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1. Introduction

Linear matrix equations play a very important role in system theory. In

this paper we undertake the study of Iinear matrix equations which take the form

s	 t
Igi3Bi P A

i = Q	 (1.1)

1-0	 3=0

where B(mxm), A(nxn) and Q(mxn) are given matrices over some field F and

glj are elements of F, using methods of modern algebra. The emphasis is on

the solution of such equations using finite algebraic procedures which are

easily implemented on a digital computer.

Particular attention is given to equations PA + BP = Q and P - BPA = Q,

and their special subcases PA + A'P = Q (the Lyapunov equation) and 1' - A'J'A = Q

the (discrete Lyapltrnov equation). The Lyapunov equation appears in several areas

of control theory such as stability theory, optimal control (evaluation of quad-

ratic integrals), stochastic control (evaluation of covariance matrices) and in

the solution of the Algebraic P.iccati Equation using, Newton's Method.

This paper has been inspired by an important paper by Kalman [2]. Kal-

man's concern was the characterization of polynomials whose zeros lie in

certain algebraic uomains (and the unification of the ideas of Iiermite and

Lyapunov). Tn this paper we show that the same ideas lead to finite algorithms

for the solution of linear matrix equations of the form given above. The Analysis

in terms of a module structure on matrices presented here is believed to be new.

In a subsequent paper we shall investigate the implications of these ideas on

stability theory.

The paper is divided into five sections. In section 2 we define the action

fB1 over an arbitrary commutative ring with identify and prove a Basic

•

n
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Lumma. In section 3 we consider equation (1.1) over a field F in great

generality and prove the Miin 	 Theorem. In section 4 we deal with the

equation PA + BP Q and the Lyapunov Equation PA + A' 1' = Q for which we

give algorithms for obtaining its solution and comment on the arithmetic

complexity. We also provide numerical examples and prove a stability

theorem. In section 5 we deal with the equation P - BPA Q as; well as

with the Discrete Lyapunov Equation P - A'PA - Q. In section 6 we look

at equation (1.1) over an integral domain.

2. The Action fBA

Let A be an nxn matrix and B an mxm matrix both over E, a commutative

ring with identity. Let E[x,y) be the ring of polynomials in two indeter-

minates x and y over E. Let T = (¢2 (x), V2 (y)) be the ideal in E[x,y)

generated by ¢2(x) the characteristic polynomial of A, and ^2(y) the

characteristic polynomial of B. Elements of the quotient ring E[x,y)/'Y

are cosets (equivalence classes) denoted by `Y + a(x,y). The Cayley

Hamilton Theorem holds [4) therefore ¢2(A) = 0,^2(B) = 0.

Since ¢2
(x.) and Iy2 (y) aro monic polynomicals division is possible

and as a consequence we can state;

Lemma 1: Let g(x,y)C E[x,y). Then g(x,y) can be written uniquely as:

g ( x , y ) = t (x,y) ^2 (x) ^2 (Y) + p ( x ' M2 (x) + q (x, y) V2 (y) + r (x,Y)

where:

the degree of p(x,y) in y is less than m (it may be a polynomial in r.) or

p(x,y) is zero,

tip
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the doUree of q(x,y) in x is lass than n (it may be a 	 (2.1)

polynomial in y) or q(x,y) iG zero,

the degree of r(x,y) in y is less than m, in x less than

n or r(x,y)  is zero.

Proof :

Division in x by ¢2 (x) is possible therefore

9 (r.,y) _ a (x, y) ^2 
(x) + b (x, y)

where

degree of b(x,y) in x is less than n (b(x,y) may be a polynomial in y)

or b(x,y) is zero.

Division in y by w2 (y) is possible therefore

a(x,Y) = t(x,Y)02 (Y) + p(x,Y)

where degree of p(x,y) in y is less than in (p(x,y) may be a polynomial

in x) or p(x,y) is zero.

Also

b(x,y) = q(x,Y)^2(Y) + r(x,y)

where degree of r(x,y) in y is less than m and degree of r(x,y) in x is

less than n or r(x,y) is zero.

Now then

g(x,y) = t(x,Y)^2(x)y2(Y) + p(x,y)^2(x) + q ( x ,Y)V 2 ( y ) .+ r(x,y)

This representation is unique since suppose

3I
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g (x, Y) = t  (x, Y) ^2 (x) 2 (Y) + p  (x	 ^2 tx) + q  (x, Y) IP2 (y) + r l (x, y)

= t2 (x, Y) ^2 (r.) W2 (Y) + p2 (x, Y) ¢2 (x) + q2 (x,y) ^ J2 (Y) + r 2 (x,y)

with p,, 
h2 , q l , C1	

r l , r2 satisfying requirements (2.1).
1

r  (x, Y) - r 2 (x, Y) _ (tl-t2 1 ¢2 (x) V2 (Y) + (i'1-P21 4'2 (x) + (g l -g2 1 W2 (y)

a	 t,	 Y

Suppose that Q f 0. Then there exists a term on the r.h.s. say a x  yj

i > n, j > m. This term cannot be cancelled by either (', or Y. Therefore,

c1 = 0. Suppose that ^ / 0. Then there exists a term on the r.h.s. say

b x  yj i > n. This term cannot be cancelled by any term from Y . There-

fore K = 0. But then S = 0 as well and r 1 (x,y) = r2(x,y). M

Corollary 1: Let gl = t1^ (x) y2 (y) + p1^ (x) + q
l W (y) + r l and q 2 -

t 2 ¢2 (x) 1P2 (y) + p2 ^2 (x) + q2 1P2 (y) + r2 be in the same	 coset '^' + a (x,y) .

Then rl = r2 . (I£ g = t^2^2 + p^2 + q^2 + r denote r by g (x,y)mod T.)

Let MN be the set of mxn matrices over E. Define the action

fBA : E(x,yjx MN - I,(N in the following manner:

fBA(h(x,Y)	
j

, 1:) _ I h , k B M Ak
J

jk

where h(x,y) _	 hjk y j x 
k
is an element in E1x,y1 and M an element in

jk
MN.

It can be shown that fBA 
has the following properties.

i) fBA (u,M) = uM where u E E.

ii) fBA(g(x,Y)+h(x,Y), M) = fBA (g(x,Y), M ) + fBA(h(x,7),M)

W&:
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iii) fBA(q(x,Y))^(x„^)• M)	 fBA(g(x•Y), f 13A (h(x,Y)• I^))

fBA(1 ► (Y,y), fBA(c!(x,Y), ti))

iv) f BA (g(x,y), M) - fBA (g(x,y)mod T, M)

v) fBA(g(Y..,y), M+N) ” f BA (g(x,Y), t•1) + f BA (g(x•Y), N)

Properties i), ii), ,iii) and v) follow directly from the definition

of 
fBA 

[1]. Property v) is arrived at by using Lemma 1 and the Cayley-

Hamilton theorem.

The definition of fBA allows for the interpretation of MN as an

E[x,y]/y-module.

Basic Lemma: The set MN of mxn matrices with elements in I. is a module

over the quotient ring E[x,y] /T.

Proof: The set of mxn matrices under addition is an abelian group. Define

multiplication (*) of cosets T + h(x,y) and mxn matrices M in the follow-

ing manner:

('y+h(x,y)) * M = f BA (h(x,y)mod T,M)

The multiplication is well defined and satisfies the properties:

1) ('y+h (x, y)) *(6I+N) = ( wy+h (x, y)) *hI + (T+h (x,y)) *N

2) ('y +h (x, Y)) *[ (';'+g (x, Y) *M] = [('r l +h (x,y)) • (Y'+g (x,Y)) ] *M

3) l (T +h (x,y)) + ( 'y +g (x,y)) ] *M = ('y +h (x,y)) *M + ('y +q ( x ,Y)) *M

Q)	 (T+1) *t,i = M

for all M,N in MN and all T+h(x,y), 'y+g(x,y) in E[x,y]/'y with T+1 being

the multiplicative identity in E[x,y]./Y.
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3. The General Equation

suppose that we restrict E to be some field F and let K be an alge-

braically closed extension of F. If f(x,y) is an element of Ffx,y) we

denote by V  the variety of f(x,y) in A2 t7). I.et al X 2 ,..., n be the

eigenvalues of A and U 1 , U 2 ,...,ltm the eigenvalues of D. .;uppose that

g(x,y) is a polynomial in Ftx,y). If g(x,y )=
 ^ 9 j y 

k
x then we define

7
G the mnxmn matrix.
9

Gg =^ gjk B3 Ox A ,	 (3.1)

jk

where (D denotes tensor product, (A© B = (aii B)) and A' denotes
i3

transpose. The significance of the matrix C g comes from the following.

Let E be the mnxl column vector made up of the entries of matrix

P = (p 
i)
.) written as

P - [P 11
p12 p13  pin p21 p22" ' p2n *** '' pml Pmt' ' 'hmrd

Let q be the mnxl column vector made up of the entries, of Q. 	 Then

equation (1.1) can simply be written as

	

Cg	 p = q	 (3.2)

We now state the

Main Theorem: The following statements are equivalent.

1) Equation (l.l) has a unique solution for all Q.

2) G is invertible.
9

3) g ( A i . 11 j )	 0	 b 1 1Y	 1< i < n	 1< j < M.

(1) A2 {(tilt 2) 
Lilt  

c K).

s

J,
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4) vg (x, y) n YW2 (x) () v ^2 (Y) c 0

5) The coset T+y (x, y) is a unit in F f x, y] A5 .

Proof :

We will show the e quivalences in the order 1) =;P 2) =^7 3) _7 4)- 5)7-, 1)

1)-'72

Suppose then that equation (1. 1) does have a unique solution for all Q.

Well since equation (1.1) can equivalently be written as Gg = then G 

is invertible. i
2.)	 3)

From (5) theorem 43.3 we have that the An characteristic values of

G  are g(Ai ,ll .	 Since det Gg =71(i(Xiell) and since dot C 	 0 we have

that g(A i ,}i j )	 0 for all A i ,11 j 1 < i < n	 1 < j < M.

3) --;p4)

If we look at what 3) says it is the following; that 'the polynomials

K
g(x,y), 02 (x) and V2 (y) have no comnDn roots in A 2 . But this is statement

4).

4):-7-;75)

Now Y +g(x,y) is a unit iff there exists a T+f(x,y) such that

( ,4f (x, Or ('P+g (x, y) ) = Y + 1 .

Now

`P+g(x,y) is a unit	 <=-> 3 f(x,y),3 Y + f(x,y)..tCt,y) =_ `P + 1

3 f(x,y), a 1 (x,y), a2 (x,y) e Ffx,y] such that

f ( x ,Y) g (x,Y) + a 1 (X ,Y)^2 (x) + a 2 ( x ,y)W2 (y) _ 1
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Assume now that 4) holds (i.e., the polynomial h-1 vani!,hes at every com-

mon zero of g (x,y) , ^2 (x) , W2 (y) .) By the Hilbert-Nullstellensatr. ( 7) there

exist polynomials f(x,y) I a I (x,y) a 2 (x,y) such that
r!

f (x,Y) q (x,y) + a1 (x,Y) ^ 2 (x) + a 2 ( x ,Y) YY)	 1

this means that T+g(x,y) is a unit in F[x,y)/Y.

5) =;^1)

Suppose that Y+g(x,y) is a unf.t in F[x,y) /'1' i.e.] Y+f (x,y) such that

(Y+f(x,Y)^(Y+g(x,Y))= Y + 1. Let P - f BA (f(x,y)mod T, Q) - 
f BA (f(x,Y), Q)

Show that this is a solution to (1.1).

S	 tt

II gij B  P A ° fBA(g(x,Y), P)

i=0 j=0

fBA(g(x,Y)f(x,y)I Q)

f IAA (1 ' Q) - Q

The P so defined is the unique solution to (1.1).

Let P 1 v P2 be two distinct solutions to (1.1)

"^ fBA(`1(x,Y). P 1 ) = fBA (9(x,Y), P2 ) = Q

fBA(f(x,Y)I fBA(g(x•Y), P 1 )) = fBA ( f (x,Y)I fBA ( g ( x ,Y), P2))

Pl	 P2

which is a contradiction.

Therefore equation (1.1) has a unique solution for all Q. This completes

the 1iroof of the Main Theorem. M
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^i
Remark 1	 In the above proof we have an explicit expras3ion for th(-

solution of equation (1. 1). A general method for constructing such an

f(x,y) is through a constructive proof of the 11ilbert-Nullstellensatz or

using Resultant Theory (G). As will be seen in later p.iges of this paper

for several important equations this generality is unnecessary and easier

methods exist.

Remark 2	 In our entire conotruction we have been using the ideal

4' s (0? (x) , ^2 (y)) . other ideals can be used. As an ex.unple the ideal

0 (x), V2(y)) where T2 (x) and IP2 (y) are the minimal polynomicals of A

and B respectively. Since Yx) = k (x) ^2 (x) and W (y)	 9, (y)Z 2 (y) we

will be dealing with polynomials of smaller degree. This; may have as an

effect the reduction in the r,tunber of computations performed.

Remark 3	 In the special case in which A is missing from equation (1.1)
s	

i
(i.e., suppose it is of the form	 gi B P = Q)	 then it would seem

i=0
that the analysis can take place in some quotient ring F[y]/m. This

actually is the case. Let 4, be the ideal in F[y] generated by 4) 2 (y). Then

T+g(y) is a unit in F[x,y]/T if and only if '^+g(y) is a unit in Fly]/(D.

This follows from the fact that if 3 f(y), a 2 (y) elements of F[y) such

that f(y)g(y) + a 2 (y)^2 (y) - 1 then clearly there exist elements

f (x, y) ( = f (1) ) , a l (x,y) (=0) and a2 (X, y) (=a2 (y) in F[x,y) such that

f (x,y)g (y) + a l (x, y) ^2 (x) +- a 2 (x,y) ^2 (y) = 1. On the other hand if there

exist f(x,y), a I (x,y), a 2 (x,y) elements of F[x,y] such that f(x,y)g(y) +

.z 1 (x,y) x n	 + a 2 (x,y) ^2 (y) = 1 then evaluating at x---O we get f. (O,y)g (y) +

a 2 (C),y)^2 (y) = 1 which means that 4)+g (y) is a unit in F[y] /q>. 	 ( ^2 (x)

X n	 since A = 0 n ). The action f  : F[y]x MlY -► MN can similarly be

s
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defined a3 fB (h (Y) M)	 hi Bi P and MN becomes an r( y )/ ,^ -module. The

solution to	 gi B i P = Q is then given by P - f 	 (f(x)mvd Q,, p;. we act

iW0

similarly if B is missing.

Remark 4	 Let us look at the very special case wh:a we are dealing with 	 14

equation BE a q where p and q are mxl vectors. In this case g(x,y) - y.

What we want to do is find f(y) such that f(y)y + a(y)^,2 (y)	 =	 1. If

^G2 (y)	 _ ym + -1	 +...km-lym +k0 obvious choices are f(y)= -.kI	 ym-1

0

kk-1	
m-2-	 ...Y -	 a(y)

kl
k since

0 o u

1	 m-1
k
m-1	 m-2 k 
	

1	 m km-1 	 m-1
kl

(- k	 y	 -
0

k	 y	 -
U

...	 - k )y + k -Y	 +
U	 0

k
0

y	 +	 ...	 + k y +1	 1.
p

Now k0	 0 since for a solution to exist detB = k0 ¢ 0. The

solution E is given by:

P- ° f 	 (f (Y) , g)

Analyzing this further we get

M-1

1 Ijk 	
B Y .

0 j=0

M-1

( - 1	 B^)k0

j-0
M-1

As would be expected B -1 = - 1
	 j

p	 k0 	 B

j= 0

We will now close this section by proving two propositions which make

clear the method of solution we have adopted.

Let A1N he the vector space of mxn matrices over the field F. het

Mn be the vector space of mnxl vectors over F. Then we have r.he obvious

'3l
-ft
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11

vector space iuomc: ! ► i-:m f: MN • ► 1•In defined as:

pll

I'1 l

I'1 n	
1'11	 P12	 . ' .	 1'ln

i'21
f:	

22 H	 P21	 1'22	 . . . P2 

f'2n

1'ml	 pmt	 pmn
MI

mI ►

I.et G be as in ( 3.1) . Let the polynomial TT(u) in F[u] be the chara,:teristic
9

polynomial of G
9	 mn 9
, Tt(u) = det ( u I -(: ) . Let Il = ( Ti(u) ) be the principal

ideal in )'[u]. Then F[u] /)I is a ring.

Define the function h: F[u]/[( --+ t'[x,y]/T in the following manner:

h:	 Tl + a(u)1--> `I' + a(g(x,Y))

Proposition 3.1. The function h is a ring homomorphism.

Proof :

We first show that h is well-defi.ied. Let Ii + a(u) = Jl + b(u) (i.e.,

---	 a(u)-b(u) = k(u) n(u)). 	 Show that 'Y + a((j(x,y)) = T + b(g(x,y)) i.c.,

show that s (q (x,y)) - b(g (x,y.') _ c 1 (x, Y) ^ 2 (x) i- c 2 ( x ,Y) ^2 (Y) . I claim

that TI (g(x,Y)) = k (x,Y)^2 Wx 2 (Y) + k1 (x.YO2 (x) + k2(x,Y)^2(Y)•

Suppose that we are working over K[x,y]. We have ii(u l
 _ (u-v11)(u-v12)'

(u-v inn ) where v ll' v12" 
..'V mn are the mn eignevalues of Gg . Li t



-13-

vii - g(Xi ,lj). Then

n	 m	 M

"(g(x,Y)) _TT T1 ( C' (x, 	 - g ( X I , pi ) )	 (3. 3)

i-= 1	 j=1

Now WO can sho ,.a that each factor g (x, y) - 4 (^ i ui ) can he written in the

form

g(x,Y) - g(aiui)	 - k ii (x,Y) (x- ,k i ) + ltij (y) (Y-;,j)

This can be seen easily from the fact that if g(x,y) _ gtxt + gt-lxt-1 }

g lx + g0 then

g (x, Y)	 Ui)	 (gtxt-1 + (4t-1 + gtJ^ )rt-2 + (g t-2 + qt-1^ r + gtA i) x t-3 + ...

+ ( gl + g
2 

x
2

+...g tAt-1 )I (r. -X
i
 + g (a i ,Y) - g(Ai,uj)

Therefore (3.3) can be written as

n	 in

11(g(x,Y))	 TT Ti	 k ij ( x ,Y) (x-Xi ) + p ij (Y) (Y-11i))
i=1 j=1

In expanding this product we see that every term in the sum will be

of either of the two forms, a(x,y)^2(x) or b(x,y)t 2 M. Therefore

Tr (g ( x , Y) ) = t  ( x ,Y)^ 2 (x) 1;) 2 (Y) + p  ( x ,YK 2 (x) + q2 (x ,Y)^) 2 (Y) in form (2.1)

over K(x,y]. Since F[x,y] C K[x,y] and form (2.1) is unique we must have

that t 1 (x,y) , 1) 1 (x,y) c1 1 (x,y) are actually elements of I [x,y] .

1)

i
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'nccrt , fore n(g(x,y) e Y and h is will defined. Now h is a ring homo-

morphism since

h[1I + a(u) + If + b(u)] = h[H + (a(u) + 1,00)]

h(11 + a(u)) + h(1I + b(u))

i ld

11 [ ( 11 + a(Q) ) ( H + b(u) )]	 - h(II + a (u)b(u) )

= h; 11+ a(u))h(.11+ b(u))

and h ( ;), + 1)	 Y + 1.

This completes the proof of Propasition 3.1. 
FA

Now since AIN is an F'[x, y l/Y-module, Mn a	 F[ul/11-module and h:F(u]/11 -}F'[x,y)/`1'

a ring homomorphism,MN can be made into an F[u) /11-module in the natural way.

Def ine multiplication (-) : F (u)/ 11 x DIN -> DIN by:

(1I+ a(u))-P = h(ll+ a;u))*P

We now have

Proposition 3.2. The map f is an F[u]/U-module isomorphism.

Proof:

We already know that f is a vector space isomorphism. In order to

show that f is an F[u1/11-module isomorphism we just need to show that

f(GI + a(u))*p) = (11 + a(u)) • f(p) = (11+ a(u)) -1' = 11 (11 + a(u))*P

Let us shed that

f ( (11 + u) *i)) = h (11 + u) *P.

well
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f ((11 + u) *1,) 	 f (Gg• p)
I

gjk Bj.p.Ak

= (T + g(x,Y))*P

h(11 + u) *P

Now it is clear by induction that

f((11 + u l )*p) = h((11 + u'))*P

Therefore

f((E + a(u))*.E) = h(11 + a(u))*P

This completes the proof of Proposition 3.2. Fj
The equation we are considering takes the two forms given in (3.2)

and (1.1). we know that in order to obtain the unique solution to (3.2)

we have to invert the matrix G  or equivalently find the inverse of n + u

in F[u1 /R. The above Propositions show this is the same as obtaining the

inverse of T + g(x,y) in Ffx,yl/Y while working with form (1.1) of the

equation.

In the following two sections we will be concerned with the problem

of constructing the solution to several special cases of the general equa-

tiun. It is of course assumed that a unique solution does exist. We also

prove a stability theorem associated with the Lyapunov equation.

4.	 The Equation PA + BP =

As shown when proving the Main Theorem the solution to equation

PA + BP = Q is given by

I
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P	 fBA(f(x,Y)modT,Q)

where f (x, y) e F(x,y) , (Y + f (x, y) ) (Y +(x + y) ) = Y + 1.

It has also been mentioned Lhat such an f.(x,y) can be found by using

Resultant Theory (6) or from a constructive proof of the Hilbert-Nullstel-

lensatz. But in simple cases like this we need not resort to such general

Lheory.

In carrying out computations, it may be advantageous instead of finding

f(x,y) such that f(x,y)g(x,y) = kP 2 (x) +- k2Yy) +." to find fu (x,y) such

that fu (x,y)g(x,y) = k iY x) + kP 2 (y) + u where u is any moil-zero element

in 1'. Thu solution P is then given by P=(1/u)•fBA(fu(x,y)modT,Q).

We construct fu (x,y) in this manner.

We do have that

x + YIQ`(x)YY) - $1(Y)qji(x)

where

^1(x) = ^ 2 (-x) , ^1 (x) = ^2 (-x) .

Let

m2 (x) t 2 (Y) - ^ 1 (Y)4) 1 (x)
P( x ,Y) =

	

	 (4.1)x+y 

Since 2 (x),^1 (x) are coprimc (X i
 + ),]	

0 for all i,j) we have

c	 e	 ) c (x)

x  (x) ^I (x) + Pe (x) ^ 2 (x) = e

(9.2)

ae (x) W2 (x) + ue (x) ^ l (x) = e

f

4
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Let f (x,y) =	 (x)1:' (Y)P(r.,y), sinceu	 e	 e

f (x, Y) (x 1-Y)	 (x)u'(y)p(x,Y)(x+Y)u	 e	 e

?e(x)ue(Y)^ (x)^ (Y) + • (Y)W (Y)

+ OPC(x)Q,^(x) - 11 0 W x e- (y)^2 (x)'^2 (Y) - c.2

With u = - e 2 we have (Y + f
u 

(x,y)) (T + (Y.+y)) _ `y + u.

A different method for obtaining an f(x,y) such that

f(x,y)(x+y) = k 1^ 2 (x) + k 2 4) 2 (y) + 1 is the following:

Divide	 02(x) by x}y in x.

^ 2 (x) = h(x,Y) (r.+y) + h(Y)

For x _ -y we have Q 2 (-y) = ^ 1 (y) = h(y). Now since. ¢1(y),42(y) are

relatively prime there exist a(y),u(y) such that

A (Y) Q 1 (Y) + U (Y) ^2 (Y) = 1

«^	 X (Y) 1^ 2 ( x ) - h ( x , Y) (x+y) 1 + 11 (Y) W 2 (y) = 1

—	 -^ (Y) h (x, Y) (x+y) + 1 1 (Y) ^2 (x) + 11 (Y) 4'2 (Y) = 1

Let f(x,Y) = -I!(Y)th(x,Y)•

The Lyapunov Equation PA + A' P = Q

The Lyapunov equation is a special case of PA + BP = Q, B = A', A is

stable. With the appropriate modifications to the first procedure for

constructing the solution we have:

14

tam
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Let To (x),11 W be such that

Tt'(x)OP1(Y..) + I' e Wx 2 (x) = e

^ 2 (x) ^ 2 (Y) - ^ l (x) ^1 (y)
P(x,y) =	 x+y

e { 0

(4.3)

fu ( x ,Y) = T c (x)T_e (Y)P(x,Y)

Algorithm for solving the Lyapunov equation A'P + PA = Q.

R1) Obtain m2 (x) the characteristic polynomial of A.

^2 (x)^ 2 (Y) - ^1(Y)^1(x)
R2) set P( x ,Y) ° —	 x+y	 .

R3) Using the Extended Euclidean aigorittun or an equivalent

method obtain T (x) and e.
e

R4) Form fu (x,y) = Te(x)Te(Y)l'(x,Y)•

R5) Find Pu = fBA(fu (x,Y)modY,Q) .

R6) set P = uPu , u = -e2,

Computer Implementation

Since we are interested in an exact computer solution we restrict

the field of interest to that of the rational numbers R. The algorithm

is fully implementable, using the remarkable facilities provided by the

computer programming system MACSYMA available at M.I.T. MACSYMA is a

large computer programming system used for performing symbolic as well

as numerical computations.

la^



Three versions of the algorithm have been constructed and progr vfined

on MACSYMA. They are the Rational Algorithm, the Integer Algorithm, and

the Modular Algorithm having names indicative of the mode in which arith-

metic operations are carried out.

The Rational Algorithm

It consists of carrying out steps R 1 through R6 in rational arithmetic.

The Integer Algorithm

Suppose that matrices A and Q contained integer entries. The poly-

nomials © 2 (x), p(x,y) then have integer coefficients.

Letn
	 n-1 = ..

^? (x) = a 
n x + ° n-1 x	 •F a0

¢ 1 (x) = dnxn + do-lxn-1 + ... + d0

Define the 2nx2n matrix S

S = I

a 0 0 d 0 0n n

an-1 an 0 do-1
d
o-1 0

an-1

... an d l d 2 do

a0
al

11n-1
d0 dl

do-1

0
a0 c1n-2 0 d0

0 0 0 0

0 0 0 0a0 d0

31
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we know that detS { 0 since it is the resultant of ^ 1 (x) and Y x)

which are coi,rime. It we let e = detS the linear :system

	

n-1	 0

	

n-2	 0

^0

5	
Tn-1

Tn-1.

1 0	 _e

has an integer solution and we have integer polynomials

1 e	 n-1(x) = T	 xn-1 + ... T 0 , X e (x) = X I-1-11	 Ox
n-1 

+ ... + a which satisfy

I e (x)^ 1 (x) + xe(.-:)^2(x)	 e

This means that f
u 
(x,y) in (4.3) has integer coefficients and so does

f u (x,y)mod`Y, which implies that P  = fBA (fu (x,y)mod'Y,Q) has integer

entries.

The algorithm proceeds as follows.

I1) Wind ^2 (x) the characteristic polynomial of A.

¢ 2 (x) ^ 2 (Y) - ^ 1 (xI ^1 (Y)
I2) Set 1>( x ^Y) =	 x+y	 -

I3) Find 
T 

(x) and e.

4
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I4) Form f u ( x ,Y) = Tc(x)1(y)p(x,y).

I5) Find I'u = fBA(fu(x,y)modY,Q)

I G) set P _ u-Pu , u = -e2.

The Modular Algorithm

The integer algorithm paves the way for a modular approach to the

solution.

Suppose p is a prime that does not divide e

and Q = (q
ij

) are matrices with integer entries 1

p  = (a
ii
modp) he considered as matrices over Zh.

on a polynomial E)(x,y) written as pb(x,y) denotes

modulo p. Suppose that coefficient arithmetic is

= detS. If A = (aid)

et 
P
Q = (aij modp) and

A left subscript p

coefficient reduction

done modulo p. We then

have

p^2(x) = det(Ix - pA)

p (x,Y) = P_?^? 
x+y

> 1 p 1
p 

	 -

pT e (x) p^ l (x) + p X 
C 

W Pi 2 (x) = p 

pfu (x,Y) = p"Ce (x) pTe (Y) P1 ) (x,Y) -

Let 
p 

P u = fBA (f u (x,y) mod p`Y, pQ) where all arithmetic is clone modulo p and

pT = (pal(x), p^,,(y)) in Z1̂ [x,y]. If pPu aci 
p

d 	 are obtained for a suf-

ficient number of primes, the Chinese Rem.zinder Theorem can bu used to

find Pu and u making it possible to obtain the solution P = u.Pu'
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The algorithm is a es follows:

Ml ) Obtain PA, PQ.

Ml ) Obtain p^ W _ det(Ix - pA).

(x) m (Y) -	 (x) d (Y)
M3) set p P(x,Y) = i' 2 p? _—'_ 1 ._^__

M4) ohtain pTe (x), pe.

M5) Set pfu (x,Y) = pTe W Pp (Y) p P(x ,Y) -

M ay ) Obtain pPu = fBA(pfu(x,Y) modpT,pQ) .

M
7

) Repeat steps 1-6 for a sufficient number of primes and

using the Chinese Remainder Theorem find P  and u = -e2.

M) Set P = U• P8	 u.

Since considerable coefficient growth takes place in intermediate

computations of the Integer Algorithm, a lot of storage is being used

up. In such cases it is advantageous to use the Modular Algorithm.

Arithmetic Complexity of the Integer Algorithm

We are concerned with the number of integer operations (addition,

subtraction, multiplication, division) involved in running the Integer

Algorithm when A and Q are nxn matrices, using classical operations.

Step I 1 :	 There are severed methods for obtaining the Characteristic

polynomial Q 2 (x) of a stable matrix. Evaluating ^ 2 W at n distinct
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points and then solving for the coefficients requires 0(n 4 ) operations.

If n is small (say n <, 20), evaluating ¢ 2 0x) at x = 1 where X2 (1) - A,

A = (lou 10Al and then at x - 10x allows one to "read off" the coefficients

of 0 2 (x) frum a large integer. This procedure requires only 0(13)

operations.

Step I2	
7.

 This step can be done in 0(n ) operations.

Step I 3 :	 Solving a linear set of 2n equations :simultaneously is and

0(n 3) operation.

R
Step I4 :	 Performing the multiplication as I e (x)ft e (y) •p(x,y)) requires

0(n 3 ) operations.

Step I 5 :	 obtaining fu (x,y)modT involves two polynomial divisions

can be done in 0(n 3 ) operations. To form fBA (fu (x,y)modT,Q) we use

0(n 4 ) operations. In the event that the matrix Q is a product of vec-

tors Q = c-c' this calculation can be done in 0(n 3 ) operations.

Step I fs :	 It can be done in 0(n 2 ) operations.

It can therefore be seen that the overall calculation requires

0014 ) operations in general ar.d 0(n 3 ) operations in the special cases

mentioned.

Storage requirements are much harder to determine since the imple-

mentation is on a variable length word computer.
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Numerical Examples

We ncri continue	 this section by git_ng two numerical examples,

We wish to compute

G	 J x' (t) Q. x(t)dt
0

where x(t) is a solution to

,l
	

k  = AX (t)	 x(0) = c	 (*)

The system modelled by (*) is of the form

E	 3	 E	 ^

where the number of blocks is finite.

Example 1: The number of blocks is 5 with C=1, K=1, M =10000. Listed

are the corresponding A matrix, the Q matrix and the solution P `o the

equation PA + A'P = Q.

Example 2: The number of blocks is 2. Listed are the corresponding

A matrix in parametric form, the n matrix and the parametric solution

P of the equation PA + A'P = Q. The parametric solution P is valid

only for appropriate values of E, M, 1, (7.=t).



Example 1s

A,I

0 1 0 0 0 0 0 0 0 0

1 1 •1 1 0 0 0 0 0 0
^ 5000 5000 10000 10000

0 0 0 1 0 0 0 0 0 0

1 1 1
^ 

1 1 1 0 0 0 0
10000 10000 5000 5000 10000 10000

0 0 0 U 0 1 0 0 0 0

1 1 1 — 1 1 1
0 0 10000 10000 5000 5000 10000 10000 0 0

0 0 0 0 0 0 0 1 0 0

1 1 1 1 1 10 0 0 0 _
10000 10000

_
5000 --5000 10000 10000

U 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1 _ 1 _ 1
10000 10000 5000 - 5000

4 -:

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 o o o 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

'i^
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P o

—2 0 0 0 0 0 0 0 0 0

0 _17500 0 _10000 0 —2500 0 _5000 0 _2500

3 3 3 3

0 0 -^ 0 0 0 0 0 0 0

_10000 _20000 _10000 5000o 0 0 -50d^ p 0

3 3 3 3

0 0 0 0 0 0 0 0 0_2

0 -2500 0 -5000 0 -7500 0 -5000 0 -2500

0 0 0 0 0 0 -1 0 0 0

-5000 _10000 -20000 __100000
3

0
3

0 -5000 0
3

0
3

0 0 0 0 0 0 0 0 -2 0

0
_2500 0 _ 5000

0 -2500 0 -10000 0 _12500

3 3 3 3

Example 2.

0 1 0 0

2E 2Z E z
M rd 111 1•1

A-
0 0 0 1

F. z _2E _27.

r^ ri ►.i ti

0 0^0 0

0 1 0 0

4
0 0 0 0

0 0 0 1

J, 0 02'l.
_M M0 0

3Z 6ZP _

0 0 —2L 0

0 0
6Z 3Z

aft
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In closing thin section it is interesting to obnerve hcrd the idt-as

presented here cats be u3ed to prove stwbility theorems constructively

In particular we prove

Theorem 4.1. Let A lie an nxn matrix over the reds R. Let C be a

pxn matrix. If A is is :stability matrix and (A,C) an observable Fair

then the equation PA + A'P - -C'C has a unique symmetric positive definite

solution P.

Before proceeding with the proof we introduce the notion of a Positive

polynomial in R(x,y] (2]. If p(x,y) is in Rfx,y] we can write it

as

p(x,Y) = 9. 1 (Y)C(P)k(x)

where X(z) is the column vector l,z,...zn-1, n with n being one plug

the largest power of p(x,y) in either x or y and C(p) an nxn matrix

over R. This introduces a bijection between R(x,y] and the set of all

square matrices. We then call a polynomial p(x,y) positive if C(p) is

i) symmetric and ii) positive definite. One can then prove (2] that

f)(x,y) in F :,y] is positive if and only if there exist polynomials

n l , 71 
2P .
	 nm (m the size of C(p)) such that

m

P(x ,Y) - AE Tri 
(x) 71 i ( y)

i=1

where (TT i ( x)) are a basis for the vector space (over R) of polynomials

of Llegree less than m. one can also prove (2] that the f u (x,y) mod Y

given in (4.3) is positive.
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Proof of Theorem 4.1

Since A is a stability matrix ^ i + ^ j f 0 for all i,j therefore

i unique solution P to the equation F + A'P - -C'C exists. We also have

that f
u 

(x,y) mud T is positive. we can therefore write

fu (x,y) mod T = AITi(x)iti(Y)

We know that the unique solution is given by

P = u fbA ( fu (x,Y) mod W, -C'C)	 (u = -e2)

2	
fPA (7t i (x)7ri (y), C'C)

C	 i--

	

12-	 7T. (A') 	 7Ti(A)

Since C'C > 0 we have P > 0.

Suppose now that there exists z = 0 such that z'Pz _ 0.

>	 I jC7T 
i 

(A) zj l = 0	 for	 1<i<n

>	 C17. (A)z = 0	 for	 1<i<n
1	 -- —

Since {7t 
i ) are a basis there exists a matrix T ouch that

	

7t h (x)	 1

T 7( z ( x)

rT-1

	

7T (X)	 Xn

=I
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fBA(ti1•7T1(x) +...+ t 
in' 

Irn (x), C) - CA i-1 1<i<n where ( til , ... It.

the ith row of T

n

-> Lt. . CN (A) = CAi-1
J=1 iJ

n
►refine the operator if = Rn = R	 by.

C
CA

If (w) _	 w

CAn -1

Since (A,C) observable pair the null space of H is W, and since
n

C7r.
1 

(A)z = 0 this implies that Et 
1J
„r, 

J
, (A)z = 0 for all 1<i <n

-j=1

_-,>	 if (z) = 0.

This is a contradiction since z / 0.

S. The Equation-P-BPA = R

Pie again wish to construct f (x,y) ,such that (T + f (x,y))(`P + (1-xy) ) __

T + 1. Let

y 2 (x) = det (1x-A) = anxn + axn-1 +...+ a 1 x + a0

t 2 (x) - det(lx-B) = bmxm + b
m-lx

m-1 +... b 
1 
x + b0

(x)
n	 n-1

	

_= a0x + a lx	 +...+ an

	t
3 
(x) = b 

m
Ox + b 

m-1
lx	 +...^ bm

From the above definition we can see that the roots of Q 3 (x) arG the

values	 where 
Xi ¢ 

0. Since we assume that a unique solution exists
i

a

A*
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we must have 1- Aiuj ¢ 0 'or all i,j. Then we must have that ^2(x),

W3 (x) are coprime. Becaune if they have a non-trivial factor Y, (x) they

must also have at least one common root (i.e.,
i	 ll

. for at least

7
some (i.j)).

On the other hand we also have that

a) if n > m then 1 - xy I yn-ma2 (x)1P2 (Y) - 
^3 (y) 

4)3 
(x)

b) if n < m then 1 - xy I xm-n Q 2 (Y)'J2 (Y) - ¢3 (Y) ^3 (x)
s

We are now ready to construct f.(x,y).

Since 41 3 (x) ^2 W are relatively prime we have A (x) 1 1 (x.)	 (x) X' (x)

such that

a (x) ^3 (x) + li (x) ^2 (x) = 1

A ' (x) W2 (x) + U' (x) ^3 (x) = 1

If n>m let

Yn-m (x)  2 (y) - 
^ 3 (Y) ^3 (x)

if n<m let

xm-n^2 (x) ^'
2 (Y) - ^ 3 (Y) ^3 (x)

1 - xy

Then f(x,y) = U(x)lj' (Y) P(x,Y)

The discrete Lyapunov equation P - A' PA = Q is a special case.

E. over Integral Domains

Suppose now that we are investigating equation (1.1) over F some

integral domain. The next proposition gives a necessary and sufficient

J
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condition for the existence of a unique :solution to (1.1) for all Q.

Proposition - 6.1. Equation (1.1) has a unique solution over E, for each

Q, iff Y + g(x,y) is a unit in E(x,y)/`Y.

Proof:

Let P = f. BA (f(x,y) mod T, Q) where £(x,y)g(::,y) = k1(x,y)^2(x) +

k2 (x,Y) ^2 (Y) +1

i
B PA] = fBA (q(x,y), P)

= f BA W
x , y ) , fBA (f (x,y) , 9) )

BA (1 , 9) °= Q

The solution P is unique. This follows in the same manner as in the

proof of the Main Theorem.

Suppose that equation (1.1) does have a unique solution for all Q.

This means that G in (3.2) is invertible. We have that 7r(u) = det(Iu 	 ).
9	 g

From the Cayley-Hamilt,)n theorem if Tr(u) = 7rtut + ITt-lut-1 +. .+ Tr0

7r (G g) - 7fGt +...+ TI I = 0t 
g

Let f (u) _ _ Tft
ut-1 - ^t-1 ut-2 -

'fr	 7f

	

0	 0
Therefore 11 + u is a unit in E [u] /11.

remains valid. Therefore

TI 	 Then f (u) - u+ 1 . TT (u) 1 .
7f0
	

IT

The proof of Proposition 3.1

(11 + f (u) ) (11 + u) = 11 + 1

h(Tr+f(u)) • h(1T+u) = T+1

>	 (Y'+ f (g (x, y) ) (Y' + g(x,y) ) = Y + 1

whiCh means that Y + g(x,y) is a unit in F[x,y] /Y'.
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