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Models of the b m i a n  magnetosphere based on the spplicofion of 
mapempheric scaling ~Ia t ions  to a spin-aligned plonccPr). magnuic 

dipole duu produces a surface equatorial W d  wrggth in the mage 0.5 ao 2 
gauss exhibit the following properties: ( I )  the orbit of l i tan Lks inside of 
the mqpetosphere essentially all of the time, even when varktioas in the 
size of the mpgneroaphr?iP resulting from sdar wind pressure changes are 
taken inn, account; (2) the Brice-type phecacy plasmvphffe reaches a 
peak density of Pbout 10 pmcom cm-' as L = 7 (L = ~ n c . a c  dis- 
tance in units of planetary radii); (3) M s  rings have a profound effict 
on the energetic particle population and the plnsmasphenes derived f m  
intersfeUar neutrals and Titan's tcwuo; (4) the modd cPkulaion s u g p s s  
that the Titanderived phma+ere may be se l f -~ lpl i f+g  with a a- 
bock fjwma greater than unity. which implies the possibility of a non- 

li@ oacuratcd. highly inflarrd brumian magnetosphere; ( 5 )  this same 
source can have importvrr d i n g  effects on the outer edge of the rings as 
determined by Brown-Lanzcroni sputtering rates. 

INTRODUCTION 

The observation of radio bursts from Saturn strongly imply that that planet, 

like Mercury, Earth and Jupiter has a rich and interesting magnetosphere. We 

here apply the arguments and relationships that comprise the subject of c~mparative 

magnetospheres to explore in terns of specific models some of t he  likely properties 

of the Saturnian magnetosphere. Each magnetosphere presently known has one o r  

more distinguishing characteristics which set it apart from the others: at Mercury 

a small, quick, iomspherically-unrestrained magnetosphere; at Earth a cornpromise 



magnetosphere, intermediate in almost all respects, and at Jupiter a mtatioll and, as 

now appears likely, satelliie dominated magnetosphere. In the case of Saturn, unique 
characteristics can be expected to result from the presence of the rings which act as 

a particle absorption feature extending far into the magnetosphere, and from the . : * a .  

presence of Titan with its relativei;.rnassi6;3 -*&@ere and neutral &article torus 

acting as a strong ion source in the wter magnetosphere. 

The principh. results b m  the w8Sject of comparative magnetospheres to be 

used here are takefi from Kennel (1973) and Siscoe (1978a). Concerning the magneto- 

spheres of Jupiter and Saturn specifically, the articles by Scarf (1973, 1975), 

Coroniti (1975), and Kennel and Coroniti (1975, 1978) shouid also be consulted. To go 

through our subject ~~vsiernatically, we consider separately the magnetospheric 

features and processes arising from the solar wind interaction, from the ionfiation 

of the planetary atmosphere and interstellar medium, and from the ionization of 

Titants neutral particle torus (see Figure 1). 



SOLAR \\'MI FEATURES AND PRCSESSES 

The solar wind ik'iu~tirirly, o r  magnetopause, is the first item \ire will consider 

under this headiug. Tt.e cistance h m  the planet into the wind at which the shielding 

effect of the planetary magnetic field brings the solar wind to rest and causes the flow 

to be deflected in the manner of a flow p s t  a blunt is given in the case of Saturn, 

under the assumption of a pure dipole field and a vacuum magnetosphere, by 

0 

where Rm is in units of Saturnian radii, ni* is the product of solar-wind proton density 

and speed-squared at Saturn, e x p r e s s 4  as in Figure 3 in terms of the ratio to the mean 
-1 -2 value S x 1013 cm s extrapolated from measurements at  1 AU (Formisano cr al., 

1974), d BES is the surface equatorial field strength in gauss. We assume here that 

the planetary field is a spin-aligned dipole (see Figure 2). 

Arguments based on the absence of detecuble Saturnian radio emissions at  

earth analogous to Jot-ian decimetric emissions @car& 1973), on the detection of 

Saturnian magnetospheric radio bursts arialogous to Jovial dxametr ic  bursts and 

geomagnetospheric kilometric bursts (Kaiser and Stone, 1975; Kennel and Maggs, 

1976). and on 3n empirical planetary scalicg relation (Kennel, 1973) suggest that 

BES lies in the range 0.5 to 2 gauss. 
2 The solar wind quantity proportional to momentum fiuu, nV , varies in 

response to solar wind streams, which undergo appreciable nonliqear e\rclution 

between the "rbit of Earth, wiler: the.characterisiics of the flux a r c  well known, and 

the orbit of Saturn, where the char.~ctcristics must be determined by no~~lineitr estra- 

polation from 1 AU. Such calculations have been performed by Hundhausen and Pizzo 

(private communication, 1976) and are shown in Figure 3. The effect of stream 

evoiution is evident in the comparison of the histograms at 1 A U  and 10 -4U. At 1 AU 

the moda! and average values are approsimately equal ivhcreas a t  10 AU the modal 

value is considerably less thal; the average, and there is z compensating increase in 

the population 3f the high value tail. This chsnge in the character of the histogram 

reflects the fact that at 10 AU the streams Live evolved into narrow regions of high 

comprcssion separated by \vide regions of rarefact'on. The magnetospheric cor- 

sequence of this stream evolution is that compared to Earth the value of Rm for Saturn 

will be relatively more variable and values larger than average w i l l  occur relatively 

more frequently (see Smith et al.. 1975). 
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The histogram in Figure 3 can be used in combination with equation (1) to deter- 

mine probability distributions for the size of the Saturnian magnetosphere a s  measured 

by Rm and these a r e  shown in Figure 4. We see from the figure that the probability 

that the subsolar magnetopause lie 5eyond the orbit of Titan is greater than 90% even 

for the case BES = 0.5 gauss. For the case BES = 2 gauss. there is a 50% probability 

that it will  lie beyond twice the orbital djstance of Titan. 

The values of R determined froin equation (1) are actually lower limits that m 
would be revised upwards when the effects of interior plasma populations are con- 

sidered. Lo the case of earth such revisions are relatively small, except possibly 

during geomaguetic storms, when the solar wind-derived interior plasma feature 

referred to a s  the ring current becomes important. In the case of Jupiter, interior 

plasma populations evidently dominate in providing the stagnation pressure at the sub- 

solar magnetopause, creating in effect a magnetic dipole 2 to 3 times greater than that 

of Jupiter alone (Davis and Shith, 1976). As equation (1) shows, such an effective 

increase in BES would increase Rm by a factor of 1.3 to 1.4. The increased internal 

pressure might result simply from the addition of the static thermal and magnetic 
pressures of the resident, quasi-trapped charged particle populations, o r  from the 

dynamic pressure of a centriftyll:.. driven, radially flowing magnetospheric wind 

(Coroniti and Kennel, 1977, and references therein). As we will see, in the case of 

Saturn, Titan might be the source of a major internal plasma feature with a magnetic 

moment exceeding that of Saturn. Thus, the actual size of Saturn's magnetosphere 

might be considerably larger than predicted on the bases of a vacuum interior. 

We have dwelt at length on thcl magnetopause and what determines its size 

hecause of the importance of the answer to this question to later discussions. With 

regard to the remaining jolar wind feat.xres and rrocesses, it is both reasonable and 

expedient to adopt the philosophy first  expressed by Scarf (1973 and also 1973). In 

all essent~als  that a r e  likely to be import& in determining magnetclr-pheric features 

and processes, both in regr?rd to solar whd p a r a n d e r s  and planetary purrmeters,  

Jupiter and Saturn a r e  very similar. To arrive at Satu-nls nlagnetosphere then, we 

should start with Jupiter's magnetosphere and m?ke appropriate adjustments. The 

Jovian maqnetosphc-i tail is espected to be \.'?ry long, perhaps 2 to 4 A U  (Lemei 

and Coroniti, 1975, 1973,  and the same esycctat'ot should apply to tiatur~,. The 

pclar caps that map ..lb~r field lines from the plane into the tail have angular radii 
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expressed in degrees measured from the magnetic poles of 10" for Jupiter and 11" for 

Saturn, compared to 20° for the case of Earth. The naive scale length that charac- 

terizes the extent of planetary control through the domination of corotation over solar 

wind-induced convection is 530 RJ for Jupiter and 320 Rs for Saturn, compared to 

12 RE for the case of Earth. This characteristic length is called naive because its 

computation ignores several complicating factors, all of which tend to reduce its 

size (Kennel and Coroniti, 1975; Chen and Siscoe, 1977). In the case of Earth, the 

actual size is closer to 5 RE. We will assume in the followingthat the tmknown re*- 
tion factor in the case of Saturn does not exceed an order of magnitude. This has the 

consequence that Titan lies in the corotation dominated portion of the magnetosphere. 

With regard to the final solar wind-derived feature that we will consider, the 

trapped energetic particle radiation belts, the argument first advanced by Scarf (1973) 

would still seem to apply. Solar wind-derived particle intensities at Saturn should be 

less than at Jupiter at corresponding magnetospheric locations Eor two reasons. Com- 

pared to Jupiter, the magnetosphere of Saturn is expected to be smaller, and large 

particle intensities result essentially from compression through large volume ratios. 

The second, and probably more important reason is that compared to Jupiter, the 

rings of Saturn extend outward by more than a factor of two the inner absorption 

boundary to the inward diffusing particles. The affect of moving the absorbing 

boundary closer to the source is to reduce the intensities everywhere in between. 

However before this appealingly simple argument can be accepted, the effects of 

particle losses resulting from pitch angle scattering into the loss cone and from 

satellite sweep-up need still to be looked at. If electron intensities are  set by the 

stably trapped limit determined by whistler mode turbulence, as appears to be the 

case at  Jupiter between L = 6 and L = 20 (Coroniti, 1975), then at  a fixed value of 

L, the intensity at  S~Clrrn should be &out half that at Jupiter. In spite of prior 

expectations of larger effects, Pioneer 10 measurements revealed relatively small, 

factors of 2 to 5, reductions in particle intensities across the orbit of lo, and lesser 

reductions a t  the other satellites. Thus without going into the detailed calculations 

required for a definitive answer, the anticipation is that it would be surprising if the 

intensities at Saturn exceeded those at Jupiter at  corresponding locations in the 

m agnetospheres. 



PLANETARY AND INTERSTELLAR PLASMASPHERES 

Figure 5 shows schematically the local sources for internal magnetosphe?:ic 

plasma features that result from ionization of the planet's atmosphere, the interstellar 

medium passing through the magnetosphere, and the neutral particle torus m.J. atmo- 

sphere of any satellite. We consider here the first two sources and treat the Titan- 

derived plasmasphere in a separate section. 

In all three cases we are faced with a basic transport problem in which 

specification of the source characteristics, loss mechanisms, and mode of transport 

determine the density and kinetic properties of the plasma everywhere in the solution 

domain. A s  stated above, we assume initially at  least that the magnetosphere is 

corotation dominated, which implies that the mode of transport is cross-L diffusion 

a s  opposed to convection o r  a centrifugally driven wind. The appropriate transport 

equation is for this case 

where we assume steady state, NdL is the total number of ions in a flux shell of 

thickness dL, SdL and RdL are  the source and loss rates in the same shell, and DLL 

is the diffusion coefficient. 

Figure 5 .  The l h m  ~ourct-s ofpbnasphr.re~ fir lbt granl planelr, rontzalion n/ lbc planelr 

atnorphpre, rhe ;MU/ rnters~ellar mcdtum, and /he nrurral parrrck tnrrr of an) ~arelhtej. 



Solutions of this equation appropriate to the planetary and interstellar plasma- 

spheres in the Jovian magnetosphere have already been presented (Siscoe, 1978a, b) . 
The first reference also treats the Saturnian magnetosphere, but ignores the absorption 

of the particles by the rings. We refcr the interested reader to these articles for a 

fuller discussion of the problem. A couple of points, however, should be repeated 

here. The boundary conditions are full absorption at  inner and outer bomdaries. The 

outer boundary is set at  30 Rs o r  40 Rs. For the planetary plasmasphere there are  

two "opposite extreme" models. One. the maximum plasmasphere model, is based 

on the idea of complete magnetospheric trapping of the ionospheric photoelectron- 

plus-ion flux (Goertz, 1976). The other extreme allows a return flux to the ionosphere 

in the strong diffusion limit (that is it assumes an isotropic pitch angle distribution) 

and represents an application of the familiar idea of ambipolar diffusion (first applied 

to the Jovian magnetosphere by Ioannidis and Brice, 1971, and extended by Mendis 

and Axford, 1974). For the maximum planetary and interstellar plasmaspheres, 

the inner bundary to the cross-L diffusion domain is the outer edge of the rings, 

which is assumed to absorb and neutralize fully the inward diffusing flux. For the 

ambipolar plasmasphere, the inner boundary to the cross-L diffusion domain is 

marked simply by the transition to the ambipolar diffusion dominated domain. The 

cross-L diffusion coefficient, DLL, is taken to be K L ~ ,  with K = 2 x 10 -10 s-l , a 

theoretically based expression successfully used to interpret Jovian data. We apply 

it here to Saturn assuming similarity to the Jovian situation (justified more fully in 

Siscoe, 1978a). The source functions for the two types of plasmasphsres can be 

specified with little uncertainty. The only loss mechanism considered other than 

flux into the loss cone, included in the ambipolar model, is recombination, which for 

the problem in hand turns out to be negligible. 

Figure 6 shows the characteristic shape of the ambipolar plauetary 

plasmasphere for the giant planets ( I o d d i a  and Brice, 1971; Mendis and Axford, 

1974; Scarf, 1973; Siscoe, 1978 a, b). The ambipolar diffusion and cross-L diffusion 
-3 domains interface near L = 7, where a maximum density of roughly 20 cm is 

achieved, The density decreases outward bocause of the absorption boundary at L = 40, 

and decreases inwards because of a field aligned flux into the atmosphere. If field 

aligned fluxes are prohibited, we arrive at the maximum planetary plasmasphere 

shown in Figure 7. In this case the density continues to inci-ease inward, reaching 

roughly 500 at L 2: 3 before dropping to zero at the contact with the rings. 
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The back-*back ar rows  mark the division between outward and inward 
diffhing fluxes. In this model, all oL the photwbctron-@--ion flux leaving the 

ionosphere between ths latitudes comspondhg to L = 2.3 (49") and L = 3 (55") di fhes 

into and is absorbed by the outer e d p  of the rings. This amaunts to a maximum total 
26 -1 flux of about 5 x 10 s for the planetary plasmasphere. The maxinum energy of 

the inward diffusing ions at the ring contact is 11 3Ri (eV) where Mi is the atomic mass 

of the iou in A m .  Most ions will arrive with lesser energy. 
T k  calculated density for the interstellar plasmasphere is also shown in 

Figure 7. The actual plasmasphere resulting from this s o m e  will depend on the 

location of Saturn k its orbit relative to the asymmetric distribution of the inter- 

stellar neutral hydrogen around tbe solar system (Johnson, 1972). The profile shown 

c c ~ s p o n d s  to the maximum density encountered by Saturn, and assumes that the 

interstellar density, unaffected by the sun, is 0.1 em9. The plasmasphere density 

reaches a maximum of roughly 2 cm9 at L= 3. Since the plasma density is linearly 
pmportional to the interstellar density p Saturn nls, we can say more generally that 

t k  maximum density is abuut 20 nls. Between L = 3 and 5 or  6, the density of the 

interstellar plasmasphere illustrated here exceeds that of the ambipolar plasmasphere. 

The inward diffusing !lux that msults from ionization of the interstellar neutral 

hydrogen between L - 2.3, the edge of the rings, and L = 15, the edge of the inward 
24 - 1 diffusion domain, is 2 x 10 oh s based on phobionization alone. The maximum 

energy of the panicles comprising that flux at L = 2.3 ie 36 keV. The flux at L = 2.3 

for the illustrated case is 2 x loz3 cl, but we note that during encounters of the solar 

system with high dersity interstellar clouds, that flux can be greater by several 

orders of magnitude. 

THE SATELLITE PLASMASPHEHE 

Wc come now to the plasmasphere derived from ionization of the neutral 

particle torus of Titan. Our parpose here is to determine the density, flux, and 

energy of sue h s piamaspbere assuming that Titan lies wholly in the corotation, 

cross-L diffusion dominated portion of the magnetosphere. The grounds hr this 

assumption have been presented, but we must admit that the uncertainties of the 

matter are  large enough that the applicability of the results ba~ed  on the assumption 

are somewhat speculative. 

c-d 
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et eL, 1976). and that the tilt aogle beeween the dipole an8 rotational taxes of Saturn 

ie lo0. The satelk ion disc that the5 results from cmsccL dif6mbn can be d- 

cuLatga(Sfeoos. 1 9 1 7 ) a a d i t i s s h o # n i n ~ - m e r i d i a n p a o $ l e i n ~ 8 ,  

The Titan-ved pla6masphere w i l l  under the slatad amditbm be caafined to lfg 

essentially within the iradicated prafile, except Bar violatians of the first and second 

imrarfanBs by coulomb and wave scattering tbat occur duritqg the diffusion plllocess. 

Pitch angle scatteringm which we ignore in the present treatment, wil l  extend the 

boarders of the plasma disc to higher latiMes. 
Consider first the plasma density at Titants orbit, ef. We assume the plaema 

to be &rived from gbdofoniEation of the neu=ral hydmgen torus. The totai ion pro- 

ductionrate. FT i s t h e n N / r g w h e r e N i s t h e ~  n u m b e r o f ~ ~ n a b o m s i n t b .  
t M U r a n d ~  thephoto ionizat ioo~t ime(-2~1 ,~~ .  T h e t o P L ~ t J N i s ~ t e d  

ph 
0 the tow ne*thal p n i c l e  flux, Fm which includes both Y .od H (Hz is -2 
then to be dissociated in the ring} by 

where rch is the charge exchange lifetime (= l/VT 9 vch' with VT -= ORs$ aid 
2 

@ch = 1.6 x 10-l5 an the charge exchange cmss seetion). Thus we find 

Nor FT and nT are also related by the aolution b the diihsion equation, 
namely by 



T a v e i s b ~ . a r . ~ p ~ L i r t r o o ~ i s p ~ r d ~ ( b + c o ~ u U i t t b c e o r o -  

-d -e~ergsm-wd*-mmty , - *  

called AlLoenic lrma (Midud and Sturmck, 1914). This gives 

F i g u r e 9 s h o m + a s a ~ a C F N T w ~ d a 1 ~ ~ f i e l d  We 
-3 ~ e e t h a t h r f ~ ~ 1 0 ~ ~ s - ~ ,  deas~fsAlhnlimi&dattberalgdl.?;m . 

§ h e  fluxes hrger than this ars expeckd (e. g., kh&en, 1- b) the densm at Titan 

brthbcueisinefhctckmpedat1.7cm3, andtbisfixesthehteriorsoldiDa 

F i g u r e l O s b o w s h ~ e e f f e c Q B o r o e h e r ~ ~ l d ~ .  A8gauss 

~ ~ d b g o m e s ~ f f i ~ n ~ m f t e d r a & n d 1 0 ~ s - ~ d a ~ ~ s 8 a d a t a ~ p .  

of abaat 4 x 10 28 ,-I 

Fbmmeters hr  the Titan-derived plasmasphere normabed to the valaes at 

ntanls orbit are shown in figure 11. The peaks near L = S at a  value -200 t,+. 

The energy of all the particles at the irmer boundarg is about 150 W. The particle 
~ ~ u t ~ p e a t i s c l o = t o 5 x 1 0 ~ t b p t ~ 1 n t . a  i n t L e c u u r o f a l p u s s ~ e  

s field, the peak densi(). is 340 cm-S and the peat idamity is 2 x 1011 at m 

energy per particle greater tban 100 W. 

The beta of the plasma, the ratio of thcrmal to magnetic e a ~ r g y  density, is 

greater than 1 between L = 3.4 to L = 20. The high 0 condition which results from the 

fact that the density is Alfven limited at the source, alerts us to the possibility that the 

Titan-clerived plasmasphere can have major e&&s on the magnetmaphere. To make a 
q ~ t i t a t i v e  evaluation of one such effect, we calculate the magnetic momeat of the ring 

current associated with the plasmasphere, which turns out to he given appwha4Ay by 
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w ~ H T L s t b e t h l c l m e s s o f ~ d l a e r t ~ . o d M s i s ~ ~ t u r n i a n ~ m o m s d .  

If we continue to assume by analogy with the tilt angles br hmrarg, garth and Jupiter 

thsr 0 * 10". tbeh 5% 2 Ms. 

Nonr since the dense at Titan is &en limited, or so it seems, the field at 

T l h n n ~ d t d e r m i n e d b g t h e ~ o f M ~ a n d ~ .  will be larger, rvhich corresponds to 
a higher density hit. by equation (6). which in turn leads to a hig&er value for 5. 
When this feedback mechanism is considered ~JCPUCWY. we f h d  tht if the propartion- 

ality factor in equation (7) is greater than about 1/2, the solution is ustable. Tbat is, 
each increases in brlqgs in more particles w k h  then pmdme an even greater 
inmease in 5. % result is that the maptosphere either lepcbss a --linear 

saturation, or the increase in 3% reaches a point where the density at Titan is no loger 
W e n  limited. As shorn in Figure 12. which gives the depdenee of p on BE. (or 
in the present application on Ms + M&) for given and f& values d Fm once the 

field rises b the point where nT leaves the Alfven limit curves. further increases i~ 

the field produce only s d  locreases in nT. 

In conclusion if Titan lies in the corotatim, cross-L diffusion dominated portion 

of the magnetosphere, it should cause the magnetosphere to become grossly inhted by 

the production of a massive, self-limiting plasmasphere. In effect in this model Titan 

blows up the Saturnian magnetosphere in a way that is unique in the solar system. 

CONSEQUENCES FOR SATC;RNfS RIXGS 

Cbeng and Lanzerotti (1978) have drawn attention to possibly interesting mag- 
netospheric consequences for Saturn's rings. They invoke recently measured ice sput- 

tering rates (Brown et al., 1978) and energetic particle intensities scaled h m  Jupiter 
-1 to infer a net rate of erosion of the outer edge of the rings of lo4 crn year . W2 

note here that the ion flux from Titan can considerably increase this rate. 
25 The inward flux horn Titan in the Alfvenic limit is 1.2 x 10 ( B & ~  s-I, * 

where BES is the effective equatorial d a c e  field which takes into account the mag- 

netic moment of the plasmasphere. In ligbt of the previous discussion, a flux range 





of loz5 to 10 26 s-l might reasonably be expected to result h m  a Mly  magnetospher- 

ically engaged, Titan-derived plasmasphere. At a particle energy of 150 keV, a sput- 

tering efficiency of 0.5 is given, and thus n molecular erosion rate of 5 x loa4 to 
25 -1 5 x 10 s is here inferred to result from the absorption of the inward m i n g  

Titan-ion flux by the outer edge of the ring. If we assume a molecukr density equiva- 

lent to a uniform disc of water ice with a thickness of 10 cm, we find an erosion rate 

between 5 x loJ to 5 x cm yr-l. 
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DISCUSSION 

D. CRUIKSHANK: The idea of sputbriag from the edge of the rings is interest- 

. I wonder if you might not be sputtering water off the inaer satellites and depositing 

i t  on the rings 3 

G. SISCOE: Yes, that's one of the calculations that should also be done. The 

satellites are wing to be absorbing this inward flux just a s  the rings are. Current 

estimates suggest that the satellites will not absorb a signiilcant fraction of the flux, 

that the rings are still going to get most of it. But from the point of view of the satel- 

lites, they're still absorbing their full complement. I would guess an absorption rate of 

perhaps 10 molecules per square centimeter per second. 

S. CHANG: If Titan is inside Saturn's magnetosphere, what would be the flux of 

the particles into the atmosphere of Titan? 

G. SISCOE: That would be just the product of the density (1.7 particles per 

cm3) and the velocity (200 km 8-3.  

B. SMITH: If the E Ring actually exists and extends out perhaps a s  far a s  

20 Saturnh radii, essentially out to the orbit of Titan, then it represents an important 

absorption surface. If the particles are oscillating back and forth across the ring 

plane with a period of a few seconds, znd the E Ring has an optical thickness of the 

order then there's a depletion time constant of the order of months. The question 

is: Does the inward diffusion swamp that o r  will there be an appreciable effect on the 

distribution of particles ? 

G. SISCOE: It's comparable. If the actual time scale for depletion is of the 

order of months, there might be a significant effect. 

B. SMITH: In that case, measurement of the particle flux a s  a function of the 

distance from Saturn would present an excellent way of mapping out this medium which 

is too thin to be seen optically. 

E. STONE: What is the possibility that if Titan is such a prc ? producer of 
plasma, then the magnetic field just cannot retain the plasma at all, and one has 

essentially a wind blowing? 

G. SISCOE: That is a necessary consequence of the model I just presented. 
26 There would be a Titan wind of more than 10 particles per second going out. You 

need a band with a thickness of about a thousand kilometers to carry that wind. It's 
not a big feature. 



. J. W ~ W Z C K :  Do you have any comments on possible effects at Sat- ana- 

l opus  to those due to b's interaction with Jupiter's magnetosphere, either from the 

rings or  interior satellites o r  Titan? 

G. SISCOE: The potential difference across Titan is about 10 kilovolts, which 

is probably not enough. The potential difference across the Earth's ionosphere is 

about 50 kilovolts and that does all kinds of interesting things. So my guess is that 

thare probably is an electmdynamic coupling having some small effects, but nothing 

comparable to Io. 

D. HUNTEN: All  this work assumed that everything that gets emitted from 

Titan is quickly ionized, isn't that right 3 

G. SISCOE: It assumes that the mechanism of particle loss is through ioniza- 

tion, A neutral density wi l l  build up to the point where the ionization rate balances the 

loss rate. The amouut of neutral hydrogen in the torus should build up to something 

like lo3' particles. 


