INSTALLATION PACKAGE FOR A SOLAR HEATING SYSTEM

Prepared from documents furnished by
Solar Engineering and Equipment Company, Inc.
3305 Metairie Road
Metairie, LA 70001

Under Contract NAS8-32247 with
National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy'

$$
\text { (NASA }=C R=150876) \text { INSTALEATION PACKAGE:FOR A }
$$

SOLAR HEATING SYSTEM SOlar'Engineering and

63\%44

U.S. Department of Energy

NOTICE

This report was prepared to document work sponsored. by the United States Government. Neither the United States nor its agents the United Statesi Department of Energy, the United States National Aeronautics and Space. Adminiatration, nor any fedaral employees, nor any of thest contractors, sutcontractors or their employees, make any warranty, express or inyifed, or assume any legai liability or responsibility for the accuracy, completemess, or usefulness of any information, apparatus, product or process disclosed, or represent that its use would not infringe privately owned rights.
I N D EX
SYSTEM OPERATION \& MAINTENANCE PAGE
A. GENERAL 1-2
B. FILTERS 3
C. COLLECTORS 3
D. DUCTS 4
E. SITE DATA ACQUISITION SYSTEM 4
F. FANS \& MOTORS 5-8
G. CONTROL WIRING 9
H. DAMPERS 10
I. THERMOSTAT 11-12
J. SOLID STATE ADAPTERS 13-14
K. SOLID STATE CONTROLLED DEVICE 15-16
L. DAMPER ACTUATORS 17-20
M. TIME CLOCK TIMERS AND ACCESSORIES 21-22
N. CONTROL PANEL CABINET 23-24
O. LIMIT BULB THERMOSTATS 25-28
P. AIR FLOW ALARM CONTROL 29-30
Q. RELAYS.$31.1-31 \mathrm{~g}$
R. DIFFERENTIAL TEMPERATURE CONTROLLER 32-37
S. CONTROL DIAGRAM SHOWING OPERATING MODES 38-41
T. LIST OF SERVICEMEN 42°
Appendix A - Detailed Drawings A-i
Index of Drawings A=ii

A. GENERAL

This is an air type solar system designed for heating during the winter and is very simple to operate. Basically the system is completely automatic and will function without further adjustment when the control switch is in the "Winter Mode" and the manual override switch is in the automatic position. NOTE: This siwtch must be left in the automatic position and should only be changed•by an authorized serviceman. Upon conclusion of the heating season, the control switch is placed in the Summer Mode which activates the attic fan and ventilates the collector and attic. NOTE: The soffit vents located above the front door must be opened in this Mode to insure adequate ventilation. If the vent mode is not operating properly, an alarm has been provided which guards against inadequate ventilation and warns the occupant of this fact. A local serviceman should then be called to rectify said problem. A third switch has been provided to manually turn off the attic fan during overcast days or night time and is clearly marked as such. There is also a system On-Off switch which controls the power to the entire system and is provided for servicing the system.

The moving parts consist of Fans No. l, No. 2, the attic fan, dampers and damper motors l-5. Normally the only reason why the system will not operate will be because of the lack of
electricity caused by a burned out fuse, or because the driving belts have paried or slipped. These two faults can easily and quickly be determined.

If the system does not shift to the proper operating mode it may be because of lack of power to the damper control systems and this should be checked. (See damper maintenance section). Failure of sensors or jamming of operating motors or solenoids may make the dampers and the control system inoperative and the serviceman should be called. (see list of authorized servicemen).

B. FILTERS

Fan No. 2 is equipped with a standard fiberglass air filter which should be routinely checked and replaced when dirty. (see M-4 of working drawings for filter placement). This will normally be about once each month. Naturally, the air filters on the conventional unit should be checked and replaced, as per usual operation. Large mesh screening filters will be installed on the inlet and outlet to the rock storage pit and these should be checked occasionally to remove any insects or other material which may have accumulated.

C. COLLECTORS

The collectors should be self cleaning if there is normal rainfall. However, during extended dry periods it may be necessary to hose down the tops to remove accumulated dust. In all events, the local serviceman should check collector cleanliness at least once per month to ensure efficient operation. Periodic checks for water leaks evidenced by obvious rusting and caused'by Tedlar damage should be conducted. New Tedlar should be ordered (see collector manufacturer) and rusted areas properly cleaned and repainted. Other than this, there is very little that should go wrong with the collector, although an annual inspection by the local serviceman is advisable to see if anything inordinate has happened.
D. DUCTS

Ducts should be checked for air leaks, cracks, or separations. Duct insulation should also be checked and repaired or replaced as necessary.

E. SITE DATA ACQUISITION

The Site Data Acquisition system should not be touched in any way. This has nothing to do with the actual operation of the SEECO heating system but merely consists of a series of temperature and flow sensors which collect and transmit data to a general computer processing and recording point by a private telephone line which is connected to the transmitter in the house.

Maintenance to dampers, damper motors, fans and the control panel is explained in detail in the following pages. Control diagrams showing the various operating modes are also provided as well as a list of servicemen to contact in the event any complications should develop.

$F-2 F A N M O T O R$

1/8 to 3/4 HP FURNACE \& BELT-DRIVE BLOWER MOTORS
1725 RPM, ilsV, Split Phase Type. Auto. Thermal Profection
Low Noise, Reduced Starting Torque. $40^{\circ} \mathrm{C}$ Rise, Continuous Duty

HP	RPM	Volts 80 Hz	$\begin{aligned} & \text { Bear- } \\ & \text { Ings } \end{aligned}$	MountIng	Therma Prot.	NEMA Eramt (Sase o. 18)	Fulb Lompa G 110 V	Woatinghoule Styis No.	Stock No.	Fotall	Each	Shps.
1/8	1725	115	Slv	Rend	Auto	489	2.4	316 P 503	6×009	5356	\$24.71	13
1/6	1725	115	Slv	Reanl	Auto	48	4.0	3169824	5×215	3582	24.80	12
1/4	1725	115	Slv	Resil	Auto	48	5.1	3169755	5×216	3965	26.71	14
	1725	115	Slv	Resil	Auto	48/58**	5.1	317 P 103	$5 K 463$	3965	26.71	13
		116	Slv	Resil	Auto	56	5.1	317 P 002	6 K 105	3965	26.71	14
11/3	1725	115	S]	Rranl	Auto	489	5.9	316 P 759	5 K 257	4602	31.01	14
	1725	115	Sto	Resil	Auto	48/56*	59	317 P 104	$6 K 362$	46.02	31.01	15
	1726	115	Str	Reail	Auto	58	5.9	317 P 003	6K106	46.02	31.01	15
$1 / 2$	1725	115	Slv	Resul	Auto	58	7.2	317P004	6×104	6443	43.41	18
3/4	1725	115/230	Slv	Reaii	Auto	88	11.0	312P629	$5 K 269$	8708	58.67	29

(${ }^{\text {a }}$) Nos. 6 K 463 , 6 K 362 have NEMA 48 fratne body mounted on NEMA. 36 frame cradle base, have 132° long,
(i) Mounting base has 48 and 56 frame mounting holes. Motor ahafit height $3^{\prime \prime}$; 114° long. $1 / 2^{\prime \prime}$ dia. shaft, supplied with Kis split steal shaft bunhing.
MAINTENANĊE
MOTOR - Check wiring for secure connections.0iling
IS NOT REQUIRED AS THIS MOTOR HAS SEALED
BEARINGS:
PULLEY -Check pulley for secure fit and alignmentbel T - Check belt for wear and replace as necessary,Adjust belt tension making sure all motorMOUNTING BOLTS ARE SECURE UPON COMPLETIONof maintenance inspection.

SINGLE INLEI BEIT-DRVE DUCT BLOWERS Air Deliveries Based on Standard Test Codes of AMCA

9, 10^{5} \& $12!2^{\prime \prime}$, Single-Width, Multi-Vane Wheels Adjustable on-the-Job to Any Discharge Position Very Quief. Adapts to Many General Applications

Economical single-inlet blowers with inlet unobstructed, for general duct ventilation, exhaustıng, air conditioning; processing and industrial use. Comes with bottom horizontal discharge which can be altered on the job to any required discharge position by drilling new holes and rotating blower housing on base and bolting in position. Adjustable top motor mount quickly changed from top to rear mounting.

Rugged construction of heavy gauge steel throughout. Very quiet. High volume of low velocity. Over-sized ball bearings for long life and dependable operation. Finished in baked-on gray enamel. Motor not included.

Air detiveries of blowers listed below are based on slandard test codes of AMCA.

Model No.	$\frac{1 / 7{ }^{1 / 2}}{5 p}$	$1 / 2 / 2$	$\frac{1 / 20}{50}$	$\begin{gathered} 1 / 2{ }^{2} \\ \mathrm{sp} \end{gathered}$	$\frac{3 / 2}{\mathrm{sp}}$	$\begin{aligned} & 1_{s p}^{\prime} \end{aligned}$	RPM	HP	Stpg.
2C887	1100	1000	890	800	475	-	1000	$1 / 4$	25
2 C 888	1690	1600	1480	1370	1140	-	1000	1/2	36
[2C800]	I	T	I	2100	1980	1460	875	1/2	60

(") Overloaded below $1 / 3$ " SP \{i\} Overloaded at this SP at specified HP.

SINGLE－INLET，4－WAY DISCHARGE BLOWERS

$\begin{aligned} & \text { Whas } \\ & \text { Dile_ } \end{aligned}$	What Width	Shaf！ Dla．	inlot Dia．	$\mathrm{H}^{\text {Outlet }}{ }_{\mathrm{W}}$		Overalt Stio			$\begin{array}{r} \text { BL } \\ \text { Ltock No. } \end{array}$	OWER 0 Motor and Relall	LY Drive Each	Shps．Wh． Less Mt and Drim
91／2＂	4， F^{*}	砤	10^{*}	101\％＊	\％＇${ }^{\prime \prime}$	1615＊	$10^{8 / 4}$	$14^{4} \times{ }^{\text {c }}$	2 C 986	こい17	\＄50 72	！
10\％		31	11	$11^{\text {s }}$	$\mathrm{XI}_{1}{ }^{\text {a }}$	18	1212	$116^{2} \times$	$2 \mathrm{C987}$	＋17．41	5821	M
12\％	6	3	332	$1_{131}{ }^{1}$	\＄1	：11\％	$12{ }^{1}$	1144	$2 \mathrm{C988}$	1i．3！	91.81	\％
15	6	1	15\％\％	$10^{7}{ }^{*}$	81	25	$1{ }^{19}$	$\because 12$	$2 \mathrm{C989}$	1゙\＃4	14581	47
18\％	9	1	1913	187ád	1219	30	17%	219%	4 C 218	114311	180.67	＊2

SINGLE－INLET BLOWERS WITH MOTOR AND DRIVE

MAINIENANCE

Motor－Check wiring for secure connections．0iling IS NOT REQUIRED AS THIS MOTOR HAS SEALED BEARINGS：

TEMPRRATURZ CONTROLS Ime.

Heating and Air Conditioning Service
7321 North Bdwv., Okla. City, Okla. 73116
Telephone: AC 405-848-8573

CONCHO INDIAN SCHOOL

SOLAR PROJECT
TC77-13

OPERATIONS \& MAINTENANCE MANUAL

This page is copyrighted. For information on the
Control Damper contact Ruskin Mfg Co, P. O. Box 129, Grandview, MO 64030.

Solid State Thermostats Proportional Controlling

Terminals are available on the back of the unit to accomplish the following options: remote setpoint. remote sensing, summer-winter changeover and auxiliary selective ratio elements.

ACCESSORIES:

1. The AD-8951 mounting assembly is an accessory provided to permit easy panel mounting and wiring of the TP-8101 room controller. It includes a $11^{\prime \prime} \times 4^{\prime \prime}$ piece of vinyl mounting track. See Figure 4 for wiring information.
2. Remote setpoint adjuster (AT-8158), see Figure 2 for wiring.
3. Auxiliary selective ratio element (TS-8601), see Figure 3 for wiring.

- INSTALLATION INFORMATION:

Location: Locate the controller where it will be exposed to unrestricted natural air circulation and to the average conditions of the controlled space. Do not locate it near sources of heat or cold (such as lamps, motors, sunlight, radiators, and concealed pipes or ducts within the wall) which might affect the control point.

Ambient Temperature Limits:
Maximum $+135^{\circ} \mathrm{F}$
Minimum $+40^{\circ} \mathrm{F}$

Wiring: Pigtails are provided for wiring to the controlled device. Large, coded, screw type terminals are provided for all other electrical connections. Make all electrical connections to the element in accordance with installation wiring diagrams for the job. Comply with National and Local Electrical Codes. No. 18 3-conductor thermostat cable may be used. Low voltage Class 2 wire is acceptable but No. 18 or larger 600 V wire should be used if splices are to be made in the same junction box with line voltage wiring.
The controller may be installed on either a flush switch box or surface switch box. To install, proceed as follows:

1. "Pull" all wires that are required.
2. Connect all control wiring to thermostat terminals.
3. Make electrical connections to any remote sensing elements with a conductor cable.
4. Remove the thermostat cover. To do so, loosen the screw at the bottom of the cover, pull the cover out from the bottom and up to disengage from the base.
5. Fasten the base to the box with the provided captive screws.
6. Replace cover and tighten cover screw.
7. Remote Setpoint: Remove dial knob from the TP-8101, Figure 1, and install the AT-8158 remote setpoint adjustor between terminals $1,2 \& 7$. This is used for applications where the setpoint adjustment is mounted remote from the TP 8101 controller.
8. Remote Sensing: Remove the internal 1000 ohm sensor, Figure 1, and install the remote sensor (TS- 8000 series) between terminals $7 \& 8$. This is used for applications where the sensor is mounted remote from the TP-8101 controller.
9. Summer-Winter Changeover: The controller operates in either the DA or RA mode.

Jumper 4 to 5 - DA (Direct Acting) $=$ temperature increase causes output voltage increase

Jumper 3 to 4 - RA (Reverse Acting) = temperature increase causes output voltage decrease

, Eig. 1.- TP. 8101 Component Locations

Fig. 2 - TP. 8101 Terminal Arrangement Etc,

Fig. 3 - Wiring Schematic

in Figure 3 This s used for room and discharge control appl cations.

Adjustments:

The TP-8101 has been factory calibrated to produce a 7.5 VDC output signal when rhe setpoint and the temperature at the sensing element agree.

Throttling range settings of $2,3,6: \dot{\&} 20$ are available by placing the T.R. jumper on the proper selector pin, see Figure 1.

Service:

1. Check wiring per job wiring diagram
2. Measure with VOM
A. Power Supply 20 VDC - Red (+) to Blue ($(-)$ wire
B. Output 1-15 VDC - Yellow (+) to Blue ($($) wire
C. Sensor 1000 ohm remote or internal
3. Consult EN III for additional service information

Fig. 4 - TP. 8101 Mounting on AD. 8951

Fig, 5-TS-8601 Ratio Discharge Sensor

SOLID STATE ADAPTORS
Seq./Par./Rev. Module Hi-Lo Selector Module

TYPE
AD 8101
A 8201

General Information: Specific adaptor modules are designed to meet system applications such as sequencing/paralleling/reversing, and high-low signa! selection. By placing these modules between the controller and the controlled device, complex cycles of operation can be accomplished. The design of the module centers around the use of integrated circuits and discrete type components arranged on printed circuit boards and snapped into vinyl track for mounting in a local control panel.

The high-low signal selector module, Figure 1, is designed to accomplish either high or low signal selection, depending on the pin arrangement underneath the cover, Figure 3. The device is calibrated at the factory and requires no field calibration. It has the capability of selecting either the highest or lowest signal from up to six zones. The output signal then responds to either the highest or lowest zone thermostat, depending on the application.

The sequencing/paralleling/reversing module, Figure 2, is a device which conditions the signal supplied by the controiler and provides sequencing, reversing, or parallel operation to the controlled device. In the sequencing mode, the output is adjustable above or below the output voltage of the controller, permitting sequencing of two controlled devices. In the reversing mode, the output of the module is - reversed with respect to the input, i.e., a $1-15$ volt input provides a $15-1$ volt output. In the paralleling mode, several controlled devices can be operated in parallel from the signal produced by the sequencing/paralleling/reversing module.

Installation Information: The module is designed to be track mounted and located in a local control panel. The unit is provided with a $7 \cdot 1 / 2^{\prime \prime}$ piece of mounting track to permit quick and easy panel mounting, in a horizontal or vertical position. Location should be such that the unit is not subjected to severe vibration, shock, or ambient temperature conditions.

Make all connections in accordance with job wiring diagrams, complying with all national electrical codes. Wiring terminations are made at screw terminals located on the end of the printed circuit board, Figures 4 and 6 .

Figure 1

Figure 2

Ambient Temperature Limits:

Minimum - $+40^{\circ} \mathrm{F}$
Maximum $-+135^{\circ} \mathrm{F}$
Construction: The AD 8101, and 8201 adaptor modutes are designed primarily for track mounting in a local or central control panel. However, they can also be located inside the AD 8910 enclosure for remote field mounted installations.

Adjustments: High-low selector module - this module is factory calibrated to provide a $1: 1$ ratio so that with a 6-9 volt input a 6-9 volt output is obtained. An adjustment is available so that the output of the high-low selector module can be changed ± 4 volts $D C$ with respect to the input signal, Figure 3.

Adjustments: Sequencing/paralleling/reversing module is calibrated at the factory to provide a $1: 1$ ratio so that with a $6-9$ volt input, a $6-9$ volt output can be obtained. The sequencing/paralleling/reversing module has an adjustment so that the output signal may be changed ± 5 volts with respect to the input signal, Figure 5.

Service:

1. Check wiring per job wiring diagram.
2. Mersure with VOM:
A. Power supply 20 VDC , terminals +20 and COM.
B. Output 1-1 VDC terminals OP1 and COM.
C. Input 1-15 VDC terminals IV1 through IV6 and COM.
3. Consult EN 1,11 for additional service information.

Figure 4

Service:

1. Check wiring per job wiring diagram.
2. Measure with VOM:
A. Power supply 20 VDC terminals +20 and COM .
B. Output 1-15 VDC terminals OP1 and COM.
C. Input 1-15 VDC terminals, IV1, IV2 and COM.
3. Consult EN 111 for additional service information.

Solid State Controlled Device
Single Stage Relay
Two Stage Relay
Time Proportioning Relay

TYPE:
CC 8101

General Information: Staging relays, Figure 1, are offered in various configurations which include single stage, dual stage, and dual stage with one stage containing heat anticipation. These staging relays require 120 volts AC for power source and contain a 20 volt $D C$ regulated power supply which is used to supply power to other modules, such as controllers and adaptors. The stagung telay receives a $1-15$ volt DC input signal and by means of adjusting the drop-out voltage of each stage, the relays may be made to operate at any voltage in this $1-15$ volt span. The differential of the relay is adjustable by selecting the proper pin on the printed circuit board.

The time proportioning version of the staging relays can be used to control heating cooling applications. The heating side is built with a heat anticipation circuit which provides time proportioned control of electric heat. The second relay in the module can be used for cooling which would be connected to a single stage DX coil.

Adjustments: The staging relay has a potentiometer which will set the drop-out point of each relay between 2-12 volts DC. It also contains fixed deadband (pull-in to drop-out) of $1 / 2,1,2$, and 4 volts DC, Figure 2. Pull-in point represents drop-out voltage plus deadband voltage setting.

Ambient Temperature Limits:

Minimum $+40^{\circ} \mathrm{F}$; Maximum $+135^{\circ} \mathrm{F}$.
Installation information: The module is designed to be track mounted and located in a local control panel. The unit is provided with a $7-1 / 2^{\prime \prime}$ piece of mounting track to permit quick and easy panel mounting, in a horizontal or vertical position. Location should be such that the unit is not subjected to severe vibration, shock, or ambient temperature conditions.

Make all connections in accordance with job wiring diagrams, complying with all national electrical codes. Wiring terminations are made on screw terminals located on the end of the printed circuit board. See Figure 3,4, 5 for module wiring.

Construction: The CC 8101,8102 , and 8103 relays are designed primarily for track mounting in a local or central control panel. However, they can also be located inside the AD 8910 enclosure for remote field mounted installations.

Figure 1

Figure 2

ORIGINAL PAGE IS
OF POOR QUALITY

CONTROLLED DEVICE

FACTORY SET• (NON.ADJUSTABLE) 6 VDC INPUT - 100\% DUTY CYCLE 7.5 VDC INPUT - 50% DUTY CYCLE (45 SEC) 9 VDC INPUT - 0\% DUTY CYCLE

Calibration:

1. Apply power to relay module.
2. Connect VOM to input terminals IV1, IV2 and COM.
3. Set input voltage to desired drop-out voltage (IV1).
4. Adjust stage one for relay drop-out (R1).
5. Repeat steps 3 and 4 for stage two (R2).
6. Set differential to desired setting.

Service:

1. Check wiring per job wiring diagram.
2. Measure with VOM
A. Power 120 VAC terminal L1 and L2.
B. Power supply 20 VDC terminal +20 and COM.
C. Input 1-15 VDC terminal IV1, IV2 and COM.
3. Consult EN 111 for additional service information.

Barber-Colman Compan4 CONTROLS DIVISION

1300 Rock Street, Rockford, IIIInoIs, U.S.A., 61101

ENVIRONMENTAL SYSTEMS
GENERAL NSTRUCTIONS

Proportional and Two－Position Hydraulic Actuators for Dampers and Valves

DEVICE INFORMATION

Identification

ORIGINAL PAGE IS OF POOR QUALITY

Members of this group may be easily identified by referring to the part number displayed around the center of the cylinder．The date of manufacture（numerically，the week followed by the year）is stamped in ink on every actuator．

This General Instruction Sheet is concerned with all MP－5200 Series actuators bearing the part number suffix ＂－0－0－1＂and all MA－5200 Series actuators．Actuators with the part number suffix＂－500＂have a built－in adjustable SPDT switch．When working with actuators manufactured before this series，refer to your obsolete literature file for previous GI＇s．F－11943－3 deals with the obsolete MP－5200 Series．F－12766－1 is the previous sheet on MA－5200 Series actuators．

MA and MP－5210 Series：These actuators are two position and proportional valve actuators，respectively．

MA and MP－5220 Series：These actuators are two position and proportional damper actuators，respectively．

Pre－Installation

MA and MP－5210 Series：These valve actuators are supplied without additional linkage or hardware．Valve bodies or linkage must be－ordered separately．

MA and MP－5220 Series：These damper actuators are supplied with mounting bracket，and integral damper linkage．Also required for installation will be three $1 / 4$－inch diameter bolts or other fasteners to mount the actuator． Additional hardware normally，required for linking the damper would be：

$$
\begin{array}{ll}
\text { AM-132-0-0-1 } & -\quad \text { balljoint connector } \\
\text { AM-122-0-0-1 } & - \text { straight connector } \\
\text { AM-125 } & -\quad 5 / 16-\text { inch link rod } \\
\text { AM-111 thru 115 } & - \text { damper shaft crank arms. }
\end{array}
$$

When actuators have the optional auxiliary switch，an XDDH－132 adjusting wrench is available for adjustment．

Before mounting the device check for dents，bent parts and signs of oil leakage．Also check supply voltage against requirements，shown below：

	Voltage
Part No．	Requirements（VAC）

MA－MP－5XX0	120
MA－MP－5XX1	240
MA－MP－5XX2	208
MA－MP－5XX3	24

INSIAELAIIUIV

Requirements

These actuators will operate correctly in any position and are unaffected by normally encountered environmental conditions. Ambient temperature limitations: For MA Series, minimum is zero and maximum is $140^{\circ} \mathrm{F}$. For MP-5220 Series, minimum is minus $20^{\circ} \mathrm{F}$ and maximum is 135° F. Power required is 10 watts.

Pracadure

1. Before installing the device, check to be sure that it operates properly.

MA (two position) actuators: When the proper AC voltage (Figure 4) is applied, the actuator motor should run causing the actuator to extend.

MP (proportional) actuators: These actuators require the proper input voltage (Figure 3) and a control voltage of 1 to 15 VDC . As the control voltage goes through a nominal 6 to 9 VDC range, the actuator should travel through its stroke with the proper valve or damper linkage. For this checkout step, the AD-8301 manual positioner may be used to supply the control voltage.
2. Install and connect the device physically.

Damper actuators: Position actuator and mark mounting holes using the actuator bracket as a template. When mounting the actuator allow 10 inches space for wiring, and leave adequate room for linkage. Allow 2-1/4 inches to remove actuator from integral linkage.

The best position for the actuator is with the actuator crank arm and the crank arm on the driven shaft, at a 90° angle to the linkrod at midstroke. It may be necessary to swivel the actuator linkage to arrive at the best mounting location.

Allow adequate working space to wire the actuator into the system.

Drill mounting holes for the appropriate $1 / 4$-inch diameter mounting fasteners and mount the actuator. The actuator must be mounted firmly enough to prevent excessive actuator movement under normal damper loading. If there is excessive actuator movement, the damper may not fully open or fully close.

Valve actuators: Remove the valve body' from the actuator by loosening the $1-5 / 8$-inch flange nut.

Pipe the valve body into the system. Note: Be sure that the actual flow is in the same direction as the arrows on the valve body indicate. Allow 3 inches above the actuator case for reattachment and removal.

Reattach the actuator to the valve body,
3. Wire the actuator into the system.

Low voltage units wired to NEC codes may use Class Two wiring. Wire line voltage units wired to NEC

Figure 4. MA Wiring

codes. A maximum of 12 inches of $1 / 2$-inch flexible conduit between the actuator and conduit box with standard 18 -inch actuator leads. All actuator wires must be contained in the conduit.

POWER WIRE SIZE PER ACTUATOR

Actuator Voltage (VAC)	Wire Size (Ga)	Maximum Two Wire Run (Feet)
24	14	300
	12	480
120	14	7000

To determine the allowable maximum run for multiple actuator wiring, divide the maximum run shown above for a given wire size and voltage by the number of actuators on that run.

Use wire nuts on power leads from a Class A power source. Power lead colors are shown as follows: Black - common to all voltages that follow. White - for 120

VAC. Black with blue tracer - for 24 VAC. Black with brown tracer - 208 VAC. Black with yellow tracer 240 VAC. All leads 18 inches except 24 VAC units which are 48 inches.

MP (proportional) actuators: Actuator wires are connected as shown in Figure 3. Barber-Colman approved, three conductor twisted 18 AWG wire has 600 volt PVC insulation and should be used from the controller. Also acceptable is any three wire (18 ga.) cable with Class I lead insulation insulated in conduit separate from line voltage (Figure 3).

MA (two position) actuators: These are wired as shown with the thermostat or switching device controlling the off-on status of the actuator motor (Figure 4).
4. Finish the damper actuator mechanical hook-up.

After wiring, assemble the straight connector, linkrod, balljoint connector, and damper shaft crank arm as shown (Figure 5).
Tighten both the actuator connector to the linkrod and the damper crank arm to the damper shaft. Both crank arms should be approximately 90° to the linkrod at midstroke. Normally dampers are linked to full heat with the actuator retracted.

Extend and retract the actuator by dpplying approximately a 6 to 9 VDC control signal and required voltage. The actuator crank arm will rotate 80°.

Determine the proper radius on the damper shaft crank arm to fully open and close the damper.
Tighten down the connector to the damper crank arm and the linkrod.

The installation is now complete.

Auxiliary Switch

Hydraulic actuators may be ordered with a built-in adjustable SPDT auxiliary switch (Figures 6 and 7). This switch must be ordered as part of the actuator and cannot be field installed. Note: For MP Series actuators only, the switch common wire is internally connected to the black power lead. Because of this, the switch must be wired to control the same voltage as the actuator itself. Switch rating is 10 amperes at $120 / 240$ VAC. Leads are 18 inches except 24 VAC units which are 48 inches.
The switch's brown wire is normally open and the orange wire is normally closed. The switching point is adjustable over the entire actuator stroke and is factory set to occur at the retracted end. Use XDDA-132 to adjust the switch point.

CHECKOUT

The actuator is now installed and should run properly when the system is energized. The following checks can be easily performed to see if the device is operational.
MP Series Actuators: First, the actuator motor should run continually when power is applied. If the motor is not running, something is wrong with either actuator or the supply voltage. Second, the damper or valve should go from full heat to full cool as the control signal goes approximately from 6 to 9 VDC.

NOTE

At very low ambient temperatures (around minus $20^{\circ} \mathrm{F}$) the actuator may run slowly until the oil warms up. This condition may exist for 30 minutes.

MA Series Actuators: When the proper voltage is supplied to the actuator terminals the actuator motor should run, causing the actuator to extend.
If the actuator fails to function properly, refer to the section on repairs.

RUN/ADJUST

No adjustments are made at the actuator. All adjustments are made at the controller.

Figure 6. MA Series Actuator

Figure 7. MP Series Actuator

Theory of Operation

See Figures 6 and 7. The permanently sealed oil filled case (1) contains a movable hydraulic piston assembly (2) and an electric pump (3) for the hydraulic system. The pump generates a fluid pressure which is transmitted to the top of the piston. Opposing the hydraulic force is the spring of the valve or damper linkage.

MA Series Actuators: The electric pump (3) is powered by the input supply voltage and runs whenever the voltage is applied. When power is removed, the oil flows back through the pump by means of check valve (6) and the actuator retracts.

MP Serics Actuators: The electric pump (3) is powered by the input supply voltage, and runs continuously. An unregulated power supply ((4) is powered by a transformer winding from the pump motor winding. The power supply produces 20 VDC which powers the controller. The controller returns a 1 to 15 VDC control voltage to the actuator transducer (5). This controls the internal pressure and the resultant actuator action.

MAINTENANCE

The power unit of the actuator is sealed in oil and requires no maintenance.

REPAIR

MA Series Actuators:

1. Check the actuator by applying the proper supply voltage.
2. The motor should run when power is applied, if not, the actuator is defective and should be replaced.
3. The actuator should extend, if it'does not, check the mechanical linkage. Either the mechanical linkage prevents proper action or the actuator is defective.
4. If the linkage moves properly, but the actuator does not extend, replace the actuator.
5. If applying power causes the actuator to perform correctly, the actuator and linkage are functional and the wiring and thermostat shorld be checked.

MP Series Actuators: Repairs to this device consist mainly of checking the unit wiring and replacement of the power supply. Other field repairs are not recommended. Use the procedure below to locate a malfunction.

1. The actuator motor should run continually. If it does not run, check the supply voltage and the unit wiring.
2. Voltage between the blue (-) and red (+) leads should be 20 ± 1 VDC.
3. Input voltage on the blue (-) and yellow (+) wires should be between 1 and 15 VDC. If it is not, refer to EN-111 3.1.2 for service information.

Product Information

Accessories, Electric AE-100 Series Time Clocks
Timers

Seven Day Time Clock

Part Number	Clock Motor	Switch Rating
AE-174	$120 \mathrm{~V} ., 60 \mathrm{~Hz}$	1 hp at $120 / 240$ Volts, a.c. only.
AE-178	$120 \mathrm{~V}, 60 \mathrm{~Hz}$ Battery carryover	Pilot Duty 690 VA. Non-Inductive 40 amps at 120 or 240 volts. a.c. only.

Interval Timer

AE-174 \square
AE-178 \square

For automatic switching of a building control system from "Day" to "Night" and then back to "Day" on a selectable program. Device: Heavy duty, sealed, permanently lubricated, synchronous timing motor drives a large seven day dial. Graduation of dial at 30 minute intervals enables àccurate setting of switch trippers. Switch trippers (7 on and 7 off) may be easily installed around the outer rim of the dial to provide various (on and off) timings. By not installing trippers for a specific day of the week, that day "on" operation is automatically omitted. Entire mechanism can be snapped out of case for installation in a central control center. Unit has large, coded, scew-type terminals. Case is 187 mm wide, 276 mm high and 92 mm deep (7-3/8 inches wide, 10-7/8 inches high and 3: $5 / 8$ inches deep). Three 6 mm [1/4-inch] diameter mounting holes in back of case. Top mounting hole centered 203 mm [8 inches] above two bottom holes which are 127 mm (5 inches) apart. Combination 13 mm ($1 / 2$-inch). 19 mm ($3 / 4-\mathrm{inch}$) knockouts provided. AE-178: This device includes a battery driven 8 hour carryover feature. The Ni-cad battery charge is continuously maintained by a built-in charger. Intial charge time is 48 hours. Upon power. interruption a battery driven motor maintains clock operation. The battery is automatically recharged upon power resumption. Input: 120 volts, 60 Hz . Output: Four single-pole, single throw switches. Snap-acting. Two normally open; two normally closed. Formed brass jumpers included readily permit modifying switch action to SPDT, DPST and DPDT.

SPST, N.O., $6 \mathrm{hr} .$, spring operated, for standard outlet box mounted. Includes wall plate and knob. Electrical rating: 20 amps at 120 volts, $1 / 3 \mathrm{hp}$.

Transformers

Figure 1

For supplying low voltage power to operate control equipment Primarily for mounting in control centers in confunction with disconnect switch and overload circuit breaker Device: AE-206 and AE-249 are provided with a plate on the primary side for mounting on standard 4 -inch outlet box Secondary connection is screw terminais for $A E-$ 206 and provision for flexible conduit connection on the AE249. All 170 VA transformers are provided with mounting feet for panel mounting, and wire leads.

Figure 2

| Part
 Number | Capacity
 VA | Primary Voltage | Sec.
 Volt. | Frequency
 (Hz) | Fig. | Dimensions: mm(Inches) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AE-203 | 170 | 120 | 24 | 60 | 2 | $95[3-3 / 4]$ | $80[3-1 / 8]$ | $108[4-1 / 4]$ | $83[3-1 / 4]$ | $71[2-13 / 16]$ |
| AE-206 | 10 | 120 | 24 | 60 | 1 | $48[1-7 / 8]$ | - | - | - | - |
| AE-223 | 170 | 240 | 24 | 60 | 2 | $95[3-3 / 4]$ | $80[3-1 / 8]$ | $108[4-1 / 4]$ | $83[3-1 / 4]$ | $71[2-13 / 16]$ |
| AE-249 | 50 | $480 / 277.240 / 208$ | 120 | 60 | 1 | $111[4-3 / 8]$ | - | - | - | - |

Power Relays DPDT

Part Number	Coil Voitage $\mathbf{5 0 / 6 0 ~ H z}$
$A E-304$	24
$A E-314$	120
$A E-334$	240

AE-314 \square
AE-334

Clapper type with screw terminals Contact Rating• 1 hp , 16 amps at 120 volts, 8 amps at $240 \mathrm{Vac} ; 25 \mathrm{amps}$ noninductive at $120 / 240 \mathrm{Vac}$. Optıonal enclosure avalable. Order AE-300 separately.

Time Delay Relay

AE-347
For control of circuits requiring 3 to 5 second lime delay Device: Two single pole double break relays having separate electronic time delay circuitry. All components mounted on a printed circuit board which includes screw type terminals. Complete with screws and spacers for panel mounting (not illustrated). Coil: 24 Vac Contacts rated at 5A/120 Vac, $2.5 \mathrm{~A} / 240 \mathrm{Vac}$.

Power Boxes

AE.253 \square AE-273 \square

For supplying an electrically protected and enclosed tow voltage power supply to operate control equipment. Device: A step-down transformer with a disconnect switch in the primary side and a manually reset circuit breaker in the secondary side Mounted in a surface type steel cabinet with four conventent 13 mm ($1 / 2$ inch) conduit knockouts and painted finish 203 mm (8 inches) wide, 152 mm (6 in ches) high 89 mm ($3-1 / 2$ inches) deep. Installation: Surface mount through four holes in the back of the cabinet.

Part No.	Capacity VA	Primary Voltage	Secondary Voltage	Froquency (Hz)
AE- 253	170	120	24	60
AE- 273	170	$240 / 208^{\circ}$	24	60

*240/208 Volt Pówer Boxes are normally factory wired to 240 volt winding

Barber-Colman Compant CONTROLS DIVISION

1300 Rock Street. Rockford, Illinois, U.S.A., 61101

For convenient mounting of pre-assembled or field assembled control panels. Cabinets may be used for pneumatic or electric controls. Device: SYZE-630 and SYZE. 631 are 18 gage steel. SYZE. 632 is 16 gage steel. All size cabinets have knockouts for 3/4inch and 1 -inch conduit. Knockouts are aligned so. that a short nipple may be used to couple the paneis together, and also for interconnecting wire. The door(s) consist basically of a frame and insert. The frame is made of extruded aluminum and cornes mounted with six self-tapping screws. Door(s) supplied with key lock. Standard cabinets are painted steel with beige finish. Installation: Cabinets are shipped from the factory completely assembled and ready for mounting. They may be installed flush or surface mounted. Legs are avaliable for floor mounting. Options: See charts for equipment description and proper part number. Ordering: See chart for cabinet sizes available and part numbers. Sub-panels must be supplied locally.

Description	Cabingt SIze		
	$16^{\prime \prime} \times 24^{\prime \prime}$	$24^{\prime \prime} \times 32^{\prime \prime}$	$42^{\prime \prime} \times 36^{\prime \prime}$ Double Door
Complete Cabinet (without-sub- panel) Painted Steel	SYZE-630	SYZE-631	SYZE-632
Painted Steel Legs for floor mounting above cabinets	SYZE-633	SYZE-633	SYZE-634
Bracket to accommodate light fixture	N/A	SYZE-600	SYZE-600
18" Fluorescent Fixture	N/A	$*$	$*$

*UB 115. SIM/KAR ingt fixture Purchase from local distrbutor, or durect from SIM/KAR Lignung Fixture Co. onlade!phia, $\mathrm{Pa} 19134^{\circ}$ Phone 215-425-7200

Dimensions (inches)							
Cabinet				Sub-Panel			
W	H	A	B	C	D	E	F
16	24	21	13	$91 / 4$	$61 / 2$	22	14
24	32	29	21	$131 / 4$	$101 / 2$	30	22
42	36	33	39	$161 / 2$	18	34	40

$\begin{array}{ll} 1 & \text { Switch } \\ \text { i } & \text { Action } \end{array}$	AC Rating		Switch Type	Switch Part No.	Mounting Plate (Flush)	Indicating Plate			
			Part No.			Position Markings	Size	(inch)	
	Amp	Volt					Width	Height	
DPDT	10	250	Toggle 2 Position	CYZP-11-1	SYZE.52-3	SYZE-74-1 SYZE-75-1 SYZE-76-1	On-Off Summer-Winter None	1-1/8	/16
4PDT	5	24	Toggle 2 Position	CYZP-105		SYZE-189-1 SYZE-271-1 SYZE-300-1	Open-Close Manual-Auto Occupied-Unoccupied		
$\begin{gathered} \text { DPDT } \\ \text { (Center Off) } \end{gathered}$	10°	250	Toggle 3 Position	CYZP-268		SYZE-212-1	On-Off-Automatic	1-7/8	2-1/16
4PDT (Center Off)	5	24	Toggle 3 Position	CYZP-427		SYZE-255-1	Summer-Off-Winter	1-7/8.	$2 \cdot 1 / 16$
SPST N.O.	5	125	Push Bution Momentary Contact	CYZP-346					
SPSTNC.				CYZP. 347				.	

NOTE: All switches mount to standard switch box. 1/2" mounting hole required.

Part Number	Description
AYZP-43-2	Circuit Breaker 10 Amp (Iliustrated)
BYZP-145	12 Circuit Terminal Block (Iltustrated)
BYZP. 146	Marker Strip ${ }_{\text {¢ }}$
BYZP. 252	Marker Strip \#13-24
8YZP. 253	Masker Strip F25-36
BYZP-269-2	Mtg. Bracket for Circult Breaker \& Switch (Illustrated)
BYZP. 599	Terminal End (Illustrated)
BYZP. 600	Terminals (Approx. 4 per inch) (Illustrated)
BYZP.601	Terminal Channel (3') (Illustrated)
BYZP-602	Terminal Clamp (Ilustrated)
BYZP. 603	Terminal Marker (25') (llustrated)
CYZP.183-1	Burnishing tool for Electric Contacts
CYZR-818-2	Arc Suppressor for SPDT Floating Switching
EYZP-504-1	Lamp, 24V, 0.073 Amp, 1.7 Watts
EYZP.504-2	Lamp, 120V, 0.025 Amp, 30 Watts
EYZP.504-3	Lamp, 48V, 0.053 Amp, 2.5 Watts
EYZP. 721	Lamp Socket with Clip
EYZP-722-1	Lens, Red
EYZP.722-2	Lens, Green
EYZP.722-3	Lens, Amber
EYZP.722-4	Lens, Blue
EYZP.722.5	Lens, White
SYZE.81-1	Blank Nameplate 1-7/8' $\times 9 / 16^{\prime \prime}$
SYZE-82-1	. Blank Nameplate 2-1/2' $\times 3 / 4^{\prime \prime}$
SYZE-83-1	Blank Nameplate 4" $\times 1-1 / 4^{\prime \prime}$.
SYZE-239-1	Tie Strap, plastic, for lacing wires, $4^{\prime \prime}$ long

Garber:Colmen Companus CONTROLS DIVISION

General Instructions

Type: Single Stage TC- 4100 Series
 Two Stage TC-4211
 Dual Bulb . TC-4151
 TC-4152

DEVICEINFORMATION

Identification

Two position bulb thermostats are for on-off control of media temperature in ducts, tanks, liquid lines, etc.

TC-4100 Series one stage units control one electrical circuit.

TC-4211 two stage units control two electrical circuits in sequence.

TC-4151 and TC-4152 dual bulb units vary the control point of the controlied media as function of outside air temperature. One bulb senses the controlled media, the second bulb senses the outside air temperature.

Pre-Installation - All Devices

Refer to the INSTALLATION and Performance Data applicable to the part number of the device being installed. Make a visual inspection of the device for obvious signs of damage. Avoid. locations where excessive motsture, corrosive fumes, vibration or high ambient exists.

installation

Requirements

Locate the device allowing proper distance to the bulb location. The case can be mounted in any position. Refer to Figure 1 for case dimensions.

Procedure

Case Mounting

Ambient Rating: -40° to $60^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$

1. Remove cover and provide 2 holes for $\# 10$ round head screws using the housing as the template or by using the dimensions shown in Figure 1.
2. Partially insert the mounting screws in the screw holes. Fit the housing over the screws, slide housing down on the screws and tighten the screws.

Wiring: The thermostat has one $1 / 2$-inch to $3 / 4$-inch conduit opening in bottom of housing. Make all electrical connections in accordance with the job wiring diagram and in compliance with national and local electrical codes. Terminal coding and switch action is shown in Figure 2, and Figure 3 shows two stage switching sequence.

Figure 1. Case Dimensions

Figure 2. Terminal Coding and Switch Action

Figure 3. Two Stage Switch Sequence

Bulb Mounting

Maximum insertion length 152 mm (6 inches). Maximum safe bulb temperature $28^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$ above scale range for dual bulbs, total of indoor and outdoor bulb temperatures must not exceed $138^{\circ} \mathrm{C}\left(280^{\circ} \mathrm{F}\right)$.

Duct : Install bulb with AT-208 kit as shown in Figure 4

Figure 4. Duct Mounting With AT-208.

Outdoor:

Install with AT-211 kit as shown in Figure 5.

1. Mount bulb to outside wall or surface with bulb clip.
2. Place shield over bulb and fasten to mounting surface.

Figure 5. Outdoor Mounting With AT-211

Liquid Line and Tank

Install with AT-209 kit as shown in Figure 6. A bulb well is recommended, see Figure 7 for preferred installation and limitations. The thermal bulb is suitable for immersion mounting with 150 psig maximum pressure and/or 4 fps fluid velocity.

1. $A 3 / 4-\operatorname{men} N P T$ hole is required.
2. Place packing nut, washers and packing over bulb support seclion as shown in Figure 6.
3. install bulb well or adaptor from AT-209 kit into the 3/4-inch NPT opening.
4. Insert bulb into well or adaptor.
5. Push interlocking washers and packing into well or adaptor and tighten packing nut until firmly seated.

Figure 6. Liquid Line or Tank Mounting With AT-209

	Application Limitations at 250 Fluid Temp. (Max. $\left.350^{\circ} \mathrm{F}\right)^{\circ}$	
Bulb Well Part No.	Max. Recommended Velocity (FPS)	Max. Recommended Static Pressure (psig)
AT-201	11	250
AT-203	20	500

Figure 7. Bulb Well Installation

Electrical Rating: All Units Except TC-4115

	Switch Rating $(50 / 60 \mathrm{~Hz})$	24 V	120 V	$\mathbf{2 4 0 V}$
277V				
Full Load Amps	-	98	8.0	-
Locked Rotor Amps	-	588	48.0	-
Pilot Duty	60	360	360	-
Non-Inductive Amps (Resistive)	-	-	-	-
Single Stage	22	22	22	22
Two Stage	16	16	83	7.2

CHECKOUT

After installing a thermostat, make an initual check of the switching action. Verify the switch action by listening to the switch contacts.

1. Turn the setpoint dial to a temperature above ambient. This should cause the thermostat to switch, making orange to brown.
2. Turn the setpoint dial setting down gradually. Orange to brown must break, making orange to red.
3. Compare the differential of the device to the differential shown on the performance charts by turning the dial. The differentral of the devices is the difference in dial reading between the make of orange to brown and the make of orange to red on single switch units.

RUNIADJUST

Setpoint

Screwdriver adjustment. Scales dual marked of on front and ${ }^{\circ} \mathrm{C}$ on back. To change scale, remove spring retaining ring, select scate and replace retaining ring.

DIFFERENTIAL

The differential is adjustable by turning the adjustor located on side of device.

Single stage: Each line represents approximately $1.6^{\circ} \mathrm{C}$ ($3^{\circ} \mathrm{F}$) change.

N.C. Heating Valve

Switch Terminals

HEATING APPLICATION WIRING
TYPICAL HEATING OR COOLING APPLICATION FOR TC-4111, TC-4111-020, TC-4121, TC.4122, TC-4123, TC-4151 AND 4152.

Performance and Selection Table

Type	Part Number	Setnoint Adjustment llange ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	$\begin{aligned} & n_{\text {frin }} \\ & \text { Ont }_{1+4} \\ & \text { Ratio } \end{aligned}$	Dimension:			Difierential	
				Capilanty roisper	Bulb Copper		$\begin{gathered} \text { Fariory } \\ \text { Set } \end{gathered}$	Adjustable
Singie Stage	TC-4111	$\begin{aligned} & -40 \text { to } 49 \\ & (-40 \text { to } 120) \end{aligned}$		$18 \mathrm{M}\left(6^{\prime \prime}\right)$	$\begin{gathered} 10 \times 100 \mathrm{~mm} \\ \left(3 / 8 \times 4^{\prime \prime}\right) \end{gathered}$		$\begin{aligned} & 160^{\circ} \mathrm{C} \\ & \left(3^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & 16 \text { to } 85^{\circ} \mathrm{C} \\ & \left(3 \text { to } 16^{\circ} \mathrm{F}\right) \end{aligned}$
	TC-4111-020			$6 \mathrm{M}(20)$				
	TC.4115*			$1 \mathrm{RM}\left(6^{\prime}\right)$				
	TC. 4121			$3 M(10$) Armored				
	TC-4122	$\begin{gathered} 38 \text { to } 127 \\ (100 \div 260) \end{gathered}$						
	TC-4123	$\begin{gathered} 88 \text { to } 176 \\ (190 \text { to } 350) \end{gathered}$						
Dual 8ulb		$\begin{gathered} 21 \text { to } 49 \\ (70 \text { to } 120) \end{gathered}$		$\begin{gathered} 9 \mathrm{M}\left(30^{\prime}\right) \\ \text { Each Bulb } \end{gathered}$	Outdoor	indoor	$\begin{aligned} & 16^{\circ} \mathrm{C} \\ & \left(3^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} .8 \text { to } 5.5^{\circ} \mathrm{C} \\ \left(11 / 2 \text { to } 10^{\circ} \mathrm{F}\right) \end{gathered}$
	TC-4151		1. $11 / 2$		$\begin{aligned} & 10 \times 100 \mathrm{~mm} \\ & \left(3 / 8 \times 4^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 10 \times 140 \mathrm{~mm} \\ & \left(3 / 8 \times 51 / 2^{\prime \prime}\right) \end{aligned}$		
	TC-4152		$1 \cdot 1$		$\begin{gathered} 10 \times 100 \mathrm{~mm} \\ \left(3 / 8 \times 4^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 10 \times 100 \mathrm{~mm} \\ \left(3 / 8 \times 4^{\prime \prime}\right) \end{gathered}$		$\begin{aligned} & 16 \text { to } 8.5^{\circ} \mathrm{C} \\ & \text { (3 to } \left.16^{\circ} \mathrm{F}\right) \end{aligned}$
Two Stage	TC-4211	$\begin{gathered} -40 \text { to } 49 \\ (-40 \text { to } 120) \end{gathered}$		$18 \mathrm{M}\left(6^{\prime}\right)$	$\begin{gathered} 10 \times \\ (3 / 8 \end{gathered}$	$\mathrm{mm}_{4 \mathrm{l}}^{4 \mathrm{~m}}$	$\begin{aligned} & 16^{\circ} \mathrm{C} \\ & \left(3^{\circ} \mathrm{F}\right) \end{aligned}$	Per Stage Fixed Between Stages 1.1 to $5.5^{\circ} \mathrm{C}$ (2 to 10°)

*TC. 4115 for System 8000 and dry circuit Switching Electrical Rating, 10 amp at 24 Vac . 25 Amp at 24 Vdc

* TC-4151 - For $11 / 21$ ratio reverse bulbs and use extra dial supplied with unit

Dual Bulb Selection

To select Ratıo it is necessary to know only: (1) Outdoor design temperature, (2) Maximum water temperature at outdoor design temperature, and (3) Desired water temperature at 70 F outdoors.
Example Select ratio for panel installation with a -10 F design temperature and estimated supply water temperatures of 75 F at 70 F outdoors, and 125 F at -10 F outdoors.

From chart below, -10 F for $11 / 2$ to 1 ratio, note by interpolation (70 F to 123 F with dial at $70 \mathrm{~F} ; 80 \mathrm{~F}$ to 133 F with dial at 80 F) that water temperature vanies from 75 F to 128 F as outdoor temperature drops from 70 F to -10 F , when dial is set at 75 F .
By sumilar means, note that a control with 1 to 1 ratio would result in water temperatures varying from 75 F to 155 F . For this application the $11 / 2$ to 1 ratio should be selected.

Outdoor Temperature (F)	Ratio	Change in Water Temporature for Different Ratios as Outdoor Tempersturo Drops from 70F to Design Temperaturo					
		Dial Sot at 70F	Dial Set at 80 F	Dial Set at 30F	Dial Sel at 100F	Dial Sot at 110F	Dal Sos at 120F
-30	$11011 / 2$	7010220	8010230	9010240	10010250	11010260	12010270
	1101	70 to 170	8010180	90 to 190	10010200	11010210	120 to 220°
	$11 / 2$ to 1	7010137	80 to 147	9010157	100 to 167
-20	1 to 11/2	7010205	8010215	90 to 225	10010235	11010245	120 to 255
	1101	70 to 160	8010170	90 to 180	10010190	110 to 200	120 to 210
	$11 / 2$ to 1	7010130	80 to 140	9010150	100 to 160	
-10	1 to 11/2	70 to 190	80 to 200	9010210	100 to 220	11010230	120 to 240
	1101	7010150	80 to 160	9010170	100 to 180	110 to 190	120 to 200
	$11 / 2101$	7010123	8010133	90 to 143	10010153		\cdots
0	$11011 / 2$	70 to 175	80 to 185	9010195	100 to 205	11010215	120 to 225
	1 to 1	70 to 140	80 to 150	90 to 160	100 to 170	110 to 180	12010190
	$11 / 2101$	7010117	8010127	90 to 137	100 to 147	\cdots
$+10$	1 to $11 / 2$	70 to 160	80 to 170	9010180	100 to 190	11010200	120 to 210
	1101	7010130	80 to 140	9010150	10010160	110 to 170	120 to 180
	$11 / 2$ to 1	70 to 110	80 to 120	9010130	100 to 140	- 110	
$+20$	1 to $11 / 2$	7010145	8010155	9010165	10010175	110 to 185	120 to 195
	1 to 1	70 to 120	80 to 130	90 to 140	100 to 150	11010160	120 to 170
	$11 / 2101$	70 to 103	80 to 113	9010123	10010133	- - ...	\cdots
$\cdots+30$	1 to 11/2	70 to 130	8010140	9010150	- 10010160	110 to 170	120 to 180
	1101	70 to 110	80 to 120	9010130	100 to 140	110 to 150	12010160
	$15 / 2$ to 1	70 to 97	8010107	90 to 117	100 to 127	\ldots

AIR FLOW CONTROL

APPLICATION

This control detects air flow or the absence of air flow in ducts, responding only to velocity of air movement. It can be wired to open one circuit and close a second circuit (SPDT) for either safety or interlock purposes.

INSTALLATION

The F62AA can be mounted on top, side or bottom of a duct. Mount so the paddle weight does not assist or oppose the spring force which sets the CFM flow required to activate the switch.

Install in a horizontal duct whenever possible and where ambient temperatures do not exceed $180^{\circ} \mathrm{F}$. Avoid locations close to elbows, dampers, fans and duct openings or other areas where excessive turbulence occurs. Control should be mounted away from such areas at least five times the distance of the smallest duct dimension. Example: $3^{\prime \prime} \times 8^{\prime \prime}$ duct mount at least $1^{\prime \prime}$ from the nearest bend. The standard paddie fits into ducts of $3^{\prime \prime} \times 8^{\prime \prime}$ minimum. The paddle may be trimmed for installing in ducts as small as $3^{\prime \prime} \times 6^{\prime \prime}$.

To install proceed as follows:

1. Select the proper location.
.2. Use the mounting plate gasket as a template and mark hole positions.
2. Drill or punch screw holes.
3. Cut center hole large enough for the paddle to pass through.
4. In horizontal duct the case must be level with the paddle at approximately a right angle to the air flow.
5. When the horizontal duct is not horizontally true, check with a level and place a shim under the control mounting plate (see sketch.)

Fig. 2 - Internal viow of Air Flow Control. Note adjusting setew.

fig. 1 - Type F62AA Air Flow Conirol

CAUTION: If necessary to install in a vertical duct with downward air flow, the control must be readjusted. To readjust, turn the range screw clockwise unill switch operates with no air flow. Then, adjust screw one additional turn clockwise.

Wiring

All wiring should conform to the National Electrical Code and local regulations. The Pennswitch terminals are color coded as follows: Red is common, Red closes to Yellow on air flow increase, Red closes to Blue on air flow decrease (no flow).

The circuit between the red and yellow terminals will close when the required air flow velocity is reached in the duct where the control is installed. The warning light or signal. when used, will be activated when the air flow decreases or ceases.

ADJUSTMENT

The flow control is factory set at the minimun flow rate shown in the graph.
To adjust:

1. Remove control cover.
2. For hagher flow rate - turn idjusting screw clock'wise.
3. For lower flow rate - turn adjasring screw counterclockwise.

Arr flow veiocities in FPM required to actuste switch for any given duct size are shown in the graph curves. (Bas"d on standard ars desuity of 0.075 pounds per cubic foot.)

CHECKOUT PROCEDURE

Before leaving the installation, a complete operating cycle should be observed to see that all components are functioning properly.

REPAIR AND REPLACEMENT

Field repairs are not recommended. Flow control requiring atiention should be returned to the nearest Penn-Baso Counterline Wholesaler or the factory.

KU

KUP

KUB

ORIGINAL PAGE IS OF POOR QUALIITY

ENGINEERING DATA

KU, KUP and KUB Series relays have been engineered for reliability, ease of installation and an excellent cost-toquality relationship. An exceptionally wide choice of optional features is available with each Series. Therr quickconnect/solder terminals are a substantial cost saver on modern production lines. KU and KUP Series fit four types of custom nylon sockets, making the series convenient plugin relays.
Three general types, the KU open series, the KUP enclosed series and the KUB dual coil latching relays are available.
Standard relays are furnished with $.187^{\prime \prime}$ terminals; 205" terminals are available upon request. The KU open series can be furnished with either a $.218^{\prime \prime}$ or a $.125^{\prime \prime}$ long locating tab and with or without a mounting stud.
Two styles of clear polycarbonate dust covers are available for the KUP Series relays. One is plain, for use when the relay is mounted in a socket. This case also can be furnished with a stud-and-locating-tab plate mounted on the end opposite the terminals. The other case has two slutted flanges for bracket mounting the relay directly to a chasis. The bracket-mount case is not suitable for socket mounting.

Relays with either type of dust covers (except the model with stud on end of case) can be furnished with a handy external push-button for checking circuits by manually op-
erating the movable contacts. A hold-down spring can be furnished for socket-mounted KUP Series (not applicable to screw terminal sockets). When desired, the KUP 120 V and 240 V AC types can be supplied with a neon lamp.wired in parallel with their coils to indicate power is reaching the relay. All optional features are listed on Page 8.
Rehability and long life of the KU/KUP/KUB Series are enhanced by long contact arms and a unique method of staking the stationary contacts, as well as barriers molded into the front.

Several types of custom nyion sockets are ayailable. They accommodate all open KU* Series and plain case KUP Series when these relays have $\mathbf{. 1 8 7}$ " terminals. These socket types are solder, printed circuit, quick-connect, quick-connect with terminal barriers, and screw terminals (DPDT only). All are rated 10 amperes. Chassis layouts for these types of sockets are shown in the outline drawings on Page 6.
$K U$ and KUP series are recognized under the Component Program of Underwriters' Laboratories, Inc., File No. E22575. Only standard Kll and KUP sernes are included. Any electrical or medimmeal deviations from standard relays are sabject to reesammation by U/L.
*Caution should be exercised in handling socket-mounted open relay's due to the inherent shock hazard.

AVAILABLE WITH A WIDE CHOICE OF OPTIONAL FEATURES

KU-KUP-KUB series ars equipped with quick-con. nect terminals punched for soldering. . $187^{\prime \prime}$ terminals are standard but . $205^{\prime \prime}$ are avarable. Molded barners meet U/L and CSA requirements.

A neon lamp wired in parallel with its coil to indicate that power is reaching the relay is avalable on KUP 120 V and 240 V AC ypes.

Two styles of heat and shock resistant pulycarbonate dust covers can be furnisherd. One-platn. the other with slotted flanges for direct-to-chassis mounting.

Several socket types can be supplied for the KU, and KUP (plain case) series making them plug-in relays. See page 6.

GENERAL:
Description:'Versatile, low cost 5 or 10 amperes general purpose relays with many optional features.
Insulating Materials: Molded phenolic.
Insulation Resistance: 100 megohms minimum.
Expected Life: Mechanical: 10 million operations.
Electrical: 100,000 operations min. (0) rated load.
Breakdown Voitage: 1500 volts rms 60 Hz between all elements; 500 volts rms 60 Hz between open contacts.
Temperature Range:

* KU open relays: AC:

1 and 2 poles $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
3 poles $-45^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
DC: $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
KUP enclosed: AC:
1 and 2 poles $-45^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
3 poles $-45^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
DC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Time Values: (approx.): Operate: 15 milliseconds Release: 10 milliseconds
Weights: KU open relay: 2.3 ozs. KUP enclosed relay 30 ozs
Operate: AC: 85% of nominal voltage @ $25^{\circ} \mathrm{C}$.
", DC: 75% 'of nominal voltage @ $25^{\circ} \mathrm{C}$.
Enclosures: Two styles of heat and shock resistant, clear plastic polycarbonate. Please see Page 7.
Terminals: $.187^{\prime \prime}$ standard, or $.205^{\prime \prime}$ quick-connect. Bolh are punched for solder-connecting.

CONTACTS:

Arrangements: Please.see chart, Page 4.
Material: Gold-flashed fine silver and silver-cadmium-oxide is standard. Tungsten and $: / 31 "$ gold alloy available.
Ratings: 5 or 10 amps (©) 28 volts DC resistive, or 240 volts AC. $80 \% \mathrm{PF}$.
COILS:
Voltage: DC: to 110 volts. AC: to 240 volts 60 Hz .
Power: DC: 1.2 watts. AC: 1 and 2 poles 2.0 VA; 3 poles 2.7VA. :

Resistance: Please see coil data table below.
Duty: Continuous.
Treatment: Centrifugally impregnated with high quality electrical varnish.
Mounting: A wide choice of mountings. Please see drawings on Page 7.

CUSTOM SOCKETS:

Standard: All are rated 10 amperes. Will accept $.187^{\prime \prime}$ terminals of all KU and plain case KUP relays. Please see Page 6.

OPTIONAL FEATURES FOR KU/KUP RELAYS

SCREW TERMINAL

 SOGKET**Will accept 2 pole relay only.

CHOICE OF NYLON SOCKETS

27E043 with
Solder Terminals
27E046 with
Printed Circuit Term.

27E067 with
Quick-Connect Term.
27E067

27E088 with
Terminal Darriers

27 E 097 with
Quick-Connect Term. and Term. Barriers

27E049'with
27E088
Screw Terminals

20 C 228 KUP

 HOLDDOWN SPRING**${ }^{* *}$ Not designed for KUL.

COIL DATA FOR STANDARD KU AND KUP RELAYS

DC Colls			AC. Coll. -1 \& 2 POI.E (50 60 $\mathrm{IL} \%$)			AC COILS-3 POLE (50 60 1 t (2)		
Viltage	DC Resbstance In Ohms	Nominal Current in Milliamperes	Voltage Sn fioliz	D) Rebistance In Ohms	Sirmathal Current in Millimperes	Vollage 50 GOH 12	IK: Resistance In Ohms	Sonnual Current In Millamperes
6	32.1	188	6	60	3.15	6	42	460
12	120	100	12	21	168	12	18	230
94	472	51	24	75	'i4	24	72	115
-13	1, $\mathrm{H}(\mathrm{H})$	3618	130	2.2501	17.7	120	1,700	24
110	10000	11.5	236	${ }^{1} 1111$	$13-7$	370	- 200	12
$2 \therefore 0$	Use illoV rela 5W wire-wou	th a 10,000 OIIM sistor in semes.						-

POTTER \& BRUMFIELD'S RELAY SERTES

R䑁

dual coill
 * latching relay

ENGINEERING DATA

Especially designed for overload or memory work, the KUB Series is a dual coil mechanical latching relay. A momentary impulse to one of the coils operates the relay to set the latch; a second pulse to the other coil releases it. Coils may be specified to operate on the same or different voltages. (See Coil Data chart for latch and release voltages.)

These positive-latching relays are mounted on a rigid zinc-alloy die-cast base to protect the relay adjustment , during wiring and to provide for stable alignment of the latch bars. Relays can be furnished with contact arrangements to 6 PDT (3PDT each coil).

GENERAL:
Insulating Material: Molded and laminated phenolic.
Insulation Resistance: 100 megohms.
Expected Life: Mechanical: 500,000 operations.
Electrical: 50,000 operations min. @ rated load.
Breakdown Voltage: 1,500 volts rms between all elements. 500 volts rms between open contacts.
Temperature Range: AC and DC : $-45^{\circ} \mathrm{C}$ min. $+85^{\circ} \mathrm{C}$ max. (intermittent duty).
Time Values: Operate: 25 milliseconds.

Approx. Weight: Open: 9.0 ozś.
Operate: AC: 85% of nominal voltage @ $25^{\circ} \mathrm{C}$. DC: 75% of nominal voltage @ 25° C.
Terminals:.$^{187 "}$ standard, or $205^{\prime \prime}$ quick-connect. Both are punched for solder-connecting.

CONTACTS:

Arrangements: AC and DC to 6 Form C (6PDT) (3PDT each coil). Please see chart below.
Material: Gold-flashed fine silver and silver-cadmium-oxide is standard, Tungsten and
Rating: 5 or 10 amps @ 28 volts DC resistive, or 120 volts AC. 80\% PF.

COILS:

Voltage: To 110 volts DC; to 240 volts AC. Specify voltage for both latch and release coils. Please see Coil Data chart below.
Resistance: Please see Coil Data chart below.
Power: DC: 2.5 watts min., 4 watts max.
AC: 5.0 volt-amps to 4 -pole; 7.8 volt-amps to 6 -pole.
Duty: DC: Continuous to $+50^{\circ} \mathrm{C}$.
AC : Intermittent.

CONTACT ARRANGEMENTS
FOR KU, KUP, KUB AND KUL REL,AYS

desicmator	F0日M	Arrangement	K1/ KUP	KUB	KJt
1	1 Form A	SPST-NO	O	\bigcirc	6
2	1 Form 8	SPST-NC	¢	6	6
5	1 Form C	SPDT	\%	\bigcirc	-
7	2 Form A	DPST-NO	\oplus	0	9
'8	2 Form B	DPST-NC	0	-	9
11	2 Form C	DPDT	O	\bigcirc	θ
12	3 Form A	3PST-NO	Q	-	(1)
13	3 Form B	3PST-MC	θ	9	0
14	3 Form C	3PDT	\%	6	-
15	4 Form A	4PST-NO		6	
16	4 Form B	4PST-NC		6	
17	4 Form C	4PDT		-	
18	5 Form A	SPST-NO		0	
19	5 Form 8	5PST-NC		0	
20	5 Form C	5PDT		0	
23	(2) 3 Form C	6PDT		(9)	

COIL DATA FOR KUB SERIES
please specify coil voltage for both latch and release coils

DC Coits			AC Cólils ($50 / 60 \mathrm{~Hz}$)		
Up to 6 Pole Relays			Up to 4 Pole Relays		
Volts	Resistance in Ohms	Av. Current Milliamperes	Volts	Resistance in 0tims	Av. Gurrent Milliamperes
6	13.1	460	6	2.3	850
12	52.0	230	12	10	425
24	230	104	24	42	210
48	850	56.5	120	1030	44
110	4560	24	240	4100	22
220	Use 110 volt relay with 5000 Ohms, 5 watt resistor in series		For 5 and 6 pole relays		
			6	1.8	1300
			12	72	650
			24	27	325
			120	700	68
			240	2750	3.3

ENGINEERING DATA

The KUL is a small, commercial, magnetic latching relay that occupies approximately half the space of mechanically interlocking latching relays. The use of a permanent magnet in parallel with the normal magnetic circuit accounts for the reldy's small size.

Reset is accomplished by reversing the voltage polarity in a single coil relay or by energizing the reset winding in a dual-wound coil relay. If overvoltage should occur during reset, the magnetic circuit is designed to prevent false operation of the contacts.
Relays with single or dual-wound coils are available for eilher AC or DC operation with contact arrangements up to 3 Form C rated 5 or 10 amperes at 28 volts DC, resistive, or 120 volts AC; 80% P. F.
A variety of nylon sockets is available that includes a choree of solder, printed circuit, quick-connect or screw terminals. All sockets are rated at 10 amperes.
A good memory stability is offered by the KUL relay which will provide a continuous latch condition during loss of power.
Continuous duty coil operation is pratical because of the relay's low power requirements. This feature provides for the coil to remain energized in the latch position without danage to the relay.
The various features designed into the KUL Series make it ideal for applications as diverse as alarm systems and machine tools, battery chargers and protective devices, process controls and business machines.

GENERAL:

Description: Small, commercial magnetic latching relay.
Insulating Material: Molded phenolic.
Insulation Resistance: 100 megohms minımum.
Expected Life: Mechanical: 10 million operations. Electrical: 100,000 operations minmum @ rated load.

Breakdown Valtage:

1500 volts rms 60 Hz between all elements. 500 volts rms 60 Hz between open contacts.
Temperature Range: AC and DC : $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Time Values:
Operate' 25 ms max. @ nominal voltage @ $25^{\circ} \mathrm{C}$.
Reset: 10 ms max. @ nomnal voltage @ $25^{\circ} \mathrm{C}$.
Weight: 34 ozs. approximately.
Operate: AC: 85% of nominal voltage @ $25^{\circ} \mathrm{C}$.
DC: 75% of nominal voltage @ 25 C.
Enclosures: Clear plastic polycarbonate heat and shock resistant case.
Terminals: $.187^{\prime \prime}$ standard, or $205^{\prime \prime}$ connect. Both are punched for solder-connecting.

CONTACTS:

Arrangements:
DC single conl:1 Form C, 2 Form C and 3 Form C.
$D C$ dual coil: 1 Form C and 2 Form C.
AC single conl: 1 Form C, 2 Form C and 3 Form C.**
Material: Gold-flashed fine silver and silver-cadmium-oxide.
Ratings:
5 or 10 amps © 28 volts DC resistive. or 120 volts AC. 80% P. F.

COILS:

Voltage: To 110 volts $D C ; 120$ volts $A C$.
Resistance: Please see Coil Data chart.
Duty: Continuous

COIL DATA FOR KUL SERIES

DC Single Coil		DC Dual Con*			$\begin{gathered} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ \text { AC coll with drodes** } \end{gathered}$	
Nominal Voltago	Coll Resistance $\pm 10 \%$	Nominal Voltago	$\begin{aligned} & \text { Coil Res } \\ & \pm 10 \% \\ & \hline \text { Loteh } \end{aligned}$	istonce @ $25^{\circ} \mathrm{C}$ Reset	Nomtral voltase	$\begin{gathered} D C \text { cois } \\ \text { resistance } \stackrel{\rightharpoonup}{4} \\ \text { e } 25 \% \end{gathered}$
6	32.1	6	22	22		
12	120	12	90	90		
24	472	24	350	350		
48	1,800	48	1400	1400		
110	10,000				120	3700

-Dual coil- avallable only with 1 or 2 Form C contacts. On standard dual conl relays, the latch and unlatch voltage must be the same. For unike voltages, please consult factory.
**Diodes méluded inside relay for 1 or 2 Form C contacts. For 3 Form C, the customer must wire diodes and resistor outside relay.

SOCKETS FOR KU/KUP

WITH SOLDER TERMINALS-27E043

Γ

The chassis layout for sockots with solder terminals (27E043) is identical with the chassis layout for quick-connect terminals (No. 27E067), shown

Socket Punch: Greenlee Part No. 5018855.0 socket punch for either $\mathrm{P} \& \mathrm{~B}$ socket No. 27 E043 or No. 1:37E067 is available from Greenler Tool Co., Rockford, Ithinois.

WITH QUICK-CONNECT TERMINALS
 27E067 AND 27E097

WITH PRINTED CIRCUIT TERMINALS-27E046

27E046 Socket with Printed Crrcuit Terminals

Suggested PC BOARD LAYOUT for Prınted Circuit Socket (27E046)

WITH SGREW TERMINALS-27E049

unless otherwise specsfied:
$0 \mathrm{XX}= \pm .03^{*}$
$0 . \mathrm{XXX}= \pm 010^{\prime \prime}$

Schematic for DPDT 27E049

KUP SERIES ENCLOSED RELAYS

' \because S SER'ES OPEN RELAYS

KU BRACKET TYPE

KU STUD TYPE

*Also available with .125 " $10-$ cating tab, as well as without stud and locating tab.

KUB SERIES LATCHING RELAYS

Tolerances on this page unless otherwise specified:
$0 . X X= \pm .03^{\prime \prime}$
$0 . X X X= \pm 010^{\prime \prime}$

TERMINAL DIMENSIONS

Tolerances on this page uniess otherwise specified:$\begin{aligned} & 0 . X X= \pm .03^{\prime \prime} \\ & 0 . X X X= \pm 010^{\prime \prime} \end{aligned}$		SEATED HEIGHTS:
	1.391°	FOR *6-32 STUD WITH .218". LOCATING TAB.
	1.52	FOR 2-BRACKET WITH〒6-32 TAPPED CCRE.
	1.282	FOR $76-32$ TAPPED CORE WITH .125" LOCATING TAB OR .218" LOCATING TAB.

OPTIONAL FEATURES AND CODE EXPLANATION OF KU/KUP/KUB/KUL

Honeywell

SPECIFICATIONS

TRADELINE MODELS
Tradeline models are selected and packaged for ease of stocking, - ease of handling, and maximum replacement value. Tradeline specifications are the same as those of standard models except as noted below.

TRADELINE MODELS AVAILABLE:
R7412F Differential Temperature Controller.

TRADELINE FEATURES:
Includes freeze and overtemperature protection and an aux-
iliary relay driver.
Tradeline pack with cross reference label.

STANDARD MODELS

MODEL	DIFFERENTIAL TEMPERATURE CONTROL	FREEZE PROTECTION	OVERTEMPERATURE PROTECTION	AUXILIARY RELAY DRIVER
R7412A	Yes			
R7412B	Yes	Yes		
R7412C	Yes	Yes		Yes
R7412D	Yes		Yes	Yes
R7412E	Yes	Yes	Yes	Yes

TFMDERAURE SRTTING RANGES:
Operating Range as d fined by the temperature of the low temperature. sensor)--
0 to plus 210 F [minus 18 to 99 Cl .
Differential Temperature Con \dagger roller--
Adjustable ON and OFF differentials from minus 10 to plus 40 F [minus 5.6 to plus 22.2 C]. Factory-set at $18 \mathrm{~F}[10 \mathrm{C} 7$ temperature difference $O N$ and $3 F[1.7 \mathrm{C}]$ temperature difference $O F F$. Plugin resistors vary settings (see Table 1, page 16).
Freeze Protection
Adjustable settings at 37,42 , or 47 F [3, 6 , or 8 C$]$.
Factory-set at 37 F [3 C].
Overtemperature
Adjustable in $5 \mathrm{~F}[3.2 \mathrm{C}]$ increments from 140 to $190 \mathrm{~F}[57$ to 89 C$]$. Factory-set at $140 \mathrm{~F}[66 \mathrm{C}]$

ELECTRICAL RATINGS:

Input Voltage--120V ac, 60 Hz ; at $220 / 240$ Volts, 50 Hz .
Load Relay Contacts--
1 N. O. Pole-- 12 AFL/ 72 ALR at 120 V ac.
1 N. C. Pole- 125 V A at 120 V ac.
Auxiliary Relay Drive--5 VA max at 24 V 'ac, 60 Hz .
Power consumption--7 watts maximum.

AMBIENT TEMPERATURE RANGE:

Controller--20 to 115 F [minus 7 to plus 4.6 C].
Temperature Sensor--
minus 50 to plus 450 F [minus 46 to plus 232 C$]$:

MOUNTING:
Controller--two screw holes in opposite corners of case.
Mounting screws not included.
Temperature Sensor--High temperature sensor either mounts with an accessory clip or sensor has a flattened end with a mounting hole.

DIFFERENTIAL TEMPERATURE SELECTION

The control settings may be adjusted by changing the ON and OFF plugin resistors (see Fig. 8). The R7412 is factory-set for pull-in at 18 F [10 C] temperature difference with a 4750 ohm ON resistor. Dropout is set for 3 F 1.7C temperature difference with a 9760 ohm OFF resistor.

To change the setting, refer to Table 1 to select the resistors needed. See Fig. 9 to prepare resistor for installation. Remove the old ON resistor and plug in the replacement. Repeat for the OFF resistor. Be sure the correct resistor is inserted in the proper position. Use $1 / 8$ watt, 1 percent resistors, available locally.

FREEZE PROTECTION TEMPERATURE SELECTION

On models with adjustable freeze protection, the setting may be adjusted by changing the freeze protection plug-in resistor R23 (see Fig. 8). The R7412 freeze protection is factory-set at 37 F [3 C].

To change the setting to $37 \mathrm{~F}[3 \mathrm{C}]$, simply remove the freeze protection resistor and leave it open circuited. For a setting of 42 F [6 C], install a 110 kilohm resistor using the resistor preparation indicated in Fig. 9. Use a 48.7 kilohm resistor to change the freeze protection setting to $47 \mathrm{~F}[8 \mathrm{C}]$.

OVERTEMPERATURE SETTING SELECTION

On models with adjustable overtemperature protection, the setting may be adjusted by changing the overtemperature protection resistors, OT1 (R41) and OT2 (R26). The R7412 overtemperature limit is factory-set at $140 \mathrm{~F}[66 \mathrm{C}]$.

To change the setting, refer to Table 2 to select the resistors needed. See Fig. 9 to prepare resistor for installation. Remove the old overtemperature resistors and insert the correct resistor in the proper position. Use $1 / 8 \mathrm{watt}$, 1 percent resistors, available locally.

FIG. 8--ADJUSTMENT COMPONENTS OF THE R7412.

FIG. 9--PLUG-IN RESISTOR PREPARATION. DIMENSIONS IN INCHES [MILLIMETRES IN BRACKETS].

TABLE 1--DIFFERENTIAL TEMPERATURE CONTROL

FOR TEMPERATURE DIFFERENCE OF:		USE RESISTANCES BELOW FOR BOTH ON AND OFF RESISTORS (IN OHMS)
F	C	
-10	-6	27500
-5	-3	15400
0	0	11500
1	0.6	11000
2	1	10500
3	1.7	9760
4	2.2	9310
5	3	8870
6	3.3	8250
7	4	7870
8	4.4	7500
9	5	$7150{ }^{\prime}$
10	6	6810
12	7	6340
14	8	5620
16	9	5230
18	10	4750
20	11	4220
25	14	3570
30	17	2430
35	19	1750
40	22	1210

LIST OF SERVICEMEN

ELECTRICAL CONTRACTOR
BELCO INC.
10450 Şhields
Oklahoma'City, OK Phone 405/794-4435
CONTROL CONTRACTOR - BARBER COLEMAN CONTROL
R \& B Temperature Controls Inc.
7321 Broadway Estension
Oklahoma City, OK Phone 405/848-8573
HONEYWELL
Honeywell Service Line Center
6600 N. Broadway Extension
Oklahoma City, OK Phone 405/848-2811
COLLECTOR HARDWARE
The Binkley Company
Building Products Division
Warrenton, Missouri 63383 Phone 314/456-3455
SOLAR CONTRACTOR
Solar Engineering \& Equipment Co. Inc.3305 Metairie RoadMetairie, Louisiana 70001 Phone 504/837-7313

Appendix A.

$$
S O L A R \quad H E A T I N G
$$

design drawings

$$
\begin{gathered}
\text { FOR } \\
\text { CONCH SCHOOL BUILDING. } \\
\\
\\
\text { EL RENO, OKLAHOMA }
\end{gathered}
$$

$$
\text { CONTRACT WAS. } 832247
$$

SOLAR ENGINEERING \& EQUIPMENT CO. Il
I N D EX
$O F$
D RAWINGS

\&U.S. GOVERNMENT'PRINTING OFFICE' 1979~640:081/455 REGION NO. 4

TECHNICAL REPORT STANDARD TITLE F

1. REPORT NO. DOE/NASA CR-150876	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.
4. Title and sustitle Installation Package for a Solar Heating System		5. REPORT DATE December 1978
		6. PERFORMING ORGANIZATION COL
7. AUTHOR(S)		8. PERFORMING ORGANIZATION REP(
9. PERFORMING ORGANIZATION NAME AND ADORESS Solar Engineering and Equipment Company, Inc. 3305 Metairie Road Metairie, LA 70001		10. WORK UNIT, NO. 11. CONTRACT OR GRANT NO. NAS8-32247
12. SPONSORING AGENCY NAME AND National Aeronautics and Washington, DC 20546	Administration	Contractor Report 14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES This work was done under the technical management of Mr . Ralph Cole, George C. Marshall Space Flight Center.		
18. ABSTRACT This report contains installation information for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings. The Solar Engineering and Equipment Company (SEECO), under NASA/MSFC Contract NAS8-32247, developed this prototype solar heating system consisting of the following subsystems: solar collectors, control and storage. Unclassified-Unlimited		
19. SECURITY CLASSIF, (of thile raport) Unclassified	20. SECURITY CLASSIF. (of this p Unclassified	21. NO. OF PAGES77$\|$22. PRICE NITS

