L. Heilman. L. Myrup. and M. Keener 

A. INTRODUCTION 

The general consensus of the Application Working Group and those 

users surveyed is that soil moisture information is of significant 

value in a number of applications. Much of the user community can be 

identif.ied as potential rather than present users of soil moisture 

information because of the current absence of data. It is difficult 

for users to clearly define their needs in terms of accuracy, 

resolution, and frequency. However, it is the consensus of users that 

once an operational program for acquiring soil moisture information is 

developed, numbers of users and applications will increase. 

This paper discusses the needs of specific users within the areas 

of agriculture, hydrology, and meteorology. Sections are also included 

on the importance of drought, foreign needs for soil moisture 

information, some specific requirements for data information systems, 

and agency and organization uses of soil moisture. 

B. DROUGHT 

We know that a deficiency in plant available soil moisture reduces 

crop production, but precise definition of drought is difficult. There 

have been definitions of drought for nearly every discipline and it is 

usually defined in terms of how it affects a specific discipline. 
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An agricultural drought is concerned with soil moisture deficiencies 

related to crop yield. This varies depending upon the crops and the 

region where they are grown. If irrigation water is available the economic 

impact of drought will be reduced. 

A hydrologist will think of drought as a deficiency in precipitation 

or runoff. He may consider this in terms of a decline in ground water 

levels or in the amount of water held in a reservoir. The measurement 

will usually be in terms of a deviation from a normal, a relationship 

which is found in most definitions. 

A meteorological drought will be concerned with a deviation from 

the normal climate such as the amount of precipitation received compared 

to the normal or mean precipitation for that location. Systems or 

indices such as the Palmer Drought Index have been used to classify 

drought severity using the difference between actual monthly precipitation 

and that required to meet the demands of evapotranspiration. Both the 

duration and the magnitude of the abnormal moisture deficiencies are 

considered. 

A drought becomes recognizable only after a period of time has 

passed. The termination of a drought is almost as difficult to detect 

as the beginning since it may be temporarily interrupted by one or more 

short precipitation periods. A knowledge of soil moisture at any given 

time by location becomes extremely important when discussing drought 

and determining its potential and actual impact. 
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C. AGRICULTURE 

Soil moisture as mentioned earlier is important to the growth of 

all vegetation. As we consider the growth of cultivated crops, range, 

and forest, soil moisture is considered directly or indirectly by 

many different users in each stage of their production. Agricultural 

crops have optimum soil moisture regimes. Drought or excessive moisture 

d~viations from those optimum levels will reduce immediate and future 

yield, increase possible damage and losses from pests, and may result in 

the complete loss of the crop. 

1. Crop Production 

Approximately 20% of the land area in the United States is utilized 

for cultivated crops. Production of crops has become extremely 

important in foreign trade and the balance of our nation's trade. deficit. 

Table 3-1 presents eight distinct stages of crop production that 

are affected by soil moisture. The soil moisture conditions at each 

stage and the users of the information are listed. Only the primary 

users have been identified since most agricultural related industries, 

agencies and producers utilize the information of each production stage 

at one time or another. 

During the growth and development stages, the farmer or producer 

is concerned with a number of practices which he uses to stimulate 

growth, quality and yield of his crop. Some of these practices include 

fertilization, water management which includes both irrigation and 

drainage, and cultivation and/or harvesting operations. The control of 

pests such as weeds, insects or pathogens has fostered a number of 
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Table 3-1. Soil Moisture Conditions at Different Stages of Crop 
Production and Interested Users at each Production Stage. 

Production Stage 

Planning (Acreage 
& Yield 
Predictions 

Ground 
Preparation & 
Planting 

Germination 

Growth and 
Deve1opment---

Nutrient supply 

Water management 
irrigation 

Water management 
drainage 

Soil Moisture Conditions 

Estimates of plant available 
water being received in 
winter months for a time 
period prior to planting. 
Yield prediction models will 
utiHze soil moisture by the 
week through the growing 
season. 

Trafficability for farm 
equipment. This 
information needed on an 
area-regional basis. 

Adequate moisture for seed 
germination is needed. 
Information on too little 
or too much moisture is 
important. 

Adequate moisture flow 
needed for root uptake. Too 
much moisture affects roots 
and causes loss of nutrients 
(anaerobic conditions and 
leaching) 

Plant stress indicates need 
for irrigation. Need to 
determine efficient use of 
available water. Limited 
water-need to determine 
most advantageous time to 
apply. 

Waterlogged soils cause 
anaerobic conditions which 
affects nutrients, root 
respiration, etc. 
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Users 

Producers, Policy­
makers, commodity 
markets, transpor­
tation, storage, 
agricultural input 
industries. 

Equipment and 
repa i r parts 
manufactu'rers, 
chemical industries 

Producers, seed 
companies, chemical 
industries. 

Planning users, 
especially fertilizer 
industry. 

Irrigators and water 
planners. 

Producers, drainage 
districts. 



Table 3-1 Continued 

Production Stage 

Pest Management 
Weeds 

Insects 

Pathogens 

Maturing-(Yield 
Estimates) 

Harvest 

Soil Moisture Conditions 

Weeds take moisture from 
economic plants. Soil 
moisture conditions need to 
be known for best 
incorporation of herbicide 

Soilborne insects need 
adequate moisture for 
reproduction cycle. 
Insecticide application 
and incorporation are 
dependent on soil 
moisture 

Soilborne pathogens need 
adequate moisture for 
reproduction cycle. 
Fungicide application and 
incorportation are 
dependent on soil 
moisture 

Need to know moisture at 
specific stages of growth. 
Some stages have more 
influence on yield than 
others. Need also 
predicted moisture or 
precipitation. 

Trafficability of harvest 
equipment dependent on 
soil moisture. Vulnerable 
at excessive moisture not 
only to inability to harvest 
but to lodging and quality 
deterioration due to 
increase in pathogens and 
insects. 
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Users 

Producers and 
chemical industry 

Producers and 
chemical industry 

Producers and 
chemical industry 

Policymakers, 
commodity markets, 
transportation, 
storages, agricultural 
input industries. 

Producers, equipment 
industries, trans­
portation, storage 



industries which not only supply the chemicals but also custom apply 

them for the producer. All of these management practices are related to 

the soil moisture conditions because soil moisture determines when the 

practices are most efficient. 

Data and information requirements for soil moisture are variable 

at the different production stages (Table 3-2). Highest accuracies are 

required during yield estimates, irrigation scheduling and pest control. 

More frequent coverage at a higher resolution is required when greater 

economic gains or losses are at stake. 

Table 3-2. Soil Moisture Information and Data Requirements at Different 
Crop Production Stages 

Accuracy Frequency Reso1~tion 
Crop Production Stage Level * (Days) (km ) 

Planning {Acreage & Yield 
Predict; ons 3-5 7-20 1-15 
Ground Preparation & 
Planting 1-3 5 .5-1 
Germinati on 3 5 1-10 
Growth & Development 

Nutt'i ent Supply 3 7-10 1-10 
Water Management-Irrigation 5 3 .5 
Water Management-Drainage 3 3-5 1-10 
Pest Management 5 3 .5 
r~aturi ng- Yi e 1 d Estimate 3-5 3-10 .5-1 

Harvest 3 3-7 .5 

* 1 = General accuracy of High, Medium or Low 
2-4 = Gradation between accuracy 1eve1 1 and 5 

5 = ±4% accuracy by value measurement 
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Leaching of soil nutrients, deposition of saline or alkaline 

deposits, and flushing of agricultural chemicals in surface runoffs 
y 

are of concern because of their impact on the environment. Movement 

of herbicides, fungicides and insecticides within the soil water are 

also a direct economic concern to the farmer. More accurate soil 

moisture measurements would assist in better planning to reduce their 

losses. 

2. Range Production 

About 40% of the land area in the u.s. is suited or used for 

pasture and range production. Some of the same pra~tices or production 

stages listed in crop production are of interest to range managers and 

to wildlife managers. Ground preparation and range reseeding, brush 

removal programs, scarification and other practices are used to prepare 

seedbeds that encourage germination and growth Df desirable forage 

pl1ants. At the same time some of these practices discourage the growth 

of undesirable species such as weeds and poisonous plants. The range 

producer should be concerned with the problems of erosion and soil 

damage which can result during ground preparation and planting phases 

if the soil is too wet (soil compaction, puddling, etc.) or too dry 

(wind erosion). 

Range and wildlife managers may use a number of techniques such 

as timing of herbicide application to control poisonous or noxious plant 

species. Deferred grazing is used to prevent compaction damage to wet 

soil to permit the germination of desirable species. Practices such as 

salting, fencing and water imrpovements are used to distribute grazing 

more evenly. 
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3. Forest Production 

About 30% of the U.S. land area is utilized for timber related uses. 

Many aspects of the production stages listed under crop production will 

also apply to timber production. The forester will be concerned about 

soil moisture conditions suitable for" ground preparation and planting 

twice in one crop cycle. Seedlings are frequently grown in nurseries 

where the nurseryman faces problems in seedbed preparation and adequate 

soil moisture conditions for germination and seedling survival. A few 

years later the seedlings are transplanted. In suitable terrain, planting 

of the seedlings is a mechanized operation involving trafficability 

problems for tree planters. They also must remove enough existing 

vegetation that the seedlings can compete for sunlight, nutrients and 

soil moisture. 

The forester may not only irrigate and fertilize in his nursery 

but will also apply pesticides to control competing brush, weed trees, 

insects and diseases. Applications must be timed to critical periods 

in the life cycles of the pests which are frequently dependent on soil 

moisture, temperature and plant phenological stage. 

4. Pest Management 

Pest management has been discussed in terms of crop production 

but there is another important aspect which deals with public and 

animal health. Some pests follow a life cycle that depends on soil 

moisture and temperature conditions. Altering these conditions to any 

extremes will disrupt their life cycle. 

The effect of shallow water bodies and the increase of mosquito 

production and its effect on public health is a familiar one. The 
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increase of the screwworm and its effect on cattle production in the 

southwest is an example of concern for animal health. 

There are a number of users which are concerned about conditions 

which affect pest epidemiology including the Horld Health Organization, 

Public Health Service, Food and Agricllltural Organizations, Agency 

for International Development, and state veterinarians. 

The Environmental Protection Agency has increased its regulations 

covering the use of pesticides. In terms of pest management for crop 

production, all applicators of any pesticides for commer'cial purposes 

must be certified. In addition to farmers and chemical manufacturers 

and dealers, other user groups that have an interest in soil moisture in-

formation as it affects pests are the Regional and Environmental Science 

Centers of NOAA, a number of agencies within USDA (Extension Service, 

Statistical Reporting Service and Agricultural Research Service), 

aerial applicators, and farm broadcasters. 

5. Soil Classification 

Soil classification is called soil taxonomy and is a hierarchy 

system wherein soils are divided into orders, suborders, great groups, 

subgroups, families and series. Soil moisture regimes are a very im­

portant part of soil taxonomy. Soil moisture regimes are defined in 

terms of the ground water 1 eve 1 and the presenC(~ or absence of \,/ater 

held at a tension of less than 15 bars of atmospheric pressure in the 

root zone. 

The "aridic" and "torric" moisture regimes are normally found in 

very arid climates. Ar.idosol is one of ten orders in the soil taxonomy 

system which describes dry soils. Therefore the distinction of dry 
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soils has b~en considered extremely important since it is described 

at the highest level of the sQi1 taxonomy sysl.;::m. 

The "aquadic" (wet) moisture regime implies a reducing regime that 

is virtually free of dissolved oxygen because the soil is saturated 

by grouri~ water or by water of capillary fringe. The "udic" moisture 

regime implies that in most years the soil moisture control section is 

not dry in tiny part for as long as ninety consecutive days. "Ustic" 

moisture regime is an intermediate between aridic and udic regimes. 

The concept is one of limited moisture but the moisture is present at 

a time when conditions are suitable for plant growth. The "xeric" 

moisture regime is that typified in the Mediterranean climates where the 

winters are moist and cool and summers are warm and dry. In all of 

these moisture regimes, there are variations of temperatures. These 

moisture regimes are found in tne suborders of soil taxonomy. 

Descriptive terms refen'ing to t~ese moisture regimes are found 

throughout the other classification categories. 

Soil moisture is an important factor in the mapping of soils and 

their classification. Soils are being mapped under the National 

Cooperative Soil Survey programs to determine the location and extent 

of different soils and the properties important to their use. Soil 

maps with inte~'pretations are used by farmers to determine what crops 

are most suitable, by planners for locating areas to their best use, 

by builders concerned with soil properties that affect their structures, 

and many other users. 
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A soil scientist will map soils by 'id,entifying distinct properties 

that characterize each separate soil series. The series may have a 

phase modifier which represents an additional important characteristic 

of that soil. Therefore a soil series may typically be well drained 

but could also have a somewhat poorly drained phase. These phases 

are referred to as soil drainage classes. Soil drainage classes are 

very poorly drained, poorly drained, somewhat poorly drained, well 

drained, moderately well drained and excessively drained. Specific 

criteria are utilized to separate each of the different drainage classes. 

It should be noted that soil moisture, soil water movement and 

soil drainage are related to soil texture (texture is defined as the 

size of individual soil particles). Coarse textured (sandy soils) 

8enera11y drain faster and dry quicker than fine textured (clay) soils. 

6. Wetland Inventory 

The U.S. Fish and Wildlife Service has begun an inventory of 

wetland and aquatic habitats of the United States. Since 1975, an 

extensive effort has been undertaken to develop a system which could 

categorize wetlands on a national scale. Previous classification 

systems were applied on a regional basis. 

For the new classification system, wetland is defined specifir~lly 

as land where the water table is at, near, or above the land surface 

long enough each year to promote the formation of hydric soils and to 

support the growth of hydrophytes as long as other environmental 

conditions are favorable. Pennanently flooded lands lying beyond the 

deep water boundary of wetlands are referred to as aquatic habitats. 
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Detection and measurement of water and soil moisture are extremely 

important to the wetland classification system. 

D. HYDROLOGY 

The hydrologist is concerned with precipitation, irrigations 

infiltration, runoff, and evapotranspiration. There are many factors 

pertaining to the hydrologic cycle (Fig. 3-1) that are closely related 

to soil moisture. The land surface and soil blocks as shown in 

Fig. 3-1 affect all aspects of water movement except when the 

atmosphere and water bodies interact directly. Soil moisture is 

important because it affects the rate and capacity of water movement 

in the land surface and soil. 

Several important stages of the hydrologic cycle were explored for 

their importance to user clientele. The accuracy needs, frequency of 

coverage and resolution requirements of the users were estimated 

(Table 3-3). Further discussion of the data requirements are found in 

a separate section at the end of the paper. 

1. Runoff Potential 

The National Weather Service of the National Oceanic and Atmospheric 

Admi,nistration ~;.3s the primary responsibility for flood hazard warnings. 

However, flood-flow measurements by the U.S. Army Corp of Engineers and 

the U.S. Geological Survey of the Department of the Interior are reported 

to forecasters to aid in the warning system. Current methods of tunoff 

prediction depend on adequate separation of the precipitation into 

infiltration, runoff, and surface storage. 
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Fig. 3-1. The hydrologic cycle from an 
engineering viewpoint (after 
Eagleson, 1970). 
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Table 3-3. Needs of Soil Moisture Information and Data Requirements in Hydrology. 

Soil Moisture Applications & Identified Users 

'Runoff Potential: 
. Federal Users: NOAA-NWS, USACE, SCS design engineers, 

USBR, HUD Flood Insurance Program 
·State Users: Highway Departments and Water Resources Centers 
·County and City Governments 
·Private Power Companies 

·Erosion Losses: 
·Federal Users: Design Departments of USACE, USDI and USDA-SCS 
·County Organizations of Governments 
'Farmers Organizations 

·Reservoir Management: 
·Federal Users: USACE, USBR 
·State and Local Users: Water Resources Centers 
·Private Power Companies, regional planners, recreation industries 

·Infi1tration for Trafficabi1ity and Structure Design 
·Federal Users: USACE, USDA-SCS 
·State Users: Drainage Districts, Planners 
·Private irrigation design engineers, mining engineers, developers 

. ~Jater Qual i ty 
.Pesticide and Nutrient Losses: 

Accuracy 
Level* 

1** 

3 
5 
3 

1 
3 
3 

5 
5 
5 

·Federal Users: EPA, FDA, USDA-SCS 5 

* 

·State Users: Water Resources Centers 3-5 
·Private irrigators, farm organizations, feed lot operators, 

hydrologic engineers, planners and developers. 1-3 

1 = General accuracy of High, Median and Low 
2-4 = Gradation between levelland 5 

5 = ±2% accUi'acy by volume measurement. 
** = Data refer only to the users on the respective line in the table 

Frequency 
(Days) 

3-7 

3 
3 
3 

3-7 
3-7 
3-7 

3 
3 
3 

3 
3 

3-7 

Resolution 
(Km2) 

5-25 

5-25 
.5 
1 

5-25 
.5 
.5 

.5 

.5 

.1 

.1 
.1-.5 

5 



Forecasting models require accurate estimates of soil moisture or 

antecedent precipitation as an index of soil moisture. Forecasts as 

well as predictions of runoff from ungauged watersheds should be 

improved with reliable estimates of soil moisture. These same models 

are used to establish design criteria for dams, bridges, culverts, and 

channel control devices. Improvement in the prediction capability 

of the models will result in improved design that can save construction 

costs and improve water quality. 

2. erosion Losses 

Estimation of erosion and sedimentation transport is a primary 

concern of design engineers. When present techniques are used, 

sedimentation yield is attributed to soil losses from fields and from 

bank erosion and gullies. Moisture conditions in the soils affect 

the weathering processes and the ultimate supply of sediment to the 

stream. However, the runoff process, which is affected by soil moisture, 

is the primary mechanism for erosion and sediment transport. Unfortunately, 

present design procedures have not been developed to the point where 

soil moisture is used in calculating erosion and sediment transport. 

Measurement of soil moisture combined with remote sensing data 

that meaSure the extent of gulley area could enhance the prediction of 

sediment transport 'into the water storage structures and sediment 

traps. The need for production control is primarily in the upstream 

drainage systems. Builders of dams for flood detention or power supply 

are: very concerned with predi cted vol urnes of sediment. Sediment 

transport is also a concern to those responsible for water quality 

sin~e pesticides are transported by sediment particles. 
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3. Reservoir Management 

Reservoir management models depend on runoff models that 

calculate inflow to the impoundment. Improvement in water runoff 

prediction with additional soil moisture data will improve the 

management mode but new models that can incorporate soil moisture data 

must be developed. The allotment of the water for specific uses is 

very dependent on the amount of water in the reservoir and that which 

can be predicted. 

4. Infiltration 

Infiltration rate or rate of depletion of surface soil moisture 

is a critical soil interpretation used by those developing irrigation 

systems, predicting watershed runoff, determining ground water 

recharge, etc. These rates must be known before any water balance 

model can be updated effectively. Almost all infiltration models 

have one or more parameters that are dependent upon the soil moisture 

before water application. Drying rates also determine how early soils 

can be subjected to tillage or heavy traffic. Time series of soil 

moisture measurements can be used to help determine these rates. 

5. Water Quality 

Water quality monitoring and management are the responsibility 

of many federal agencies with the Environmental Protection Agency 

setting the standards to be followed. The agencies must seek EPA's 

approval of proposed work that may influence water quality. The 

movement of water in soils can transport pollutants and nutrients 

into the ground water supply. Modelling soil water movement requires 
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a reliable measure of soil moisture. It should be mandatory that 

soil moisture measurements be related to more than one depth level to 

develop more precise models. 

Most water quality analysis depends upon runoff from the land 

surface or percolation out of the root zone. The influence of soil 

moisture here is indirect through its control of the rate of runoff. 

However, soil moisture does have a direct influence on the rate of 

the mineralization of nitrogen which can affect efficiency of nitrate 

fertilizer applications. Excess fertilizer may end up as a pollutant 

in a waterway or the groundwater. 

E. CLIMATE AND WEATHER 

The ability of soil to store water and release it through evapo­

transpiration is important in climate forecasting. Much of the 

precipitation that falls in the interior of continent originates on 

land. Thus, soil moisture anomalies in the root zone can affect 

regional climate for an entire growing season . 

. Evapotranspiration is the combined loss of water through the 

process of evaporation and transpiration. Many methods exist for 

predicting or measuring evapotranspiration; a compilation of the 

various estimation techniques is given in a treatise by Jensen (1975). 

Evaporation may occur from water surfaces or bare soil while evapo­

transpiration occurs when a canopy is present on the surface. 

Idso et al. (1974) described the various stages of evaporation 

from a bare soil surfaCe. During first stage when the surface is 

wet, the rate is limited only by the availability of energy to the 
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surface. As the surface dries the rate decreases and is controlled 

by the transfer of water to the surface. The length of time between 

stage 1 and 3 evaporation depends on the surface soil moisture and 

the energy available to the surface. Therefore, the rate of soil 

evaporation depends upon the soil moisture content. 

Evapotranspiration from a canopy depends on the soil 

moisture available in the volume of soil occupied by active roots, the 

type of canopy, and the energ~ input to the system. There are only a 

few methods which accurately predict evapotranspiration with limited 

water availability (Jensen, 1975; Kanemasu et al., 1976). Soil 

moisture supplies control the rate of water supply to the roots but 

the canopy controls the rate of water loss to the atmosphere through 

stomatal regulation. 

Of the evapotranspiration models that are available few are 

applicable over large regions and few account for the soil moisture 

in the profile except through a sOil moisture balance. Research is 

needed in the following areas: 

* Spatial variability of soil moisture in the field and its 
effect on the integrated evapotranspiration for the field. 

* Evapotranspiration models which are applicable to large 
regions. 

* Experimental procedures for defining the spatial and 
accuracy requirements. 

The accuracy and spatial resolution requirements vary for each 

application. For individual fields the accuracy of soil moisture may 

have to be 2 to 3% (volume basis) for the upper two meters of the 

soil profile and the spatial resolution on the order 5 to 10 m2. For 
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large regional applications the accuracy may be relaxed to 5 to 10% 

(volume basis) for the upper two meters of the profile and the spatial 

resolution to 10,000 m2• 

F. FOREIGN USES OF SOIL MOISTURE INFORMATION 

The economy of the United States is tied very loosely to that 

of other developed nations, and with many important and long-range 

trade aspects of dev~loping nations. Soil moisture infonnation can be 

utilized in similar ways in other developed nations as has been 

discussed for the United States. For developing nations, the 

importance of soil moisture data is in the prediction of current food 

production and assistance of agricultural land development. 

The importance of accurate weather predictions and soil moisture 

supplies has been, recognized by such projects as the Large Area 

Crop Inventory Experiment (LACIE). The initial planning phases of any 

project of land development require reliable data on soils, vegetation, 

water and other resources. Soil moisture can, as shown in previous 

sections, influence crop selection, timing of planting, and crop 

yields, but the decisions are of a more primary concern. Current 

reliable data also have an influence on the location and method of 

infrastructure development. 

Since the passage of Title XII Act of 1976, U.S. Land Grant 

Colleges have taken a more aggressive and realistic role in foreign 

agricultural development. The need for planning information including 

soil moisture status, would be extremely helpful to these programs 

as well as to ongoing programs of foreign governments, Food and 
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Agricultural Organization, Agency for International Development, 

foundations and private development financiers. 

G. DATA REQUIREMENTS 

Three important criteria in providing soil moisture information 

are timel iness, accuracy and adequacy of coverage. ~1any users when 

asked about their requirements of these criteria will reply that they 

need the information as accurately and rapidly as possible with updates 

every few days. When one really presses the user there are some 

important aspects that should be considered when developing data 

acquisition systems. 

Most users like to be alerted to deviations from the expected or 

the normal as soon as possible. Initial announcements need not be 

extremely accurate, but the alert of a problem is important. This is 

especially true for crop conditions, low water supplies, changing 

temperatures and other potential problems that affect many users. 

Therefore, timeliness of information is more important initially 

than accuracy. 

After the alert of a problem, refinement of a specific answer 

should begin. Most users are quite tolerant of a week's time in 

obtaining that refinement. Decision makers are already looking at a 

number of options and will make the decision of which option to follow 

when specific data has arrived or when a time period has been reached 

where a decision must be made. 

Measurements or estimates of surface soil moi sture are of 1 ittle 

value to agriculture. Data are needed Tor depths of at least 1 meter 
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I 
and preferably 2 meters. This is the zone of maximum root accumulation 

and therefore water uptake by the plant. 

H. AGENCY/ORGANIZATION USES 

Following are summaries of uses of soil moisture information and 

activ.ities related to soil moisture that were submitted by various 

agencies and organizations. 

1. Forest Service 

The Forest Service uses soil moisture information in three major 

areas as follows: 

* Soil moisture as related to plant growth 

- time of planting for forest regeneration, range seeding, etc. 

- species selection 

- site productivity 

* Soil moistLlre and hydrologic relationships 

- predicting soil runoff, flood and erosion hazard 

* Soil moisture and soil mantle stability relationships 

- road construction and other engineering activities 

In all three areas the Forest Service needs the ability to determine 

and/or predict the soil moisture content at a given time. 

Presently the Forest Service uses soil moisture regimes, identified 

by direct moisture measurements, to predict soil moisture content at 

a given time. Because on-site measurements are costly and time 

consuming, the Forest Service more often estimates soil-moisture 

regimes on the basis of the type of natural vegetation on the site. 
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2. Statistical Reporting Service (SRS) 

Soil moisture is undoubtedly very important in its effects on crop 

yields. SRS has a definite interest in soil moisture because the 

agency estimates and forec.asts crop yields. At maturity, crop yields 

can be measured and estimated directly from sample surveys. Forecasts, 

when crops are approaching maturity, can also be based upon direct 

crop measurements as lIinterpreted ll through appropriate forecasting 

models. Use of physiological models which incorporate soil moisture 

among other variables are therefore of greatest potential value in 

providing early to mid season forecasts. Currently several physiological 

models are being evaluated. All depend to some extent on soil moisture. 

If the utility of any of these models is provet" and if they are 

adopted as an operational method, SRS could utilize more comprehensive 

soil moisture information. However, present needs for SRS soil moisture 

information are limited to specific research sites. 

3. Soil Conservation Service (S~ 

The Soil Conservation Service is interested in soil moisture as 

it relates to drought and soil classification. To aid rural drought 

disaster or potential drought areas, SCS needs improved knowledge of 

soil moisture. If SCS could deliver useful information on the 

spatial extent of drought conditions and probable future moisture 

availability, better resource management decisions could be made. 

The principal drought related needs of SCS are: 

* A system for drought forecasting that allows the government 

time to gear up with assistance pro'grams 
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* A signal whereby SCS can adjust its operation to focus on 

drought related assistance 

Soil moisture needs of SCS related to soil, classification are: 

* Water content at saturation by family 

* Saturated and unsaturated hydraulic conductivity by family. 

Some present and proposed soil moisture studies include: 

* A study to determine moisture status and temperature of dry , 

soils in the southwest to determine the length of time the 

soils are dry to aid in classification 

* A study of the physical properties of soils in watershed 

hydrology 

* A survey conducted by the National Soil Survey Laboratory to 

study effects of para1ithic contacts on hydraulic conductivity 

* A planned soil moisture study in eight of the major agricultural 

regions in the U.S. to verify and improve soil moisture models 

for determining and evaluating wetness and drought, and to 

improve soil classification with respect to moisture regime 

* An agreement with the Agricultural Research Service to expand 

a site specific watershed evapotranspiration model to an area 

wide evapotranspiration model 

4. Agricultural Rese~rch Service (now SEA-FR) 

The Agricultural Research Service, in its research capacity, is 

interested in soil moisture because of its importance to: 

* Physiological processes of crop and range plants that affect 

growth and yield 

3-23 



* Irrigation requirements and sched~.i1 ing 

* Hydrology -- especially runoff, erosion, and water supplies 

* Drought, drainage needs, trafficabi1ity, habitat of insects 

and pathogens 

* Land suitability and capability 

5. U.S. Sur-eau of Reclamation (USSR) 

The Division of Water Operation and Maintenance of USBR requires 

soil moisture and related information for wide-area application of its 

Irrigation Management Services (IMS) program. The goal of IMS is to 

achieve optimum operation of entire irrigation projects. The IMS 

program presently includes portions of 26 irrigation projects in 12 

western states and involves fie1d-by-field irrigation scheduling and 

operational coordination of farm water demand throughout irrigation 

projects I storage and distribut'ion systems. Several functions are 

performed periodically (daily, bi-week1y, etc.) including monitoring 

soil moisture using neutron probes, tensiometers or similar equipment; 

computerized water budget analysis of evapotranspiration and 

consumptive use; and accounting of irrigation and cropping patterns. 

Soil moisture and related information needed for application of IMS 

include: 

* Identification of land mass receiving irrigation 

- total irrigated vs. non-irrigated acreage 

- crop identification and acreage 

- field boundary mapping 

* Surface moisture conditions (indication of recent irrigation or 

preci pi tati on 
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* Crop growth stage 

* Cultural operations (periodic harvesting of alfalfa) 

* Identification of areas of crop stress 

* Identification of drainage problem areas and high watsr tables 

The Hydrology Branch of the Division of Planning Coordination has 

the following soil moisture and related requirements: 

* The ability to identify farms and fields receiving irrigation 

water 

* Coverage, depth, and water content of snow 

* The soil moisture condition of a drainage area prior to snow 

coverage 

* The soil moi stuY'e condition of a drainage area before and after 

a precipitation event 

* The soil moisture condition of a drainage area before and after 

a flood 

* The soil moisture condition of a field at the beginning and end 

of a growing season 

* The soil moisture condition of irrigated fields at the head and 

lower ends after irrigation 

The Land Utilization Section of the Resource Analysis Branch is 

interested in soil moisture because of its importance in economic land 

classification for sustained irrigation. Planning studies for water 

and land resource development include determining moisture retention 

properties, infiltration characteristics, and permeability conditions 

of soil. In addition to direct soil moisture considerations, land 
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classification is also concerned with related conditions of soil 

salinity, root penetration, and aeration within the root zone. 

6. U.S. Geological Survey 

The Water Resources Division of USGS is conducting several research 

studies that include soil moisture as a variable. Although soil 

moisture needs are somewhat peripheral to most of the water resource 

investigations, a number of hydrologic studies require soil moisture 

infonnation. Current activities related to soil moisture are: 

* A study of the dynamic movement of water from the soil surface 

to an aqu·Her. The hydrau1 i·I;: characteristics of the soil types 

and the avail abi 1 ity of the \1.!dter to move through the soi 1 s are 

of primary concern. 

* A study devoted to development of ground water supplies and 

soil and water conservation for public land. If the degree of 

soil wetting or moisture depletion can be determined synoptically 

and at frequent intervals, the infonnation would be useful for 

management decisions on use of resources of the arid west. 

* Development of model for runoff analysis. Volume and timing of 

surface runoff from rainfall Or snowmelt are influenced by soil 

moisture conditions immediately preceding the event. These 

antecedent soil moisture conditions vary temporally and spatially, 

and include factors such as slope, aspect, soil type, and 

vegetation type and density. 

* A study of erosion and sediment~tion 
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* Wetlands studies. Although wetland soils are often saturated, 

some fringe areas may be dry during certain times of the year, 

and these dynamic conditions may be important in understanding 

wetland hydrology. 

* National water-use inventory. The Water Resources Division has 

been directed to conduct a national water use inventory that 

includes domestic, agricultural, and industrial uses. One of 

the more difficult aspects of the inventory is identification 

of irrigated areas. 

* A study of water movement in karst terrain and fracture zones. 

Remote sensing, particularly thermal imagery, has been used to 

identify sink areas in karst terrain, and to study water 

movement through fracture zones. 

7. Army Corps of Engi neers 

The Waterways Experiment Station of the Corps of Engineers 

is interested in soil moisture monitoring and forecasting because soil 

moisture has a major influence on performance of different types of 

military vehicles and is a factor in estimating stream levels and 

predicting flooding. For military application, estimating soil moisture 

without recourse to in situ field measurements is desirable. 

In the late 1940's the Waterways Experiment Station (WES) began 

studies on mobility of military vehicles. It was obvious that soil 

moisture to a depth of about 12 inches had a major influence on soil 

strength and vehicle mobility. Mobility studies are still und(~t'i!iay 

and it appears that reasonably accurate forecasts of soil moisture will 
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be possible utilizing a soil moisture model with information from 

meteorological monitoring and forecasting, and remote sensors. 

Recent developments in computers, mathematical modeling and 

remote sensing have added a new dimension to hydrology. The Waterways 

Experiment Station is presently conducting a study in military 

hydrology which is intended to improve the hydrologic capability of the 

armed forces. The major difference between military and civilian 

hydrology is the restrictions on access to the watershed under military 

operation, making remote sensing an essential aspect of the study. It 

is felt that a soil moisture model compatible with remote sensing 

systems will be necessary to estimate moisture as a function of depth and 

to forecast soil moisture conditions throughout the watershed for 

several days in advance. 

8. Agency for International Development (AID) 

AID is interested in soil moisture as it relates to drought and 

desertification in developing countries. Lack of rain, shifting winds, 

and overgrazing are among the factors that contribute to desertification. 

If the drought that affected the Sahel in Africa could have been 

anticipated, arrangements could have been made earlier to supply and 

distribute food to the affected areas. Thus, AID is interested in 

development of remote-sensing techniques to anticipate the need and 

supply food to drought affected areas. Soil moisture is one of the 

parameters that is important in drought monitoring. 

9. NASA 

As part of the LACIE program, NASA/JSC is interested in improving 

yield technology through soil moisture sensing. At the present time 
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the capability exists to run some soil moisture budget models using 

ground meteorological data. What is needed is an improvement over 

the current state of the art. Soil moisture estimates are required 

not only for bare soil, but for a developing canopy as well. 

Preliminary LACIE yield model/soil moisture requirements are as 

follows: 

* Soil moisture profile measurement requirements 

- resolution between field size .and (15 km)2 grid 

- water content to within flO percent of value with 

specification of depth of water 

- depth of profile to beneath root zone 

- repeat every 18 days to update soil moisture models to more 

frequent repeats if dictated by integration with yield models 

- soil moisture yardstick invariant through crop season i canopy, 

tillage variations, topographic difference, time of day 

* Detailed requirements are being developed through assessments 

of performance of competing yield modeling approaches. 

NASA/GSFC, in response to the Interdepartmental Committee for 

Atmospheric Sciences report A United States Climate Plan, has developed 

a plan for using NASA observational capabilities to advance practical 

understanding of the behavior of climate systems. The climate spectrum 

has been divided into four separate but interrelated portions: 

* Current state of the climate 

* Regi ana 1 cl i·mate whi ch occurs on a time scale longer than a month 

but shorter than a decade 
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* Climate which occurs on time scales of a decade or longer 

* Climate produced by man's activities on all time and spatial 

scales. 

The ability of the soil to store water and release it through 

evapotranspiration is important in climate forecasting. Soil moisture 

requirements of the NASA Climate Program are summarized in Table 3-4. 

Table 3-4. Soil Moisture and Rel ateci Requirements of the NASA Cl imate 
Program 

Desired Base Spatial* Temporal * 
Parameter Accuracy Req'uirement Resolution Resolution 

Surface soil 
0.05 cm3 H20/cm3 moisture soil 4 levels 500 km 1 month 

Soil moisture 0.05 cm3 H20/cm3 soil 4 levels 500 km 1 month 
(root zone) 
Evapotrans-
piration 10% 25% 500 km 1 month 
Plant water 
stress stress/unstressed 500 km 1 month 

*The values for the spatial and temporal resolutions were determined by cur­
rent model inputs, finer resolutions may be required tn obtain these data. 

10. NOAA 

NOAA's primary interest in soil moisture is to improve infiltration 

estimates so that runoff and water supply can be computed more accurately. 

The Office of Hydrology (O/H) within the Weather Service is responsible 

for providing river and water-supply forecasts for the United States. 

To meet these requirements mathematical models are used to provide river 

stage forecasts based on various watershed and hydrometeoro10gical 

parameters. Soil moisture is one param~ter that could significantly 

improve river and water-supply forecasts. Research at the O/H currently 
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involves gamma-ray data, collected by aircraft, to obtain averaged soil 

moisture values and a theoretical accounting approach to soil moisture. 

Research at NESS combines aircraft and ground measurements with 

various types of satellite-acquired data (microwave, thermal and 

near-IR and visual) to find techniques that can provide basin-wide 

estimates of soil moisture. Our program involving soil moisture began 

in 1970 at Tempe, Arizona, under a contract with Aerojet E1ectrosystems. 

The study measured, via ground-based radiometers, the effect of varying 

soil moisture content of bare soil on microwave brightness temperatures. 

Later studies used airborne passive radiometers to obtain data from 

sparsely and heavily vegetated areas in Arizona and New York, 

respectively. 

Resy1ts from these surveys indicated that changes in soil moisture 

from bare or sparsely vegetated fields can be detected, particularly at 

soil moisture levels above the wilting point, using the longer wave­

length radiometers (6 and 21 cm). The analysis of microwave data from 

heavily vegetated test sites near the Finger Lakes in New York was 

inconclusive due to heavy thunder showers that fell between overflights 

leading to significant changes in the microwave characteristics of the 

terrain owing to the variable soil moisture conditions. 

Gamma radiation is attenuated by water, hence the attenuated 

gamma-ray signa,l from naturally occurring radiation in the ground is 

an inverse function of soil moisture. Experiments in Arizona have been 

conducted for NOAA by EGG, concurrently with the microwave experiments 

under the direction of NASA/GSFC. Results were in general agreement 

with soil-sampled data. Unfortunately the gamma-ray technique is limited 
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by atmospheric contamination of the signal and the data must be obtained 

from low-flying aircraft (150 m). A further limitation is the necessity 

of first calibrating a given area before useful data can be obtained. 

The percent reflectance of wet soils is usually about 10 percent 

less than the percent reflectance for dry soils, with the greatest 

difference in the near-IR (0.7 to 1.0 lim). A study funded by NOAA 

(Earth Satellite Corp.) looked at Nimbus-3 near-IR data from the high-

resolution infared radiometer. It was possible to detect, in a gross way~ 

wet areas following 24-hour rainfalls exceeding 2.5 cm. Landsat MSS data 

of fields west of Phoenix, Arizona, showed an inverse relation of soil 

moisture to reflectance for bare fields in both the visible and near-IR 

portions of the spectrum. However, vegetated fields showed a direct 

relation between soil moisture and reflectance in the near-IR but no 

change in the reflectance in the visible (0.5 to 0.6 lim and 0.6 to 0.7 lim). 

The ultimate objective of the NOAA/National Environmental Satellite 

Service (NESS) program of remote sensing of soil moisture is to develop 

a satell He sensor to measure soil moisture in 1 arge river basins to 

improve flood and water-level forecasts. At present the long-wavelength 

passive microwave radiometer looms as the best potential sensor. However, 

before passive microwave techniques are used operationally to assess 

soil moisture quantitatively, additional theoretical work and basic data 

collection need to be made. 

11 . Jet Propu 1 s i on Laboratory 

Areas where progress must be made for obtaining quantitative soil 

moisture information from satellites are: 
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* perform well calibrated airct'aft and ground-based studies to 

improve the basis for deriving empirical models of effects 

of roughness and vegetation cover. 

* Improve current theoretical/empirical models to optimize system 

design parameters, develop data interpretation techniques, and 

increase the accuracy of soil moisture estimation. 

* Investigate multiple sensor approaches, data analysis techniques, 

and associated problems. 

JPL has planned a joint microwave/thermal infrared soil moisture program 

to contribute to the above-mentioned areas of interest. The JPL four­

frequency ground-based microwave radiometry system, and infrared and 

micrometeorological equipment will be used to collect data from fields 

in the San Joaquin Valley area of California. 

12. Kern County 'Water Agency 

The Kern County Water Agency in Kern County, California, has 

cooperated with various universities and organizations in evaluation of 

phenomena related to soil moisture, particularly in evaluating problems 

related to drainage. Some of these studies and activities are: 

* Monitoring development of perched water tables 

* Evaluating crop damage within drainage problem areas 

* Landsat-aided evaluation of water demand 

* Radar study of soil moisture 

* Thermal study to establish surface thermal properties and 

soil moisture profiles 

* Landsat evaluation of crop stress and crop damage. 
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I. KEY-POINT SUMMARY 

* Present and potential users consider soil moisture information 

to be very important 

* Uses and applications of soil moisture information will expand 

once an operational system is developed 

* Very few present and potential users of soil moisture information 

can define their data needs in terms of accuracy, resolution, 

and frequency of coverage 

* Timeliness of soil moisture information is as important as 

accuracy 

* A program for coordinating and disseminating soil moisture 

information should be developed. 
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CHAPTER 4 
N79-16334' 

SOIL MOISTURE ESTIMATION USING REFLECTED SOLAR 
AND EMITTED THERMAL INFRARED RADIATION 

CONTRIBUTORS 

R.D. Jackson - Chairman 
J. Cihlar, J.E. Estes, J.L. Heilman, A. Ka~le, E.T. Kanemasu, 
J. Millard, J.C. Price~ and C.L. Wiegand 

A. INTRODUCTION 

Classical methods of measuring soil moisture such as gravimetric 

sampling and the use of neutron moisture probes have been useful for 

cases where d point measurement is sufficient to approximate the water 

content of a small surrounding area. However, there is an incre~sing 

need for rapid and repetitive estimations of soil moisture over large 

areas. Remote sensing techniques potentially have the capability of 

meeting this need. We will examine the use of reflected-solar and emitted 

thermal-infrared radiation, measured remotely, to estimate soil moisture. 

Physical, chemical, and electromagnetic properties of water are 

fundamentally different from those of dry soil materials. When water 

is added to soil, the properties of the resultant system change with 

the change in water content. In general, the amount of solar radiation 

reflected from the soil surface decreases with increasing water content. 

These changes in reflectance can be quantitatively related to the water 

content of the surface skin of soil. On the other hand, the amount of 

thermal radiation emitted from the surface is affected by the temp!erature 

of the surface which in turn is affected by the thermal properties of 

the soil/water system. Thus, a measure of emitted thermal radiation is 

indicative of the soil moisture within the layer of soil that infl\i!,~i1ces 

surface soil temperature. 
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B. GENERAL OVERVIEW 

For the purpose of presenting an overv'iew of the vast amount of 

work that has been reported, the following discussion will be divided 

into the reflected and the emitted thermal IR, although a sharp 

separation is not always possible. Agrometeorological models that use 

remote sensing inputs are also discussed. 

1. Reflectance Techniques 

In the 0.4 to 2.5 ~m range, the emitted component can be neglected 

at temperatures typical for the earth1s surface, leaving the bidirectional 

reflectance as the only target parameter affecting the signal level 

measured. Atmospheric transmittance and path radiance effects can be 

computed (Selby and McClatchey, 1975; LaRocca, 1975). Consequently, 

variations in measured spectral radiance can be observed which are only 

due to changing bidirec't10nal reflectance (provided that the incident 

radiance is uniform). 

To determine soil water content from the above measurements, the 

effect of soil water and other variables on the'bidirectional reflectance 

must be known. However, in only a limited number of studies has this 

factor been measured, and then usually for dry soils. Thus, the effect 

of moisture content and other soil variables is usually expressed in 

terms of the directional spectral reflectance, defined as bidirectional 

reflectance integrated over the upper hemisphere. Th~ rlirectional 

reflecta~cc is a function of the direction of illumination only. Never­

theless, these measurements are useful since the spectral dependence 
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established by means of directional measurenlents can be extr£lpo1ated for 

the bidirectional case (Maxwell, 1976). 

This discussion of the reflection technique does not include 

effects of polarization. Although correlations between the index of 

polarization and soil moisture content have been reported (Stockhoff 

and Frost, 1971; Stockhoff et a 1., 1973), i nsuffi c i ent data are 

available for a thorough evaluation of this method. As pointed out by 

Stockhoff et a1. (1973), however, this approach may warrant closer 

attention because of its lack; of sensitivity to geometry and surface 

roughness. 

Numerous measurements have shown that soil spectral reflectance 

increases between 0.25 pm and 0.80 or 1.00 pm (Condit, 1970; Von Minnus, 

1967; Blanchard et al., 1974; LARS, 1970). When water is added, the 

spectral reflectance decreases in this wavelength range (Von Minnus, 1967; 

Condit, 1970). The spectral reflectance vs. soil moisture curves have 

similar shapes with a negative slope when plotted for ind'ividual wavelengths 

(Fig. 4-1). At high moisture contents, the reflectance values level off 

to a relatively constant value; in some studies (Von Minnus, 1967; Cihlar 

et al., 1971; Sewell and Allen, 1973; Blanchard et al., 1974), increases 

in reflectance were observed which can be attributed to specular 

reflection. 

The absolute magnitudes of reflectance values vary considerably. 

A major parameter responsible for these differences is the spectral 

reflectance of a dry soil. Following laboratory measurements of 160 

surface soil samples from various parts of the U.S., Condit (1970) 
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divided .the soils into three groups on the basis of the shapes of sp'ectral 

reflectance curves: soils with reflectances which increased throughout 

the spectral range 0.32 to 1 .00 ~m; soils with spectral reflectance 

rising rapidly between about 0.35 and 0.75 llm but slowly beyond 0.75 llm~ 

and soils with reflectances increas:ing slowly until 0.53 '11m, fairly 

rapidly to 0.75 llm, and then leveling off or decreasing at about 0.82 pm 

before rising again to 1.00 llm (Fig. 4-2). These differences in spectral 

reflectallces are due to chemical and mineralogical compositional variations 

(Krinov, 1953). As a rule, organic matter components (particylarly 

humic and fluvic acids) decrease soil reflectance values throughout the 

visible spectrum; ferric oxide increases spectral reflectance between 

0.53 and 0.58 llm, especially if present as coating Gn soil particles; and 

quartz, carbonates, and some secondary soil minerals increase reflectances 

throughout the visible spectrum (Obukhov and Or10v, 1964; Steiner and 

Gutterman, 1966). 

Texture and s.tructure affect soil reflectance. After examining 22 

southern Ontario soils ranging from sand to silty clay, Cihlar et al. 

(1971) concluded that at a given moisture content, the soil reflectance 

(expressed as the total reflectance in the 0.36 to 0.78 llm region) 

increased with increasing proportion of fine particles (Fig. 4-3); the 

relationship was sensitive to small changes in soil texture. Furthermore, 

thle constant low reflectance was reached sooner by the coarser soils. 

Myers and Allen (1968) reported that fine-textured soils can have structures 

that give them the characteristics of qggregate coarser than sand. 

Structureles$ soils reflect as much as 15 to 20 percent more solar 

radiation than soils with well-defined structures (Myers, et al., 1975). 
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According to Obukhov and Or10v (1964), the moisture content at which 

reflectance becomes constant corresponds to the full c~pi11ary moisture 

capacity. Similar concJusions were reached by Janza et a1. (1975) who 

also discussed the effect of various soil components on spectral 

reflectance. 

Surface roughness is an important modifier of the spectral 

reflectance. It contributes to shading which results in a decreased 

reflectance value; for example, Coulson and Reynolds (1971) found that 

the directional reflectance of a dry disked Yolo loam (clod size from a 

few millimeters to 10 cm) was almost identical to that of a Yolo loam 

with a completely wet and very flat surface (Fig. 4-4). This effect 

is probably enhanced by the multiple reflections which increase for 

rough surfaces, thereby decreasing reflectance (Or10v, 1966). 

a. Bare Soil s 

In a controlled ground experiment, Idso et a1. (1975c) measured 

the directional reflectance (0.3 to 2.5 ~m band) and water content for 

a smooth Avondale loam at various depth intervals from 0.0 to 10 cm. 

After correcting reflectance measurements for solar zenith angle effects, 

they found a linear relationship with the soil moisture over the range 

0.0 to 0.18 cm3/cm3 in the 0.0 to 0.2 cm layer. Similar relationships 

were also well defined for deeper layers but these were eVidently due 

to the close correlation between moisture contents at the surface and 

at various soil depths (measurements were carried out during four drying 

cycles following an irrigation with 10 cm of water). Reginato et a1. 

(1977) extended this study to airborne data collected over smooth and 

rough Avondale loam plots at different moisture contents. They confirmed 

the relationship between albedo and soil water content established by 
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Idso et al. (1975c). Consistent with previous laboratory results, they 

fC)lmd that ratios of amounts of radiation reflected in various bands were 

not related to soil water content in the wavelength range 0.45 to 1.03 ~m. 

Moore et al. (1975a) correlated Skylab S-192 multispectral scanner 

measut'ements (0.56 to 0.61,0.68 to 0.76, 0.78 to 0.88,1.55 to 1.75, and 

2.10 to 2.35 ~m) with soil moisture content of three different layers (0 

to 2, 2 to 10, and 10 to 30 cm) for 13 fields. The highest correlation 

coefficient which was highly significant (-0.672) was obtained for the 

2.10 to 2.35 ~m band and depth 0 to 2 cm. TvlO of the fallovi fields (wet 

and dry, respectively) could not be statistically separated at wavelengths 

shorter than 1.55 ~m. ~Javelengths greater than 2.1 ~m were required to 

reliably spectrally distinguish between wet and dry bare surfaces in the 

study area. 

According to Idso et al. (1974), the three stages of dryin~ (energy­

limited, transitional, and soil-limited) can be determined from directional 

reflectar.~e measurements; furthermore, the transitional stage evaporation 

rate can be computed by using directional reflectance as one of the input 

parameters along with potential evaporation, wet and dry soil reflectance 

values, and a soil type dependent coefficient (Jackson et al., 1976). 

b. Vegetated Soils 

In the presence of a vegetation cover. the total reflected radiation 

consists of the reflection by the soil modified by the plant ~anopy, and 

of the canopy-reflected component. Because of the high spatial and 

temporal variability and attendant difficulties inherent in recovering 

the soil spectral reflectance from the composite reflectance measurements, 

it appears unlikely that the same principle as for bare soils (i .e., 
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reflectance decrease following addition of water) can be applied. It may 

be possible, however, to use plants as, indicators of soil water content. 

Werner et a1. (1971) investigated the relationship between film densities 

and the available water content in the root zone for sorghum. They found 

that the 0.59 to 0.70 ~m band yielded the highest correlations with moisture. 

Another approach was used by Heilman et ale (1977) to determine soil 

water content of winter wheat fields in five states of the U.S. They em­

ployed an evapotranspiration model (with solar radiation, maximum and 

minimum air temperatures, precipitation, and leaf area index determined 

from Landsat data as inputs) to monitor the amount of water in the top 

150 cm of soil. The so~l moisture estimates compared favorably with the 

traditional Crop ~·10isture Index, and in addition, could be interpreted in 

terms of yield through the evapotranspiration model. 

c. Summary 

The results discussed above show that the soil spectral reflectance 

vs. water content relationship depends on several other variables such as 

spectral reflectance of the soil when dry, surface roughness, geometry of 

illumination, organic matter, and soil texture. Several of these vari-

ables are time invariant or could be so made by a proper choice of remote 

sensing mission parameters. Others, particularly surface roughness and 

surface cover, vary with time. Considering these effects and the fact 

that the reflected radiation varies with many factors in addition to soil 

moisture, direct measure of soil moisture is complicated. However, com­

pari son of temporal 1 andscape refl ectances ove'r short time peri ods, such 

as one day where all other variables are'relatively constant, may indicate 

differences in soil moisture for bare soil. For soils with vegetation, 
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o to 100% cover, the most effective use of reflectance data is to provide 

input into agrometeorological models for soil moisture budgets. 

2. Thermal Infrared (Emission) Technique 

The thermal infrared technique of soil water content estimation 

of bare soils is based on the relationship between surface soil 

temperatl!re and near-surface soil moisture (Cihlar, 1976). The soil 

temperature for a bare surface results f~om interactions amonQ four energy 

fluxes at the soil-air interface, namely net radiatlon R, sensible heat 

H, latent heat LE, and soil heat flux G; according to the energy balance 

equation, their sum is equal to zero. The magnitude of each flux depends 

on several parameters. Net radiation consists of the surface-absorbed 

shortwave sol ar radi ati on and longwave atmospheric counter-toadi ation, 

minus thermal infrared emission by the surface. Sensible heat is directly 

proportional to the vertical temperature gradient and a transfer coefficient, 

the latter being a function of surface roughness and wind speed., Latent 

heat flux represents the loss of heat due to evaporation from the soil; 

it depends on water transmitting properties, surface roughness, wind speed, 

and the vertical humidity gy·adient. Soil heat flux (G) can be expressed 

analytically for a homogenous semi-infinite soil, the surface of which is 

heated in a periodical manner, and time t (Sellers, 1965): 

where: 

G(t) = 1/2 (Ts,max- Ts,min) pw1/ 2 sin (wt + TI/4) , 

~ = (p CA)l/2, 

T = maximum value of the surface temperature; S,max 
T = minimum value of the surface temperature; s,min 
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t = time 

C = soil heat capacity, cal g-l Co,; 

S = soil thermal inertia, cal cm-2 C-l sec-l / 2; 

w = angular frequency, rad sec-1; 

A = soil thermal conductivity, cal cm-1 C-l sec-1; 

p = soil bulk density, g cm-3 

Surface soil temperature may be computed if the above fluxes or 

factors determining them are known. Models have been developed 

(Outcalt, 1972; Kahle, 1977; Rosema, 1975) which can be used to predict 

diurnal surface temperature changes for a given set of astronomical, 

site, and meteorological parameters (some of them as a function of 

time). Conversely, apparent thermal inertia may be determined from 

surface temperature measurements (Price, 1977); this step is important 

for soil moisture estimation from remotely obtained data. 

As the soil water content increases, the amplitude of the diurnal 

surface temperature wave becomes smaller; i.e. (Tstmax - Ts,min) decreases. 

This inverse relationship has been verified by Idso et al. (1975e) in 

a series of experiments (Fig. 4-5). Although the experiments were 

conducted at different times, the seasonal effects could not be detected 

and were probably overshadowed by other parameters such as varying wind 

speed. The inverse relationship was linear for (Ts,max - Ts,min) or 

for (Ts,max - Ta,max) (where Ta,max is air temperature measured at the 

time of Ts a) when soil moisture was measured for 0 to 2 or 0 to 4 cm ,m x 
depths. Idso et a1. (1976) found that the day-to-day effect of air 

temperature on the above relationship could be reduced using the 
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diurnal air temperature differential (Ta,max - Ta,min) as a 

normalizing factor. 

The modulating effect of soil water on the surface temperature 

is due to latent heat and thermal inertia. Since approximately 590 

calories are needed to evaporate 1 gram of water, less energy is 

available for warming the soil when the evaporation rate is high. 

Soil thermal inertia increases with increasing water content 

(Fig. 4-6), thus increasing heat conduction away from the surface. 

Note that both factors act in the direction of the (Ts,max - Ts,min) 

decrease with increasing moisture content. 

Soil thermal inertia is a function of the thermal conductivity, 

heat capacity, and bulk density, which are in turn related to the 

physical, chemical, and mineralogical composition of the soil. Watson 

(1975) has shown on the basis of experimental data that the thermal 

inertia of a dry soil is directly proportional to bulk density. At 

hi gher water contents, energy re1 ati ons o'f soil water affect not only 

thermal conductivity but also the extent to which water is available 

at the evaporation sites. Consequently, evaporation rate, the 

magnitude of latent heat loss, and (Ts,max - Ts,min) should vary 

between soil types at identical moisture contents. Idso et a1. (1975e) 

confirmed experimentally the soil type dependence of the (Ts,max -

Ts,min) vs. volumetric water content relationship. They also found 

that if soil water was expressed in units of pressure potential, 

this dependence was minimal. (Fig. 4-7). 

When a soil is covered with vegetation, the relationship between 

the received signal and Ts is considerably modified by the canopy which 
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acts as an attenuator of the soil emission and adds its own emission 

component. Secondly, the Ts vs. soil moisture dependence changes 

because the energy fluxes are affected by the presence of 

plants. Since these various interactions are very complex, it 

would be difficult to apply the same principles for soil moi"'sture 

detection under plant canopies as were used for bare soils. Howeve:-', 

a potential for soil moisture detection under canopies by thermal 

infrared remote sensing still exists and is based on the increase in 

plant temperature caused by reduced transpiration rate resulting from 

soil water deficiency. This relationship has been reported by Wiegand 

and Namken {1966}, Wiegand et al. {1968}, Thomas and Wiegand {1970}, 

Nixon et al. {1973}, Millard et al. {1977a}, and Idso and Ehrler {1976}. 

a. Bare Soils 

Reginato et al. {1976} conducted an experiment designed to confirm 

and extend results shown in Fig. 4-5. They measured Ts,max and Ys,min 

by three methods {thermocouples, hand-held radiation thermometer, 

airborne thermal infrared scanner} for smooth and rough (roughness 

elements 0 to 10 cm) Avondale loam plots, as well as gravimetric water 

contents at different depths and times of day. The results (Fig. 4-8) 

confirmed the inverse (Ts,max - Ts,min) or (Ts,max - Ta,max) vs. 

moisture relationships at water contents below field capacity, i.e., for 

the transitional and soil-limited evaporation stages. For moisture 

contents between saturation and field capacity, the temperature 

differentials remained approximately constant. Since thermal inertia 

decreases with decreasing moisture content (Fig. 4-6), the sudden 

change in the temperature differentials near field capacity points to 
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the importance of latent heat as ~ mechanism for modifying surface 

temperatures measured by the three methods (remote measurements were 

corrected for emissivity) as well as a reasonable time invariance of 

the relationships of moisture vs. temperature differentials (full dots 

in Fig. 4-8a, c represent measurements from previous experiments). 

Similarity between results for smooth and rough plots (Fig. 4-8a~ c vs. 

b, d) is somewhat surprising due to the role roughness plays in 

surface energy exchange; additional work is needed to determine whether 

differences in other parameters such as soil bulk density (not 

included in Fig. 4-8) are involved. 

Idso et al. (1975b) have shown that the two temperature 

differentials can also be used to estimate daily evaporation from 

bare wet and drying soils. Application of this method requires a 

knowledge of daily solar radiation, maximum and minimum air- temperatures, 

moist surface directional reflectance, and maximum and minimum surface 

temperatures. If potential evaporation values are available, actual 

evaporation can be determined from the temperature differentials alone 

(Idso et al., 1975d; Reginato et al., 1976). 

LeSchack et al. (1975) measured moisture content 10 cm below 

the surface and thermal infrared emission with an airborne scanner over 

bare and vegetated agricultural fields. Their analysis indicated a 

positive linear relationship between maximum surface temperature and 

gravimetric water content. The reason for the contradiction (compared 

to theory and other results) is not obvious; it might be related to the 

profile distribution of soil moisture at the sampled sites or the narrow 
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range of temperatures observed (3°e). Bartholic et al. (1972) used an air­

borne scanner to measure temperatures of bare and cotton fields which were 

under different moisture treatments. They obtained temperatures ranging 

from 29°e for well-watered cotton to 37°e for a dry cotton plot. Similarly, 

bare soil temperature was lowest for the wettest field and increased as 

moisture content decreased. Sumayao et al. (1977) found that for sorghum 

on warm days (air temperature greater than 33°e) the air was warmer than 

upper canopy leaves when the available profile soil moisture was greater 

than 35 percent of the maximum available soil moisture; below 35 percent 

of maximum available soil moisture leaves were warmer than air. 

During 1976, an experiment was conducted by the Canada Centre for 

Remote Sensing in southern Alberta to test the validity of surface 

temperature vs. soil moisture relationships in fallow fields. 

Preliminary results indicate that the relationship between surface 

temperature and soil moisture in the top 2 to 4 cm holds for partly 

mulched (straw) fields, although in a somewhat degraded form. Soil 

moisture determination may be improved by employing visible reflectance 

measurements. 

Moore et a1. (1975) studied the usefulness of Sky1ab S-192 

therma 1 i nfnH'i:~d: measurements for evapotranspi rati on and soi 1 

moisture mapping. They found that the 10.2 to 12.5 ~m band measurements 

correlated significantly with moisture contents in 0 to 2, 2 to 10, 

and 10 to 30 cm layers (correlation coefficients -0.64, -0.60, and 0.73, 

respectively); the data represented both fallow and alfalfa (10 to 

89% green cover) fields. Thermal infrared measurements could be used 
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to separate wet and dry fields but not various cover types; a reflective 

band would be suitable for the latter purpose. 

b. Vegetated Soils 

For agricultural purposes, one is interested in soil moisture pri­

marily because of its effect on plant growth. Since canopy temperature is 

moY'e directly indicative of plant water stress, it may not be necessary to 

know the soil moisture content if direct relationships could be established 

between canopy temperature and other parameters of interest such as yield. 

need for irrigation. etc. However. detection of increases in canopy tem-

perature may be too late for indicating it'rigation needs since yield may 

already be reduced. When viewing a cropped surface. if the vegetation is 

reflecting the soil moisture status. a potential exists for monitoring 

effective soil moisture over the rooting depths of the particular crop. 

Following this argument. Jackson et al. (1977) established that a running 

sum of daily values called IIStress Degree Days" (SOD) can potenti ally be 

used for irrigation scheduling. Millard et al. (1977b) confirmed feasi­

bility of this approach fOl~ fully grown wheat on the basis of airborne 

data. Similarly. stress degree days have been successfully correlated 

with the yield of wheat (Idso et al .• 1977). 

c. Summary 

The above discussion indicates that the thermal infrared techniques 

of soil water content estimation hold considerable promise. The main task 

appears to be a comprehensive testing of the concepts developed in con­

trolled ground experiments over various climatic regimes by means of air­

craft and satellite measurements. These tests should yield information on 

the operati onal feas i bil ity of the proposed concepts. I n add iti on. 1 imi­

tation of these concepts should be ascertained (for example, practically 
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all work so far has been site-specific under clear-sky conditions) to pro­

vide the basis for the choice of an optimum remote sensing method. 

d. Atmospheric Effects on Thermal Measurement 

Assuming cloud-free conditions a satell He radiometer may obtain 

an approximate val ue of surface temperatuf'e through the measurement of 

the energy emitted by the surface. Such measurements are usually 

carried out in the atmospheric spectral "window" between 10 and 13 ].lm. 

Thermal emission measurements may also be carried out at night in 

another "window" at approximately 3.7 ].lm. Inference of surface 

temperature is not feasible at this wavelength during daylight hours 

because reflected sunlight adds to the signal) producing too high an 

estimate of surface temperature. 

When accurate values of surface temperature are required, 

radiometric measurements in the 10 to 13 ].lm spectral interval must be 

corrected for the effect of atmospheric moisture. This moisture, 

which is generally concentrated in the lowest 1 to 3 kilometers of 

the atmosphere, absorbs part of the earth's emitted radiation, and 

emits radiation corresponding to its own temperature. Solution of the 

pertinent differential equation may be obtained with a digital computer, 

given the mixing ratio and temperature as a function of height. 

However, the appropriate value for the spectral absorption 

coefficient is not very accurately known because its numerical value 

is so small that it is difficult to measure in the laboratory. Accepted 

values show that this coefficient is dependent on the mixing ratio, 

i.e., the atmospheric transmission is proportional to the square of the 

mixing ratio (Bignell, 1970). 

For the radiative transfer calculation the temperature and 

hum"idity of the atmosphere may be obtained from meteorological slJundings, 
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or they may be estimated by extrapolation to higher levels of near 

surface measurements. In either case spatial interpolation is needed 

to produce atmospheric correction values on the grid spacing at which 

soil moisture values are to be der~ved using remote thermal measurements. 

A minimum requirement is for estimates of the atmospheric state at the 

time of satellite observations on the meteorological synoptic scale 

(e.g. 1000 km). It is possible that smaller scale (mesoscale) 

atmospheric variation may have a variable effect on transmission of 

radiation through the atmosphere, thereby generating a requirement for 

a relatively dense set of meteorological observations to support 

remote sensing of soil moisture at intervals of 10 to 100 kilometers. 

The subject is sti11 an important field of research since a 

detailed study of the potential accuracy of remote sensing, including 

the effect of variable surface emissivity and the adequacy.of 

calibration methods (Williamson, 1977) has not been carried out to 

date. However, the uncertainties are small enough (temperature errors 

of the order of a few deyrees centigrade) to permit use of remote 

sensing for soil ~oisture studies. 

One feature of the atmospheric correction should be noted - the 

temperature correction is not a constant for a particular atmospheric 

state. The correction to satellite observations will be larger for 

very hot surfaces than for cool surfaces. If the sUi,·r:ace is cool er 

than the weigh.ted mean temperature of atmospheric water vapor, i.e., a 

meteorological inversion, the correction changes sign. In this case 

the remote meaSIJrement indicdtes a temperature higher than the actual 

4-16 



surface temperature. It follows that care must be exercised in the 

use of remote thermal measurements for the estimation of soil 

moisture. 

34 Agrometeorological Models Using Remote Sensing Inputs 

For many agricultural applications daily estimates of soil 

moisture are required (crop management practices--irrigation 

scheduling, planting date, herbicide and pesticide applications; yield 

predictions; growth and phenology modeling). Many models that estimate 

soil moisture are not applicable to large regions because the required 

meteorological or cropping data are not available (Ritchie, 1972; 

Saxton et a1., 1974). 

Central to most models is the estimate of evapotranspiration (ET) 

which is composed of evaporation and transpiration. Unfortunately, 

evaporation from the soil surface and transpiration from the plant 

surfaces are physically two d ifferent p~IDcesses; therefore, they must 

be estimated separately and summed. Usually over a typical growing 

season, transpiration will comprise about 60 to 80% of the total ET; 

therefore, an estimate of the area of the evaporating surface (green 

leaf area) is important. Because the green leaf area is constantly 

changing (due to growth, senescence, drought, disease, insects, 

fertility, hail, etc.), an evapotranspiration model must mimick the 

effective greenleaf area, preferably day by day, or include it as a daily 

external input. 

Shown in Fig. 4-9 is a flow diagram of a soil moisture mod~l that 

incorporates leaf area index (ratio of green 1eaf area to soil area) 

with minimum meteorological data (t~nperature, solar radiation and 
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precipitation). Leaf area index (LAI) is estimated from Landsat data. 

Assum'ing adequate coverage, one can extrapolate between overpasses to 

obta in the daily LAI val ues. 

In the model, the energy-limited evapotranspiration occurring from 

a weli-watered surface under non-advective conditions is estimated by 

ETmax = a[s/(s+y)]Rn [4-2] 

where a is a constant for a particular crop and climatic situation (a=1.35 

for wheat and corn in Kansas); y is the psychrometric constant; s is the 

slope of the saturation vapor pressure curve at a mean temperature; and 

Rn is the 24 hour net radiation. Net radiation is estimated from solar 

radiation (Rs) by 

Rn = a + bRs [4-3] 

where a and b are constants. 

Evaporation 'from the so'il surface can be estimated by a method 

,sl.!ggested by Ritchie (1972) where the constant rate stage (E l ) is 

limited by the energy supplied and is given by 

El = T ETmax/a [4-4J 

where T = exp S{LAI); and S is a crop dependent constant (S = -.398 for 

corn; S = -.737 for wheat). The second stage or the falling rate stage 

of evaporation (E2) is given by 

E2 = ct1/ 2 - c{t_1)1/2 r4-51 I. _ 

where c is a soil constant and t is the day into the second stage. The 

second stage begins after E1 has summed to a threshold value of U. 

Transpiration is estimated by equat'ions of the form presented by 

Tanney and Jury (1976) and Kanemasu et al. (1976). Hhen the available 

moisture content in the root zone is greater than 30% of maximum available 
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water, the relations 

T = av(l-T)[s/(s+y)]Rn crop cover $ 50% [4-6] 

and 

T = (a-T)[s/s+y)]Rn crop cover > 50% [4-7] 

are used. In the relations the term av is 1.56 for wheat and 1.74 for 

corn. When the available moisture content is less than 30%, the 

transpiration rate is linearly decreased to zero at zero available 

moisture. 

An advective contribution (A) during very warm days and well-watered 

conditions is estimated by 

A = 0.1 (Tmax - Tc)T [4-8J 

where Tc is a crop dependent temperature (Te = 23°C for winter wheat, 

Tc = 33°C for corn); and Tmax is daily maximum temperature. 

The total daily evapotranspiration (ET) is given by 

ET = E + T + A. [4-9] 

Changes in soil moisture (~S) can be estimated from a water balance 

given by 

~S = P - ET - R - 0 [4-10J 

where P is the precipitation, R is the runoff, and 0 is the deep 

percolation. Provided the RHS terms are known or can be estimated, 

soil moisture can be estimated on a daily basis if an initial soil 

moisture content is known. Kanemasu et al. (1977) estimates Rand 0 

from P and soil moisture. 
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C. SOME SPECIFIC CASES 

1. Reflected Solar Detection of Shallow Water Tables 

Shallow or IIperched ll water tables exhibit both direct and surrogate 

indications of their presence in the visible and reflective infrared 

regions. The reflectance of most soils is inversely related to soil 

moisture (Bowers and Hanks, 1965). This relationship, however, does 

not consistently apply over extreme conditions of either low or high 

soil moisture and is dependent upon soil type. Using sequential Landsat 

imagel"y directly after precipitation appears indicative of perco1ation/ 

dry off rates; drainage problem areas can be distinguished because of 

slower rates of drying (Jet Propulsion Laboratory, 1976). 

Vegetation condition (damage) is also useful for detecting areas 

affected by drainage problems (Moore, 1974; Gates, 1966). This approach 

does not require precipitation and is therefore easier to implement. A 

comprehensh/e comparative evaluation between the two approaches has not 

been completed. In general however, they seem broadly comparable. 

For monitoring purposes either approach can be implemented using 

conventional visual interpretation. Image enhancement techniques could 

be useful if implemented in a consistent manner (Lidster et al., 1975). 

Due to the number of variables involved (notably topography, soil type, 

vegetative type and stage, and atmospheric conditions) future automation 

of this procedure will be difficult (Moore, 1974; Estes et al., 1978). 

An informed interpreter will most likely ah/ays be involved as an 

integral part of the monitoring program. 
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2. Drought Assessment Using Reflected Solar Radiation 

Thompson (1976a) compared spectral monitoring of crop moisture 

deficiencies using Landsat digital and image data with the meteorological 

Crop Moisture Index (CMI) of Palmer (1968), and quantified the subjective 

judgments of image interpreters in the Large Area Crop Inventory 

Experiment (LACIE) about drought conditions in a multistate winter 

wheat producing area. This development is based on the fact that color 

infrared photographs and Landsat color composite images register 

differences in green vegetation density and vigor because of the high 

near infrared (0.75 to 1 .35 ~m) reflectance of green vegetation 

compared with the soil background or water. The computer compatible 

tapes (CCT) from Landsat bands 6 and 7 (.7 to 1.1 ~m) express the 

information digiti'l.lly. Since soil water deficit reduces plant growth, 

drought can be detected from the appearance of the vegetation relative 

to its appearance at the same time c~ year under nondrought conditions. 

Landsat digital tapes were obtained for portions of five Great 

Plains states during the "normal" 1975 winter wheat growing season and 

the droughty 1976 growin~ season. A Green I~dex (GIN) was calculated, 

using the formulas of Kauth and Thomas (1976), for wheat fields of the 

study area of the two seasons. The GIN was compared with the weekly CMI 

published by NOAA and was studied in relation to gauged rainfall for 

the study area. Thompson (1976a) found that Landsat data provided a 

more accurate estimate of area affected than does CMI and that Landsat 

spectral data can delineate precipitation patterns and effectiveness for 

crop growth during the growing season. The approach has also been applied 
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to Crop Reporting Distr'icts (CRD) of South Dakota by Thompson (1976b) 

and Thompson and Hehmanen (1977). 

3. Plant Water Content by Visible to ~1idd1e Infrared Reflectance 

Measurements 

In the wavelength interval 1.35 to 2.5 vm, it is th'~ water content 

of plants that is primarily responsible for their optical behavior. In 

addition, in the .75 to 1.30 ~m interval, the amount and distribution 

of highly hydrated green biomass can be revealed by reflectance measure­

ments. Thomas et al. (1971) and Carlson et a1. (1971) investigated the 

reflectance of cotton, and of corn, sorghum, and soybean, respectively, 

in the laboratory over the 0.5 to 2.5 ~m wavelength interval as a 

function of relative water content of the leaves. They found that the 

relative water content or relative turgidity of plant leaves was highly 

correlated with two strong water absorption bands, 1.45 and 1.95 ~m. 

Tucker (1976) measured reflectance of natural blue grama stands over the 

wavelength interval 0.35 to 1 .00 ~m and related them to green biomass 

and leaf water content (i .e., \'/eight difference between fresh and oven­

dried leaves). He found three spectral regions of strong statistical 

significance-- .35 to .50, .63 to .69, and .74 to 1.00 ~m. The 

significance in the ultraviolet-blue region is related to the carotenoid 

and chlorophyll pigment conte~t of live vegetation, in the red region 

to chlorophyll absorption, and in the reflective infrared to leaf 

structure of live vegetation. 

Reflectance differences in other than the reflective infrared are 

small. Thus other sources of variability among fields and plants within 
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them (age differences among leaves and water stresses under which they 

developed) would obscure the relationships. 

4. Watershed Curve Numbers 

The Soil Conservation Service (SCS) hydrologic model relates 

runoff to watershed curve numbers that are a function of the 

distributions of land cov~rs and soil types. The soil types are associated 

with infiltration rates, permeabilities, and water holding capacities. 

If the soils and their vegetative covers could be grouped or delineated 

by remote sensing techniques, runoff estimates would be improved. 

Blanchard (1975, 1978) attempted to modify the existing SCS model by 

estimating runoff curve numbers directly by reflectance measurements 

made by the Landsat multispectral scanner. He separated watersheds in 

Oklahoma into spectrally similar parts in the Landsat MSS data, and 

related linear combinations of the spectral data to traditionally 

established curve numbers. In a second study over test sites in 

Texas and Arizona, data were selected for the dormant season (Oct. to 

Mar.), dry periods (indicated by antecedent precipita,tion index, API), 

and cloud-free scenes. In Oklahoma, Blanchard found that the digital 

data for the red visible minus the green visible light band (band 5 -

band 4) and [(band 5 + band 6) - (band 4 + band 7)] correlated with 

the curve number. He could not find similar relationships for the 

Texas or Arizona watersheds, however, and concluded that where 

vegetation grows throughout the year, wet surface conditions prevail, 

or if the watersheds are timbered the Landsat spectral data will be 

difficult to relate to curve number. 
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The Texas and Arizona watersheds either could not be characterized 

by the Landsat v/avelengths, or the dominant parameters in their runoff 

behavior (slope~ impermeable areas, etc.) were inadequately known and 

weighted. Thermal and microwave data may help characterize such water­

sheds, but other ways to examine the spectral data need to be examined 

(Blanchard, 1977). Ragan (1977) has recently reviewed many instances 

of success in augmenting other data with remotely sensed inputs and feels 

that the most progress will come not by modifying existing models, but 

by evolution of new models that take advantage of remote sensing 

capabilities. Land use and vegetative cover are two inputs to 

hydrologic modeling that appear to be operationally measured from 

Landsat data (Richardson and Wiegand, 1977). 

5. Detection of Plant Water Stress Due to Salinity 

Saline soils are a world-wide problem on irrigated and non-irrigated 

arid and semi-arid land. The nresence of water soluble salts in the root 

zone causes an osmotic suction which reduces the availability of water 

to plants. Plants growing in saline soil exhibit marked symptoms of 

moisture stress, and growth is retarded. Salinity effects on plant growth 

and hydration, water availability, and transpiration rate affect the 

equilibrium leaf and canopy temperature (Myers et al., 1970). Myers et al. 

(1966) and Thomas and Wiegand (1970) measured cotton plant leaf 

temperatures with a Stoll-Hardy thermal radiometer in fields that were 

characterized for soil salinity, plant growth, and leaf turgidity. 

Incident solar t~adiation and air temperature were measured simultaneously 

with the leaf temperature measurements. Leaf temperatures were related 
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to various degrees of salinity and the separate effects of matric and 

osmotic suctions on plant growth, relative turgidity, and temperature 

of cotton leaves were determined under field conditions. Soil salinity 

could be predicted with reasonable accuracy from the leaf-air 

temperature difference (r = .84). Simultaneously obtained photography 

and thermal images will together display the growth and water stress 

patterns necessary to diagnose extent and severity of soil salinity 

during the crop season. Digital data in the reflective infrared (.75 to 

1.30 ~m) and thermal (8 to 14 ~m) bands can quantify the data that images 

record and display. Biological stresses such as nematode damage to roots 

will also restrict water uptake and cause effects similar to those 

caused by salinity. Under conditions of both biological stress and 

salinity, auxiliary measurements need to be made to identify the cause 

of the stress. 

6. Thermal Inertia Approach to Soil Moisture Estimation 

The thermal inertia technique derives estimates of soil moisture 

from measurements of surface temperature at times near the maximum and 

the minimum of the diurnal temperature cycle. The method relates 

differences of soil surface temperature to soil moisture content. The 

principle is one of common experience; dry soils heat up more at midday 

than do wet soils. Thus the amplitude of the surface temperature 

variation is (roughly) inversely proportional to the surface moisture 

content. 

Measurement of temperature ~;fferences minimizes several problems 

associated with remote sensing of surface temperature: absolute calibration 



of the observing instrument, the correction for a non-unit value of 

surface emissivity, and the influence of atmospheric effects, principally 

water vapor. To some degree these effects cancel out when a temperature 

difference is formed. 

The variation of surface temperatura of a soil depends on the 

moisture content in three ways. This dependence may be broken do\'m to 

the level of elementary material properties. 

(1) Thermal conduction transfers as heat some of the solar energy 

that strikes the surface into a soil, thereby limiting the excursions of 

surface temperature about the daily mean value. An increasing thermal 

conductivity (A) means greater depth of penetration of the diurnal 

temperature wave over certain ranges of soil moisture, and a decreasing 

day-night surface temperature range. For soils A increases as soil mois­

ture increases, b4t with moisture the effect of heat capacity overrides 

diurnal fluctuations resulting in a damping of the fluctuations. There­

fore, a thp.rma1 diffusivity (or rates of conductivity and heat capacity) 

term is the controlling influence of soil properties affecting soil 

temperatures. 

(2) The heat capacity (energy input per unit mass per degree Centi­

grade temperature change) determines the amount of energy needed to raise 

the temperature of a given mass of material. A substance with a high 

heat capacity will have a relatively smaller temperature variation due 

to a given input of energy than one with a low heat capacity. Heat capac­

ity (C) increases with soil moisture, principally due to the high heat 

capacity of water. 
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(3) The density (p) affects the surface temperature variation 

through its effect on volumetric heat capacity. The effective density 

of a soil increases as its moisture content increases. 

The amount of energy which is stored in the near surface layer 

during the day, and released at night, is related to the product of the 

three terms, i.e. pCA. Fortunately, all three quantities change in the 

same way with soil moisture, The result is that for a given solar energy 

input, a dry soil shows a greater day-night temperature difference (~T) 

than a moist soil. Neglecting evaporation, ~T is inversely proportional 

to the thermal inertia (pCA)1/2. Thus, measurement of ~T permits the 

inference of soil moisture, given that the dependence of thermal inertia 

on water content has been established. The magnitude of the thermal 

inertia depends somewhat on soil type and texture (Idso et al., 1975e; 

Idso, et al., 1976). 

A complicating factor is the effect of surface evaporation in re­

ducing net energy input from the sun. Evaporation complements the other 

effects of water in soil by reducing the amplitude of the surface diurnal 

temperature cycle. As a result the day-night temperature difference is 

an indicator of some combination of soil moisture and surface evapora­

tion. Current research efforts are directed toward clarifying the 

relationship between soil moisture, evaporation, and the variation of 

surface temperature (Deardorf, 1977). A NASA program, the Heat Capacity 

Mapping ~1ission, will test the feasibility of using remote observations 

to infer soil moisture. A special data product, lI,llpparent thermal 

inertia" will be generated as a possible indicator of the conditions 
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of the surface layers of soil. This quantity is defined as (constant) 

x (1.0 - a1bedo)/(day temperature - night temperature), where the 

albedo and temperature measurements will be obtained by the satellite 

radiometer. Satellite overpass will occur at 2:30 a.m. and 1 :30 p.m. 

local time. Some theoretical justification has been -given for this 

formula (Price, 1977). The satellite program will attempt to establish 

a quantitative capability - i.e., to estimate moisture content at each 

(500 m)2 area under satellite observation. 

D. STATE OF THE ART 

Remote sensing of soil moisture using reflectance and thermal 

infrared techniques can achieve qualitative results (Blanchard et a1., 

1974). Drought and flooded areas can be delineated by their reflectance 

properties. Shallow water tables can be located with thermal IR, etc. 

However, the degree to which soil moisture can be quantitatively measured 

using these techniques is a point of disagreement among researchers in 

this field. The opinions of the authors of this report are rather 

divergent concerning this point. 

The great advantage of a remote. sensing technique for measuring 

soil moisture is that 1 arge areas can be rapidly surveyed. This 

advantage has the serious handicap of calibration. Essentially all 

classical techniques of measuring soil moisture rely on point 

measurements. The notorious non-homogeneity of soils complicated by 

the equally notorious non-homogeneity of water content within a soil 

make adequate comparison of the two techniques extremely difficult. 

More experiments need to be done to adequately calibrate remote sensing 

techniques. Also, operational evaluations of certain promising techniques 
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that use remotely sensed data are currently limited by slow turn around 

and dissemination of data. 

For bare soils. reflectance measurements are affected only by the 

surface particles and the water surrounding them (Idso et al., 1975a). 

Thus, the reflectance technique will essentially give only a yes/no 

answer, that is, whether the surface is wet or dry. As long as the water 

films surrounding the particles are connected to those beneath, water 

will move to the surface particle and evaporate with the reflectance 

remaining essentially constant. When the water content decreases to the 

point that the films are so thin that water cannot move to the surface 

particle at a sufficient rate to sustain the evaporative loss, the 

surface particle will rapidly dry and the reflectance will increase by 

about a factor of two. This point is not reached by all surface particles 

at the same time. Thus, we have a transition period for a field where 

the reflectance increases as the surface dries. By following the reflectance 

changes with time, a qualitative estimation of the moisture status of a 

soil can be made. 

For vegetated soils, reflectance measuranents can give estimates of 

plant cover, i.e. leaf area index, biomass. percent ground cover, etc. 

They can also indicate when plants are stressed. In some plant species 

the stress (water or biological) may cause damage before being detected 

by reflectance measurements. 

The thermal IR technique has the capability of measuring soil 

moisture of the near-surface layers. The thermal inertia approach has 

a sound theoretical basis but is complicated by heat transfer as a result 

of evaporation, and by environmental conditions. For example. wind, 
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water vapor content of the air, and air temperature can affect the 

measurement. Since a measure of the day temperature maximum and the 

night minimum is required, various environmental factors can change 

during the time between measurements. A simple normalization procedure 

proposed by Idso et al. (1976) that utilizes the air temperature 

difference will compensate for some, but not all, of the effects of 

the various factors. 

The thermal IR has proven u~eful in detecting stress in vegetation. 

Although it has not been conclusively demonstrated, it appears that 

stress can be detected by thermal IR before significant reflectance 

changes occur. When a plant is actively transpiring the evaporation 

of water cools the leaves. As transpiration decreases (due to water 

or biological stresses) less water is evaporated and the plant 

temperature increa'ses in relation to a non-stressed plant. If 

transpiration were linearly related to available soil moisture (which 

it definitely is not), the temperature change could be used as an index 

of soil moisture. On the other extreme, if transpiration remained 

constant over the entire range of available moisture, the thermal IR 

technique would be a yes/no - wet/dry indicatcr. The true relation lies 

between the extremes and ;s dependent on the type of plant. There is 

general agreement that transpiration is little affected as available soil 

moisture decreases from field capacity to some point. The disagreement 

is at what soil water content the transpiration rate begins to decrease 

and what is the shape of the relationship from that point on to wilting. 

r·1ore research wi 11 be requi red before the full useful ness of the thermal 

IR in vegetated soils can be realized. 
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Agrometeorological models are available that can be used to predict 

soil moisture and soil moisture profiles. The assessment of model 

accuracy is not unanimous among researchers; however, they have proven 

useful for many practical applications. A great advantage is that the 

models will work when weather conditions prohibit remote sensing 

measurements. The use of an agrometeorological model as a day to day 

predictor, supplemented by remote sensing inputs, has perhaps the 

greatest potential for quantitatively estimating soil moisture at the 

present time. 

E. KEY-POINT sur~r~ARY 

* Current reflected-solar and thermal-infrared techniques are 

most successful for bare soil and for complete canopy cover, and 

are least successful for intermediate canODY cover. 

* A relationship exists bet\'/een near-surface son moisture 

and reflected-s01ar and emitted-thermal infrared 

radiation. 

* Agrometeorological models supplemented by remote sensing inputs 

presently have the greatest potential for predicting soil 

moisture and soil moisture profile on a daily basis. 

* More multispectral (visible and near infrared, thermal, microwave) 

modeling research is required. 

* Multiple-sensor studies (including meteorological satellites) 

should be conducted at several geographically dissimilar sites. 

* The capability for rapid turn-around and dissemination of data 

must be developed for testing in an operational mode. 
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soil was bare Avondale loam (from Idso et al., 1975). 
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Fig. 4-7. The amplitude of diurnal soil surface temp~rature wave 
(Ts, max - Ts, mi n) and the difference between maxi,mum 
surface and ai r temperatures (Ts, max - Ta" max) plotted 
against pressure potential of soil water (0 to 2 em depth.) 
bare soils with various textures {from Jdso et al., 1975a}. 
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daily maximum minus minimum surface soil temperature 
for (a) smooth soil and (b) rough soil and versus daily 
maximum soil minus air temperature for (c) smooth soil 
and (d) rough soil (from Reginato et al., 1976), 
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Fig. 4-9. Flow diagram for Agromet model. 
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A. INTRODUCTION 

CHAPTER 5 

MICROWAVE AND GAMMA RADIATION 
OBSERVATIONS OF SOIL MOISTURE 

CONTRIBUTORS 

T.J. Schmugge - Chairman 
E. G. Njoku, E. Peck, and F. T. U1 aby 

N"7'9~ 16335 

The unique dielectric properties of water at microwave wavelengths 

afford the possibility for remotely sensing the moisture content in the 

surface layer of the son. The dielectric constant for water is an 

order of magnitude larger than that of dry soils at microw;lve wave­

lengths (50)A>1 cm). As a result, the surface emissivity and reflectivity 

for the soils at these wavelengths are strong functions of its moisture 

content. The changes in emissivity can be observed by passive micro-

wave techniques (radiometry) and the changes in reflectivity can be 

observed by active microwave techniques (radar). 

Both of these approaches, active and passive microwave, have 

been demonstrated in extensive field and aircraft measurements. 

Correlations of 0.8 to 0.9 have been obtained between soil moisture 

in the sl,lrface layer (-5 Cll) thick} and microwave brightness temperature 

TB ot' radar backscatter coefficient cro. These microwave techniques 

maintain their sensitivity to soil moisture variations in the presence 

of a moderate ct'op canopy. Qualitative observations of the passive 

micr')wave sensitivity have a1 so been made from satellite platforms 

at wavelengths of 21 and 1.55 cm. Thus, it appears to be possH)le to 

monitor the moisture status of the surface soil using these techniques. 

Although these microwave techniques have demonstrated the capabil ity 

to measure soil moisture content over a wide range of surface conditions, 
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including roughness and vegetation cover, with a measurement precision 

comparable to that associated with in-situ measurements, several 

developmental steps have to be accomplished before they can be used for 

globa.l monitoring of soil moisture content. These steps may be divided 

into two groups. The objective of the first group of steps is to extend 

the experimental results to large area coverage with aircraft and space­

craft measurements. The second group of steps pertains to the require­

ments of the intended user of the soil moisture infonnation. The system 

design specifications will be impacted by the answers to specific 

questions regarding spatial resolution, soil moisture depth information, 

and frequency of coverage, which are needed from the user community. 

The difference in the natural terrestrial gamma ray flux measured 

for wet and for dry soil may be used for the determination of soil 

moisture. The gamma flux originates primarily from radio isotopes in 

the soil, principally potassium (40) and the decay products 'in the 

uranium and thorium series. It has been reported that 91 percent of 

the gamma rays emanating from a natural 50;1 come from the top 10 cm 

and 96 percent from the top 20 cm. The presence of moisture in the 

soil causes an effective i~crease ;n soil density, resulting in an 

increased attenuation of the gamma flux for wet soil and a corresponding 

lower flux above the ground surface. 

B. SOIL DIELECTRIC PROPERTIES 

A number of soil dielectric constant measurements have been made 

in recent years as functions of moisture content, frequency and soil 

type (e.g. Leschanskii et al., 1971; Lundien, 1971; Wiebe, 1971; Hipp, 
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1974; Hoekstra and Delaney, 1974; Njoku and Kong, 1977). A compilation 

of somG of the ear'lier measurements i~. found in the report by Cihlar 

and U1 aby (1974). Fi gure 5-1 sho\,/s the dependence of the real and 

imaginary parts of the dielectric constant as functions of moisture 

content at wavelengths of 1.55 and 21 cm. There is some difference 

between the dielectric constants measured for different soil types when 

plotted against moisture percent by weight especially at the longer 

wavelengths (Fig. 5-1). This is due to the different strengths by 

which water molecules adhere to the soil particles. Thus when plotted 

against soil water matric potential the dielectric constant becomes 

essentially independent of soil type (Newton, 1976). For this reason 

brightness temperature data are often p10tted as a function of 

percentage field capacity (which is directly related to soil water 

matric potential)(.Schmugge, 1976). This is further desirable because 

matric potential (and percentage field capacity) are parameters that 

describe the water availability to plants and the degree of soil 

saturation, which are of primary importance to agriculturalists and 

hydrologists. 

The range of dielectric constants presented in Fig. 5-1 produces 

a change in emissivity from greater than 0.9 for a dry soil to less than 

0.6 for a wet soil, assuming an isotropic soil with a smooth surface. 

This change in emissivity for a soil has been observed by truck mounted 

radiometers in field experiments (Poe, 1971; Newton, 1976), and by 

radiometers in ai rcraft (Schmugge, 1974) and satell i tes (Eagleman, 1976). 

In no case were emissivities as low as 0.6 observed for real surfaces. 
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It is believed that this is primarily due to the effects of surface 

roughness. 

As can be seen in Fig. 5-1 there is a greater range of dielectric 

constants for soils at the 21 cm wavelengths. This fact combined with 

a larger soil moisture sampling depth and better ability to penetrate 

a vegetative canopy make the longer wavelength sensors better suited 

for soil moisture sensing. 

C. PASSIVE MICROWAVE RESPONSE TO SOIL MOISTURE 

1. Physical Basis 

A microwave radiometer measures the thermal emission from the 

surface, and at these wavelengths the intensity of the observed emission 

is proportional to its brightness temperature (Rayleigh-Jeans approxi­

mation). The brightness temperature TB observed by a radiometer from 

a height above the surface is: 

[5-1] 

The term in brackets includes the reflected component of the downwelling 

sky brightness temperature (cosmic background plus atmospheric cont~ibution) 

and the brightness temperature of the radiation emitted by the earth's 

surface. These are modified by the transmittance ~ of the layer of 

atmosphere between the surface and the radiometer. The fin~l term in 

the expression is the contribution of this layer of atmosphere to the 

upwell ing radiati on reaching the radiometer. At the longer wavel engths, 

i.e. those best suited for soil moisture sensing, the atmospheric 

effects are minimal and will be neglected in this discussion. 
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Thermal microwave emission from soils is generated within the 

soil volume. The amount of energy generated at any point within the 

volume is dependent o~ the soil dielectric properties (or soil moisture) 

and the soil temperature at that point. As ene1rgy propagates upward 

through the soil volume from its point f.jf origin, it is affected by 

the dielectric (soil moisture) gradients along the path of propagation. 

In addition, as the energy crosses the surface boundary it is reduced 

by the effective trc..nsmission coefficient which is determined by the 

dielectric characteristics close to the surface. 

The brightness temperature of the surface can be written in terms 

of an integral over the half-space (Njoku and Kong, 1977) 

o 
TB = £00 T(z) F[Er(z)] dz . [5-2] 

where T(z) is the subsurface temperature profile and Er (z) is the di­

electric constant profile. F[Er (z)] is in the form of a weighting 

function which includes the effects of the surface reflectivity. The 

depths from which the emitted radiation origina~es and its radiation 

temperatures are governed by the relative shape of the weighting function, 

which in turn depends primarily on the dielectric loss profile. The 

magnitude of the weighting function is dependent on the surface reflectivity, 

which in most cases is governed by the dielectric properties in a region 

close to the surface. The depth of this region and the subsurface 

extent of the weighting function are frequency dependent, thus lower 

frequencies are sensitive to dielectric properties at greater depths in 

the soil. Further theoretical and experimental work is needed to 
'0 
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determine the nependence of the "sensi ng depth" on fre~~\ency and 

moisture profile. 

When T(z) is uniform, the weighting function integral can be 

evaluated to give the emissivity, e, which is re!lated to the surface 

reflectivity, r. The brightness temperature can then be written as: 

o 
TS = T £00 F[Er{Z)] dz [5-3] 

or 

TB = eT = {l-r)T [5-4] 

Fo'r a smooth surface the emissivity can be approximated to a high 

degree of accuracy using numerical techniques for a layered medium. 

This expression for brightness temperature is widely used and is 

sufficiently accurate for most applications~ In areas where a large 

subsurface increase or decrease of temperatures occurs over the region 

defined by the weighting fUnction an average temperature must be used 

for T rather than the surface temperature. 

The presence of soil moisture causes a marked change in soil 

dielectric properties, resulting in a decrease in emissivity over that 

of a dry soil. In addition to the presence of moisture, surface roughness 

and vegetati on cover also have si gni ficant eff(H;ts, generally tendi ng to 

increase the surr..;,ce emissivity. 

2. Ground Based Experiments 

Measurement programs utilizing ground-based radiometers have been 

performed for a number of years. The more comprehensive measurement 

programs have been executed! by Aerojet-General Corporation (Poe, et al., 
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1971), Jet Propulsion Laboratory (Blinn and Quade, 1972) and Texas 
I 

A&M University (Newton, 1976; Newton and Tesch, 1976; Newton et al., 

1974) . 

In Fig. 5-2(a) and (b) the field measurements of Newton (1976) 

are plotted versus angle of observation for various moisture contents 

and for three levels of surface roughness. The horizontal polarization 

is that for which the electric field of the wave is parallel to the 

surface and the vertical polarization is perpendicular to it. These 

results indicate the effect of moisture content on the observed values 

of IS and the effect of surface roughness, which is to increase the 

effective emissivity at all angles and to decrease the difference in 

T8 for the two polarizations at the larger angles. Thus, by making 

the polarization nleasurements it may be possible to separate the effects 

of surface roughness and soil moisture. 

For the smooth field there is a 100° K change in TS in going 

from wet to dry soils and it ;s c1ear that this range is Y'educed by 

surface roughness. The effect of the roughness is to decrease the 

reflectivity of the surface and thus to increase its emissivity. For a 

dry field the reflectivity is already small «0.1) so that the resulting 

increase in emissivity is small. As seen in Figure 2b surface roughness 

has a significant effect for wet fields where the reflectivity is larger 

(=0.4). Thus the range of TB for the rough field is reduced to about 

60° K. The smooth and rough fields represent the extremes of surface 

conditions that are likely to be encountered, e.g. the rough surface 

was on a field with a heavy clay soil (clay fraction >60%) that had been 
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deep plowed which produced large clods. Therefore the medium rough 

field, with a T B range of 80° "K, is probably more representative of 

the average surface roughness cond ition that wi 11 be encountered. 

Another important observation from Fig. 2a and b is that the average of 

the vertical and horizontal TB's is essentially independent of angle 

out to 40°. This indicates that the sensitivity of this quantity, 

1/2(TBV + TBH ), to soil moisture will be independent of angle. This 

factor will be useful if the radiometer is to be scanned to provide an 

image. 

When the brightness temperatures for the medium rough field are 
o 

plotted versus soil moisture in the 0-2 cm layer there is an approximate 

linear decrease of TB (Fig. 5-3a). As the thickness of the layer 

increases both the slope and intercept of the linear regression result 

also increase. This is because the moisture values for the high TB 

c, cases increase while it remains essentially the same for the low TB 

or wet cases. This type of behavior was also seen in the results 

obtained from aircraft platforms and has led us to conclude that the soil 

moisture sampling depth is in the 2-5 cm range for the 21 cm wavelength. 

This is in agreement with the predictions of theoretical results for 

radiative transfer in soils (Wilheit, 1975; Burke and Paris, 1975). 

The effect of a vegetative canopy will be that of an absorbi ng 

layer that depends on the amount of the vegetation and the wavelength 

of observations. In Fig. 5-3b the results for a closely planted sorghum 

field (-1 m high) are presented. 

The range of TB is now about 40 K compared to the 70 K range 

observed for the bare field. While the sensitivity to the soil moisture 
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variation is reduced, the correlation remains high (-0.9). At a 

shorter wavelength (2.8 cm) there is only a 10 K range in TB in going 

from wet to dry.. While these measurements show that a radiometer 

operating at 21 cm still has good sensitivity to soil moisture 

variations, they suggest that radiometers working at longer wavelengths 

(30 to .50 cm) may have better sensitivity. 

3. ~ircraft and Satell He Experiments 

Significant improvements in the understanding of the effects of 

individual scene parameters on the relationship of brightness temperature 

to soil moisture have been achieved using gY'Qund-based measurements 

acquired during controlled experiments. HO\ieVer, demonstration of the 

potential of passive microwave sensors for estimating soil moisture on 

an operational basis must be performed with aircraft and spacecraft 

sensors that integrate large areas of natural, non-idealized terrain. 

A series of aircraft experiments performed over the last several ye"rs 

by a number of investigators demonstrates the sensitivity of micro-

wave radiometers to soil moisture in agricultural terrain. Skylab and 

Nimbus satellites have also provided significant results for very large 

areas of integration. 

The results from aircraft experiments are summarized in Fig. 5-4 where 

results from aircraft flights in Fer:>ruary 1973 (Fig. 5-4a) and March 

1975 (Fig. 5-4b) over Phoenix, Arizona are presented (Schmugge, 1976). 

The values are plotted versus soil moisture expressed as a percent of 

field capacity to normalize the effect of soil te~ture differences. 

The agreement of the slopes for the three regressions indicates that 

the results are repeatable. The differences for the intercepts in 
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Fig. 5-4b are due to differences in soil temperature between the 197.5 

a.m. and p.m. results. The range of TS of each case is in good 

agreement with the medium rough field reslJlts presented in Fig. 5-3. 

In Fig. 5-4c the results from vegetated fields for the two years 

are presented. The vesetation was either alfalfa or wheat with wheat 

being 20-30 cm high in 19'13 and 50-60 cm high for the 1975 data. The 

s1~pe of the ,curve is in good agreement with those for the bare fields. 

The int?rcept is lower due to the cooler soil temperatures. Thus 

sensitivity to soil moisture is maintained through the moderate 

vegetative canopies considered here, which were approximately one half 

the height of the sorghum canopy considered in Fig. 5-3b. 

A forther demonstration of the capability of this sensor is 

presented in Fig. 5-5. Here the results from 5 flights during 1976 

and 1977 over a Hand County South Dakota test site are compared with 

the regression result from the Phoenix data. The agreement is very 

good. These data were for a range of surface conditions including 

fallow fields, wheat, alfalfa and pasture. The scatter in the aircraft 

data presented in Fig. 5-4 and 5-5 adses from a number of sources, one 

of which is surface roughness as demonstrated in Fig. 5-3b; another is 

the uncertainty of ground measurGments. The standard deviation of the 

ground measurements is represented by the error bars in Fig. 5-5. 

The number of samples ranged from 6 to 29 depending on the length of the 

fields. This difficulty of making accurate ground measurements has 

hampered the determination of the accuracy of this measurement technique. 

Studies of the Nimbus-5 satf~ll ite Electrically Scanning Microwave 

Radiometer (ESMR) data at 1.55 cm wavelength have shown that it has 
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limited appl ieabi 1 ity for soil moisture sensing (Meneely, 1977). The 

limitation is primarily caused by iA vegetative canopy over the soil. 

For situations where there is a significant amount of bare ground the 

ESMR brightness temperature has shown significant correlations with 

soil moisture (McFarland and Blanchard, 1977; Schmugge et a1., 1977). 

These situations arise in agricultural areas before the crops are 

planted and during the early stages of growth. 

Studies using the 21 cm data obtained by the S-194 instrument on 

board Skylab have shown significant correlations with soil moisture 

variations. The latter were determined either by moisture budget models 

(Eag1eman and Lin, 1976) or by using the antecedent precipitation index 

(McFarland, 1976). This was a limited data set and its interpretation 

was hampered by the coarse spatial resolution (-115 km) of the sensor. 

However, the results are encouraging for the potential use of a sensor 

operating at this wavelength for soil moisture sensing. Improved 

spatial resolution can be obtained by using larger antennas. The antenna 

on the Skylab instrument was 1 m square. In the future it should be 

possible to deploy much larger antennas from the space shuttle and for 

example a 10 m antenna would yield resolutions in the 10 km range. 

D. ACTIVE MICROWAVE RESPONSE TO SOIL MOISTURE 

1. Physical Basis 

Analogous to the optical reflectivity of terrain, the backscattering 

coefficient crO describes the scattering properties of terrain in the 

direction of the illuminating source. The scattering behavior of terrain 

is govet'nedby the geometrical and dielectric properties of the surface 
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(or vol ume) rel ative tc the wave properties (wavel en9'th, polaY'ization, 

and angle of incidence) of the incident illumination. Recall that the 

dielectric constant of a soil-water mixture is strongly dependent on 

its water content. Thus, in general, aO of terrain is dependent on the 

soil moisture content of an effective surface layer whose thickness is 

governed by the penetration properties of the terrain at the wavelength 

used; this thickness will he approximately the same for active and 

passive microwave approaches. In addition to its dependence on soil 

moisture content, however, a
O is also in general a function of the 

surface {or volume} roughness and vegetation or snow cover (if not 

bare) . 

From an operational system standpoint, radar possesses two key 

capabilities of major importance to remote sensing applications, namely 

a} its ability to make timely observations unhampered by cloud cover or 

time of day which may be a very critical factor in hydrologic modeling, 

and b) its ability to generate high resolution imagery from space 

platforms. Recognizing these system capabilities and the dependence 

of the soil dielectric constant on its moisture content, a research 

program was initiated at the Remote Sensing Laboratory of the 

University of Kansas in 1972 under NASA/JSC sponsorship to evaluate the 

potential use of radar for monitoring soil moisture content. The major 

objectives of the program are: 

a) To determine if a set of sensor parameters (wavelength, 

polarization and angle of incidence range) can be specified 

such that such a sensor can measure soil moisture content 

with acceptable precision, independently of surface roughness 

and vegetation cover. 
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b) To relate the observed aO to an effective depth representing 

the depth of the soil layer responsible for the observed aO. 

c) If (a) is feasible, to determine what additional system and 

terrain considerations should be incorporated into the 

design configuration of a radar soil moisture sensor, and 

to evaluate its performance relative to the needs defined 

by the user community. 

2. Ground-Based Results 

Over the past six years, the radar response to soil moisture 

content was extensively investigated by the University of Kansas using , 

truck mounted Microwave Active Spectrometer (MAS) systems (Ulaby, 1974; 

U1aby et al., 1974 and 1975; Batlivala and Ulaby, 1977). The sensitivity 

to soil moisture content and the accuracy and precision with which it can 

be estimated were evaluated for both bare and vegetated fields. 

a. Ba re Ground 

The objective of the bare field experiments was to determine the 

optimum radar parameters for minimizing the response to surface roughness 

wh'lle retaining strong sensitivity to moisture content. By examining 

the radar response to soil moisture of several fields with considerably 

different surface roughness conditions ranging from very smooth (dragged) 

to very rough (disked), the following set of optimum parameters was 

determined: A = 6-7 cm, 8 = 7° - 17° from nadir, and horizontal 

transmit-horizontal receive polarization (Ulaby and Batlivala, 1976). 

Fi gur'e 5-6 shows the response in thi s range of sensor parameters. 

Included are data for all fields, regardless of surface roughness. Also 
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shown on the figure are the calculated error ranges corresponding to 

±l standard deviation associated with the measurement of dO and the 

in-situ measurement of ml, the moisture content in the top 1 cm of the 

soil. A statistical analysis of these variances indicdtes that at 

these optimum parameters, the error (due to surface roughness) associated 

with the soil moisture estimate provided by such a radar system is 

comparable to the error associated with the in-situ measurement of 

ml (Ulaby and Dobson, 1977). 

Because the moisture content in a given soil layer ;s correlated 

to the moisture content of the other layers in the profile, it is 

difficult to experimentally separate the contributions of the remaining 

layers to the observed backscatter. Figure 5-7 is a plot of the linear 

correlation coefficient p(OO, mx) bet\'Ieen 0° and mx where mx is the moisture 

in the 0 to x cm layer. It is observed that (0°, mx) is not very 

sensitive to the depth interval x, particularly for the bare soil case. 

Thus, based on the above, one may conclude that 0° is sensitive to 

moisture down to at least 9 cm. Such a statement may be erroneous, 

however, since part of the observed correlation is due to the correlation 

between the moistures in the different levels. Theoretical and experi­

mental approaches are currently under investigation to develop an 

algorithm that can better relate the observed 0° to an effective depth 

interval than is presently possible. 

In addition to surface roughness, another soil variable that has 

exhibited an influence on the 0° response to moisture is soil texture. 

Figure 5-8a presents plots of two linear regression lines based on experi­

mental measurements acquired in 1974 at a test site near College Station, 
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Texas, and in 1975 at a site near Lawrence, Kansas. The 1974 soil was 

Miller clay with 49% clay content whereas the 1975 soil was Eudora silt 

loam with only 17.2% clay content. The two regression lines show a 

substantial difference in sensitivity (slope). A similar difference 

in sensitivity due to soil texture was observed by Schmugge et al. (1976), 

in their study of the passive microwave response to soil moisture. 

Airborne data acquired over test sites located near Phoenix, Arizona 

and in Imperial Valley, California, showed a weaker sensitivity to 

moisture content of heavy soils (high clay content) than for light 

soils. To incorporate soil texture in the microwave response to soil 

moisture, the latter was expressed in terms of percent of field capacity 

mfc ' The same conversion to percent of field capacity used by Schmugge 

et al. (1976) was applied to the radar data of 1974 and 1975 and the 

resulting regression lines are shown in Fig. 5-8b, which are much closer 

to one another than those in Fig. 5-8a. Although these results suggest 

that the dependence of crO on soil texture can be removed by expressing 

moisture content in percent of field capacity, it was decided that a 

detailed experiment covering a wid~ range of soil texture should be 

performed before the role of soil texture can be well established. 

Such an experiment was performed during the summer of 1977, but the 

results are not yet available. 

b. Vegetation-Covered Ground 

The presence of a vegetation canopy over the soil surface reduces 

the sensitivity of the radar backscatter to soil moisture by a) attenuating 

the signal as it travels through the canopy down to the soil and back and 

by b) contributing a backscatter component of its own. Moreoever, both 
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factors are in general a function of several canopy parameters including 

plant shape, height and moisture content, and vegetation density. The 

effect of the vegetation cover on the radar response to soil moisture ;s 

shown in Fig. 5-9 where the bare soil and vegetation-covered responses 

are plotted as a function of percent field capacity in the top 5 cm. 

The vegetati on-covered response t'epresents data for several crops 

covering the wide range of growth conditions listed in Table 5-1 (U1aby, 

et a 1 ., 1977). 

Figure 5·,10 sho\'/s the variation of 0° and m5 (moisture in the 0-5 cm 

layer) as a function of time over a period of two months for a field 

planted in soybeans. Over the observation period, the soybeans canopy 

grew in height from 0.4 m to 0.7 m. The 0° variation is clearly in 

response to m5' Similar behavior was observed for other crops. 

Table 5-1 
1975 Vegetation Cover Experiment 

Number of Duration of Variation of 
Crop Type Data Sets Measurements Crop Height 

Wheat 46 ~1ay 19 - July 9 60 cm - 120 cm 
Corn 59 f\1ay 23 - Sept. 9 15 cm - 300 cm 
Soybeans 53 July 9 - Sept. 8 33 cm - 80 cm 
Milo 24 July 16 - Sept. 10 90 cm - 113 cm 

3. Aircraft and Spacecraft Results 

Although no detailed airborne investigations have yet been reported 

on the active microwave response to the soil moisture content underneath 

a vegetation canopy, an observation was made of the difference between 
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dry soil and soil undergoing irrigation ir 1971 while conducting radar 

observations of agricultural fields. During a flight by the NASA/JSC 

P3A aircraft over a test site near Garden City, Kansas, measurements 

were acquired by a 13.3 GHz scatterometer from several fields each 

of wh'ich was found (from aeri a 1 photography and fi e 1 d crew I s reports) 

to contain sections into which irrigation water was flowing and sections 

ready for irrigation but not yet wetted (Dickey, et al., 1974). For 

each of these fields, the effect of .the irrigation on the radar return 

appeared to produce a difference of about 7 dB at angles within 40° 

from nadir. An example is given in Fig. 5~11a (Dickey, et al., 1974) 

where the measured aO curves for the irrigated and non-irrigated 

sections of a corn field are shown. Since all ground conditions, except 

for soil water content, were similar over the entire field, the 

differences in aO can only be attributed to the effect of moisture. 

The test site consisted of 706 fields, of which, on the basis of 

ground truth information, 687 were judged as dry and 19 were judged as 

wet. Some of the fields in the test site were bare ground while the 

majority were planted with corn, sorghum, alfalfa, sugar beets and 

wheat. Figure 5-11b shows the average aO curves for each of these ~wo 

sets as a function of incidence angle (Dickey, et al., 1974). The 

results clearly demonstrate the capabilities of radar in separating 

dry terrain from wet terrain under a variety of vegetation cover. 

In conjunction with Skylab passes over test sites in Texas and 

Kansas, soil samples were acquired to correlate their moisture contents 

with the active and pa~~;ive microwave measurements acquired by the 

Skylab sensors (E~gleman, 1975). Although the calculated correlation 
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coefficient between aD and moisture content was as high as 0.75 for 

one of the passes, the results cannot be considered reliable because of 

the poor representation of the 13 Km x 16 Km elliptically shaped foot­

print by a few soil samples. 

E. DISCUSSION 

It is anticipated that over the next several years experiments will 

be conducted. and theoretical models developed and tested to provide more 

accurate answers to the following questions concerning our measurements 

capabilities: 

a) What is the dependence of the microwave response to soil 

moisture on soil texture? 

b) Can the microwave response be unambiguously related to the 

moisture content of a specific soil depth? 

c) Will longer wavelength passive systems yield a greater soil 

moisture sampling depth with less sensitivity to surface 

roughness and vegetation cover? 

d) If soil moisture in the top few centimeters of the soil can be 

measured throug,h remote sensing, how well can hydrologic model s 

predict moisture at deeper levels? And what is the needed 

revisit interval? 

Information on the spatial and temporal variations of soil moistuv'e are 

useful to a variety of d'iscip1ines including hydrology, crop yield fore­

casting and meteorology. The requirements of these different disciplines 

can vary extensively. 
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The defi niti on of a mi crowave soi 1 moi sture sensor will depend to 

a large extent on what these disciplines see as their needs for soil 

moisture information in terms of such things as frequency of coverage, 

spatial resolution, and observation strategy. 

a) Revisit Interval. Soil moisture content is a dynamic variable; 

it is influenced by precipitation, evaporation (or evapotranspiration), 

runoff and infiltration. The frequency at which this variable should 

be sampled (in order to meet the needs of the user) influences the choice 

of spacecraft altitude ar.d type of sensor. Assuming that a microwave 

sensor can make an accurate measurement of the soil moisture in the top 

5 cm, how frequent should this measurement be made? 

b) Resolution. Active microwave techniques can produce very high 

resolution (e.g. 50 m) imagery. The higher the resolution, however, the 

higher is the cost. The cost of the instrument itself may be small when 

compared to the costs incurred in proc\~ssing, telemetering, reducing, and 

interpreting the data generated by an operational system. Passive micro­

wave techniques on the other hand can provide wide swath coverage with 

coarse resolution (e.g. 10 Km) at much lower costs with respect to data 

handling and processing. Hence, the resolution of an opet'ational soil 

rroisture system should be specified as a result of a cost-benefit analysis 

of the intended applications, keeping in mind that reduction in resolution 

means reduction in cost as well as a possible reduction in the accuracy 

and precision of the soil moisture estimat~. The presence of resolvable 

cultural features and small lakes and ponds can be accounted for on a high 

resolution image (50 m x 50 m cell size, for example), while on a low 
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resolution image, unresolvable features can bias the integrated return 

from a given cell, thereby reducing the accuracy of the soil moisture 

estimate. 

c) Observation Strategy. The different characteristics of the active 

and passive microwave s~nsors provide two options for observation 

strategies. The passive system with its wide swath capability can provide 

frequent total coverage with the coarse resolution, while the active 

system with a limited swath width would be able to provide frequent 

coverage for limited areas on a sampl1ng basis. The various applications 

for soil moisture data will undoubtedly have different requirements on 

the spatial and temporal resolutions of the data. Therefore it would 

be good to learn how the different users would view these two options 

in their potential application of soil moisture data. 

We expect that this workshop in providing some answers to these 

questions will be a great benefit in defining our future experimental 

program. 

F. GAMMA RADIATION 

Determination of soil moisture using gamma radiation is based on 

the attenuation of the natural terrestrial gamma-ray flux by the moisture 

in the soil. r'>1ost of the gamma rad'iation from naturally occurring radio­

elements in the soil, measured above ground, originates within a few 

inches of the surface. The presence of moisture in the soil increases 

effective soil density, resulting in an increased attenuation of the gamma 

flux for wet soil and a corresponding lower flux above the ground surface. 

Gravimetric analysis of a few selected samples of the surface soil, 
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provides calibration data to allow a quantitative determination of aerial 

measurements over a wide area. 

Predominant gamma rays from natural radioe1ements in the soil 
208 

include the 2.6 MeV Tl gammas from the thorium decay chain, a family of 
214 

Bi gammas from the uranium decay chain ranging over 'values of 0.61, 
40 

0.76,0.93,1.12, 1.76 and 2.2 MeV, and the 1.46 MeV gammas from K. 
208 

The gamma counts under the T1 photopeak contain no background contribution 
211l 

from the airborne Bi radon daughters. The gross count data, integrated 

over the range between 50 keV and 3.0 MeV offers the advantage of 

excellent counting statistics and good spatial resolution (on a mile-by­

mile basis), but contains a significant amount of background counts from 

radon daughters. Correction for airborne radon contributions are most 

often ach i eved by air fil ter data anal ys is. 
40 

Analysis of all three parameters, gross gamma counts, K photopeak 
208 

area, andTl photopeak area can be used independently to determine 

soil moisture values. All three methods involve a measured reduction 

in the gamma flux from the terrestrial surface as a consequence of 

increased soil density due to the presence of moisture. The ratio of 

gamma flux r 1/r2 measured for two different soil moisture conditions Ml 

and M2 has the form 

[5··5J 

40 208 
The gamma count rates in the photopeaks for K and Tl can be 

determined by subtracting the non-terrestrial background counts (due to 

the aircraft, cosmic rays and airborne radon daughters) from the respective 

pulse height spectrum windows. These net photopeak count rates can be 
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adjusted to corl~espond to that for transport of these terrestrial gammas 

through an air mass equivalent to the aircraft altitude. Soil moisture 

values can be computed from the photopeak area data using the relation­

ship given in equation [5-5]. 

The third method of determining soil moisture from aerial measure­

ments of terrestrial gamma radiation uses analysis of gross gamma count 

rates between 30 keV and 3.0 MeV. If the airborne radon daughter 

contribution to the signal is negligible, the net terrestrial gross count 

rate is determined by subtracting the gamma background count rate due 

to the aircraft and cosmic rays. The net gamma count rate is then adjusted 

to correspond to that for transport of these terrestrial gammas through 

an air mass equivalent to aircraft altitude. Often, however, substantial 

airborne radon daughters are present during the surveys and corrections 

are required. In studies by EGG for NOAA/NESS at Phoenix, Arizona, and 

Luverne, Minne~Jta, good agre~ment was obtained between aerial estimates 

of soil moisture and ground-based sampling. However, the low altitudes 

required (-150m) may limit the usefulness of this tebhnique for 1arge-

area surveys of soil moisture. Gamma radiation techniques may be useful 

as a method of obtaining ground-truth and calibration information for 

other sensors. 

G. KEY-POINT SUr~MARY 

Following is a summary of key points and recommendations concerning 

microwave and gamma ray sensing of soil moisture. 

* Theoretical and experimental work should be conducted to 

determine the dependence of the sensing depth on frequency and 

moi sture profi1 e characteri st ics. 
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,'r Optill"Jm angles of incidence and frequencies foy' identifying 

and reducing effects of surface roughness a,;~~ vegetation 

should be determined. 

* Theoretical models appropriate for soil moisture measurement 

proble:;:s should be developed. Modeling research should be 

multispectral (visible, IR, active and passive microwave). 

* Effects of soil characteristics on the microwave response to 

soil moisture should be evaluated. 

* The potential of passive and active microwave sensors should 

be demonstrated for estimating soil moisture on an operational 

basis with aircraft and spacecraft s.ensors that integrate 

large areas of natural, non-idealized terrain. 

* Gamma radiation technology should be utilized for calibration 

and ground truth purposes. 
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A. OPENING REMARKS 

D. G. Moore 

CHAPTER 6 

PROCEEDINGS OF SUMMARY AND 
RECOMMENDATIONS SESSION 

Discussions by recognized discipline scientists and information 

users have shown the diversity of opinion on the actual use of soil 

moisture information and the approaches which l1)ay lead to successful 

remote sensing measurements of soil moisture. As with other facets 

of nature, soil moisture has varying definitions and information needs 

depending .on one's perspective of dis("1P'jine and defined use. With 

these differences of need and definition predominating, our task as 

a summary panel is difficult. If microwave can be used to detect and 

quantify moisture in the first few centimeters of soil depth, how can 

the agronomist satisfy his information needs when the crop root 

extracts moisture from many fold of this depth and the plant views 

moisture as a tensiometric quantity and not a gravimetric or volumetric 

quantity. If the microclimate of a plant canopy yields information by 

thermal infrared sensing concerning moisture stress, how can the 

hydrologist relate to the moisture of the near surface of the soil which 

will affect infiltration rates. 

One approach to understanding nature is to develop and evaluate 

simulation and prediction models. When applying these models for 

predictive purposes certain parameters must be measured in the field. 

When the parameter is not well understood or is neat'-impossible to 
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measure the terms are grouped as a coefficient. The importance of soil 

moisture has been well illustrated in the models presented at this 

conference. Even though the information is spatially difficult to 

acquire, for even a small agricultural field as has been illustrated, 

the specific term is retained in these models because of its importance 

for successful and accurate implementation. This feature in itself 

provides the incentive to develop methods which can sequentially and 

accurately assess soil moisture synoptically. 

Today, we have requested a distinguished pai1el to provide summaries 

of the past two days' activities and make recommendations with inter­

action from all workshop participants considering 1) what is the "state 

of the art" for using and acquiring the soil moisture information, 

2) does the need exist for advancing this technology, and 3) what can 

NASA and other interested agencies do to advance the technology. The 

group chairmen will briefly summarize their observations to date for 

the benefit of the conference participants who were unable to attend 

their respective sessions. 

B. WORK GROUP SUMMARIES 

Summary of Applications Group (C.J. Johannsenl 

In my remarks, I will focus on agricultural aspects of soil moisture 

needs which will include forestry and rangeland. It was difficult for 

our committee to find a real direct user of soil moisture information 

because we are not currently supplying soil moisture information. We 

found many examples of indirect uses of soil moisture information and 

therefore we have identified many potential rather than present users. 
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Indirect use of soil moisture information begins with the 

planning functions. The amount of inferred soil moistuY'e determines 

planning for field operations, transportation, storage, supplies, etc. 

Yield and production predictions utilize inferred soil moisture 

information and estimates of anticipated rainfall. Insect and disease 

epidemiology utilizes soil moisture estimates and prediction of future 

moisture and temperature conditions. 

Many users utilize rainfall information to infer soil moisture. 

This is extremely difficult because of a number of factors such as 

rainfall intensity which influences infiltration, type of soil which 

determines how much is held and available to vegetation, temperature 

conditions which influence vegetative growth and evaporation, and many 

other complex factors. 

There are several classification systems which use soil moisture 

as one of its criteria. In the National Cooperative Soil Survey Program, 

soil moisture regimes are defined in terms of soil moisture in the soil 

region that supports plant roots. Another classification system which 

utilizes soil moisture information is the Wetland Classification System 

recently initiated by the U.S. Fish and Wildlife Service. 

The needs for soil moisture information in foreign countries ;s 

becoming more significant. Data bases of soil information are being 

developed for many countries but it is found that soil moisture would 

greatly assist in planning efforts, demonstration projects, initiation 

of new crops, etc. 
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It was difficult for all users to clearly define their data needs 

in terms of accuracy, resolution and frequency. The committee made a 

first attempt and showed some ranges in their estimates because the 

needs of different users will vary. In most cases, it was found that 

initially the timel iness of an excess or a shortage of soil moisture 

info.rm,ation is more important than accuracy. The alert of a possible 

soil moisture condition begins an initiation of a series of events to 

counteract or complement that condition. 

Once the initial information has been released, efforts 

should be made to refine the data and improve the accuracy of the 

information. Many users are also concerned about the depth of measurement 

of soil moisture. Most would like to know the amount of soil moisture 

that is held within the root zone of approxiMately two meters. 

Communication will be a very important factor in the success of 

utilization of soil moisture information. This workshop has brought 

together people from many different disciplines who view soil moisture 

from equipment development, measurements, analysis, and dissemination 

aspects. These different areas need to communicate with one another to 

provide a product that the user can use in his daily operations. 

Summary of Reflectance and Thermal IR Group (R.D. Jackson) 

Yesterday we discussed the use of Landsat imagery to delineate 

perched water tables in California. This study has progressed to the 

pOint that it could go operational. We also discussed the use of 

reflected radiation to delineate stresses in crops. It became apparent 

that there is a problem in delineating a water stress from biological 
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stress in crops. In other words, mere research is needed to identify 

and separate the various stresses that might be detected by a remote 

sensor. 

We discussed the use of reflected radiation to infer soil 

~.,-

moisture in bare soils, and showed what everybody knew all along; that 

with reflected radiation you can only get an estimate of the water 

content near the surface. It is essen~ially yes or no type information, 

Ilyes it's wet, or no it's dry.1I One might tend to throw that type of 

information away because of its apparent limited usefulness. However, 

~that type of information, in conjunction with other remotely measured 

data or simulation models, could be very useful. 

We discussed the use of thermal infY"ared to estimate water 

content. With thermal infrared we have experimentally demonstrated that 

we can infer water contents to approximately 5 cm. Five centimeters may 

be of little value to those who need to know the water content of the 

root zones. Others, however, who may be interested in pest management 

would say that depth is sufficient because that's where insects lay their 

eggs. Soil moisture maDs of large areas could aid in locating where 

insects are developing. It is easier to control the insects early in 

the cycle before they spread and devastate crop lands. It is the 

specific needs of the application that will decide whether the water 

content in the top 5 cm is sufficient. 

We discussed some research that indicates that we may be able to 

use thermal IR to measure crop canopy temperatures, and thus use plants 

as an indicator of the water content with depth. In this area we really 

do not need to know the water content per see We need to know whether, 
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and to what degree, the plant is stressed at that particular time. 

However, we would like to know how m1.Jch water is stored in the root zone 

for determining future water availability. The thermal IR data at 

present are largely ground based with a few measurements from aircraft. 

We have no data from satellites as yet, except for very limited Skylab 

observations, but we hope to obtain some with the HCMM. The use of 

thermal IR for estimating crop water stress or crop condition, has 

applications, or at least possibilities, for irrigation scheduling and 

yield predictions. In the rain-fed agricultural areas thermal IR could 

assist in assessing crop "healthll after a period of water stress for 

estimating the yield. We rannot do much about water stress when we 

depend on rainfall for water. In the irrigated areas of the west the 

detection of the onset of stress could be used to help schedule irrigations. 

We discussed agrometeorological models, in particular the Kansas 

State model that uses Landsat imagery to estimate leaf area index, 

evapotranspiration, soil moisture, and yield. This approach looks 

promising. JPL and NASA efforts to develop detailed soil moisture 

models are making good progress. The group generally agreed that one 

way of monitoring soil moisture on a daily basis would be to use a model 

that would run on meteorological inputs and could be frequently "fine 

tuned II using remote sensing inputs. 

An obvious limitation of both the reflected and thermal techniques is 

the presence of clouds. Cloud cover often precludes measurements from aircraft 

and satellites. In addition to the cloud cover problem is that of attenua-

tion of radiation by water vapor in the atmosphere. There are, however, some 
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techniques that allow one to account for this problem. On the ground 

there is the problem of topography. Different slopes and aspects can 

have a wide range of water contents. With similar slopes and different 

aspects, a considerably different temperature might be measured while the 

soil water content is essentially the same. 

What are other problems that need more \'wrk? ~Je believe that we 

can do reasonably well in estimating water content of bare soils, and 

if we have a complete crop canopy cover we can also make some reasonable 

estimate of plant "health". It is the in-between area of intermediate 

crop cover that causes problems that have not yet been sol ved. Hopefully, 

we can devise some way using a combination of techniques, perhaps 

reflected and thermal IR along with microwave. 

For many appl ications in agriculture, we need very frequent cover'age. 

Seven to ten days has been suggested. In many cases that is sufficient. 

In other cases we may have to have coverage at least every three days. 

I think we can probably get by without every-day coverage, although some 

of our research is geared to acquiring ground data on a daily basis. I 

mentioned the fact that there are several things that can cause stress 

in plants. We could easily infer the wrong cause, especially if we 

draw conclusions from only one measurement. Repetitive measurements 

provide considerably more information. For example, if we monitored a 

field with thermal IR and discovered a hot spot in the middle of the 

field and previous measurements indicated that it had been 'irrigated a 

few days ago, one would suspect a disease or insect stress. Repetitive 

measurements allow us to deduce a probable cause by elimination. 
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The optimum time for evaluating soil moisture using thermal IR is 

between 12:00 noon and 2:00 p.m. when the largest difference between 

soil or vegetation surface temper'ature and air temperature occurs. 

Also during this period differences with time are small, so a modest 

period of time exists to make measurements. If measurements are made 

near the Landsat overpass time the temperatures are rapidly changing. 

This workshop has been concerned with identifying criteria that 

NAsA can use to design a satellite to monitor soil moisture. I feel 

quite strongly that we in agriculture still have a lot of work to do 

to develop principles that can be used in interpreting remote measure­

ments of soil and plant surfaces. It is not just up to NASA to build 

a better satellite; in agriculture, we must do considerably more research. 

Question (L. Walter) 

It appears that there is less noise in remote sensing systems 

sometimes than is apparent in ground verification of them. Is that 

right, first of all; and secondly, have you discussed the availability 

of improved soil moisture sensors for ground use? 

Response (R.D. Jackson) 

The answer is yes to the first, and to the second, no, we did not 

discuss it to any great extent. It is something that is extremely 

important. How do you ever verify remote sensing of soil moisture by 

going out and taking small soil samples? How many samples in a 40-acre 

field do you need? Bruce Blanchard came to Phoenix, worked hard on this 
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problem, and we are still not sure what the answer is. It is a terrific 

problem. How do you make sure that what you are measuring from an 

aircraft or satell ite matches what you do on the ground? When 

comparing ground data with aircraft, which one ;s correct? Each 

individual sample that we take on the ground may be a good measurement, 

but is it representat'ive of a spot ten feet away? Somehow we need to 

come up with a better verification program. 

Comment (E.T. Kanemasu) 

In regard to your comment concerning verification, measurement 

accuracy requi r(~ments depend on the soil moisture appl ication. In some 

cases, for example watershed hydrology, you only need three levels of 

soil moisture. In irrigation scheduling, there is a wide range of 

water contents in which plant growth ;s unaffected. It is the critical 

level that must be detected. So I do not think it looks as bleak as 

perceived just because you cannot measure soil moisture of a large field. 

Response (R.D. Jackson) 

I agree with you .. I think that what we are addressing here is a 

comparison of measurements. If you have a 40 or 80-acre field and you 

had a one-shot measurement with either microwave or thermal IR, and had 

a number of field samples of soil water content integrated over that 

whole field, to what degree of accuracy could we say which ;s right and 

which is wrong? How many samples would we have to take on the ground 

to do that? I agree if you only need levels of high, medium or low for 

that sample we can do it. But some people after yesterday's microwave 
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presentation were questioning the validity of data that has considerable 

scatter. What causes the scatter? Is the scatter due to the remote 

sensing measurement or the ground-based measurement? That is the 

question that must be answered. 

Sunmary of Microwave and Ganma Radiation Group (T.J.Schmugge) 

We have considered what we call the direct observations of soil 

moisture where a soil property such as emissivity or reflectivity is 

measured. The three approaches that we d!scussed were active microwave, 

passive microwave, and gamma radiation. 

Ninety percent of the gamma radiation from the radioactive component 

in the soil comes from the surface 10 cm of the soil, so variations in 

the observed gamma ray count depend upon the moisture content in that 

surface 10 centimeters. The gamma radiation technique is based on the 

fact that if soil moisture content increases, the soil density increases, 

and more of the gamma radiation coming up from below is absorbed. To 

use the technique it is necessary to have a calibration point when the 

soil is dr~/, and fly over it at other stages of moisture to determine 

the relative moisture content. 

The microwave approaches depend upon the fact that the dielectric 

properties of the soil affect the behavior or ability to transmit electro­

magnetic waves. This applies for both the activ~ microwave and the passiile 

microwave approachEs. In the active microwave approach, a radar sensor 

transmits electromagnetic energy from the platform in the aircraft, 

spacecraft or tower, and the energy that is returned or backscattered 

into the sensor is measured. The backscattering depends upon the 
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dielectric properties of the surface, namely moisture content; and the 

surface roughness characteristics. In the passive microwave approach, 

the thermal emission from the soil in the microwave wavelength is 

measured. In the thermal infrared approach, the emission is measured 

at the peak in the emitted energy spectrum. At microwave wavelengths 

radiation levels are much lower. Measurement at microwave wavelengths 

is possible because at these wavelengths we have a better ability to 

amplify the low power levels. What I would like to do now is give a 

brief review of the discussion that was presented yesterday and then 

comment concerning the relative attributes of the various techniques. 

The basis for using the microwave approach is the fact that the 

dielectric properties of soils depend very strongly on the moisture 

content of the soil. Laboratory measurements of the dielectric constant 

at a short and at a longer wavelength for two clay loam soils have shown 

a bilinear behavior at both wavelengths, and the intersection of the 

two dielectric constant versus soil moisture lines has been shown to 

be a function of the soil texture. For active microwave, Dr. Ulaby and 

his group at the University of Kansas observed the radar backscatter 

from soils to be a function of wavelength in the range from 30 to 3 cm. 

They looked at it as a function of angles from nadir out to 40 to 50° 

and considered five different fields with different surface roughness 

characteristics. They came to the conclusion that a radar operating 

at a frequency of 4 to 5 GHz and an angle of incidence of 100 gives the 

best correlation of measured backscatter. with ground measurements of soil 

moisture independent of the surface conditions. 
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For the passive microwave, we have not looked at as wide a range 

of wavelengths but on the basis of several years of aircraft experi­

ments with multiwavelength systems we have found that measurements at 

wavelengths on the order of 21 centimeters have correlated with ground 

measurements of soil moisture. In addition, some of the scatter in 

the variation of surface conditions, especially surface roughness, will 

affect the response, particularly in the wetter moisture conditions. 

For dry moisture conditions the effect of surface roughness is much less. 

I feel that with a radiometer operating at this wavelength we are able 

to respond to surface soil moisture variations for a wide range of surface 

conditions. 

I would like to summarize the evaluation of the three approaches 

in terms of what I see as some of their pros and cons. From the gamma 

ray approach, Dr. Peck has pointed out that it is an approach that will 

be independent of soil temperature and surface roughness conditions. 

We are only looking at the gamma ray emission from the soil and how it 

is absorbed by the bulk soil matRrials above radiation sources. This 

approach has very poor spatial resolution; the data that he has shown 

for an aircraft flying at 500 feet covers approximately a quarter mile 

swath of land. Low altitudes are required because of atmospheric 

effects. The radiation coming from the atmosphere itself can overwhelm 

th~ radiation coming from the soil at much higher altitudes. 

The microwave approaches have the obvious advantage of an all 

weather capability. The non-raining cloud situation does not interfere 

with the measurement. Even the raining clouds have minimal interference. 
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Active microwaves offer the possibility of high spatial resolution. 

Resolutions of 100 meters or better are possible with synthetic aperture 

radar techniques. Resolutions on the order of a kilometer are possible 

with real imaging radar. Another important factor in active microwave 

is that measurements are independent of th~ temperature. Surface 

roughness will be a noise factor and will limit the ultimate accuracy 

obtainable for inferring soil moisture. The strong depencience on look 

angle will limit the swath width. The proposed angular swath is of the 

order from 7 to 17° which from an orbiting system would limit the swath 

that can be covered with a single instrument. The dependence on 

look angle will require information on surface slope variations for the 

terrain that is being observed. A third problem ;s can we build an 

imaging radar that can be c~11brated well enough to make the measurements 

that are necessary? This is something we ultimately will be able to do. 

In the passive microwave case, the relative insensitivity to 

look angle indicates that passive microwave has the capability of 

obtaining wide swath information that will be insensitive to surface 

slope va ri a ti ons . Surface roughne ss and so 11 temperature will introduce 

noise. We indicated that we had some ideas on dealing with temperature 

effects, but we need more research on surface roughness. The coarse 

spatial resQlution will limit the interpretation of the data when a 

10 kilometer footprint covers a mixed scene-on the ground. Antennas 

larger than 10 meters may. be-required. 

I feel that these three approaches can make a determination of the 

surface moisture conditions, and it will be a question of how we can 

use that surface soil moisture information. 
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C. PANEL OBSERVATIONS AND RECOMMENDATIONS 

A.A. K1 ingebie1 

I represent users and perhaps can serve as a barometer in 

evaluating SOlrle of the information presented at this conference. A 

great deal of information has been presented during the past two days 

about soil moisture, its importance, and the various methods used to 

measure it. I have no profound conclusions to make, but I do have 

several observations I would like to leave with you. 

There is need for recognition and use of soil maps and inter­

pretations to provide a physical base for evaluating soil Inoisture. 

Very little evidence was presented that would indicate this 

information is used. 

It is my opinion that we have the ability to develop a program 

that would provide soil moisture predictions, both excesses and deficits, 

that would be beneficial to farmers and to agribusiness. The information 

I have in mind would be provided to users for major kinds of soil within 

regions in states and would be given in a usable form perhaps on a 

weekly basis. It would help the farmer decide about planting and 

harvesting crops, kinds and amounts of crops to plant, use of 

fertilizers, herbicides and insecticides, hazards of flooding, depth 

to water table, and a number of other activities. 

Thi~ program could start with a generalized soil map that would be 

interpreted to show water holding capacity and/or moisture supplying 

capacity of soils. General sci1 maps are available for whole counties 

and can be obtained and interpreted for various moisture classes. The 
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new soil taxonomy as now used in the u.s. by the National Cooperative 

Soil Survey includes a classification for soil moisture. Copies of this 

classification including soil moisture have been prepared for the whole 

world and are now available. Such maps can be prepared for individual 

counties~ for states or for other areas. By knowing the kind of soil and the 

water holding capacity of that soil you have a starting point of reference 

from which moisture condition of the soil can be determined periodically 

during the growing season. 

Some kinds of soil have two to ten times the capacity of others to 

hold moisture. Farmers can be advised of the soil moisture available 

to plants by kinds of soil. Methodology on how to use this system can 

be developed in a reasonably short time by scientists knowledgeable about 

these matters. Pilot studies could be developed to work out the "bugs" 

and to improve the procedures. 

We need to explore more fully the use of data from meteorological 

satellites in combination with Landsat, aerial flights and ground data. 
, 

There appears to be a need for closer cooperation and exchange of data and 

ideas between agencies uti1 i zi ng these different satell ites. I heard very 

little about the actual user of the weather satellites, but was led to 

believe much could be gained from them. Perhaps we need a stationary 

satellitE! with the kind of equipment we could use in agriculture. 

Much of the money spent on remote sensing research seems to be spent 

on hardware with 1 itt1e left over to carry out experiments. If remote 

sensing research is to survive someone needs to address applications 

research where this system is presently available to use the information. 
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Many participants indicated that methods for gathering ground 

data lag behind the satel~ite technology. Farmers are "weather men" 

in their own right. They observe the moisture of the soil and 

commonly have a rain gauge of some kind to measure precipitation. 

A system now being used in Delaware and Maryland allows for farmers 

to supply these kinds of information to be placed in a computer. 

This system allows for a method of recording ground data at a minimum 

cost. 

More publicity needs to be given to practical results obtained in the 

field of remote sensing. Some programs need to be made operational 

even if they provide only broad guidelines. 

When one goes into a developing country to advise on potential 

for producing food and fiber there is an immediate need to have information 

about the soils, their ability to hold moisture and the rainfall 

distribution and amount. Again with a soil map and knowledge about the 

climate one can put these data together and develop a program that 

will provide information on the potential for producing food and fiber. 

We have the leaders here in remote sensing at this conference, that have 

the ability to develop a program that would be extremely useful to 

anyone working on the problem of resource development and use. 

V.V. Sa1omonson 

I am going to be speaking to you fran! the point of view of an 

advocate of water resources management and hydrology research. I believe 

there is a need both within NASA and outside NASA to advocate research 

in this particular area. In addition there is a growing need to manage 
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water resources over 1 arger areas and as that need grows, it becomes 

more com~dtible with the inherent capabilities of satellites. This 

emphasis and my proposals'.are generally associated with large region 

macroscale hydrology, large region agriculture, and regional and 

gl oba 1 cl imate. 

Remote sensing from aircraft and spacecraft should be considered 

as complementary and ancillary data to conventional systems. 

Conventional systems would serve as benchmarks, references or check­

pOints. I think furthermore that multiwavelength sensors covering 

major portions of the spectrum will always be necessary. Anything we 

propose here should be regarded as complementary to existing systems 

like the Earth Resources Satellite Systems and meteorological environ­

mental satellite systems. Finally there is a need to do modeling 

studies and data analysis studies. There is also quite clearly a need 

to provide better means of getting corroborating ground observations. 

With ret~~ince to Dr. Meredith's questions, he asks whether a 

developmental program is justified. If by that is meant a system of 

programs that will provide improved soil moisture information, I think 

the answer ;s yes. The comments of the workshop have indicated that 

the importance of soil moisture ranges from at least significant to 

very important. 

What should be the development of priorities? Among the candidates 

are climate needs, water resources, management needs, and agricultural 

needs. I advocate water resource management because a knowledge of the 

hydrologic cycle and improved information concerning water resources 

are fundamental both to climate and agriculture. 
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Should the development be r:esearch oriented or operationally 

oriented? It is my view that there are too many questions at the present 

time about depth of penetrat,ion, the applicability of repetitive 

measurements, and the effect of vegetation to indicate that we can say 

an operational program exists. However, there are enough research 

results to justify an aggressive research program. 

What observational capabilities are needed and what kind of a 

research program should be developed? Referring to Table 6-1, 

I again emphasize that there is a need to develop models. In 

my opinion our first emphasis should be on developing large-region, 

climate-oriented models thlt include soil moisture budgets and 

evapotranspiration models. In time, the second emphasis should be on 

water resource models, and the final and ultimate emphasis should be 

on crop yield or multicrop models. The need throughout to do data 

analysis and interpretation technique deve"lopment is very much emphasized. 

On the top of the table (Table 6-1) is indicated that earth resource 

satellites which have generally higher resolutions and relatively 

infrequent coverage should undergo continued development and focus on 

measuring fields, land use boundaries, flooded areas, etc. They 

should be complemented by satellite systems that can provide dynamic, 

highly repetitive, large area coverage. As a basic premise I note 

thait it takes five, plus or minus two, years to get any sort of space­

craft system into orbit. In the mean time, a research program starting 

out with a ground and aircraft effort should be executed between 1979 

and 1981. These efforts should take place at three to five dissimilar 
.' 

sites including different kinds of atmospheric regimes, soils, etc. It 
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Earth Resources Satellites 
Landsat C, D, E, etc. 

Ground Based efforts, 
existing aircraft, effects 
of vegetation, depth, etc. 
3 - 5 sites 

Mid-range, improved 
aircraft sensors 
3 - 5 site!) 

Initial spacecraft, 
-climate-oriented 
test 

2nd Generation spacecraft, 
water resources-oriented 
test 

3rd Generation spacecraft, 
agriculturally - oriented 
test 
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Table 6-1. SOil MOISTUAEWORKSHOP 
JANUARV 17-19. 1918 

(v. SALOMONSON/GSFC) 
SVSTEMS/RESEARCH PLAN OUTLINE (1/19n8 PANEL INPUT) 

1979 1981 1983 1985 1987 1989 1991 
I I I I I I ..J 

Remarks 

C D E, etc. Continually .improving, o!iented 
...... .. to mensuration, boundanes,land 

use, etc. 

research 

spacecraft 
simulation 
(research) 

aircraft underflights 

research operational 

~ 

----,J ..... --~ 

research operational 
--4 .... ~ --~ 

research operational 
-----3 .... - - >-

Use gamma radiation for ground truth 
Develop hand-held radiometers 
for plant stress, soil moisture, 
ground truth, etc. 

Develop improved aircraft sen,sors 
for research support and special 
applications tests 

Visible/IR, AVHRR/HCMM; 1km-500m; 
Microwave/Multifrequency, passive, 
4 bands; 1 week delivery; 1 PM equator 
crossing; also polar region, sea-ice, snow 
cover and soil moisture 

Visible/I Ri advanced AVH R R; 500-250m; 
Microwave, 4 bands; 1 km; 3 day data 
delivery 
do global, met/ag support 

Visible/I R; 250m; daily coverage; 
250-500m microwave, multifr.equency; 
Geosynchronous Landsat capability 
or Severe Storms capability 
Emphasize CRD, state, regional coverage, 
hour!y deliveiY in special situations 

Model Development climate models, ... distrib~ted ... crop yield, ~~ ... 
soil moisture budget parameters remote multi-crop models 
and evapotranspiration sensing-oriented 
with remote sensing water resources 

models 

Data Analysis/Interpretation 
Technique/Development Emphasize Throughout/Use Metsat data also 



is also suggested that this program should consider using gamma radiation 

flights as ground truth. Also, as a spinoff of this effort, we might 

be receptive to the development of some handheld devices that could be 

used as ground truth to cover larger area\s more rapidly. 

The second stage of this reseal"Ch program would focus on an 

improved aircraft sensor program taking place somewhere in the 1981 

to 1983 period. It again would cover three to five sites and continue 

refining our knowledge about vegetation effects, penetration depths and 

the importance of repetitive coverage. In this stage of the total 

program, the emphasis should be on spacecraft simulation wherein an 

effort would be made to cover three to five sites every three days to 

see what type of advantage repetitive coverage gives in terms of 

incremental improvement in model performance and soil moisture 

speci fi cat i on. 

The third stage would involve an initial research spacecraft test. 

It would emphasize climate initially because climatic requirements in 

time and space are the least exacting. This stage would take place 

in the 1983 to 1987 period. The rele't~nt spacecraft system would include 

visible and infrared sensors that resemble some combination or 

approximation of the capabil ities of TIROS-N or HCMM. Th~ spatial 

resolution would be 500 meters to one kilometer. The orbit would provide 

daily coverage in the visible, near infrared and thermal IR associated 

with a 1:00 p.m. equator crossing time on the daylight, descending node. 

This would mean 1:30 to 2:00 p.m. observations in the mid latitudes 

and observations near midnight on the night pass. A four frequency 

passive microwave system providing three day repeat coverage at 10 km 
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spatial resolution should also be included. A point should be made that 

if this system were on a sun-synchronous, polar orbiting spacecraft, 

it would also be applicable to research in snow moisture, polar region 

studies, sea ice studies and many other topics. 

The second generation spacecraft system would be oriented toward 

water resources. It would have a visible and IR system that would 

provide 5 meter spatial resolution and daily coverage. Again it should 

have a HCMM orbit, with three day data delivery and a microwave (passive 

or active not specified) system with one kilometer spatial resolution. 

It should emphasize the soil moisture watersheds larger than 1,000 

kilometers. In the meantime thp table (Table 6-1) indicates that quasi­

operational application of the data from the first data generation system 

should be occurring. 

As a final phase that includes a more speculative, advanced system, 

a program would be suggested to address the more difficult requirements 

of agriculture, such as high resolution estimates of moisture. This 

system would involve a visible and IR system providing 250 meter 

resolution. A multi-frequency microwave system would be operated with 

100 meter resolution covering large areas. Data delivery in one day 

for selective Y'esearch situations wou1d be provided. It might all be 

backed up with a geosynchronous satellite designed to study severe 

storms, preCipitation, hail, or other severe storms subjects. 

This has been an outline of what I believe to be a useful, aggressive, 

and responsive water resources program. I think it is important to 

embark on this kind of program as soon as possible. I firmly believe 
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that if we establish this kind of a program, it will be of considerable 

benefit not only to those of us involved in it personally, but to 

organizations, individuals and governments throughout the world. 

0.5. Simonett 

I am much in sympathy with the points just made by Vince 

Salomonson. The first problem we should look at is the input side of 

the soil moisture problem, namely the amount of rain falling in a given 

location. The spatial network of rain gauges to sample that rain is 

inadequate. It is suitable only for climatological measurements. It 

is completely inadequate for detailed measurements and for driving 

monitoring systems on a daily or 3-day basis. To upgrade our under­

standing of soil moisture we cannot rely exclusively on rain gauges. 

Rainfall is both spatially and temporally a discontinuous phenomenon. 

This requires a precipitation intensity model, cloud type model and 

meteorological satellite interpretation data plus rain gauges. We have 

meteorological satellites at present which look from 2 to 4 times a 

day and others which look about every 30 minutes. Both are needed to 

interpret the life history of stochastic type rainfall from cumuliform 

precipitation. Most of our soil moisture problems occur in summer. 

The bulk of our rainfall in summer is not frontal, it ;s essentially 

stochasti c ar-j si ng from the thermal load on the ground and/or from 

small frontal perturbations added to give a highly time/space yarying 

rainfall. Also, during drought conditions, that stochastic process is 

exacerbated by a more than ordinarily spotty precipitation plus the fact 

that the environment (through variations in soil type, slope, etc.) 

begins to operate on that Y'ainfall and spatially disjunct soil moisture 
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distributions become more important. Consequently, I cannot agree, 

in general, with the proposition that we can meaningfully employ only 

coarse spatial averaging of a highly disjunct, discontinuous, time and 

space varying distribution, for model inputs, anymore than I can accept 

that point-sample rain gauges every 20 to 50 miles or so provide a 

meaningful sample of daily rainfall - though they probably do for 

monthly rainfall. 

For example, I am not in sympathy with the view that 15 to 

50 kilometer resolution passive microwave observations could possibly 

be acceptable by themselves. In such systems, single observations fit 

a running average to a very large area. Many different spatial 

distributions of soil and surface moisture within the resolution cell 

could give the same average value, with different hydrologic or 

crop-production consequences. Comparing this average to something such 

as the antecedent precipitation index, which is itself a running average 

of a very inadequately spaced point sample network, or to rain"gauge 

data seems to me to be a severe scale mismatch. It does not strike me 

as having the kind of leverage either intellectually or in terms of 

driving natural systems to the point where we can use them authoritatively. 

The first recommendation I would come out with is a lot more work 

on using the present meteorological satellites and finding out the way 

in which we can use them. They already have one kilometer spatial 

resolution in the visible region. One kilometer spatial resolution 

does not put an insuperable burden on society in terms of analysis. 

That is again another reason for suggesting that we look very, very 
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carefully at the work with the GOES satellites by NOAA personnel, by 

Merritt, ~narocho and others in the U.S., and by Barrett and others 

in the United Kingdom. 

Unlike rainfall, temperature is both a conservative and 

continuously distributed variable. There has been a substantial 10-

year improvement in U.S. three to six day predict'jon accuracies. 

Comparable improvements in rainfall estimation are not in the cards. 

We need not look to notable improvements in rainfall forecasting 

accuracy: though some is to be expected as the National Weathe.r 

Service switches from numerical forecasting viith the primitive 

equation model and a coarse mesh to quantitative forecasts employing the 

fine mesh and moving fine mesh/quantitative precipitation forecasting 

procedures. 

In a single storm,variations from 8 inches per hour to less than 

1/2 inch of rain per hour over a distance as little as one mile may be 

observed. KrJwing these time/space variabilities, we should be 

conservati ve a:)out forecasti ng accuraci es. On the other hand, improved 

observations do at least bring us up to date. 

Improved observations on the input side, absolutely must be 

coupled with ~Qd~ling. All the evidence to date shows that we are 

looking only at relatively surficial soil water (0 to 5, perhaps 

10 em.) whatever the wavelength, including microwave. I feel that even 

passive microwave may not let us go much deeper. With active microwave, 

we cannot use a much longer wavelength than 30 centimeters in space 

because of Faraday rotation, so any thought of using very long \,/avelength 
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imaging radars is out. Remote sensor inputs whether active or passive 

almost certainly must be coupled with a moisture budget model updated 

daily. Again, my intuition tells me reliance on remote sensing data 

alone is not likely. We are already beginning to couple sensing 

and modeling. I feel confident that that is the wave of the future. 

In any case, excessive detail is not warranted nor is wallowing 

around with oversampling the surface. Soil moisture varies notably in 

short distances (within-field variability at the surface is very high). 

Despite this, we find that wheat, for example, can look quite uniform 

in a soil showing such variability in surface soil moisture. We 

know that soil moisture spatial variability is less in the deeper 

horizons. The wheat draws its moisture from tens of centimeters and 

derives some kind of moisture resource integrated over that depth. I 

am not too disturbed therefore, about the scatter in surface soil 

moisture point measurements. Remote sensor data averaged over tens 

to hundreds of meters are likely to be more meaningful than point 

measurements. Also I am confident we could use decay functions 

through time and meteoFological satellites with one kilometer spatial 

resolution in the areas we are mostly concerned \'Jith, that is the arid, 

the semi-arid and the sub-humid lands of the world where the bulk of 

our small grains are produced. 

In summary, I see major research needed on climatic and agro­

meteorological water energy-balance modeling in conjunction with a 

vigorous testing of meteorological satellites and a very critical review 

of sampling questions. 
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In regard to other satellites than the meteorological; Landsat 

o is here in the sense that it has already been at l~ast partially 

approved by OMB. The work by Kanemasu and a number of others 

shows that it will have roles in modeling and time-sequential analysis. 

It i.s there, we should conti .ue to work on it, and NASA and USDA 

should continue to fund thoughtful investigations in those areas. 

Finally, then I am left with active and passive microwave and thermal 

IR. In my view, there is some, but still largely undefined role for 

each in a full soil moisture monitoring system. My suspicion is that 

radar will be very important in the final system. I am very much 

associated with active radar and I am firmly in that camp. I have 

recommended before that I think the time is right now to expand 

aircraft radar R&D so we may move promptly to space experim2nts 

with radar. I recommend that we give serious and thoughtful study 

to the active region for the following reasons: it is the only area 

that will give us fairly fine spatial resolution along with 

independence of cloud cover, and it will not be as costly as previous 

analyses have suggested. We do not have to go with 50 meter spatial 

resolution. Spatial resolutions of 200, 300, or even 400 meters 

may very well do the job for most of what we need to do. Costs 

are in no small measure related to the fineness of the resolution 

sought. 
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R.B. MacDonald 

In my opinion, a research and development program is justified. 

I emphasize research on the basis of my experience at Purdue where we 

initiated a basic research prograw back ~n the mid to late 60 1s to 

investigate the interaction of electromagnetic energy at various 

wavelengths with the basic soil material and found that we had to spend 

considerable resources to collect supportive soil moisture ground 
"' . ., 

truth to adequately describe the mo~stu~e of an agricultural field. 

These studies raised more questions than they answered. There is no 

question of the importance of the application of soil moisture 

information, but I think we had better be prepared for a long haul. 

What should our priorities be? Very definitely, we need to 

focus our attentions on one or several of the more important dpp1ications. 

I advocate estimates of the soil moisture over relatively large areas 

in support of agricultural needs as a priority. 

There are some things we can do right now. From Landsat we can 

observe large areas of severe stress, and with some meteorological 

inputs we can deduce tb~t the cause is probably a shortage of moisture. 

We thG:(~ c~n use this information fc·r selecting ground stations to get 

a better estimate of the precipitation and soil moisture for a given 

affected region. 

We need to develop a capability that operates from the ground, 

'" from aircraft, and from ~pace, and I am not at a11 satisfied that we 

currently have sa~isfactory techniques from the ground. There is a 
. 

tremendous need for improved techniques at ground level. Anybody that 
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has worked in this area knows that we have a difficult task of getting 

enough soil moisture information on the ground to adequately support 

research. 

Basic and applied research should be included in a research program. 

The applied portion needs to be steered toward operational objectives 

that are short-term, intermediate-term and long-term. We also must be 

more thoughtful about defining our requirements, and must recognize th~t 

the complexities of these requirements vary. Estimating and measuring 

soil moisture in the surface of bare soil is probably the simplest 

requirewent. We also have requirements for estimates of soil moisture 

in the presence of different types of canopies, biomass, leaf area 

indices, etc. 

I think the user community has to do a more conscientious job of 

establishing its requirements. Evaluation of our present models can be 

used to determine precisions and accuracies that we could make use of 

in the immediate future. Extrapolations to estimate the expected 

improvement in these models would lead us to an intelligent assignment 

of accuracies required in the intermediate future. Possibly we could 

extrapolate out to estimates of what we might like to have in 10 years. 

With remote sensing we are going to get a direct measurement probably 

from the surface layer only. We need to intensify our efforts to develop 

models that relate the moisture in that surface layer to the root zone. 

I definitely think that researchers have a big job ahead of them in the 

next year or two to establish a better estimate of the depths to which 

we can make these measurements and to what precision these accuracies 

can be expected. 
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E.T. Engman 

My biases are hydrology and water resources. Chris Johannsen 

indicated that soil moisture datel have not really been utilized by 

users, and I think this is particularly true with ~Iydrology. Our 

models have soil moisture blocks in them but the use of actual field 

data even in a research sense has been limited. 

I have separated hydrologic and water resource models into two 

classes for the sake cf this discussion. These are operational and 

planning; and design categories. Operational models could be 

distributed or lumped parameter models; planning and design models 

should be distributed. For operationa'j models, temporal scale is more 

important than the spatial scale. On the other hand for planning and 

design, spatial scales are more important. Capability of feedback is 

a feature of the operational models, whereas one time data collection 

may be all that is necessary for the planning and design models. Data 

requirements for operational models could be satisfied with satellite 

measurements; whereas, requirements for planning and design models may 

be better satisfied with one time aircraft flights. 

In answer to Dr. Meredith's questions, a development program is 

justified, and water resources should be the priority. Both research 

and operational programs should be emphasized. I know that NASA would 

like us to preciselY define spatial resolution, revisit time, etc., 

but this is not realistic at the present time. I do not think the user 

will ever be able to specify the type of requirements that hardware 

people would like to see. Users should try to adapt modeling or 
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predictive schemes to utilize the information that may be the easiest 

to get right now. 

What type of capability should we develop? Soil moisture estimates 

at a five square kilometers spatial resolution may be desired, but I 

do not think we can precisely define this yet. 

We shou'id be leaning toward a three day revisit time with seven 

days as a maximum. As far as spectral requirements are concerned, I 

think long wave microwave has the most potential for water resources 

and we should be thinking of evaluating sno\,1 and frozen ground in addition 

to soil moisture. 

Finally, what research should we be conducting right now? Well, 

I think the question of scale is a very important and neglected question 

in many natural resources applications. In hydrology we use point 

measurements and yet we do not know how to use these point measurement 

in a large watershed. We have to learn what sampling schemes are 

necessary to represent the physical process as we understand it. For 

example, we do not know how water moves in the soil as certain parts of 

the watershed are more important than others for generating runoff. 

Another question is the use of data. Contouring algorithms of 

soil moisture or averaging methods must be developed. Use of index 

areas, particularly if we are talking about an operational model, must 

be researched. There are certain areas that we could repeatedly measure 

and, with feedback mechanisms, these index areas may be the best way to 

solve the problem of forecasting. 
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T.J. Schmugge 

We have indicated that tp:hniques are available that are 

sensitive to surface soil moisture, but we have not convinced anybody 

that it could be measured with any high degree of precision with our 

present knowledge because of the various problems that we have had 

with ground measurements. Because of uncertainties due to such 

things as vegetative cover, surface roughness, soil temperature, and 

soil type, the point has not yet been reached of being able to pin 

down what the ultimate accuracy is. We have to do continued ground 

research with tower and aircraft measurements to determine what 

accuracies can be expected from soil moisture sensors. 

In the meantime there is a contribution that a sensor such as 

the microwave radiometer can make. There is a need for better 

information on rainfall distribution because the current network of 

rain gauge stations does not supply adequate data. If we can put up 

a system that will monito'r the soil surface moisture variations on a 

frequent basis and tie this set of observations to the existing 

network of rain gauges, we can better estimate the rainfall distribution 

between stations. Indications are that satellite data can be 

correlated with antecedent precipitation which hydrologists are 

currently using. This can be done in the near future with our existing 

technology. This would not be the ultimate system for measuring soil 

moisture from space; it would be an interim solution to get us on the 

road towards maki ng use of observati ons .. 
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C.J. Johannsen 

~y views are similar to those of the previous speakers and therefore 

I will reinforce points which I feel are extremely important. First, a 

development program on measuring soil moisture from space is justified. 

I would visualize this as a three-phase simultaneous effort that includes 

data collection, education and delivery, and research. 

Current data collection systems could be used in an intial effort 

even though the measurements are somewhat crude. The interpretation of 

those measurements and util izati on by the publ ic woul d be a strong 

driving force and justification for improvement of the data collection 

system. 

The second phase of an education and delivery system does not 

presently recieve enough emphasis. We have existing delivery systems 

within USDA and NOAA. Data should be given to these agencies with 

established time schedules for getting tntl information to users. Delivery 

of soil moisture information needs to be emphasized. Feedback from users 

would be fairly rapid, especially if efforts were made to solicit their 

input, and the information should be useful to hardware people for 

developing and refining instrumentation. The delivery system needs to be 

making use of existing soils information. We know how much moisture can 

be held by soils on a regional basis. Currently we can monitor rainfall 

distribution and estimate evapotranspiration to determine the remaining 

available soil moisture. A specific measurement of soil moisture from 

space would greatly improve upon those estimates. 

In research, we need to improve the data collection system 

on the ground as well as from space. I am convinced 
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that we need more rapid procedures for gathering soil moisture 

information. We need continued r~search in our modeling efforts. 

Researchers in the modeling area have convinced me that modeling can 

very rapidly establish the weakest links in your data and the\'efore 

establish the priorities for improving that data. Research should 

also be conducted on the delivery system with particular emphasis on 

user requirements. Questions on the types of formats, time 

requirements, accuracy needs and many other user requirements need to 

be verified. 

Providing experimental data to the user should greatly assist the 

entire program. This is not one of the times that we should have a 

90 to 95 percent accuracy established before we let the public know 

what we are working on. Providing the user with experimental 

preliminary information will greatly assist the data collection and 

research phases. Establishing climatology and meteorology extension 

position in all states would greatly assist the educational phase. 

R. D. Jackson 

Today there are many commercial companies that are providing 

management information to farmers for a price. For example, ther~ is 

a one man operation in the Pacific Northwest that uses a small aircraft 

to take 35 mm color IR slides of center pivot irrigation systems. He 

takes pictw'es once a week and within 24 hours shows the pictures and 

consults with farm managers. He points out nozzles that have plugged, 

areas that need more water or fertilizer, etc. He will only contract 

with farmers who have at least 5 or 6 center pivots (each one covering 
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about 130 acres). The smaller farmers cannot obtain his 

services. 

What we need is a stationary satellites tethered between 

100,000 and 200,000 feet, that holds several sensors, some of which 

have not yet been developed. This satellite would be parked over a 

large agricultural area, and would contain sufficient black boxes so 

that a farmer, farm manager, or an agricultural consultant co~ld use. 

his own computer, interrogate the satellite and obtain pictures in the 

visible and IR, and computer produced pictures from thermal IR and 

microwave. 

From this he could rapidly determine when individual fields need 

irrigation and when they have been irrigated or when rains have 

occurred. He could get a measure of the growth stage of his crops, and 

could detect problem fields and nonuniformity in fields. He could 

verify that automated irrigation systems are properly programmed 

and function correctly, could verify when the crops are mature, when to 

terminate irrigations, and could help in predicting yields. 

Research in agriculture and in satellite system development is 

necessary in order for this type of system to come to pass. 

D. COMMENTS, QUESTIONS, AND GENERAL DISCUSSION 

Comment (E. L. Maxwe111 

In respect to what Ray (Jackson) just said, a very similar operation 

is taking place in Colorado. Individual farmers and corporations having 

their own aircraft are us"jng 35 mm cameras to study their center pivot 

operations to identify many of the same problems just alluded to. 
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There is another item I just became aware of. ASCS in Colorado 

could not afford large mapping camera operations to study specific 

problems in small areas. They found a small aircraft owner and for 

$800 put a small port in the bottom of his aircraft and mounted a 

35 mm camera. ASCS is using that system to get updates of agricultural 

conditions in specific counties in Colorado. 

I am going to address some comments to the panel concerning the 

use of microwave in snow and frozen soil areas, and the temperature 

independence of radar microwave systems. We should note that radar will 

not be useful at all under snow and frozen soil conditions because, 

although the relaxation frequency of water in the liquid and vapor phases 

is about 40 GHz, when you freeze the water the relaxation frequency 

drops down into the KHz range. Essentially the rotation of the water 

molecules becomes so slow that it simply does not try to rotate at micro­

wave frequencies. Therefore, you have dielectric properties for snow and 

frozen soil that are very equivalent to those for the soil properties 

themselves, i.e. relative dielectric constants of 2 to 4. Thus, YOll 

will not get soil moisture data under frozen soil or snow conditions 

with radar. 

Relative to the temperature independence of microwave systems, 

we can say they will be relatively temperature independent but not 

absolutely or completely independent. There will be some errors 

associated with temperature. It has been noted several times that there 

is a break point in the dielectric properties of soil as you go through 

different moisture percentages. The break point is undoubtedly due to 
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chemical binding of the water molecule in the soil particle at low 

moisture content which affects the ability of the water molecule to 

rotate readily. Therefore, if you change the temperature of your soil 

greatly you are bound to have different mobilities of the water 

molecules. This must cause some variation in dielectric properties and 

therefore some variation in your calibration system. How great these 

variations are going to be I cannot say, and I would invite anyone 

to respond to these comments. 

Response (T.J. Schmugge) 

Yes, frozen soil would appear to have essentially the same 

dielectric properties as dry soil. For the idea of snow sensing, the 

dielectric properties of the ice comprising the snow are similar to dry 

soils because the water molecules are no longer free to rotate. 

Therefore its dielectric properties are not the same as they would be 

in the liquid stage because snow is a much more inhomogeneous media in 

terms of having a particle lattice and the air spaces in between. The 

behavior becomes much different and a function of the wavelength. The 

difference occurs when we get into volume scattering phenomenon which 

lowers the obse.rved brightness temperature that we observe for dry 9nO\,I. 

This is essentially due to scattering of some of the cold sky into the 

antenna. Thus, we may be able to do something in terms of quantifying 

snow amounts because of the scattering phenomenon. Another situation 

that occurs ;s that when the snow begins to melt, it becomes a very 

glossy medium and you essentially are observing the black body temperature 

of the snow. 
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The dielectric properties do depend on temperature. Hoekstra and 

Delaney in some of their studies have looked at that temperature 

dependence. I think it is small but it would have some affect. 

I think the effect of temperature on the diel.ectric property is 

probably one of the smaller errors in our problem. 

Response (E.T. Engman) 

What I intended regarding frozen soil was not that you measure the 

soil moisture under the frozen condition, but just give an estimate of 

whether the soil is frozen or unfrozen. This would be important infor­

mation for flood forecasting. 

Question (H.L. McKim) 

What would be the effect of salinity in the soil on the dielectric 

response? 

Response (B.J. Blachard) 

Since first attempts to measure dielectric properties of saline 

soils ran into difficulties due to design of the sample holder, there 

have been no successful measurements as yet. My greatest concern is 

whether or not we can separate moisture and salinity effects. 

Response (E.L. Maxwell) 

There is no reason to expect the salinity of the soil to affect 

the real part of the dielectric constant because this is essentially 

due to the presence of the water. We often times make the mistake, 

however, of assuming that all of the loss factors are associated with 

the imaginary part of the dielectric constant, the loss of e,nergy due to 
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that rotation. This is not true particularly when you get into saline 

soils where you have very high conductivities. The conductivity itself 

is adding to energy losses in the soils associated mostly with 

polarization. Thus saline soil will affect radar or microwave response 

but not due to the real part of the dielectric constant. 

Comment (E.T. Kanemasu) 

With respect to the use of the reflective infrared in modeling 

yield and crop growth, the temporal resolution required is currently one 

of the limiting steps. The 9 to 18 day potential coverage with the present 

Landsat system is not sufficient because of cloud cover to provide 

estimates of ground cover and biomass required on a continuous and 

timely basis. What are required are at least 3 Landsats (6 day coverage) 

or a geosynchronous satellite. Also with respect to agriculture, I think 

microwave applications are being concentrated at the wrong end of the 

plant. I think there is more potential for looking at the above-ground 

portion of the plants than for looking at the first few centimeters of 

topsoil. I would like to see more emphasis on the assessment of 

biomass using microwave. 

Response (D.S. Simonett) 

It depends on the wavelength that you work with, the shorter 

wavelengths in active microwave never get to the ground where there is 

significant vegetative cover. If you look at Ulaby's spectrometer 

results over the range of about 10 GHz to 18 GHz, he found strong 

i ndicati ons that observati ons at six-day i ntel~val s give accuracies of 
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crop identification during a 30 day period fully comparable with Landsat, 

independent of cloud cover. These same wavelengths are also sensitive to 

contained plant moisture. I am not advocating radar that is preferred to 

other systems - that is improper. The visible and thermal ranges have 

their own roles to play. However, short-wavelength radars could usefully 

supplement Landsat and at least would guarantee delivery of data. Work 

going back to the mid 1960's shows there is a relationship between bio­

mass, plant moisture and short wavelength (Ka-band) radar return. 

Ulaby's recent results show relationships between biomass and contained 

moisture in the p'la'it:: in the 1 to 2 cm region and the return. Do not 

discount the possibility of using radar for making estimates of biomass 

or leaf area index. 

Comment (D.G. Moore) 

At the present stage of development of applying theory and basic 

laws of physics to utilizing remote sensors, our knowledge appears to 
• 

be limited because experiments have been conducted under extremely 

controlled conditions. The extreme variabilities in nature cause 

difficulties when testing concepts except for a laboratory or small 

controlled plot experiments. When attempting to examine the concepts 

over a wider range of ground variables, many of which are extremely 

difficult to measure, the interactions of all the main effects create 

confusion in the data for establishing significance to the real variable 

to predict. In that sense one may discuss the "art" of remote sensing 

rather than the "science" at the present stage of development. For 
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advancements of the technology over a broad variety of landscape 

conditions, both experimental control on site-specific conditions and 

empirical analysis over the wide variety of conditions and their inter­

actions should be pursued. Until such time that thermal, microwave, 

or other data to be tested become routinely available for a variety 

of experiments, advancements in the broad scale evaluations and use will 

be severely 1 imited. 

Response (R.B. MacDonald) 

We have to spend considerable effort to develop good experimental 

designs to come up with data sets that are meaningful to support the 

kinds of analyses that are required. We should try to acquire and 

distribute data sets from ground and aircraft environments. I certainly 

am not against satellite microwave remote sensing. Within the 

confines of a budget, the data sets from some of these microwave 

systems at altitude should be made available. However, there are not 

sufficient funds to do everything. A lot of waste historically occurs 

because planners put a lot more money into the design of some sensors 

and platforms than into the utilization of the data in good experimental 

designs. I submit that there is a host of microwave sensor and 

satellite plans, and yet I have not seen many good experimental 
" 

designs for using these data. 

Comment {H.L. McKim} 

For many of the users the most important information is the 
~ 

management of moisture distribution spatially and with depth as stated 
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today. This infonnation is needed for water resources, waste water 

management, and hydrological models. In certain instances soil 

texture and structure can be used to estimate the movement of water 

through soil where ground measurements of soil moisture cannot be 

obtained. However, a reasonable scheme that uses soil micromorphology 

may be able to be developed that would increase the accuracy of using 

soil physical properties in this manner. Presently there seem to be 

many problems in using remote sensing methods, especially from 

satellites to obtain soil moisture data in time and space. The 

pr9b1em may be in the sensor data but may also be related to the acquistion 

of adequate ground information. 

Response (V.V. Sa10monson) 

I do not know that I am responding to the question raised by 

Dr. McKim but I want to make an observation. As I have attempted to 

coordinate and take the lead at Goddard in water resources research, 

it has been necessary to look into the future and make a decision as 

to where our, research emphasis should be. We have had some pretty good 

experiences and results from looking at meteorological satellite data 

in the past for snow cover studies leading to estimates of seasonal 

runoff. We have studied Landsat data and have had success acquiring 

observations of land use, surface water area, and snow cover that were 

useful in water resources management. But it has been my view that we 

need to develop ways to observe the more fundamental parameters in the 

hydrologic cycle such as soil moisture, snow water equivalent and 

wetness, precipitation, and evapotranspiration. For that we need to 

look at other spectral regi ons not present1 y pro vi ded by Lands'at data. 
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From many of the studies it has been my view that there are a lot of 

things that may be accomplished in water resources by studying the 

thermal and particularly, the microwave portions of the spectrum. 

After deciding where in the broad sense the research emphasis 

should be, one must consider how to develop and phase intensive studies 

on the ground, and acquisition of data sets that lead to a fundamental 

understanding and an appropriate definition of space systems. 

I do want to draw on my experience and note that in every case I 

know of and have participated in there was more information and 

application derived from space systems than anybody had predicted prior 

to launch. If we can be permitted to put into orbit systems with 

microwave sensors and complementary visible and infrared sensors, 

it is my firm view that we will contribute to our understanding of soil 

moisture and other parameters in the hydrologic cycle that will be 

very app"j icable, and win create benefits that far outweigh the 

expense and effort involved in developing the systems themselves. 

Response (E.T. Engman) 

I also would like to respond to the comments of Dr. McKim. I 

think that we know more about how water moves in the vertical direction 

than how soil moisture properties vary in the horizontal direction. 

To me the big unknowns are what is happening horizontally and how 

adjacent levels of soil moisture affect the hydrology and water 

movement over the land surface. For applications such as waste water 

handling and renovations a great deal of detail is required. The only 

way to get that detail is to make a lot of field measurements, but one 
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is usually talking about something that is a fairly manageable piece of 

land of perhaps less than 100 acres. Also you take field measurements 

only once to get the initial properties. Soil moisture variations 

with time are much mare damped at four feet than they are three inches. 

We must learn how to handle the variation that's occurring at the top 

of the profile since properties that affect water movement at the top 

are perhaps much more important than at the deeper depths. 

Comment (A.A. Klingebiel) 

·1 would like to address the question regarding vertical water 

movement through the soil. 

different kinds of soil. 

We can characterize the moisture regime of 

The soil properties certainly are quite 

different from one kind of soil to another. Of course cultivated or 

severely grazed soils do tend to seal at the surface. This is related 

to management of the different kinds of soil. A great deal of information 

is a11~eady known about this in terms of runoff, and amount of water 

that will actually go into the soil. 1 see no reason why one cannot 

for specific at'eas and for specific kinds of soils arrive at a reasonable 

estimate of the amount of water that would percolate into and through 

the soil. The condition of the surface layer does make a difference; 

i:t does not matter how permeable the soil might be below the surface if 

it is sealed at the top. If the water does not infiltrate, it is 

going to stand on the surface or run off. You can also predict the 

movement of water down through the soil by knowing the properties of 

the soil. You can evaluate the kind of soil you have, the land use and 
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the kind of management to arrive at an estimate of the rate of 

infiltration and \~ulloff. 

~estion (H.L. McKim) 

How do I go into the field and take these measurements? One 

of the most important aspects that should be considered is the 

measurement required in the field at the time the sensor is being flown 

over a site. The number of data points required and the method used 

to obtain the measurements are extremely important. It is very 

difficult to say that the differences observed on the data products 

from the remote sensor are really related to soil moisture without 

adequate ground truth data. 

Response {A.A. KlingebieLL 

As you know, there are many factors that influence infiltration 

and runoff. Soil properties including soil slope, soil depth, soil 

texture, coarse fragments and soil structure all influence the 

infiltration and the permeability of the soil. By knowing the kind of 

soil, these properties can be estimated for areas. By recording 

experience from small controlled watersheds, one can calibrate the 

soil mol sture regime with different cl imati c and management conditi ons. 

These kinds of data at'e available from various studies made by the ARS 

and the SCS. State Soil Scientists of the SCS can help in the 

development of these figures. You may not get the figures as precise 

as you would like them, but it seems to me you could come up with some 

reasonable estimates that would help in making the determinations. 
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question (C.L. Wiegand) 

Can you give those figures independently of vegetal cover? Does 

it make any difference on the vegetal cover and if so is there a way 

to adjust your figures? 

Response (A.A. Klingebiel) 

Ratings can be given for individual kinds of soil irrespective of 

the vegetation that occurs on them. The factors are then modified as 

the vegetation and management are changed. The hydrologic soil 

factors now used by the SCS~n evaluating runoff are examples of the 

ratings I am referring to. It is my opinion that these general ratings 

can be improved upon when applied to specific watersheds where more of 

the parameters are known. 

Response (D.S. Simonett) 

We have to strike some reasonable balance between the needs for 

thorough scientific understanding to make us happy and the needs for 

practical results with simplified systems. If in the microwave region 

we are unable to get a reasonable working relation between contained 

soil moisture in the sur'face few inches and radar backscatter or passive 

brightne~s temperature, we had better close up shop. If \'Je have to worry 

about extremely fine scale water-budget modeling the uncertainties will 

overwhelm us. For example, there are large areas of the world where we 

do not know what the soil-water-sealing mechanisms are and the time-rate 

relationships of them with respect to runoff. Only in th~ last·few 

years have we learned how hydrophobic some soils are under certain 
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conditions. This applies both to natural plant communities and 

cUltivated soils. Imagine the complexity produced by modeling unknown 

water relationships on such soils. I am concerned about burying 

outselves in a mass of detail. I think if we are to get anywhere it 

has to be with fairly crude systems and with fairly crude relationships, 

and quite possibly we may not be able to do it quantitatively. We have 

all talked about doing it as a quantitative measurement. How many 

quantitati ve measurements are we taking now from Landsat? What we are 

dOing is using change and logic - in other words deriving empirical 

relations. I am not arguing against science; but for acknowledgment that 

operational systems are likely to tend to empiricism and surrogate 

relations. 

Comment (E.C.A. Runge) 

In the opening session of the workshop Mr. Carlson talked Gbout 

the charge he evidently hat been given and that was how do we obtain 

better and more accurate yield models. I suspect that the payoff for 

many of the things we are talking about is still in this particular area. 

It seems to me that the political climate is a bit sensitive in this 

particular area at the present time. I wonder if we have not submerged 

that in our discussion here today. Yield modeling can be approached 

from many different angles. 

Generally, the action or reaction from the platform has -over'­

whelmed the needs for some of these studies. I do not think we need 

all kinds of yield models and I think we can prioritize our needs. I 

buy Dr. Simonett's philosophy that if we have to go down and prove 
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all aspects of plant growth with very detailed measurements we are not 

going to get very far. I believe there is a big void in our research 

efforts. We can basically generalize on what we need to know and 

prioritize our needs. 

Comment (R.B. MacDonald) 

There are two comments that I would like to add. One concerns 

the need for development of improved productivity models that relate the 

surface soil boundary layer moisture to the root zone. We need to 

spend more dollars on developing these models, 

A second point is that we need an improved estimate of precipitation. 

Better estimates of precipitation using a conventional system together 

with meteorological satellite measurements, and development of the 

capability to estimate surface soil moisture directly will give us an 

improved capability to estimate moisture at depths below the surface. 

I think more research should be directed toward developing improved 

ways of estimating precipitation, especially at the more northerly 

latitudes. I think \'1e are an familiar with the kind of success 

researchers have hao in the tropics, but it does not necessarily 

extrapolate to higher latitudes where we have different cloud systems. 

Response (B.J. Blanchard) 

As far as remote measurements of prec·,pitation are concerned, some 

of you are aware that the Severe Storm Laboratory has been working 

on this with ARS for about 16 years. Some people whoare very c10se to 

this take the approach that it may be another 25 years before we can 
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handle the background problem. What we are us.ing the precipitation for 

is really to tell us what the soil moisture is. 

Another thing I would like to bring out for some of the people who 

are not doing research in this area and may not be familiar with is that 

management systems end up working backwards. In July, Seasat will be 

launched and will carry a radar system, a series of passive microwave 

frequencies, visible and infrared images, and a scatterometer. Bob 

MacDonald hit the nail on the head because we have invested all the money 

in the system and there are no dollars left fl.',' the experiments. Beside 

that, we will have a system in space using those kinds of techniques 

before we have ground experiments to really build up to that stage. 

We have some serious problems to address. Are we going to use that 

satellite data in land experiments to take advantage of it? If we do 

that and we accomplish the job, then how much effort should go back and 

be put on truck experiments and aircraft? 

Comment (A.D. Nicks) 

I am glad to hear that there is a lot more interest in rainfall 

research than there has been, especi ally for looking at 1 arge areas and 

the variabilities that can be measured over these. If rainfall and 

precipitation measurements are important to the remote sensing program, 

there should be some emphasis placed on doing research in this area or 

at least getting some research facilities since there are only a limited 

number of t'eally intensive networks in this country. These are the 

places where we are going to have data for looking at rainfall variability. 

Remote sensing data will have to be correlated with some ground measure­

ments. 
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Depending on what kind of priorities you put on measurement of 

precipitation you are going t(' need some other measuring networks through­

out the country or tht'oughout the world. These networks are very 

ex pens i ve and there is a 1 at of do, ta genera ted from ra i n fa "11 networks. 

At Chi ckasha on 1500 square mil es, we have about 60 different soi 1 seri es 

across the area. Between even two stations which are about three miles 

apart, we could have as many as 20 soil series. A "hydrologic model II 

probably does not exist right now that will accept more than just one 

rainfall input. I really cannot say that you can simulate the muisture 

in the top three inches of the soil profile between two stations of 

the network right now with surface measurements. If you are interested 

in precipitation inputs to modeling, there should be some decision 

made on who is goi ng to do the work and what is requi "ted e 

Bruce Blanchard referred to the severe storms measured by surface 

measurements and meteorological radar. There has been a lot of work 

going on in this area since the 1940·s. There are varying opinions on 

radar usefulness but I think most people would say it is very promising. 

Yet we do not get yery good definitions of the storm variability on 

networks like we have down in Oklahoma from radar. 

I think there should be some consideration given to defining 

precipitation. We can tell you something about the areal variability 

of it, but we do not know how to use this variability in models. 

Comment (F.e. Billingsl~ 

I would pick up on a different point that Bruce Blanchard made, and 

that is a question or. Seasatsynthetic aperature radar. There is another 
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radar that is going to be on one of the shuttle flights. The Seasat radar' 

is intially designed to allow the ocean people to observe wave patterns. 

For that type of use, certain types of processing are useful. My 

questions then are; is the type of processing for Seasat adequate 

or do we need digital correlation? What are the image processing 

data processing requirements in order to satisfy your l~esearch needs; 

and where should we at NASA be going in terms of trying to develop such 

a processing program? 

Response (B.J. Blanchard) 

Land experiments will require cigital and repentable data for 

quantitative analysis in some experiments, notably soil moisture 

estimation and watershed runoff coefficient estimates. In my experience 

with the JPL and ERIM systems, digitized imagery was not repeatable and 

wes not quantitative. Other problems with lack of calibration and 

angular effects indicated that aircraft SAR should not be used for 

quantitative studies. These problems can all be eliminated with 

digital data from a system like Seasat. 

Comment (D.S. Simonett). 

I understand that we have lost the money for an effort in digital 

processing of Seasat data, which is unfortunate. However, the work I did 

in Kansas in 1965 through 1967 was done with imagery that was uncalibrated. 

Yet, the relative relationships were useable. My reaction is to say at 

this time in the long run Bruce (Blanchard) is absolutely right. The 

systems of the future have to be digital' and they have to be calibrated, if 

we seek quantitative answers. However, if somebody would give me the 
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Seasat optically correlated data and a reasonable amount of money to 

carryon an analysis I will predict to you that I will come out with 

some useful empirical results at a single time. 

If we wish to have absolute values you cannot get it. So this is 

the case where I would say the science would demand that we go the 

more expensive digital route. The practical issues would say that I 

would be able to live with and at least do something. In fact if we 

get Seasat data over the central area in California that is exactly what 

we will do. I must add that Canadian digital processing of Seas at L­

band radar imagery over land and sea may well make Canada the prime 

scientific beneficiary of the radar imaging experiments. 

Response (B.J. Blanchard) 

I agree with him. On a one-shot basis you can do this. One 

of the nice features of Seasat is that if you select a group of fields 

you have the opportunity to look at these same fields on six 

sequential passes 3 days apart which would give us a lot more strength 

in developing soil moisture measurements. If you look at it in this 

regard we need some way to compf' this pass with one that is processed 

3 days hence. 

I would agree there is not much reason to try quantitative analysis 

of the data that we are getting now and I woul d further say that if \Ole are 

going to ever get any real quantitative results from radar information 

that we have to have more than one frequency. We have to have a dual 

or three frequency system because there is no way, even with digital 

analysis that you are going to separate roughness, angle of incidence 
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effect and electrical property effects with just a single frequency. 

In the future, if we do hope to get some quantitative results we had 

better put up a system that will operate at more than one frequency. 

E. CONCLUDING REMARKS 

V. I. Myers 

It is appropriate at this point to note several achievements 

resulting from this soil moisture workshop and to make a couple of 

observations. 

Considerable progress has been made in recent years toward under­

standing soil moisture phenomenon and in pursuing remote detection 

feasibility. It is recognized by this group that there is a need for 

in-depth research, as well as applied research and development 

activities, in the soil moisture field. 

The conclusions reached in the workshop were generally cautious 

in terms of capabilities but optimistic in terms of the future. 

Researchers always have to be prepared to take a gambler's risk - it 

has always been that way. 

The greatest promise that may materialize from this workshop 

would be that the research and development effort will become unified 

and coordinated. This will surely accelerate the day when we can realize 

the reality of an operational water resources satellite. 

Users are not organized in their requests and requirements 

for soil moisture information. This can be partly attributed 

to the realism that soil moisture data by itself is not a final 

product. It is an input to many other output data products such 

6-52 



i , 
as watershed runoff, crop yields, irrigation water requirements and 

many others as brought out in this workshop. 

Many individuals or groups express a str~)l1g -desire for continuous 

remote sensing soil moisture information. If it could be provided in 

a relatively simple format there would be little problem with 

acceptance of the fact of there is need for the data. Agriculture, 

hydrology and most other resource areas do not have strongly organized 

groups to voice their remote sensing needs such as is the case with 

minerals and perhaps shipping interests and others. It remains for 

a non-political scientific group such as the one meeting here to let 

these water resource needs be known, hoping that facts and logic can 

accomplish what an organized voice might othe~;ise bring about. 

The most pessimistic observers surely cannot argue with the 

concept of bringing together the prepared minds of the best people 

in the field of soil moisture for the purpose of assessing the present 

and then planning the future. Optimists of which there are lllany in 

the group, would then go further by stating that there ;s every 

reason to believe that a concerted effort to develop a useful soil 

moisture program can produce positive results. 
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CHAPTER 7 

RECQt,1MEN DATI ONS 

Significant progress has been made in the development of remote 

sensing techniques for estimating soil moisture, and some useful applica­

tions for soil moisture information have been demonstrated. However, 

there is an array of questions that must be answered before an opera­

tional program is appropriate. A substantial research-oriented program is 

justified. Following is a summary of recommendations made by participants 

in the workshop concerning future research and development. These recom-

mendations represent a consensus of opinions from the Workshop partici-

pants, but are not necessarily unanimous views. 

* Visible, reflective IR, thermal IR, active and passive micro-

wave techniques should be fully considered in a research and 

development program. At the present time, no single technique 

appears advantageous over others for the total range of 

applications. For specific applications one or more of the 

techniques may be preferred. 

* A research program should investigate sampling depth 

sensitivity, soil moisture profile dynamics, and effects of 

soil type, surface roughness, and vegetation. 

* Use of present meteorological satellites should be more fully 

explored, particular'ly for thermal and reflective applications. 

* Major attention should be given to assessing moisture profiles 

using modelling techniques that use meteorological data and 

can be fine tuned frequently \'Jith remote-sens·jng inputs. 
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* Research should be ori ented around br'oad resource areas 

(water resources and hydrology, agriculture, climatology). 

Examination of resource requirements is more likely to 

provide insight into sensor and platform design than is 

a narrower approach of considering a single sensor and 

its potential. 

* Research planning should include scientists familiar with 

resource problems and sensors. Past planning has appeared 

to involve hardware design with incomplete knowledge of 

resource requirements. 

* A better balance of funding between building hardware and 

conducting experiments is required. Too often, insufficient 

funds remain to adequately conduct the research following 

developlllent of a sensor system. 

* Attention should be given to application of remote sensing 

for estimating precipitation. For many applications, 

precipitation is as important as soil moisture. 

* The capability for rapid turn around and dissemination of 

data must be developed. Most users will require soil 

moisture infot~ation withi~ 48 hours of its acquisition. 

Dissemination should be to the largest logical audience 

of users in formats of their choosing. 

* Provide data to users, upon request, for those limited 

programs where present capabilities fOr detecting soil moisture 

are useful. Examples are desertification, and locust detection. 
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* Since users are concerned with the interactions of soil 

moisture with their resource interests, careful consideration 

should be given to evaluating phenomena related to soil 

moisture (runoff, infiltration, yield, crop-water stress, etc.) 

* Future agriculture/water resource satellites having thermal 

IR sensors should have a midday equator crossing time. An 

early morning overpass time reduces significantly the potential 

of using thermal IR in soil moisture studies. 

* Establish better coordination between groups within the 

remote-sensing community, especially between government, 

university, and industry. 

A soil moisture program should be established to address the 

recommendations of the Soil Moisture Workshop. The overall objective 

of this program should be to: 

* Implement a research and development program that will lead 

to the capability of estimating soil moisture from space. 

Specific objectives of this program should be to: 

* Define physical parameters involved and evaluate the 

inteiaction between electromagnetic energy, soil moisture 

and associated factors. 

* Compare and evaluate measurement systems and techniques for 

measuring and estimating soil moisture. 

* Begin consideration of data handling and distribution 

procedures adaptable to users in water resou~ce management, 

agriculture, and climate. 
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* Establish a working group to coordin~te the research and 

development program and obtain user input. 

To meet the objectives of the soil moisture program) the following 

five year (1979-1984) t'esearch and development plan is recommended: 

* Conduct'comprehel')si ve controll ed experiments at three to fi ve 

locations in the. U.S. under variable conditions of climate, 

soils~ crops,topography, etc. Suggested locations include 

ari d southwest/west, southern Gt'eat Pl ai ns, northern Great 

Plains, midwest, southeast. The research should include: 

- Multispectral (visible, IR~ passive and active microwave) 

sensors 

- Study of sampling depth, veg~tation effects, roughness 

effects, soil moisture pt'ofile dynamics, time ,'ate of 

change effects, resolution r-equirements 

- Development and improvement of models 

- Test of transferability of models and algorith~:ls between sites 

- Evaluation of phenomena related to soil moisture 

(precipitation, yield, crop-watet' stress, plant-water 

content~ etc.), 

* Corduct research at ground, aircraft~ and spacecraft altitudes 

- Util i ze ground and truck-mounted sensOrs 

- Utilize contract aircraft making I~epeat visits to the sites 

- Utilize existing and planned NASA and NOAA orbital systems 

(Landsat C and D, Seasat, GOES, HCMM, Tiros - N, Shuttle, 

etc. ) . 
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* NASA should initiate preliminary planning of a first 

generation soil moisture/water resources satellite 

- Five to seven years may be required to put the satellite 

into operation 

- A single satellite oriented toward soil moisture and 

water resources wi 11 lead to more orderly research and 

development efforts 

- A single satellite will facilitate dissemination of data 

to users. 
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DEFINITIONS 

Water content on oven-dry weight basis 

WCw = !llei ght of water/wei ght of dry soi 1 

Water content on volume basis 

WCv = (WCw) (B.D.) 

where B. D. is the pu1 k density 

B.,D. = weight of dry soil/volume 

Depth of water in soil profile (d) 

WCd = WCv x d 

e.g., WCv = .25; d = 5 cm (2 inches) 

WCd = .25 x 5 = 1.25 cm ~ 0.5 inch water 

(daily evaporation rate of a wet soil ~ .5 inches/day) 

e.g. WCv = .25; d = 150 cm (5 feet) 

WCd = .25 x 150 = 37.5 cm (14.8 inches) 

Soil water potential (~T) is the energy by which water is held by 

the soil. Because it is based upon a reference level of a free water 

surface, a wet $oi1 has a low negative number and a dry soil has a large 

negative number. 

RT 1 . 
~T = V n e/eo 
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MEASUREMENT EXAMPLES 

Instrument 

Auger or Probe 
(Gravimetric Sample) 

Neutron Attenuation 

Tensiometer 

TERMINOLOGY 

Measurement 

% water by wt (WCw) 

% water by vol (WCv) 

soil-water potential 

Field Capacity (arbitrary concept) - amount of .water in the soil 

profile after a heavy application of water and excess water has 

drained from the profile (48 hours). The -1/3 atmosphere 

(bar) moisture content should not be used. Field estimate best 

after h~avy rains or irrigation. 

Permanent Wilting Point (PWP) - soil moisture content in the t'oot 

zone at which the wilted plant no longer recovers turgidity. 

The -15 atmosphere (bar) moisture content is a reasonable 

estimate of PWP. 

~i1ab1e Water/Extractable Water Content (A~/C) - Difference between 

the field capacity (FC) and permanent wilting point (PW~). When FC ... 
and PWP are on a volumetric basis (WCv)' the difference (FC-PWP) x 

(Rooting Depth) gives the maximum available water for plant growth 

or maximum water-holding capacity of the soil. For example. a sandy 

soil 

maximum AWC = (0.06 - 0.025) x 150 cm = 5.3 em ~ 2.1 inches 

while a silt loam 

maximum AWe = (0.36 - 0.15) x 150 cm = 31.5 cm ~ 12.4 inches 
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SOIL MOISTURE WORKSHOP - AN~OUNCEMENT 

A Soil ~'oisture Workshop is being organized by the Remote Sensing 
Institute of South Dakota State University. The workshop, sponsored 
by NASA and USDA, will be held in Room 1400 of the National Agri­
cultural Library at the Beltsville Agricultural Research Center, 
Beltsville, ~'aryland, on January 17, 18, and 19, 1978. 

The purpose of the workshop is to bring together those who need soil 
moisture information in their work and those who are developing 
techniques for the remote sensing of soii moisture. The desired 
.output product is a report which: (1) specifies needs for soil m01sture 
information; (2) describes our current me~surement capabi1ities~ and 
(3) indicates areas where further research ;s needed. This report 
wi 11 be pub li shed as a formal NASA pub 1 i cati on. 

To accomplish these objectives, small (5-10 member) working groups 
are being set up in advance of the meeting to prepare position papers 
that will serve as the basis for the final report of the workshop. The 
working group on user needs will be split into three subgroups: 
agriculture, water resources, and weather and c1 imate. Two other 
working groups will be concerned with remote sensing techniques: 
(1) therma"1 infrared and reflected solar radiation approache!'; and (2) 
mi crowave and gamma-ray approaches. These working groups will also 
make presentations to the workshop. In order to encourage an open 
discussion at these presentations attendance at the worJ;;shop will be 
limited. 

In addition, abstracts of the position papers and a questionnaire will 
be circulated to all the participants to provoke thoughts concerning 
soil moisture prior to the workshop. 

The agenda is: 
1/17 a.m. - Keynote speakers frcm USDA and N.l\SA. Presentatton of 

summary of agency activities and needs. 

1/17 p.m. - Presentation of user working group including statement 
of modeling capabilities. 

1/18 a.m. - Presentation of thermal IR and reflected solar working 
group. 

1/18 p.m. - Presentation of the microwave and gamma working group. 

1/19 a.m. - Wrap-up and summary session for the development of final 
recommendations. 

Questions should be referred to: ViGtor l. Myers 
Remote Sensing Institute 
South Dakota State University 
Brookings, SO 57007 605/688-4184 
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Applications Work Group 
Chris Johannsen, Univ. t40. - Ted Engman, USDA ARS - Co-chairman 

Bruce Blanchard, Texas A&r1 University 
01~n Backes, USDA SCS 
Dave Brueck, Babson Brothers 
Jim Deardorff, NCAR 
Jim Heilman, South Dakota State University 
Mel Keener, University of Missouri 
Len Myrup~ University of Cal1fornia, Davis 

Thermal IRand Reflectance Work Gr~ 
Ray Jackson, USDA ARS, Chairman 

Josef Cihlar, Canada Survey Satellite Office 
Jack. Estes, Univ. Cal'if., Santa Barbara 
Jim Heilman, South Dakota State University 
Ann Kahle, JPL 
Ed Kanem'lsu, Kansas St?,te University 
John Millard, NASA/knes 
John Price~ NASA/Gondard 
Craig Wiegand, USDA ARS 

Micrm<lave and Gamma Radiation Work Group 
~~~~~~~~~~~~~~~.~~ 

Tom Schmugge .. NASA/Goddard - Chairman 
En; Njoku, JPL 
Gene Peck, NOAA 
Fawaz Ulaby, UniverSity of Kansas 

Summary Session 
Don Moore, South Dakota State University - Chairman 

Ted Engman, USDA ARS 
Ray Jackson, USDA ARS 
Chris Johanssen, Univ. Missouri\ 
Al Klingebiel, USDA SCS Retired 
Bob MacDonald, NASA/JSC 
Len Myrup, Univ., Calif., Davis 
Vince- Salomonson, NASA/Goddard 
Tom Schmugge, NASA/Goddard 
Dave Simonett. Univ. Calif., Santa Barbara 
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SOIL MOISTURE WORKSHOP - Jan. 17-19, 1978 
USDA Agricultural Research Center Room 1400 - Beltsville, Maryland 

January 17 
8:00 a.m. 
9:00 a.m. 

10:15 a.m. 

10:30 a.m. 
10:45 a.m, 

12:00 
1: 30 p.m. 

3:00-3:15 
5:00 p.m. 
6:00 p.m. 

7:00 p.m. 
8:00 p.m. 

January 18 
8:30 a.m. 

10:00-10:15 
12:00 
1:30 p.m. 

3:00-3~15 
5:00 p.m. 

January 1~. 

8:30 a.m. 

10:00-10:15 
11: 45 a.m. 
12:00 

AGENDA 

Registration 
Convene - Ruth Whitman, Chairman 

Announcements, Organization - V. Myers 
Keynote Addresses - Carl Carlson, USDA ARS 

Les Meredi th, NASA/GoddarJ 
Soil Moisture Definition - Ed Kanemasu, Kansas State 

Uni versi ty 
Coffee 
Sunmary of Organi zations, Current Research Efforts 

and Data Requirements - Jim Heilman, South Dakota 
State UniverSity 

Lunch 
Discussi on Session on App1 i cations ~Jork Group 

Co-Chairmen - Chris Johanssen - Univ. of Mo. 

Coffee 
Adjourn 

Ted Engman - USDA ARS 

Social Hour and Dinner at Goddard Employees 
Recreation Center 

Dinner 
Illustrated Presentation - "Effect of Chan~es of 

Albedo and Ground Moisture on Circulation and 
Rainfall" - Dr. Jules Charney, Department of 
Meteorology, t'ass. Institute of Tech. 

Discussion Session on Th~rmal Infrared and 
Reflectance. Work Group Chairman - Ray 
Jackson, USDA ARS 

Coffee 
Lunch 
Discussion Session on Microwave and GalTlna Radiation 

~Jork Group Chai rman - Tom Schmugge, NASA/Goddard 
Coffee 
Adj(J\irn 

Surrrnary Session for Development of Final Recormnenda-
tions. Chairman - Donald Moore, SDSU 

Coffee 
Wrap-up 
Adjourn 
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