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1.0 SUMMARY 

The purpose of the Noise Measurement Addendum t o  the  Fxperimental Clean 
Combustor Program sponsored by the  NASA Lewis  Research Center under Contract 
NAS3-19736 was t o  inves t iga te  by experiment the noise c h a r a c t e r i s t i c s  of the 
Double Annular combustor i n  the CF6-50 high bypass turbofan engine. The pro- 
grarc object ives  were t o  measure and compare the engine combustor i n t e r n a l  
pressure spec t ra  with t e s t  r i g  r e s u l t s  from ECCP Phases I and 11, t o  deter- 
mine the acoust ic  t ransfer  function, comparing the  r e s u l t s  with component 
t e s t s  and theo re t i ca l  predict ions,  and t o  inves t iga te  the  primary noise  
source loca t ion  i n  the combustor. 

The s a l i e n t  r e s u l t s  and conclueions from t h i s  inves t iga t ion  a r e  a s  
follows: 

Engine t e s t  r e s u l t s  show spec t ra  from i n t e r n a l  measurments t o  
exh ib i t  the  t yp ica l  core noise  spec t ra  shape a t  approach power 
s e t t i n g s  and below with peaks i n  the  400 t o  600 Hz frequency bands. 

Engine t o  duct  r i g  r e s u l t s  show l a rge  d i f fe rences  (10 t o  25 dB) 
on a pressure bas i s  but  exhib i t  much c loser  agreement (3 t o  8 dB) on 
a power l eve l  bas i s .  The spec t r a l  shapes f o r  both the i n l e t  and 
discharge planes of the  engine and duct r i g  were s imi la r .  Differ- 
ences i n  t e s t  conditions,  f u e l  s p l i t s ,  measurement loca t ions  and 
the  presence of t h e  choked HPT nozzle diaphragm i n  the engine were 
c i t ed  a s  possible  causes fo r  the  l eve l  differences.  

The turbine t ransfer  funct ion i n  terms of a t tenuat ion agreed well  
with component r e s u l t s  and theo re t i ca l  predict ions.  

%'he exact loca t ion  of the primary noise source within the combustor 
was undefined from present measurements. The bes t  ind ica t ion  f o r  
the primary source locat ion is i n  the  region between the  combustor 
e x i t  and the region forward of the  core nozzle e x i t .  

Operation of the Double Annular combustor with p i l o t  f u e l  only 
r e s u l t s  i n  higher OAPWL than when f u e l  s p l i t s  between inner and 
outer  burner s tages  a r e  used. This is pa r t i cu l a r ly  c r i t i c a l  at 
approach power s ince  the difference can be a s  much a s  9 dB. 

A b e t t e r  understanding of combut:tor noise during engine operation was 
gained from t h i s  program. These r e s u l t s  w i l l  be usefu l  i n  evaluating the 
core noise transmitted from the engine t o  the f a r f i e l d  i n  t e s t s  t o  be con- 
ducted under another NASA Lewis program. 



2.0 INTRODUCTION 

The NASA/General E l e c t r i c  Experimental Clean Combustor Program has been 
s p e c i f i c a l l y  d i rec ted  toward developing an advanced low emission, low noise  
combustor f o r  use i n  the General E l e c t t f -  'F6-50 engine family, The CF6-50 
engine family is  the  higher power so!.. L .  \ h e  two CF6 high bypass turbofan 
engine fami l ies  developed by Gencre : G1ecti-i: . 

Noise evaluat ion a s  wel l  a s  emissions t e s t t n g  have played important 
r o l e s  i n  the  development work conducted during t h i s  program. Acoustic measure- 
ments have been made on seve ra l  f u l l  s i ze ,  annular combustor configurat ions 
t e s t ed  i n  Phases I and I1 of the  Experimental Clean Combustor Program (ECCP) 
during duct  r i g  t e s t i ng .  These measurements ind ica ted  t h a t  t h e  peak sound 
pressure l e v e l  (SPL) occurred near a frequency of 1000 Hz. Generally, fa r -  
f i e l d  da ta  on engines have been found t o  peak a t  400-500 Hz. This d i f fe rence  
between an i so l a t ed  combustor running i n  a component test s tand and a combus- 
t o r  on an engine is the  b a s i s  f o r  the study reported here. In order  t o  
i nves t i ga t e  the  e f f e c t  of the engine i n s t a l l a t i o n  on the  combustor acous t ics  
i t  is necessary t o  take acous t ic  measurements on a given combustor both i n  
t h e  combustor development r i g  and i n  t he  engine. During Phase I and I1 of 
the  ECCP, acous t ic  measurements were made i n  a combustor development r i g  on a 
combustor s imi la r  t o  the  one used i n  t he  engine demonstration tests under 
ECCP Phase 111. 

The work sponsored under t h i s  acous t ic  addendum t o  NASA Lewis Contract 
NAS3-19736 provided the  measurements i n  the engine necessary t o  evaluate  the  
combustor engine acous t ic  s igna ture  and the acous t ic  transmission l o s s  of the  
low frequency combustor noise  through turbine. 



3.0 DESCRIPTION OF TEST 

CF6-50 ENGINE TEST VEHICLE 

The t e s t s  conducted under Phase 111 were performed on a CF6-50 high by- 
pass turbofan engine. The basic  engine descr ip t ion  and d e t a i l s  of the  spe- 
c i f  i c  conf igura t  ions tested fo r  the emissions inves t iga t ion  a r e  found i n  
Reference 1. The CF6-50 engine model operating parameters were selected f o r  
use a s  the  combustor design and t e s t  conditions of t h i s  program. Key overa l l  
spec i f ica t ions  of t h i s  engitrd a r e  presented i n  Table 1. 

3.2 DOUBLE ANNULAR COMBUSTOR, DUCT R I G  AND ENGINE 

3.2.1 Design Concept 

In the  Phase I and 11 Programs, four advanced combustor design concepts 
were evaluated i n  CF6-50 engine-size f u l l  annular combustor duct r i g  tests 
(References 2-5). The bes t  ove ra l l  r e s u l t s  fo r  engine appl icat ion were 
obtained with the  Double Annular combustor configuration D-12, which was the 
prototype f o r  t he  fl ightworthy demonstrator Double Annular combustor designed 
i n  the Phase 11 Program f o r  use i n  these Phase I11 Program combustor r i g  and 
CF6-50 engine t e s t s .  Acoustic component t e s t s  were conducted i n  Phase I1 
(Reference 5. on a Double Annular combustor configuration D-13 which was very 
s imi la r  t o  t h  D-12 design. The D-13 difcnred from the D-12 by the  percent- 
ages of a i r f low d i s t r i bu t ion  through i l o t  and main s tages  as  noted i n  
Table 2.  

The Double Annular combustor comprises two annular primary burning 
zones, i n  p a r a l l e l ,  separated by a shor t  centerbody. Thir ty  f u e l  nozzles a r e  
used i n  each annulus. The outer  annulus is  the p i l o t  s t age  and is always 
fueled. The inner annulus is the  main s t age  and is fueled only a t  higher 
engine-power operating conditions.  The a i r f low d i s t r i b u t i o n  is highly 
biased t o  the  main s tage  in  order t o  reduce both i d l e  and high-power emis- 
sions. The p i l o t  s t age  a i r f low is spec i f i ca l ly  sized t o  provide nearly 
s toichiometr ic  fuel-air  r a t i o s  and long residence times a t  i d l e  power s e t t i n g s ,  
thereby minimizing C3 and HC emissions levels .  A t  high-power operating 
conditions,  most of t he  fue l  is supplied t o  the  main stage. In  t h i s  s tage,  
the residence times a r e  very shor t .  Also, a t  high-power operat ing conditions,  
lean fuel-air  r a t i o s  a r e  maintained i n  both s tages  t o  minimize NOx and smoke 
emissions levels .  

3.2.2 Engine Demonstrator Combustor Design 

With t h i s  Double Annular combustor concept, program goals f o r  CO and HC 
emissions a t  i d l e  operating conditions were achieved ea r ly  i n  the Phase XI 
Program, and maintained throughout the  f i n a l  combustor refinement test se r i e s .  
The emphasis i n  t h i s  f i n a l  s e r i e s  of refinement tests was therefore  t o  more 
nearly approach the  N4, emission goal, and t o  meet t h e  engine i n s t a l l a t i o n  



Table 1. CF6-50C Engine Specif icat ions.  

Takeoff Rating (SLS) 
.Yilrust 224.2 kN (50,400 I.bf) 
Speci f ic  Fuel Consumption 10.7 m g l ~ s  (0.377 lbmllbf-hr) 

Maximum Cruise  (Mach 0.85110.7 km) 
Thrust 48 kN (10,800 l b f )  
Spec i f ic  Fuel Consumption 18.6 mg/Ne (0.656 lbmllbf-hr) 

Weight; 3780 kg (8330 lb )  

Length 482 c m  (190 in)  

Maximum Diameter 272 cm (107 in)  

Pressure Rat io  
Takeoff 
Maximum Cruise 

Bypass Rat io  (Takeoff) 4.4 

Tota l  Airflow (Takeoff) 659 kg/s (1452 lbm/s) 
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and performance requirements. I n  t h i s  s e r i e s ,  very l i t t l e  change i n  NOx 
emission l e v e l s  was obtained and engine i n s t a l l a t i o n  and performance r e q ~ i r e -  
ments were most near ly  met with conf igura t ion  D-12 which was t h e r e f o r e  se- 
l ec ted  as the  prototype f o r  a more s o p h i s t i c a t e d  second generat ion vers ion  of 
t h i s  ,~dv;~i lccd low e1111ssion c.omhustor design f o r  use i n  t h e  Phase 111 demon- 
s t r a t i o n  engine t e s t s .  This  second generat ion combustor conf igura t ion  was 
needed because the  prototype coaf igura t ion  used i n  Phases I and I1 was de- 
s igned t o  accommodate d i f f e r e n t i a l  thermal growths, p ressure  loads ,  v i b r a t i o n  
loads ,  and mechanical assembly were n c t  adequate t o  permit t h e  use of t h i s  
combustor i n  engine t e s t s .  

The r e s u l t i n g  demonstrator engine combustor des ign is  shown i n  Figure  
3-1. The aerothermal design f e a t u r e s  of t h i s  demonstrator engine combustor 
was pat terned a f t e r  those  of the  prototype combustor. I n  a d d i t i o n ,  advanced 
aeromechanical design f e a t u r e s  der ived from o t h e r  General E l e c t r i c  programs 
were incorporated i n t o  i ts  design. 

Key aerothermal design parameters of t h e  Double Annular combustors a r e  
compared i n  Table 2. Airflow d i s t r i b u t i o n s  a r e  very similar except t h a t  t h e  
demonstrator combustor dome cooling a i r f l o w s  a r e  s l i g h t l y  higher  which is 
accomplished p r imar i ly  by reducing p r o f i l e  t r i m  a i r f low.  Key v e l o c i t i e s  a r e  
a l s o  very s i m i i a r  except t h a t  inner  and o u t e r  passage v e l o c i t i e s  of t h e  
demonstrator combustor a r e  more near ly  equal ized t o  reduce p a r a s i t i c  p ressure  
losses .  Dome he igh t s  of the demonstrator combustor were increased about 20 
percent  t o  provide the  a d d i t i o n a l  room wi th in  t h e  cowl t o  accommodate t h e  
needed r a d i a l  movements of t h e  s w i r l  cup s l i p  j o i n t s .  

3.3 - TEST OBJECTIVES 

The a c o u s t i c  t e s t  of the  Double Annular combustor i n  t h e  CF6-50 engine 
provided the  f i r s t  i n d i c a t i o n  of i n t e r n a l  f l u c t u a t i n g  p ressure  measurements 
f o r  t h i s  type of combustor i n  an engine environment. Previous duct  r i g  
measurements gave l e v e l s  of noise  based OIL t e s t s  conducted a t  sca led  engine 
cond i t ions  a t  l o c a l  s t a t i c  p ressures  of up t o  10 a t m .  compared t o  engine 
pressure  l e v e l s  of 26 atm a t  takeoff .  The engine test provided a base f o r  
comparison with the  duct r i g  r e s u l t s  from Phase I and 11. 

Other t e s t  ob jec t ives  included determining t h e  a c o u s t i c  t r a n s f e r  func- 
t i a n  across  the  tu rb ine  by eva lua t ing  t h e  a t t e n u a t i o n  of t h e  a c o u s t i c  s i g n a l  
upstream and downstream of t h e  tu rb ine ,  and i d e n t i f y i n g  t h e  l o c a t i o n  of t h e  
primary noise  source wi th in  t h e  combustor from cross -cor re la t ion  a n a l y s i s  
r e s u l t s .  

3.4 - ENGINE SETUP FOR ACOUSTIC MEASUREMENTS 

The a c o u s t i c  t e s t s  of t h e  ECCP Phase 111 Double Annular combustor in- 
s t a l l e d  i n  CF6-50 engine number 445-10517 were conducted a f t e r  completion of 
t h e  combustor perfrnnance and emissions tests. The engine t e s t  c e l l  i n s t a l -  
l a t i o n  and se tup  f o r  these  t e s t s  is descr ibed i n  t h e  ECCP Phase I11 f i n a l  





report  on the emissions t e s t ,  Reference 1. The acous t ic  t e s t  setup u t i l i z e 4  
the  same engine configurat ion except t ha t  the gas sampling rakes i n  t he  tort: 
exhaust and those i n  the turbine r e a r  frame were removed. The basic  aero- 
dynamic performance and engine s a f e ty  instrumentation remained e s s e n t i a l l y  
the  same a s  described i n  Reference 1. 

Dynamic pressure instrumentation was i n s t a l l e d  i n  ava i lab le  access po ct  ; 

a t  three a x i a l  planes i n  the combustor region and a t  the core nozzle. An 
ex te rna l  probe mounted i n  the t e s t  c e l l  was used t o  i nd i ca t e  c e l l  noisc 
l eve l s  and t o  attempt t o  determine the  amount of combustor noise  t ranslerr .11 
ou ts ide  the  engine. Acoustic probes were posit ioned i n  the W A R  port  a t  l h l e  

compressor discharge, Plane 3.0; i n  the borescope po r t s  a t  combustor r:nt..-ance, 
Plane 3.5; i n  the borescope por t  of the  f i r s t  s t a g e  turbine nozzle a t  the 
combustor e x i t ,  Plane 4.0; and a t  the  core nozzle discharge, Plane 8.0, as 
i l l u s t r a t e d  i n  Figures 3-2 and 3-3 respect ively,  and shown i n  the  photographs 
of Figures 3-4, 3-5 and 3-6. 

3.5 TEST MATRIX 

211e t e s t  matrix for  acoust ic  da ta  pa ra l l e l ed  the conditions s e t  f o r  the 
combustor performance and emissions tests. This was done t o  match the  poise 
s igna ture  of the combustor with comparable emissions r e s u l t s  i n  order  t o  
a s se s s  the ove ra l l  e f fec t iveness  of the  Double Annular combustar. The t e s t  
po in ts ,  based on percent net  t h rus t ,  covered the s ea  l e v e l  s t a t i c  operating 
l i n e  of the  CF6-50 engine and included i d l e ,  approach and takeoff power 
s e t t i ngs .  A t o t a l  of e igh t  (8) test condi t ions were set. Repeat readink3 
were taken t o  check data  r epea t ab i l i t y  and t o  supplement sensor measureme~lts 
of severa l  t ha t  were l o s t  during the  run due t o  equipment malfunctions. 
Table 3 sunrmarizes the test mat .x f o r  acous t ic  da ta  and shows t h a t  a l l  
required condi t ions were obtained. Matching repeat  po in ts  and redundant 
probes a t  two of the  four a x i a l  planes provided complete sets of measurements 
a t  every plane f o r  each test point.  The e igh t  test condi t ions included two 
approach poin ts  a t  30% n e t  th rus t .  The f i r s t  approach s e t t i n g  consis ted of 
the  100% p i l o t  f u e l  only, while the  second condition approximated the  50% 
f u e l  s p l i t  between inner  and outer  sets of f u e l  nozzles. 

Aerodynamic performance da ta  was provided a t  each t e s t  condition through 
a combination of the  on-line DMS (Data Management System) readings supplied 
f o r  each engine point s e t t i n g  and some performance da ta  supplied by readings 
taken a t  s imi l a r  s e t  points  during the running of the  emissions tests. This 
was necessary as  a r e s u l t  of d i g i t a l  system problems encountered during the  
acous t ic  run. The paired aero and acous t ic  da ta  a r e  compatible f o r  a l l  t e s t  
conditions and represent t yp i ca l  s e t t i n g s  with t h i s  engine. 

3.6 DATA ACQUISITION SYSTEMS 

The da ta  acquis i t ion  systems f o r  t h i s  test included both analog and 
d i g i t a l  systems. The acous t ic  da ta  was acquired from combustor i n t e rnc r  
f luc tua t ing  pressure measurements made with four  single-element waveguide 
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probe systems loca ted  a s  i l l u s t r a t e d  i n  Figure  3-2. The i n t s r n a l  measure- 
ments a t  t h e  core  nozzle  e x i t  were acqu i red  wi th  a dual-element snund sepa- 
r a t i o n  probe wi th  12.7 cm a x i a l  spacing between sensors .  Figure  3-3 shows 
t h i s  probe, 

The waveguide sensors  cons i s t ed  of K u l i t e  p r e s s u r e  t r ansducers  (XGE-1S- 
375-200D) AC-coupled and mounted i n  a i r -cooled tee-blocks. A capped 12.192 
meter long semi - in f in i t e  c o i l  was f i t t e d  t o  one e r d  of the  t e e ,  whi le  t h e  
o t h e r  end of the  t e e  was connected t o  a s t andof f  tube  approximately 30.48 cm 
long which was mounted t o  t h e  engine  t o  complete t h e  system. The K u l i t e  sys- 
tem e x c i t a t i o n  v o l t a g e  was provided by a cons tan t  10  VDC source.  The output  
s i g n a l  was ampl i f ied  p r i o r  t o  zecording on magnetic tape.  I n i t i a l  ampl i f ica-  
t i o n  was provided by the  tape  recorder  p r e a m p l i f i e r s  which were s e t  on cons tan t  
ga in  s e t t i n g s .  A second s e t  of a m p l i f i e r s  i n  s e r i e s  wi th  t h e  p r e a m p l i f i e r s  
had a d j u s t a b l e  ga in  s e t t i n g s  which provided t h e  f i n a l  s i g n a l  boost  ensur ing  
the  s i g n a l  t r ansmi t t ed  from the  K u l i t e  was w e l l  above t h e  system no i se  f l o o r .  

The s i g n a l s  were recorded on a 28 channel Sabre I V  magnetic t ape  re- 
corder  a t  76.2 cm/s up t o  10000 Hz. Approximately 1 .5  t o  2 min. of d a t a  
were recorded a t  each t e s t  condi t ion.  S i g n a l  po1arii:y was checked f o r  a l l  
sensors  p r i o r  t o  recording data .  A spectrum ana lyze r  connected i n  p a r a l l e l  
w i t h  t h e  t ape  recorder  and coupled t o  an X-Y p l o t t e r  enabled on-l ine 10 Hz 
narrowband s p e c t r a  t o  be acquired during t h e  t e s t  run. Th i s  provided a check 
of the  measurements and an i n d i c a t o r  of sensor  s i g n a l  v a l i d i t y .  The spectrum 
analyzer  d i d  no t ,  however, g ive  a check on p o l a r i t y .  Figure 3-7 is a schematic 
i l l u s ~ r a t i o n  of t h e  d a t a  a c q u i s i t i o n  system setup.  

3.6.1 K u l i t e  Waveguide Probe P r e t e s t  C a l i b r a t i o n  

P r i o r  t o  recording da ta ,  t h e  K u l i t e  sensor  c a l i b r a t i o n s  were e s t a b l i s h e d  
f o r  each recorder  channel. Bench s e n s i t i v i t i e s  determincd f o r  each K u l i t e  
sensor  i n  the  l abora to ry  were used t o  se tup  t h e  tape  recorder  c a l i b r a t i o n .  
The bench s e n s i t i v i t i e s  and e x c i t a t i o n  v o l t a g e  combinations were set w i t h  a 
dial-a-source vo l t age  f o r  a h igh p ressure  (0.68 atmj system used wi th  t h e  
waveguide probes,  and a low pressure  (0.068 atm) system f o r  the  exhaust  and 
c e l l  probes. Gain s e t t i n g  adjustments were made on both s e t s  of a m p l i f i e r s  
t o  match a 4 v o l t  peak-to-peak t a p e  recorder  i n p u t  s i g n a l  requirement. Once 
t h i s  was e s t a b l i s h e d  an AC c a l i b r a t i o n  from an e l e c t r i c a l  source  was recorded 
on a11 channels which referenced each K u l i t e  sensor  l e v e l .  

3.6.2 Frequency Response and Phase C a l i b r a t i o n  

Frequency response and phase c a l i b r a t i o n s  a t  ambient cond i t ions  (room 
temperature) were performed on the  K u l i t e  sensors  loca ted  i n  t h e  combustac 
region (MADAR, 102', 282' and HPTN borescope p o r t s ) .  This was done t o  ac- 
count f o r  probe l o s s e s  r e s u l t i n g  from t h e  s tandoff  tube  l eng th  r e q u i r e d  on 
each sensor .  The a c o u s t i c  probe loca ted  i n  t h e  core  exhaust  d i d  no t  r e q u i r e  
c a l i b r a t i o n  s i n c e  the  K u l i t e s  were f l u s h  mounted on t h e  probe and previous  
c a l i b r a t i o n s  showed a f l a t  frequency response over t h e  range of  i n t e r e s t  and 
up t o  10 KHz. 
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C a l i b r a t i o n  System 

The apparatus  se tup  f o r  t h e  frequency response and phase c a l i b r a t i o n s  is 
a s  shown I n  t h e  schematic of Figure  3-8. The c a l i b r a t i o n  .system cons i s t ed  of 
a  p lane  wave tube wi th  s u f f i c i e n t  tube l eng th  t o  dampen r e f l e c t i o n s  i n  the  
frequency range of 100 t o  5000 Hz. 

A t  t h e  t e s t  s e c t i o n ,  a  f l u s h  mounted K u l i t e  p ressure  t r ansducer ,  type  
CQL-125-25D, was used a s  t h e  re fe rence .  The t e s t  probe i n  each ca.e was 
posi t ioned a t  t h e  samb* a x i a l  p lane  and d i sp laced  90' from t h e  re fe rence .  The 
K u l i t e  e x c i t a t i o n  v o l t a g e  was supp l i ed  by 6 v o l t  b a t t e r i e s .  The output  of 
each system went through a  low n o i s e  a m p l i f i e r  and then i n t o  t h e  s i g n a l  
genera t ing  u n i t .  

The monitor sign;  a  pure tone swept through t h e  frequency range.  
The s i g n a l  was suppi le :  . 3 sweep o s c i L l a t o r  which was c o n t r o l l e d  by a  auto- 
matic l e v e l  r e g u l a t o r  & 2 l i f i e d  by p r e  and power a m p l i f i e r s  be fo re  being 
fed  i n t o  t h e  speaker  mounted a t  one end of t h e  p lane  wave tube. The output  
of the  sweep o s c i l l a t o r  was connected t o  t h e  X-axis (frequency s c a l e )  of an 
X-Y recorder .  

The frequency response  of t h e  t e s t  probe and r e f e r e n c e  K u l i t e  were 
measured consecu t ive ly  wi th  a  dynamic analyzer .  The output  of each K u l i t e  
system was p l o t t e d  on t h e  Y-axis (dB s c a l e )  of t h e  X-Y recorder .  The sens i -  
t i v i t y  of each K u l i t e  system was ad jus ted  t o  measure the  same l e v e l  of sound 
p ressure  i n  t h e  tube a t  the  t e s t  s e c t i o n .  This  assured t h a t  both K u l i t e s  
sensed t h e  same s i g n a l  i n  p lane  wave form. 

Phase c a l i b r a t i o n s  were performed wi th  the  use  of a  phase meter. The 
output  s i g n a l s  of t h e  r e f e r e n r e  and t e s t  probe K u l i t e  were l ead  i n t o  t h e  
phase meter inpu t  channels ,  A E B, r e s p e c t i v e l y .  Adjustments t o  account f o r  
any e l e c t r o n i c  d i f f e r e n c e s  between t h e  K u l i t e  systems ( s e n s i t i v i t i e s ,  e r c , )  
were performed t o  ensure  t h a t  t h e  output  s i g n a l  p l o t t e d  on t h e  Y-axis (phase 
ang le ,  deg.)  represented t h e  complete phase d i f f e r e n c e  between t h e  f l u s h  
mounted re fe rence  and t h e  t e s t  K u l i t e ,  

L imi ta t ions  t o  t h e  c a l i b r a t i o n  system were as follows: 

Frequencies below 100 Hz were not  a t t a i n a b l e  beczdse of t h e  danger 
of  exceeding t h e  speaker  maximum v o l t a g e  l i m i t x i o n .  

Ambient c a l i b r a t i o n s  (frequency response  and phase) do not repre-  
s e n t  a c t u a l  t e s t  c o n d i t i o n s  u n l e s s  t h e  s t a t e  p r o p e r t i e s  a r e  mea- 
su red  a t  t h e  K u l i t e  l o c a t i o n .  Care must t h e r e f o r e  be used when 
applying ambient c o r r e c t i o n s  ( e s p e c i a l l y  phase) t o  t h e  hot  t e s t  
d a t a .  





Waveguide Probe C a l i b r a t i o n  Resu l t s  

Two types of probe systems were c a l i b r a t e d .  One system (System A) con- 
s i s t e d  of  0.635 cm 01). 0.00711 cm w a l l  tubing and had a 33.02 cm long stand- 
off  tube. Th i s  system was used i n  t h e  W A R  por t  and combustor borescope 
por t s  a t  102" and 282". The o t h e r  system (System 8) used i n  t h e  HPT nozz le  
borescope por t  cons i s t ed  of 0.635 cm OD, 0.01245 cm w a l l  tubing wi th  a 19.05 
cm long s tandoff  tube. Both types  of systems used a s t andard  t e e  K u l i t e  
mount f i t t e d  wi th  an air-couled j a c k e t .  A l l  systems used a type  XGE-lS-375- 
200D Kul i t e  p ressure  t ransducer  wi th  t h e  re fe rence  p r e s s u r e  tube pneumat- 
I - a l l y  coupled t o  the  semi - in f in i t e  c o i l  mounted a t  t h e  end of t h e  probe. 

The frequency response of t h e  systems a r e  shown i n  F igures  3-9a-c. 
The response of System A is  shown i n  Figure  3-9a wi th  a s t r a i g h t  s t andof f  
tube and i n  Figure  3-9b wi th  t h e  curved tube a s  run on t h e  engine. Both re-  
sponse curves a r e  smooth t o  1000 Hz wi th  a l o s s  of about 1.5 ds .  A t  2000 Hz 
they a r e  down 2 dB whi le  a t  5000 Hz t h e  l o s s  is 3.5 and 4.5 dB, r e s p e c t i v e l y .  
Agreement w a s  e x c e l l e n t ,  showing no s i g n i f i c a n t  l o s s  due t o  t h e  curved tube,  
and the  response was w e l l  w i t h i n  t h e  s p e c i f i e d  requirements.  The system 
response curves apply t o  t h e  borescope K u l i t e s  a t  102' and 282" a l s o ,  s i n c e  
they were of t h e  same conf igura t ion .  

The KPT nozz le  Kul i t e ,  System B, had a response a s  shown i n  F igure  3-9c. 
It is smoath t o  1000 Hz wi th  a drop of 2.5 dB a t  2000 Hz. However, above 
2000 Hz the  dropoff r a t e  increased t o  7 dB a t  5000 Hz which was a t t r i b u t e d  
t o  the  smal ler  diameter tubing requ i red  t o  f i t  i n t ~  t h e  p h y s i c a l  c o n s t r a i n t  
of the  HPT nozzle  borescope plug. Since t h e  majol p o r t i o n  of t h e  frequency 
range below 3500 Hz had s i g n i f i c a n t l y  l e s s  than a 5 dB l o s s  r h e r e  was no 
s e r i o u s  t e c h n i c a l  l i m i t a t i o n  on t h e  d a t a  acquired wi th  t h i s  sensor .  

The response i n  t h e  low f requenc ies  (30-100 Hz) is f l a t  from previous  
experience.  Therefore,  a smooth e x t r a p o l a t i o n  of t h e  response  curve  from 
100 Hz t o  30 Hz was performed t o  complete the  curve. 

The phase c a l i b r a t i o n  of System A is shown i n  Figure  3-10a f o r  t h e  curved 
s tandoff  tube conf igura t ion  on t h e  MADAR sensor .  Th i s  is r e p r e s e n t a t i v e  of 
t h e  o t h e r  System A Kul i t e s  (102" and 282" combustor borescope).  

System B phase c a l i b r a t i o n  i n  Figure  3-lob shows t h e  phase t o  be smooth 
up t o  approximately 2500 Hz. Above t h a t  frequency,  t h e  r e s u l t s  r e f l e c t  those  
of the  frequency response. However, t h e  System B phase ang le  h a s  a d i f f e r e n t  
l i n e a r  r e l a t i o n s h i p  than t h a t  of System A causing t h e  phase informat ion from 
System B t o  Le quest ionable .  

The K u l i t e  probe c a l i b r a t i o n s  f o r  both  types  of systems g i v e  a good 
r e p r e s e n t a t i o n  of t h e  frequency response and phase r e l a t i o n s h i p s  f o r  t h e  
ambient s t a t e .  A t a b u l a t i o n  of  t h e  frequency response c o r r e c t i o n s  f o r  each 
type of waveguide sensor  a r e  presented i n  Table 4. 
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Table 4. Ambient Frequency Response Corrections for ECCP Phase 111 
Waveguide Sensors. 

Frequency Planes 3.0 and 3 5 Plane 4.0 
Hz (0 .492  cm I!) Svstem' (F.386 cm I D  ~ ) r s t e m )  

Applied to Measured 1 / 3  Octave Band 'Jalues 



3.7 D.QTA REDUCTION AND PROCESSING 

3.7.1 Description and Implementation of Techniques 

Several d i f f e r en t  technique9 were employed i n  the  reduction of the  
acoust ic  data  from the engine t e s t  IF x?& thess  were narrowband and 1 / 3  
octave band s p e c t r a l  analysis ,  and d i g i t a l  f a s t  r'ourier t ransf  o w  techniques 
of coherence ana lys i s  and cross-correlat ion analysis .  

Narrowband Spec t ra l  A n a l y e  

Narrowbana s p e c t r a l  ana lys i s  ,~cs:.. IS of inves t iga t ing  a small  segment 
of the acoust ic  energy using a constant bandwidth f i l t e r .  On-line 10 Hz 
Sandvidth spec t ra  was obtained from a conventional spectrum analyzer f o r  f re-  
quencies frcw fl t o  2500 Hz w i t -  ,&ple times of 0.1 s ec  and 32 averages t o  
y i e ld  a t o t a l  ana lys i s  record length of 3.2 seconds. Considerably f i n e r  
resolut ion was d t a i n e d  using a d i g i t a l  fou r i e r  transform analyzer. The 
spec t r a  obtained from t h i s  system at frequencies from 0 t o  2000 Hz was of 2 
Hz bandwidth a t  sample times of 0.1 s ec  and employed 100 t o  150 averages t o  
y i e l d  a t o t a l  a,*alysis record length of 10 t~ 15 seconds. The high resolu- 
t i o n  narrowband spec t ra  obtained f o r  each Kul i te  sensor were used t o  assist 
i n  evaluating trends from the i n t e r n a l  pressure measurements. Fluctuat ing 
pressure l e v e l  (FPL) was used ins tead  of sound pressure l e v e l  (SPL) s ince  the  
pressure s igna l  contains turbulence i n  addi t ion  t o  Sound. P lo t s  of t he  
narrowband spec t ra  f o r  the working sensors from a l l  e ight  t e s t  conditions a r e  
found i n  Appendix A. 

One-Third Octave Band Spectral  Analysis 

The 113 octave band spec t ra  were processed from the recorded da ta  by 
s tandard techniques f o r  frequencies of 50 through 2000 Hz. Overall  pressure 
l eve l s  were computed from the resu l t ing  spec t ra  which were corrected f o r  
probe response losses.  The 1 / 3  octave band FPL spec t ra  (113 OBFPL) deter- 
mined f o r  the e igh t  test conditions were used f o r  evaluat ing the  combustor 
i n t e r n a l  measurement trends and f o r  comparisons with the ECCP Phase I and I1 
component spec t ra  r e su l t s .  Tabulations and p l o t s  of the  1 /3  OEFPL r e s u l t s  
a r e  presented i n  Appendix B. The ove ra l l  f luc tua t ing  pressure l e v e l  (OAFPL) 
obtained from these 113 OBPPL spec t ra  were used t o  determine the measured 
power l eve l  (F'E'WLmeas) assuming the t o t a l  pressure s i g n a l  was acoustic.  

Coherence Analysis 

Coherence ana lys is  is a measure of the amount of s i m i l a r i t y  o r  coherence 
between two s igna ls  i n  the frequency domain. Pressure s igna l s  generated 
upstream i n  the combustor and received downstream of the turbine contain 
frequencies which have the same or  s imi l a r  c h a r a c t e r i s t i c s  as the upstream 
s igna l .  The coherent port ion of the downstream spectrum -s considered t o  be 
mostly sound i f  the s igna l  f a l l s  above the  noise f l o o r  es tab l i shed  f o r  an 
uncorrelated random s igna l  input. Coherent 113 OASPL spec t ra  were used t o  



determine the turbine t r ans fe r  function between upstream and downstream 
Kuli tes  i n  the CF6-50 engine. The coherent spec t r a  a t  Plane 4 ( tu rb ine  
i n l e t )  were obtained r e l a t i v e  t o  Plane 3.5 (combustor i n l e t ) .  S imi la r ly ,  the 
coherent spec t ra  a t  Plane 8.0 (core  nozzle e x i t )  were obtained r e l a t i v e  t o  
Plane 3.5. Thc turbine a t tenua t ion  was computed from the d i f fe rence  between 
the Plane 4.0 and Plane 8.0 coherent spectra .  Processing of the  coherent 
spec t ra  was done with a constant number of averages (50) f o r  a l l  sensor  
pa i r s .  The noise  f l o o r  between the  raw and coherent spec t r a  was an average 
of 18 dB below the raw s igna l  f o r  the 50 t o  2000 Hz frequency range. 

The noise f l o o r  of the coherent s p e c t r a l  ana lys i s  procedure was de te r -  
mined using an independent random noise  source d i r e c t l y  i n t o  the analyzer 
from a white noise  s i g n a l  generator  a s  t he  input  sensor  s igna l .  The co- 
herent s p e c t r a l  ana lys i s  was performed using the  f l uc tua t ing  pressure s igna l  
a s  the output sensor.  

The coherent spec t r a  displayed represen ts  t h a t  port ion of t he  input  
s i gna l  t h a t  i s  apparently coherent with t he  output s igna l .  For a completely 
independent input  the s i g n a l s  a r e  completely incoherent which would r e s u l t  i n  
a zero dB coherent spectrum using an unlimited number of averages. However, 
t he  da ta  ana lys i s  procedure used f o r  t h i s  program was l imited t o  t he  number 
of averages d i c t a t ed  by the  length of the sample. The sample length w a s  
designated by the  1.5 t o  2 min recording time a t  each da t a  point .  The number 
of averages were set a t  25 f o r  t he  cross-correlat ion ana lys i s  and 50 f o r  the 
coherence analysis .  The coherent noise f l o o r  due t o  the l imi ted  number of 
averages f o r  each sensor was approximately 18  dB below the  raw s igna l .  This 
can be seen i n  Figure 3-11 which shows the t yp i ca l  r e s u l t s  of t he  coherence 
d n a l y s i s  a t  the  output sensor loca t ion  using the  50 averages and an uncor- 
re la ted  input  s igna l .  

The e l ec t ron i c  no ise  f l o o r  of the da ta  acqu i s i t i on  system (Kulite sen- 
so r s ,  ampl i f ie rs  and tape recorder) was checked p r i o r  t o  each test by re- 
cording an "ambient" reading with the  engine o f f .  Comparisons of these  
ambient readings with the da ta  runs ind ica ted  t he  spec t r a  of t he  noise  f l oo r  
t o  be 25 t o  30 dB below the  l eve l  of the da t a  a t  the  i d l e  power s e t t i n g  and 
40 t o  50 dB below the  da ta  a t  t h e  higher power s e t t i n g s .  The e l ec t ron i c  no ise  
f l o o r  did not  present  a problem i n  the  ana lys i s  of the data.  

The majori ty  of the coherent spec t r a  frequencies below 1000 Hz were 
above the noise f l o o r  f o r  the  low power s e t t i n g s  below 45% Fn. The coherent 
spec t ra  above 800 Hz were a f fec ted  by th s  noise  f l o o r  a t  almost a l l  test 
conditions.  A 3 dB reduction i n  the  noise  f l o o r  l e v e l  requi res  doubling the  
number of averages from 50 t o  100. The coherent spec t r a  a t  t he  high f re -  
quencies could be 6 dB o r  more below the noise  f l o o r  which would requi re  a 
grea te r  number of averages than the  90 sec  t o  130 sec  sample t i m e  avai lable .  
The a t tenua t ion  r e s u l t s  from t h i s  present  study a r e  concentrated pr imari ly  
between frequencies of 100 t o  800 Hz. Previous a t tenua t ion  da t a  were ob- 
ta ined (Reference 6) between 100 t o  1200 Hz. 
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Negative time delays  i n  t h e  c ross -cor re la t ion  of K ~ i l i t e  p a i r s  were no t  
d i r e c t l y  incorporated i n t o  the  coherent s p e c t r a  r e s u l t s ,  s i n c e  t h e  a n a l y s i s  
only handles  p o s i t i v e  time delays.  The b i a s  e r r o r s  due t o  these  negat ive  
time delays  were computer from t h e  method d e t a i l e d  i n  Reference 7. The b i a s  
e r r o r  c a l c u l a t i n g  procedure p e r t i n e n t  t o  t h e  a n a l y s i s  method used dur ing t h i s  
program i s  found i n  t h e  appzndix of t h a t  paper. Typical  negat ive  delay times 
ranged from -0.0015 t o  -0.007 seconds which corresponded t o  e r r o r s  i n  co- 
he ren t  s p e c t r a  l e v e l  of 0 .1  t o  0.6 dB g r e a t e r  l eve l .  These d i f f e r e n c e s  were 
sub t rac ted  from t h e  o v e r a l l  coherent s p e c t r a  l e v e l s .  Appendix C p r e s e n t s  t h e  
coherent  s p e c t r a  p l o t s  used t o  determine t h e  t u r b i n e  t r a n s f e r  func t ion  on t h e  
CF6-50 engine. 

Cross-Correlation Analysis  

While s p e c t r a l  a n a l y s i s  c o n s i s t s  of examination of a s i g n a l  content  i n  
t h e  frequency domain, c o r r e l a t i o n  a n a l y s i s  may be thought of a s  a n  analogous 
inspec t ion  i n  t h e  time domain. Cross-corre la t ion a n a l y s i s  is a measure of 
t h e  propagation-time-delay c h a r a c t e r i s t i c s  of s i g n a l  t ransmiss ion.  I n  cross-  
c o r r e l a t i o n ,  one s i g n a l  i s  compared wi th  a time-delayed second s i g n a l  t o  
determine the  amount of s i m i l a r i t y  between t h e  two s i g n a l s .  By t h i s  tech- 
n ique,  time de lays  assoc ia ted  with a c o u s t i c  and tu rbu len t  s i g n a l s  over s h o r t  
d i s t a n c e s  can be i d e n t i f i e d  and t h e i r  r e l a t i v e  s t r e n g t h s  determined from t h e  
anlplitudes of t h e  normalized c o r r e l a t i o n  c o e f f i c i e n t ,  Rv. For example, 
Figure  3-12 d i sp lays  the  c ross -cor re la t ion  between two a x i a l l y  spaced sensors  
loca ted  i n  a flow. The c ross -cor re la t ion  funct ion d i s p l a y s  s e v e r a l  peaks. 
The l a r g e s t  peak (Rxy = 0.75) is r e p r e s e n t a t i v e  of a s i g n a l  propagating a t  
t h i s  speed of sound r e l a t i v e  t c  t h e  f low and corresponds t o  t h e  a c o u s t i c  
pe r tu rba t ions .  Two s i m i l a r  peaks, smal le r  i n  magnitude (Rv = 0.18), but  
wi th  opposi te  time delays  a r e  noted on t h e  f i g u r e s .  The p o s i t i v e  time delay 
is  a s i g n a l  convected by t h e  flow and corresponds t o  t h e  turbulence.  The 
negat ive  time delay represen t s  a s i g n a l  t r a v e l l i n g  upstream a t  a v e l o c i t y  
corresponding t o  t h e  d i f f e r e n c e  between t h e  flow and a c o u s t i c  v e l o c i t i e s .  

With l a r g e  spacings  between sensors ,  (d i s t ances  much g r e a t e r  than t h e  
q u a r t e r  wavelengths of t h e  f requencies  of i n t e r e s t )  only t h e  a c o u s t i c  s i g n a l  
i s  w e l l  c o r r e l a t e d .  The turbulence is l e s s  c o r r e l a t e d .  I n  t h i s  case ,  the  
peaks observed w i l l  be p r imar i ly  acous t i c .  This  is  t y p i c a l  of cross-corre la-  
t i o n s  between combustor sensors  and t h e  downstream probes. 

3.7.2 Data Process ing 

Frequency Response Correct ions  

The a c o u s t i c  d a t a  acquired during t h e  combustor test w a s  cor rec ted  on a 
1 / 3  OBFPL b a s i s  by t h e  ambient frequency response determined from room tem- 
p e r a t u r e  c a l i b r a t i o n s .  The ambient response c o r r e c t i o n s  app l ied  t o  t h e  
measured d a t a  (between 50 t o  2000 Hz) acquired from t h e  waveguide s e n s o r s  a r e  
presented i n  Table  4. 
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The e f f e c t  of e leva ted  temperature and p ressure  on t h e  response correc- 
t i o n  was evaluated.  Appendix D g i v e s  t h e  d e t a i l s  of t h e  eva lua t ion  which is  
based on t h e  t ransmiss ion l o s s  due t o  viscous  damping wi th in  a tube of c i rcu-  
l a r  cross-sect ion assuming no i n t e r n a l  r e f l e ~ t i o n s  and no non-linear e f f e c t s  
a ssoc ia ted  wi th  sound pressure  l e v e l s  aLove 120 dB. The waveguide s e n s o r s  i n  
the  combustor region were loca ted  under t h e  engine cowling where t h e  volume 
of a i r  may be considered t o  reach a s i n k  temperature of about 477.813 forward 
of t h e  f i r e w a l l  and 533.313 i n  t h e  a f t  regions .  Using t h i s  temperature (477.8K) 
and t h e  s t a t i c  p r e s s u r e  a t  Plane 3.0 and 3.5 of 26 atm f o r  t h e  takeoff  con- 
d i t i o n  t h e  t ransmiss ion l o s s  of t h e  2000 Hz frequency was determined and 
compared t o  the  t ransmiss ion l o s s  ca lcu la ted  from t h e  ambient c a l i b r a t i o n  
condi t ions .  The r e s u l t  showed t h e  l o s s  a t  e leva ted  cond i t ions  t o  a c t u a l l y  be 
smal le r  than t h e  ambient c a l i b r a t i o n  l o s s  by approximately a r a t i o  of 4 t o  1. 
Comparing these  c a l c u l a t e d  r e s u l t s  t o  the  a c t u a l  ambient response l c s s  of 2 
dB a t  2000 Hz sugges t s  t h a t  t h e  a c t u a l  l o s s  was approximately 0.5 dB. Since 
2000 Hz was t h e  upper l i m i t  of our s p e c t r a l  comparisons and t h e  lower f r e -  
quencies had much lower l o s s e s  (1 t o  1.5 dB) any c o r r e c t i o n  f o r  e leva ted  
cond i t ions  would be i n  f r a c t i o n s  of a dB and i n  t h e  o rder  of measurement 
accuracy. Therefore,  the  ambient response c o r r e c t i o n s  were app l ied  t o  t h e  
data .  

The phase c a l i b r a t i o n s  determined f o r  t h e  waveguide sensors  f o r  t h e  
ambient c a l i b r a t i o n s  were not  app l ied  t o  t h e  d a t a  a t  e leva ted  cond i t ions  
s i n c e  the re  was no way of determining the  temperature g rad ien t  i n  t h e  sensor  
tube without e x t e n ~ i v ?  measurement. Ins tead ,  t h e  t i m e  delay between t h e  
p a i r s  of sensors  used i n  c ross -cor re la t ion  a n a l y s i s  was removed which e f fec -  
t i v e l y  accounted f o r  the  phase d i f f e r e n c e s  between t h e  p a i r s  of sensors .  
S i m i l a r l y ,  t h e  same cons idera t ion  was appl ied during t h e  coherence a n a l y s i s  
between p a i r s  of sensors  i n  determining t h e  t r a n s f e r  func t ion  a c r o s s  t h e  
turbine .  

Exhaust Probe Level Correct ions  

The exhaust  probe K u l i t e  A and B s p e c t r a  were checked f o r  SPL l e v e l  and 
s p e c t r a l  shape. Both Probe A and B had similar s p e c t r a l  shapes a s  would be 
expected s i n c e  t h e  K u l i t e s  were on t h e  same prctbe separa ted  by a 12.7 cm 
a x i a l  spacing. The Probe B l e v e l  was c o n s i s t e n t  f o r  t h e  major i ty  of t h e  
p o i n t s  on both t e s t  runs which included repea t  reqdings t h a t  gave t h e  same 
r e s u l t .  The s i g n a l  l e v e l s  of Probe A matched those  of Probe B f o r  one run 
b u t  were h igher  f o r  t h e  second run, making t h e  Probe A d a t a  suspect .  An 
adjustment of -6 dB corresponding t o  an  a m p l i f i e r  a t t e n u a t i o n  change was 
app l ied  t o  Probe A t o  r e a l i g n  the  d a t a  wi th  Probe B. The Probe A narrowband 
s p e c t r a  r e f l e c t  t h i s  cor rec ted  l e v e l .  

Power Level Ca lcu la t ion  

The measured power l e v e l ,  FPWLmeas was ca lcu la ted  a t  each measurement 
plane assuming t h e  e n t i r e  f l u c t u a t i n g  p ressure  measurement was a c o u s t i c  
s i g n a l  propagating i n  a plane wave a x i a l l y  through t h e  engine. The power 



level was calculated using Blokhintsev's results (as noted in Reference 6), 
for the acoustic intensity f l u  vector which can be written: 

+ 
P, p and c are used in the conventional sense, where V is the absolute flow 
velocity and Gp the unit vector normal to the acoustic wave front. 

We are interested primarily in the axial component, hence 

where 8 and $ are the angles made by the acoustic wave front and the flow 
with the axial direction. M is the flow Mach number. The flow at the mea- 
suring planes is near axial and if a plane wave assumption is used here, 

The plane wave assumption also permits the acoustic power to be computed 
from a measurement at any point of the cross-section. Using a consistent set 
of reference pressure (Po) and specific impedance (poco), the acoustic power 
level (PWL referenced to 10-l3 Watts) is given by: 

P W L = S P L + 2 0  log ( 1 t M )  + 10 log($#)+ 10 logA+9.9 ( 5 )  

were SPL = sound pressure level re 2 x 10-5 ~ / m 2  

Ps, TS = static pressure and temperature at the measuring etation 

Po, To = ambient (standard day) pressure and temperature 

A = cross-sectional area in m2. 



3.7.3 Engine Test  I n t e r n a l  Measurements V e r i f i c a t i o n  

Checks on Measurement Level - 
Several  c ross  checks of t h e  d a t a  obta ined dur ing t h e  CF6-50 engine t e s t  

were performed t o  ensure  t h e  v a l i d i t y  of t h e  f l u c t u a t i n g  p r e s s u r e  l e v e l s  de- 
termined. These included on-line 1 0  IIz narrowband s p e c t r a  compared wi th  t h e  
same d a t a  processed p o s t t e s t  through t h e  - irrowband s p e c t r a l  analyzer ;  com- 
par i son  of Ps3 l e v e l s  obta ined dur ing emissions t e s t i n g  wi th  a c o u s t i c  t e s t  
r e s u l t s ;  and checks of peak-to-peak p r e s s u r e  l e v e l s  obta ined on similar 
engine t e s t s .  The l e v e l s  agreed i n  each case  w i t h i n  '1.5 dB. 

The probe o v e r a l l  FPWL ( r e  w a t t s )  f o r  t h e  engine t e s t  was compared 
t o  f a r f i e l d  power l e v e l s  determined from unpublished d a t a  from previous  t e s t s  
on CF6-50 engines t o  e v a l u a t e  t h e  reg ion  of core  n o i s e  d o m i ~ ~ x e .  The PWL 
was ca lcu la ted  f o r  t h e  low f requenc ies  (50 t o  2000 Hz) a t  which core  n o i s e  
would be manifested at each test condi t ion  encompassing t h e  opera t ing  range 
of the  engine. The PWL were p l o t t e d  a g a i n s t  an e f f e c t i v e  jet v e l o c i t y  of t h e  
f a n  and core  exhaust  streams. This v e l o c i t y ,  Ve was determined from t h e  f a n  
bypass r a t i o  BPR and j e t  v e l o c i t i e s  of t h e  f a n  and c o r e  streams using: 

(BPR) Vf + Vc - - 
ve - BPR + 1 

The r e s u l t s  of t h e  comparison a r e  shown i n  Figure  3-1.3 and i n d i c a t e  t h e  
region of core  n o i s e  dominance a t  Ve below 230 m / s .  Above t h i s  v e l o c i t y  t h e  
j e t  no i se  over takes  and dominates t h e  o v e r a l l  power l e v e l .  This  t r end  is  a s  
expected and p a r a l l e l s  c l o s e l y  the  r e s u l t s  of Reshotko (Reference 8). 

I n t e r n a l  p ressure  measurements taken i n  t h e  core  exhaust  dur ing t h e  
p resen t  t e s t s  wi th  t h e  sound s e p a r a t i o n  probe were obta ined a t  f i v e  i m e r -  
s i o n s  loca ted  on c e n t e r s  of equal  a r e a s  a c r o s s  t h e  annulus of t - i ~  c o r e  ex- 
haus t  nozzle. Comparisons of PWL c a l c u l a t e d  from t h e  average SPL s p e c t r a  
frcm t h e  f i v e  inrmersions agreed very w e l l  w i th  t h e  PWL c a l c u l a t e d  us ing t h e  
p i t c h l i n e  or  cen te r  immersion and t h e  t o t a l  annulus a r e a  i l l u s t r a t e d  by t h e  
power l e v e l  s p e c t r a  comparison i n  Figure  3-14. The comparison i s  f o r  the  
approach (30% Fn) condi t ion,  b u t  is a l s o  t y p i c a l  of t h e  o t h e r  test condi t ions .  
The da ta  presented f o r  t h e  exhaust  probe i n  t h e  a n a l y s i s  s e c t i o n  of t h i s  
r e p o r t  a r e  based on p i t c h l i n e  immersion measurements. 

Aerodynamic Acoustic Readings 

The ae ro  performance parameters requ i red  by t h e  ECCP Phase I11 c o n t r a c t  
a r e  l i s t e d  i n  Table 5 f o r  t h e  e i g h t  t e s t  condi t ions .  These parameters were 
obta,ined from t h e  engine performance program read ings  obta ined f rorn t h i s  ECCP 
Phase 111 t e s t s .  The d e t a i l e d  c a l c u l a t i o n  procedure f o r  t h e  major i ty  of 
t h e s e  parameters are found i n  Reference 1. Other aerodynamic parameters 
assoc ia ted  wi th  t h e  o v e r a l l  power l e v e l  c a l c u l a t i o n s  a r e  presented i n  Table 6. 
Included i n  t h e  t a b l e  a r e  t h e  s t a t i c  p ressures  and temperatures determined 



CFb-50 Engine Results 

a OAPWL From $0 to 2000 Hz 

I 0 -Core Probe Result. on ECCP Phase I11 

1 0 -~revious Farfield Results, 1972 

I L ~ e t  Noise 

/ Prediction 

140 
I I I I I 1 1 I 

0 50 lo0 150 200 250 300 350 400 

Effective Velocity Ve, m/s 

Figure 3-13. Comparison of Core Probe Power Levels with 
Farfield Measurements 



a CYb-50 ECCP Phase XI1 Test 
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Figure 3-14. Core Exhaust Pasor Level Spectra Comparieon 
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from i s en t rop i c  re la t ionsh ips  along with an est imate  of the  l o c a l  Mach number 
3 c  each measurement plane. 

The eight  conditions l i s t e d  i n  the t ab l e s  were obtained from two engine 
runs on consecutive days. Repeat readings taken during the  engine test 
served a dual purpose of es tab l i sh ing  a check f o r  da ta  r epea t ab i l i t y  and 
providing a replacement source f o r  sensor measurements l o s t  due t o  equipment 
problems a t  the same t e s t  condition. 

The low nominal power s e t t i n g s  ( 3.4, 19.8, and 30% Fn) have a f u l l  com- 
pliment of measurements a t  a l l  planes. Repeat readings were used i n  combina- 
t i on  with the i n i t i a l  readings taken a t  45, 65, and 85% Fn t o  obtain a f u l l  
s e t  of measurements a t  each plane f o r  these conditions.  A t  takeoff (100% Fn) 
and approach power with the 50150 s p l i t  f u e l  flow (29.7 X Fn), measurements 
were obtained a t  each plane; except f o r  the  redundant sensor  102' a t  Plane 3.5. 

C e l l  probe measurements were acquired a t  a l l  test conditions.  However, 
only the data  a t  65% Fn and above a r e  presented s ince  t he  l eve l s  b e l w  t h i s  
condition were i n  the system noise f loor .  Cell probe narrwband spec t r a  a r e  
included i n  the spec t ra  p l o t s  of the 65, 85 and 100% Fn poin ts  found i n  
Appendix A. 

Comparison of the measurements acquired during the  i n i t i a l  and repeat  
readings was exce l len t  a s  can be a t t e s t e d  by the following 2 Hz narrowband 
FPL spec t r a  comparisons f o r  the nominal power s e t t i n g s  of 45, 65 and 85 
percent th rus t .  

Figure 3-15a-c shows the MADAR, 282' borescope and exhaust Probe B 
spec t ra  comparisons f o r  separa te  readings a t  45.6% Fn taken on the  d i f f e r e n t  
days. Agreement is good a t  a l l  planes compared. 

Figure 3-16a and b i l l u s t r a t e s  the  exce l len t  agreement obtained from 
separate  readings a t  64.6% Fn f o r  the  MADAR Probe and core exhaust Probe B. 

A t  82% Fn, t he  WAR comparison i n  Figure 3-17a and the  282' borescope 
probe comparison i n  Figure 3-17b a l s o  show exceptually good agreement a t  t he  
d i f f e r e n t  readings. These examples serve t o  subs t an t i a t e  the  r a t i o n a l e  f o r  
combining the  i n i t i a l  and repeat  readings i n  order: t o  form the  113 OBSPL 
spec t ra  tabula t ions  a t  the  e igh t  test conditions.  
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4.0 ANALYSIS AND DISCUSSION OF RESULTS 

4.1 SPECTRA COMPARISONS 

Comparisons of the  f l uc tua t ing  pressure measurements a t  each measurement 
plane a r e  discussed fo r  the  engine t e s t .  Results a r e  based on the  measured 
pressure da ta  analyzed a s  113 octave band and narrowband spectra .  Frequency 
response correct ions were applied t o  the 113 OBFPL, but not t o  the narrowband 
FPL . 

The Double Annular combustor r e s u l t s  from duct r i g  tests conducted 
during ECCP Phase I and I1 were compared t o  se lec ted  po in ts  from the  ECCP 
Phase I11 engine t e s t s .  

4.1.1 Measurement Plane Comparisons of 113 Octave Band and Narrowband 
Spectra 

The i n t e r n a l  f l uc tua t ing  pressure da ta  acquired during the t e s t  of t h e  
Double Annular combustor i n  the  CF6-50 engine were compared on both a 113 
octave band a 2 Hz narrowband spec t r a  bas i s .  Comparisons were made t o  iden- 
t i f y  and inves t i ga t e  t rends a t  each measurement plane fo r  severa l  test con- 
d i t i o n s  covering the  f u l l  operat ing range of t h e  engine. The spec t ra  en- 
compass frequency ranges f o r  core  noise  ana lys i s  from 50 t o  2000 Hz i n  113 
octave band and from 0 t o  2000 Hz i n  2 Hz narrowband. The complete set of 
narrowband spec t r a  f o r  a l l  t e s t  condi t ions is found i n  Appendix A. Similar ly ,  
t h e  113 octave band da ta  is presented i n  both tabular  and graphical  form i n  
Appendix B. 

Five of t h e  e igh t  test conditions were se lec ted  fo r  t h i s  ana lys i s  as  
represen ta t ive  of combus t o r  operat ion over t he  engine operat ing l i n e .  These 
f i v e  conditions include the  percent ne t  t h r u s t  s e t t i n g s  of 3.8 ( i d l e ) ,  19.7, 
30 (approach), 64.6 and 94.7 ( takeoff)  percent. The f i r s t  t h r ee  conditions; 
3.8, 19.7 and 30 percent ne t  t h r u s t  a r e  with p i l o t  f u e l  only, while the  64.6 
and 94.6 percent ne t  t h r u s t  po in ts  a r e  with f u e l  s p l i t s  between p i l o t  and 
main burner s e c t  ions. 

A common s e t  of four  sensors  were used i n  the  comparisons which were 
se lec ted  on the  bas i s  of measurement r e l i a b i l i t y  and a v a i l a b i l i t y .  The set 
included one probe a t  each measurement plane and consis ted of the  MADAR probe 
a t  Plane 3.0, t he  282' borescope probe a t  Plane 3.5, t he  HPTN borescope probe 
a t  Plane 4.0 and the  core exhaust probe, element B, on the  sound separat ion 
probe located a t  Plane 8.0. The comparisons include the  p i l o t  f u e l  s p l i t s  a s  a 
percentage of the  p i l o t  f u e l  t o  t o t a l  f u e l  flows (PCT OUT). 



Plane 3.0 - Compressor Discharge 

The 113 octave  band s p e c t r a  comparison f o r  t h e  MADAR Probe i n  Figure  4-1 
show a peaked shape a t  i d l e  along wi th  a predominate tone a t  400 Hz. The 
f l u c t u a t i n g  pressure  l e v e l  (FPL) i n c r e a s e s  uniformily by approximately 10 dB 
over t h e  i d l e  s e t t i n g  f o r  19.7 and 30 percent t h r u s t  points .  The tone a t  
400 Hz i s  no longer  a c h a r a c t e r i s t i c  of t h e  s p e c t r a l  shape a t  these  condi t ions .  
A t  t h e  h igher  power s e t t i n g s  of 65 and 94.6 percent t h r u s t  t h e  pressure  
l e v e l s  inc rease  by 4 t o  5 dB over those  a t  30 percent t h r u s t  i n  t h e  low 
frequencies ,  but  show a s i g n i f i c a n t  inc rease  of 10 dB aL f requencies  above 
800 Hz. The FPL inc rease  i n  t h e  h igher  f requencies  tends t o  f l a t t e n  t h e  
s p e c t r a  shape. The peaked s p e c t r a ,  c h a r a c t e r i s t i c  of co re  no i se  dominated 
s p e c t r a ,  seem t o  be l imi ted  t o  power s e t t i n g s  a t  approach and below. 

The r e s u l t s  of t h e  2 Hz narrowband s p e c t r a  a n a l y s i s  of these  cond i t ions  
a t  Flane 3.0 a r e  shown i n  Figure  4-2. The predominate tone a t  400 Hz f o r  t h e  
i d l e  condi t ion appears  t o  be a low l e v e l  resonance o r  combustor growl phenom- 
enon which i s  no t  apparent  a t  o t h e r  cond i t ions  but  i s  p resen t  a t  o t h e r  p lanes  
f o r  t h e  i d l e  condi t ion.  There i s  a s l i g h t  reduct ion i n  combustor e f f i c i e n c y  
(see  Table 5) of about one point  a t  i d l e  compared t o  t h e  19.7 and 30 percent  
t h r u s t  cond i t ions  wi th  p i l o t  f u e l  only. However, i t  does not  appear t h a t  t h i s  
amount of change would be s u f f i c i e n t  t o  cause  the  l a r g e  400 Hz tone observed 
i n  t h e  da ta .  There is some e l e c t r o n i c  noise  a t  60 and 180 Hz. A "hay- 
stacked" torre is  evident  a t  1 9 . 7  and 30 percent  t h r u s t  occurr ing a t  approxi- 
mately 700 Hz which corresponds roughly t o  the  5 th  per  rev  of the  engine 
spool.  A ;road 5 t o  7 dB p l a t e a u  i s  a l s o  apparent  between 700 and 900 Hz 
f o r  these  condi t ions .  A t  t h e  h igher  power s e t t i n g s  the  narrowbands appear 
q u i t e  s i m i l a r  and show an inc rease  i n  the  broadband above 1000 Hz which re- 
f l e c t s  t h e  1 / 3  octave  band s p e c t r a l  r e s u l t s .  

P lane  3.5 - Comb~~stor  In leL 

A t  t he  combustor i n l e t ,  Plane 3.5, t h e  combustor borescope probe a t  t h e  
282' p o s i t i o n  e x h i b i t s  s i m i l a r  t r ends  i n  t h e  113 octave  band s p e c t r a  (Figure  
4-3) a s  were shown f o r  the  MADAR Probe a t  Plane 3.0. Peaked s p e c t r a  (400 t o  
800 Hz) a r e  evident  f o r  power s e t t i n g s  of 30 percent t h r u s t  and below. The 
high power p o i n t s  show an inc rease  i n  FPL of 5 t o  10  dB above 1000 Hz and t h e  
400 Hz tone a t  t h e  i d l e  condi t ion is s t i l l  apparent .  

The narrowband a n a l y s i s  show s p e c t r a  i n  Figure 4-4, f o r  3.8, 19.7 and 30 
percent t h r u s t  which compare w e l l  wi th  s i m i l a r  s p e c t r a  f o r  t h e  Plane 3.0 
probe i n  Figure  4-2. Large p ressure  f l u c t u a t i o n s  of t 10  t o  t 18 dB a r e  seen 
below 500 Hz. There is evidence of e l e c t r o n i c  no i se  contamination a t  60 and 
180 Hz which does not  compromise t h e  q u a l i t y  of t h e  d a t a  but  might c l a r i f y  a 
por t ion  of these  l a r g e  f l u c t u a t i o n s  below 200 Hz. A p o s s i b l e  explanat ion f o r  
t h e  remainder might be due t o  t h e  l o c a t i o n  of t h e  probes. They a r e  loca ted  
i n  t h e  pre-mix region of t h e  combustor j u s t  a f t  of t h e  f u e l  nozzle  d ischarge  
where f u e l  i n j e c t i o n  and i g n i t i o n  take  place  which r e s u l t s  i n  a high r a t e  of 
energy r e l e a s e .  Note t h a t  t h e  s p e c t r a  f o r  64.6 and 94.6 percent t h r u s t  
p o i n t s  a r e  f l a t  i n  the  high f requencies  a s  opposed t o  t h e  s p e c t r a l  drop o f f  
a t  lower power s e t t i n g s ,  This  is  c o n s i s t e n t  wi th  the  113 octave  band r e s u l t s .  
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Plane 4.0 - Combustor Discharge 

The HPTN borescope probe a t  Plane 4.0 e x h i b i t s  inc reas ing  s p e c t r a  f o r  
a l l  cond i t ions  a s  shown i n  Figure  4-5. This  sensor  does no t  i n d i c a t e  a core  
no i se  spectrum shape a t  any of t h e  t e s t  cond i t ions  and appears t o  be  s a t u r a t e d  
wi th  high frequency noise .  This may be a consequenp2 of t h e  probe l o c a t i o n  
between two vanes i n  t h e  high p ressure  t u r b i n e  nozzle  diaphram. 

The 2 Hz narrowband r e s u l t s  presc:~ted i n  Figure  4-6 show f l a t  s p e c t r a  t o  
2000 Hz and high p ressure  f l u c t u a t i o ~ ;  of + 1 0  t o  + 12 dB i n  t h e  same region 
a s  the  Plane 3.5 sensor.  The h ighes t  l e v e l s  a r e  recorded a t  t h i s  probe lo- 
ca t ion .  This  agrees  wi th  t h e  physics  of t h e  combustion process which is 
culminated a t  t h e  combustor e x i t  a f t e r  complete mixing and burning of t h e  
f u e l - a i r  mixture have taken place.  It is at  t h i s  plane t h a t  t h e  maximum 
energy is a v a i l a b l e  t o  do work on :he turbine .  

Plaae  8.0 - Core Nozzle Discharge 

The exhaust  Probe B 113 octave band l y e c t r a  shown i n  Figure  4-7 e x h i t i t  
t y p i c a l  core  n o i l e  shapes between 200 and 1250 Hz f o r  t h e  3.8, 19.7 and 30 
percent  t h r u s t  points .  A t  t h e  higher  power s e t t i n g s  t h e  high frequency n o i s e  
(above 800 Hz) increased t o  produce an e s s e n t i a l l y  f l a t  spectrum a t  t h e  take- 
o f f  condit ion.  Below 200 Hz t h e  FPL f o r  a l l  cond i t ions ,  except i d l e ,  is 
genera l ly  about t h l  same level., wi th in  + 5 dB. This  may be t h e  r e s u l t  of 
low frequency tdrbulence generated off  t h e  c e n t e ~ h o d y  of t h e  f a c t o r y  plug 
nozzle.  

The narrowband s p e c t r a  f o r  Probe B a t  t h e  exhaust  p lane is shown i n  
Figure 4-8. The 400 Hz tone a t  t h e  i d l e  cond i t ion  is again  c l e a r l y  v i s i b l e .  
The s p e c t r a  below 30 percent  t h r u s t  a r e  dominated by t h e  low f r e q u e n c i e s .  
(el000 Hz). High f r e q ~ e n c y  n o i s e  above 1000 Hz is increased a t  t h e  power 
s e t t i n g s  above 30 percent  t h r u s t  a s  i l l u s t r a t e d  i n  Figure  4-8. 

4.1.2 Double Annu* Conbustor Spcztra  Comparisons 

Comparisons were made between t h e  Double Annular combustor s p e c t r a  mea- 
sured on t h e  engine t e s t  and t h e  combustor s p e c t r a  obtained from f u i l  annular  
duct  r i g  tests conducted dur ing Phase I and I1 of t h i s  program. The engine 
condi t ions  a t  i d l e  (3.8% Fn), approach (36% Fn wi th  100% p i l o t  f u e l  and 29.7% 
In with 50% f u e l  s p l i t )  and takeoff  ( 9 4 . 6 2  Fn) were s e l e c t e d  f o r  comparison 
with t h e  duct r i g  data .  

A number of cond i t ions  approximating t h e  above er . : ? power s e t t i n g s  
were a v a i l a b l e  f o r  cornpatison from t h e  duc t  r i g  da ta .  : e se lec t io i l  of t h e  
p a r t i c u l a r  duct  r i g  t e s t  p o i n t s  f o r  comparison wi th  t h e  engine d a t e  was based 
on matching t h e  i n l e t  and discharge temperatures i n  c ~ n j u r c t i o n  wi th  keeping 
w ~ / P ~  constant  f o r  t h e  approach and takeoff  points .  The i d l e  set po in t  
s e l e c t i o n  was based on t h e  i n l e t  p ressure  and temperature match. Considera- 
t i o n  was a l s o  given t o  matching t h e  f u e l - a i r  r a t i o s  between duc t  r i g  and 
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Figure 4-6 Plane  4.0 (HPTN Probe) Spectra Variation with Engine Speed 
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engine within t h e  l i m i t s  of da t a  a v a i l a b i l i t y .  Table 7 lists the  compared 
t e s t  points  f o r  these conditions.  

The s e t  up  f o r  t he  duct r i g  tests is  de t a i l ed  i n  t he  ECCP Phase I and 11 
f i n a l  repor t s  (References 3 and 5).  The acous t ic  probe loca t ions  f o r  these 
t e s t s  were a s  i l l u s t r a t e d  i n  Figure 4-9. The engine and duct  r i g  acous t ic  
measurement plane loca t ions  were not i den t i ca l  a s  noted i n  reviewing the  
engine plane loca t ions  i n  Figure 3-2. 

The i d l e  point 113 OBFPL s p e c t r a l  comparison is shown i n  Figure 4-10 f o r  
t he  combustor discharge sensors. No upstream probe measurements were ava i l -  
ab l e  f o r  the  duct r i g  a t  t h i s  condition. The engine da ta  a r e  17 t o  20 dB 
grea te r  than the  duct r i g  d a t a  f o r  the  frequency range invest igated.  

Figures 4-lla and 4-llb present t he  combustor i n l e t  and discharge f luc-  
tua t ing  pressure l eve l  comparisons respec t ive ly  f o r  the  approach condition. 
A t  the  combustor i n l e t  (Figure 4- l la ) ,  t he  Plane 3.0 engine probe shows 
r e s u l t s  t h a t  a r e  from 5 t o  12 dB g rea t e r  than the  duct r i g  i n l e t  probe f o r  
both the  100% p i l o t  and f u e l  s p l i t  approach condition. Larger d i f fe rences  
a r e  noted f o r  t h e  combustor discharge comparison i n  Figure 4-llb with t he  
p i l o t  only f u e l  than with t he  f u e l  s p l i t  point .  The engine Plane 3.5 sensor 
shows a c h a r a c t e r i s t i c  core no ise  s p e c t r a l  shape peaking between 500 and 1000 
Hz a t  both approach conditions.  

A t  takeoff the  Plane 3.0 engine and dac t  r i g  pressure l e v e l  measurements 
i n  Figure 4-12a a r e  within 1 t o  4 dB a t  frequencies above 315 Hz. Below 400 
Hz the engine measurements a r e  4 t o  15  dB g r e a t e r  than those of t he  duct r ig .  
The discharge Plane 4.0 measurements i n  Figure 4-12b show the  same t rends 
observed f o r  t he  i d l e  and approach point  comparisons. The Plane 3.5 engine 
borescope spectrum shown i n  t he  f i g u r e  is 10 t o  15 dB g rea t e r  than t h e  duct  
r i g  data .  

These engine t o  duct  r i g  113 OBFPL s p e c t r a l  comparisons i nd i ca t e  l a rge  
l e v e l  d i f fe rences  a t  both i n l e t  arid discharge measurement planes. The inlet 
plane comparisons a r e  much c lo se r  (5  t o  10  dB) than those a t  t he  discharge 
(15 t o  20 dB). Some of t he  d i f f e r ences  can be explained due t o  test condi- 
t i o n  d i f fe rences  a s  noted i n  Table 7. The l o c a l  s t a t i c  pressures  i n  the 
engine (Plane 4.0) a r e  approximately 2.5 t i m e s  g rea te r  than t h e  duct r i g  
s t a t i c  pressures  f o r  t h e  condi t ions above i d l e .  

In  order  t o  minimize these d i f fe rences  t h e  duct-rig and engine 113 OBFPL 
spec t ra  were converted t o  power spec t r a  assuming a l l  t h e  neasu c?d s igna l  was 
acous t ic  and plane wave propagation occurred a t  each measurement plane. The 
F P b e p s  w a s  ca lcu la ted  using Equation 5. Comparisons of t he  spec t r a  from 
the  f l uc tua t ing  power l eve l  ( F w e a s )  showed much c loser  agreement between 
engine and duct r i g  data .  Figure 4-13 shows t h e  meas spec t r a  comparison 
a t  Plane 4.0 f o r  t h e  i d l e  condition. The engine spec t ra  is approximately 8 dB 
above t h e  duct r i g  r e s u l t s  ( so l id  symbols) f o r  f requencies  above 160 Hz where 
t he  spec t r a l  shapes a r e  s imilar .  The Plane 3.5 engine r e s u l t s  (from the  282' 
borescope sensor) show good agreement from 160 t o  500 Hz with t he  duct r i g  
data .  However, above 500 Hz t h e  duct  r i g  da t a  is 6 t o  10 dB higher than t h e  
engine data .  
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170- ECCP CUWUBTOR TEBf CONPCIRIBON8 A rrmY 11-71a1 
IDLE M U S T  CONDITION 

4.00 
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FREQUENCY l HZ 

Figure 4-10. Engine-to-Duct Rig Pressure Spectra Comparison for Double Annular 
Combustor at Idle. 
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Figure 4-11 Engine-to-Duct Rig Pressure Spectra Comparison for Double 
Annular Combustor at Approach 



ECCP COHSUBTOR TEGT COflPflRISON8 
TflKEUFP THRUST CONDITION 

a) Inlet Plane 

b) Discharge Plane 

Figure 4-12 Engine-to-Duct Rig Pressure Spectra Comparison for 
Double Annular Combustor at Takeoff 
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Figure 4-13 Engine-to-Duct Rig Power Spectra Conpariaon for 
Double Annular Combustor at Idle. 



The approach power s e t t i n g  FFWLea, comparisons a t  t h e  i n l e t  plane a r e  
shown i n  Figure 4-14a. Agreement wi th in  3 t o  5  dB is apparent i n  frequency 
regions between 160 t o  250 Hz and above 630 Hz f o r  t h e  duct  r i g  r e s u l t s  wi th  
both the  30% Fn (100% p i l o t  f u e l )  and 29.72 Fn (50/50 f u e l  s p l i t )  po in t s .  

The e x i t  plane comparison Eor t h i s  a p p r ~ ~ a c h  condition shown i n  Figure  
4-14b i n d i c a t e s  good agreement i n  both s p e c t r a l  shape and l e v e l  between t h e  
duct r i g  r ? s u l t s  and t h e  engine Plane 3.5 da ta .  The Plane 4.0 r e s u l t s  from 
t h e  engine a r e  g r e a t e r  than t h e  duct  r i g  measurements by approximately 5 t o  
15 dB f o r  t h e  30% Fn po in t  and zero t o  8 dB f o r  t h i s  29.7% Fn condi t ion.  

A t  t akeof f ,  t h e  i n l z t  plane FPWL,eas comparison i n  Figure  4-15a shows 
t h e  duct  r i g  d a t a  t o  be 1 0  t o  12 dB higher  than t h e  engine Plane 3.0 power 
l e v e l  above 400 Hz. The shape of t h e  s p e c t r a  appear q u i t e  s i m i l a r  over t h i s  
f u l l  frequency renge. 

Figure  4-15b s i ~ ~ x z  t h e  e x i t  p lane comparison a t  t h e  takeoff condi t ion.  
The duct  r i g  F P G e a s  s n e c t r a  matches t h e  engine Plane 3.5 r e s u l t s  below 
frequencies  of 315 Hz, ~ h i l e  a t  t h e  higher  f requenc ies  t h e  Plane 4.0 d a t a  
appears t o  g i v e  a  b e t t e r  natch.  

The comparisons of t h e  engine and duc t  r i g  r e s u l t s  on a f l u c t u a t i n g  
power l e v e l  s p e c t r a  b a s i s  show genera l ly  c l o s e r  agreement than on a  113 OBFPL 
s p e c t r a l  b a s i s  as previously  noted. The shapes of t h e  engine s p e c t r a  a r e  
very s i m i l a r  t o  t h e  duct r i g  s p e c t r a  a t  a l l  p lanes  inves t iga ted .  The Plane 
4.0 HPTN probe located i n  t h e  engine t u r b i n e  nozz le  g i v e s  c o n s i s t e n t l y  h igher  
f l u c t u a t i n g  p ressure  l e v e l s  than o t h e r  engine probes. This may be due, i n  
p a r t ,  t o  t h e  presence of t h e  choked t ~ r b i n e  nozzle  diaphragm which s u p p l i e s  
an e n t i r e l y  d i f f e r e n t  end e f f e c t  than t h e  open plenum of t h e  duct  r i g  f a c i l i t y .  

The d i f f e r e n c e s  i n  measurement p lane l o c a t i o n ,  t h e  t u r b i n e  nozzle  dia-  
phragm and t h e  v a r i a t i o n s  i n  t e s t  cond i t ions  a l l  c o n t r i b u t e  t o  t h e  d i f f e r e n c e s  
i n  l e v e l s  apparent between engine and duct  r i g .  However, t h e  o v e r a l l  engine- 
to-duct r i g  co;nparisons show good r e s u l t s .  

A more ~ t ~ n t r o l l e d  t e s t ,  such a s  a  one-on-one t e s t  between t h e  engine and 
duct r i g  us-w, t h e  same combustor, dynamic ins t rumentat ion,  ins t rumentat ion 
l o c a t i o n s ,  and a t u r b i n e  nozz le  diaphragm con£ ig i l ra t ion  i n  t h e  duct r i g  t e s t  
would provide a b e t t e r  comparison. 

4.2 TURBINE TRANSFER FUNCTION COMPARISON 

The t u r b i n e  a c o u s t i c  t r a n s f e r  f u n c t i o n s  determined f o r  t h e  ECCP Phase 
I11 Double Annular combustor were c a l c u l a t e d  i n  t h e  form of b lade row at tenu-  
a t i o n s  a c r o s s  t h e  t u r b i n e  us ing coherence a n a l y s i s  techniques.  I n i t i a l l y ,  
a t t e n u a t i o n s  were determined from t h e  d i f f e r e n c e  i n  t h e  Plane 4.0 HPTN probe 
raw s p e c t r a  wi th  t h e  coherent s p e c t r a  of t h e  Plane 8.0 core  probe a t  t h e  core  
nozzle discharge.  This procedure proved unsuccessful  due t o  t h e  excess ive  
amount of h igh frequency n o i s e  i n  t h e  raw s i g n a l  of t h e  Plane 4.0 sensor  which 
was incoherent  wi th  t h e  downstream c o r e  probe s i g n a l .  When t h e  coherent 
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spec t ra  of t h e  d m s t r e a m  probe was compared t o  t h e  Plane 4.0 raw s p e c t r a  t h e  
r e s u l t i n g  a t t e n u a t i o n  amplitudes were excess ive  ( i n  t h e  o r d e r  of '5 t o  50 dB). 
The a n a l y s i s  technique employed d i d  not  lend i t s e l f  t o  a d i r e c t  comparison of 
t h e  u p s t  rcam raw s i g n a l  wi th  t h e  downstream coherent  s p e c t r a .  

'ro m ~ n i r n i z c  this t.f f c r t ,  t h e  a t t e n ~ a t i o n  was obta ined from the  d i f f e r -  
ence i n  coherent  113 OBSPL s p e c t r a  a t  Planes  4.0 and 8.0 r e l a t i v e  t o  t h e  
upstream combustor s i g n a l  a t  Plane 3.5. The coherent  s p e c t r a  between p a i r s  
of sensors  incorporated p o s i t i v e  time de lays  determined from c ross -cor re la t ions  
t o  account f o r  phase d i f f e r e n c e s  between sensors .  I n  c a s e s  where nega t ive  
time de lays  were observed (which ind ica ted  t h a t  t h e  s i g n a l s  were t r a v e l i n g  
opposi te  t o  t h e  assumed d i r e c t i o n ) ,  a  ze ro  t ime de lay  was inpu t .  The e r r o r  
introduced by t h i s  procedure r e s u l t e d  i n  coherent  s p e c t r a  l e v e l s  which were 
0 .1  t o  0.6 dB h igher  than t h e  t r u e  l e v e l .  Adjustments were made t o  t h e  
r e s u l t i n g  spectrum t o  account f o r  t h e s e  d i f f e r e n c e s .  The coherent  s p e c t r a  
determined i n  t h i s  manner had some reg ions  t h a t  were a f f e c t e d  by t h e  n o i s e  
f l o o r  a s soc ia ted  with t h e  s n a l y s i s  procedure f o r  determining t h e  coherent  
spec t ra .  This f l o o r ,  based on sample length  l i m i t a t i o n s  which r e s t r i c t e d  t h e  
number of averages used i n  t h e  a n a l y s i s ,  w a s  18 dB down from t h e  raw s i g n a l  
l e v e l .  These regions  were loca ted  i n  t h e  h igher  f r equenc ies  above 800 Hz and 
i n  a low frequency region around t h e  250 Hz band a t  t h e  h igher  t e s t  condi- 
t i o n s  above 30 percent t h r u s t .  Previous a t t e n u a t i o n  r e s u l t s  (Reference 6) 
covered a range of f requencies  from 100 t o  1209 Hz. 

4.2.1 Turbine At tenuat ion from Coherent Spec t ra  -- 
The a t t e n u a t i o n s  determined f o r  t h e  ECCP Phase I11 d a t a  from t h e  113 

OBSPL coherent  s p e c t r a  a t  Planes  5.0 and 8.0 r e l a t i v e  t o  t h e  borescope Plane 
3.5 were converted t o  PWL a t t e n u a t i o n s  t o  account f o r  impedance changes, Mach 
number r f f  e c t s  and a r e a  d i f f e r e n c e s  a t  t h e  measurement p lanes .  

For cond i t ions  above 30 percent  t h r u s t ,  t h e  increased probe turbulence  
i n  the  lower f requencies  and incoherent  h igh frequency n o i s e  produced co- 
herent  s p e c t r a  a t  Plane 8.0 t h a t  were i n  t h e  n o i s e  f l o o r  f o r  s e v e r a l  of t h e  
113 octave  bands. Consequently, t u r b i n e  a t t e n u a t i o n s  a t  t h e s e  cond i t ions  
were obtained a t  about 60 percent of t h ?  frequency bands up t o  800 Hz. The 
a t t r n u a t i o n s  determined froin t h e  d i f f e r e n c e s  i n  coherent  s p e c t r a  a r e  s m a -  
r i zed  i n  Table 8 f o r  each test condi t ion.  Bath t h e  coherent  SPL and PWU 
a t t e n u a t i o n s  a r e  l i s t e d  a t  t h e  113 oc tave  band c e n t e r  f r equenc ies  from 100 t o  
2000 Hz. The missing a t t e n u a t i o n s  i n d i c a t e  both coherent  s i g n a l s  were i n  t h e  
no i se  f l o o r .  Where e i t h e r  one o r  t h e  o t h e r  spectrum was inf luenced by t h e  
r.oise f l o o r ,  t h e  a t t e n u a t i o n  l i s t e d  i s  l e s s  than o r  g r e a t e r  than t h e  va lue  
shown, a s  noted on the  t a b l e .  Appendix C p r e s e n t s  t h e  coherent  s p e c t r a  at  
Planes 4.0 and 8.0 r e l a t i v e  t o  Plane 3.5 f o r  each t e s t  cond i t ion  used t o  
determine t h e  a t t e n u a t i o n  ac ross  t h e  tu rb ine .  

Typ ica l ly ,  . h e  a t t e n u a t i o n  s p e c t r a  show an S-shaped d i s t r i b u t i o n  a s  
indicated i n  Tigure 4-16 f o r  30 percent t h r u s t .  This is similar t o  component 
tu rb ine  a t t e n u a t i o n  r e s u l t s  b u t  i r x l u d e s  any change i n  a t t e n u a t i o n  i n  prop- 
a g a t i ~ ~ g  from t h e  t u r b i n e  e x i t  t o  nozz le  d ischarge .  Average a t t e n u a t i o n s  



computed from the arithmetic average of the A d B p w ~ l ~  at each frequency for 
all conditions ranged from 7.4 to 14.7 dB as listed in Table 8. 

4.2.2 Comparison of Engine Results with Component Tests -- 

Component tests were conducted on a single stage high pressure turbine 
and on a low pressure turbine tested in both a 1- and 3-stage build. A siren 
was used to similate combustor noise. The turbine attenuations obtained from 
these component tests conducted under another NASA Lewis sponsored program 
and reported on in Reference 6 were based on AdBpw~ determined from raw 
spectra upstream of the turbine to coherent downstream spectra. Average 
attenuations were obtained for each configuration in the same manner as the 
engine test. The freque~cy range for the average AdBpw~ was between 100 to 
1200 Hz. 

The average attenuation (AdBpn) for the 3-stage low pressure turbine 
ranged from 5.9 to 15.5 dB over the operating range tested as noted in the 
reference. These attenuations are of the same order of magnitude as deter- 
mined from the engine test. The 3-stage low pressure turbine results used in 
the comparison were based on attenuations of siren tones at warm ambient 
inlet conditions to subambient coaditions at discharge. The Phase 111 
results are from an engine run at SLS operating line conditions. 

The shape oL the attenuation spectra for all component tests was similar 
and exhibited the saine characteristic S-shape trend seen for the engine 
spectra. Figure 4-17 (from Reference 6) shows a typical example of the 
attenuations obtained from the component turbine test using siren tones. A 
comparison of this figure with Figure 4-16 shows close agreement between 
engine and component turbine attenuations, both in level and spectral shape. 
Variations of 3 to 5 dB in the component turbine attentuations based on tones 
at the same frequency were com:n in the previous test results. The engine 
attenuations, based on broadband results, match those of the component test 
with a similar data spread over the frequency range. 

4 .2 .3  Comparison of Engine Results with Theory 

The theoretical prediction of turbine transmission loss (attenuation) 
for supersonic blade rows as p~esentcd in Reference 9 was used to determine 
the attenuation for the 6-stage turbiile on the CF6-50 engine. The takeoff 
design point condition was used in the analysis because of the availability 
of cycle conditions, but is considered reprzsentative of the other conditions 
since the turbine operates near choke for conditions above idle. The pre- 
diction program was set up following the recommendations noted in Reference 9 
for the CF6-50 turbine. The attenuation results of the theoretical predic- 
tions are shown in comparison with the engine results on Figure 4-16. A 
maximum of 8.54 dB attenuation is recorded at 630 Hz after reaching the first 
cut-on frequency of 570 Hz. The attenuation drops off to 7.12 and 6.72 dB at 
800 and 1000 Hz respectively. Prior to cut-~n, no significant attenuation 
(1.43 dB) is computed. 



ECCP PHASE 111 

I - T - - l - l l - r  

Less Than Shown 

ased on Coherent Spectra 

pproach ~ ~ n d i t i o n  

- 10 
50 100 200 500 lo00 2000 

Frequency, Hz 

Figure 4-16 Meaeured Attenuation Spectrum and Predicted Resu l t s  For 
CF6-50 S i x  Stage Turbine 

50 100 500 1000 

Frequency, Ilz 

Figure 4-17 ~t tenur t t ion  Spectrum from +)-Stage Low Pressure Turbine 



These r e s u l t s  :,re s i n d l a r  t o  those obtained on the  engine i n  t ha t  
a t tenuat ions above :iOO Hz a r e  general ly  higher than those at t he  lower 
frequencies. The magnitude of t he  a t tenua t ions  determined from the  theore t i -  
ca l  model a r e  c lose  t o  those obtained from the  engine t e s t .  The engine re- 
s u l t s  a r e  5 t o  8 dB higher than the  predicted a t tenua t ion  i n  t h e  region 
around 200 Hz. However, t he  e f f e c t  of t he  cut-on frequsncy around 570 Hz is 
c l ea r ly  seen i n  t he  engine da t a  t o  follow t h e  predicted r e s u l t s  within 1.5 t o  
2 dB. 

4.3 PRIMARY NOISE SOURCE LOCATION 

Cross-correlation ana lys i s  was used i n  an attempt t o  i den t i fy  primary 
noise source locat ions within the  combustor. Pa i r s  of sensors  combined f o r  
t h i s  ana lys i s  included those a t :  

Compressor e x i t  (Plane 3.0, MADAR Probe) t o  combustor i n l e t  (Plane 
3.5, 102" o r  282' borescope probe) 

Compressor e x i t  (Plane 3.0) t o  combustor exit  (Plane 4.0, HPTN 
probe) 

Combustor i n l e t  (Plane 3.5) t o  combustor e x i t  (Plane 4.0) 

Compressor i n l e t  (Plane 3.0) t o  core  exhaust (Plane 8.0, Exhaust 
Probe A o r  B) 

Combustor e x i t  (Plane 4.0) t o  core  exhaust (plane 8.0) 

Comparisons were a l s o  made between the  102" and 282' borescope probes 
located a t  Plane 3.5 f o r  a f e w  of t h e  low t h r u s t  s e t t i ngs .  

The d a t a  f o r  ihe  cross-correlat ions used 25 averages i n  t he  ana lys i s  and 
were high pass f i l t e r e d  above 80 Hz t o  remove a test c e l l  resonance and 
el iminate  some 60 Hz e l ec t ron i c  no ise  i n  the  data .  

In  gener; qood cross-correlat ions were obtained f o r  a l l  condi t ions 
between pa i r s  . a t e rna l  combustor sensors.  A t  approach power and below, 
i n t e r n a l  combus r s igna l s  cor re la ted  w e l l  with the  core  exhaust probe sensor. 
L i t t l e  o r  no co r r e l a t i on  was observed between i n t e r n a l  combustor sensors  and 
the core exhaust probe above 30X Fn, however. This was due t o  increased 
turbulence on the  probe and uncorrelated noise  i n  t he  high frequencies.  The 
s igna l  between Plane 3.5 t o  4.0 was observed t o  be uncorrelated a t  conditions 
of 82 and 94.6% Fn. 

A review of the de t a i l ed  r e s u l t s  f o r  the  approach condition (30 percent 
t h rus t )  i s  presented f o r  i l l u s t r a t i o n .  Similar r e s u l t s  were obtained a t  the  
lower power s e t t i n g s  a t  a l l  measurement planes. The higher power s e t t i n g  
r e s u l t s  were a l s o  s imi l a r  f o r  the  i n t e r n a l  combustor sensors ,  but t he  low 
s igna l  co r r e l a t i on  between the  combustor sensors  and the  core  probe l imited 
these r e s u l t s .  



Coherent spec t ra  derived from the cross-correlat ions were used t o  com- 
pliment the cross-correlat ion r e s u l t s  and a r e  a l s o  presented where appro- 
p r i a t e .  

4.3.1 Combustor In t e rna l  Sensor Comparison 

The in t e rna l  sensors were paired f o r  cross-correlat ion ana lys i s  using 
the  upstream sensor a s  the sender and the downstrean sensor a s  the  rece iver .  
The t i m e  delays of the  maximum peaks associated with the  cross-correlat ions 
between Planes 3.0 t o  3.5 a s  seen i n  Figures 4-18 and 4-19 a r e  negative 
(-1.5 msec) and correspond t o  a ve loc i ty  of 490 m / s  which was computed 
using the  point-to-point d i s tance  i n  Table E-1, Appendix E. The average 
acous t ic  ve loc i ty  between these planes is around 482.5 m / s  a t  the  approach 
condi t ion which ind i ca t e s  t he  peak represen ts  an acous t ic  wave t rave l ing  
upstream against  the  flow. Similar  r e s u l t s  a r e  observed i n  Figure 4-20 f o r  
the  cross-correlat ion between Planes 3.0 and 4.0. I n  t h i s  instance,  the  
negat ive time delay corresponds t o  a ve loc i ty  of 581 m / s  which is  very c lo se  
t o  the  average acous t ic  ve loc i ty  of 566 m / s  between these planes a t  t h i s  
condition. 

The cross-correlat ior  between the 102' borescope sensor a t  Plane 3.5 
with the Plane 4.0 probe (Figure 4-21) shows a zero time delay f o r  the  pzak, 
ind ica t ing  the acous t ic  s igna l  i s  reaching both sensors  simultaneously. The 
cross-correlat ions between the 282' borescope sensar  a t  Plane 3.5 with Plane 
4.0 shows a negative time delay f o r  the  peak i n  Figure 4-22 which i s  s imi l a r  
t o  those observed i n  Figures 4-18, -19, and -20. 

The i n t e r n a l  combustor sensor comparison is completed with a cross- 
co r r e l a t i on  a t  Plane 3.5 between the  102" and 282' borescope probes. Two 
peaks a r e  observed frcm the  r e su l t i ng  cross-correlat ion i n  Figure 4-23, 
having equal time delays of opposite s ign  ('2.0 msec) which correspond t o  
v e l o c i t i e s  of r634 m / s .  The speed of somd a t  t h i s  plane is  482.5 m / s .  
Acoustic s igna l s  a t  t h i s  plane appear t o  be t rave l ing  i n  a s p i r a l  pa t t e rn  
across  the  sensor and moving i n  a general ly  forward d i r ec t i on  aga ins t  the  
flow a s  indicated by the time delays obtained from cross-correlat ions between 
the  Plane 3.5 sensors  with the sensor a t  Plane 4.0 (see Table E-1 i n  Appen- 
d i x  E) .  

4.3.2 Combustor In t e rna l  t o  Core Nozzle Sensor Comparisons 

A s imi la r  anklys i s  conducted between the  i n t e r n a l  combustor sensors  
paired with the downstream core probe showed pos i t i ve  time delays f o r  the  
major peaks of the cross-correlat ions a s  noted i n  Figures 4-24 and 4-25. The 
Plane 3.0 t o  Plane 8.0 (element A) cross-correlat ion i n  Figure 4-23 shows a 
pos i t i ve  time delay of +5 msec f o r  the l a r g e s t  pos i t i ve  co r r e l a t i on  peak. 
This time delay corresponds t o  a ve loc i ty  magnitude of 553 m / s  which i s  
comprised of both acous t ic  and flow v z l o c i t i e s .  .i negat ive co r r e l a t i on  peak 
is a l s o  observed i n  the f i gu re  which i s  s imi l a r  t o  the r e s u l t  obtained by 
Karchmer and Reshotkc (Reference 10).  The Plane 3.0 t o  Plane 8.0 (element B) 
cross-correlat ion i r .  Figure 4-25 shows s imi l a r  r e s u l t s .  
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The amplitudes of t!ie c r o s s - c o r r e l a t i o n  peaks g ive  an i n d i c a t i o n  of t h e  
amount of c o r r e l a t i o n  e x i s t i n g  between s i g n a l s .  I n  t h e  previous  r e s u l t s  t h e  
amplitudes of t h e  n o ~ m a l i z e d  c o r r e i s t i o n  c o e f f i c i e n t ,  Rxy ranged from +0.25 
t o  +0.075. CompleLe s i g n a l  c o r r e l a t i o n s  a r e  obta ined when Rxy is equal  t o  
1.0. Therefore.  t h e  degree  of s i g n a l  c o r r e l a t i o n  f o r  t h e  sensor  p a i r s  pre- 
v ious ly  d iscussed is low. 

A c r o s s - c o r r e l a t i o n  determined f o r  the  forward t o  a f t  sensors  on t h e  
downstream c o r e  probe i n  F igure  4-26a shows a  h igh degree  of s i g n a l  c o r r e l a -  
t i o n  (4-0.74) wi th  ze ro  t ime delay.  This  r e s u l t  is presented f o r  t h e  approach 
cond i t ion  bu t  i s  r e p r e s e n t a t i v e  of the  o t h e r  lower power s e t t i n g s .  The high 
degree of c o r r e l a t i o n  and ze ro  time de lay  i n d i c a t e s  t h a t  t h e  major i ty  of t h e  
s i g n a l  is a c o u s t i c .  A c l o s e r  look a t  t h e  c r o s s - c o r r e l a t i o n  between t h e  c o r e  
exhaust probe A and B K u l i t e s  wi th  an  rxpanded t ime s c a l e  of 2  msec p e r  d i v i -  
s i o n  and increased sample r a t e  is shown i n  Figure  4-26b. Delay t imes corre-  
sponding t o  t h e  c a l c u l a t e d  a c o u s t i c  and flow v e l o c i t i e s  f o r  t h i s  cond i t ion  
a r e  0.25 msec and 0.6 msec r e s p e c t i v e l y .  The c o r r e l a t i o n  c o e f f i c i e n t ,  Rxy, 
c f  approximately 70% is seen f o r  a  zero time l a g  peak, which corresponds 
approximately t o  t h e  a c o u s t i c  s i g n a l  a t  the  probe l o c a t i o n .  No peak due t o  
turbulence  i s  observed, even wi th  t h e  t ime r e s o l u t i o n  increased 25 t imes t h e  
s t r e n g t h  of t h e  a r 9 u s t i c  s i g n a l  appears  t o  o v e r r i d e  any s i g n a l  due t o  t u r -  
bulence a t  t h e  l o c ~ t i o n .  The r e s u l t i n g  coherent  s p e c t r a  f o r  t h i s  cond i t ion  
a r e ,  t h e r e f o r e ,  considered t o  be p r imar j ly  acous t i c .  The coherent  spectrum 
r e s u l t i n g  from t h i s  c ross -cor re la t ion  is shown i n  Figure  4-27 t o  confirm t h i s  
s i n c e  t h e r e  i s  almost ccmplete coherence over t h e  frequency range of 250 Hz t o  
800 Hz, which is  t h e  core  n o i s e  region of i n t e r e s t .  

4.3.3 Primary Noise Source Summary 

The c r o s s  c o r r e l a t i o n  of t h e  i n t e r n a l  p r e s s u r e  measurements obta ined on 
t h e  ECCP combustor i n  t h e  CF6-50 engine were reviewed t o  determine t h e  maximum 
time delay a t t r i b u t e d  t o  a c o u s t i c  propagation.  Vectoring of t h e  t ime da lays  
from each of t h e  c r o s s - c o r r e l a t i o n s  gave an i n d i c a t i o n  ~f  t h e  d i r e c t i o n  of 
s c o u s t i c  s i g n a l  t r a v e l  between sensors .  Amplitudes of t h e  peaks were compared 
t o  those  of t h e  t i m e  de lays  assoc ia ted  wi th  t h e  f low v e l o c i t y  i n  o r d e r  t o  
eva lua te  t h e  s t r e n g t h  of t h e  a c o u s t i c  s i g n a l .  A t a b u l a t i o n  of t h e  ampl i tudes  
and time de lays  f o r  these  c r o s s - c o r r e l a t i o n s  is faund i n  Apperidix D. This  
procedure,  performed a t  each t e s t  cond i t ion ,  i n d i c a t e d  a c o u s t i c  s i g n a l s  were 
t r a v e l i n g  upstream between p a i r s  of sensors  i n  t h e  combustor r eg ion  (Planes  
3.0, 3.5 and 4.0). A downstream t r a v e l i n g  s i g n a l  was apparent  f o r  a l l  vector-  
ing  done between t h e  combustor sensors  and t h e  c o r e  exhaust  probe. 

The c ross -cor re la t ion  between the  102' and 282" s e n s o r s  a t  Plane  3.5 
shows p o s i t i v e  and nega t ive  t ime delays  corresponding approximately t o  a c o u s t i c  
v e l o c i t y  and of n e a r l y  equal  amplitude. This sugges t s  t h a t  c i r c u m f e r e n t i a l  
t r a v e l i n g  waves a r e  a l s o  p resen t  i n  the  c?mbusior. 

The forward t r a v e l i n g  s i g n a l s  occur between P lanes  3.0 t o  3.5, 3.0 t o  
4.0, and 3.5 t o  4.0. Th i s  r e s u l t  sugges t s  t h s t  t h e  primary n o i s e  source  is 
loca ted  nea r  t h e  combustor d i scharge  s i n c e  t h c  h ighes t  energy l e v e l  is i n  t h i s  
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area .  The c ross -cor re la t ions  f o r  cond i t ions  below 45% Fn between t h e  combustor 
sensors  and t h e  exhaust  probe i n d i c a t e  the  sound i s  t r a v e l i n g  a f t .  

A review of t h e  c ross -cor re la t ion  a n a l y s i s  r e s u l t s  i n d i c a t e s  t h e  combus- 
t o r  environment is a highly  t c r b u l e n t  flow f i e l d  wi th  numerous n o i s e  sources .  
The e l l t i r e  combustor region might be c o n s i d e r ~ d  a s  a source  s i n c e  t h e  wave 
l eng ths  of predominate concern f o r  core  no i se  a r e  from 0.914 t o  1.524 meters 
long a t  t h e  engiae  opera t ing  cond i t ions  and t h e  d i s t a n c e s  between probes 
average 0.304 t o  1.219 meters.  

4.4 OVERALL POWER LEVEL COMPARISONS 

Comparisons were made a t  t h e  core  nozzle  discharge plane wi th  t h e  o v e r a l l  
sound power l e v e l  computed from probe raw s p e c t r a  and wi th  coherent s p e c t r a  
considered t o  be mostly sound. 

Overa l l  power l ev01  comparisons were made between t h e  measured r e s u l t s  
( F P b e a s )  and the  G e n ~ t a l  E l e c t r i c  component (PWLGE) and engine (PWLGEFAA) 
c o r r e l a t i n g  parameters used f o r  OAPWL pred ic t ions .  The measured r e s u l t s  
assume t h a t  the  measured p r e s s u l e  is  e n t i r e l y  made up of a c o u s t i c  p lane waves 
both i n  the  combustor and core  nozzle.  

4 .4 .1  Acoustic Power Levsl  i n  Exhaust Duct 

The power l e v e l  i n  t h e  engine c o r e  exhaust  duc t  was c a l c u l a t e d  from 
pressure  measurements made wi th  t h e  Plane 8.0 sound s e p a r a t i o n  probe. The 
probe was t raversed  t o  f i v e  r a d i a l  immersions loca ted  on c e n t e r s  of equal  
annulus a r e a s .  The FPL 113 octave band s p e c t r a  from 50 co 2000 Hz obtained a t  
each immersion were compared f a r  s i m i l a r i t y .  Figure 4-28 shows t.hiw comparison 
f o r  both K u l i t e s  on t h e  probe &t t h e  30% Fn approach power s e t t i n g .  It il l -  

d i c a t e s  c l o s e  agreement i n  s p e c t r a l  shape ?nd content  f o r  a l l  immersions 
except t h e  i n n e r  immersion ( 5 j  which is  near  t h e  tu rbu len t  region of t h e  plug 
nozzle  centerbody. This  r e s u l t  i n  zenera l ,  t y p i f i e s  colnparisons of t h e s e  
measurements a t  o t h e r  condi t ions .  Because of t h e  c l o s e  agreement a t  a l l  
immersions t h e  p i t c h l i n e  immersion (3) was t h e  primary i m e r s i o n  used i n  a l l  
measurement compsrisons wi th  upstream sensors .  Cross-corre la t ion a n a l y s i s  was 
performed between t h e  "A" and "B" K u l i t e s  on t h e  c o r e  probe a t  each immersion 
f o r  a l l  test condi t ions .  A high degree of c o r r e l a t i o n  between K u l i t e  s i g n a l s  
was apparent a t  a l l  immersions f o r  power s e t t i n g s  of 30% Fn (100% p i l o t  f u e l )  
and below. 

Coherence a n a l y s i s  performed on these  sensors  a t  t h e s e  cond i t ions  showed 
good coherence between t h e  forward and a f t  s e n s o r s  on t h e  probe i n  t h e  f r e -  
quency range between 315 t o  630 Hz which is t h e  primary region f o r  c o r e  
no i se .  Figure  4-29a and -29b i l l ~ u t r a t e  t h e  c ross -cor re la t ion  and coherence 
a n a l y s i s  r e s u l t s  f o r  t h e  30% Fn p o i n t  (wi th  100% p i l o t  f u e l )  a t  immersion 
four .  The c o r r e l a t i o n  c o e f f i c i e n t  Rxy, i s  0.75, a s  seen  i n  Figure  4-29a. 
Note t h a t  t h e  pro5e 1 / 3  octave band coherent  spectrum (frequency range of 100 
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through 2000 Hz) i n  Figure  4-29b, wi th  i ts  peak a t  400 Hz, f i t s  almost  e x a c t l y ,  
wi th  the  GE co re  n o i s e  p red ic ted  spectrum shape (Reference l l ) ,  t h e  l e v e l  of 
which was s h i f t e d  :o agree  wi th  t h e  coherent  s p e c t r a l  l e v e l  a t  400 Hz. Simi- 
l a r  r e s u l t s  f o r  t h e  19.72 Fn p o i n t  w i t h  100% p i l o t  f u e l  a r e  presented i n  
Figures  4-30a and -30b. A l e v e l  of 0.55 i s  observed f o r  t h e  c o r r e l a t i o n  
c o e f f i c i e n t .  The p red ic ted  c o r e  n o i s e  spectrum i s  aga in ,  i n  veyy good agree- 
ment wi th  t h e  coherent  spectrum i n  t h e  reg ion  of h igh coherence,  i n d i c a t i n g  
t h e  sound observed is predominantly c o r e  no i se .  

The approach power s e t t i n g  a t  29.7% Fn wi th  a  nea r  50/50  f u e l  flow s p l i t  
between p i l o t  and main burner s t a g e s  shows a  l e s s e r  degree  of c o r r e l a t i o n  
(below 0.2) than f o r  t h e  100% p i l o t  f u e l  cocd i t ion .  The h i g h e r  power s e t t i n g s  
which opera te  on a  s p l i t  f u e l  f low schedule  a l s o  showed a  much lower c o r r e l a -  
t i o n  between s i g n a l s  a t  a l l  immersions. The coherence a n a l y s i s  of t h e s e  
cond i t ions  showed a  reduc t ion  of t h e  coherent  p o r t i o n  of t h e  spectrum t o  
between 315 t o  500 Hz. The amount of coherence between t h e  c o r e  probe s i g n a l s  
f o r  these  mixed f u e l  f low p o i n t s  was l e s s  than f o r  t h e  100% p i l o t  f u e l  p o i n t s .  
F igures  4-31a and b i l l u s t r a t e  t h e  r e s u l t s  obta ined from t h e  c r o s s - c o r r e l a t i o n  
and coherence a n a l y s i s  of t h e  approach po in t  a t  29.7% Fn (wi th  46.9% p i l o t  
f u e l ) .  The coherent  spectrum a t  t h i s  cond i t ion  s t i l l  r e t a i n s  t h e  c o r e  n o i s e  
shape but  t h e r e  i s  l e s s  agreement wi th  t h e  core  n o i s e  p r e d i c t e d  spectrum. 
This  i s  c h a r a c t e r i s t i c  of the  r e s u l t s  obta ined a t  t h e  high t h r u s t ,  s p l i t  f u e l  
flow cond i t ions ,  a s  i l l u s t r a t e d  by Figures  4-32a and b  which show r e s u l t s  f o r  
64.6% Fn wi th  17.8% p i l o t  f u e l .  The amount of c o r r e l a t i o n  is  aga in  low ( t h e  
l e v e l  of the  normalized c o r r e l a t i o n  c o e f f i c i e n t  is 0.2:. and t h e  amount of 
coherence betwten t h e  r z w  and coherent  s p e c t r a  is  l e s s  than  a t  t h e  lower power 
s e t t i n g s  v i t h  100% p i l o t  f u e l .  

Average o v e r a l l  p r e s s u r e  l e v e l s  were determined f o r  a l l  cond i t ions  from 
s e l e c t e d  immersions. The immersions s e l e c t e d  were based on those  w i t h  t h e  
h igher  degree of c o r r e l a t i o n  and t h e  l e a s t  no i se  f l o o r  of t h e  coherent  s p e c t r a .  

The o v e r a l l  p r e s s u r e  level - ;  determined from t h e  c o r e  probe immersion 
averaged raw s i g n a l  l e v e l s  and t h e  coherent  s p e c t r a  (which are considered t o  
be  mostly sound) were compared on a  c o r r e c t e d  c o r e  speed b a s i s .  The r e s u l t s  
of  t h i s  comparison i n  Figure  4-33 shows t h e  e f f e c t  of t h e  o p e r a t i o n  w i t h  p i l o t  
f u e l  only ,  and wi th  a  f u e l  s p l i t  t o  t h e  p i l o t  and main burner  systems on t h e  
o v e r a l l  sound p ressure  l e v e l  i n  t h e  c o r e  exhaust .  A r educ t ion  i n  OASPL is 
r e a l i z e d  when opera t ing  i n  t h e  s p l i t  f u e l  f low mode. Th i s  r educ t ion  a t  
approach i s  seen t o  be a s  much a s  7.5 dB wi th  t h e  raw s p e c t r a  t o  9  dB wi th  t h e  
coherent  s p e c t r a .  

The a c o u s t i c  power l e v e l  i n  tb.- c o r e  nozzle  is c l e a r l y  dominated by core  
n o i s e  a t  approach cond i t ions  and below. These c o n d i t i o n s  which o p e r a t e  wi th  
t h e  p i l o t  burner only a l s o  show a  high OASPL. A t  h igher  power s e t t i n g s  which 
opera te  wi th  f u e l  f low s p l i t s  t o  t h e  p i l o t  and main s t a g e  burners  t h e  OASPL is  
l e s s  than the  low power s e t t i n g s .  The e f f e c t  is most dramat ic  a t  t h e  approach 
c o n d i t i o n  wi th  and wi thout  t h e  f u e l  f low s p l i t .  
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4.4.2 Comparison of Measured Power Level with Component and 
Engine Pred ic t ions  

The component and engine ove ra l i  power l e v e l  p red ic t ions  were based on 
cor rec t ions  derived from t e s t s  conducted under the GE Core Engine Noise 
Inves t iga t ion  Program, Reference 11. 

Component (PWLGE) Comparison 

The component predict ion is based on the  co r r e l a t i on  derived from com- 
ponent t e s t s  conducted i n  Reference 11. The ove ra l l  powe; l e v e l  PWLGE is 
calculated from: 

PWLGE = 83.6 + 10 log [ ( P ~ ~ / T ~ ~ ) ~ * ~  Vr 3'5 (TT4-TT3) 1 , r e  10-l~ Warts (7)  

where = Combustor i n l e t  t o t a l  pressure,  k ~ / m  
2 

'T3 

TT3 = Combustor i n l e t  t o t a l  temperature, K 

T T ~  = Combustor e x i t  t o t a l  temperature, K 

V r  = Reference ve loc i ty  defined a s  

W36 = Tota l  combustor a i r  flow, kg/sec 

2 
= Combustor reference a rea ,  m2 ( fo r  CY6-50 Are, = 0.37287 m ) 

The aero  parameters used i n  ca lcu la t ing  the  PWLGE values  a r e  Zound i n  
Table 5 (Section 3.7). 

The measured r e s u l t s  were based on an ove ra l l  power l e v e l  determined 
from the  i n t e r n a l  r ' luctuating pressure  measurements reduced t o  113 octaveband 
spec t ra  and corrected fo r  frequency response loss .  The o v e r a l l  l e v e l s  deter-  
mined from these pressure measurements (considered to  be acous t ic  plane wave 
s igna ls )  were converted t o  power l e v e l  accounting f o r  impedance changes due 
t o  d i f fe rences  i n  t e s t  conditions,  Mach number e f f e c t s ,  and a r ea  d i f fe rences  
a t  each measurement plane a s  described i n  Section 3.7. The r e s u l t i n g  power 
l e v e l  was designated F P h e a S  with u n i t s  i n  dB r e  10-13 wat t s .  The para- 
meters used i n  the conversion to  FPWLmeas a r e  found i n  Table 6. 

Figure 4-34 shows the comparison of FPWLmeas t o  PWLC,E f o r  the  i n t e r n a l  
combustor sensors a t  Planes 3.0, 3.5 and 4.0. The Plane 3.0 FYWLmeas is  5 
t o  15 dB lower than the  FPWLmeas = PWLCE l i n e  a t  condi t ions above i d l e  giving 
a f l a t t e r  trend t o  t he  data.  The FPL measured a t  Plane 3.0 is  i n  t he  compressor 
discharge region p r i o r  t o  the s t a r t  of combustion. 



r
 P

la
n

e 
3

.0
 

r 
E

C
C

P 
P

h
a

se
 
1
1
1
 D

o
u

b
le

 
A

n
n

u
la

r 
C

om
b

u
st

or
 

r
 C

F
6-

50
 
E
n
g
i
n
e
 

T
e

st
 

r
 

P
la

n
e 

3.
5 

r
 P

la
n

e 
4

.0
 

p
a

a
, 

c
i

~
 

r
e
 

w
a
tt

s 

F
i
g
u
r
e
 

4-
34

. 
C

o
m

p
a
ri

so
n

 
o

f 
FP

W
L 

to
 P

W
G

E
 f

o
r

 I
n

te
r

n
a

l 
S

e
n

so
r

s 
m

e a
s
 



The FPWheas a t  Plane 3.5 agrec e l l  wi th  t h e  p red ic ted  PWL a t  a l l  
t e s t  colldit ions except a t  t h e  extre.  .s. Plane 3.5 is i n  t h e  pre-%x region 
of t h e  combustor a f t  of t h e  f u e l  noz7les.  I g n i t i o n  t akes  p lace  a t  t h i s  p lane 
t o  s t a r t  the  combustion process.  

A t  Plane 4.0, t h e  F P ' h e a s  is  higher  than p red ic ted  a t  t h e  lower h a l f  of 
t h a  t e s t  cond i t ions  by 15 t o  5 dB and g i v e s  a s i m i l a r  d a t a  t r end  as seen f o r  
Plane 3.0. The FPL a t  t h i s  p lane  is determined from measurements i n  t h e  
borescope p o r t  located between two vanes i n  t h e  high p ressure  t u r b i n e  nozz le  
diaphragm. As previously  discussed,  t h i s  region,  which opera tes  a t  a near  
ci.,;stant Mach number of 0.55, con ta ins  a l a r g e  amount of high frequency n o i s e  
a t  a l l  t e s t  condi t ions .  

The b e s t  co~uparison wi th  YWLGE of t h e  engine F P b e a s  from FPL measure- 
ments appears t o  be a t  Plane 3.5 f o r  v i r t u a l l y  a l l  test cond i t ions .  

 engine^^) Comparison 

The PWkEFAA engine p r e d i c t i o n  i s  based on a c o r r e l a t i o n  der ived from 
engine f a r f i e l d  d a t a  and c o r e  probe r e s u l t s  obta ined dur ing t e s t s  conducted 
under the  Core Engine Program, keference 11. The o v e r a l l  power l e v e l  from 
t h e  engine c o r r e l a t i o n  is c a l c u l a t e d  from 

2 2 
P W L ~ ~ ~ ~ ~  = 169.3 + 1 0  l o g  W36(TT4-TT3) (P3/Po) - 40 l o g  ( T T ~ - T T ~ ) ~ ~ ~ ~ ~ ~  

r e  10-l~ w a t t s  (8) 

where the  nomenclature i s  descr ibed above and (Ty4 - T T ~ ) ~ ~ ~ ~ ~ ~  is t h e  t o t a l  
temperature drop a c r o s s  t h e  high and low pressure  t u r b i n e s  a t  t h e  c y c l e  
design po ia t .  

The comparison wi th  t h e  measured power l e v e l  i s  based on t h e  p ressure  
measurements taken w i t h  t h e  sound s e p a r a t i o n  probe i n  t h e  core  nozzle.  The 
power l e v e l  determined from +t.e a s  measured f l u c t u a t i n g  p r e s s u r e  measurements 
i n  the  core  exhaust was h igher  than t h e  predic ted p a r e r  l e v e l  from t h e  engine 
c o r r e l a t i o n .  To more a c c u r a t e l y  compare t h e  ECCP Phase 111 d a t a  wi th  t h e  
engine c o r r e l a t i n g  parameter, t h e  coherent p a r t  of t h e  probe K u l i t e  B s p e c t r a  
wi th  t h e  probe K u l i t e  A s i g n a l  was used t o  compute t h e  P h e a S .  An average 
OASPL obta ined from t h e  i n d i v i d u a l  immersions was used i n  conjunct ion wi th  
t h e  PWL calcu1a;ion procedxre noted i n  Sect ion 3.7. 

F igure  4-35 shcws t h e  comparison of PWLmeaS computed from coherent 
s p e c t r a  a s  d iscussed wi th  t h e  engine p r e d i c t i o n  parameter PWLGEFAA. The 
s o l i d  symbols a r e  f o r  t h e  lower pcwer s e t t i n g s  using 100% p i l o t  f u e l ,  whi le  
t h e  open symbols a r e  f o r  s p l i t  f u e l  f low condi t ions .  The i d l e  po in t  was 
highly  contaminated wi th  a l a r g e  400 Hz s i n u s o i d a l  tone,  a s  previously  discussed.  
A tone correct ior ,  of 7.9 dB brought t h i s  po in t  i n  agreement wi th  t h e  o t h e r  100% 
p i l o t  po in t s  (dark symbols) which then p a r a l l e l e d  t h e  equal  PWL l i n e .  The 
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tone c o r r e c t i o n  was app l ied  t o  t h e  OASPL from t h e  113 OBSPL coherent s p e c t r a  a t  
each immersion. An average "tone corr-cted' '  OASPL was then obtained and con- 
ve r ted  t o  PWLmeas. This  f i g u r e  c l e a r l y  shows t h e  e f f e c t  of burning i n  t h e  
o u t e r  p i l o t  s t a g e  only a s  r e s u l t i n g  i- higher  o v e r a l l  power l e v e l s  by about 15 
dB. The s p l i t  f low condi t ions ,  however, agree  wi th  t h e  c o r r e l a t i o n  as repea t  
readings  a t  45.4% Fn f a l l  above and below t h e  equal  PWL l i n e .  The approach 
point  a t  30% Fn (100% p i l o t  f u e l )  is  9 dB above t h e  same condi t ion  a t  29.7% 
Fn with a  f u e l  s p l i t  of about 50%. 

Operating t h e  combustor wi th  the  o u t e r  r i n g  of 30 f u e l  nozzles  only ,  a t  
t h e  power s e t t i n g s  of approach and below i s  d e s i r a b l e  from an emissions 
s t andpoin t  a s  d iscussed i n  Reference 1. With f u e l  t o  t h e  p i l o t  s t a g e  only 
t h e  24% of t h e  t o t a l  combustor a i r  t h a t  passes  through t h e  o u t e r  burner .nixes 
wi th  the  t o t a l  amount of f u e l  added. The main burner a i r  f low (49% of t h e  
t o t a l  combustor a i r  flow) may be considered t o  a c t  a s  cool ing o r  d i l u t i o n  air  
~ h i c h  mixes wi th  t h e  o t h e r  29% of W36 used f o r  l i n e r  cool ing,  e t c .  Th i s  has  
t h e  e f f e c t  of inc reas ing  t h e  l o c a l  f u e l - a i r  r a t i o  and r e s u l t s  i n  ho t  f low i n  
t h e  o u t e r  annulus wi th  a higher  v e l o c i t y ,  whi le  t h e  f l o v  i n  t h e  i n n e r  annulus 
remains r e l a t i v e l y  coo l  and has a lower v e l o c i t y .  Mixing of t h e s e  two d i s -  
s i m i l a r  r eg ions  may r e s u l t  i n  no i se  genera t ion  due t o  s h e a r  l a y e r  i n t e r a c t i o n  
between t h e  hot  and coo l  streams. There is ,  of course,  no way of determining 
t h i s  from t h e  p resen t  scope of work. 

With both p i l o t  and main s t a g e  burning, t h e  temperatures i n  both  streams 
a r e  i n  much c l o s e r  agreement and consequently,  t h e  stream v e l o c i t i e s  a r e  more 
near ly  equal ,  t h ~ s  reducing any shear  l a y e r  i n t e r a c t i o n  noise .  P ressure  
measurements taken a t  Plane 4.0 a t  30% F, wi th  t h e  100% p i l o t  f u e l  and a t  
29.7% Fn wi th  both p i l o t  and n a i n  s t a g e s  fue led  show a  d i f f e r e n c e  of approx- 
imately 6 dB lower l e v e l  wi th  t h e  60 f u e l  nozzles  i n  both  s t a g e s  burning.  

Agreement wi th  t h e  engine c o r r e l a t i o n  is obtained f o ~  t h e  100% p i l o t  
f u e l  only p o i n t s  i n  Figure  4-36 when an  e f f e c t i v e  temperature,  T4p, i s  computed 
from t h e  f u e l - a i r  r a t i o  determined f o r  t h e  percentage of t h e  t o t a l  combustor 
a i r f l o w  t h a t  passes  only though t h e  o u t e r  p i l o c  burner annulus.  The fuel-ai-r  
r a t i o  f o r  these  100% p i l o t  only p o i n t s  is considerably  h igher  s i n c e  on ly  t h e  
p i l o t  a i r  e n t e r s  i n t o  t h e  c a l c u l a t i o n .  The main s t a g e  air  i n  t h i s  case ,  i s  
considered t o  a c t  only a s  cool ing and d i l u t i o n  a i r  and dnes n o t  e n t e r  t h e  
combustion process.  

The higher  T4p obtained from t h e  increased f u e l - a i r  r a t i o  r e s u l t s  i n  a  
g r e a t e r  PWLGEFAA which s h i f t s  t h e  100% p i l o t  p o i n t s  a t  30, 19.72 Fn and t h e  
tone cor rec ted  i d l e  cond i t ion  wi th in  t h e  d a t a  c o r r e l a t i o n  i eg ion .  

Resu l t s  oE t h e  ECCP Phase 111 t e s t s  have shown a s i g n i f i c a n t  i n c r e a s e  i n  
o v e r a l l  sound power l e v e l  (9 dB) a t  approach wi th  1.00% p i l o t  f u e l ,  conpared 
t o  an approximate 50/50 f u e l  s p l i t  between s t a g e s .  Considerat ion must, 
t h e r e f o r e ,  a l s o  be given t o  t h e  i n f l u e n c e  of n o i s e  on t h e  opera t ion  of t h e  
Double Anr4.dar combustor system dur ing approach power, i n  a d d i t i o n  t o  t h e  
emission t radeof f s .  
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5.0 CONCLUSIONS 

This  was t h e  f i r s t  time i n t e r n a l  p ressure  me isurements w e r L  acqufred on 
t h e  CF6-50 engine wi th  a Double Annular combustor. The s i g n i f i c a n c e  of t h i s  
engine test was t o  e s t a b l i s h  a base f o r  comparison wi th  component d a t a  and 
provide an understanding of t h e  opera t ion  of a Double Annular combustor 
system i n  an engine environment, 

5.1 DOUBLE ANNULAR COMBUSTOR SPECTRA COMPARISONS - - 
The r e s u l t i n g  s p e c t r a  from ~ 4 e  i n t e r n a l  comb.ustor measurements i n d i c a t e  

t h a t  cond i t ions  a t  t h e  lgwer power s e t t i n g s  (30%'Fn and below) a r e  more 
c h a r a c t e r i s t i c  of c o r e  n o i s e  spec t ra .  The Pldne: 3.5 1 /3  octave band s p e c t r a  
a r e  peaked i n  t h i s  frequency range between 250 and 1000 Hz f o r  those  lower 
power p o i n t s ,  which is t y p i c a l  of c o r e  noise.  The measurements a t  t h i s  p lane 
a r e  more r e p r e s e n t a t i v e  of combustion n o i s e  than e i t h e r  t h e  compressor d i s -  
charge,  ? lane  3.0 o r  combustor d i scharge ,  Plane 4.0. Values of F P h e a s  
computed from t h e  Plane 3.5 measurements match t h e  p red ic ted  va lues  of P ~ E  
from t h e  component cc -:elation. 

The c o r e  probe measurements a t  these  cond i t ions  match t h e  empi r ica l  
combustor shape, peaking a t  400 t o  600 Hz. Levels  of P h e a S  computed from 
t h e  core  probe average OASPL from coherent s-rectra (which were mostly sound) 
obtained from as many as f i v e  r a d i a l  innnersidas showed good agreement wi th  
t h e  engine PWLGEFAA c o r r e l a t i o n  f o r  t h e  approach power s e t t i n g  and hI qher 
po in t s  operated wi th  f u e l  s p l i t s  t c  t h e  inner  and o u t e r  r i n g s  of f u e l  nozzles .  
The power l c v e l s  frorr t h e  approach cond i t ion  and lower p o i n t s  operated wi th  
100% f u e l  t o  t h e  oglter p i l o t  rIt: of f - e l  nozzles  were h igher  than  predic ted.  
Adjusting t h e  T T ~  t o  account f o ~  t h e  increahed frq.el-air r a t i o  i n  t h e  o u t e r  
annulus wi th  p i l o t  f u e l  only increased t h e  PWLGEFA~ and s h i f t e d  t h e  lower 
power p o i n t s  wi th in  t h e  reg ion  of d a t a  c o r r e l a t i o n .  

The r e s u l t s  from t h i s  Double Annular combustor t e s t  show a s i g n i f i c a n t  
i n c r e a , ~  i n  o v e r a l l  power l e v e l  (9dB) a t  approach wi th  100% p i l o t  f u e l ,  
compared t o  an approximate 50150 f u e l  s p l i t  br -ween p i l o t  and main s tage .  
Considerations must t h e r e f o r e  be given t o  t h e  no i se  impact as *re11 a s  t h e  
emissions t r a d e s  i n  s e l e c t i n g  approach power opera t ing  f u e l  schedules.  

The t ransmiss ion losn a c r o s s  t h e  CF6-50 t u r b i n e  and nozzle  computed from 
t h e  d i f f e r e n c e  '~ctwef ,I s p e c t r a  which were predominately a c o u s t i c  matched 
component t e s t  r e s u l t s  snd t h e o r e t i c a l  p red ic t ions .  

5.2 NOISE SOURCE LOCATIONS 

The r r . su l t s  rf t h e  c ross -cor re la t ion  a n a l y s i s  showed nega t ive  time 
delays  f o r  t h e  i n t e r n a l  combustor s e n s s r s  p r i r e d  upstream t o  downstream, 



i n d i c a t i n g  for ward sound wave propagatior., oppos i t e  t o  t!~e d i r e c t i o : ~  ~i flow. 
The i a t c r n a l  combustor t o  core  nozzle Kul i t e  p a i r s  gave p o s i t i v e  t i u e  delays ,  
i n d i c a t i n g  a c o u s t i c  s i g n a l s  t r a v e l i n g  aft. Circumferent ia l  waves were a l s o  
i d e n t i f i e d  between t h e  Planes  3.5 senso l s  a t  102" and 282". 

The predominate r%e de lays  between a l l  tht: K u l i t e  se1,sar p a i r s  a r e  
l i s t e d  i n  Table E-1 of Appendix E. A s  seen i n  the  t a b l e ,  p o s i t i v e  t i m e  
de lays  a r e  recorded f o r  combustor sensors  pa i red  wi th  t h e  eensars  on t h e  
probe i n  t h e  core  exhaust ,  Plane 8.0. Negative time de lays  a r e  observed 
between any combination of i n t e r n a l  combustor s e n s o r s  pa i red  upstream t o  
downstream. The time delay f o r  c ross -cor re la t ions  between Plane 3.5 (102") 
wi th  Plane 4.0 is zero (a t  30% Fn) o r  very near  zero  (-0.3 msec ac  19.72 Pi,) 
f o r  the  l imi ted  dat.3 a v a l l a b l c ,  i n d i c a t i n g  t h e  source  may be between Plane 3.5 
(102") ~ n d  Plane 4.0.  Howeccr, t h e  p o s i t i v e  time d e l a y s  a s s o c i a t e d  wi th  
Plane 4 .0  t o  Plane E.0 a d  t h e  o ther  combustor sensor  ,) lanes wi th  t h e  core  
exhaust  suggest  the  pvcsexlce of another  source  downstream of t h e  t u r b i n e  thi.C 
J a s  no t  of a propagating a c o u s t i c  na tu re  u n t i l  a f t e r  pass ing through t h e  tur-  
b ine .  

5.3 ENGINE TU DUCT= COMPARISONS 

The comparison of t h e  engine-to-duct r i g  measurements made oti the  Dotible 
.4nnular combustor dur ing t h i s  program showed l a r g e  d i f f z r e n c e s  ~f 1 0  t o  25 dB 
on a p ressure  l e v e l  s p e c t r a  b a s i s  between both i n l e t  and discharge meauure- 
ment planes.  The power l eve l  romparisons showed considerably  c l o s e r  agree- 
ment wi th  d i f f e r e n c e s  i n  l e v e l s  of aboqlt 3 t o  8 dB over t h e  frequency range. 
The s p e c t r a ?  shapes of t h e  engin, and duc t  r i g  measurements a r e  very c ) ? . i l a r .  

Some cf the  d i f f e r e n c e s  j.n l e v e l  a r e  concluded t o  be t h e  r e s u l t  of t h e  
d i f f e r e n c e  i n  s t a t i c  p ressure  t e tweer~  engine and duc t  r i g  a t  t h e  high Fcwer 
po in t s ,  measurement p lane l o c L ~ i a ~  d i f f e r e n c e s ,  and t h e  presence of t h e  
choked nozzle  diaphragm i n  t h e  engine which i s  ab!.ent f r a ?  t h e  duct  r i g .  
. r :  ~ t h e r  f a c t o r  i s  thc d i f f e r e n c e  due t o  combustor , ,peration wi th  p i l o t  fc;: 
ur.iy f o r  t h e  low power s e t t i n g s  on ~ 1 . i ~  engice  as oppossed t o  opera t ion  wi th  
fue l  ~ p l i t s  t o  t h e  l r i l o t  and maia .>tage burners  i n  t h e  test r i g  f o r  t h e  Phase 
I and I1 noise  measarement?. 
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APPENDIX A - 2 HZ NARROWBAND SPECTRA RESULTS 

The 2 Hz narrowband spec t ra  r e s u l t s  presented i n  t h i s  Appendix a r e  based 
on f luc tua t icg  pressure l e v e l s  (FPL's) from the raw i n t e r n a l  measurements on 
the CF6-50 engine with the ECCP Phase I11 Double Annular combustor. The FPL 
spectra  p l o t s  cover the frequencies up t o  2000 Hz and a r e  presented fo r  the 
ava i lab le  sensors a t  each of the  e igh t  test condit ions including repeat  points.  
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Figure A-1. As Measured Narrowband Spectra for CF6-50 Engine 
Condition at 3.8 Percent Thrust, Reading 6 ( Idle ) 
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Figure A-2. AS Measured Narrowband Spectra for CF6-50 Engine 
Condition at 19.7 Percent Thrust, Reading 16 
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Figure A-3. As Measured Narrowband Spectra for CF6-50 Engine 
Condition at 30 Percent Thrust Reading 23 
(Approach Power with 100 Percent Pilot Fuel) 
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Figure  A-4.As Measured Narrowband Spectra  f o r  CF6-50 Engine 
Condit ion a t  29.7 Percent  T h r u s t ,  Reading 39 
( Approach Power w i t h  50/50 Fuel S p l i t  ) 
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Figure A-6.As Measured Narrowband Spectra for CF6-50 Engine 
Condition at 45.4 Percent Thrust, Reading 28 
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Figure A-7.As Measured Narrowband Spectra f o r  CF6-50 Engine 
Conditi0.n a t  64.6 Percent Thrus t ,  Reading 40 
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Figure A-8.As Measured Narrowband Spectra for CF6-50 Engine 
Condition at 64.6 Percent Thrust, Reading 13 
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Figure  A-9.As Measured Narrowband Spectra  f o r  CF6-50 Engine 
Condit ion a t  82 Percent T h r u s t ,  Reading 18 
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APPENDIX B - 113 9CTAVE BAND SPECTRA RESULTS 

This Appendix contains the 113 octave band spectra resul tn  from 50 t o  
2000 Hz in  both tabular and graphical form for the eight  res t  co~ . . ' ~ . i ons  
noted i n  the acoustic t e s t  matrix. The data presented is the measured 
internal spectrr; with corrections for ambfent frequency response l o s s .  
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Figure  B-1. One-Third Octave Band S p e c t r a  f o r  CF6-50 Engine 
Condition a t  3 .8  Percent  Thrus t  
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F i g u r e  B-2. One-Third Octave Band S p e c t r a  f o r  CF6-50 Engine 
Condi t ion  a t  19.7 P e r c e n t  T h r u s t  
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Figure B-3. One-Third Octave Band Spectra f o r  CF6-50 Engine 
Condit ion a t  30 Percen t  Thrust  
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Figure  B-4. One-Third Octave Band Spec t ra  f o r  CF6-50 Engine 
Condit ion a t  2 9 . 7  Percent Thrust  
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F i g u r e  0-5. One-Third Octave Band S p e c t r a  f o r  CF6-50 Engine 
Condi t ion  a t  45.4 P e r c e n t  Thrus t  
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Figure B-6. One-Third Octave Band Spectra for CF6-50 Engine 
Condition a t  64 .6  Percent Thrust 
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Figure  B-7. One-Third Octave Band Spectra  f o r  CJ6-50 Engine 
Condit ion a t  82.0 Percent  Thrus t  
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Figure B-8. One-Third Octave Band Spectra for CF6-50 Engine 
Condition a t  94.6 Percent Thrust 



APPENDIX C - TURBINE TRANSFER FUNCTION RESULTS 

The t u r b i n e  t r a n s f e r  func t ion  r e s u l t s  presented i n  t h i s  Appendix a r e  
i n  the  form of coherent 113 o c t w e  band SPL s p e c t r a  comparisons a t  each t e s t  
condi t ion.  Turbine a t t e n u a t i o n s  were obtained between t h e  coherent s p e c t r a  
a t  Plane 4.0 and t h e  coherent s p e c t r a  a t  Plane 8.0, both of which a r e  r e f -  
erenced t o  Plane 3.5. Noted on t h e  s p e c t r a  a r e  reg ions  where both  s p e c t r a  
a r e  i n  t h e  n o i s e  f l o o r  18 dB d ~ w n  from t h e  raw s i g n a l .  Also noted on t h e  
s p e c t r a  a r e  regions  of f requen .2~  bands which a r e  15 t o  18 dB down from t h e  
raw s i g n a l  f o r  e i t h e r  Plane 4.0 qr Plane 8 . 0 ,  but no t  both. The a c t u a l  
a t t e n u a t i o n s  obtained i n  these  reg ions  a r e  e i t h e r  less than o r  g r e a t e r  than 
t h e  observed value  read from t h e  p i c t s .  
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Figure C-1. Coherent Spectra Comparisons Eur Turbine Attenuatioas 
From ECCP "haae 111 Engine T e s t  
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From ECCP Phase I11 Engine Test (Continued ) 
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APPENDIX D. EVALUATION OF PRCBE RESPONSE 
AT ELEVATED TPIPERATURES -. 

This Appendix contains the equations, basic rs~unptions and results of 
a study conducted on the SCCP Phase I11 lntersal KIite probe measureaents 
to evaluate the effect of elevated temperature an t b  engine test results. 



APPENDIX D - EVALUATION OF PROBE RESPONSE 
AT ELEVATED TEMPERATURES 

The theo re t i ca l  value of probe a t tenuat ion  determined from the mathe- 

matical equations of Arthur S. I b e r a l l  (Reference 12)  includes e f f e c t s  of 

compressible f l u id  flow, f l u i d  acce lera t ion ,  an.! h??t condvction. The pres- 

sure a t  any point i n  the l i n e  t o  the pressure a t  the probe entrance is re- 

la ted  in  the form of an amplitude r a t i o  &ich .s a function of frequency. 

A s implif ied computation can be made when assuming no r e f l e c t i o n  i n  the  

system such as i n  the c2se of a  probe terminated i n  a  constant cross-section 

" inf in i te"  l i n e  (a l i n ~  i n  which r e f l ec t ions  from its end can be neglected).  

The bas is  of t h i s  s implif ied calculat ion,  a s  given i n  Olson (Reference 13) is 

the l o s s  i n  tubes due t o  t he  v iscos i ty  of a i r .  

Transmission l o s s  i n  tubes of c i r cu l a r  sec t ion  can  be expressed as 

where A = amplitude (pressure) a t  a  d i s tance  x from the  amplitude Ao, which 

e x i s t s  a t  the  probe entrance. The other  terms a r e  given below: 

, transmission coe f f i c i en t  

R = radius of tube 

x = length from entrance t o  point of i n t e r e s t  

c  = veloc i ty  of sound 

w = 2 r f  

f = frequency i n  Hz 

p = v i scos i ty  coe f f i c i en t ,  f o r  a i r  

p = densi ty  of medium 

y = r a t i o  of spec i f i c  hea ts  

The amplitude r a t i o  becomes 

A/Ao = e , a  function of frequency. 



The transmission l o s s  (at tenuat ion)  is 

TL = 20 log 

This a t tenuat ion is due so l e ly  t o  viscous damping within the  probe tube and 

assumes no i n t e r n a l  r e f l ec t ions  and no non-linear e f f e c t s  associated with 

sound pressure l e v e l s  over 120 dB. 

The waveguide sensor systems used i n  t he  ECCP Phase I11 program under- 

went room temperature ambient pressure ca l ibra t ions .  The transmission l o s s  

i n  the sensor tubes located i n  the  Double Annular combustor region as a 

r e s u l t  of the elevated operating temperatures was estimated assuming t h a t  - 
1. The temperature i n  the  waveguide tube reaches the  s ink  temperature 

under the  engine cowling of approximately 477 t o  505K. 

2. This temperature is constant f o r  a l l  operating conditions. 

3. The pressure i n  the tube w i l l  be t he  s t a t i c  pressure in the  com- 
bustor  a t  t he  measuring plane. 

4. An a i r  mediumexists. 

For waveguide systems a t  Planes 3.0 and 3.5 

Conditions 

A. Calibrat ion 

B. Takeoff (Worst Case) 



Transmission coe f f i c i en t  at f = 2000 HZ 

a, = 0.2789 l/m f c r  ambient ca l ib ra t ion  

a1  = 0.0643 l / m  f o r  takeoff condition 

Transmission l o s s  across  tube length x = 0.3048 m f o r  f = 2000 Hz 

A 
TL = 20 log - 

A, 

TL, = - 0.74 dB f o r  ambient ca l ib ra t ion  

TL1 = - 0.17 dB fo r  takeoff condition 

Ratio of transmission lo s ses  

The frequency response l o s s  determined from ambient ca l ib ra t ions  is 

approximately four (4) times grea te r  than the l o s s  determined a t  the takeoff 

condition of the  CF6-50. 

This amounts t o  a reduction of the  response correct ion from +2 dB a t  

2003 Hz t o  M.5  dB a t  takeoff operating condtion. This 1.5 dB change is 

based on the  l i n e a r  assumption f o r  SPL's less than 120 dB. Since the major- 

i t y  of the  f luc tua t ing  pressure measurements were well  above 120 dB (140 to 

160 dB) and the  AdB change was approaching the measurement accuracy, t h i s  

temperature e f f e c t  w a s  neglected and the  ambient response r e s u l t s  were used 

t o  correct  the data.  



APPENDIX E, CROSS-CORRELATION RESULTS 

This Appendix contains a tabulated summary of time delays and amplitudes 
for the major peaks of the cross-correlations between pairs of Kulite sensors 
for a l l  t e s t  conditions on the ECCP Phase 111 CF6-50 engine test. 
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APPENNDIX F - NOMENCLATURE 

Symbol Description 

Annulus area, cross-sectional area at combustor 
measurement planes 

A, A. Amplitued (pressure) of wave 

Ar ef Combustor reference area 

BPR Fan-to-core bypass ratio 

c, C Acoustic velocity 
- ,. 
L Average acoustic velocity 

d Point-to-Point distance between Kulites 

dB Decibel 

dz Axial distance between Kulite sensors 

A~BPWL Turbine attenuation based on PWL 

@P Unit vector nornal to acoustical wave front 

ex Unit vector, axial component 

f Frequency 

f /a Fuel-air ratio 

FAR3 6 Combustor fuel-air ratio based on W36 

% Fn, PCT FN Percent net thrust 

FPL 
-5 2 Fluctuating pressure level re 2 x 10 ~ / m  

FPWL Power level based on fluctuating pressures 
re 10-13 watts 

HPT High pressure turbine 

HPTN High pressure turbine nozzle 

HRR Heat release rate (total fuel flow x heating 
value of JP5 fuel) 

Hz Hertz: cycles/second 

Units - 
m 

2 

watts 



In t ens i t y  f l u x  vector  

Ins ide  diameter 

Low pressure turbine 

Mach number 

Average Mach number 

Malfunction, detect ion,  ana lys i s  and recording 
subsys tem 

N c 

N f 

OAFPL 

Core speed, corrected 

Fan speed, corrected 

Overal l  f l uc tua t ing  pressure l e v e l  

OAPWL Overal l  sound power l e v e l  

Overal l  sound pressure l e v e l  OASPL 

One-third octave band f l uc tua t ing  pressure l e v e l  113 OEFPL 

113 OBSPL One-third octave band sound pressure l e v e l  

Outside diameter 

Acoustic pressure (rms) 

Percent f u e l  s p l i t  t o  main s t age  burner 

Percent f u e l  s p l i t  t o  p i l o t  s t a g e  burner 

PCT I N  

PCT OUT 

Ambient, standard day preseure atm 

atm 

8:' 

4, 

S t a t i c  pressure 

Tota l  pressure 

PCT combustor pressure drop r e l a t i v e  t o  upstream 
pressure 

Combustor t o t a l  pressure drop atm 

dB Sound power l eve l ,  re 10-l3 wat t s  PWL 

Gas constant  f o r  a i r  

Radius of tube 



RDG, Rdg Reading number 

R x ~  Cross-correlation function 

SLS Sea level static 

SPL 

f 

w3 

W36 

WFT 

Sound pressure level, re 2 x ~h~ 

Ambient, standard day temperature 

Total temperature at turbine inlet based on 
pilot fuel-air ratio 

Static temperature 

Total temperature 

Combustor total temperature rise 

Transmissicn loss 

Mean flow velocity 

Absolute flow velocity vector 

Core jet velocity 

Effective (mixed jet) velocity 

Fan jet velocity 

Compressor discharge airflow 

Total combustor discharge airfl~w 

Total fuel flow 

Combustor discharge flow corrected to corn; ,:stor 
inlet conditions 

Axial Cartesian coordinate 

3istance along probe tube 

Tangential Cartesian coordinate 

Transmission coefficient 



SUBSCRIPTS 

a 

C 

f 

0 

1 

1 

?, 

Difference,  i n c r e a s e  o r  decrease  

Ra t io  of s p e c i f i c  h e a t s  

Time de lay  

Angle between a c o u s t i c  wave f r o n t  arid a x i a l  
d i r e c t i o n  

Vi.sccsity coef f  i c i ency  f o r  a i r  

Density 

Angle between flow and a x i a l  d i r e c t i o n  

Angular f requsccy,  2rf  

A i r  

Core 

Fuel,  f a n  

I n i t i a l  o r  c a l f b r a t i o n  cond i t ion  

T ~ S L  -' ..-.-. . ~ n  

Largest. peak i n  crcibs-.correlation 

Next l a r g e s t  peak i n  c ross -cor re la t ion  

Compressor d ischarge plane 

Combustor i n l e t  p lane 

Combustor d ischarge / t u r b i n e  i n l e t  p lane 

Core nozzle  diecharge pla,ae 

sec  

deg 

Pa. s e c  

kg i m  3 
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