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ABSTRACT 

Voyager w3 l  use dd-frequency 3.5 d 13 cm wavelength radio accultp- 
t i o m  techniques m scudy the atmospheres and ionospheres of Saturn and 

Titaa, a d  the rings of Sanun. At E-an radio ormlration is predicted to  
probe the atmosphere to dre surface. The existence of a surface could be 
confirmed b) ckec5on of an obliquely scantred echo. At Satuni the two 

Voj-agex encountem wil: provide orcultation meacurrments of temperare 
and equarorial regions 9f rhe atmosphere and ionosphere. and of the rings. 
The wi l l  also be probed in pdar rqtions during the deepest 
portions of the octultarion. Bra5 t~qwncy anc! intensit)' data wi l l  be 
cdlected and jointly analyzed to study temprrtture-pressure prnCileh a d  
to derive informaim on atmospheric shape. tu.-bulence, and "wearher". 
For dte rings, V O ) ~  wil l  pmvide mcaslurments of the complex 

(ampl id  and phase) radio extinction and angular scattering functions of 
the ring panicles as a f u m ~ ~  o f  wavelength, pularization. and d i d  
distance fmm Saturn. These observations wi l l  be used to infer the first 
several moments of;:= ring panicle size distribution. the total amount o f  
m a t e d  in the rings, the d i a l  distribution o f  material. and limits to 

possibk panicle sh+s and constituents. 

The Voyager radio occultation investigations discussed here are based on the 

use of the 3.5 and the 13 cm wavelength spacecraft tra.nsmil2.r~ and ground receiving 

systems which are also used for telecommunications. These studies are directed 

towards the atmospheres and ionospheres of Saturn and Titan, and the rings of Saturn. 

A number of other investigatians are also planned, but wlll not be discussed here 

(Eshleman et J., 1977). 



. U n t  features of the89 investigations a re  the use of: a)  harmonically related 

fre&nCies at tbe two wavelengths, b) eonsidenbly higher power levels tiw previous 

experiments, c) a new, radiation-hardened, highly stahle spacecraft frequency standard, 

and 8)  improved phase, group-delay, and amplitude stabilities in spacecraft and ground 

radio systems. The resulting experimental precisions a re  given in Table 1. 

When a spacecraft moves behind a planet as viewed from Earth, the radio path 

traverses the planet's atmosphere and ionosphere, and for Saturn, will also probe its 

system of rings. All of these regions affect the characteristics of the received radio 

signals, making possible the study of the vertical structure of these atmospheric 

regim, clouds, small and large scale variations associated with turbulence and 

weather, and fundamental characteristics of the ring particles and their disposition 

around Saturn. The atmosphere and ionosphere of ntan will also be studied by such 

occultation measurements. It is also expected that a reflection from the surface of 

Titan near the limb will be obtained during the occultation measurements. If this 

occurs, it will provide positive confirmation that the measurements reach the surface. 

Table 1. Voyager Occultation Experiments at  Saturn 

Wavelength (cm) S/N (1 s) AP/P(~OOO s) Af/f(l s) 

ATMOSPHERES 

Flyby trajectory characteristics of the two Voyager spacecraft a t  Saturn provide 

a good combination of conditions for radio occultation studies of its atmospheres and 

ionospheres. Figure 1 illustrates the paths of the radio image of the spacecraft as seen 

from Earth for the nominal JST and JSX trajectories. Note that both equatorial and 

polar regions will be probed, and that there will be both a near-central occultatitm and a 

more grazing occultation in which the spacecraft sets or rises, as  seen from the Earth 

a t  large angles from the local vertical at the occulting body. Figure 2 provides a side 



F ~ g m  I .  view Cram Farth of Voy.gor odta t ioar  .t Saturn - 
Tbrspaturafi r a & ~ g e s f w I w t h i & l i r a t a d p a t b ~ ~ ~ J S T a r r d J S X  
t*ujaiordnatSat~*~. N ~ t h t r b m i s a c ~ a c r m s t r d a n d n a c ~ ~  
arnftatianr. Fw JSTat h m ,  q i o a  (a) prot.idb u rlsar aanhim oftbe 
rings wdfb ja  rluabnaacgBnrrdta~ran, &&/r)  i s a d k d r i a g d  
at-* OrrnIblm. 

Figure 2. Side view of Voyager occultations ar Saturn - 
Thr trajatoriu an polo~ted in a rotattng phne t b  ia~tankrrpmwIy 
rontainr rhe earth. the ~pacmafi. and the mry of tbe plrurrt. The 
larz~udu Bj orrul~ron I R I ~ R C I J Z ~ ~  and ementom are rbacm, und 
rcgiuni la ) ,  ( 6 ) ,  and ( r )  of Figarc I arc also ~IIu~trarcd bm. 



view of the occultalbon geometry in a rotating plane fhat instantaneously contaim the 
Earth, the spacecraft, and the center of Saturn. The figure is illustrated to scale. 

Occultation disfmces from the planetary limb to the spacecraft range about 3 to 6 Rs 

(Saturn radii). 
For a central pas- of a spacecraft behind Saturn, the trajectory would dip to 

zero in the vertical scale of Figure 2. At occultation entry and exit, the spacecraft would 

appear from the Earth to set and rise approximately normal to the limb of the planet, 

and the atmosphere would be sampled with height along a near-vertical path. Such a 
central passage is the optimum condition for occultation measurements of the vertical 

structure of the atmosphere. The JSX (Uranus) trajectory a t  Saturn is near optimum in 
this regard, while the JST trajectory gives occultation conditions in which the virtual 

image of the spacecraft enters the atmosphere along a path well away from the vertical. 

After modest penetration into the atmosphere, the image of the JST spacecraft, as 

viewed from Earth, will move approximately horizontally through the atmosphere, over 

south polar regions of Saturn, with spacecraft rise at emersion being over the equator 

in the western ansa. While such a non-central occultation will provide reliable vertical 

profiles over a smaller range of heights than is the case for central occultations, it is 

expected to be very useful in sampling conditions over a wide range of latitudes, in 

studying complex atmospheric structure due to turbulence and weather, and in helping 

to determine possible distortion of gravitational equipotentials from oblate spheroids, 

as discussed below. 

Figure 2 shows illustrative radio ray paths in the regions behind Saturn. Meas- 

urements of the received frequency of the radio signals from the spacecraft provide 

precise information on the angle of refraction in the atmosphere. Knowledge of this 

angle as function of time, together with the spacecraft trajectory, makes i t  possible to 
estimate the refractivity of the atmosphere a s  a function of height. (Refractivity 

V = n- 1, whele n is the refractive index. ) The profile of refractivity in turn can be used 

to determine the relative temperature and pressure a s  a function of height, and such 

relative profiles can be made absolute from knowledge of the atmospheric constituents 

(Fjeldbo and Eshleman, 1965; Kliore et al., 1955; Eshleman, 1965). 

The process of converting the observed signal frequencies into a height profile 

of refractivity, or a more general two or three dimensional refractivity model of the 
atmosphere, is not straightforward and in general cannot yieid a unique result. The 

problem of determining refraction angles from any given atmospheric model is, by com- 

parison, both straightforward and unique. 



If oae imposes the assumption tbat the atmosphere is spherically symmetric, 

there is a mathematical transform pair that ailows computations in either direction, and 

in this case the profile computed from the refraction angles is the correct and only 

answer (Fjeldbo et a!., 1971). We a re  not aware of any other potentially applicable 

model where such a direct mathematical inversion has been identified. A different 

approach involves iteration downward in an atmosphere modeled by successive thin 

layers within each of which the refractivity is constant. While such a method has 3een 

used for the spherical case (Fjeldbo and Eshleman, 1968), it is potentially applicable 

with further development to any geometrical complexity that can be modeled in this way. 

The radio science team is preparing for both types of inversion approaches for the 

Voyager occultation experiments. The departure from spherical symmetry due to the 

oblateness of the major planets wi l l  be treated both bq using a sequence of offset 

spherically-symmetric models to match the curvature of the equi-refractivity profiles 

at the occultation points (Kliore and Woiceshyn, 1976), and by the iterative process 

applied to the oblate spheroidal geometry. It is expected that this latter method may be 

made more complete with attempts to treat possible zone-belt differences and particular 

spot features in the atmospheres. 

Important additional information about atmospheric structure can be obtained 

from the intensity of the dual-frequency signals received during occultation. Figure 2 

illustrates the effects of differential refraction on intensity by showing tbat evenly 

spaced parallel rays to Earth connect with increasingly spread rays at  the spacecraft 

for progressively lower ray passages through the atmosphere. Thus signal intensity 

decreases as the rays penetrate deeper into the atmosphere. Measured signal intensity 

can be inverted as discussed above for the frequency measurements, and should yield 

the same refractivity profiles if the changes in intensity are due solely to such atmo- 

spheric defocussing (Fjeldbo e ta l . ,  1971). However, there are two other factors to con- 

sider, as discussed below. 

Certain errors in profiles derived from Doppler frequency measurements 

undergo an inherent magnification deep in the atmosphere, but this does not occur in the 

intensity inversion process (Hubbard et al., 1975; Eshleman, 1975). Thus cross-checks 

can be made to determine the onset of such magnified errors, with the possible result 

that the characteristics of such an error  swlrce could be measured. For example, pro- 

files determined from Doppler measurr?ments during the non-central occultations will 

be very sensitive to the assumed orientation of the local vertical (Hubbard et a/., 1975). 

At atmospheric levels where the signal intensity is reduced by a factor M (which could 



reach values of thousands), an er ror  in the local vertical of 6 radians would produce a 

temperature error on the order of 200 Mb% when the spacecraft sete or rises at  an 

angle of 45" from the vertical (Esbloman, 1975). But if the temperature were known 

more accurabely than this from the intensity measurements, or  from other Voyager 

experiments, then the apparent e r ror  could provide information on the orientation of 

local equipotentials to  an accuracy which could be important in the study of gravitational 

anomalies due to internal structure and atmospheric currents. The accuracy of the 

local vertical of the global gravity field of Jupiter as determined with Pioneer space- 

craft is about one minute of a rc  {Anderson, 1976). 

The second factor relative to the use of signal intensity measurements is that 
atmospheric absorption would add logarithmically to defocussing loss, but these two 

effects would be separable whenever the refractivity profile can be determined from the 

Doppler measurements (Fjeldbo et d 1971). Microwave absorption in the atmosphere 

is expected due to cloud condensates, their vapors, o r  principal atmospheric constitu- 

ents a t  low altitudes and hence high densities. The loss profile measured at the two 

radio frequencies would provide information on the location, density, and other charac- 

teristics of the clouds or  other absorbing material. 

Before absolute pressure and temperature profiles can be derived from the 

refractivity data, one must b o w  either the composition or  the temperature at  some 

altitude level. For the Voyager missions, the IR and W sensors are expected to yield 

complementary data on these parameters. Additional information may be obtained from 

the signal intensity measurements. For instance, if the altitude level of ammonia 

clouds could be identified In a microwave loss profile, one would h o w  the approximate 

temperature at  this altitude based on considerations involving vapor saturation. This 

temperature information would, in turn, allow us to use the scale height of the refrac- 

tivity profile near the cloud level to estimate the mean molecular mass of the atmo- 

sphere. The mean molecular mass could in turn be utilized together with other data to 

establish limits on the abundance ratios between the principal atmospheric constituents. 

The atmospheric occultation experiment is of special interest for Titan, ~e 

only satellite known to have an appreciable atmosphere. The trajectory for the JST 

mission includes a near-central passage behind Titan, under conditions which are  



favorable for vertical profile measurements. The same general considerations 

discussed above also apply at  Titan, except that oblateness is  not expected to be 

important. While there is considerable uncertainty about atmospheric conditions at  

Titm (Hunten, 1974), it is expected that the radio occultation experiment can provide 

important atmospheric results w e r  a wide range of altitudes, probably including 

conditions from the surface to heights where the atmospheric pressure is on the order 

of 1 mbar. At greater heights, ionospheric measurements would provide additional 

information as  discussed' below. 

We have computed the radio propagation effects of the four model atmospheres 

of Titan (Pad Weisman, JPL; private communication) with the results that are  sum- 

marized in Table 2 and Figure 3. In Table 2, the important parameters to compare 

are those for surface'pressure, pressure for critical refraction, the near-limb signal 

Table 2. Summary of Model Titan Atmospheres and Their Radio Effects 

I II rn TV 

Name Danielson Hunte~ Divine Sagan 

Principal C ons tituent CH4 N2 N2 Ne 

Amount (lan -A) 1.6 25 60 20 

Second Constituent) - CH4 CH4 H4 

Amount (km-A) - 0.08 0.19 0.08 

Scale Height (km) 

Temperature (K) 

Surface Pressure (bar) 0.015 0.40 0 .96 0.23 

Pressure for critical refraction (bar) 7 .3  6 . 2  15.9 275 

Near-limb signal (dB) - 13 -16 - 14 -10 

Bending angle at  surface (radian) 5. 36-4 1. 31e2 1. 54-2 3.26 x 10'~ 

Critical distance for  a near limb 
maneuver (meters) 5.04' 2 . 0 6 ~  1.75 8.27 x 10" 



Figure 3.  p-T occultation space at Tiran - F r p n  i f in~rrufa tbr miufiun~hrp o/&r m d i  

arrnosphmr ( I - IV, IC TuBIe I1 J 19 the expn-ICJ irifrral rtfrrairton inel nf Tttdn. S r m  irirrral m- 

I ' ; d r t i ~ ~  e n d ~  on t k  Jp~rrfi n$fa&trf). ol IL,, urrnn/ con~f~tuents. fuv r//usfratrw csrer. for pnrr 

~ztrno~phnr~ of N ,  and CH,. am grrw. 

loss, bending angle a t  the surface and the critical occultation distance. Surface 

pressure and pressure for critical refraction compare the expected surface pressure 

with the pressure a t  thc zight a t  which the radius of curvature of a horizontal ray 

equals the radius of the ray. In all cases the critical height occurs a t  a level in the 

atmosphere that is more than one order of magnihide pressure greater depth than the 

expected surface pressure. The difference in these two pressures is the theoretical 

margin for occultation measurements to reach the surface. 

In practical cases, signal strength must be considered as well. The entry 

under near-limb signal loss indicates the maximum signal loss due to atmospheric 

defocussing that will be encountered during occultation while observing signals from 

the closest limb of Titan. The differer-ce between this loss and the initial signal-to- 

noise ratios (see Table 1) is a d l a b l e  for study of absorption and scattering of the 

ray. Note that this difference typically is between two and three orders of magnitude 

in signal strength. To date, no potentially large sources of absorption have been 

identified. 



The remaining two quantities indicate the margins for a successful no-limbing 

tracldng, o r  a nearlimb tracking maneuver occultation. The bending angle a t  the 

surface is always less than the Voyager 13 cm -3 dB half-beam width of 2.1 x 

ndko8, althmgh i t  can be larger than the -3 dB half-beam width ~f 5.9 x radians 

a t  3.5 cm wavelength. The critical distance is the maximum flyby distance a t  which 

a near-limb tracking maneuver can successfully track a mrface ray. The Voyager 
7 occultation distance i s  planned to be about 3 x 10 m, or about one order of magnitude 

lers than the smallest value obtained for this quantity. At present the Voyager Radio 

Science Team plans to track the closest limb throughout the occultation. 

Figure 3 illustrates the relationship of these models to t'le critical refraction 

levels of pure N2 aud CHq This figure allows easy estiination of proposed atmospheres 

to the critical occultation level. 

Ionospheric Profiles 

The vertical profiles of free electrou concentration in an ionosphere can be 

found from the profile of refractivity, which in turn is determined in the same general 

way a s  described previously for the refractivity of the neutral atmosphere. However, 

there is an important Gifference in that the refractivity is also proportional to the 

square of the radio wavelength for ionospheres, while it is essentially independent of 

wavelength for neutral atmospheres. Thus the dual frequency measurements will be 

self-caiibrating in the sense that ionospheric profiles derived from Doppler frequency 

differences will be independent of trajectory uncertainties and spacecraft oscillator 

InstaSilities (Fjeldbo et al. 1965). Ionospheric profiles will be obtained in conjunction 

with the atmospheric occultations a t  both Saturn and Titan. 

RINGS OF SATURN 

The Voyager encounters with Saturn provide an opportunity to study the ring 

system with radio occultation techniques. The JST trajectory includes a Saturn rfng 

occultation following atmospheric occultation emersion. The JSX trajectory provides 

an optional retargeting for Titan encounter and ring occultation should the JST space- 

craft fail prior to Saturn encounter. 



The goals of these observations a re  to measure the complw (amplitude mid 

phase) radio extinction and angular scattering function of the ringa a s  a function of 

wrivdength, polarization, and radial distance from Saturn. Thesc observations would 

then be used to infer the f irs t  creveral moments of the ring particle size distribution, 

the total amount of material in the rings, the radial distribution of that material, and 

limits to possible particle ahapes and constituents (Marouf, 1975). 

A s  in atmospheric occultatione, the 13 and 3.5 cm- X radio waves will be trans- 

mitted from the spacecraft through the rings and received at Earth. The motion of the 

spacecraft will carry the geometric line of sight from the planetary occultation point 

within the western ansa (region @) in Figures 1 and 2) cutward through the entire ring 

system (region (a) in the figures). The complete phase, intensity, and polarization of 

the received signals at both wavelengths will he recorded at Earth. Note also from 

the figures that the complete ring plane will be crossed along a second path by the rays 

refracted through the atmosphere just prior to the atmospheric emersion of the space- 

craft image (region (c) in the figures). This combined atmospheric and ring occulta- 

tion will also be recorded. 

It is expected that the received signal will consist of two principal components; 

a coherent signal that represents propagation directly through ihe rings, and an 

incoherent component which reaches the earth by scattering from particles that do not 

lie along the geometric straight-line path to Earth (Eshleman, 1973). m e n  though the 

rings consist of discrete particles, they interact with the radio wave in such a way as 

to produce average effects (per unit volume) 011 wave intensity and ?hasp, much as 

does an atmosphere or  ionosphere of discrete molecules or  electrons. For the 

coherent signal, the rings can be characterized by their effective wave propagation 

constants. The coherent and incoherent components will be recognized and separated 

in the data on the basis of their spectral, time correlatior., and polarization 

characteristics. 

The first-order effects expecied are shown in Figure 4. At each wavelength, 

the coherent component will be shifted in phase and attenuated due to the effective 

propagation constants of the ring material. If the concentlation of ring particles varies 

with radial distance from Saturn, the progressive change in phase vfould correspond to 

small changes in the angle of refraction, so that it appears as a frequency shift m a 

manner that is analogous to an atmospheric occultation. Unlike atmospheric oc~cllta- 

tion, however, the reduction in the coherent signal intensity in ring occultation is 

expected to be due primarily to scattering of energy out of the direct path. 



The pham d the coherent wave depends primarily oa the total number of m n d  

particlea per unit area projected normal to the spacecraft-to-m l ind-sight (i-e., 
the areal density). The precision of the phase data is limited by the czsc-rs 
employed. For frequency stabilities associated with the onbard oecillt.t3r, Pbe tbre~h- 
OM of detection would correspond to small ice particles whoee areal density varies by 

.bmt 20 g/cm2 in P period of about 1000 s. Assuming a epaeecntt velodty of 10 W s  

intbeplm.dthesky, t h i ~ ~ w s r i l a n s i t i ~ t o ~ ~ n b i n m a t a ~ d 2 ~ 1 0 - ~  

y'm2/~, if tbs prt ic~es  are sma~ .s compareti vim tb. n d l ~  wave-. 
The inteneity of the coherent wave also carries important in£ormation about fhe 

ring particles. It appears that measurements of crfiemnt signal extinction will be 

limited to an accuracy of about 10% at 3.5 cm-A, and perhaps 1% at 13 cm, by system- 

atic and shwly varying errors in spacecraR antenna pointing* For a simple model 

invdving only optically thin regions am! ;iarti&s that are large relative to the wave- 

length, these errors would correspond to the same f rac t id  error in the btd pro- 

jected area of the particles view& against the p h  of t&e sky. We ezthmte trom 

current models b r  the B ring that this attenuation will be between 40 and 60 dB. As a 

result, the coherenit wave may be below the limit of detection during portlone of the 

ring o c d t a t i o ~ .  

The incoherent signal illustrated in Figure 4 arises from scattering by ring 

particles with circumference  great^ : than s umieleqgth. It can be analyzed in terms 

of the average angular scattering properties d the rings mapped into the frequency 
domain by the Doppier effect. This mapping can be understood in term of the relative 

velocities betwen the s p a ~ e c ~ t ,  ping particles, and the receiviilg station on Earth* 

Signals transuitkd from the spwecraft illuminate ring particles at a frequency shift4 

by the instantaneous relative spacecraft-particle velocities. The component of the 

- - z 

t P~ T F r g m  4. Signal c ~ e r i s r i c s  during hem ring occulntion - 
Trmmiral rrgrrol f P r . h i  u d iOis & f P,.f,) d 
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-X)a I mrirsdpmwir thrabrraa./riqp. S b a p c ~ i ~ ~ n h t m u i -  

f c& mprscnt! expad s i p a i * ~  .Ja brmddpick riu b b r r t x m .  Mmt 
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~ p r p a  uith polonzdldl~ u acl iUnrlraCaj. 





The radio science team is p h m b g  to c~nduct the JST ring occu!tation experi- 

ment with the antenna directed toward the Earth. This strategy will yield the m a x i m a  

signal-to-noise ratio for the coherent ccmpaent. It will aiso yield the mean particle 

size and information 0x1 the particle dze distribution, parti~wiarly if most of the p a r  

ticks are a few meters in diameter or larger. Thc effects of particles in tke 

centimeter-to-meter size range will be recogntzPble in the data, atthou@ detailed 

information wi l l  not oe available on the distribution of sizes in that range. W e  hope 

to obtain information an the intermediate-scale particles by incorpomtbg an oblique 

scatter experiment in the JSX flyby, during which the spacecraft antenna will he 

directed toward the rings through a range of oblique scattering angles, but the 

feasibility of this has not yet been completely determined. 

PoLarizatbn of the scattered waves is an independent observable which is 

g;lerman? to the study of the incoherent signal. and in principle, to the coherent wave 

as well.  Tbe polarization of the coherent 7 . 2 ~  sill be m&ed by factors fhat depend 

primarily on particle shape if m-dtiple scatter can be neglecN, and 5y a combination 

of particle shape and multiple scattering in regions where the Latter is important. 

Strong &polarization is observed in backsatter  radar observations, and is one of the 

puzzling aspects of the ring system in these E2rth-hsed experiments (Goldstein e t  al., 

1977). For the coherent u-a\-e, we hotv of no particular reasos to expect strong polar- 

ization effects, but this could occur if nan-spherical particles have ord~i-ed orientations. 

Polarization measu rements ti-ill be made with coherent receiv-hg systems for 

right and left h a d  circular pohrimtion at  each wavelength. T-he data can be pro- 

cessed tc deterrnille !he complete prqertics of the m a w s  -- intensity, axial ratio am? 

orientation of the poiarized +id, rrnd tfie jntensity of tlw unpolsrized ?art -- as a func- 

tion of ti-e and frequency. For the c o h  t-e?lt signai, data processing based on palat- 

izatlon will improve the a posteriori sjr,pal-t+noise ratio. 

The discussion above is express& in terms of 3 simplified, sir4le-scattering 

model. Howeve:-, t&e fundamental experimental considerations of geometry and 

stratem do not depend on that mociel, but ofi:?- on the assumption that the particles 

follow individuai Keplerian orbits with few c:Aiisions. We expect to encounter a wide 

range of ~onditions as the r:rriio Seam n;oves ouh\ard through the ring system, and 

there may be no single scaztering mrdel o r  malysis technique which is appropriate 

over the full range. We are  e r i s g d  in a continuing study of this  expei-iment with 

emphasis cn thc sensitivitJr of thta inlersion to the experimental parameters, and on 

more complex models n-!ic-'r: incitide multiple scatter and polarizatfcn. 
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