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SUMMARY

The objective of this program was to establish the technology for small,
high-pressure liquid oxygen (LOX) pumping capability. Turbopumps in this
category are needed for applications in small, high-performance, reusable,
versatile, staged-combustion rocket engines. To acccmplish this objective,
analysis and design efforts were expended to produce specifications and
shop drawings in sufficient detail to permit fabrication of test hardware.

To obtain high performance and minimize weight, the rotor speed was estab-
lished at 7330 rad/s (70,000 rpm). The pump design inciuded a single-
stage centrifugal impeller preceded by an axial-flow inducer rc reduce the
net positive suction head (HPSH) vrequirements. Rotor axial thrust control
was provided by incorporating a self-compensating, double-acting balance
piston as an integral part of the impeller rear shroud. Power for the pump
was developed by a single-stage, partial-admissinn turbine us ng the combustion
products of liquid hydrogen (LHp) and LOX as the propellast. The rotor was
supported on two ball bearings at each end. The pump end bearings were
cooled by recirculating LOX. The turbine end bearings, located outboard of
the turbine disk to provide auxiliary power takeoff capability, were cooled
by LHy. Controlled gap seals were used to accomplish sealing along the
rotor.

Hardware was fabricated for two complete turbopump assemblies. To provide
a hot-gas source for the turbine, a gas generator was designed, fabricated,
and tested.

The turbine was calibrated at Wyle Laboratories with gaseous nitrogen as
the driving flu'd, and a torquemeter was used to measure output. The
turbine efficien~y was measured at 51% at the design point.

The initial testing of the complete turbopump was performed in July-August
1976 at Lima Stand of Rocketdyne's Propulsion Research Area (PRA)., Eight-
een tests (257 seconds) were conducted on one turbopump assembly, with LOX
as the pump fluid on all but three tests. (Liquid nitrogen [LN;] was
initially used to verify integrity.) The turbine was propelled by ambient-
temperature gaseous hydrogen on seven tests, and by hot gas op the remaining
tests. Speeds in excess of the design level, up to 7765 rad/s (74,191 rpm)
were explored. Pump discharge pressures ranging up to 3175 N/cm? (4604 psia)
were generated with flowrates up to 0.013 m3/s (193 gpm). The turbine was
exposed to a maximum inlet temperature of 1133 C (2040 R).

The hydrodynamic data revealed that the pump suction performance did not
meet design goals in the high flow region. Analysis of the data and design
approach revealed that a larger impeller inlet area was required to improve
performance. No structural problems were indicated either by the data or
post test hardware condition. High temperatures noted in the pump end bear-
ings indicated a need for higher flowrates through the balance piston and
the bearings.
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To improve performance, the impeller inlet area was increased and the
balance piston and bearing coolant flow was routed overboard where it could
be measured and controlled. 1In the second test series, during July 1977,
five tests were conducted with a total time of 158 seconds. The testing
-encompassed noncavitation head-flow characterization of the pump. While
critical net positive suction head {NPSH) was not uefined, the pump operated
without cavitation up to a suction specific speed (Ngg) of 24,400 which
represented a major improvement over the original performance. Testing was
curtailed by a mechanical malfunction which resulted in a fire in the LOX
region and caused major damage to the pump hardware. The or gin of the
malfunction was conclus vely established as the primary seal nut backing
out of its installed position and blocking the overboard passage for the
balance piston and bearing coolant fluid.

Design changes were made to a second set of hardware to improve the primary
seal nut locking feature, and reduce the tendecacy of the fluid vortex to
loosen the nut. Changes were also incorjorated to protect the pump end
bearing against high axial load from coolant pressure drop. Four addi-
tional ests (236 ceconds) were conducted in May 1978 to validate the
modifications and obtain hydrodynamic data. The test series was terminated
prematurely by a high rotor torque condition. Disassembly revealed the
high torque originating from turbine tip seal rubbing. The newly incor-
porated features functioned properly and the pump head-flow data corrob-
orated the satisfactory performance obtained on the second test series,
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INTRODUCTION

System studies have been ronducted to determine the feasibility of

developing a reusable vehicle for performing future Air Force and NASA space
maneuvering missions. These studies have shown that, over the thrust range
of interest, high-pressure, staged-combustion-cyle engines offer the highest
specific impulse and payload capability. A review of the vehicle and engine
system study results indicates that a single-bell-nozzle, staged-combustion-
cycle ergine at 88,964 N (20,000 pounds) thrust level is near optimum for the
DOD and NASA mission requirements.

This program was initiated to provide the rcquired LOX turbopump technology
base for subsequent development of a high-performance, staged-combust.ion
rocket engine.

Technology items of particular interest during the course of this program
included establishing the fluid dynamic parameters and design datails for a
small-capacity, high-pressure LOX pump, and low-pressure-ratio, partial-
odmission turbine; operation of a balance pistion with no axial rubbing
features; balance and operation of a high-speed rotor; high DN bearings in
LOX; hydrogen-environment embrittlement protection; and fabrication of small
components with limited accessiblity for generating internal passages. To
provide a hot-gas source for the turbine, work was also performed on high-
pressure, concentric-element, 02/H2 injector gas gencrators.

Th objectives of this program were to design, fabricate, and test a high-
pressure LOX turbopump capable of meeting the performance requirements of the
88,964 N (20,000 pounds) thrust, staged-combustion-cycle engine, demonstrate
its basic capability, and identify any areas where additional effort due to
technology limitations is requived to place a future engine program on a
solid hasis.

Rocketdyne has assigned the designation '"Mark 48-0 Turbopump' to the small,
high-pressure, liquid oxygen turbopump design generated under this contract.
The two terms will be used interchangeably throughout this report.

The effort performed during 1973 to 197¢ which encompassed analysis and
design of the turbopump, fabrication of experimenral hardware, and thc
initial test s2ries performed is described in an Iuterim report published
in July 1977 (.ef. 1).
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DISCUSSION
TURBOPUMP DESCRIPTION AND BACKGRGUND
A comprehensive discussion of the MK 48-0 turbopump ’.sign requirements,
analysis results, and mechanical configuration are presented in Ref. 1. For
convenience, a brierf summary of the significant characteristics of the

turbopump is included in the following.

Turbopump Requirements

The performance requirements for the Mark 48~0 turbopump are listed in

Table 1. The pump is required to deiiver 16.4 kg/s (35.21 lb/sec) of

liquid oxygen starting witi. e irnlec pressure of 68.9 N/cm? (100 psia) pro-
vided by the low-pressure pump, to a discharge pressure of 2977 N/cm? (4218
psia). The propellant gas for the turbine is a mixture of free hydrogen and
steam resulting from the combustion of liquid hydrogen and liquid oxygen.
The gas is provided at a temperature of 1041 K (1874 R) and an inlet pres-
sure of 2320 N/cm? (3366 psia). The total gas flowrate available is 1.34
kg/s (2.92 1b/sec). The horsepower requirement of the pump is matched by
adjusting the pressure ratio acrouss the turbine. Since turbine pressure
ratio has a strong influence on the attainable engine combustion pressure in
a staged combustior cycle, it is to be maintained at the lowest possible
level. As noted in Table 1, the mechanical operating requirements included
multiple starts with long-operating durations and potentially long--oast
times between operatiomns.

In the area of the pump, the combination of low flowrate and high discharge
pressure imposed a difficult impeller fabrication task because of the
relatively narrow passages required compared with the outer diameter. The
desire for high efficiency, compact packaging, and light weight placed the
rotor speed into the 6282 to 9423 rad/s (60,000~ to 90,000-rpm) range, push-
ing bearing DN value to the 1.5 x 106 mm rom limit noted in the Design
Ground Rules (Appendix A). The bearing operation at high DN values in a
turbopump installation, as well as the dynamic behavior or the rotor at high
speeds, needed to be demonstrated. Because of the high operating speed
involved, the bearings would not be able to take an appreciable axial thrust
lcad., This condition dictated that an ixial thrust balance device be
enployed which, in liquid oxygen, would have to be cf the noniubbing type.
The operating characteristics of such a device also required evaluation.

In the turbine, the low-pressure ratio (approximately 1.4) and low arc of
admission (28%) presented a combination for which no 2mpirical data were
available. Performance predictions based on caiculations needed to be
validated or modified by measured performance data.

From a structural consideration, the requirement for 300 thermal cycles was
significant in that it established low-cycle-tatigue criteria and eventually
necessitated incerporating a liner in the turbine manifold t 1limit the
maximum thermal gradients in structural -.alls.
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TABLE 1. LIQUID OXYGEN TURBOPUMP NOMINAL DESIGN CONDITION

Metric Units

English Units

Turbogggg
Capable of operation at pumped-idle
conditions ( 5 to 10 of full thrust)

Off-design operation

Number of start-stop cycles
Time between overhaul

Pump

--?ype
Propellant
inlet pressure
inlet temperature
Discharge pressure
Mass flow

Number of stages
Turbine

Working fluid

inlet temperature
Inlet pressure

Pressure ratio

Flowrate
Number of stages
Type

Service life between overhauls:
Service-free lire

Maximum Single Run Duration:

Maximum time between {irings
during mission:

Maximum time batween firings
during mission:

Maximum storage time In orbit
(dry):

+203 Q/N at full thrust down
to 302 Q/N at 20X N

300

10 hours

Centrifugal
Liquid oxygen
68.9 N/cm2
90-95.5K
2977 N/cm2
16.4 kg/s

One

Hy-0, combustion products
(Hz x HzO)

1041

3220 N/cm?

Minimum necessary to
develop pump horsepower
requirements.

1.34 kg/s
One

Partial admissica

*300 Thermal cycles ar 10
hours accumulated run time

*60 Thermal cycles or 2 hours
accumuliated run time

2000 s

14 days

| minute

52 weeks

100 psia

162 toc 172 R
4318 psia
36.21 1b/sec

1874 R
3366 psia

2.92 1b/sec

Thermal cvcle defined as enqine start (to any thrust level) and shutdown
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In addition to the performence criteria noted in Table 1, the contract work
statement inciuded certain ground rules relating primarily to the structural
analysis and mechanical design of the turbopump. These ground rules are
enclosed in Appendix A.

Turbopump Description

The mechanical configuration of the small, high-pressure, liquid oxygen
turbopump is illustrated in Fig. 1, with significant parts identified. The
top assembly requirements are established on Rocketdyne drawing rumber
RS009820E, which is included in Appendix B. The design was given the
Rocketdyne internal designation of Mark 48-0.

Liquid oxygen is introduced to the pump through the axial-flow inlet of 4.214
cm (1.659 inch) diameter and passes through a four-bladed, constant-outer-
diameter, tappered-hub inducer which raises the pressure to an intermediate
level. From the inducer the liquid proceeds into a centrifugal impeller
containing four partial and four full blades. Subsequently, it is diffused
in a radial diffuser which incorporates 13 guide vanes. Downstream of the
diffuser, liquid oxygen is collected, further diffused in a volute sectionm,
and delivered through a single 2.54 cm (1.00 inch) diameter duct.

Hot gas to the turbine is admitted through a scroll-shaped, constant-velocity
inlet, lined with a 1.57 mm (0.062 inch) metal liner to maintain the thermal
gradients across the structural walls at an acceptable level. The inlet duct
diameter is 3.1 ecm (1.22 inches). The active arc of the partial-admission
nozzle extends over 1.8 rad (103 degrees) or 28.67 of the circumference, and
it includes seven flow passages. The gas is fully expanded through the nozzle
after which it passes through a single row of unshrouded impulse-type blades
(79 blades) of the rotor. The exhausr gas is directed through a row of
stationary vanec which guide the gas toward a single radial exit duct of 3.81
cm (1.50 inches) diameter.

The pump shaft and the turbine disk are designed as an integral part. On the
outboard end, a stub shaft is used with a stud and nut to extent the rotor.
Two pairs of angular-contact, 20-mm ball bearings are used to support the
rotor. The pump-eud bearings are cooled by recirculating liquid oxygen
through them. Th2 outboard shaft seal is pressurized with liquid hydrogen,
and the leakage “*osard the outboard side is used as hearing coolant. A small
amount of liquid hydrogen is bypassed around the seal and introduced to the
bearing directly as a redundant source of coolant. The bearings in each pair
are axially preloaded against each other with Belville spriugs to prevent
ball skidding. The turbine-end bearings are free of other axial loads. The
outer-race sleeve of the pump-end bearings is axially retained so that the
bearings absorb rotor axial thrust during transient periods when the balance
piston does not control the rotor axial position.

Under conditions other than early transient stage during startup or at the
end of shutdown, the rotor axial thrust is neutralized by a self-compensating
balance piston. The rotating member of the piston is the rear shroud of the
impeller. To operate the piston, high-pressure liquid oxygen from the
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impeller discharge passes through a high-pressure orifice located at the
outer diameter of the impeller into the balance cavity. From the cavity,

the 1iquid passes through a low-pressure orifice near the impeller hub into
the sump. From there the liquid oxygen is returmed to the eye of the im-
peller thrsugh axial passages in the diffuser vanes and radial holes in the
diffuser and inlet. Thrust-compensating effect is achieved by virtue of

the fact that the high- and low-pressure o:ifice openings vary with the axial
position of the rotor, and the pressure force on the rear shroud of the im-
peller varies correspondingly; e.g., an unbalanced load toward the pump inlet
causes a reduction in the high-pressure orifice gap and an increase in the
low-pressure orifice gap. This, in turn, causes a reduction in the pressure
force of the impeller rear shroud, introducing a compensating load change.

Because of the danger of explosion when rubbing in liquid oxygen, the balance
piston orifices were designed as noncontacting type, formed by the axial prox-
imity of close clearance, 0.038-mm (0.0015~inch) average, diametral, cylindri-
cal surfaces.

To preclude mixing liquid oxygen from the pump with the combustion products
from the turbine, the two regions are separated by three dynamic seals. All
three seals are of the controlled-gap type, with two seal rings in each. The
controlled-gap conceot was selected for this application primarily because
it has low-drag torque, a "must" for idle-mode starts. This concept also
mininizes power absorption during steady-state operation, and permits very
long service life. Pump fluid is contained by the primary LOX seal. The
oxygen which flows past this seal is drained overboard from the cavity
formed by the primary and intermediate seals. A slinger containing pumping
ribs was included upstream of the primary LOX seal to reduce the pressure

at the seal gap to a level that will vaporize the fiuid. The objective was
to reduce the mass flowrate through the seal with this technique.

on the turbine side, because of the high pressure involved, sealing and
draininage was accomplished in two steps. An overboard drain was included
dowmstream of ths first ring, which reduces the pressure between the two
rings to 79 N/cm® (115 psia). The small amount of turbine gas which leaks
past the second ring is drained overboard with a drain cavity pressure of

approximately 14 N/cm? (20 psia).

To provide separation of the pump and turbine fluids, an intermediate seal
was incorporaied between the two drain areag with a Glle purge which maintains
the cavity between the two rings at 35 N/em® (50 psia).

Test History

Turbine Calibration. Calibration of the Mark 48-0 turbine, to establish its
aerot~emodynamic performance, was accomplished with ambient-temperature GN2
as the propellant. The rotor speeds were maintained in the range of 523 to
1885 rad/s (5000 to 18,000 rpm) to simulate the operational wheel tip speed/
gas spouting velocity ratios (U/Co).
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The testing was performed at Wyle Laboratory, El Segundo, California, during
February 4 through 9 1976. A total of 11 tests were made, with GNy working
fluid, at velocity ratio (U/Cy, total to static) ranging from 0.115 to 0.606,
and turbine speeds from 523 to 1885 rad/s (5000 to 18,000 rpm). A plot of
turbine test efficiency #s shown in Fig. 2. The efficiency was calculated
with Lebow torquemeter torque and isentropic available emergy (total-to-
static) across the turbine. At a design velocity ratio of 0.343, the turbine
total-to-static measured efficiency was 51% compared with a predicted valuve
of 59.8%. Calculations show that with the measured performance the pressure
ratio of the turbine would have to be increased from the design value of
1.424 to 1.54 to generate the required power level.
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Figure 2. Mark 48-0 Turbine Performance

The combination of low-pressure ratio (l.42)and low arc of admission (28.5%
of circumference) places this turbine in an operating region in which turbine
technology has not been developed. Potential improvement in the performance
may be realized by increasing the number of active nozzle passages and re-
ducing th2 throat width to obtain the required total throat area. Depending
on he engine installation, improvements in the exhaust manifolding may be
possible to minimize the pressure losses charged to the turbine.
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Turbopump Testing. The initial testing of Mark 48-0 turbopump P/N RS009820E,

S/N 01-0, began in the Lima test stand of the Rocketdyne Propulsion Research
Area (PRA) on 9 July 1976 and was concluded on 11 August 1976. A total of
18 turbopump tests for an accumulated duration of 266.8 seconds were accomp-
lished on the turbopump assembly. The test effort was divided into two main
categories: Performance mapping, using GHy as turbine drive media, with LN
and LOX as the pumped fluid; and integrity testing, using a LOX/LH; gas
generator as the turbine drive gas media, with LOX as the pumped fluid. Gas
generator injector P/N RS005024-131, S/N 2, a coaxial five-element design,
was used during the hot-fire testing. A brief description of the test per-
formed during the initial series is presented in Table 2.

Mechanical Performance. Testing of the LOX turbopump encompassed 18 starts,

with a tota) accumul. “ed time of 267 seconds. The three initial tests were
cornducted with LN2 as the pump fluid; in subsequent tests, LOX was used. The
first seven tests were performed using ambient-temperature GHy to drive the
turbine; in the remainder of the tests, the combustion product of LH, and

LOX at approximately desigu temperature was the turbine propellant. The
longest “est durations conducted were 70 seconds with ambient Hy drive and
41 secunds with hot-gas drive. The operation covered a rotor speed range of
0 to 7768 rad/s (74,191 rpm); a maximum pump discharge pressure of 3175
N/cm? (4606 psia); and a maximum turbine inlet temperature of 1133 K (2040 R).

Several tests were terminated by the vibration sensor device monitoring tne
output of the accelerometers attached to the turbopump housing. This was
caused by a combination of several factors. Normally on a new turbopump
several tests are required to establish its vibration signature and thus set
the cutoff point at the appropriate levels. It appears that with the Mark
48-0 turbopump, this level is in the 20 to 25 g rms range in conjunctiom
with a 2K Hz low-pass filter. Some of the early runs were terminated because
the cutoff redline was set too low. In addition, the manual GH} feed con-
trol system employed on the first seven runs frequently resulted in slow
transition through critical speed zones, with attendant buildup in vibration
levels. '

Bently data and accelervmeter data obtained from high-frequency tapes showed
increased synchronous activity at 4115, 5026, and 5528 rad/s (39,300,
48,000, and 52,800 rpm). These compared favorably with the analytically
predicted critical speeds of 4723 and 5482 rad/s (45,108 and 52,383 rpm),
respectively. No evidence of subsynchronous vibration was present in the
data.

The measured seal drain pressures, temperatures, and flowrates were, in
general, in good agreement with predicted values, indicating proper func-
tioning of the shaft seals. During chilldown of the pump on the LNj
tests, it was noted that the secondary hot-gas drain line frosted over.
This could occur as a result of heat transfer through conduction, but pos-
sibly also as a result of the pump fluid from the primary LOX seal drain
cavity leaking across the intermediate seal. To prevent a potentially
hazardous condition, the purge pressure level in the intermediate seal was

10
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raised to 138 N/cm? (200 psig). No problem was experienced at this pressure
level with mixing of incompatible fluids. It is quite possible that the
originally planned purge pressure of 41 N/cm? (60 psig) would be adequate.
This could be established on future tests by sampling and analyzing the
drain fluids during chilldown.

The turbopump was disassembled after the test series to permit visual inspec-
tion of the components. Figure 3 shows the condition of the more significant
parts. The condition of most of the components was excellent; only two
discrepancies were apparent: The pump-end bearings showed evidence of over-
heating, and the chrome plating on the rotor under the primary hot-gas seal
ring had flaked off.

Pump Hvdrodynamic Performance. Figure 4 is a plot of the pump overall
head rise as a function of flow, where both data and the predicted head are
scaled to a speed of 7329 rad/s (70,000 rpm). The scaling was accomplished
using the affinity laws which have been thoroughly substantiated as appli-
cable for LOX and LNy. The data consist of 66 data points from 15 tests,
with test speeds varying from 1628 rad/s (15,550 rpm) to 7768 rad/s (74,190
rpm), and with pumped fluids of both LOX and LN, primarily the former. The
symbols used for the data points distinguish the different operating speed
ranges tested. There was no indication that the results were dependent on
the pumped fluid medium.

The low-speed data show fairly good agreement with the predicted head rise,
but may be indicating a slightly steeper H-Q slope than predicted. However,
as speed increases, the test data deviate more from the predicted curve,
fallineo short of the curve at the higher flowrates. This type of deviation
is typical of that experienced when cavitation is limiting the performance.
To investigate this deviation, the ratio (Rpy) of the test head rise divided
by the predicted head rise was calculated and plotted as a function of
suction specific speed (Nss) in Fig. 5. The initial plot tended to indicate
a great deal of data scatter without clear trend. However, when different
symbols were used to represent the different inlet flow coefficients (¢y,)
tested, the data showed a clear trend. For all coefficients, there is a
tendency of the head ratio to drop as Ny, increases. However, as flow
coefficient increases, this dropoff occurs at successively lower values of
Ngg. This trend again is strongly indicative of cavitation limitacions,
with the amount of cavitation increasing with either increasing Ngs or with
increasing flow coefficient at a constant value of Ng..

Th cavitation appears to occur at much lower values of Ngg than would be
expected from the design, considering it does have an inducer designed for
good suction performance, This would indicate the more likely possibility
that the impeller is cavitating rather than the inducer. This could be
caused by:

1. A failure ot the inducer to produce its design : ..4 rise, which is
required to keep the impeller out of cavitation
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raised to 138 N/cmZ (200 psig). No problem was experiencuu at this pressure
level with mixing of incompatible fluids. It is quite possible that the
originally planned purge pressure of 41 N/cm? (60 psig) wouald te adequate.
This could be established on future tests by sampling and analyzing the
drain fluids during chilldown.

The turbopump was disassembled after the test series to permit visual inspec-
tion of the components. Figure 3 shows the condition of the more significant
parts. The condition of most of the components was excellent; only two
discrepancies were apparent: The pump-end bearings showed evidence of over-
heating, and the chrome plating on the rotor under the primary hot-gas seal
ring had flaked off.

Pump Hydrodynamic Performance. Figure 4 is a plot of the pump overall
head rise as a function of flow, where both data and the predicted head are
scaled to a speed of 7329 rad/s (70,000 rpm). The scaling was accomplished
using the affinity laws which have been thoroughly substantiated as appli-
cable for LOX and LN;. The data consist of 66 data points from 15 tests,
with test speeds varying from 1628 rad/s (15,550 rpm) to 7768 rad/s (74,190
rpm), and with pumped fluids of both LOX and LN, primarily the former. The
symbols used for the data points distinguish the different operating speed
ranges tested. There was no indication that the results were dependent on
the pumped fluid medium,

The low-speed data show fairly good agreement with the predicted head rise,
but may be indicating a slightly steeper H-Q slope than predicted. However,
as speed increases, the test data deviate more from the predicted curve,
falling short of the curve at the higher flowrates. This t;pe of deviation
is typical of that experienced when cavitation is limiting the performance.
To investigate this deviation, the ratio (Rpg) of the test head rise divided
by the predicted head rise was calculated and plotted as a function of
suction specific speed (N ) in Fig. 5. The init’al plot tended to indicate
a great deal of data qcatter without clear trend. However, when different
symbols were used to represent the different inlet flow coefficients (¢in)
tested, the data showed a clear trend, For all coefficients, there is a
tendency of the head ratio to drop as Ny, increases. However, as flow
coefficient increases, this dropoff occurs at successively lower values of
Ngs. This trend again is strongly indicative of cavitation limitations,
with the amount of cavitation increasing wich either increasing Ngs or with
increasing flow coefficient at a constant value of Ngg

Th cavitation appears to occur at much lower values of Ngg than would be
expected from the design, considering it does have an inducer designed for
good suction performance. This would iudicate the more likely possibility
that the impeller is cavitating rather than the inducer. This could be
caused by:

1. A failure of the inducer to produce its design head rise, which is
required to keep the impeller out of cavitation

14
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2, An inadequate impeller design from a cavitation standpoint

3. Too much hot cryogenic being pumped into the impeller eye from the
balance piston/bearing area

Axial Thrust Control. Data frem this test series showed the balance
piston to be operating in a satisfactory manner, particularly on those tests
where part of the flow was bled overboard and, thereby, the return cavity
pressure was reduced. To improve the margin in an internal recirculation
mode, the size of the return flow passages should be enlarged.

Bearing Coolant Flow. Examination of the bearings post-test showed
that the bearings had been overheated. There are two possible explanations:

1. The bearing was overheated during LN, tests;
2. The bearing was overheated during the LO, tests.

These two possibilities are distinguished because experience with bearings
in LNy operation. Rocketdyne's experience in this fluid medium has been
inconsistent, some tests indicating satisfactory operation, others showing
definite signs of bearing distress. The bearings from the Mark 48 had a
very similar appearance to others damaged during LNy operation. Because of
this earlier experience, the total test time in LNy was purposely kept to a
minimum; three tests were conducted with a total duration of 44 seconds and
a maximum rotor speed of 6492 rad/s (62,000 rpm).

Regardless of the LNy operation, however, there are indictions that the LOX
flow thrcugh the bearings could be substantially less than was desired, and
that the temperature of the coolant was potentially higher than expected.

The data have alieady been used to show that the balance piston thrust range
in some cases was less than the design range. This limitation was attributed
to the higher resistance downstream of the balance piston sump. This same
high resistance tends to restrict the coolant flow.

The overheuiing condition would be made worse by the possible larger loads
carried by the bearing due to the inability of the balance piston to develop
the thrust range desired in some instances. The load tracks on the bearings
were wider than usual, indicating variable loading conditions.

The third factor affecting the bearing temperatures is the temperature of

the coolant fluid itself in and around the bearings. Figure 6 shows “he
temperature in the balance piston return flow area as a function of speed.
Many of the temperatures experienced are actually warmer than any encountered
previously with LOX bearings. It is desirable to keep the temperature down
to approximately 110 K (200 R). Desta in Fig. 6 show temperatures as high as
160 X (290 R) at speeds of 6282 rad/s (60,000 rpm). The higher temperatures
noted on the earlier tests were a cause of concern that led to the action of
opening an instrumentation line as an overboard bleed of the balance piston
flow returu cavity. This change was made effective on Test 19 and subsequent
and, even though the return port was small, the data of Fig. 6 show that there

17
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was definite tendency to lower the temperature in this cavity. Subsequent
tests were able to get to speeds of 7330 rad/s (70,000 rpm) or higher without
exceeding approximately 130 K (235 R). Thus, the overheating initially must
be at least partially due to insufficient coolant flowrata out of this

cavity area. This same problem leads to a higher back pressure at the
balance piston sump, and results in the lower thrust range previously
reported.

? need for further analyses to explore the coolant flow problem is indicated.
These analyses can be expected to cover the effects of the heating due to
power disk drag on the back side of the impeller and on the slinger. Pre-
liminary analyses indicate that, at a 7330 rad/s (70,000 rpm), the impeller
back side power disk drag could easily result in a temperature increase of
17 K (30 R), with the flows calculated in analyzing the balance piston
performance.

ANALYSIS AND DESIGN MODIFICATIONS

Hydrodynamic Analysis

The purpose of the initial phase of this effort was to analyze in-depth the
hydrodynamic characteristics evidenced in the data obtained during the test
series conducted in July and August 1976, Based on the results of the
analysis, design changes were made for incorporation into the next turbopump

18
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to be tested. The purpose of the modifications was to provide additiounal
instrumentation, correct obvious deficiencies, and reroute the balance
piston flow in an external recirculation mode where the flow can be measured
and the amount recirculated varied.

Suction Performancc Analysis. The data obtained during the initial test
series of the turbopump revealed that the head produced by the pump dropped
off at increased suction specific speeds and flow coefficients. This ten-
dency pointed toward a cavitation problem either in the inducer or impeller.
Therefore, effort was initiated to re-examine the inducer hydrodynamic
design and performance analytically. The Dynatech computer program was
utilized for this purpose. The independent check indicated no problem with
the inducer performance. The discharge pressures calculated using the
Dynatech program approached originally predicted values closely, and in some
instance exceeded them. The predicted head-flow characteristics are included
in Fig. 7. Based on the results of this analysis no further action was
taken with regard to the inducer. To verify the analytical performance, a
pressure measurement was included betweer the inducer and impeller.

Analytical effort was also directed at the impeller hydrodynamic design to
ident.ify elements which could potentially cause or rontribute to the poor
suction parformance of the pump. The static pressure distribution along the
flow passage was czlculated and it was found that the through flow area near
the leading edge of the impeller blade was restricted more than what would
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Figure 7. MK 48-0 Inducer Head-Flow Characteristics
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be conducive to good hydrodynamic performance. This condition actually causes

a negative head rise at the blade inlet of 229m (75). feet). In Tahle 3 the per-
tinent parameters of the Mark 48-0 impeller are compared with those of the Mark
44-0 impeller which 1s of similar size and which has exhibited excellent hydro-
dynamic characteristics. Even through the pressure level present at the
impeller leading edge would appear to be sufficient to preclude local cavita-
tion, it is evident that the NPSH margin at that point is substantillay less
with tLe Mark 48-0. Whether actual cavitation is present or not, the overall
pressure generating capability of the impeller is reduced by this condition.

One of the postulated reasons for the low head generated by the impeller was
the balance piston return flow which is dumped into the eye of the impeller.
Tt was hypothesized that this relatively high-temperature fluid is vaporizing
and causing excessive blockage in the impeller. To investigate this theory an
analysis was made of the entire balance piston flow loop.

Detailed calculations were made of five test slices in which the fluid state
points at various significant stations of the flow circuit were established.
The location of these stations are identified in Fig. 8. Actual pressure
measurements are available at Stations 1, 2, 4, and 6. The temperature was
monitored at Station 6, and it could be derived for Station 1 with a good
degree of accuracy from pump inlet and discharge temperature measurements.
The pressures and temperatures at the other stations were calculated. The
five test slices selected for detailed analysis were typical representatives
of the various conditions under which the pump was operated in tte initial
test series. A summary of the selected data slices is included in Table 4.

Table 5 presents the statepoints for Test No. 014, time slice 8, which was a
low-speed run 2739 rad/s (26,157 rpm) in which all of the balance piston fluid
was recirculated internally into the eye of the impeller. The data of Table 5
is plotted on a Mollier diagram for LOX in Fig. 9. As can be seen both from
the density values in Table 5 and the location of the points in Fig. 9, the
fluid remains liquid throughout the flow process.

TABLE 3. COMPARISON OF MK 48-0 AND MK 44-0 IMPELLERS

MK 48-0 MK 44-0
(1) impeller Kead, mift) 3658 (12,000) | 889 (2916)
(2) Inducer Head Rise, m(ft) 305 (1,000) | 123 (600)
(3) Leading Edge Sta:ic Head -229  (-751) | 230 (+755)

Increase, m (ft)

(4) IMP Leading Edge Static Head Rise | 75.9 (249) | 413 (1355)
Above Pump Inlet, m (ft)

(5) IMP Leading Edge Head Rice 0.0208 0.h46k
Impeller Head Rise

20
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TABLE ¢,

SELECTED TEST POINTS FOR BALANCE

PISTON FLOW ANALYSIS

Data Speed,

Slice | rad/s (rpm) | Balance Piston Flow Routing
014-8 2738 (26,157) | A1l internal recirculation
017-8 | 5980 (57,110) | A1l internal recirculation
019-3 5997 (57,629) | Partial overboard bleed
0241 7242 (69,157) | Partial overboard oleed
025-3 7142 (68,199) | Partial overboard bleed

TABLE 5. MK 48-0 BALANCE PISTON FLOW STATE POINTS,

TEST NO. 014-8

Speed = 2739.2 rad/s (26,157 rpm)

0.466 kg/s (1

.028 1b/sec)

W, = 0.466 kg/s (1.028 1b/sec)

W, = 0.0 kg/s (0.0 1b/sec)

Pressure, Temperature pens 1ty 3

Station N/CM2 (psia) K (R) gm/cc (lbm/ft )

] 480.6 (697.1) 98.9 (178.1) 1.1065 (69.07)
2 L4k .2 (644.2) 99.0 (178.2) 1.1049 (68.97)
3 389.2 (564.5) 99.5 (179.1) 1.1007 (68.71)
4 345.4 (500.9) 99,6 (179.2) 1.0996 (68.64)
5 331.2 (480.3) 99.7 (179.5) 1.0979 (68.53)
6 362.7 (526.1) 116.1 (208.9) 0.9932 (62.0)
7 362.7 (526.1) 116.1 (208.9) 0.9932 (62.0)
8 308.3 (447.1) 116.1 (208.9) 0.9932 (62.0)
9 283.1 (410.6) 116.1 (208.9) 0.9932 (62.0)
10 179.4 (260.2) 116.1 (208.9) 0.9932 (62.0)
1 178.5 (258.9) 116.1 (208.9) 0.9932 (62.0)
12 175.0 (253.8) 116.1 (208.9) 0.9932 (62.0)
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The results of a similar analysis are given in Table 6 and Fig. 10 for Test
No. 017-8 in which all of the balance piston fluid was still recirculated
internally, but the operating speed has higher 5980 rad/s (57,110 rpm). It
can be seen that in this case a substantial vaporization takes place, and a
relatively low density fluid is injected into the inlet of the impeller.

As a next step in the analysis three test slices were examined in which about
half of the balance piston flow was bled overboard. The results are shown in
Tables 7, 8, 9, and on the Mollier diagram ia Fig. 11. The first data slice
(019-3) is at essentially the same operating speed as Test No. 017-8 pre-
viously examined for the czse of full-internal recirculation, while the tw>
subsequent data slices are near the design speed of 7330 rad/s (70,000 rpm).
It is evident that with partial overboard bleed the fluid recirculated into
the impeller eye does not vaporize.

The principal cause for vapor formation in the high-speed, full-recirculation
mode was the high temperature reached by the fluid at Station 6. It was
postulated that the return flow passage area through the diffuser vanes was
inadequate, causing a high return cavity pressure at Station 6 which in turn
reduced the flow through the bearings. If the heat input from impeller fluid
viscous shear effects, bearing power loss and the slinger power input remained
constant, the fluid at a lower flowrate would be raised to a higher temperature.

TABLE 6. MK 48-0 BALANCE PISTON FLOW STATE POINTS, TEST NO. G17-8

Speed = 5980 rad/s (57,110 rpm)

w, = 0.7114 kg/s (1.5707 1b/sec)

W, = 0.7114 kg/s (1.5707 1b/sec)

w3 = 0.0 kg/s (0.0 1b/sec)

Density,
Prgssure. Temperature, m/cc (1b /ft3)
Station N/CM® (psia) K (R) 9 m

] 1440.3 (2088.9) | 109.6 (197.3) 1.077 (67.24)
2 1214.1 (1760.8) | 110.1 (198.1) 1.069 (66.75)
3 1059.1 (1536.1) | 117.1 (210.7) 1.041 (65.0)
4 986.2 (1430.3) | 117.1 (210.7) 1.033 (64.5)
5 945.5 (1371.3) 117.6 (211.7) 1.033 (64.5)
6 953.9 (1383.5) | 163.6 (294.4) 0.673 (42.0)
7 953.8 (1383.3) | 163.6 (294.4) 0.673 (42.0)
8 766.0 (1111.0) | 160.1 (285.2) 0.609 (38.0)
9 670.3 (972.1) | 158.4 (285.2) 0.625 (39.0)
10 285.3 (413.8) | 140.0 (252.0) 0.232 (14.5)
1 276.5 (401.0) | 139.7 (251.5) 0.229 (14.3)
12 259.1 (375.8) | 139.4 (251.0) 0.224 (14.0)
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TABLE 7.

MK 48-0 BALANCE PISTON FLOW STATE POINTS, TEST NO. 019-3

Speed = 6034.9 rad/s (57,629 rpm)

v

= 1.246 kg/s (2.745 1b/sec)

wz = 0.672 kg/s (1.484 1b/sec)

w3 = 0.571 kg/s (1.261 1b/sec)

Pressure, Temperature ens ity 3
ctation | N/CM® (psia) K (R) gn/cc (1b /ft”)
| 595.8 (2314.5) | 106.7 (192.0) 1.097 (68.45)
2 1192.7 (1729.8) | 107.9 (194.2) 1.078 (67.3)
3 1008.8 (1463.0) | 109.5 (197.1) 1.067 (66.58)
4 743.4 (1078.2) | 110.2 (198.3) 1.055 (65.85)
5 646.7 (937.9) | 110.3 (198.6) 1.050 (65.57)
6 659.6 (956.6) | 123.0 (221.4) 0.977 (61.0)
7 659.5 (956.5) | 123.0 (221.4) 0.977 (61.0)
8 554.2 (789.2) | 123.0 (221.4) 0.977 (61.0)
9 490.9 (711.9) 123.0 (22'.4) 0.977 (61.0)
10 271.2 (393.3) | 123.0 (221.4) 0.977 (61.0)
1 269.3 (390.6) | 123.0 (227.4) 0.977 (61.0)
12 252.3 (365.9) 123.0 (221.4) 0.977 (61.0)
TABLE 8. MK 48-0 BALANCE PISTON FLOW STATE POINTS. TEST NO. 024-1
Speed = 7242 rad/sec (69,157 rpm)
W, = 1.211 kq/s (2.673 1b/sec)
W, = 0.610 kg/s (1.347 1b/sec)
w3'= 0.601 kg/s (1.326 1b/sec)
Density,
Pr;ssure. Temperature, / (1b /ft3)
Station N/CM® (psia) K (R) gm/icc m
] 2019.7 (2928.4) | 11.0 (198.0) 1.094 (68.3)
2 1501.0 (2177.0} 111.1 (200.0) 1.675 {67.1)
3 1010.0 (1464.8) | 112.2 (201.9) 1.049 (65.5)
4 760.4 (1131.8) | 112.8 (203.0) 1.041 (65.0)
5 680.5 (986.9) | 113.6 (204.5) 1.033 (64 &)
6 680.5 (987.0) | 123.2 (221.8) 0.977 (61 0)
7 630.5 (986.9) | 123.2 (221.8) 0.977 (61.0)
dé 585.3 (348.9) | 123.2 (221.8) 0.977 (61.0)
9 541.5 (785.3) | 123.2 (221.8) 0.977 (61.0)
10 360.3 (522.6) | 123.2 {221.8) 0.977 (61.9)
1 358.8 (520.4) 123.2 (221.8) 0.977 (61.0)
12 318.2  (461.5) 123.2 (221.8) 0.577 (A1.0)
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TABLE 9. MK 48-0 BALANCE PISTON FLOW STATE POINTS, TEST NO. 025-3

Speed = 7141.8 rad/s (68,199 rpm)
W, = V.447 kg/s (3.195 I1b/sec)
W, = 0.781 kg/s (1.725 1b/sec)
w3 = 0,666 kg/s (1.470 1b/sec)
Pressure, Temperature ensity, 3
Station N/CM2 (psia) K (R) ’ gm/cc (lbm/ft )
1 2138.1 (3100.9) | 109.9 (197.9) 1.097 (68.5)
2 1542.7 (2237.4) | 110.9 (199.7) 1.075 (67.1)
3 1360.2 (1972.7) | 113.1 (203.5) 1.057 (66.0)
L 1006.5 (1459.7) | 114.3 (205.7) 1.041 (65.0)
5 873.5 (1266.8) | 114.4 (206.0) 1.025 (64.0)
6 873.9 (1267.4) | 126.5 (227.7) 1.096 (60.0)
7 837.8 (1267.3) | 126.5 (227.7) 1.096 (60.0)
8 715.3 (1037.4) | 126.5 (227.7) 1.096 (60.0)
9 642.2 (931.4) | 126.5 (227.7) 1.096 (60.0)
10 340.5 (493.8) | 126.5 (227.7) 1.096 (60.0)
1 337.9 (490.1) | 126.5 (227.7) 1.096 (60.0)
12 301.1 (436.7) | 126.5 (227.7) 1.096 {60.0)

The conclusion that the fluid returned to the impeller eye did not vaporize on
tests vhich used a partial overboard bleed had 1 significant impact on the
predicted suction capability of the pump. It was originally assumed that the
low-suction performance ottained during the initial test series was attribut-
able in a large measure to two-phase fluid being ingested into the impeller
eye from the balance piston loop; and it was expected that by improving the
condition of the balance piston fluid, a substantial improvement in the pump
suction capability would be realized. But since the generated head was low on
those data slices on which the returned fluid was in a liquid state, it was
concluded that a modification of the pumping elements was required to effect
an improvement in the suction performance.

Balance Piston Fluid Temperature Analysis. Temperature measurements of the

balance piston fluid in the return cavity, downstream of the bearings and the
slinger, were higher than predicted in general, and substantially higher dur-
ing the tests on which the fluid was fully recirculated. To investigate the
cause for the higher temperatures, the heat input to the fluid by the slinger
ribs was calculated for two data slices: 017-8, on which the fluid was
recirculated; and 025-3 on which the balance piston fluid was partfally bled
overboard.
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The calculated pressure profile as a function of position along the slinger
radius is shown in Fig. 12 for test slice 017-8. The 163 K (294 R) fluid
temperature measured in the return cavity, vapor pressure is reached at a
radius of 2.41 cm (0.95 inch). 1In Fig. 13 the temperature rise attriburable
to the slinger as a function of the radius at which vaporization occurs is
presented for a range of coefficients. As can be seen from the figure, if the
fluid vapor interface is at 2.41 cm (0.95 inch), as predicted for Test 017-8,
the contribution of the slinger to the temperature rise is calculated in the
range 2,5 to 3.9 K (4.5 to 7.0 R). 1In contrast, the actual measured tem-
perature was 44 K (80 R) higher than the predicted temperature in the cavity.
It was concluded from the above that for this test slice the high recorded
temperature was not caused by a high-heat input from the slinger.

A similar analysis was performed for Test 025-3. The radius at which vapori-
zation occurs is established 2.41 cm (0.93 inch) in Fig. 14, and the cor-
responding slinger-caused temperature rise is in the range 3.96 to 6.1 K (7 to
11 R), as indicated by Fig. 15. In this case, the measured temperature
approximates the predicted value within 5.5 R (10 R). Neither of the two
cases analyzed indicates a great amount of heat input from the slinger. It
should be noted that the slinger was installed with a relatively high axial
clearance 2.69 inch (0.106 inch) at the ribs. This could have introduced
secondary flow effects which were not taken into account in the above an
analysis, and which may have some impact on the heat input.

The investigation relative to the slinger effects was extended to explore the
feasibility of removing the slinger altogether from the assembly or reducing
its outer diameter. The primury purpose of the slinger is to limit the leak-
wge rate through the LOX seal by reducing the pressure at the seal entrance to
below vapor pressure. Therefore, to determine whether the slinger can be
moved, the seal leakage rate and its ultimate impact must be assessed. I1.0X
seal leakage rates were calculated with and without a slinger; the obtained
values are shown in Table 10.

TABLE 10. CALCULALED LOX SEAL LEAKAGE RATES

with Slinger
(a) With Normal Balance Piston Return 0.017 kg/s (0.038 1b/sec)
Cavity Temperature (228 R)
(b) With High-Balance Piston Return 1 0.052 kg/s (0.115 lb/sec)
Cavity Temperature (294 R)
Without Slinger 0.213 kg/s (0.47 1b/sec)
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As part of this analysis, the question addressed was could the slinger radius
be reduced to some intermediate level where it would add a smaller energy to
the fluid, but still maintain the primary seal inlet pressure at ine vapor
level.

A parametvri~ curve was generated (Fig. 16) in which the required slinger
radius to attain vapor at the seal was plotted as a function of balance piston
return cavity pressure. The parameter "K" referes to the assumed slinger
punping efficiency; 1its value is estimated as 0.9.

With a pumping efficiency of 0.9, the slinger radius could have been trimmed
to approximately 2.5 em (1.0 inch), provided the return ca- ity pressure
remained below (1400 psi) as was the case on the last test series in conjunc-
tion with a partial overboard bleed. But with an anticipated increase in the
general pressure level with the elimination of cavitation, it was expected
that the cavity pressure would rise to a higher leve'. Therefore, to maintain
the primary LOX seal leakage at a safe level, the slinger radius was main-
tained at the original 2.9 cm (1.15 inches) for the ensuing test series.

Design Modifications

Several modifications were made to the turbopump hardware prior to the second
test series to incorporate additional instrumentation, and to rectify a
deficient condition.

To assess the nrotenital performance improvement tou be realized by opening up
the impeller inlet area, one impeller was reworked for the test series. The
rework consisted of increasing the eye diameter from 4,19 to 4.44 cm (1.65 to
1.75 inches), and cutting back the leading edge of the blades 30 drgrees of
wrap or approximately 0.95 cm (3/8 inch) at the mean diameter. The leading
edges of the cut-back blades were center-line faired. A photograph showing an
impeller cf the originai configuration and one after rework is shown in Fig. 17.

The second test series planned was to be conducted with the balance piston
flow routed externally to the impeller inlet or overboard. To accommodate
this a design change was made to the main housing to increase the capacity of
the overboard drain system from the balance piston return cavity. This was
accomplished by converting an existing static pressure port located In the
return cavity to an overboard bleed line by increasing its passage diameter.
Capability for monitoring pressure in the return cavity was preserved by
incorporating a small static pressure line in another sectionm.

To facilitate returning the balance piston flow from an external source to the
impeller ir'~t, a design change was made to the pump inlet housing. The
change, illustrated in Fig. 18, adds a circumferential man‘fold from which 10X
is introduced through axial passages to the impeller inlet.

In con-unction with the provisions for routing the balance piston flow

externally, the normally internal passage was blocked by pressing dowel pins in
the 13 radial passages in the inlet housing.
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Modifications of the slinger to reduce the axial clearance between the slinger
ribs and the primary LOX seal housing from 2.7 mm (0.106 inch) to approximately
176 mm (0.030) were completed. In view of the reduced clearance, a layer of
silver platirg 0.25 mm (0.010 inch) thick was applied to the primary seal
housing to minimize the possibility of a hard metal-to-metal rub.

The inlet housing was changed to include a static pressure measurement between
the inducer and impeller. These data were needed to ascertain whether the
apparent cavitation at high speeds and high-flow coefficients is caused by
insufficient head generated by the inducer or by impeller blockage from the
returning balance piston flow.

A static pressure port was also incorporated to the rear bearing support to
monitor the turbine wheel downstream pressure. This was required for two
purposes: To validate the pressure level applied to the exhaust side of the
wheel in the rotor axial thrust calculations; and to assess the magnitude of
the pressure drop in the turbine exhaust manifolding.

Difficulties encountered in analytically predicting the value of the whirl
coefficient cu the rear shroud of the impeller, between the high-and low-
pressure orifices of the balance piston made it highly desirable to add
another pressure tap to that cavity., The original balance piston cavity
pressure tap is located approximately in line with the radius of the high~
pressure orifice, A second pressure tap was added just outside the radius of
the low-pressure orifice.

TURBOPUMP S/N 01-1 ASSEMBLY

Rotor Balance

Dynamic balancing of the MK 48-0 rocor was accomplished on a Gisholt baiance
machine with a capability for detecting 6 x 10~% am (25uinch) radial motion
was used, For the Mark 48~0 rotor mass of 2.84 kg (6.25 1bs.), this translates
into machire accuracy limit of 0.18 gm ecm {0.07 gm inch), which would cause a
radial load of 98 N (22 1lbs.)at the design speed of 7330 rad/s (70,000 rpm).
The rotor was supported in the balance cradle by two pairs of turbopump
bearings, each pair axially preloaded in the bearing cartridge exactly as in
the turbopump assembly. Balancing was intiated using the main rotor and the
rear stub shaft assembly, and wax corrections were made in the plane of the
turbine wheel and the stub shaft.

Subsequently, the slinger, impeller, inducer, and intrumentation sleeves were
added, making wax correction in the plane of each component before the next
part was added. After the wax corrections were completed, several repeat-
ability checks were made in which the rotor was disassembled and reassembled,
and the change in residual imbalance was established, and the runouts at
several stations were measured. Satisfactory repeatability was obtained in
the amounts of imbalance as well as the runouts of the parts. The final run-
out values are shown in Fig. 19. Subsequently, the permanent balance of the
rotor was effected by grinding material in designated areas of the component
parts.,
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Turbopump Assembly

The assembly of Turbopump S/N 0l-1 was accomplished in accordance with the
procedure described in Ref. 1. The front a..' rear bearing inner race thick-
nesses were selected to provide a devised minimum bearing preload of 245 N

(55 1bs), and to obtain a total bearing travel within each -rartridge of 0.23 mm
(0.009 inch). The resulting preload curves for the forward (rump end) and aft
bearing set are illustrated in Fig. 20 and 21.

Measurements were made during the assembly of the turbopump to establisk
critical clearances and fits. The diametral fits obtained relative to the
bearings are noted in Fig. 22. C(Critical clearances in the pump, shaft seals,
and turbine area are included in Fig. 23 through 25.

After the turbopump was assembled, a push-pull test was performed on the rotvoz
to establish the external loads which the bearings support as a function of
rotor position with respect to the balance piston orifice positions. The
curve which was obtained is shown in Fig. 26. The symbols hj and hy refer to
the balance piston high- and low-pressure orifice axial clearances, respec-
tively. As indicated by the curve, the bearing stops were positioned such that
the balance piston orifices would overlap (i.e., h; and h, would be negative)
by 0.0047 inch and 0.0046 inch, respectively, before a sizeable load (450 1bs)
would be imposed on the bearings.

Test Series No. 2

The purpose of the test series was to define the hydrodynamic performance of
the pump with and without balance piston fluid vecirculation. The initial
test was planned with all of the balance piston flow routed overboard. Head-
flow characterization tests at 3141 rad/s (30,C00 rpm) and 7330 rad/s

(70,000 rpm) were planned, with a suction performance test at 7330 rad/s
(70,000 rpm) and nominal pump flow.

The second test was planned to determine the effect of recirculating the
balance piston flow. After obtaining a reference point at 7330 irad/s

(70,000 rpm), and nominal flow, approximately half of the balance piston fluid
was planned to be recirculated into the impeller eye. This was to be fol-
lowed by a noncavitating data point at nominal pump flow, with all of the
fluid recirculated, and subsequently flowing by a cavitation data pcint.

A third test series was tentatively planned in which suction performance at
off design flow was to be explored, budget and schedule permitting.

Installation. The turbopump was installed in Lima test cell at the Propulsion
Research Area of Rocketdyne's Santa Susana Field Laboratory. A simplified
schematic of the facility is shown in Fig. 27.

In Fig. 28, a detail schematic of the balance piston recirculation and over-
board flow system is presented. Flow control and measurement orifices as
well as remote control valves were included in each leg of the system to
facilitate varying the amount of flow recirculated from zero to 100%,
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Leakage checks were performed on the external joints of the pump and turbine
systems. A blowdown was made of the main pump flow loop to verify system
integrity and to characterize flow resistance. Instrumentation was cali-
brated, installed in the facility, and connected to the turbopump ports. A
list of measured parameters is presented in Table 11.

The turbopump installation in Lima test cell is shown in Fig. 29 through 31.

Testing. A summary of the tests performed during this test series is pre--
sented in Table 12. A total of five tes:s were made accumulating 161 seconds
of operation on the turbopump.

Test No. 001 was aborted prematurely after reaching a speed levelof 1487 rad/s
(14,200 rpm), due to failure of an accelerometer. Test 002 was conducted at
a speed level of approximately 3037 rads/s(29,000 rpm), where satisfactory
head flow sweep was realized. Test 003 was init:ated by a brief period of
operation near 2932 rad/s (28,000 rpm), after which the speed was ramped up
to 7226 rad/s (69,000 rpm). At that point the test was termjnated by an
automatic redline monitoring device because the pump discharge pressure had
exceeded the 3447 N/cmZ (5000 psig) level. Post-test review of the data
showed that the pump operating point was at lower than nominal design Q/N.
This, in conjunctin with the improved hydrodynamic performance obtained with
the modified impeller, caused the discharge pressure to exceed the redline
value.

Test 004 was also initiated by a brief dwell at approximately 3142 rads/s
(30,000 rpm), after which turbine power was increase to raise the speed to
3037 rad/s /69,000 rpm). All parameters behaved normally during start. Four
seconds after reaching the higher speed level an increase in the balance
piston pressure reauings was noted, with no corresponding change in the pump
pressures. Subsequently, the balance piston parameters tracked the pump
pressures well. The shift in balance pist-n pressures was attributed to a
r-ssible gas pocket in thz system, a temporary bearing hang-up, or some type
of blockage in the overboard drain system. The facility lines were visually
inspected after Test 004, and the pump exit ports were flow checked with
gaseous nitrogen to determire if the overboard drain was blocked. Results
were negative.

Analysis of the balance piston position, using the measured values after the
shift on Test 004, showed that the piston controlled the axial thrust. The
overboard flow was lower but adequate, both for thrust control and bearing
cooling. There was no significant rise in the overboard flow temperature
winich would have been indicative of excessive bearing loads or distress.
Neither the Bently proximity indicators nor the casing accelerometer data
showed any evidence of adverse behavior. In light of this, testing was
continued with Test 005 7o define suction capability and characterize
performance in a racirculation mode.
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GASEOUS HYDROGEN

TURBINE DRIVE
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System Parameter 1} PID Range ! Bl 3} B[ & |Locstion Comments
GNI Reg U/S Pressure PGHR 062 | 5000 ,sig Xt x Fac. Line
Yenturi U/S Pressure PGHY 071 | 5000 psig x| x Yenturi S/M 9731
P/n ¥PO31200-SGR
Venturi U/S Temperature | TGHY 0k7 { ) to 200 ¢ X ) Thersocorple
Yenturi AP PGH" 061 | 500 psid X
GNg Spin Valve [23]] 082 | 5000 psig b3
U/s Pressure
Mg Spin Valve rSV2 074 | 5000 psig  §
0/5 Pressure M
Gy Spin Valve GHSY 055 | Trace X 3 Meter display for DIGR
Position requi rement
Turbopump LOX| Throttle Valve we 057 | Trace X X Meter display for DIGR
Outiet Cont. fosition requi rement
Throttle Vaive POTP 100 § 5000 psig X
Outlet Pressure
Genaral LHy High Pressure Y 087 | 5000 psig Xl x
Tank Pressure
Facility Duct Pressure PFX 069 | 500 psig X
Faclility Duct TFX 029 | 0 to 2000 ¥ X Fac. Line | Thermocouple
Temperature
Axia) Proximity Ind BAP Tape | Tape 1 X|x
Rzdisl Proximity SAP Tape | Teps FM X x| x
ind Mo. 1
Radial Proximity TP | Tape | Tape Fn x| x 90 Degrees from Mo. |
Ind Bo. 2
Punyp Axial PAA Tape | Tape Fn X Xix
Accelerator
Pump hedial PRA Tage | Taps ¥ X XX
Accelerator
Turbo Radiat TRA Tape | Tape FH X x| x
Accelerator
Pump Speed APH 111 | 100,000 RPN xX{ry| x|l xtzx
Helium Supply PHUS 104 | @ to 500 psig b
Pressure
LOX Pump Low Pressure POXT 68 | 500 psig x{x fFac. Line
Tank Prescure
Inlet Pressure POIN 998 | 200 paig X{x{x|x Piezometer Ring
Inlat Temperature ToIN 043 | -259 to -300F { x | x| x Fac. Line | RTB
Inducer Discharge PIND 20uC psig X
Pressure
Impeller Discharge Pidr 067 | 5000 psig x!|x
Pressure
Diffuser Dischaige PDOP 08k | 5000 psig X
Pressure
Pump Discharge Pressure | PDP 989 | 5000 psig X;x | xlx fac. Line | Piezometar ring X-v
Plotter
Pump Discharge eoT 045 | -100 to -300 F 4 [3(}
Tampareture
Balance Piston Cavity (414 096 | 5000 psig X[ xix
Pressure Mo, | |
8alsnce Piston PH 5000 psig X
Cavity Pressure No. 2
Balance Piston M2 086 | S000 psig x| x
Sump Pressure
Balance Piston P.3 094 | 5000 psig X
Return Flow Pressure
Balance Piston (4 036 | -250 to =300 F | x | x | x Pump Bearing RTS
Return Fliow Temperature supplied
DSCH Venturi U/$ PUVE 088 | :900 psig X Venturi S/N 8877
Pressure P/k ¥321059-SGR
OSCH Ventur: u/$ Tuve 0k | -250 to -300 f X (31}
Temperature
DSCH Venturi AP PVDP 06) | 350 psid ¥ {x X-Y Plotter
Turbine Inlet Static Pressure PTIS 065 | 5000 psiq Elxix
Inlet Tota) Pressure PTIT 080 | 5000 psig X i Kie) Probe Supplied
Inlet Temperature Mo 1 ( CT-1 024 ' 0 to 2000 ¥ x| Wall ¢ 0,180 inch
Inlet Temperature Mo 2 | (T-2 02§ I 0 to 2000 F l X l 3 { J Core Temperaturs
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TABLE 12.

MK 48-~0 TEST SERIES NO. 2 SUMMARY

Test Duration, ] Balance Piston

No. | Test Date seconds | Fluid Routing Remarks

ool | 7-21-77 7 Overboard 1487 rad/sec (14,200 rpm) c/o by
failed turbine radial acceleration

002 | 7-21-77 71 Overboard 3068 rad/sec (29,300 rpm) obtained
pump H-Q data

003 | 7-21-77 18 Ovarboard 2964 rad/sec (28,300 rpm) data.
Cut at 7226 rad/sec (69,000 rpm)
by pump discharge pressure redline
3447 N/CM2 (5000 psig)

004 | 7-21-77 33 Overboard 7226 rad/sec (69,000 rpm) H-Q data
obtained balance piston pressure

) shift

005 | 7-26-77 32 Overboard 7006 rad/s (66,900 rpm) fire

damaged pump hardware

T2st 005 was initiated with a 20~second duration dwell at 2827 rad/s
(27,000 rpm), followed by a ramp to 7006 rad/s (66,900 rpm). The signi-
ficant pump pressures for Test 005 are shown in Fig. 32. After a brief
stabilization at the higher speed level, the pump discharge throttle valve
was opened to obtain a high Q/N head-flow data point, before the cavitation

test was attempted.

At this point of the test, fire was observed in the

vicinity of the turbopump, and the test was terminated. The pump end of the
turbopump was found to have incurred substantial fire damage, and as a
result the unit was removed from the test cell for disassembly and analysis.
Damage to the facility was limited to the pump inlet line, instrumentation,
and minor tubing.

Incident Investigation

Hardware An-lysis.

is illustrated in Fig. 33.

assembly.

The extent of fire damage incurred inside the turbopua>

Shaded areas in the upper half of the section

designate those areas where material was consumed by fire. Damage was con-
centrated in the area of pump inlet, inducer, impeller, diffuser, and pump
end bearings.

impeller front shroud and vanes (Fig. 35).
balls of both pump end bearings were totally consumed. Some burning was
also evident in the balance piston return cavity, on the pump side of the

Figure 34 shows the condition of the pump prior to dis-
The inducer blades were burnt down to the hub, as were the
The outer races, cages, and

slinger, and on the surface of the primary seal housing which is not couvered
by the slinger.
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A most significant clue for the cause of the failure was found during
disassembly when it was discovered that the primary seal retaining nut had
backed off from its thread (Fig. 36) and was located in a position where it
severely restricted the overboard flow of the balance piston fluid. The
sheet metal stainless-steel lock ring was not found in the cavity, and it is
presumed to have been consumed by fire. Build records indicate that it was
installed and the locking feature was engaged.

Although the primary seal was 7ot retained over some period of operation,
the fluid pressare in the cavity forced it against the housing toward the
turbine side, and only superficial contact was between the slinger and the
seal housing. The turbine side of the slinger is shown in Fig. 37. Except
ior some burning on the outer flange, the primary seal working elements were
in good condition. As illustrated in Fig. 38, the other shaft dynamic seals
were unaffected for the failure.

Minor burn damage was incurred by the rotor (Fig. 39), and it rubbed axially
into the pump end hot-gas shield ring and its retaining bolts (Fig. 40). The
housing suffered only localized burning around instrumentation ports, which
can be repaired. The af% bearing support and turbine end bearing package
were unaffected by the failure (Fig. 41 and 42).

Data Analysis. An analysis of the balance piston parameters has been made
for various data slices on Tests 004 and 005. The calculated piston relative
position as a function of run time is illustrated in Fig. 43. The term ¥/,
pletted along the ordinate, indicates the fraction of the total gap which is
present at the high~pressure orifice. Thus at "0", the high-pressure orfice
is closed, whereas at 1.0 it is fully open and the low-pressure orifice is
closed. The implication from Fig. 43 is that on Test 004 and on the first
part of Test 005 the piston position was satisfactory, even after the shift
in the piston pressure parameters occurred. However, at the end of Test 005,
more than likely as a result of lower impeller discharge pressures due to
higher Q/N operation, the piston proceeded to move forward toward the high-
pressure orifice, such that at the last data slice before cut the high-
pressure orifice clearance was zero, indicating zero control margin.

In a similar fashion, the flowrate through the balance piston was calculated
and plotted as a function of run time. As shown in Fig. 44 the calculated
flow takes a sharp drop at the end of Test 005, at the same time the high-
pressure orifice is closing.

The shift in balance piston pressures incurred on Test 005 has already been
discussed above. Thus the data indicate that the primary seal retaining

nut actually come loose on Test 004 and caused a partial blockage of the
balance piston overboard bleed passages. As a result, the sump pressure
increased, causing a reduction in the axial thrust control capability of the
piston. Operation at low discharge pressure (high pump flow) on Test 005
further reduced the margin until the piston ran out of balancing range.
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Analysis of the thrust control range prior to blockage of the drain passages
indicates adequate margin. Provided the recirculation line losses are main~
tained at a reasonably low level, recirculating the piston fluid to the
inducer discharge ( 700 psi) should not present a problem to thrust balance.
Data analysis revealed no need for a change in the basic balance piston
design.

Conclusions and Corrective Action. Based on hardware condition and data
analysis, it was concluded tht the moce of tailure was the primary LOX seal
retaining nut backing off from its thread and blocking the overboard passages
for the balance piston fluid. As a result, the axial thrust control cap-
ability of the balance piston was greatly diminished and concurrently the
coolant flowrate to the pump end bearings was reducea. It is postulated

that the pump end bearings were axially overlcaded, and as a result they
overheated and eventually caught fire. In the process, axial and radial
retention of the pump end bearings were lost, resulting in inducer and
impeller rubbing and fire.

To prevent a similar occurrence, the direction of the thread in new housings
and on the primary seal nut should be reversed such that the fluid vortex
from the slinger will tend to tighten the nut rather than back it off. On
the existing liousing, the thread direction could not be reversed; to permit
its continued use in the program, improvements were directed at modifying the
nut to reduce the effect of the fluid vortex, and the lock to improve its
effectiveness. The details of the modification are descr.bed in the next
section of this report.

CORRECTIVE DESIGN CHANGES

The second test series conducted on the Mark 4&-0 turbopump r¢ -aled a pro-
blem with the primary seal retaining nut (Fig. 45), in that the fluid exiting
from the slinger (with a substantial amount of whirl) directly impinges on
the torque slots of the nut, anc in the process imposes a large loosening
torque on the nut. In its original configuration, the nut acted as an
antivortex ring. Tbhis actually resulted in the nut backing off on the last
test series, and caused substantial hardware damage.

To prevent the possibility of a similar occurrence, a new nut, shown in

Fig. 46, wcs designed on which the torque slots are shielded from the fluid
whirl on the inner diameter by continuous material. Although more expensive
to fabricate, this should greatly reduce the amount of torque imposed on the
nut by the fluid. 1In addition, the lock ring thickness was increased from
0.41 mm (0.016 inch) to 0.81 mm (0.032 inch); the number of locking slots
was doubled from two to four; and the lock slot contocur in the nut has been
changed from an arc to one including orthogonal sides.

The modified configuration of the primary seal nut ond lock ring is
illustrated in Fig. 47.
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TURBOPUMP S/N 02-0 ASSEMBLY

During the second test series conducted in July 1977, sufficient information
was obtained to show that the modifications which had been incorporated in
the impeller pro-uced a noticeabie improvement in the pump performance. Never-

returning the balance piston flow to the impeller jinlet was not cva2luated. It
was therefore decided to employ the same hardware configuration in the third
test series, with the exception of modificeztions which are needed to prevent
the primary seal nut from backing off.

Thus, the spare set of hardware was modified to include the following features:

1. The impeller inlet area was increased by e.larging the eye diameter
and trimming back the blade leading edges.

2. An inducer static pressure rt was added.

3. The diffuser-to-inlet housing tadial clearance was reduced by plating
to eliminate potential irtermnal ieak path.

4, An overboard bleed port was incorporated in the housing to facilitate
routing the balance piston fluid externally.

5. The balance piston internal recirculation passages were blocked with
pins in the inlet housing.

6. Passages and manifolding were included in the inlet housing to pro-
vide the capability of returning the balance piston fluid to the
impeller inlet from an external source.

7. A new primary sea. retaining nut was fabricated in which the torque
slots are shielded from the swirling fluid.

8. A more substantial lock was fabricated for the primary seal, with
improved locking features.

9. The slinger was modified to obtain a 0.735 mm (0.030-inch) axial
clearance on the primary seal side, and the seal housing was silver
plated to reduce the hazard in the event of an inadvertemt contact.

Balancing and assembly of the turbopump was accomplished in accordance with the
procedure described in Ref. 1. Runouts of the criticul surfaces of the balance
assembly were measured, and values noted in Fig. 48. Measurements of critical
clearances and fits taken during the buildup of the turbopump are summarized in
Fig. 49 through 52.

TEST SERIES NO. 3 (1978)

Test Plan

The objective of the third test series, conducted under this contract, was to
perform a checkout test at 3142 rad/s (30,000 rpm), and ir the process obtain
heat-flow characterization data at that speed. This was to be followed by pump
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characterization data at the design speed of 7330 rad/s (70,000 rpm). Subse
quently, the test serles was to be continued under a new contract, the obje -
tive of which was to obtain LOX primary seal performance information.

During these initial two tests, the balance piston fluild was planned to t
routed overboard, and the turbinme was to be driven by ambient-temperatur.
gaseous hydrogen.

The turbopump instrumentation, as =ell as the facility installation, was the
same as those described previously for Test Series No. 2.

Test Description

Four tests were conducted during this series (Table 13). The first was pre-
maturely terminated by the VSC device at a pump speed of 3089 rad/s (29,500
rpm); total duration was 31 seconds. Vibration data were thoroughly evalu-
ated, and the VSC cut off was found to be erroneous. Saturation of an ampli-
fier was suspected and that amplifler was replaced.

TABLE 13. MK 48-0 TEST SERIES NO. 3 SUMMARY

|
Test Duration, | Balance Piston
No. |Test Date| seconds | Fluid Routing Remarks
003 | 5-19-78 21 Overboard Faulty VSC cut at 3089 rad/s
(29.500 rpm)
ook § 5-23-78 124 Overboard Satistactory H-Q test at
3142 rad/s (30,000 rpm)
005 | 5-25-73 38 Overboard Faulty VSC cut at 5760 rad/s
{55,000 rpm)
006 | 5-31-78 43 Overboard H-Q data at 6911 rad/s
(66,000 rpm), cut by pump
bearing coolant redline I
The second v .- o~ ced for 124 seconds. A speed versus time ploc for this
test is shown .u *'g. 53. Speed was varied by manually controlling the

turbine inlet servovalve position. After the turbopump was satisfacturily
chilled, speed was increased to 942 rad/s (9000 rpm) for a duration of 10
seconds, after which it was increased to 3142 rad/s (30,000 rpm), making
adjustments in pump dis:harge valve position as required to operate approxi-
matelv .t nominal Q/N. At 3142 rad/s (30,000 rpm), the target value of tne
automatic feedback control systam of the turbine inlet valve was set to the
turbine inlet pressure actuai'y displayed on the strip chart, and the feedback
control system was activated to maintai: constant turbine inlet pressure.

To reduce the recorded parameters to a usable form, a computer program was
utilized which .eceived the Beckman data acquisition unit information and
converted it to the desired form. To illustrate the output obtained, the
printouts tor two tests are included in Appendix C: Test No. 004 showing
ambient gaseous hydrugen drive data for a satisfactory H-Q test at 3142 rad/s
(30,000 rpm), and Test No. 006 showing ambient gaseous hydrogen drive for a
satisfactory H-Q test at 6911 rad/s (66,000 rpm).
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The throttle valve located in the facility downstream of the pump ischarge
was varied to characterize the pump head-flow relationship. “The operation
encompassed a flow range extending from 71% to 109% of the design flow-to-speed
ratio (Q/N).

The third test was conducted for 38 seconds, and was terminated on the speed
ramp from 3142 rad/s (30,000 rpm) to 7330 rad/s (70,000 rpm), =+ approximately
5760 rad/s (55,000 rpm) by the VSC device. Again, the VSC cut-off was found

to be erroi lous. In going through the second critical speed at approximately
5236 rad/s (50,000 rpm), the small signal increase in accelerometer G level
again saturated the VSC device. As a result, the entire VSC system was reworked.

A fourth test was conducted for a total of 43 seconds of which the last 8 sec-
onds were at 6912 rad/s (66,000 rpm). A plot of the rotor speed as a functicn
of time is included in .'ig. 54 for the fourth test.

With the pump thoroughly ciiilled with LOX, rotor speed was slowly increased

to 3142 rad/s (30,000 rpm), at which point the automatic turbine inlet pressure
control servosystem was activated. After approximately 20 seconds of operation
at 3142 rad/s (30,000 rpm), the speed was increasad to 6912 rad/s (66,000 rpm).
The throttle valve setting in the pump discharge system +as varied to obtain
head-flow data. After approximately 8 seconds of overation at the increased
speed level, the test was terminated because the pump bearing coolant tempera-
ture exceeded the 144 K (260 R) maximum redline. The reworked VSC system per-
formed in excellent fashion. The hydrodynamic data obtained was primariliy at
luw-flow conditions; the pump Q/N ranging from 80% to 95% of design value.

After the fourth test. the turbopump rotor exhibited a higher tnan normal
torque; as a result, the turbopump was removed from the test stand to evaluate
the higher-than-anticipated bearing temperature and high-rotor torque.

HYDRODYNAMIC PERFORMANCE ANALYSIS

Pump Performance, Test Series No. 2

During the second test series, sufficient steady-state data were obtained both
at low speeds and near design speed to define the non-cavitating head-flow
characteristics of the pump, and to provide an indication concerning its suc-
tion performance capability. Measured head-flow data are plotted in Fig. 55.
The data show close agreement with predicted values near the des. n point, but
the actual slope cf the curve is slightly steeper than predicted. Viii.n ‘he
anticipated flow excursion range of the Advanced Space Engine, the steeper
slope does rot present a problem., The data group Located at the highest flow-
rate include both high- and low-speed data, which indicate that the steeper
slope at high flowrates is not cavitation-related.

The isentropic efficiency values, calculated on the basis of fluid temperature
rise in the puvmp, are plotted in Fig. 56, A peak efficiency of 687% is achieved
slightly below the .0156 m3/s (232 gpm) design flow. Calcilated efficiency
values, based on turtine performaace, yielded similar results with slightly
more data scatter. The obtained efficiency is conszidered excellent for a pump
in this size range.
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Limits of cavitation performance were not defined before testing was term-
inated as a result of the failure' howeveg, operation up to a sycti

specific speed of 85263 lrad m3) /( ) ] [24,300'rpm(3pm) 2/ft3/4,}

was realized at a flow coefficient of 0.094 at the end of Test 005 without
any evidence of cavitation. Prior to the impeller modification, cavitation
with a substartial head loss was encountered at much lower suction specific
speed values. Thus unquestionably the impeller modification improved the
hydrodynamic performance of the pump to a great degree. Although the NPSH
limits of the pump are still to be defined with and without balance piston
fluid recirculation, the noncavitating hydrodynamic characteristics of the
pump meet the Advanced Space Engine requiremeants satisfacturily.

Hydrodynamic Analysis, Test Series No. 3 (May 1978)

The MK 48 oxidizer pump has not undergone any design changes in the pumping
elements since the second test series of July 1977. There have been no
changes to the inducer, impeller, vaned diffuser, or volute. Thcre have been
some modificatinons in the balance piston-bearing coolant flow path since the
last test series, and these will be discussed below.

During the 1977 test series, a direct measurement o pressure drop across the
bearing was not available. This pressure drop was calculated from the balance
piston pump pressure measurement and the balance piston return cavity pressure
measurement, assuming a siinger pumping coefficient of 0.1, Following this
approach, the data indicated that the pressure drop across the bearing at high
speeds, approximately 7330 rad/s (70,000 rpm), and nominal balance piston flow
was approximately 258 N/cm2 (375 psi). Bearing life under the loads due to
this pressure drop would be shortened considerably, and it was decided to
lower the pressure drop across the bearing. This was accomplished by drilling
eight bypass holes of 2.18 mm (0.086 inch) diameter through the bearing car-
tridge. The duplex bearing with and without bypass was tested in water at
zero speed to ensure the proper resistance of the bypass holes. The bearing
pressure drop (no bypass) measured at zero speed during the water flow tests
approximated that expected based on SSME bearing test experience. Using a
nominal SSME bearing dynamic coefficient, K = 0.65, provides prediction of
pressure drop across the bearing as a function of flow through the bearing at
a given speed. The 1977 MK 48 data imply a value of K = 1.86, and this was
used as a maximum bearing resistance. Expected bearing and bypass pressure
dron as a function of flow is shown in Fig. 57 and 58 for pump speeds of

3142 and 7330 rad/s (30,000 and 70,000 rpm), respectively.

Another major area of concern was the capability of the balance piston to pro-
vide axial thrust balance. On the previous test series, analysis indicated
small margin on the low end of the axial thrust range of the balance piston.
Improvement of this margin would be accomplished by lowering the resistance

of the flow path downstream of the balance piston. However, the increased
balance piston flow due to the lower downstream resistance causes a higher

bearing pressure drop as well as lower pump efficiency due to the higher leakage.
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Figure 57. MK 48 LOX Pump (Pump End Bearing Characteristic
at 3142 rad/s (30,000 rpm)

A study was conducted to determine & downstream resistaunce which would keep
the balance piston flow as low as possible while still providing adequate
capability to balance the axial thrust expected. This conditiin was deter-
mined to be a balance piston flow of approximately 1.2 kg/sec (2.5 1lb/sec)
at the design point operation. Figure 58 shows that at this flowrate the
maximum pressure drop across the bearing would be 62 N/em? (90 psi), and
tiis provided arin acceptable bearing life.

PUMP HYDRODYNAMIC PERFORMANCE

Pump Head Rise

The pump head rise is determined by the relationship:

2 ., 2
vV, -V

AH = I_“i_. Pd-Pi + _.‘1,2___._1_
pavg 4

where Py and Py are measured static pressures at the discharge and inlet of
the pump, respectively, and V4 and V; are the average velocities at tne dis-
charge and inlet, respectively. These velocities are not measured but are a
function only of the measured flowrates and the diameters of the discharge
and inlet ducts.
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Figure 59 shows the pump overall head rise as a function of flow where both
the data and the predicted head are scaled to a speed of 7330 rad/s {70,000
rpm). The scaling was accomplished using the affinity laws which have been
thoroughly substantiated as applicable for LOX. The data consist of 36 data
points from four tests with test speeds varying from 2995 to 6932 rad/s
(28,600 to 66,200 rpm). The symbols used for the data points distinguish
the different operating speed ranges tested. The test data cover a range of
Q/N from 71% o design Q/N to 109% of design Q/N.
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Figure 59. Mark 48 Oxidizer Pump Performance May 1978 Test Series,
Pump Head Rise as a Function of Delivered Flow

From Fig. 59,it can be seen that there is agreement between the measured head
rise of the tests and the predicted head.

Pump Efficiency

A plot of pump isentropic efficiency as a function of pump delivered flow
appears in Fig., 60. The isentropic efficiency is calculated as the fluid
horsepower divided by the horsepower achievable, if the fluid were raised from
the inlet enthalpy to the exit enthalpy isentropically. Fluid horsepower is
based on the inlet and exit pressure of the pump, the average pump density
(which does not change significartly for LOX), and the pump-delivered flow.
Isentropic horsepower is calculated from the pressures and temperatures at
inlet and exit of the pump and the total flow through the pump (delivered

flow plus balance piston flow).
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Figure 60 presents the isentropic efficiency for all data slices of all the
tests conducted. At low speeds, the temperature rise from the pump inlet to
the pump exit is very small. Any instrumentation errors in the temperature
measurements will cause a large error in the isentropic horsepower calcula-
tion at low speed. Any instrumentation errors at high speed will cause less
error in the isentrupic horsepower calculation because of the higher tempera-
ture rise at these speeds. Therefore, more confidence is placed upon the
data at speeds near 7330 rad/s (70,000 rpm). The isentropic efficiency cal-
culated from the measured parameters at the high speeds appear very near to
the predicted efficiency at the design point.

It is observed that the temperature rise of the balance piston flow is con-
siderably higher than that of the pump delivered flow. This indicates addi-
tional work being done on that portion of the total flow. To account for
this additional work, the isentropic horsepower is calculated as the sum of
the pump-delivered flow raised to the energy level based on the pump di:scharge
temperature, and the balance piston flow raised to an energy level based on
the balance piston return cavity temperature. The isentropic efficiency cal-
culated in this manner is shown as the closed symbols in Fig, 60. It should
be noted that any heat leakage into the balance piston cavity, from outside
the pump or from the turbine end causes this calculation ¢ efficiency to be
incorrectly low. The values presented in Fig. 60 are thought to be conserva-
tive; the true efficiency of the pump being somewhere between the open and
cleosed symbols.,
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Inducer Static Pressure Rise

The inducer pressure rise is calculated as the difference between the inducer
discharge and the pump s:vatic inlet pressures. The inducer discharge pressure
is measured by a static pressure tap located in the inducer housing (at the
inducer tip diameter) just downstream of the inducer. A plot of the inducer
pressure rise of the data at approximately 3142 rad/s (30,000 rpm), corrected
to 3142 rad/s (30,000 rpm), is shown as a function of pump-delivered flow in
Fig. 61. This plot is presented to define the pressure to which future bal-
ance piston recirculation flow will exit. The inducer static pressure rise
corrected to 7330 rad/s (70,000 rpm) is presented as a function of pump-
delivered flow in Fig. 62. All reduced data slices are presented in this
plot.

Figure 62 also shows the predicted stzati~ pressur~ rise across the inducer.

A comrarison between the measured and the predicted pressure rise indicates
the slopes to be similar, with the measured data being considerably lower
than the pressure rise predicted. It is possible that the static pressure
tap located at the tip radius does not correctly measure the average pressure
rise for the inducer due to wear ring backflow from the impeller, or for some
other reason. However, the measured data indicate a condition which could
seriously affect the suction performance of the impeller. This is especially
true at the higher flowrates, such as 1307 of design flow where the measured
data, if extrapolated, would indicate zero static pressure rise across the
inducer. Considering this potential problem of the inducer, suction per-
formance tests should be monitored very carefully during the next test series
for this pump.

Balance Piston Performance

Balance piston performance was calculated using the Rocketdyne steady-state
balance piston performance computer program. The resistance downstream of
the balance piston was modeled to account for the bearing, slinger, and over-
board bleed line resistance. The impeller discharge pressure measurement was
determined to be incorrect. An impeller static pressure rise map generated
from the 1977 data was used to predict the impeller pressure at each data
slice. The ratio of fluid-to-wheel tangential velocity, designated as K, was
assumed to have a value of 0.5. The balance piston program provides perform-
ance through a range of axial positions, from the high-pressure orifice full-
closed to the low-pressure orifice full-closed. The total balance piston
travel, &, is 0.25 mm (0.0l inch), and eleven equally spaced positions are
solved for, X/6 = 0.0 to X/§ = 1.0, where X is the axial opening of the high-
pressure orifice. For each positi-n of the balance piston, there corresponds
a unique predicted balance piston cavity pressure. The axial position at
which the predicted and measured balance piston cavity pressures are equal is
considerad the natch point, or the actual operating position for the particu-
lar data slice.
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Balance piston performance for Test No. 006, which contains test speeds near
7330 rad/s (70,000 rpm), is presented in Table 14. Parameters presented in
Table 14 are:

Pump speed, N
Pump flow/pump speed ratioed to design pump flow/design pump speed

Ratio of high-pressure orifice axial opening to total balance piston
travel, X/é

Balan.e piston flowrate at match point (from balance piston program)

Balance piston flowrate measured with an orifice in the overboard bleed
line

Balance piston thrust at match point, Fmatch
Thrust achievable with low-pressure orifice closed, Fmax’ minus thrust
achievable with high-pressure orifice closed Fmin

Fmax winug Fmatch

Fmatch - Fmin

Scaled thrust range K. = Fmax-pminscaled to 7330 rad/sec (70,000 rpm)

Balance piston sump pressure predicted (from balance piston program)

Measured balance piston sump pressure

The predicted balance piston flow (Table 14) agrees very well with the over-
board bleed measured flow. The largest difference between the two flows is
3.3% at low speed and 2.5% at high speed. /‘nother indication of the validity
of the model is the zgreement between the predicted and measured balance
piston sump pressure. These are presented in the last t'o columns of Table 14;
the maximum difference between them is 57%.

The thrust range of the balance piston is adequate. That range is the dif-
ference between the maximum balance piston thrust (high-pressure orifice
full-open) and the minimum thrust (high-pressure orifice full-closed), and
is presented as Fpay-Fp i, in Table 14. The thrust range coefficient labeled
K1 presents the thrust range scaled ‘o 7330 rad/s {70,000 rpm), assuming the
thrust range can be scaled by the speed squared.

Ideally, the preferred operating point of the balarce piston would be direcily
in the middle of the available thrust range. The tbrust at the match point
(Table 14) is closer to the maximum thrust than the ninimum thrnsc. At low
speed the margin available on the maximum balance piston thrust is approxi-
mately 16% of the thrust range. High-speed data show the margin to be 26 to
32% of che thrust range.
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Pump End Bearing

Direct measurements of the pressure drop across the pump end bearinc vere
available for this test series. During Tests 003 and 004, individua. pressure
transducers were used to measure the pressure upstream and downstream of the
bearing. During Tests 005 and 006, an additional differential pressure trans-
ducer was installed between the bearing upstream and downstream instrumenta-
tion lines. The pressure drop across the pump end bearing is presented as
function of speed (Fig. 63). There is a large data scatter (Fig. 63) even
when a differential pressure transducer is used. The pressure drop across

the bearing is nropcrtional i thz flow squared, and if flow were varying
significantly, a large variation in nressure drc) could be expected. However,
measured balance piston flow as a funciion of speed (Fig. 64) is seen to be
consistent znd, therefore, should no. be the cduse of the bearin, pressure
drop data scatter.

Another problem presented by the aata is that of deicrmining the true bearing
resistance (with bypass). Assuming the value for C, of 0.578 as obtained
during the water- “ow calibration oi the bearing to te rorrect, as well as

the bypass hole resistance, a K value to be used in tne bearing pressure drop
equation can be calcula.ed from the data. T.e low-sneed data indicate K values
ranging from 5.14 to 3Y.79, with a mean value of K = 18.07. ihe range o. the
K value for the high-speed data is 0.41 to l.u3, the average being 0.656. An
error in either the bearing upstream o:r downstream pressu' ' measurements may
be postulated to exnlain the data, but as of this writing there is no basis
for this. However, the value that matches the high-speed 3data does show good
agreement witu values obtained for SSME bearinge. The values derived from

the low-speed data not only disagree with the SSME bearinz data, but also dis-
agree with theoretical consideraticns which led to the bea:ing resistance
equation used.

Balance Piston Flow Temperature Rise

I- was found at high speed operation that the temperature of che fluid in che
balance piston return cavity was higher than anticipated. This is of roncern
since the balance piston flow is being heated by, among othe. components, the
pump end bearing. High-measured temperature of this flow could be the result
of a bearing failure or bearing distress. (It should . noted that the bear-
ings were in good condition after pimp disassembly.) However, operati-n at
high speeds was limited to approximately 8 seconds. The temperature .ise
from th- pump discharge to the balance piston return cavity is presented as

a function of pump speed in Fig. 65. What appears to be scatter in th2 data
at rue high speed is actually due to the response characteristic of the terp-
zrature bulb instrumentation as the speed ramps. The highest ralue of 79
degrees temperature rise is at a point in which the temperature has become
steady.

The heat inpvr to the balance piston flow originates from the following
sources. There is some heat conducted from any areas of the pump structure
witn higher temperature thar that of the fluid, as well as heat conducted
through the pump insulation., This heat input shc 1d be minimal and is not a
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strong function of pump speed so was not considered in the analysis to be
presented. The balance piston as well as the front face of the slinger
generate heat which is absorbed by the fluid. The slinger back surface con-
tains ribs for the purpose of lowering the pressure of the seal leakage flow.
This ribbed face adds considerable heat to the fluid. Some of this heat is
carried away in the seal leakage flow, but most of it is carried back into
the cavity area because the recirculation flow is expected to be much larger
than the leakage flow. Lastly, the bearing inputs heat to the balance piston
flow.

A study was performed to predict the balance piston flow temperature rise
measured at the high speed, specifically 93.9 K (79 R) at 6929 rad/s (66,163
rpm). Nominal empirical heating coefficiencts for each of the heat-generating
components were increased individually to a value which predicted the measured
temperature rise. The nominal values as well as the values of each coeffi-
cient which resulted in matching the measured temperature rise are presented
in Table 15. For the bearing to be producing the heat required to match the
measured temperature rise (see Table 13), it would require approximately

56 times the nominally predicted heat input for such a bearing. Considering
that the bearing was in good condition posttest, this is very unreasonable.

TABLE 15. MK 48 OXIDIZER HEATING COEFFICIENTS
AFFECTING BALANCE PISTON FLOW

Required to
Nominal Match Data | iIncrease

Bearinn Heat Input 0.8 Btu/sec b4 6 55.8
Balance Piston Torque Coefficient 0.0u/p '/ 0.259/8 /5 | 6.5
Slinger Front Face Torque Coefficient O.OH/RG‘/S 0.6]2/Re'/5 15.3
Slinger Ribbed Back Face Torque 0.01 0.0376 3.8
Coefficient

U R

TP "TIP
NOTE: Re .

The heating coefficient requiring the least change to predict the measured
temperature rise is that of the slinger-ribbed back face. Experimental
values reported in Ref. 2 show *his torque coefficient's maximum value to
be approximately 0.02.
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It is desirable to reduce the temperature of this rezurn flow because even-
tually this fluid will be returned to the impeller eye, and a lower tempera-
ture will improve suction parformance. Based on the above analysis, the best
way to lower the temperature is to rec ce the effect of the heating by the
slinger which can be accomplished by trimming the slinger outer diameter.
Testing with a trimmed diameter should also verify that this is indeed the
major source of the high temperature. A study was performed to evaluate the
effect of the trim on those parameters dependent upon it.

It was assumed that the bearing, balance piston, and slinger front face com-
tribute nominal heat inputs, while the ribbed face of the slinger is actually
contributing with a torque coefficient of 0.0376. Although it is probable
that the other coefficients are somewhat higher than nominal, it can be seen
that the back of the slinger is the major component of the overall heat iaput.

With the neating coefficients set in this manner, an analysis was made of the
effecc of slinger height on the balance piston flow temperature rise, axial
thrust, and sealing performance.

The balance piston flow temperature rise as a function of slinger height is
shown in Fig. 66. The decreasing slope of the temperature rise as the radius
is increased is due to chr-ges in fluid properties with temperature change.
The effect of slinger height on the net slinger axial thrust is shown in

Fig. 67. Figures 68 and 69 show the effects of slinger height on vaporization
of the fluid and, therefore, sealing performance of the slinger. Figure 68
shows the radius at which the vapor pressure is reached as a function of
slinger tip radius. It can be seen that for a slinger tip radius of approxi-
mately 24.8 mm (0.975 inches), vaporization occurs just at the seal radius.
Slinger height below this radius will result in liquid at the seal with a
potential increase in sezl leakage. Figure 69 shows the pressure expected

at the seal as a function of the slinger height. The discontinuity in the

curve is at the slinger height at which the predicted vapor pressure is not
reached at the seal radius.

It is recommended that the slinger tip radius not be reduced beyond 25.4 mm
(1.0 inch), for the purpose of maintaining vapor at the seal radius. The K
value assumed for the ribbed surface of the slinger is 0.7. It is felt that
this 1s consevrvative and, therefcre, ensures vapcr at the seal radius.

Slinger Front-Face Pumping Effectiveness

In addition to lowering the pressure and vaporizing the fluid entering the
seal, the slinger was designed to decrease the pressurc downstream of the
balance piston low-pressure orifice. This is accomplished by the pumping
action on the front face of the slinger which occurs by adding energy to the
flow with some percentage of the slinger tangential speed imparted to the
fluid. This average tangential velocity was assumed initially to be one-half
the wheel tangential velocity which corresponds to a value of K = 0.5, How-
ever, as the axial gap between the slinger front face and the stationary face
increases, it 1s expected that the pumping effectiveness should decrease.
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'ressure measurements downstream of the bearing and in the balance piaton
return cavity provide the upstream and downstream pressure measurements,
respectively, across the slinger. Based on these pressure measurements a
slinger K value was calculated for both low- and high-speed data, and these
values are presented in Table 16. Low speed data (Table 16) indicate a
slinger K value of 0.17, whereas the high speed data indicate a lower value
of approximately K = 0,05 with a considerable scatter in this calculated
quantity. High speed data are thought to be more accurate since the pressure
levels are nearer the mid-range of the transducers. These data show a very
ineffective pumping occurring due to the front face of the slinger.

TABLE 16. MK 48 OXIDIZER SLINGER PUMPING EFFECTIVENESS
TEST 006, 5/31/78

Slinger Pumping
Pump Speed, Coefficient,

Slice| rad/s (rpm) K

] 3132 (29909)
2 3096 (29568)
3 3109 (29689)
4 | 3115 (29748)
2 6756  (64519)
7
8
9

681  (65035)
6825 (65176)
6822 (65141)
6860  (65504)
10 6980 (65657)
n 6894  (65833)
12 6915  (66032)
13 6913  (66016)
14 | 6915  (66032)
15 6929 (66163)

.

LSO —=O0ONOoOOoOWVNMOoOOoOONE®Ww

MECHANICAL PERFORMANCE

The second test series revealed a mechanical problem with the primary seal
retaining nut which had the tendency to back off as a result of the influence
of a rotating fluid field around it. This led to blockage of the balance
piston drain cavity ports, and eventually to loss of axial thrust control and
pump damage. As described in a prior section, the nut and its lock were re-
designed, and the new configuration was evaluated in the third test series,

in 1978, The test experience with the modified nut indicated that the problem
of backing off has been corrected.
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One other minor problem of a mechanical nature has been observed regarding
the chromium plating on the rotor under the primary hot-gas turbine seal.
Chrome plating applied to the rotor flaked off, possibly contributing to the
high torque observed in the May 1978 test series. The cause of the flaking
was identified as a sharp corner where the plating terminated which resulted
in inadequate adherence and eventually led to chipping and flaking. The
condition will be corrected on future builds by eliminating the sharp transi-
tion in the rotor before plating is applied.

The condition of the turbine end bearings was excellent after each test series,
even after having gone through a failure on the pump end. No indication of
excessive radial or axial loading, overheating or distress of any kind was
observed. The pump end bearings were largely consumed in the fire duriang the
1977 test series and, therefore, their pre-failure condition is unknown. The
pump end bearings were in excellent condition after the third (May 1978) test
series. Posttest analysis indicated adequate cooling and low-coolant-pressure
differential. The nominal axial load was approximately 445 N (100 1b) on each
bearing with a maximum excursion to 1023 N (230 1b). The radial load on the
No. 1 bearing (numbered from impeller side) was zero as intended. The radial
load on the No. 2 bearing was 445 N (100 1b). Thus, based on the condition

of the bearings after this test series, the bearings were functioning
properly.

The performance of all four shaft dynamic seals was excellent in all tests.
Pressure levels in the drain systems were maintained at sufficiently low
levels to preclude intermixing of the pump and turbine propellants. The
primary LOX seal in particular has been proven a very reliably, rugged con-
cept. In conjunction with the slinger, its leakage rate at design speed was
approximately 0.068 kg/s (0.15 1lb/sec).
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j

General

Alternating Stress

Components which are subject to a low cycle fatigue mode of failure
shall be designed for a minimum of 300 cycles ti es a safety factor
of &,

Components which are subject to a fracture mode of failure shall be
designed for a minimum of 300 cycles times a safety factor of 4.

Components which are subject to a high cycle fatigue mode of fail-
ure shall be designed within the allowable stress range diagram
(based on the material endurance limit), If stress range material
property data arc not available, modified Goodman diagrams con-
structed as shown below shall be utilized,

Allowabla Alternating
‘\\‘\- Stress Line

~1:1 Ratio

Mean Stress

Fe = Material Endurance Limit
Fty = Materia) Yield Strength (.2% offset)
Feru = Material Ultimate Strength

iacEDING PAGE BLANYK NOT FILMED
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Effcctive strcss shall be based on the Mises-Hencky constant energy
of distortion theory. .

Unless otherwise noted under component ground rules specified here-
in, the following minimum factors of safety shall be utilized:

Factor of Safety (.27% yield) = 1,1 x Limit Load
Factor of Safety (Ultimate) = 1.4 x Limit Load

Limit Load: The meximum predicted load or pressure at
the most critical operating condition

Components subject to pressure loading shall be designed to the
following minimum proof and burst pressures:

Proof Pressure = 1,2 x Limit Pressure

Burst Pressure = 1.5 x Limit Pressure

Impeller

Inducers and/nr impellers utilized in the high pressure pumps shall
be designed for operation above incipient cavitation,

Impeller burst speed shali be at least 20% above the maximum oper-
ating speed,

Impeller effective stress at 5% above the maximum operating speed
shall not exceed the allowable .2% yield stress, (Does not 2pply
to aredas in which local yielding is permitted,)

Jurbine

Blade root steady-state stress shall not exceed the allowable 1%
ten hour creep stress,

S8tress state at the blade root as defined by the steady-staze stress
and an assumed ibratory stress equal to the gas bending stress
shall be within the allowable stress range diagram or modified Good-
map diagram,

No blade na¢ural frequencies within +15% of known sources of exci.ta-
tion at steady-state operating speeds,

Disk burst speed shall bhe at least 207 above the maximum operating
speed.
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Disk maximum cffective stress at 5% above the waximum operating
speed shall not exceed the allowable .27 yield stress. /{Does not
apply to areas in which local yielding is permitted).

Bearings

Turbopump designs shall utilize ball bearings.

Maximum DN: 1.5x106

Bjo 1ife 100 nours

Material:
Rolling i’lements 440C
Races 440C
Seals

Turbopump designs shall utilize concentional type seals. However,
provision shall be made in the design to permit the incorporation
(retrofit) of controlled fluid fiim (hydrodypamic) face seels, Any
rework or modification of the turbopump housing or other component
parts in the area of the seals to accommodate the hydrodynamic seals
shall be specified. Such modifications should be kept to a minimum.

Face contact seal maxinum PV, FV, and PfV factors:*

L0y Ha+H20
PV Factor 25,000 10,000
FV Factor 2,000 800
P¢V Factor 60,000 20,000
*PV = unit load times rubbing velocity (lb/in2 x ft/sec)
FV = face load per unit length times rubbing velocity (1b/in x ft/sec)
PgV = fluid pressure differential times rubbing velocity (psig x ft/sec)

Critical Speed

Rotor bending frequency shall be at least 25% above the rotor maximum
operating speed,

A minimum margin of 20% shall be maintained between rotor rigid body
critical speeds and rotor steady-state overating speeds at full thrust
and the pumped-idle thrust condition. Rigid body critical speeds
within the throttled-to-{ull thrust range shall be permitted only if
deemed necessary by both the Contractor Program Manager and the NASA
Project Enginecer.
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MARK 48-0 TURBOPUMP ASSEMBLY
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