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ABSTRACT

If early degassing of the Earth produced a global ocean several km deep
overlying a global sialic crust, then late heavy bombardment of that crust by
basin forming impacting bodies would have produced topography such that by 4
billion years ago dry "continental" landmasses would stand above sea level.
From extrapolation of lunar crater statistics, at least 50% of an original
global crust on the Earth would have been converted into basins averaging 4 km
deep after isostatic adjustment. These basins formed the sink into which such
a global ocear would drain. If the ocean was initially 2 km deep, then approx-
imately 50% of the early Earth would have stood above sea level when the late

heavy bombardment ca:.= to a close.



INYRODUCTION

The nature of the earliest crust of the Earth is a subject of intense debate.
Uncertainties on the nature and extent of crustal materials result from the
scarcity of geologic data prior to 3.5 billion years ago. Yet this is the very
time frame in which so much of what is present on the Earth today began. Not the
least of these is the origin of 1ife. While only the existence of water is prob-
ably required for the formation of the first organisms, subsequent evolution
probably depended ceitically on the nature of thz Archaean environment. This
paper addresses one of the most fundamental aspects of that environment: the

existence of dry land and water on the early Earth.

Hargraves has suggested a model for the primitive Earth that included a
global sea roughly 2 km deep overlying a sialic crust. In this theory the
"emergence" of continental masses from the global ocean is delayed until 1.7-
2.3 billion years ago, or to the late Precambrian, depending on the data used
to infer the appearance of dry land. Comparative planetary studies suggest
inctead that emergence of dry continental masses occurred by at latest 4
billion years ago, even if the primordial Earth was originally covered by a

global sea.

IMPACTS AND EARLY CRUSTAL STRUCTURE

The enormous activity of the Earth has been very efficient at removing very
ancient rocks; it is therefore extremely hard to construct a detailed theory
of the Archaean crust of the Tarth from terrestrial data alone. Constraints

on such theories are available from comparative planetary data, when allowance



is made for the different sizes, masses and bulk compositions involved. This
is especially true for the early cratering effects, which are much more fully
preserved in the highland crusts of the smaller terrestrial planets, and which
are almost negligibly present on the Earth. Recently, dynamical moceling of
planetesimal distributions (Wetherill, 1975) have been incorporated into the
establishment of cratering chronologies for the inner solar system by Hartmann
(1977). These have important implications for the Earth, whose early history
must also have been affected by the late stage heavy bombardment which is

largely responsible for the Moon's crustal structure (Frey, 1977a,b).

Comparative planetary data suggests the Earth's original differentiation
produced a global crust of intermediate composition; the present day continents
may represent redifferentiated remnants of the primordial crust (Lowman, 1976,
1978). Likewise, terrestrial data has been interpreted by Shaw (1972, 1976)
and Hargraves (1976) as also implying an original global sialic crust. How
then was some 60% of such an original global low density crust converted into
the higher density "oceanic" crust which dominates the Earth's surface today?
Plate tectonic processes, which generate oceanic crust today, are inadequate
because of the difficulty in subducting sialic lithosphere once this formed
(McKenzie, 1973; Molnar and Gray, 1979). This is especially true for the early
Earth, when thickness of the lithosphere was undoubtably less than today.
Rather it may be argued that "oceanic" crust must have been present before the
onset of plate tectonic activity, which may have been effective early in Earth

history (McKenzie and Weiss, 1975; Burke et al., 1976). A plausible mechanism



for producing an early crustal dichotomy superficially similar to the present

oné is through basin-forming impact bombardment (Frey, 1977b) which appears to
have been widespread in the inner solar system until 4 billion years ago

(Murray et al., 1975). The =rustal dichotomies of the Moon, Mercury and Mars
(older low density highlands, younger higher density maria) can be traced to
*his bombardment. The Earth could not have escaped this bombardment regardless
of whether it was due to jTate stage accretional sweep-up (Wetherill, 1976) or to

a special flux of objects (Chapman, 1976).

Scaling from the observed number of lunar impact basins (a minimum number)
provides a lower 1imit to the number of such basins which formed on the Earth
(Frey, 1977b). When both the greater velocity of impact (which affects crater
diameter) and the much greater gravitational collecting area of the Earth
(which affects the number of impacts per unit area) are considered, at least
50% of an assumed original global crust on the Earth would have been converted
into large basins. By 4 billion years ago more than 60 craters with diameters
exceeding 1000 km would have formed. It is even possible that the Earth sus-
tained impacts which produced a few extremely large basins, more than 4000 km

across (Frey, 1978).

The major effects of such a basin-forming impact bombardment on an original
andesitic crust some 20 km thick would have included the following:

a. Establishment of a topographic dichotomy. Though initially deeper, the
basins would adjust isostatically over several thousand years, leaving floors

some 4 km below basin rims (Frey, 1977a).



b. Localization of basaltic flooding in the basin floor. Excavation of a
1000 km wide impact basin would induce pressure-release partial melting below
the basin. Basaltic lavas from a peridotite or pyrolite mantle would rise
rapid'y through the badly fractured lithosphere below the basin, erupting onto
the basin floor in times short compared with the isostatic adjustment (Frey,
1977b).

c. Complex thermal effects. Penetration to deeper, hotter layers would
tend to steepen thermal gradients across the newly exposed surface layer as it
cooled by radiation. This would have stirred whatever convection must have
existed in the early asthenosphere of the Earth below the basin (McKenzie and
Weiss, 1976). This may have been partially offset by heat deposited in the
basin by the impact itself (Safronov, 1978; Dence et al., 1977). Note, however,
that Green (1975) has argued that some ancient Archaean rocks require exception-

ally high geothermal gradientc.

EFFECTS ON SEA LEVEL

If the early Earth had already degassed enough water so that the original
crust was covered by 2 km of water (Hargraves, 1976), then the formation of
such large impact basins had another important effect: the lowering of sea level.
The cumulative effect of converting an increasing percentage of the Farth's
surface into basins roughly 4 km deep would eventually drain the water and
expose the higher topography of the basin rims. Figure 1 shows this effect.
The cumulative volume of basins increases linearly with the percentage of the
Earth's surface converted into basins. For simplicity, all basins are assumed

to have an adjusted depth of 4 km, although this is only an average value. The



volume of water minus the volume of basins decreases at the same rate; these
curves cross at 0.25 of the Earth's surface converted into basins. At this
point the cumulative volume of basins formed equals half the volume of the
proposed original global ocean, and sea level has dropped from 2 to 1 km, as
shown by the short dashed curve. Given that impacts which are capable of
producing a basin 1000 km across also produce rim relief of at least 1 km
(Pike, 1967), some highland basin rims are already emergent when basins cover
only 25% of the Earth surface. If 50% of the Earth's surface was ultimately
converted into basins 4 km deep, sea level would have d(ropped to about the
original crustal radius of the Earth, leaving nearly one half of the surface

(at Teast sligihtly) above sea level.

A cartoon version of the lowering of sea level is plotted in Figure 2.
The net effect of the basin-forming bombardment is to drain the water of the
original global ocean, if it existed, into deep basins, exposing as dry land
the continental "highland" crust. In Hargraves (1976) model true continental
crust requires much longer to thicken and emerge from below the sea. The redis-
tribution of sialic crust by impact accomplishes this emergence long before

2.3 billion years ago, which is the earliest date suggested by Hargraves.

DISCUSSION

The implications of the emergence of dry continental crust are many.
While not required for the origin of life, dry land was certainly important
in the subsequent evolution of life on this planet. A1l mammals on Earth,

including marine mammals, are derived from land-dwelling reptilian stock



(McAlestar, 1968). Although this occurred quite late in the history of the
Earth, earlier evolution may also have been influenced by the exposure of dry
highlands through basin-forming impacts. As shown in Figure 3, a late forming
basin whose rim is thrust above sea level should erode rapidly due to the
highly fractured nature of the rim rocks. Giant sedimentary deltas should

have formed quickly, produ:ing early analogs to the shallow continental shelves
of today. These may have been conducive shallow water environments for the
evolution of early photosynthetic lifefaorms. The transport of crustal sediments
into the basins may have provided important concentrations of minerals there,

as may the eruptions of basalts in the basin floors.

The model of continental emergence by basin-forming impacts says nothing
directly about the degassing history of the Earth. It is not clear that a
global ocean did exist 4 billion years ago, though most modern theories favor
early catastrophic degassing of the Earth (Fanale, 1971). Rather the above
analysis demonstrates the utility of comparative planetary studies in con-
straining models of the early Earth. If there was an original global ocean
covering a global sialic crust, then dry continental masses existed by 4 billion
years ago, due to the late basin-forming bombardment. If water was degassed
more slowly over time, then the large mare-type basins already existing by 4
billion years ago provided natural sinks into which that water would drain.
The early crustal evolution of the Earth was significantly affected by large,
late forming impacts, but appreciation of the magnitude and implications of
those effects requires the data and perspective that can only be provided by

comparative planetary studies (Frey, 1978).
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FIGURE CAPTIONS:

Figure 1:

Figure 2:

Figure 3:

Change in cumulative basin volume (solid line), water volume -
basin volume (long dashes) and depth of ocean (short dashes) versus
fraction of Earth surface converted into basins. An initial global
sea level of 2 km depth has been assumed (1). The mean depth of
basins (after isostatic adjustment) is taken as 4 km (4).

Change in sea level as the percentage of Earth surface converted into
basins increases. Allowing for relief caused by impact basin forma-
tion, some basin rims emerge when only 25% of the surface has been
co- v.ed into basins (b). When 50% of the surface has been turned
‘nto basins, mean sea level equals original crustal radius (c),

causing approximately one-half of the surface to be dry land.

Lowering of sea level (a,b) exposes basin rims to rapid erosion (c),
creating large sedimentary fans (d) as basin floor adjusts upward
isostatically. Flooding of basin floor by basalt rapidly follows
impact (c,d).
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