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ABSTRACT

Thecry has been developed for predicting the loss of
response of a QCM to a liquid deposit due to viscous effects
in the deposit. The loss of response is expressed by a
response factor, equal to the response of the QCM to a liquid
film divided by its response to a solid film of the same mass
per unit area. The theory assumes a droplet-type deposit
morphologyv, and considers the influence of droplet distribution
parameters. Experiments have been conducted to examine the
validity of the theory, using DC 704 silicone oil as the subject
deposit material. Experiments were made in two series - one
with constant deposit mass and variable temperature, the other
with variable deposit mass and constant temperature. Satis-
factory agreement with the theory was found. Interpretation of
the data using the theory has enabled information on droplet
area coverage and number density to be deduced.

INTRODUCTION

The quartz crystal microbalance (QCM) has been used in
the aerospace industry for several years to monitor the build-
up of condensed contaminant deposits on spacecraft surfaces in
poth simulation and flight situations. Also, the QCM is being
used increasingly in basic research on contamination-related
phenomena and its accuracy and behavior in this application
have consequently been subject to critical analysis. One of the
areas of concerr is the response of the QCM to liquid deposits,
as opposed to soiid deposits. Because the dynamic coupliay of
a liquid deposit to the crystal surface is less than one hundred
per cent, the sensitivity of the QCM, measured in frequency
change per unit added mass per unit area, is reduced. 7This is
a significant problem in the aerospace contamination measure-
ment application because many of the species outgassed from
common materials, e.g. RTV silicone adhesives and potting
compounds, as well as common diffusion pump oils exist as
very low vapor pressure liquids at near ambient temperatures.
It is therefore desirable to develop a technique for predicting
the response of the QCM to liquid deposits quantitatively.

When a liquid deposit is oscillated in shear by the QCM
measuring crystal only the liquid layer in immediate contact
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with the crystal moves with the same velocity as the crystal
surface. Liquid layers some distance from the surface can
move only in response to a shear stress in the liquid, which
requires a velocity gradient to be established. The presence
of a velocity gradient means that the average deposit velocity
during oscillation will always be less than that of the crystal
surface. It has been shown elsewherell)(2) that the frequency
change of the QCM produced by an added mass is a function cf
its kinetic energy. Since a solid deposit moves throughout with
the same velocity as the crystal surface, the change in fre-
quency produced by an added liquid mass will always be less
than that produced by an added solid mass of the same magnitude.

A further reduction in QCM response is produced by the
tendency of liquid deposits to occur as a distribution of droplets.
The formation oif a droplet from an equivalent mass uniformly
distributed over the same base area will increase the mean
distance from the deposit mass to the crystal surface. Since
the velocity of the liquid deposit decreases with distance from
the crystal surface the formation of droplets will decrease the
average velocity of the deposit, and hence further reduce the
magnitude of the induced frequency change. The response will
also be affected by the droplet size and number per unit area.
For a given deposited mass per unit area the response of a
cystem of a large number of small size droplets will be greater
than that of a few large size droplets, because of the greater
average distance of the deposit from crystal surface in the
latter case. Also, the measured mass per unit area will vary
with the number of droplets per unit area for a given droplet
size.

The approach taken in this paper to estimate the magnitude
of these effects is to determine the velocity profile of the oscil-
lating liquid deposit, and then to derive the QTM response
using the Rayleigh energy method for harmonically oscillating
systems. The problem is addressed theoretically in three
stages. First, the effect of viscosity is determined for a uni-
form liquid deposit. Second, the effect of droplet geometry is
derived. Third, the effect of droplet size and distribution is
investigated. A limited experimental program was then con-
ducted to assess the validity of the derived theory.

QCM Response

The sensitivity of a QCM, S, is defined as the relationship
between the added solid mass per unit area, (Am/A) , and the
resulting change in frequency, Af . Hence for a solid mass

81, = Sx (am/A)_ (1)
This paper is not concerned with the absolute sensitivitgr of

the QCM to liquid deposits, but with the relative loss o
sensitivity if the deposit is liquid rather than solid. This can
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be expressed by a ''response factor', F, defined as the fre-

quency change, induced by a liquid deposit Af , divided by the
frequency changed induced by a solid deposit'of the same mass
per unit area. Hence, for liquid films the relationship equiv-
alent to (1) is

Afz = Stx (Am/A)L (2)
and,for (AmIA)s = {Am/A)l
F=5/S, = “z/“a (3)

F can be derived using the same Rayleigh energy method for
undamped harmonically oscillating systems as was used
successfully(l) (2) to derive the absolute sensitivity, S. In
this method the total kinetic energy, T, ana potential energy,
V, of the system are expressed in terms of the displacements,
u., in each degree of freedom, as follows

B .2
T=';:a(u1+uzz.....un) (4)
202 2
¥ =deludiradiint ) (5)

The frer 'ency of the system, f, is then given by

= c/a (6)

For small perturbations of the system, such as the addition of
mass tc the QCM crystal, equation (6) can be rewritten

(£ +86)% = (c + ac)/(a + pa) (7)

The surface of a crystal oscillating in thickness shear is an
antinode, so mass added there does not affect the potential
energy of the system, making Ac zero. Ignoring squares of
small quantities, equation (7) can be rewritten as

af/f = -pala (8)

Equation (8) can be written for solid and liquid deposits. Noting
that f and a are independent of the phase of the deposit, the
following expression is obtained for F from (3) and (8).

F = Aazlﬁas (9)

The response factor is thus determined from the ratio of
kinetic energy coefficients of the liquid and solid deposits.
These coefficients are determined from an equation similar to
(4). The oscillating crystal and deposit is a single degree of
freedom system, so the velocity of the system can be repre-
sented by the velocity at a single location. The logical location
to select in this context is the crystal surface. In general,
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oscillation velocity and deposit density can vary across the
crystal and these variations can be represented by a distri-
bution function. (2) The effect of non-uniform distribution
functions is to introduce a multiplicative constant into the
expression for T and hence a. Since the present analysis is
ziracerned with comparing equivalent situations this constant
v.ould appear in both denominator and numerator of the right-
hand side of equation (9), making F independent of the distri-
bution functions. In this paper the distribution functions are
thus assumed equal to unity to minimize algebraic complexity
of intermediate expressions in the following derivations. A
general expression for the kinetic energy of a deposit,AT, can
then be written in terms of a uniform crystal surface velocity,
v sin 2mnft

AT = %ﬁa(vosin 2nft)? (10)

The problem is now to obtain expressions for the kinetic
energies of the liquid and solid deposits. This is done by
integrating the kinetic energy throughout the deposit, for which
the velocity distribution in the deposit must be known. The
solid has the same velocity throughout, equal to that of the
oscillating crystal surface. The velocity in the liquid deposit
will vary through the thickness and must be determined by
viscous theory.

VELOCITY DISTRIBUTION IN THE DEPOS'T

Uniform Film Deposit

Figure la shows ihe model for the oscillatory motion of a
uniform liquid film. The fluid motion in the film is described
by the Navier-Stokes equations. For the present case there
are nc pressure gradients or body forces, and flow takes place
only in the y-direction. The Navier-Stokes equations thus
reduce to:

2
= 2.2y (11)
P 9x

X[

This equation is to be solved for the boundary conditions:

x =0, v=v_sin 2rnft (crystal surface
o ;
velocity)

X=X % = 0 (zero shear stress at
outer boundary)

Equation (11) and the above boundary conditions are whol
analagous to the heat conduction problem of a parallel siuved
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infinite slab with harmonically varying temperature at one sur-
face with the other surface insulated. Carslaw and Jaeger give
the following solution to this problem(3). translated here into
momentum transfer termas.

cosh k(xm-x) (1+i)
E cosh kxm(l-i-i)_ (12)
cosh k(xm-x) (1+i)
p =arg (coah kxm(l+i) ) (13)

1
2

(g8

\«,"vo = Bsin (2nft+f) (15)

B is the amplitude of the oscillation at a distance x from the
crystal surface while # is the phase angle by which the dis-
placement at this location trails that 2t the crystal surface.
Numerical values of B and J are given in Figure 2 as functions
of kxm and x/xm. Equation (12) can be expanded as follows:

V/VD = Bcosfsin2nft + Bsinfcos2nft (16)

The velocity of the liquid thus consists of a component Bcosf
sin(2nft) in phase with the crystal motion which contributes to
the inertial energy of the system, and a component Bsin ficos
(2rrft) 90 degrees behind the crystal motion which contributes
to the dainping of the crystal motion. Although damping is not
includead in the Rayleigh theory, its effect will be negligible for
small deposit thicknesses, since sin # ~ 0 . At larger thicxk-
nesses, however, its effect may increase to significant pro-
portions, as noted in the Discussion.

Droplet Deposit

Figure 1b shows the model of the moticn of the oscillating
liquid droplet. If surface tension forces are ignored, the motion
is described by equation (11), but the boundary conditions are
now:

V= v sin 2rft at x = 0,

and
3vt

n 0 at all points on the droplet surface

where Ve is the tangential velocity on the droplet surface, and
n is the coordirate normal to the surface. The solution to
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equation (11) with the above boundary conditions will be much
more complex than for the uniform film, because the variable
droplet geometry requires the introduction of more descriptive
parameters. A solution to this problem has not been located in
the literature, and hence for the present purposes the velocity
distribution in a droplet of height x__ will be assumed to be the
same as that in a uniform film of thickness x_ . In fact, the
actual velocity at a gien distance from the cFystal surface
shold be higher in the droplet than in the uniform film, because
th. :ffect of area reduction with distance in the droplet will be
to reduce the velocity gradient needed to exchange momentum
with the outer levels of the droplet. The loss of QCM response
calculated using the uniform film velocity profile will therefore
be greater than the actual loss.

DETERMINATION OF THE RESPONSE FACTOR

It was noted earlier that the loss of sensitivity of the QCM
to a liqu’ ! deposit is due to threce effects which act together but
which i e conceptually separable: viscous effects, droplet
forma' on, and droplet distribution. In the interest of clarity of
preseatation, these three effects are considered one at a time in
the following analysis. F is derived in turn for the uniform
liquid film, individual liquid droplets and then distributed liquid
droplets.

In the theoretical analysis, F is shown to be primarily a
function of the distance of the deposit from the QCM surface,
while the primary data output from the QCM is muss per unit
area. To connect the theory with experimental data, the concept
of nominal deposit thickness, £_, is used. £_ is defined as the
deposit mass per unit area divided by the denl?sity. Further, it
was shown in the viscous flow analysis above that distance from
the QCM surface to points in the deposit can be non-dimensional-
ized by multiplying them by k, equaiion (14). The theoretical
expressicns for F are thus developed as functions of k_. The
following paragraphs present the derivation of the kinetic energy
of the various deposits, AT. Finally, in order to simplify the
algebra, AT is derived per unit area, permitting the crystal area
to be eliminated from the integrations.

+ diform Film Deposit

For the uniform solid deposit the velocity throughout is
equal to that of the crystal surface. The kinetic energy per unit
crystal surface area, ATsu is given by

xrr'
AT, = -;»pf (v sin ant)z dx
o 9 {17)

581 . 2
=g (vostn-ft)
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By comparison with equation (10), the kinetic energy coefficient
per unit area, ‘:'asu’ is given by

ba_ = px_ (18)

The kinetic energy of the uniform liquid deposit, 4T p,, will be
a function of the component of the local velocity in phase with
the ‘pertia forces, v B cosPsin2nmft.

~m

AT 2 pj

I

(vo cosf sin Zﬂ'ft)2 dx
i (19)

T e 2 2
..pf (B cosf) 'dx(vosinZTr"t)
o

Au =

By comparison with equation (10)
X
= 2
Aa, = :Jf (B cos #)° dx (20)
Lu -

From equations (9), (18) and (20) the response factor for a
uniform film, Fu' is thus

F =J (B cos P)” dx/x
IR 2, m
: (21)
—_ 2 -
—f (B cos P) d(x/.sm)
o
F  has been computed from equations (12), (13) and (21) for
various values of kx_, and is plotted in Figure 3 as a function

of kinu. noting that or a uniform film £ is equal to x__. The
shape of tk: curve represents a transition from the very small
response loss for small deposits (k£ < 0.2) to the asymptotic
response of a quasi-infinite film (k& nu> 1.6) which is almost
t-tally confined to the region near the crystal and is thus inde-
pendent of nominal thickness. Also plotted in Figure 3 is the
product F_+k# , which is proportional 1o the actual QCM out-
put. The 1i‘isi.xlf'g of this QCM output function to a maximum,
followed kv a steady decline is the most commonly encountered
practical r.anifestation of QCM viscous effects.

Single Droplets

Whereas the geometry of a uniform film can be character-
ized by a single dimension, several geometric parameters are
necessary for the specificotion of condensed droplets. Since
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the purpose of this paper is to demonstrate the credibility of the
analysis rather than perform an analysis of droplet geometry
some simplifying assumptions are made. The droplet is assumed
to have the form of a spherical cap with contact angle 8 and
height x . Relationships between area, volume and x € and A
XN st A m c

are derived in the Appendix.

For a solid droplet of volume V, and base area A, the
kinetic energy per unit ba: 2 ar=a, ATsd' is given by

X

m
’Tsd = 3p j; A(x) (vo sin 2m ft)z deAd

= 1p (V/A,) (v_sin 206t)% (22)

Hence, from (A6), (A9) and (10),

0
X 2 - cos 9C(2+szn Bc)

P73

Aa (23)
sd w2
(l-cosec} 8sin”g

For a liquid droplet of the same dimensions, the kinetic energy
per unit base area, AT 4, is (assuming that the velocity profile
is given by equation (15)

X

m
ATLd = ‘é‘p.’; A(x) - (voBcosﬂ sinant)zdx/Ad

*m
= ‘;.“Df A(X)/Ad) (B cos ﬂ)zdx- (vo sin 21-rfft)z
o

(24)
From equations (10), and (24)
X s
da,, = pj; (A(x)/Ad) (Bcosf)” dx (25)

Hence irom equations ( 9), {23) and (25)

3 sin’0_(1-cose ) 1 ~
Fd o > f (.“fx)lAd)(Bcose) d(x/x_)
(2-cosBc(2+sin 8.)) o =

(26)

In order to evaluate F | for the purposes of illustration of the
effect of droplet and/or comparison with the experimental data
of the next section, it is necessary to know the value of 6 . 8

c
depends on several parameters, such as temperature an

250



surface condition, and data relevant to the present situation are
not available. However, photomicrographs made by the author
of similar deposits showed contact angles near 30°, and it can be
shown by evaluating equations (A5) and (A6) that the function
A(x)IAd varies little for 10° < 9. < 50°, So that the derived
equations may be evaluated a vafue of 8 _equal to 30° has thus
been assumed. F, has been computed from equation (26) for
various values o using 6 _equal to 30, and equations (12),
{(13), (A5) and (A6). ™The nomfhal deposit thickness of the drop-
let, L4 relative to its own base area, Ad is given by

znd=VdIAd = 0.512 x (27)

where V. and A | are given by equations (Al2) and (All). F

is plotteg versug ke . in Figure 4. While the relationship is
qualitatively similaf 'Eo that for the uniform film, the effect ui
configuring a liquid deporit as a droplet is shown to be a further
decrease in the response of the QCM for a given nominal
thickness.

Distribution of Droplets

A real liquid deposit will consist of a distribution of drop-
lets of various sizes and spacings. The effect of droplet spacing
will be to cause the deposit mass per unit area of QCM crystal -
the quantity sensed by the QCM - to be lower than the mass per
unit droplet base area. Assuming all droplets to be the same
size, the nominal deposit thickness fur the distributed droplets,
Loda’ is related to the nominal thickness of the droplet referred
to its base area, !‘nd' by an area coverage factor, %

2 (28)

ndd = YA *£p4

where
_ area covered by droplets _
“A ~ total QCM area = AgNy (29)

The response factor, F ., is a function only of droplet geometry,
not the distribution, an:il us is given by equation (26) as a
function of kx_ . However, the computed value of F , . is now
plotted versus ki given as follows {from equations (27) and

(28) ). acd
ke g = * 0.512 kx (30)
Figure 4 shows a family of curves of F ., versus k¢_ ., for

various values of @y - In practice @ , has a maximum value of
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/4 cos 30 or 0.907, corresponding to a close packed hexagonal
distribution. Another significant value of wp is 0.785, for a

close packed square distribution. The QCM response is seen
to fall with decreasing area coverage.

PRACTICAL APPLICATION OF THE THEORY

The single fundamental output from a QCM with an added
mass is change of frequency. A solid, evenly distributed
deposit can be characterized by a single parameter-mass per
unit area - and the QCM sensitivity is constant. Hence, a single
frequency change data point can be translated into an added mass.
However, unless the deposit mass is small enough for F to be
near to unity, a liquid deposit requires several parameters to be
determined, such as droplet shape and size and area distribution,
and liquid viscosity. Hence several data points are required for
determination of the deposit parameters, which precludes direct
unequivocal measurement of the mass of a particular liquid
deposit. The most apr “opriate use of the theory appears to be
in the analysis of processes made up of a series of data points
from which the various parameters can be deduced. Two
situations of this type occur quite frequently in practice. In one
situation a QCM with a deposit on its surface is warmed up with
no loss or rearrangement of deposit. In this situation k varies,
while the geometric parameters £ da’ Ad' Vd’ and ¢ , remain
constant. Thus the response factdt F . Cvarfes with“* ki qq at
constant o 4 , and the QCM response during warm-up should
follow one of the constant ¥ A characteristics of Figure 4. In
the other situation the QCM is held at constant temperature while
the accumulation or less of deposit is measured, in which case k
is constant, while the geometric parameters vary. It is suggestad
that during condensation a liguid droplet deposit builds up by
growth of the individual dropiets at constant distribution density,
N., until adjacent droplets touch and coalesce, thereby reducing
Nj and increasing the spacing between droplets. Growth resumes
at constant N until coalescing occurs again. In practice, the
droplets wi'l have a distribution of sizes and spacings, so a suc-
cession of discrete steps in Nj are unlikely. A more likely
process is growth at constant ?\Id from an initial condition of
relatively widely and randcmly spaced nucleation centers, until
the droplets begin to coalesce, whereafter N adjusts continucusly
downwards while the deposit maintains a more or less close
packed arrangement. Characteristic paths can be derived for
this postulated process as follows. Egquations (28) and (29) can
be combined to give

ke =A N ‘kzn (31)

ndd d d d

For 6. equal to 300, noting (27), (31) and (A6)



T 2 3
ke =167 (Ndlk ) - (kznd) (32)

ndd
The relationship between F dd and k£ for isothermal growth
at constant N, /kZ is found ““ by detgﬂ&ining Fgq for a given
k¢ , from equitions (26) and (27), and k¢ from equation (32)
foP%onstant values of Ng/k®. These condSht Ng/k® charac-
teristics are shown in Figure 4. According to the suggested
mechanism growth will occur along one or more lines of con-
stant Nd/kz until a close packed situation occurs, at which
point N4 will decrease and growth will continue along another
line, constant N4/k2.

EXPERIMENTAL INVESTIGATIONS

The validity and usefulness of the theory presented above
was examined by a series of experiments using Dow Corning
DC 704 silicone o0il on a Celesco Model 700 quartz crystal
microbalance. Noting the remarks in the previous section, two
types of experiments were conducted. In the first type the
response of constant temperature QCM tc a steadily increasing
deposit was measured. In the second type a deposit was formed
on the QCM and then its response was measured as a function
of temperature.

Apparatus

The apparatus is shown schematically in Figure 5. The
QCM can ke maintained at any desired temperature above 77°K
by balancing the electric power into a resistance heater wound.
on the holder against heat lost through a thermal link between
holder and shroud. Also mounted within the shroud but shielded
from the QCM by a cooled partition is a pot containing DC 704.
The pot temperature can be maintained at any temperature above
779K by balancing electrical heater power against a thermal 1.
The pot has an orifice whose axis lies along the line between pot
and QCM permitting a flux of DC 704 molecules to be directed
at the QCM sensing crystal through a hole in the partition, which
can be closed by a remotely controlled shutter. The whole
apparatus is mounted in a glass bell jar, evacuatable to pressures
below about 2x10-7 torr.

Viscosity of DC 704

In order to determine k for an experimental situation,
the relationship between the viscosity of the subject liquid must
be known as a function of temperature. Figure 6 shows kine-
matic viscosity versus temperature obtained from the Dow Corn-
ing Company. 4) DC 704 is a phenyl-methyl siloxane, a high
molecular weight silicone o0il related to the general family of
polydirnethyl siloxanes, which have been shown to exhibit non-
Newtonian flow behavior at high shear rates. 5) The shear
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rates experienced by a liquid deposit on a oscillating QCM can be
quite high, and could conceivably reach the order of magnitude
required for non-Newtonian behavior to occur. The possibility
of this situation being reached in the present experiments is
covered in the Discussion.

QCM Response Data

In the first series of tests the QCM was held at constant
temperature while its surface was exposed to a constant flux of
DC 704 molecules. The test was begun with the QCM surface
clean. The shutter was then opened and the QCM output re-
corded as a function of time. Data interpretation was based on
the assumption that after the initial adsorption and nucleation
processes were completed, the condensation rate could be as-
sumed to be constant. This constant actual condensation rate
was determined from the initial indicated condensation rate,
since the response factor for small nominal thicknesses is es-
sentially unity. The actual mass per unit area on the QCM at
later times in the deposition was then calculated from the assumed
constant condensation rate and the time since the beginning of
expos.ure, The accuracy of this linear extrapolation was con-
firmed by interrupting the flux and cooling the QCM at the con-
clusion of the test in order to regain full response of the deposit
by solidification. The agreement between this final measurement
and the magnitude predicted by the linear extrapolation was
surprisingly good -- always better than five percent, and usually
no worse than one percent. The response factor was calculated
as a function of deposit thickness by dividing the indicated mass
per unit area by the calculated mass per unit area for the same
instant of time. The nominal thickness was found from the cal-
culated mass per unit area and the density, while k was found
for the test temperature from equation (14) and Figure 6. Data
from four experiments of this type, performed for QCM temper-
atures of 27°C, 37°C, and 51°C, are plotted in Figures 7 and 8.
The experiment at 37°C was repeate- ‘or two net condensation
rates -- 0.61 x 10"8 and 1,22 x 10-8 gms/cm2/sec. The data
for 27°9C and 51°C were obtained for net condensation raizs of
1.53 x 10-8 and 1.72 x 10-8 gms/cm?2/sec, respectively. The
data for 27°C and 37°C appear to follow the scenario proposed
in the previous section. For the early stages offrowth (k£ <
0. 25) the data appear to follow roughly.two Ng/k character-
istics, with a transition near k¢ _~0.1. For 8 25 <ky_< 0.5

n n
the process occurs along a moreé or less close-packed “character-
istic. The departure of the data frm the theoretical close packed
characteristics for kf_> 0.5 is prouably due to the increasing
signiﬁca.nce of effects nep’ected in the present analysis, and is
covered in the Discussira. The number of droplets per unit area
in these deposits can be estimated by fitting theoretical constant
Ng/k2 curves to the data for 0. 05 <ki, <0.25, using equation
(31} or Figure 4.
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At 37°C, for which k is 11687 cm~!, the data can be
fitted bg Ng/k?% equal to about 0.045, making Ny of the order
of 6x10°% cm=2, At 27°C, for which k is 9474 em~1, Ng/k2
equal to 0,04 is a reasonable fit, making Nd about 4x106 cm=-2,
Use of these values for Ny at 51°C, where k is equal to 14980
cmlindicates that corresponding values of Nd/kz at 51°C should
be in the range of about 0.03 to 0.02. Constant Ng/kZ curves
for these values have been drawn on Figure 8, showing that
51°C data do fall in this range, even though the shape of the
data is inconclusive.

These values of N3 can be c?g?pared with the photo-
micrographs of Shapiro and Hanyok'\®’, which show DC 704
deposits on various surfaces. These ghotomicrogra hs show
number densities in the range of 5x10> to 1x106 cm=-2 for
deposits on a mirror surface, which, because of its smooth-
ness would be expected to have somewhat fewer nucleation sitec
than the QCM surface.

In the second series of tests deposits of different
magnitudes were condensed on the QCM and their response
meacsured as a function of temperature. The true mass per
unit area of each deposit was found by cooling the QCM below
the solidification temperature, which was near -35°C. The
response at other temperatures was determined by heating or
cooling the QCM through a series of equilibrium temperatures.
This technique is limited to temperatures below the region in
which re-evaporation rate of the DC 704 became significant,
which was about 20°C. The response factor at a given tempera-
ture was calculated from the mass per unit area indicated by the
QCM at that temperature divided by the true mass per unit
area. The nominal thickness was found from the actual mass
per unit area divided by the density. k was variable in these
tests and was calculated from equation (14) and Figure 6. The
data for several experiments with different nominal thicknesses
are shown in Figure 9. The maximum value of k{_reached in
each test was determined by either the attainment Bof a tempera-
ture at which the re-evaporation rate became significant (about
20°C) or an abrupt loss of output occurred, the possible cause
of which is suggested in the Discussion. It was noted in the
previous section that the deposit geometry should remain con-
stant during these tests, in which case the data should follow
the constant @ oA characteristics of Figure 4. The data do indeed
follow the sarne general pattern as the theoretical curves,
although they appear to show a slightly faster decline at high
values of k{,. However, the data for the 5.12x1 072 cm deposit
shows the same inflection poirt near ki, of 0.4 as predicted by
theory, this being the only set of data in which the inflection
point was observed.

The slightly different shape of the data curves from the
constant ¢ A curves of Figure 4 is thought to be due to tempera-
ture dependent effects ignored in the theorv, for example, drop-
let shape or constant angle. It was first thought that the
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discrepancy might have depended on the temperature at which
the deposit was formed. A deposit formed on a cold QCM may
have a continuous film morphology, which breaks down into
droplets as heating occurs. To investigate this possibility
several experiments were made with a 6.54 x 10~2 ¢m film
thickness. In one experiment the deposit was formed cold
(-45°C) and the data were acquired during heating. In a second
experiment an equivalent deposit was formed near 20°C and
data were obtained during cooling, then by reheating and re-
cooling. The data from these two series of tests shown in
Figure 9 are virtually indistinguishable.

It was concluded from these data that a transition from
continuous film to droplet geometry, or any other irreversible
geometric change does not occur in the temperature range
studied, even if the deposit is formed in the solid phase. This
means that the surface mobility of DC 704 at -45°C is sufficient
to produce a morphology similar to that obtained for liquid
phase deposition.

The deposit nominal thicknesses used in these tests was
quite high, so that sufficiently large values of kf_ could be
reached. It is possible that the thicknesses werghigh enough
to cause the deposit morphology to begin to differ from the
distributed, even sized droplet pattern assumed with apparent
success for smaller nominal deposit thicknesses. This pos-
sibility was assessed using the following relationship, which
can be derived from equations (27), (29), (30), and (A6).

5 : 2/3 1/3
doul 2258 g N

(33)
The data for £_ ., equal to 1.75 x 1072 cm can be fitted
quite well by the theoretical curve for o equal to 0.6,
Figure 4. Insegtion of these numbers in equation (33) gives Ny
equal to 4.2x10"- 2 cm which is in good agreement with the
earlier data, and tends to confirm the validity of the model for
this nominal thickness. The data for 5.12 x 1072 cm for
ki 4q <0-25 can be fitted by g equal to about 0.8, while for
kindd = 0.25 a better fit is obtained for ¢ s equal to 0.70.
These oA values correspond to Ng values of 1. 2x106 -2 cm and
8.0 x 10° -2 cm , respectively, and also suggest that at this
thickness tl:e deposit is a%proaching a close packed situation.
The data for the 6.54x10-2 cm deposit at ki < 0.3 can only
be fitted by o p equal to unity, which is irnpc?’smble for a droplet
deposit, for which o« cannot exceed 0.91. This seems to
indicate that a transition to a more film-like morphology is
occurring at these higher nominal thicknesses, which is to be
expected.



DISCUSSION

The intent of this paper was to demonstrate that the
variable response of the QCM to liqui deposits can be ex-
plained almost totally by viscous effects coupled with a droplet
type deposit morphology. It is apparent irom "he agreement
obtained between the theory and the experiments that this has
been satisfactorily achieved. Good qualitatiye and quantitative
agreement was obtained up to non-dimensional nominal thick-
nesses of about 0.5. Above this value a very rapid fall off in
response was experienced in all tests where this ki_ value was
reached. Detail analysis of the experimental data in this region
revealed a discontinuity in the second difierential of F versus
k{ , indicating a change of controlling phenomenon. It is sug-
gested that this could be due to the onset of non-Newtonian
effects in the silicone oil, or a change in the modal response of
the oscillating crystal under the higher damping forces which
will arise with heavier deposits,, , The oscillation amplitude of
the crystal is of the order of SOR,{” so that for a deposit of
nominal thickness of 1000 A on a 10MHz crystﬁ the shear rate
is of the order of (107x2x50)/1000 or 106 sec™!. This is welil
within the range in which silicone fluids can show a sharp loss
of apparent viscosity. However, a detailed analysis of the
velocity profile in the deposit, plus viscosity data for DC 704
at high shear rates would be needed to investigate this point
further. Assessment of the possibility of modal changes is
beyond the scope of this work.

Although the quantitative agreement between tne theory
and the data appears to be quite good, it should be re-
emphasized tnat several major assurnptions were made.

These were:

(1) Use of the uniform film velocity profile for the

liquid droplet.

(2) Assumption of spherical-cap droplet shape and
uniform droplet size distribution.

(3) Neglection of damping effects in the Rayleigh
frequency perturbation analysis.

(4) Exclusion of all other possible surface forces
except viscous drag from the analysis.

(5) To permit reduction of the data the viscosity data
obtained from Dow Corning were arbitrarily
extrapolated from about -12°C to about -35°C.

It is logical to suppose that refinements of the analysis
in these areas would produce better agreement with the
experiment.

It was noted in the text that it is notl poussible to use the
theory to interpret isolated data points bacause of the many
parameters involved. Instead the utility of the theory wiil
probably be to generate insight into condeneation and revarora-
tion processes. Interpretation of the data presented in this
paper has gererated credible values for area coverage and

(]
U
~l



number density for the droplet and has suggested that the
spherical cap shape assumption may be acceptable. Further
work in which some of the neglected effects are included in the
analysis, coupled with more careful, systematic experimental
measurements may well prove to be a fruitful source of data
on contamination deposit morphology.

NOMENCLATURE

Ad Droplet base area

a,pa Rayleigh kinetic energy coefficient

B Oscillation velocity magnitude

c, Ac Rayleigh potential energy coefficients

F QCM response factor

f QCM frequency

k (2nfp/2u)2

= Deposit nominal thickness

(Am/A) Deposit mass per unit area

Ng Number of droplets per unit area

r Solid radius of spherical cap droplet

S QCM sensitivity

T Rayleigh total kinetic energy

u Rayleigh displacement cocrdinate

v Rayleigh total potential energy

Va Droplet volume

v Local velocity in deposit

Vo Maximum crystal surface velocity

x Distance between QCM surface and a point
in the deposit

% Distance between QCM surface and the most
distant point in the deposit

oA Fraction of QCM surface covered by droplets

p Phase angle of motion in the deposit

8 Droplet contact angle

u.?p Kinematic viscosity of the depcsit

0 Depcosit density

Subscripts:

1 droplet

dd distributed droplet

L liquid

n nominal

s solid

u uniform
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APPENDIX

The principal geometric parameters of the spherical cap
droplet are indicated in Figure 10. Other parameters may be
derived as follows:

Droplet height, x:

x = r(cosh - cosec) (Al)

S & r(l - cosec) (A2)

Hence x=x (cos® - cose )/(1l - cosp ) (A3)
m c c

Drcoplet cross-sectional area, A(x):
A(x) = (rsing) (A4)
Obtaining rz from A2 and sinze from A3
mx_ 2

Alx) = ——— _ |1 - ((x/x_) (1-cos® )+c:059_.)2 (A5)
(1 - cose ) 3 5 "
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Base area, Ad (= A(x) at x/xm = 0):

11”‘mz sinze
Ad = c (Ab6)
2
(1 - cosec)
Volume, Vd:
m
Vd =I A(x) - dx (A7)
o
Substituting A4 in A7
ﬂr3 L |
= - + si
Vd — |2 cosOc(Z sin ec)} (A8)

Substituting A2 in A8

(A9)

mx 3 2-cosf (2 + Sinz‘? )
o =i c c
d 3

(1 - coss )3
[ &4

For 8¢ equal to 30° the following relationships follow from
A5, A6 and A9.

A(x) =175 xri |l-(0. 134(x/xm) + 0.886)2| (A10)

’ 2

Ay = 43.8x ¢ (A11)

V.= 224w (A12)
d i m
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