General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

ACM Technical Report ACM-TR-112

PERTURBATIONS OF NON-RESONANT SATELLITE

 ORBITS DUE TO A ROTATING EARTH
PERTURBATIONS OF NON-RESONANT SATELLITE ORBITS DUE TO A ROTATING EARTH

ALAN MUELLER

ANALYTICAL AND COMPUTATIONAL MATHEMATICS, INC. 1275 SPACE PARK DRIVE, SUITE 114 HOUSTON, TEXAS 77058

JUNE 1978

CONTENTS

Section Page
1.0 INTRODUCTION 5
2.0 FORMULATION OF THE PROBLEM 9
3.0 VON ZEIPEL'S SOLUTION TECHNIQUE 11
4.0 EXPANSION OF THE TIME DEPENDENT GEOPOTENTIAL 17
5.0 EXPRESSING THE GEOPOTENTIAL IN PS ϕ ELEMENTS 23
6.0 CONCLUSIONS 27
REFERENCES 29
APPENDIX A NOTATION 33
APPENDIX B INCLINATION FUNCTION 37
APPENDIX C ECCENTRICITY FUNCTION 43
APPENDIX D THE TIME EXPANSION 47

PERTURBATIONS OF
 NON-RESONANT SATELLITE
 ORBITS DUE TO A ROTATING EARTH

by
Alan Mueller

1.0 INTRODUCTION

The dominant perturbations of the motion of a satellite near the earth are due to the non-symmetrical gravitational field and the atmospheric drag. The gravitational field may be divided in two classes: terms independent of time (zonal harmonics) and terms which depend explicitly on time. A complete first order solution ${ }^{\dagger}$ for satellite motion perturbed by the second zonal harmonic has been developed by Scheifele (reference 1). This solution has been rewritten in the non-singular $\operatorname{PS\phi }$ elements by Bond (reference 2). In references 3 and 4, the perturbations due to drag are developed in $\operatorname{PS} \phi$ elements and added to this J_{2} theory. In reference 5 , the long period perturbations due to the additional zonal harmonics are included in the theory. The tesseral harmonics have yet to be treated under this unified theory and are the topic of this report.

The perturbations due to the tesseral harmonics can be placed in four categories:

1) Short period perturbations with a magnitude of
[^0]

about J_{2}^{2}.
2) Intermediate period perturbations with a magnitude of between J_{2} and J_{2}^{2}.
3) Along track secular perturbations induced by the periodic perturbutions in the mean motion.
4) Resonant perturbations.

For near earth satellites, the atmospheric drag perturbation continually pulls the satellite in and out of the different long period resonant frequencies. The result is that the resonances never become apparent and may be neglected.

Since the J_{2} theory has been developed only to first order, the second order short period tesseral perturbations may be neglected. For the same rerson, the intermediate period perturbations should be included if first order accuracy is to be maintained. The tesseral harmonics have no true secular perturbation but the periodicities in the mean motion induce a secular perturbation in the mean anomaly. This secular perturbation may be determined by simply using the average mean motion instead of the osculating mean motion. Graf (reference 6) finds the average mean motion in a numerical manner. The numerical studies in that reference verify the assumption that use of the average mean motion does account for the apparent secular trend in the mean anomaly. Although the results are good, use of a numerical method would be inconsistent with the idea of having a completely analyt cal theory.

To complete the solution of the motion of a near earth satellite, the averaged mean motion and the intermediate period perturbations need to be found in a completely analytical manner.

Since the previous PS ϕ theory has applied Von Zeipel's solution technique, it seems natural to return to this method for a solution of the tesseral perturbation. As in the previous
theory, the solution will be found first in the singular DS ϕ elements and then rewritten in the $P S \phi$ elements to remove singularities. The notation used in the development is described in Appendix A.

2.0 FORMULATION OF THE PROBLEM

Only the gravitational field will be considered since its interaction with the drag effects is small. The DS ϕ hamiltonian for the gravitational potential is assumed to have the form

$$
\begin{equation*}
F=F_{0}+\varepsilon F_{1}+\varepsilon^{2} F_{2} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{0}=\Phi-\frac{\mu}{\sqrt{2 L}} \quad, \quad \text { (two-body) } \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
F_{1}=\frac{1}{q r}\left(\left(\frac{z}{r}\right)^{2}-\frac{1}{3}\right) \quad, \quad\left(J_{2}\right) \tag{3}
\end{equation*}
$$

$$
\mathrm{F}_{2}=\mathrm{F}_{7}+\mathrm{F}_{\mathrm{T}} \quad, \quad \text { (Zonals and Tesserals) (4) }
$$

$$
\begin{equation*}
F_{Z}=\frac{\mu}{q \varepsilon^{2}} \sum_{n=3} C_{n, o} \frac{R_{e}^{i n}}{r^{n-1}} p_{n}^{o}\left(\frac{z}{r}\right) \tag{5}
\end{equation*}
$$

$$
\begin{align*}
F_{T}= & \frac{\mu}{q^{2}} \sum_{n=2} \sum_{m=1}^{n} \frac{R_{e}^{n}}{r^{n-1}} p_{n}^{m}\left(\frac{z}{r}\right)\left[C_{n, m} \cos m(\lambda-\theta)+\right. \\
& \left.+S_{n, m} \sin m(\lambda-\theta)\right] \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\digamma=\frac{3}{2} J_{2} \mu R_{e}^{2} \tag{7}
\end{equation*}
$$

$P_{n}^{\text {III }}$ are the associated Legendre polynomials; R_{e} is the mean equatorial radius; $J_{2}, C_{n, m}, S_{n, m}$ are the geopotential coefficients; λ is the longitude of the satellite and θ is the Greenwich hour angle.

The F_{2} hamiltonian may be divided in zonal and tesseral harmonics. The functional dependence of F_{Z} and F_{T} is

$$
\begin{align*}
& F_{Z}=F_{Z}(\phi, g, \beta) \tag{8}\\
& F_{T}=F_{T}\left(\phi, g, h, \omega_{\oplus} \ell^{\dagger}, \beta\right) \tag{9}
\end{align*}
$$

[^1]
3.0 VON ZEIPEL'S SOLUTION TECHNIQUE

As was stated earlier, the Von Zeipel solution method is to be used to find the average mean motion and to eliminate the periodicities due to the tesseral harmonics. The generating function S is to be used for the elimination of the short period function of ϕ and the intermediate period function of $\omega_{\Theta} \ell$. The equations governing the transformation in the $D S \phi$ space are

$$
\begin{equation*}
\alpha^{\prime}=\frac{\partial S}{\partial \beta^{\prime}} \quad, \quad \beta=\frac{\partial S}{\partial \alpha} \quad . \tag{10}
\end{equation*}
$$

As in the hamiltonian, S is assumed to be of the form

$$
\begin{align*}
s & =S_{0}+/ \varepsilon S_{1}+\varepsilon^{2} S_{2} \tag{11}\\
S_{2} & =S_{z}+S_{T} \tag{12}
\end{align*}
$$

where S_{Γ} is a pericdic function of ϕ and $\omega_{\varphi} \ell$ and S_{1} and S_{Z} are periodic functions of ϕ only. The development of S_{1} can be found in reference 1 and therefore the discussion will be restricted to the development of S_{2}.

The theory of references 1 and 2 neglected S_{2} to maintain a first order accuracy. But this assumes that S_{2} is order $O(1)$. This is true for zonal perturbations but the tesseral perturbations result in an S_{2} which may become larger than $O(1)$. This will be demonstrated in the following analysis. The necessary von zeipel equations found from reference 1 are

$$
\begin{equation*}
\varepsilon^{0}: F_{0}^{\prime}\left(\phi^{\prime}, L^{\prime}\right)=F_{0}\left(\Phi^{\prime}, L^{\prime}\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
\varepsilon^{\prime}: & \frac{\partial F}{\partial \phi^{\prime}} \frac{\partial S_{1}}{\partial \phi}=-F_{1}\left(\beta^{\prime}, \phi, g\right)+F_{1}\left(\beta^{\prime}, g\right) \tag{14}\\
\varepsilon^{2}: & \frac{\partial F_{0}}{\partial \phi^{\prime}} \frac{\partial S_{2}}{\partial \phi}+\frac{\partial F_{0}}{\partial L^{\prime}} \frac{\partial S_{2}}{\partial l}=-\frac{1}{2} \sum_{k=1}^{4} \sum_{j=1}^{4} \frac{\partial^{2} F_{0}}{\partial \beta_{k}^{\prime} \partial \beta_{j}^{\prime}} \frac{\partial S_{1}}{\partial \alpha_{k}} \frac{\partial S_{1}}{\partial \alpha_{j}} \\
& -\sum_{k=1}^{4} \frac{\partial F_{1}}{\partial \beta_{k}^{\prime}} \frac{\partial S_{1}}{\partial \alpha_{k}}+\sum_{k=1}^{4} \frac{\partial F_{1}^{\prime}}{\partial \alpha_{k}} \frac{\partial S_{1}}{\partial \beta_{k}^{\prime}}-F_{z}\left(\beta^{\prime}, \phi, g\right)- \tag{15}\\
& -F_{T}\left(\beta^{\prime}, \phi, g, h, \omega_{\theta^{\prime}} \ell\right)+F_{2}^{\prime}\left(\beta^{\prime}, g\right)
\end{align*}
$$

Assuming S_{2} has the form given by 12 , then the expressions required to find S_{Z} and S_{T} are given by

$$
\begin{align*}
& \frac{\partial F_{0}}{\partial \phi^{\prime}} \frac{\partial S_{z}}{\partial \phi}=-\frac{1}{2} \sum_{k=1}^{4} \sum_{j=1}^{4} \frac{\partial^{2} F_{0}}{\partial \beta_{k}^{\prime} \partial \beta_{j}^{\prime}} \frac{\partial S_{1}}{\partial \alpha_{k}} \frac{\partial S_{1}}{\partial \alpha_{j}}- \\
& -\sum_{k=1}^{4} \frac{\partial F_{1}}{\partial \beta_{k}^{\prime}} \frac{\partial S_{1}}{\partial \alpha_{k}}+\sum_{k=1}^{4} \frac{\partial F_{1}^{\prime}}{\partial \alpha_{k}} \frac{\partial S_{1}}{\partial \beta_{k}^{\prime}}- \tag{16}\\
& -F_{Z}\left(\beta^{\prime} . Q . g\right)-F_{2}^{\prime}\left(B^{\prime}, g\right) \\
& \frac{\partial F_{0}}{\partial \Phi^{\prime}} \frac{\partial S_{T}}{\partial \phi}+\frac{\partial F_{0}}{\partial L^{\prime}} \frac{\partial S_{T}}{\partial \ell}=-F_{T} \tag{17}
\end{align*}
$$

If S_{2} is to be used in eliminating the intermediate period terms then it is necessary to keep only those terms of order greater than $O(1)$. If S_{2} is to be used in finding the
mean onergy, only those terms which are functions of l are considered. With these qualifications a much simpler set of equations can be used to find \mathbf{S}_{2} :

$$
\begin{gather*}
s_{Z}=0 \tag{18}\\
\frac{\partial F_{0}}{\partial \phi^{\prime}} \frac{\partial S_{T}}{\partial \phi}+\frac{\partial F_{0}}{\partial L^{\prime}} \frac{\partial S_{T}}{\partial \ell}=-F_{T}\left(\beta^{\prime}, \phi, g, h, \omega_{\Phi} \ell\right) \tag{19}
\end{gather*}
$$

S_{Z} is set to zero because the right hand sides of equation (16) are of order $O(1)$ and are independent of ℓ. Thus the transformation due to the short and intermediate terms is given by

$$
\begin{align*}
\alpha^{\prime} & =\alpha+\varepsilon \frac{\partial S_{1}}{\partial \beta^{\prime}}+\varepsilon^{2} \frac{\partial S_{T}}{\partial \beta^{\prime}}, \tag{20}\\
\beta & =\beta^{\prime}+\varepsilon \frac{\partial S_{1}}{\partial \alpha}+\varepsilon^{2} \frac{\partial S_{T}}{\partial \alpha} . \tag{21}
\end{align*}
$$

where

$$
S_{T}>0(1)
$$

The $\operatorname{DS} \phi$ element L is the total energy and can be rolated to the mean motion. The mean total energy L, can be then related to the instantaneous total energy by

$$
\begin{equation*}
L=L^{\prime}+\varepsilon^{2} \frac{\partial S_{T}}{\partial \ell}, \tag{22}
\end{equation*}
$$

where

$$
s_{T} \geq 0(1)
$$

Remarks:

If the Von Zeipel's solution method had been applied to the classical Delaunay variables a much more complicated set of equations would appear. The average mean motion could also be found by difterentiating the classical determining function S with respect to the mean anomaly. But since S_{1} (or F_{1}) is a function of the mean anomaly, S_{2} could not be considered zero since it would also be a function of the mean anomaly. Also the expression for the mean energy wouid be more complex and difficult to solve since terms of $O(\varepsilon)$ would appear. All the usual complications of the second order theory would appear just to maintain a first order acsuracy. But with the DS ϕ elements the equations for finding the generating function remain concise and relatively easy to solve.

The mean energy is found through a determining function which is defined by a partial differential equation with the anomaly of the satellite ϕ and the changing hour angle $w_{\oplus} \ell$. This expression is very similar in form to the part al differential equation found by Graf (reference 6) by applying the "Method of Averages" to the KS differential equations. Maybe it is not so peculiar that the Method of Averages and Von Zeipel's equations result in similar formulas.

If F_{T} can be written in a fourier series of the form

$$
\begin{align*}
F_{T}= & \sum_{k} \sum_{j}\left\{C_{k j}\left(\beta^{\prime}, h, g\right) \operatorname{oos}\left(k \phi-j \omega_{\Theta^{\prime}}\right)+\right. \\
& \left.+S_{k j}\left(\beta^{\prime}, h, g\right) \sin \left(k \phi-j \omega_{\Phi} l\right)\right\} \tag{23}
\end{align*}
$$

then the solution for S_{T} in equation (19) can be easily shown
to be

$$
\begin{align*}
S_{T}= & -\sum_{k} \sum_{j} \frac{1}{k-v j}\left\{c_{k j} \text { ein }\left(k \phi-j \omega_{\Theta}^{\ell}\right)-\right. \\
& \left.-s_{k j} \cos \left(k \phi-j \omega_{\odot} \ell\right)\right\} \tag{24}
\end{align*}
$$

where v is the ratio of the frequency of the earth's rotation to the revo:ution frequency of the satellite.

$$
\begin{equation*}
\nu=\omega_{E} \cdot \frac{\partial F_{U}}{\partial L}=\omega_{\theta} \frac{\mu}{(2 L)^{3 / 2}} \tag{25}
\end{equation*}
$$

For near earth satellites this ratio is about one to sixteen,

$$
\begin{equation*}
v \approx \frac{1}{16} \tag{26}
\end{equation*}
$$

Therefore when $k=0$ and for $j<\frac{1}{v}$, the factor $\frac{1}{k-v j}$ hecomes on the order of $O\left(\frac{1}{v}\right)$. These terms rosult in the intermediate period perturbations which are the order of $O\left(\frac{\varepsilon^{2}}{v}\right)$.

In order to complete the solution, the tesseral hamiltonian F_{T} must be expressed as a fourier series of the form given by equation (23). As before the solution will then be expressea in the nor-singular $P S \phi$ elements.

4.0 EXPANSION OF THE TIME DEPENDENT GEOPOTENTIAL

The definition of F_{T} as given by equation (6) is

$$
\begin{equation*}
F_{T}=\frac{\mu}{q \varepsilon^{2}} \sum_{n=2}^{\infty} \sum_{m=1}^{n} r^{2} V_{n, m} \tag{27}
\end{equation*}
$$

where

$$
\begin{align*}
r^{2} V_{n, m}= & \frac{R_{e}^{n}}{r^{n-1}} P_{n}^{m}\left(\frac{z}{r}\right)\left[C_{n, m} \cos m(\lambda-\theta)+\right. \\
& \left.+S_{n, m} \sin m(\lambda-\theta)\right] \tag{28}
\end{align*}
$$

We desire an expansion of the above expression in a fourier series of the canonical $\operatorname{DS} \phi$ angular variables ϕ, g, h, and ℓ. The expansion will, in many respects, be similar to Kaula's expansion of the disturbing function in the classical angular variables (reference 7). The important difference is that expansions will now be carried out in the true anomaly instead of the mean anomaly.

As in Kaula, the potential may be expanded using the inclination $\mathrm{F}_{\mathrm{nmp}}{ }^{+}$to a form

$$
\begin{align*}
r^{2} V_{n, m}= & \frac{R_{e}^{n}}{r^{n-1}} \sum_{p=0}^{n} F_{n m p}\left\{A_{n m} \cos \psi_{n m p}+\right. \\
& \left.+B_{n m} \sin \psi_{n m p}\right\} \tag{29}
\end{align*}
$$

To maintain the notation of previous authors, this author has decided to keep the notation p as an index in the finclination function. For distinction, the semi-latus rectum will now appear as an italic "p".
where

$$
\begin{align*}
& \Psi_{n m p}=(n-2 p)(\phi+g)+m(n-\theta) \tag{30}\\
& A_{n m}=\left\{\begin{array}{ll}
C_{n m} & n-m \\
-S_{n m} & \text { even } \\
S_{n-m} & \text { odd } \\
B_{n m}= \begin{cases}S_{n m} & n-m \\
C_{n m} & \text { even } \\
n-m & \text { odd }\end{cases}
\end{array} .\right. \tag{31}
\end{align*}
$$

The recursive relations for the inclination function have been derived by Giacaglia (reference 8). These relations and others appear in Appendix B.

Another transformation is necessary to replace the powers of r as a fourier series in ϕ :

$$
\begin{align*}
& \frac{1}{r^{n-1}}\left[\begin{array}{c}
\cos \\
\sin
\end{array}\right] \psi_{n m p}=\frac{1}{p^{n-1}} \sum_{j=1-n}^{n-1} G_{j}^{n-1}\left[\begin{array}{c}
\cos \\
\sin
\end{array}\right] \psi_{n m p j} \tag{33}\\
& \psi_{n m p j}=(n-2 p+j) \phi+(n-2 p) g+m(n-\theta) \tag{34}
\end{align*}
$$

Note that this is a finite expansion with an eccentricity function $G_{j}^{n-1}(e)$. The development of G_{j}^{n-1} is given in Appendix C.

A final transformation is required to place the disturbing function in the form of equation (23). In the expression of the angle $\psi_{n m p j}$, the hour angle may be written as

$$
\begin{equation*}
\theta=0_{0}+\omega_{\Theta} t \tag{35}
\end{equation*}
$$

where θ_{0} is the hour angle at time $t=0$. Time is now a dependent variable \ln the $D S S^{\circ}$ system given by

$$
\begin{equation*}
t=\ell+\frac{\mu}{(2 L)^{3 / 2}}[M(\phi)-\phi], \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{M}(\phi)=\mathrm{E}-\mathrm{e} \sin \mathrm{E} . \tag{37}
\end{equation*}
$$

Replacing equations (35) and (36) into equation (34) one finds

$$
\begin{align*}
\psi_{\mathrm{nmpj}}= & (n-2 p+j) \phi+m \nu(\phi-M)+(n-2 p) g+ \\
& +m\left(h-\omega_{\Theta} l-\theta_{0}\right) . \tag{38}
\end{align*}
$$

Thus we define a new function $N_{k}^{m}(v, e)$ which gives

$$
\left[\begin{array}{c}
c o s \tag{39}\\
\sin
\end{array}\right] \psi_{\mathrm{nmpj}}=\sum_{k} N_{k}^{\mathrm{m}}\left[\begin{array}{c}
\cos \\
\sin
\end{array}\right] \psi_{\mathrm{nmpjk}}
$$

where

$$
\begin{equation*}
\psi_{n m p j k}=(n-2 p+j+k) \phi+(n-2 p) g+m\left(h-\omega_{\oplus} \ell-\theta_{0}\right) . \tag{40}
\end{equation*}
$$

The development of N_{k}^{m} can be found in Appendix D. Accumulating the results we arrive at the final expression for the disturbing function F_{T} :

$$
\begin{equation*}
F_{T}=\frac{\mu}{\varepsilon^{2} q} \sum_{n=2} \sum_{m=1}^{n} \sum_{p=0}^{n} \sum_{j=1-n}^{n-1} \sum_{k=-\infty}^{\infty} v_{n \operatorname{mpj} k} \tag{41}
\end{equation*}
$$

where one element is given by

$$
\begin{equation*}
v_{n m p j k}=J_{n m p j k}\left\{A_{n m} \cos \psi_{n m p j k}+B_{n m} \sin \psi_{n m p j k}\right\} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n m p j k}=\frac{R_{e}^{n}}{p^{n-1}} F_{n m p} G_{j}^{n-1} N_{k}^{m} \tag{43}
\end{equation*}
$$

Thus one element of the determining function S_{T} defined by equation (19) becomes

$$
\begin{align*}
S_{T n m p j k}= & \frac{-J}{(n-2 p+j+k-v m)}\left\{A_{n m} \sin \psi_{n m p j k}-\right. \\
& \left.-B_{n m} \cos \psi_{n m p j k}\right\} . \tag{44}
\end{align*}
$$

The mean energy can then be found from equations (44) and (22):

$$
\begin{equation*}
L^{\prime}=L+\frac{\mu}{q} \sum_{n} \sum_{m} \sum_{p} \sum_{j} \sum_{k} \Delta L_{n m p j k} \tag{45}
\end{equation*}
$$

where $\Delta L_{n m p j k}$ is expressed as

$$
\begin{align*}
\Delta L_{n m p j k}= & m \omega_{\oplus} \frac{J_{n m p j k}}{(n-2 p+j+k-v m)}\left\{A_{n m} \cos \psi_{n m p j k}+\right. \\
& \left.+B_{n m} \sin \psi_{n m p j k}\right\} . \tag{46}
\end{align*}
$$

The elimination of the intermediate period terms may also be found by determining the partial derivatives of each element of $S_{\text {Tnmpjk }}$ in which

$$
\begin{equation*}
k=2 p-n-j \tag{47}
\end{equation*}
$$

5.0 EXPRESSING THE GEOPOTENTIAL IN PS \varnothing ELEMENTS

In the expansion of the geopotential, the angle $\psi_{n m p j k}$ becomes undefined for small eccentricities and inclinations. The fourier expansion of equations (41), (42) and (43) should be transformed into a fourier series in the true longitude σ_{1} and the angle $\omega_{\Theta} \ell+\theta_{0}$, and polynomials of the well defined functions

$$
\begin{array}{ll}
\eta=e \sin (\mathrm{~g}+\mathrm{h}) & \delta=\mathrm{s} \cdot \sin \mathrm{~h} \tag{48}\\
\zeta=\mathrm{e} \cos (\mathrm{~g}+\mathrm{h}) & \beta=\mathrm{s} \cdot \cos \mathrm{~h}
\end{array}
$$

With the definition of the true longitude $\sigma_{1}=\phi+g+h$, the angle $\psi_{\text {nmpjk }}$ becomes

$$
\begin{equation*}
\psi_{n m p j k}=\theta_{n m p j k}-(j+k)(g+h)+(m-n+2 p) h, \tag{49}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{n \mathrm{mpjk}}=(n-2 p+j+k) \sigma_{1}-m\left(\omega_{\oplus} \ell+\theta_{0}\right) \tag{50}
\end{equation*}
$$

Keeping the notation of Giacaglia (reference 9) we make new definitions

$$
\begin{align*}
q^{\dagger} & =j+k \tag{51}\\
\alpha & =m-n+2 p \tag{52}
\end{align*}
$$

so that $\psi_{n m p j k}$ becomes

$$
\begin{equation*}
\psi_{n m p j k}=\theta_{n m p j k}-q(g+h)+\alpha h \tag{53}
\end{equation*}
$$

[^2]
By defining

$$
\begin{align*}
& \eta_{q}=e^{|q|} \sin q(g+h) \quad \delta_{\alpha}=s^{|\alpha|} \sin \alpha h \\
& \zeta_{q}=e^{|q|} \cos q(g+h) \quad \beta_{\alpha}=s^{|\alpha|} \cos \alpha h \tag{54}\\
& R_{\alpha q}=\zeta_{q} \beta_{\alpha}+\eta_{q} \delta_{\alpha}, \tag{55}\\
& I_{\alpha q}=\zeta_{q} \delta_{\alpha}-\eta_{q} \beta_{\alpha} \tag{56}
\end{align*}
$$

the expressions for the functions of $\psi_{n m p j k}$ become

$$
\begin{align*}
e^{|q|_{s}|\alpha|} \cos \psi_{n m p j k}= & R_{\alpha q} \cos \theta_{n m p j k}+ \\
& +I_{\alpha q} \sin \theta_{n m p j k}, \tag{57}\\
e^{|q|_{s}|\alpha|} \sin \psi_{n m p j k}= & R_{\alpha q} \sin \theta_{n m p j k}+ \\
& -I_{\alpha q} \cos \theta_{n m p j k} . \tag{58}
\end{align*}
$$

Recursive relations exist for the definitions of equation (54). They are

$$
\begin{align*}
& \eta_{q}=\eta_{q-1} \zeta_{1}+\zeta_{q-1} \eta_{1}, \tag{59}\\
& \zeta_{q}=\zeta_{q-1} \zeta_{1}-\eta_{q-1} n_{1}, \tag{60}\\
& \eta_{-q}=-\eta_{q}, \quad \zeta_{-q}=\zeta_{q}, \tag{61}\\
& \zeta_{1}=Q \rho_{2}, \quad \eta_{1}=-Q \alpha_{2} . \tag{62}
\end{align*}
$$

$$
\begin{align*}
& \delta_{\alpha}=\delta_{\alpha-1} \beta_{1}+\beta_{\alpha-1} \delta_{1} \tag{63}\\
& \beta_{\alpha}=\beta_{\alpha-1} \beta_{1}-\delta_{\alpha-1} \delta_{1}, \tag{64}\\
& \delta_{-\alpha}=-\delta_{\alpha}, \quad \beta_{-\alpha}=\beta_{\alpha}, \tag{65}\\
& \beta_{1}=P_{\rho_{3}}, \quad \delta_{1}=-p_{\sigma_{3}}, \tag{66}
\end{align*}
$$

With the expressions (57) and (58), one is now able to write each element of the disturbing function given by equation (42) entirely in non-singular coordinates:

$$
\begin{align*}
v_{n m p j k}= & \bar{J}_{n m p j k}\left\{\left(A_{n m} R_{\alpha q}-B_{n m} I_{\alpha q}\right) \cos \theta_{n m p j k}+\right. \\
& \left.+\left(A_{n m} I_{\alpha q}+B_{n m} R_{\alpha q}\right) \sin \theta_{n m p j k}\right\}, \tag{67}\\
\bar{J}_{n m p j k}= & \frac{R_{e}^{n}}{p^{n-1}} \bar{F}_{n m p} \bar{G}_{j}^{n-1} N_{k}^{m} e^{(|j|+|k|-|j \cdot k|)} \tag{68}\\
\bar{F}_{n m p}= & \frac{F_{n m p}}{s^{|q|}} \tag{69}\\
\bar{G}_{j}^{n-1}= & \frac{G^{j-1}}{e^{j \cdot j}} \tag{70}\\
\overline{\mathbb{N}}_{k}^{m}= & \frac{N_{k}^{m}}{e^{\mid k T}} \tag{71}
\end{align*}
$$

The expressions of the barred values are found from the relations of the unbarred values. These barred expressions
are free of singularities. The relations for $\bar{F}_{n m p}$, \bar{G}_{j}^{n-1} and \bar{N}_{k}^{m} may be found in Appendices B, C and D. respectively.

6.0 CONCLUSIONS

Orbit perturbations due to the time dependent harmonics of the gravitational field of the earth have been studied for the case of near-earth satellites. Since for these orbits, the atmospheric drag perturbations never permits the satellite to remain long in a resonant frequency, the resonant perturbations have been neglected. Because the short period perturbations due to the tesseral harmonics are of second order, these terms have also been neglected.

The solution for the satellite motion which includes the intermediate period perturbations of between first and second order have been found by using the Von Zeipel solution method with a general, recursive expansion of the geopotential in the non-singular $P S \phi$ elements. Also, the along track secular perturbations induced by the periodic perturbations in the mean motion are eliminated by the computation of the average energy using the same theory.

This theory has been implemented in an operational computer program ASOP (reference 12) and numerical experiements verify the expected accuracy.

Precelina Pars BLank NOT Funkio $-29-$

REFERENCES

1. Scheifele, G. and Graf, O.: Analytical Satellite Theories Based on a New Set of Canonical Elements, AIAA Paper No. 74-838, presented at the AIAA Mechanics and Control of Flight Conference, Anaheim, Ca., 1974.
2. Bond, V. R.: Analytical, Silgularity-Free Solution to the J_{2} Perturbation Problem. NASA Johnson Space Center Report JSC-131̌8, 1977.
3. Scheifele, G., Mueller, A. and Starke, S.: A Singularity Free Analytical Solution of Artificial Satellite Motion With Drag. ACM Technical Report TR-103, 1977.
4. Mueller, A.: An Atmospheric Density Model for Application in Analytical Satellite Theories. ACM Technical Report TR-107, 1977.
5. Mueller, A.: Recursive Analytical Solution Describing Artificial Satellite Motion Perturbed by an Arbitrary Number of Zonal Terms. Presented at the 1977 AAS/AIAA Astrodynamics Conference, 1977.
6. Graf, O.. Mueller, A. and Starke, S.: The Method of Averages Applied to the KS Differential Equations. ACM Technical Report 109, 1977.
7. Kaula, W. H.: Theory of Satellite Geodesy. Blaisdell Publishing Company, 1966.
8. Giacaglia, G. E. O.: A Note on the Inclination Functions of Satellite Theory. Celestial Mechanics, Vol. 13, pp. 503-509, 1976.
9. Giacaglia, G. E. O.: The Equations of Motion of an Artificial Satellite in Non-singular Variables. Celestial Mechanics, Vol. 15, pp. 191-215, 1977.
10. Giacaglia, G. E. O.: A Note on Hansen's Coefficients in Satellite Theory. Celestial Mechanics, Vol. 14. pp. 515523, 1976.
11. Bond, V. R.: The Solution of a Definite Integral Occurring in the Resonance Terms of the Satellite Theory (DS ϕ). NASA Johnson Space Center Report JSC-13786, 1977.
12. Starke, S. E.: An Analytical Satellite Orbit Predictor (ASOP). NASA Johnson Space Center Report JSC-13094. 1977.

APPENDIX A - NOTATION

 APPENDIX A
 NOTATION

The definitions of the $D S \phi$ elements are as follows: The angular variables

$$
\begin{array}{ll}
\alpha_{1}=\emptyset & \\
\text { true anomaly } \tag{A1}\\
\alpha_{2}=g & \\
\text { argument of pericenter } \\
\alpha_{3}=h & \text { ascending node } \\
\alpha_{4}=\ell & \text { time element }
\end{array}
$$

The action variables

$$
\begin{array}{ll}
B_{1}=\varnothing & \text { rejated to two-body energy } \\
B_{2}=G & \text { angular momentum magnitude } \\
B_{3}=H & Z \text { component of angular momentum } \tag{A2}\\
B_{4}=L & \text { the total energy }
\end{array}
$$

These may be transformed to the canonical $\mathrm{PS} \phi$ elements:

$$
\begin{array}{ll}
\sigma_{1}=\phi+g+h & \rho_{1}=\phi \\
\sigma_{2}=-\sqrt{2(\phi-G)} \sin (g+h) & \rho_{2}=\sqrt{2(\phi-G)} \cdot \rho \theta(g+h) \\
\sigma_{3}=-\sqrt{2(G-H)} \sin h & \rho_{3}=\sqrt{2(G-H)} \cdot 0 ; h \\
\sigma_{4}=\ell & \rho_{4}=\mathrm{L} \tag{A3}
\end{array}
$$

Abbreviations used in the toxt are

$$
\begin{aligned}
& p=\frac{1}{\mu}\left(\mathrm{G}-\phi+\frac{\mu}{\sqrt{2 \mathrm{~L}}}\right)^{2} \quad \text { (semi-1atus rectum) } \\
& q=G-\frac{1}{2}\left(\phi-\frac{\mu}{\sqrt{2 \mathrm{~L}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& e=\sqrt{1-\frac{2 L}{\mu} p} \quad \text { (eccentricity) } \\
& s=\operatorname{ain} I=\sqrt{1-\frac{H^{2}}{G^{2}}} \quad(I \text { is the inclir } \\
& c=\cos I=\frac{H}{G} \\
& Q=\frac{\sqrt{\rho_{4}}}{\mu}\left[\frac{2 \mu}{\sqrt{2 \rho_{4}}}+G-\Phi\right]^{\frac{3}{2}} \\
& p=\frac{\sqrt{2(G+H)}}{2 G}
\end{aligned}
$$

APPENDIX B - INCLINATION FUNCTION
frdecedina pace blank not fimitis

Precsina pace mank NOT Pumgo

APPENDIX B

INCLINATION FUNCTION

Recursive relations for the Inclination Function $F_{n m p}$ have been derived by Giacaglia (reference 8). The first recurrence relation given in that reference is simple and valid for all n, m, n except when $n=m$:

$$
\begin{aligned}
F_{n m p}= & (-1)^{n-m+1} \frac{(2 n-1) s}{2(n-m)}\left[F_{n-1, m, p}-F_{n-1, m, p-1}\right]- \\
& -\left(\frac{n-1+m}{n-m}\right) F_{n-2, m, p} .
\end{aligned}
$$

The other relations derived in that reference were not suitable because they had singularities for zero inclinations. A new recurrence relation derived through induction by this author completes the definition of the inclination function:

$$
\begin{align*}
F_{n n p}= & \frac{2 n-1}{2}\left\{s^{2}(1+c)^{-1} F_{n-1, n-1, p-1}+\right. \\
& \left.+(1+c) F_{n-1, n-1, p}\right\} \tag{B2}
\end{align*}
$$

In all the recurrence relations

$$
\begin{array}{rlrl}
F_{n m p}=0 \quad \text { for } p & <0 & \text { and } & p>n \\
m & <0 & m & >n \tag{B3}
\end{array}
$$

The deffiturn othman bartedincornation function is

$$
\begin{equation*}
\bar{F}_{n m p}=\frac{F_{n m p}}{|\alpha|} \quad \alpha=m-n+2 p \tag{BA}
\end{equation*}
$$

From equation (B1) one finds the relation for $F_{n m p}$ is

$$
\begin{align*}
\bar{F}_{n m p}= & (-1)^{n-m+1} \frac{2 n-1}{2(n-m)}\left[a \bar{F}_{n-1, m, p}-b \vec{F}_{n-1, m, p-1}\right]- \\
& -\frac{(n-1+m)}{(n-m)} \stackrel{F}{n-2, m, p-1} \tag{BF}
\end{align*}
$$

The values of a and b are found from the conditions

	$n>m+2 p$	$n<m+2 p$	$n=m+2 p$
$a=$	1	s^{2}	s^{2}
$b=$	s^{2}	1	s^{2}

From equation (B2) the definition of $\bar{F}_{n n p}$ becomes

$$
\begin{align*}
\bar{F}_{n n p}= & \frac{2 n-1}{2}(1+c)^{-1}\left\{\bar{F}_{n-1, n-1, p-1}+\right. \\
& \left.+(1+c)^{2} \bar{F}_{n-1, n-1, p}\right\} \tag{BC}
\end{align*}
$$

As before the following applies

$$
\bar{F}_{\mathrm{nqp}}=0
$$

$$
\text { for } p<0 \text { and } p>n
$$

(B7)

$$
m>0 \text { and } m>n
$$

$m>0$ and $m>n$.

The starting value of the recurrence relation is

$$
\begin{equation*}
\overline{\mathrm{F}}_{\text {oon }}=1 \text {. } \tag{B8}
\end{equation*}
$$

Pricespmio prace

APPENDIX C - ECCENTRICITY FUNCTION

PRECEDNG PACE blank not fllmed

APPENDIX C
 ECCENTRICITY FUNCTION

The eccentricity function G_{j}^{n} is defined by the relation

$$
\left(\frac{\mathrm{p}}{\mathrm{r}}\right)^{\mathrm{n}}\left[\begin{array}{c}
\sin \tag{C1}\\
\cos
\end{array}\right] \mathrm{i} \phi=\sum_{j=-n}^{n} G_{j}^{\mathrm{n}}\left[\begin{array}{l}
\sin \\
\cos
\end{array}\right](i+j) \phi
$$

where $\frac{p}{r}=1+e \cos \phi \quad$.
The binomial expansion of $\left(\frac{p}{r}\right)^{n}$ becomes

$$
\begin{equation*}
\left(\frac{p}{r}\right)^{n}=\sum_{s=0}^{n}\binom{n}{s}\binom{e}{2}^{s} \sum_{t=0}^{s}\binom{s}{t} \cos (s-2 t) \tag{C2}
\end{equation*}
$$

Using equation (C2) and the definition of equation (C1) the expression for G_{j}^{n} becomes

$$
\begin{align*}
& G_{j}^{n}=e^{|j|} \sum_{s=|j|}^{n}\binom{n}{s} e^{s-j}\binom{s}{\frac{s-j}{2}}\binom{1}{\frac{-}{2}}^{s} \text { for } j>0 \tag{C3}\\
& G_{-j}^{n}=G_{j}^{n} \quad .
\end{align*}
$$

Recurrence relations exist for the binomial coefficient

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{(n-k)!k!}=\binom{n-1}{k}+\binom{n-1}{k-1} \tag{C4}
\end{equation*}
$$

The expression for \bar{G}_{j}^{n} becomes

$$
\begin{align*}
\bar{G}_{j}^{n} & =\frac{G_{j}^{n}}{e^{|j|}}=\sum_{k=|j|}^{n}\binom{n}{k} e^{k-j}\binom{k}{\frac{k-1}{2}}\binom{1}{2}^{k} \\
\bar{G}_{-j}^{n}=\bar{G}_{j}^{n} & \tag{C5}
\end{align*}
$$

APPENDIX D - THE TIME EXPANSION

PRECEDNV PACE BLANK NOT. FLMED

APPENDIX D

THE TIME EXPANSION

It is desired to make the following expansion

$$
\left[\begin{array}{c}
\cos \tag{D1}\\
\sin
\end{array}\right] \mathrm{mv}(\phi-\mathrm{M})=\sum_{\mathrm{k}} \mathrm{~N}_{\mathrm{k}}^{\mathrm{m}}\left[\begin{array}{l}
\cos \\
\sin
\end{array}\right] \mathrm{k} \phi
$$

To develop this expansion, a complex notation is adopted which has the same meaning

$$
\begin{equation*}
\exp [i m \vee(\phi-M)]=\sum_{k} N_{k}^{m} \exp (i k \phi), \tag{D2}
\end{equation*}
$$

where N_{k}^{m} is defined by

$$
\begin{equation*}
N_{k}^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp [i m \cup(\phi-M)-i k \phi] d \phi \tag{D3}
\end{equation*}
$$

As in the development of Hansen coeffirients (reference 10) some abbreviations are useful

$$
\begin{align*}
\frac{\sqrt{1+e}}{\sqrt{1-e}} & =\frac{1+\beta}{1-\beta} \quad \text { or } \quad B=\frac{e}{1+\sqrt{1-e^{2}}} \tag{D4}\\
z & =\exp \text { i } E \quad . \tag{D5}
\end{align*}
$$

The relation between the true and eccentric anomaly

$$
\begin{equation*}
\tan \frac{1}{2} \phi=\frac{\sqrt{1+e}}{\sqrt{1-e}} \tan \frac{1}{2} E \tag{D6}
\end{equation*}
$$

can be written in another form by equations (D4) and D5) as

$$
\begin{equation*}
\exp i \phi=\frac{z-\beta}{i-\beta z}=z\left(1-\frac{\beta}{z}\right)(1-\beta z)^{-1} \tag{D7}
\end{equation*}
$$

Similarly the relation between mean and eccentric anomalies

$$
\begin{equation*}
M=E-e \sin E \tag{D8}
\end{equation*}
$$

may be written as

$$
\begin{equation*}
\exp i M=z \cdot \exp \left[\frac{e}{2}\left(z-\frac{1}{z}\right)\right] \tag{D9}
\end{equation*}
$$

By differcatiating equation (D7), the expression for $d \phi$ becomes

$$
\begin{equation*}
d \phi=\frac{\left(1-\beta^{2}\right)}{i}(1-\beta z)^{-1} z^{-1}\left(1-\frac{\beta}{z}\right)^{-1} d z \tag{D10}
\end{equation*}
$$

Thus the integrand in equation (D3) becomes

$$
\begin{aligned}
& \exp i[(m v-k) \phi-m v M]= \frac{1-\beta^{2}}{1}(1-\beta z)^{k-m v-1}\binom{\beta}{z}-(k+1-m v) \\
& z^{-1-k} \\
& \cdot \exp \left[\frac{m v e}{2}\binom{1}{z-\frac{1}{z}}\right] d z
\end{aligned}
$$

The powers of $(1-\beta z)$ and $1-\frac{\beta}{2}$ can be expanded with
small parameter B

$$
\begin{align*}
& f_{s}=(1-\beta z)^{k-m \nu-1} \\
& \frac{d f_{s}}{d z}=-\beta(1-\beta z)^{k-m v-2}(k-m v-1) \\
& \frac{d^{2} f_{s}}{d z^{2}}=(-\beta)^{2}(1-\beta z)^{k-m v-3}(k-m v-1)(k+m v-2) \tag{D12}\\
& \frac{d^{5} f^{s}}{d z^{s}}=(-\beta)^{s}(1-\beta z)^{k-(m v+s+1)} \quad \prod^{s-1} \quad[k-(m v+j+1)] \\
& \frac{d^{s} f_{s}(z=0)}{d^{s}}=-(\beta)^{s} \quad \prod^{s-1} \quad[k-(m v+j+1)]
\end{align*}
$$

By Taylor's expansion:

$$
f_{s}=1+\sum_{s=1}^{\infty} \frac{d^{s} f(z=0)}{d z^{8}} \frac{1}{s!} z^{s}
$$

or

$$
\begin{equation*}
f_{s}=\sum_{s=0}^{\infty} a_{s} \beta^{s} z^{s} \tag{D13}
\end{equation*}
$$

where

$$
a_{0}=1 \quad a_{s}=\frac{(-1)^{s}}{s!} \prod_{j=0}^{s-1}[k-(m v+j+1)]
$$

or

$$
a_{s}=-\left(\frac{k-m!-s}{s}\right) a_{s-1} .
$$

Similarly

$$
\begin{align*}
f_{t} & =(1-\beta w)^{-(k+1-m v)} \quad \text { where } \quad w=\frac{1}{z} \\
\frac{d f_{t}}{d w} & =\beta(1-\beta w)^{-(k-m v+2)}(k-m v+1) \\
\frac{d^{2} f_{t}}{d w^{2}} & =\beta^{2}(1-\beta w)^{-(k-m v+3)}(k-m v+1)(k-m v+2) \tag{D14}
\end{align*}
$$

$$
\frac{d^{t} f_{t}}{d w^{t}}=\beta^{t}(1-\beta w)^{-(k-m v+1+t)} \prod_{j=0}^{t-1}(k-m v+1+j)
$$

$\frac{d^{t} f_{t}(w=0)}{d w^{t}}=\beta^{t} \prod_{j=0}^{t-1}(k-m v+1+j) \quad$.

Therefore:

$$
\begin{equation*}
f_{t}=\sum_{t=0}^{\infty} b_{t} \beta^{t} w^{t} \quad o r \quad \sum_{t=0}^{\infty} b_{t} \beta^{t} z^{-t} \tag{D15}
\end{equation*}
$$

where

$$
b_{0}=1 \quad b_{t}=\frac{1}{t} \quad \prod_{j=0}^{t-1}(k-m v+1+j)
$$

or

$$
b_{c}=\left(\frac{k-m \nu+t}{t}\right) b_{t-1}
$$

With equations (D13) and (D15) the integral becomes

$$
\begin{aligned}
& N_{k}^{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \exp i[(m \nu-k) \phi-m \cup M] d \phi \\
& N_{k}^{m}=\left(1-\beta^{2}\right) \sum_{s=0} \sum_{t=0} a_{s} b_{t} \beta^{s+t} \frac{1}{2 \pi i} \oint^{2} z^{-1-(k-s+t)} \exp \left[\frac{m v e}{2}\left(z-\frac{1}{z}\right)\right] d z .
\end{aligned}
$$

But the Bessel function is defined as

$$
\begin{equation*}
J_{n}(a)=\frac{1}{2 \pi 1} \quad\left\{z^{-1-n} \exp \left[\frac{\alpha}{2}\left(z-\frac{1}{2}\right)\right] d z\right. \tag{D17}
\end{equation*}
$$

so that the final form becomes

$$
\begin{equation*}
N_{k}^{m}=\left(1-\beta^{2}\right) \sum_{s=0} \sum_{t=0} a_{s} b_{t} \beta^{s+t} J_{k-s+t}(m v e) \tag{D18}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{o}=1 & a_{s}=-\frac{(k-m v-s)}{s} a_{s-1} \\
b_{0}=1 & b_{t}=\frac{(k-m v+t)}{t} b_{t-1} \tag{D20}
\end{array}
$$

The barred function \bar{N}_{k}^{m} can be found from its definition and equation (D18)

$$
\begin{equation*}
\bar{N}_{k}^{m}=\frac{N_{k}^{m}}{\sqrt{T} T} \tag{D}
\end{equation*}
$$

If one notes the definition of B in equation (D4), one finds

$$
\bar{N}_{k}^{m}=\left(1-\beta^{2}\right) \sum_{s-0}^{\infty} \sum_{t=0}^{\infty} \frac{a_{s} b_{t}}{\left(1+\sqrt{1-e^{2}}\right)^{s+t}} e^{2 \sigma}(m v)|k-s+t| \hat{J}_{k-s+t}(m v e)(D 22)
$$

The value of ; is determined by the following conditions

	$k \geq 0$	$k<0$
$k-s+t \geq 0$	$\sigma=t$	$\sigma=t+k$
$k-s+t<0$	$\sigma=s-k$	$\sigma=s$

Note that σ can never be negative.
The function $\hat{J}_{n}(\alpha)$ is defined from the Bessel function as

$$
\begin{equation*}
\hat{J}_{n}(\alpha)=\frac{J_{n}(\alpha)}{\alpha} \tag{D24}
\end{equation*}
$$

It can be found from following recursive relation

$$
\begin{equation*}
\hat{J}_{n-1}=2 n \hat{J}_{n}-\alpha^{2} \hat{J}_{n+1} \tag{D25}
\end{equation*}
$$

with starting values

$$
\begin{align*}
J_{n+1} & =\left(\frac{1}{2}\right)^{n+1} \frac{1}{(n+1)!} \\
J_{n} & =\left(\frac{1}{2}\right)^{n}\left\{\begin{array}{l}
1 \\
n! \\
(n+1)!
\end{array}\right\} \tag{D26}
\end{align*}
$$

The expressions tor \mathbb{N}_{k}^{m} were determined in another manner by Bond (reference 11) up to order e^{3}. These expressions are given here in the barred form.

$$
\begin{align*}
& \overline{\mathrm{N}}_{0}^{\mathrm{m}}=1-(\text { mum })^{2} \\
& \overline{\mathrm{~N}}_{-1}^{\mathrm{m}}=-\mathrm{mv}\left[1-\mathrm{mve}{ }^{2}\left(\frac{3}{8}+\frac{1}{2} \mathrm{mv}\right)\right] \\
& \overline{\mathrm{N}}_{1}^{\mathrm{m}}=\mathrm{mv}\left[1+m v e^{2}\left(\frac{3}{8}-\frac{1}{2} \mathrm{mv}\right)\right] \\
& \overline{\mathrm{N}}_{-2}^{\mathrm{m}}=\frac{\mathrm{m} v}{2}\left(\frac{3}{4}+m \nu\right) \tag{D27}\\
& \bar{N}_{2}^{m}=-\frac{m \nu}{2}\left(\frac{3}{4}-m \nu\right) \\
& \overline{\mathrm{N}}_{-3}^{\mathrm{m}}=\frac{-\mathrm{m} \nu}{2}\left(\frac{1}{3}+\frac{3}{4} \mathrm{~m} \nu+\frac{1}{3}(m \nu)^{2}\right) \\
& \bar{N}_{3}^{m}=\frac{m \nu}{2}\left(\frac{1}{3}-\frac{3}{4} m \nu+\frac{1}{3}(m \nu)^{2}\right)
\end{align*}
$$

[^0]: $+$
 A first order solution here implies that the solution has a periodic error of second order and a secular error of third order.

[^1]: + The canonical time element ℓ will always appear, in the problem, premultiplied by the rotation rate of the earth u_{φ}

[^2]: \dagger
 To maintain the notation of previous authors, this author has decided to keep the notation of q as an index in the expansion. Please observe the definition of q given in Appendix A.

