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ABSTRACT

The motions of

magnetic and electr

magnetosphere. The

field (t = -v^ and

to predict both the

charged particles under the influence of the geo-

ic fields are quite complex in the region of the inner

Volland-Stern type large scale convection electric,

,r = AR  sinm) with .y = 2 has been used successfully

plasmapause locztion and particle enhancements deter-

mined fron. Explorer 45 (S 3 -A) measurements. We have recently introduced

into the trajectory calculations of E	 t al. (1978) a time dependence

in this electric field based on the variation in Kp for actual magnetic

storm conditions. The particle trajectories are computed as they change

in this time-varyi ► iq electric field. Several storm "fronts" of particles

of different magnetic moments are allowed to be injected into the inner

magnetosphere from L = 1G in the equatorial plane. The motions of these

fronts are presented in a movie format. The local time of injection,

the particle magnetic moments and the subsequent temporal history ,

the magnetospheric electric field play important roles in determining

whether the injected particles are trapped within the ring current

region or whether they are convected to regions outside the inner

magnetosphere.



INTRODUCTION

Particle convection in the magnetosphere has been discussed by a

number of authors since the early convection models of Dungy (1961),

and Axford and Hines (1961), and its sicnificance in the dynamics of the

magnetosphere is well recognized. The review on this subject by Word

(1969) provides quite extensive discussion and references to the many

important papers up to that time. Chapkell (1974) reviewed the direct

and indirect measurements of the convection electric field that were

made since Ax-ford's (1969) review, and discussed the way in which the

measurements supported the basic convection theory. Two works of special

importance in the	 .1y quantitative modeling of magnetospheric processes

are those by Kavanagh et al. (1968) and Chen (1970). Kavanagh et al.

(1968) developed a simple analytical model which combined a large scale

uniform electric field, similar to that given by Brice (1967) with a

corotation ele-'.ric field and the geomagnetic field given by Mead (1964).

Chen (1970) presented in detail the motions of low energy protons in a

dipole georagnetic field under the superimposed convection and corotation

electric fields and showed that the trajectories of these low-energy

protons are topologically quite different from those of other classes

of particles. As an extension of these works, principally that of

Kavanagh et al, (1968), Wolf (1970) added another dimension by consider-

ing the ionospheric conductivity effects on the convective flow patterns

of magnetospheric plasma. The theory of convection in the magnetosphere

had become so well established based on the various works indicated

a ►;ove and in the reviews by Kivelson (1976) and Stern (1977) that it

became generally accepted that the source of the ring cur ► ent protons
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associated with the main phase magnetic storms was the convection of

plasma sheet protons into low L values CAxford, 1969; Vasyliunas, 1972;

Nishida_and Obayashi, 1472), even though there had been almost no direct

experimental measurements of the characteristics of these storm time

ring current particles that would substantiate this concept. The char-

acteristic features of the initial enhancement of the storm time ring

current particles in the evening hours became available through the

Explorer 45 (S 3 -A) program and the ineasi-cements were found to be qual-

itatively consistent with the flow patterns resulting from a combination

of inward convection, gradient drift, and corotation Smith and Hoffman,

1974).

In more recent years, one aspect of this convection theory has come

into question, that is, the source of the particles. The discoveries of

ions in the magnetosphere heavier than hydrogen (Shelley et al., 1972)

and ion and electron beams directed up along magnetic field lines from

the atmosphere Johnson et al., 1977; McIlwain_, 1975) have suggested

that the ionosphere may he a source for ring current particles, rather

than, or in addition to, the plasma sheet.

This paper briefly traces the evolution of the work of a number of

researchers which has lead from the stage of qualitative agreement to a

stage of quantitative agreement between the convection theory and

measurements of related magneLospheric phenomena. Facets of the evolu-

tion have been described in the review by Kivelson (1976) on the vari-

ation of magneto , rheric elect r ic fields with geomagnetic 	 tivity and in

the extensive review by Stern (1977) on the theoretical concepts of



3

large-scale electric fields. E^iri (1978) and Ejiri et al._ (1978) have

developed a quantitative convection model based on Explorer 45 observa-

tions. A static electric field is used in this model and the particles

move in time (and space) along fixed trajectories. 	 In the situations

where the electric field, parameterized by Kp, is fairy constant over a

time period of several hours, this is a reasonable approach Maeda et al.,

1978). A time-dependent electric field is needed, however, for the

description of the particle trajectories associated with magnetic storms

which have a several day duration and decreasing convection electric

field (Smith et al., 1978), and for transiently intensified electric

fields of substorm time scales (Roederer and Hones, 1974).

In the present paper the approach we have employed to add a large-

scale time-dependent convection electric field is described. We have

also developed along with this approach a technique for the visual

description of the complex motions of the charge particles. By using a

computer-generated motion picture of storm "fronts" of injected particles

of various magnetic moments we have produced both an educational too. to

demonstrate the convective motion c,f particles in the ring current

region and an analytical tool for future studies of particle dynamics.
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FORMULISM AND BASIC ASSUMPTIONS

The basic formulism which we use for the computation of the trajec-

tories of charge particles in the magnetosphere is given by Ejiri (1978)

and this same computation has been used by Maeda et al. (1978) for

electron trajectories. In the equation of motion for the particles it

is assuried that non-electromagnetic forces such as gravitational forces,

etc. are negligible and that the particles can be represented non-

relativistically.	 It is assumed that the particle motion is adiabatic,

i.e. the first and second invariants (magnetic moment and longitudinal

invariant) are conserved, and that changes in the electric and magnetic

fields are slow and the particle motion can be represented as a motion

of its guiding center. The following constraints and conditions are

also imposed:

1. The geomagnetic field, B, is an earth centered dipole magnetic

field with the same axis as the earth's rotation axis and the

magnetic field lines are equipotentials.

2. There are no local energi?ation or loss processes (e.g. charge

exchange, wave-particle interactions or collisional loss

processes).

The drift velocity, u, in the equatorial plane is obtained by

averaging over a cyclotron motion and a bouncing motion and is given by

-. 3
F x 

qB

2

	
(1)

L_
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The force, r, on the particles is given by

^` = q t - q(W_ "A) A - W•G(a
0 ) • B B
	

(2)

where,

is the radial vector from the center of the earth,

w is the angular velocity of the earth's rotation.

G(a
0
) is the term associated with the helical path off the equator

over the bouncing motion of the particle. It is a function of the

particles' equatorial pitch angle, a0,

W is the kinetic energy of the particle and can be written as

W 
= sin 
	 is the magnetic moment of the particle. .he

0
reader is refered to Roederer (1970) for more detailed discussion

on the dynamics of geomagnetically trapped particles.

The first term in Eq (2) is the large-scale convection electric

field force which will be discussed below, the second term is the

corotational electric force and the third term represents the magnetic

curvature and gradient drift forces. When the equatorial pitch angle of

the particles is 90°, the last term in equation (2) becomes - uv B.

Note that only equatorially mirroring particles are considered in this

paper. This restriction does not apply to the general formalism of Ejiri

(1978).
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CONVECTION ELECTRIC

A simple model

has been proposed C

Stern model assumes

rconv' is derivable

FIELD MODEL

of the convection electric field of the magnetosphere

Jolland, 1973; Stern, 1974, 1975). 	 This Volland-

that the large-scale convection electric field,

from a quasi-static electric potential, ^ :

tconv	 -n^conv	 (3)

and that there is an absence of electric f

netic tield lines, f`	 do = 0, where Br is

to be a coaxial dipole geomagnetic field.

for closed magnetic field lines and within

potential in the equatorial plane can then

ields parallel to the geomag-

assumed for ccnver.ience

This model is also valid only

ten earth radii. The scalar

be written as

^P
conv	 ARY sin t	

(4)

where R is the equatorial radial distance in earth radii and A is a

coefficient which determines the electric field intensity. This co-

efficient will be discussed in more detail below. The local time

dependence is given by the azimuthal angle, m, with p = 0 at midnight.

The value if the exponent, Y, distinguishes this Volland-Stern model

frorT the uniform (lawn to dusk electric field. The uniform field used by

Chen (1`70) is obtained if y = 1. Stern (1974) suggested y = 2 from a

consideration of the OGO-6 measurements of the electric field at high

latitudes _C eppner, 1972). Volland (1973) arrived at the same value

for y from a best fit to the shape of the plasmapause and E,jiri et al.

(1973) in an analysis of the shape arid location of the pre-midnight

plasmapause measured by Explorer 45, determined an average value of
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y to be 2.4. The configuration of this large-scale convection electric

field, 
fconv' 

is shown in Figure 1 for a normalized value for A and with

y = 2. The effect of the radial dependence and local time effect are easily

seen in this diagram.

In order to account for changes in the convection electric field

associated with changes in magnetic activity, Grebowsky and Chen (1975)

concluded that the model parameter, A, most be related to some geophysical

parameter wnich describes changes in the large-scale convection. Based

on previous correlations with Kp (Carpenter and Park, 1973, Kivelson,

1976), they chose to relate A to the Kp index. By fitting the midnight

plasmapause locations measured by the spectrometer's on QGO-3 and OGO-5,

Grebowsky and Chen (1975) determined the following quadratic dependence

on Kp:

A = 0.045/ (1 - 0.159Kp + 0.0091(p 2 ) 3	(5)

where the units of A are kV1'R E2 . In Figure 2 we show the plot of A vs.

Kp as well as the resultant Itl and L o , the stagnation distance at dusk,

from Figure 4 of Maeda et al. (1978).

The Kp index, which is constructed to indicate global magnetic

activity, using the 3 hour vc I ues from 12 miadle latitude -geomagnetic

observations to eliminate longitudinal variations, is actually a good

,ndicator of the magnetosphere electric field intensity. It is inter-

estin q to note that the intensification of the magnetospheric electric

field is the source of the enhancement of geomagnetic activity, in

contrast to Dst, which is a sole indicator of ring current intensity.

I
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AGREEMENT WITH EXPLORE? 45 OBSERVATIONS

The Volland-Stern type con vection electric field model, described

in the previous section, with the addition of the dependence of the

electric field strength on the Kp index has been used to study various

magnetospheric phenomena especially those measured by Explorer 45.

Maynard and Chel (1975) were able to interpret with this model their

observations from Explorer 45 of regions of isolated cold plasma.

Grebowsk and Chen (1975) used this y = 2 model -;o explain the general

relation of the observed location of the nose events of Smith and Hoffman

(1974) to the observed plasmapause location measured on the same satellite

(Ma^r_ard___and Cauffman, 1973) and predicted the spatial location of the

nose by computing the forbidden region boundaries in the same manner as

in Stern's (1975) analysis.

The shape of the nose structures in the energy-time spectrograms

and its location just inside the plasmapause was studied by Cowley

(1976) and Cowley and Ashour-Abdalla (1976) and they concluded that the

observed noses cannot be modeled with any uniform dawn-dusk convection

electric field since that field (r = 1 in equation 5) predicts that the

nose should penetrate down to much lower L-values than is observed.

They suggested that the convection electric field may be shielded from

the plasmasphere region so that the penetration could not occur. E,jiri

et al. (1978) have noted that the intensity of the electr i c field inside

the plasmapause is smaller with the Volland-Stern field and in fact the

shielding effects can only be introduced if y > 1. Cowley (1976) also

pointed out that the particles may have been "lost" before ,.,gay could

penetrate very deeply, either by charge exchange or strong diffusion.
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Thus Cowley's conclusions are not inconsistent with this y = 2 model of

Volland and Stern.

Intensity enhancements of the ring current electrons associated

with VLF-emissions during geomagnetic storms and the energy dispersion

of these enhancements have been explained by Maeda et al. (1978) using

the computed electron trajectories given by this model E'iri, 1978).

Additional progress was made by E,Z ri et al. (1978) in the utilization

of trajectories calculated in a static-electric field. They found that

to explain the sequence of positiuns of nose structures during a mag-

netic storm, the location of particle fronts had to be calculated,

taking into account the finite traveling time of newly-injected particles,

instead of considering only the particle inner boundaries determined for

t =	 E,Ziri et al. (1978) noted that McIlwain's (1974) E3 or E3H

electric field models correspond to a weak fiend and do not predict the

plasmapause position inside the Explorer 45 orbit. EJiri_ et al. (1979)

also used the	 = 2 convection model for explaining the inn nose structure

for both equator i ally mirroring ions and those with ether pitch angles.

They examined the energy spectra and penetration distances for both

electrons and ions in the post-midnight to morning hours local time.
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ADDITION OF TIME-DEPEN;__ACE TO CONVECTION ELECTRIC FIELD

In the previous sections we have shown how the Volland-Stern con-

vection electric field, Eq (3), can be related through Eqs (4) and (5)

to the Kp index. The use of this index to parameterize convection

boundaries is discussed by Kivelsen (1976), principally for the uniform

(Y = 1) dawn-dusk electric field, but also for the model we have been

discussing and which Kivelson (1976) refers to as the VSMC (Volland-

Stern-Maynard-Chen) model. While this model is more sophisticated than

the Y = 1 model and it provides good agreement with a large data set

(see previous section), one of the principal advantages is that it is a

simple model and does not require large amounts of computer time to

generate the particle trajectories described by E'iri (1978).	 In keep-

ing with this approach we have added a time dependence to this static

electric field model in a very simple way. As shuwn by Maeda et al.

(1978) the electr i c field intensity is related to Kp through a very

smooth function (Figure 2). We merely use the time history of Kp, which

is available to a wide user, community, to determine the large scale

convection electric field intensity. We interpolate the three-hourly

values of Kp to get an hourly quasi-value called KIP' from which the

electric field can be determined on an hourly basis. This is done under

the gross assu,.Ntiun that the large scale convection electric field must

change smoothly over , the large areas considered or that at least the

particles' response to the changing electric field can be, on average,

represented by this type of field. In the previous work with chis model

(Ejiri et al_ 1978, 1979) a static electric field was used with the

particles moving in time along fixed trajectory paths (Figure 3).



With the addition of this time-varying electric field the trajectories

themselves change in time as the particles move through the magnetosphere.

The utilization of a time-dependent electric field for particle

convection is not a new idea (Kellogg, 1959). Roederer and Hones (1974)

devised a time-dependent electric field model, composed of a time-

dependent uniform dawn-dusk field component, a static component of the

dawn -dusk and corotatiorial fields, and a localized azimuthal field, to

simulate the particle injections observed at the geo-synchronous orbit

by ATS-5. M4cllwain (1972) also pointed out that transient field changes

are requi',	 cause the observed particle injections to remain on

stably trapped cr•bits.

In F 4 gure 4 the Kp index is shown for the February 24-25, 1972,

geomagnetic storm. The computed electric field intensity at 10 R F , at

midnight (i = 0°) determined from Kp' is shown in the upper portion.

Note that after the initial Kp increase, the index decreased during the

next 24 hours and then increased slightly from Kp = 2 to Kp = 3. During

this period of Kp decrease the computed field weakens by an order of

magnitude from a peak value of about 1 mV/m. In the next section we

will use this time-varying convection r field in tho computation of the

motions of charged particles of various magnetic moments (both ions and

electrons).
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VISUAL DESCRIPTION OF PARTICLE MOTION

The addition of the time-varying convection f field to the trajectory
traces of Ejiri (1978) shown in Figure 3, suggested to us that the most

beneficial display technique is motion pictures which would provide the

time dimension not only for the variation in electric field strength but

also for the movement of the particles themselves. Computer-generated

movies of storm "fronts" of injected particles of various magnetic

moments have been produced and have been shown at scientific meetings

Smith et e l ., 1978). In the figures that follow some snap-shot frames

of the movie titled "Convection of Magnetospheric Particles in a Time-

Varying Electric Field" (Version 780919) are presented. The general

characteristics and format of the movie frames (Figures 5-8) are:

1. Singly-charged particles are injected from a distance of 10 RE

and only equatorially mirroring particles are considered.

2. Injection is over a wide local time region around midnight and

a unifo, . spacing of the injection points is assumed, except

for the extra trajectories in small local time regions which

are added in order to show which trajectories are "trapped".

This will be discussed later.

3. The trajectories are not followed after they intersect the 10

RE boundary.

4. The time history of the electric field intensity is shown in

Figure 4. The Field changes every hour and the particles will

move during each hour ;ender the field prescribed by Kp' shown

on the individual movie frames.
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5.	 The time, T, changes in the movie every 0.1 hour and a new

injection of particles occurs every hour and is arbitrarily

stopped after 20 injections.

b.	 The magnet:: moment is conserved in each of the cases and is

shown on the f rames. The kinetic energy, E, of the particle

at the time of injection at L = 10 is shown in the upper

r in ht-hand portion of the frame. The particles are energized

in this injection process by cross-L drift.

7.	 The dotted shape is essentially the plasmapause, i.e. the last

closed equipotential lines for this convection mode 	 The

size varies with Kp'.	 It should be noted that the shape of

McIlwain's injection boundary (Mauk and McIlwain, 1974)

normalized by the stagnation point at dusk coincides well with

this shape, but that the unnormalized distance is well beyond

this "plasmapause".

S.	 The dashed ellipse is the S 3 -A (Explorer 45) orbit. The

satellite is indicated by the "S" moving around the - 8 hour

orbit.

9.	 In this version of the movie only the line segments of the

trajectories siri ,:e the last whole hour are shown. At T = 2.5

hours, for example, line segments of trajectories are shown

for three injection fronts; each line shows where the particle

has traveled since T = 2.0 hours.

In Figures 5-8 the trajectories for four selected maynetic moment

cases are shown and are for the following u's: 1) u = 0.024, 2) p = 0.065,

3) u = 0.0 and 4) u = -0.032, respectively where u is given in units



14

of keV/y. Cases 1 and 2 are for ions, case 3 for thermal particles and

case 4 for elec,rons. In Figure 5 the injection energy at L = 10 is

0.75 keV and when the ions have reached L = 5 they have been energized

to 6 keV. The six snapshots in Figure 5a are taken at two hour intervals

starting at T = 2.5 hours. The snapshots in Figure 5b are shown at four

hour intervals. It can be seen that the particles injected at local

times within an hour or two of midnight are much slower in moving around

the earth than those injected at local times away from midnight. At

T = 2.5 hours certain trajectories have intersected L = 10 on the day

side before other trajectories have crossed L = 6 near midnight. A pine

line separates those trajectories going around the earth on the dawn side

from those going around (counter to corotation) through the dusk hours.

The trajectories begin to intersect the S 3 -A orbit after T = 4.5 hours

and by T = 8.5 hours have moved to the lower altitude regions traversed

by the satellite. Note that, at T = 8.5 hours and corresponding to the

high Kp' value of 5.3, the particle: at midnight convect from L = 10 to

L = 6.5 within 30 minutes. The plasmapause has contracted to L = 2.5 at

dawn and L - 4 at dusk. By 12.5 hours the particles are convected into

L = 3 on the dusk side and are well inside the plasmapause. Twenty

separate injections are simulacea and then arbitrarily stopped. It can

be seen in the names at T = 20.5 and T = 24.5 hours that certain of the

trajectories are beginning to appear to be trapped. Even with the large

number of simulated trajectories only a very few are actually trapped,

and even at T = 24.5 hours those particles have not yet made a -gull

revolution around the earth. As shown in Figure 4 the Kp index continued

to decrease to a vali ► e of 2, which is shown at T = 32.5 hours in Figure

5b. At this time the "plasmapause" had expanded to 7 R E at dusk and



15

most of the remaining trajectories were within this plasmasphere. An

interesting effect is that even at this relatively low Kp value there

exists a stream of particles near noon which are being convected toward

the front side L = 10 boundary.	 It is as if these particles are being

kicked out of their trapped orbits by the changing 	 field. The electric

field is subsequently enhanced and this effect persists for the remain-

ing time up to the full 48 hours considered in the movie, but not shown

in Figure 5. The other interesting and obvious point is the particle

diffusion effects produced by this model and most easily seen at the

later times.

In Figure b the injection energy of the ions is 2.00 keV, and these

particles reach 31.25 keV at L = 4. The principal difference is that

these particles move much faster. At T _ lb.5 hours certain of the

trajectories are clearly trapped find the time to make one revolution of

the earth was only about 15 hours. These ions, on the other hand, do

not penetrate as deep as the lower energy ions. By T = 24.5 hours there

is the clearly established ring of particles but also the "noon" con-

vection flow which was described for Figure 5.

The trajectories for the thermal particles (u = 0.0) are shown in

Figure 7 at a six-hour spacing starting at T = 4.5 hours. These particles

convect in further froi midnight before they begin their corotational

drifts. The trajectories begin to intersect the S3 -A orbit near L _ 5

in the T = 10.5 frame and it takes well over a day for the injected

particles to reach the outbound portion of the orbit at 1600 MLT after

they have gone around the earth on the da gn side. The trajectories are
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well bounded inside the "plasmasphere" after about 30 hours except for

the few trajectories which exit and go out the front of the boundary

near 1400 MLT.

The one example of electron trajectories is shown in Figure 8 for

electrons injected at L = 10 with kinetic energy of 1.0 keV. Figure 8a

shows six snapshots at two hour intervals and 8b shows the six at four

hour intervals. While a few of the trajectories originate and exit on

the dusk side, the vast majority travel through the dawn hours even

though they might have originated on the dusk side of midnight. There

i q a heavy concentration of trajectories in the morning hours starting

at about 6 RE at T = 4.5 hours and moving closer to the earth as the

electric field increases. As seen in Figure 8a only a couple of tra-

jectories intersect the 5 3 -A orbit (at L = 5 inbound) during those hours

and the trajectories do not begin to intersect the outbound portion of

the orbit until about 16.5 hours, after they have nearly encircled the

earth. Within about a ('ay there is formed a ring of trapped electrons

whose trajectories are at or beyond the "plasmapause" location. It is

not until the electric field has decreased (at T = 32.5 hours) to a low

level that the electrons are substantially inside the plasmapause and

only on the dusk side. The electrons do become trapped and exhibit the

"dumping" of particles from the "trapped" orbits into the noon convec-

tion stream as described also for the ions.

As shown in the figures above there exist narrow local time regions

at L = i0 from which the subsequently trapped particles are injected

onto stable orbits. The trapping depends on the electric field time

history and hence the local time region of injection varies according to
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the magnetic storm conditions. Also the region varies in local time

according to the magnetic moment of the injected particles. This

dependence is shown in Figure 9 for two geomagnetic storms, the February

1972 storm which we have previously discussed and the July 29, 1977

storm shown for comparison. The region from which the trapped particles

emerge varies from pre-midnight ( 21 MLT) for large negative u's

(electrons) to post midnight (- 02 MLT) for large positive i,'s (ions).

The exact dependence is of course coupled directly to the convection

model we are using, but this cuuld be a good additional test for this

general convection formulism.
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DISCUSSION

The basic convection model described in this paper agrees well with

the Explorer 45 results. The comparison of the time-dependent electric

field extension of this model to the data has not yet been made, however.

The model does provide for, the trapping of the particle trajectories

which was not possible in the static convection electric field case. 	 It

is an analytically simple model to use and can provide the foundation

for more refined large-scale convection models especially one which

takes into account the tilt and the tail-like geometry of the geomagnetic.

field. It should also be emphasized that the large scale convection

electric field which has been used in this model is a smooth power-law

electric field and it does not provide for the rapid plasma flows ob-

served at subauroral latitudes in the topside ionosphere Shiro et al.,

1978), nor does it explicitly include the type of large (20-30 mV/m)

transient electric fields which occur during short periods (30-60 sec.)

and which have been observed, for, example, on GEOS Pedersen  and Grard,

1979). The overall magnetude of the convection electric field, however,

does agree with the average field (_ 1.0 mV/m) measured on GEOS (Pedersen

and Grard, 1979) and with the field derived from the particle velocity

distributions obtained from ISEE (Frank et al., 1978). 	 It is, of course,

riot the only electric field model currently in use Stern, 1977) and

other models such as McIlwain's (1974) based on ATS-5 results and the

self-consistent modeling described by Wolf (1975) must also be considered.

The Wolf model (Hare] et al., 1979), for example, is more detailed and

takes into account the boundary currents and ionospheric coupling effects.
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It is expected that the computer-generated movie display technique,

which we have employed, will be increasingly used in the development of

the various quantitative magnetospheric mudels. This technique provides

an exceptional educational tool for magnetospheric physics, and future

studies of particle dynamics in the magnetosphere will require this

technique as an analytical toul due to the increased complexity of the

analysis with the recent addition of time-dependent electric fields.

I
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FIGURE CAPTIONS

Figure 1. Normalized large scale convection electric field of the

Volland-Stern type with y - 2. The vectors are shown in the

equatorial plane in L, MLT coordinates.

Figure 2. Parameters of the convection electric field plotted against

Kp:	 (1) A(Kp) given by equation 5, (2) E, the electric field

at L = 10 and at midnight ((p = 0), and (3) L o , the radial

distance of the duskside stagnation point from the earth's

center in the equatorial plane in eartn radii (from Fig. 2

Maeda et al. (1978)).

Figure 3. Particle flow patterns for 1j = 0.02 keV/y particles with 90°

pitch angles under a static electric field from Fig. 9

of Ejiri (1978) for Kp = 4. The "*" are the hour markers

along the fixed trajectories. This shows the part^^ie locations

after 20 hours of motion from inj f- :ion.

Figure 4. Kp index for 48 hours during the February 24, 1972, geomag-

netic storm. The computed electric field intensity at 10 RE,

at midnight (m = 0°) determined from one hour interpolated

values of Kp is given in the upper portion and the time agrees

with the value of T given in Figures 5-3.

Figure 5. Selected snapshot frames from the inovie "Convection of Mag-

netospheric Particles in a Time-Varying Electric Fielo'

(Version 780919) for particles of magnetic moment, u = 0.024

keV/y. The configu ration at twelve times, T, are shown in (e;

and (b).	 (See text for detailed discussion.)



Figure 6. Same as Figure 5, but for u - 0.065 keV/y particles. Six

time periods are shown.

Figure 7. Same as Figure 5, but for o = 0.0 keV/y particles with six

time periods shown.

Figure 8. Same as Figure 5, but for p = -0.032 keV/y particles (electrons).

The configuration at twelve times, T, are shown in (a) and (b).

Figure 9. Magnetic local time of injection at L = 10 for those trajec-

tories which subsequently get "trapped" around the earth

using the described convection model. The MLT varies with

the magnetic moment of the particles and with the time history

of the convection electric field (Kp). Two magnetic storms,

February 24, 1972 and July 29, 1911, are shown.
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