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PERTURBATIONS OF

NON-RESONANT SATELLITE

ORBITS DUE TO A ROTATING EARTH

by

Alan Mueller

1.0 INTRODUCTION

The dominant perturbations of the motion of a satellite

near the earth are due to the non-symmetrical gravitational

field and the atmospheric drag. The gravitational field may

be divided in two classes: terms independent of time (zonal

harmonics) and terms which depend explicitly on time. A com-

plete first order solution for satellite motion perturbed by

the second zonal harmonic has been developed by Scheifele (ref-

erence 1). This solution has been rewritten in the non-singu-

lar PSO elements by Bond (reference 2). In references 3

and 4, the perturbations due to drag are developed in PSO
elements and added to this J 2 theory. In reference 5, the

long period perturbations due to the additional zonal harmon-

ics are included in the theory. The tesseral harmonics have

yet to be treated under this unified theory and are the topic

of this report.

The perturbations due to the tesseral harmonics can be

placed in four categories:

1) Short period perturbations with a magnitude of

t A first order solution here implies that the solution has
a periodic error of second order and a secular error of
third order.
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2) Intermediate period perturbations with a magnitude

of between JZ and J2
3) Along track secular perturbations induced by the

periodic perturbations in the mean motion.

4) Resonant perturbations.

For near earth satellites, the atmospheric drag perturba-

tion continually pulls the satellite in and out of the differ-

ent long period resonant frequencies. The result is that the

resonances never become apparent and may be neglected.

Since the J  theory has been developed only to first

order, the second order short period tesseral perturbations

may be neglected. For the same rer.son, the intermediate pe-

riod perturbations should be included if first order accuracy

is to be maintained. The tesseral harmonics have no true sec-

ular perturbation but the periodicities in the mean motion

induce a secular perturbation in the mean anomaly. This sec-

ular perturbation may be determined by simply using the aver-

age mean motion instead of the osculating mean motion. Graf

(reference 6) finds the average mean motion in a numerical

manner. The numerical studies in that reference verify the

assumption that use of the average mean motion does account

for the apparent secular trend in the mean anomaly. Although

the results are good, use of a numerical method would be in-

consistent with the idea of having a completely analyt.'eal

theory.

To complete the solution of the motion of a near earth

satellite, the averaged mean motion and the intermediate pe-

riod perturbations need to be found in a completely analytical

manner.

Since the previous PSO theory has applied Von Zeipel's

solution technique, it seems natural to return to this method

for a solution of the tesseral perturbation. As in the previous

1t '.
x
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theory, the solution will be found first in the singular DSm

elements and then rewritten in the PSG elements to remove

singularities. The notation used in the development is de-

scribed in Appendix A.

a

R`

t
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IA.

where

u
F
0 =
	 -
	

(two-body)
2>J'

	1 	 z 2	 1
(J )
	

(3)F1	
qr	 r	 3	 2

F 2 = F  + F T 	(Zonals and Tesserals) (4)

	

u	 R'^
P	 O 2

FZ	
af2	

Cn +O 
rn-1 pn (r)

n=3

n

F 	 Fa	 R` Pm (-) C	 cos m( a-0) +

	

q F	 n=2 m=l r
T	 ?	 n-1	 n	 r	 n,m

(6)

	

+ S	 sin m(A-0)n,m

(2)

(5)



Fz = Fz(0,g.6)
	

(8)

FT = FT(^,g,h,w®^t,$)
	

(9)

F
The canonical time element	 R will always appear, in the
problem, premultiplied by the rotation rate of the earth ui	 .

^< c
5.



a.
F

_j
-i

3.0 VON ZEIPEL'S SOLUTION TECHNIQUE

As was stated earlier, the Von Zeipel solution method is

to be used to find the average mean motion and to eliminate

the periodicittes due to the tesseral harmonics. The genera-

ting function S is to by used for the elimination of the

short period function of 	 and the intermediate period func-

tion of w 
T 
X	 The equations governing the transformation in

the DS¢ space are

as	 as

	

 _---	 (10)
aa'	 as

As in the hamiltonian, S is assumed to be of the form

S = Sp +/FS 1 + e 2 S 2 	(11 )

S 2 = s  + ST 	(12)

where S . 	is a periodic function of 0 and u)` Z and S1	 1 A

and S Z are periodic, functions of m only. The development

of S 1 can be found in reference 1 and ..herefore the discus-

sion will be restricted to the development of S2 .

The theory of references 1 and 2 neglected S 2 to main-

tain a first order accuracy. But this assumes that S 2 is

order 0(1). This is true for zonal perturbations but the

tesseral perturbations result in an S 2 which may become

larger than 0(1). This will be demonstrated in the following
analysis. The necessary Von Zeipel equations found from ref-

erence 1 are

F° : F	 W .1,' ) = F0 (t' ,1'' )	 (13)



2 4. 'FO as 2	 1 4
	 4	

a 2 F0 as  M I

W 31	 2 .1	 3000, aak aaj

4
aF I as 	 aFi as

ask aa k 	- aak W

e2	

8F0 as

Bit ` DO

4

k-1

aF aS1
F1 W ,O, g ) + F 1, (0 g)

30 80

(15)

FT(S',$,S,h,w,9k) + F'(O'.K)

Assuming S2 has the form given by 12 	 then the expres-

sions required to find S 	 and ST are given by

9F  as 	
1 4 4 

a 2 F0 as  as  -

34 ao	 2 k=1 j-1 aRk aSj aak aai

	

4 aF I as I 	 4 aFi aSI -

kal a6' as	 E as as'k	 k	 k 1	 k	 k

- F z W , c .g) - FzW 'g)

3F  as  aF0 It T	 .
+	 - - FT

am' acp	 M" az

If S2 is to be used in eliminating the intermediate period

3
terms than it is necessary to keep only those terms of order

greater than 0(1)	 If S2 is to be used in finding the	 j

(16)

( 17)
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mean energy, only those terms which are functions of t	 are

considered.	 With these qualifications a much simpler set of

equations can be used to find 	 S2

SZ	 0 (lA)

U	 a s 	aF0 a3f
Tao' a^	 aL' U

S	 is set to zero because the right hand sides of equation
i

(16) are of order	 0(1)	 and are independent of	 i

s	
Thus the transformation due to the short and intermediate

terms is given by

aSTasla'	 a + C	 + C 2 ( 20)

aSl
	

asT
B =	 + E	 C2 (21) ►

as	 as

where

_	 ST	 > 0(1)

The	 DSO	 element	 L	 is the total energy and can be re-
lated to the mean motion.	 The mean total energy	 L' can bo

then related to the instantaneous total energy by

as
TL	 L'	 +	 f2	 - (22)

_.	 aR



a

ST > 0(1)

Remarks:

If the Von Zeipel ' s solution method had been applied to

the classical Delaunay variables a much more complicated set

of equations would appear. The average mean motion could also

be found by differentiating the classical determining function

S with respect to the mean anomaly. But since S 1 (or F1)

is a function of the mean anomaly, S Z could not be considered

zero since it would also be a function of the mean anomaly.

a
Also the expression for the mean energy would be more complex

	

a	 and difficult to solve since terms of 0(e) would appear. All

the usual complications cf the second order theory would appear

,just to maintain a first order acnuracy. But with the DSO

elements the equations for finding the generating function re-

main concise and relatively easy to solve.

The mean energy is found through a determining function

which is defined by a partial differential equation with the

anomaly of the satellite 	 and the changing hour angle

w0 £	 This expression is very similar in form to the

part al differen t ial equation found by Graf ; reference 6) by

applying the "Method of Averages" to the KS differential

equations. Maybe it is not so peculiar that the Method of

Averages and Von Zeipel ' s equations result in similar formulas.

If FT can be written in a fourier series of the form

FT = 1:	 Gk j (S' , h, g ) ,'aa (km - ,jw^t ) +
k	 j

(23)
+ Skj W .h, g ) sin (k4o - jw00)

	

.	
then the solution for ST in equation (19) can be easily shown
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to be

1
S	 E	 Ck Bin ( ko - ju)(BR)

kT 	 k-vj^
( 24)

- Sk j coo (kO - jw0X)

w;:-Are v is the ratio of the frequency of the earth's rotation
to the revolution frequency of the satellite.

3F 	 u
V = G> , •	 U' = At -	 ( 2 5)

C	
aL	 (2L)^^

For near earth satellites this ratio is about one to sixteen,

1

V ft —	 ( 26)

16

1

Therefore when k = 0 and for j <	 the factor
k-v,j

Becomes on the order of 0( 1 )	 These terms result in the

intermediate period perturbations which are the order of
O( C2)

C )

In order to complete the solution, the tesseral hamilton-

ian FT must be expressed as a fourier series of the form

given by equation (23). As before the solution will then be

expresseu in the nor.-singular PSG elements.

4
3
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4.0 EXPANSION OF THE TIME DEPENDENT GEOPOTENTIAI,

The definition of FT as given by equation (6) is

n

2FT	
2	

1: r Vn 
m

qE	 n=2 m=1	 '

(27)

where

R 
r 2 V	 =	 e Pm ( Z ) G	 COS m ( A -@) +

n,m	 rn - 1 n r	 n,m

+ S	 sin m (A-@)	 .
n,m

(28)

We desire an expansion of the above expression in a.

fourier series of the canonical DSO angular variables

g, h, and k	 The expansion will, in many respects, be sim-

ilar to Kaula's expansion of the disturbing function in the

classical angular variables (reference 7). The important dif-

ference is that expansions will now be carried out in the true

anomaly instead of the mean anomaly.

As in Kaula, the potential may be expanded using the in-

clination F	 t to a form
nmp

n	 n
R

e
r 2V	 =	 F	 A	 cos	 +

n,m	 n-1	 nmp	 nm	 nmpr	 p=n

(29)
+ B	 sin

nm	 nmp :l

'f'

To maintain the notation of previous authors, this author
has decided to keep the notation p as an index in the
inclination function. For distinction, the semi-latus rec-
tum will now appear as an ital+c 11p"
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v tore

Onmp	
(n-2p) Wg ) + m (b-@)	 (30)

C	 n-m even
nm

Anm =	 (31)

-S	 n -m odd
nm

3	 n-m even
nm

B	 (32)nm
C
nm	

n-m, odd

The recursive relations for the inclination function have been

derived by Giacaglia (reference 8). These relations and others

appear in Appendix B.

Another transformation is necessary to replace the powers

of r as a fourier series in ^ :

n-1
1	 cos	 1 

n-1 
n-1 Cos

rn-1 
sin ^nmp	

pn - 1	
Gj	

sin ^nmp j 	 (33)
j=1-n

^nmpj = (n-2p+j) p + (n-2p) g + m (h-8)	 (34)

Note that this is a

function Gn-1(e)

Appendix C.

A final transf,

ing function in the

of the angle *nmpj

finite expansion with an eccentricity

The development of Gn-1 is given in

Drmation is required to plane the disturb-

form of equation (23). In the expression

, the hour angle may be written as

8 = 0 0 + W G t
	

(35)



MM = E - e sin E .	 (37)

Replacing equations (35) and (36) into equation (34) one finds

^nmpj = 
(n -2p+j) ^ + m y (^ -M) + (n -2p) g +

(38)

+ m (h-wo k-0 0 ) -

Thus we define a new function N kM (v,e) which gives'

	

N	 (39)
sin k	 nmpjk]

1006 1 
nMPj	

k	 si n
M 

cos

1

where

nmpj k

	

(n-2p+j+k)	 + (n-2p) g + m (h-w Z-e
0
	(40)

M
The development of N

k can be found in Appendix D.	 A

Accumulating the results we arrive at the final expres-

sion for the disturbing function F T



L' = L + u EEEEE  dL
g n m p j k	 nmpjk

I
	

( 45)

A

FT _ u	 "^n^+	 f^/	
Vnm k	 ( 41)

e2q 
n = 2 m= 1 p =p j=1-n k—o	

Pj

where one element is given by

V	 - .T	 A	 cos	 + B	 sin	 ( 42)nmpjk	 nmpjk	 nm	 nmpjk	 nm	 nmpjk

and

Rn
J	 =	 e F	 Gn-1 Nm 	 ( 

43)nmpjk	 Pn-1 nmp	 k

Thus one element of the determining function S T defined by

equation (19) becomes

S	
_	 -J nmpjk	 A	 sin	 -Tnmpjk

	

	 nm	 nmpjk(n-2p+j+k-vm)

(44)
Bnm cos ^nmpjk

The mean energy can then be found from equations (44) and (22):

where AL nmpjk is expressed as

,r



(47)k - 2p - n - j

nmpjk

	

	 nm	 nmpjk
(n-2p+j+k-vm)

(46)

Bnm sin 
ipnmgjk

The elimination of the intermediate period terms may also be

found by determining the partial derivative.: of each element

of STnmpjk in which

f

M .
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- 5.0	 EXPRESSING THE GEOPOTENTIAL IN 	 PSO	 ELEMENTS

= 9

In the expansion of the geopotential, the angle	 nmpjk

becomes undefined for small eccentricities and inclinations.

The Fourier expansion of equations (41), 	 (42)	 and (43) should

E be transformed into a fourier series in the true longitude	 al

and the angle	 w9k+8o and polynomials of the well defined

g' functions

t
n= e sin (g+h) d	 s	 sin h	 (48)

1 C= e cos ( g+h ) 6= s • cos h

With the definition of the true longitude a l = 0 + g + h ,

the angle nmpjk becomes

nmpjk _ 0 nmpjk - ( j+k)(g+h) 
+ (m-n+2p) h
	

(49)

6 nmp j k = ( n -2p+j+k) .1 - m(w6 k+8 o )
	

(50)

Keeping the notation of Giaeaglia ( reference 9) we make new

definitions

Q^= j +k	 (51)

a=m-n+2p	 (52)

so that
nmpjk 

becomes

nmpjk _ 0 nmpjk - q
( g+h ) + ah	 (53)

t To maintain the notation of previous authors, this author
has decided to keep the notation of q as an index in the

expansion. Please observe the definition of q given in
Appendix A.
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jj
	 By defining _.

i
s

nq	 elg l 	 sin q ($+h) da = s lat sin a h

= s lat h
(54)

q 

= elgl	 cos q (g+h) Ba cos a

Ra q = ^q s a + ng da (55)

I aq	 ^ q d a - ng 0a (56)

the expressions for the functions of *nmpjk become

e l g l s l a l	 cos =
0nmpjk

Raq cos 6 nmpjk +

(57)
+ Ia 

q
sin

enm P j k

e l g l s lal	 sin = sin +
nmpjk Raq 6 nmpjk

(58)
- Ia 

q
cvs

enmP j k

Recursive relations exist for the definitions of equa-

tion (54).	 They are

n q =	 nq -1
C1	

+	
q-1

n 1 (59)

q	 q - 1
n

1	 q - 1
n

1
(60)

'	 n-	 n C= ^ q (61) -q -q

C1	
= Q P 2 n1	 = - Q a Z (62)

r



aat 
M

da-T ^I +	 sa-I	 aI	 .._ (63)

O
ct = 8 a,- I	 8 1 -	 d ot- I	 a t

(64)

6= -da S= ^a (65)-a -a

0 1 = Pp3 61 = -PC 3 (66)

With the expressions (57) and (58), one is now able to
write each element of the disturbing function given by equation
(42) entirely in non-singular coordinates:

Vnmpjk = Jnmpjk )(Anm Rcxq
	 - Bnm I aq ) COS	 P nmpjk

l

+

(6?)
+ ( Anm I aq + Bnm Raq ) sin 8nmpjk

J	 =
R e	 F Gn -I	 Am 	e (Ij I + I K I-I j ' kI)

nmpjk -I	 nmp j	 k (68)Pn

F_
Fnmp = nm (69)s	 1^I1

^n-1
Gn-I =

j
e

^ (70)

_ N 
N  - — k	 (11)

e

The expressions of the barred values are found from the

relations of thc; unbarred values. These barred expressions



are free of singularities. The relations for ^nmp

Gj -1 and k may be found in Appendices B, C and D.

respectively.

i
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6.0 CONCLUSIONS

Orbit perturbations due to the time dependent harmonics

of the gravitational field of the earth have been studied for

the case of near-earth satellites. Since for these orbits, the

atmospheric drag perturbations never permits the satellite to

remain long in a resonant frequency, the resonant perturbations

have been neglected. Because the short period perturbations

due to the tesseral harmonics are of second order, these terms

have also been neglected.

The solution for the satellite motion which includes the

intermediate period perturbations of between first and second

order have been found by using the Von Zeipel solution method

with a general, recursive expansion of the geopotential in the

non-singular PSO elements. Also, the along track secular

perturbations induced by the periodic perturbations in the

mean motion are eliminated by the computation of the average

energy using the same theory.

This theory has been implemented in an operational com-

puter program ASOP (reference 12) and numerical expe'riements

verify the expected accuracy.

r
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Q l 	true anomaly

a 2 = g	 argument of peric enter
(Al)

n 3 = h	 ascending; node

a4 = I	 time element

The action variables

R^ _ 4^	 related to two-body energy

a2 = G	 angular momentum magnitude
(A2)

R3 = H	 2 component of angular momentum

84 = L	 the total energy

These may be transformed to the canonical PSO el:amenis:

n l = ^ + g ± h	 pl = 0

0 2 - -2(7-G) s-.n ( g+ h)	 P2 - 2v ( ,P -G; ,.,,4 (€'+h)

(A3)
p l - 2(G-I1) -Or h

r4 = Q
	 1)4 = L

Abbreviations used in the text. are

1	 ^	 z

-(G-(V +	 (semi-latus rectum)
uvIr2L
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^7pe	 1 - 	 (eccentricity)

u

H^
s - sin 1	 1 -	 (1 is the inclination)

G2

H
c - coo 1 - —

G

,0̂4 2 
a---	 +G - (P

u	 2u4



APPENDIX B - INCLINATION FUNCTION

I

i



f

F

-37-

PAN KAW WT

APPENDIX B

INCLINATION FUNCTION

Recursive relations for the Inclination Function F
nmp

have been derived by Giacaglia (reference 8). The first re-

currence relation given in that reference is simple and valid

for all n	 -m	 p except when n = m

F	 (-1)n-m+1 (2n -1 )s F	 - F	 -
nmp	 2(n-m)	 n-1,m,p	 n-l,m,p-1

(B1)

(

n-l+m\

n-m 
Fn-2,m,p

The other relations derived in that reference were not

suitable because they had singularities for zero inclinations.

A new recurrence relation derived through induction by this

author completes the definition of the inclination function:

2n-1	 .3
2 

(1+cFnnp 
=	

2	
s	 )	 Fn-l,n-1,p-1 +

(B2)

+ (1+c) Fn-l,n-1,p

In all the recurrence relations

Fnmp = 0	 for p< 0 and p> n

(B3)M < 0	 m > n 



2n-1

nnp	 2	 n-1,n-1,p-I

(n-l+m)
F
n-2,m,p-I

3.

n-m)

The values of a and b are found from the conditions

n >m+2p	 n<m+2p	 n=m+2p
2a	 s	 s

2

b	 s 2 	s 2

From equation (B2) the definition ofnnp 
becomes



The starting value of

0011)
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APPENDIX C

ECCENTRICITY FUNCTION

The eccentricity function Gj is defined by the

relation

n(pf  s 	 sin
-	 io = Fa Gj 

cos 
(i + j )o	 (Ci)

r	 Cos j =-n

p
where — = 1 + e oos	 .

r

p n
The binomial expansion of	 —	 becomes

r

(,p	 -
	

(n) (e(s)
cos (s-2t)	 (C2)

r	 s=0	
s	 2	

t=0 t

Using equation (C2) and the definition of equation (Cl)

the expression for Gn becomes

n
	(n)	 s	 1

Gn = e	 es_
	

-	 for j > 0

	

5=1j I	 s	 2	
2 s

(C3)

G	 Gn = n
-J	 J



The expression for Gn becomes

G= Gn = n	 n ek-j	
k	 l k

j e I3 u k	 2
k-IJ (	 z

(C5)

Gn u = G3

or^

r
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APPENDIX D - THE TIME EXPANSION
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exp ^imv (0-M), _

	

	 Nk exp (iko)	 (D2)

k

where Nk is defined by

1	
Ty

NMk = —	 exp Cimv (^ -M) - ik^ d^	 (D3)
27T

-^1

As in the development of Hansen coeffi^-ivnts ( reference 10)

some abbreviations are useful

l+Ey	1 +R	 e
or	 R	 (D4)

V1-e	 1-R	 1+ 1-ez

z = exp iE	 (D5)



Z-0
exp io -

	

	 = z (1- z) (1- Bz) 
1	

(D7)
i-Bz

Similarly the relation between mean and eccentric

anomalies

M = E - e sin E	 (Dg)

may be written as

exp iM = z • exp 
[,e_ 

(z - Z)	 (D9)

By differentiating equation (D7), the expression for d^

becomes

(1-B2)
d^ _

	

	 (1 - Bz)
- 1 

z-1 (1- ) -1 dz
i

(D10)
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Thus the integrand in equation (D3) becomes

1-0	 $ -(k+I-mv)
exp i 1(mv-k)o-mvm] :	 (1- OZ 	 I--

I -_	
z
- I -k •

i	 z
(D11)

mve
exp	

(z-1
dz

2	 z

Tne powers of (1-$z) and 1 
z 

can be expanded with

small parameter 8

f - ( 1 - az ) k-mv-1
s

{

d fS -
	 k-mv-? ( k

-mv-1)
dz

dsf	
k-mv-3

S = (_6)2(1-Sz)	 (k-mv-1)(k+mv-2)
dz?

(D12)	
t	

1}

s-I

d t'S = (-t^)s(1-(iz)k-(mv+s+I) 17 [k-(mv+j+l)]
dzs	

j=0

d s 1, (z=O)	 s-I	
ls --- - -M J Ck-(mv+j+l )J

dzg
j=

0
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By Taylor's expansion..

0 
d°f(z-0) 1

- f 1 +Fd
	

_ Zs
'^	 8+1	 dz8	 81

or
m

f 8 =	 a8 0 8 z8

8-a

where

(-1)8 s-1

ao = 1	 as =	 rf [k-(mv+j +l)]
sl	 J. 0 

or

k
a8 = -	 as-1s,

Similarly

	

(k+l -mv)	 1
f t = (1-sw)	 where w = —

z

dit = 6(1-6w)-(k-mv+2) (k-mv+l)
dw

(D13)

d' f tf = 6
1 (1-Bw)

-(k-mv+3) (k-my+l)(k-mv+2)
dw

(1114)



t	 t-1

--_ ^t(1-Bw )
-( k-my+1+t) j17	 (k-my+1+j)

dw

d t f (w=o)	
t-t	 i

t-• gt R (k-my+l+j)
dw c	

,#' 0

Therefore:

f t s	 bt0twt	 t,r	 Fa bt 6 t r-t	 (D15)
too 	too

whe rip

b = --	 17 ( k-my +1+ •j )b^ = 1	
t	 t	 1.0

r

or

k-mv+t Y

r	 t	 bt - I

With equations (D13) and (D15) the int pgral becomes

1	 ^

N m --	 (IXP i ^(mv-k)	 -mvA9, dO
k	 2 -n _n

(D16)

N 	 (1 _^ s )	 a b^+t	
z- I - (k -s+t exp Tp z_dz

ks-0 t-o 	t
	
n i 	 z
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But the Bessel function is defined as

l
J (a)	

z-1-ti exp a z-
 1) 

dz	 (D17)
n	 2n1 f	 2

so that the final form becomes

NM = (1-61)	 F a8btss+c i
k- s +t (mVe) 	 (D18)

S-0 t-0

where

(k-mv-s)
ao 	1	 aG - -	 ag-1	 (D19)

s

(k-mv+t)
b  = 1	

b  -	 t	 bt-1	 (D20)

Thv barred function Nk can be found from its definition

and equation (D18)

Nm

Nk 
= ^T	

(D21)

If one notes the definition of S in equation (N),

one finds

k = (1-Bz l../^^( a'""-r s+t e2c(mv) (k-s+tl Jk-s+t(mve) (D22)
s-0 M(1+^1-e )



r;^ f

following conditions

(D23)

Note that a can never be negative.

The function Jn (a) is defined from the Bessel function

as

J (a)
Jn (a) = n n	 (D24)O

It can be found from following recursive relation

Jn-1 - 2n J  - a2 
n +1

with starting values

1 n+1	 1

	

Jn+1	
2	 (n4l)!

1 n	 1	
a2

4

	

n	 2	 n!	 (n+1)!

(D25)

(D26)
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The expressions for Nk were determined in another

manner by Bond (reference 11) up to order e 3	These ex-

pressions are given here in the barred form.

No = 1 - (mve)2

_	 3 1
Nm l = -MV 1-mve 2 - + - my

8	 2

_	 3	 1
Ni =my 1 +mve 2 ---mv

8	 2

_	 my 3
Nm 2 	+ my

2 4

my 3
NZ =	 --mv

2 4

-mv 1	 3	 1
Nm 3=	 - + - my + - ( MV)

2

2	 3	 4	 3

m	 my 1	 3	 1	 2
N 3 =— - - - mv +-(mv)

2 3	 4	 3

(D27)

14,


