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SECTION I
SUMMARY

.. _ e
.
< R S L TS DR

A.  STUDY OBJECTIVES AND SCOPE

The major cbjectives of this study program were to provide design charac-
ter1st1cs, parametric data and identify technology requirements for advanced
engines to be used on mixed-mode orbit-transfer vehicles (0TV).

R

foaq et fued  Gou g Peuy

Three baseline engine concepts (tripropellant, plug cluster, and dual-
expander) were studied. Oxygen (02), kerosene (RP- 1? and hydrogen (H2) were
evaluated as the propellants for these engines. A baseline Mode 1 thrust
level of 88,964N (20,000 1bs) and a thrust split of 0.5 were preselected.
(Thrust sp]it is defined as the ratio of the 02/RP-1 thrust to the total

- engine thrust.) This established the base point for parametric evaluations.
i

)

» e
3

¢
ar

To accomplish the study program objectives, the effort was divided into
four technical tasks plus a reporting task. In Task I, the properties
and/or theoretical performance of the propellants and propellant combinations
‘- were determined over a parametric range. Task II involved the evaluation of

thrust chamber cooling methods for each of the concepts to determine the
“- maximum attainable chamber pressures within the constraints of low cycle
‘ thermal fatigue and propellant properties. Upon completion of Task II,
cooling methods were selected and the operating parameters for each of the
baseline engines were updated for use in the remaining effort. In Task
; 111, cycle power limits were established, point design chamber pressures
: were selected, and delivered performance, weight and envelope dimensions
were deteremined for each of the baseline engines. Using the Task III
results as a base, parametric analyses were then conducted over ranges of
thrust Tevel, thrust split and Mode 1 area ratio in Task IV to provide the

engine data and descriptions necessary for mixed-iode orbit-transfer-
vehicle studies.

' B.  RESULTS AND CONCLUSIONS

Simplified engine cycle schematics of the concepts selected as baselines
and for parametric analyses are shown on Figures 1 through 6.

The tripropellant engine uses a staged combustion engine cycle and a
conventional bell nozzle. To conserve space in the shuttle payload bay,
an extendible/retractable nozzle extension is used. Thnree preburners are
used to drive theturbines. Oxygen/hydrogen fuel-rich gas drives the hydro-
gen turbopump, oxygen/hydrogen oxidizer-rich gas drives the oxygen turbopump
and oxygen/RP-1 fuel-rich gas drives the RP-1, turbopump. The exhausts of all
turbines are burned in the main thrust chambe¥ during Mode 1 operation.
Only the 02/H2 propellants are burned during Mode 2 operation.

2 - PRECEDING PAGE BLANK NOT FILNE)
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I, B, Results and Conclusions (cont.)

The dual-expander engine burns oxygen as the oxidizer and RP-1 and
hydrogen as the fuels in Mode 1. Some of the oxygen and all of the RP-1
are delivered to a central thrust chamber injector as iiquids. These pro-
pellants are combusted and partially expanded in a conventional bell nozzle.
The rest of the oxygen and the hydrogen are combusted in preburners. An
oxidizer-rich preburner is used to provide the oxygen turbopump drive gases
and a fuel-rich preburner is used to provide the RP-1 and hydrogen turbopump
drive gases. The turbine exhaust gases are delivered to an annular combus-
tion chamber. Expansicn of the 02/Hy combustion products occurs in a forced
deflection nozzle extension along with the complete expansion of the 02/RP-1
center core combustion gases. During Mode 2 operation, the center thrust
chamber is inactive and only the 02/H2 combustion gases are expanded in the
forced deflection nozzle. This substantially increases the Mode 2 area
ratio.

The plug cluster engine uses 02/Ho and 02/RP-1 thrust chamber modules
clustered around a central plug of zero isentropic length with the module
exits touching. The oxygen/hydrogen system employs an expander drive cycle
and the oxygen/RP-1 turbopumps are driven by fuel-rich oxygen/RP-1 gas-
generator. Some of the heated hydrogen is used as hase-bleed to improve the
base thrust contribution in both Mode 1 and Mode 2. The 02/RP-1 fuel-
rich turbine exhaust products are expanded through a 5:1 nozzle. A1l of
the modules fire in Mode 1 operation while only the 02/H; modules operate
during Mode 2.

Hydrogen was selected as the coolant for the tripropellant and dual-
expander engines and the LOX/LH2 module of the plug cluster. Hydrogen cooled
tripropellant engines are practical for the entire chamber pressure range of
34 to 136 atm (500 to 2000 psia) and thrust split range of 0.4 to 0.8
investigated. Dual-expander engines are cooling limited and the maximum
operating chamber pressures were defined as a function of thrust split at
a baseline thrust of 88,964N (20,000 1b) as follows:

Mode 1 Chamber Mode 2 Chamber

Thrust Pressure, Pressure,
Split atm (psia) atm (psia)
0.4 88.4 (1300) 44 .2 (650)
0.5 74.8 (1100) 37.4 (550)
0.6 61.2 (900) 30.6 (450)
0.8 13.6 (200) 6.8 (100)

It may be possible to raise these chamber pressure Timits if advanced
technology chambers using a combination of regenerative and transpiration
cooling are considered. However, this was beyond the study scope.

L4
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I, B, Results and Conclusions (cont.)

Cooling of the LOX/LH> plug cluster engine module was practical over
tte entire chamber pressure range of 20.4 to 68 atm (300 to 1000 psia)
itvestigated. However, both oxygen and RP-1 cooling of the LOX/RP-1
. odule was found to be impractical over the entire chamber pressure range.
Uxygen cooling of the module in the plug cluster engine is impractical
because of phase changes at low pressures and shifts in transport properties
near the critical temperature and pressure points at the higher pressures.
RP=1 cooling uf these modules results in excessive bulk temperature rises
bi'cause of wall temperature limitations imposed in order to prohibit cracking, :
g-ming and coking of the RP-1 in the coolant channels. The plug cluster :
s udy proceeded assuming that if some of the impurities were removed from the
Ri -1, the coolant bulk temverature would not be limiting. A baseline LOX/

RF=1 chamber pressure of 20.4 atm (300 psia) was selected for the parametric
evaluations.

With the cooling evaluation results as a foundation, baseline engine
operating points were selected. The baseline engine weight, performance
and envelope data for each of the engine concepts were established and
are summarized on Tables I, II and III. Parametric studies were then con-
ducted around these baselines. The parametric data is presented in
Section VI for a thrust range of 66.7 kN to 400 kN (15,000 to 90,000 1b),

thrust splits from 0.4 to 0.8, and overall Mode 1 area ratios from 200:1
to at least 600:1.
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SECTION II
INTRODUCTION

A.  BACKGROUND

From the early to mid-1970's, the NASA and DOD sponsored a number of
studies which examined both interim and so-called full capability vehicles
for the inter-orbit transfer of payloads. These studies, which considered
solid, storabie, and cryogenic propellants for main engine propulsion,
generally cc..cluded that a high area ratio, high pressure staged combustion
cycle engine in a hydrogen-oxygen stage offered the highest payload capa-
bility. Several vehicle and propulsion system concepts, however, did not
receive in-depth study as candidates in this early orbit-transfer-vehicle
(0TV) effort. Not considered, for example, were the plug cluster engine
and the more recent mixed-mode propulsion concept. Work was initiated in
1976 (Contract NAS 3-20109) to provide plug cluster engine data for use in
future hydrogen-oxygen OTV studies. With regard to mixed-mode propulsion,
studies of single-stage-to-orbit (SSTO) vehicles conducted by both industry
and NASA have shown that mixed-mode propulsion offers significant benefits
in vehicle performance and size for advanced earth-to-orbit transportation
systems. This suggests that mixed-mode propulsion might also be beneficial
in orbit-transfer vehicles.

Mixed-mode propulsion corsists of two separate modes (herein called
Mode 1 and Mode 2) of combustion in the same propulsive stage. This can be
accomplished either sequentiaily or in parallel. During a Mode 1 parallel
burn, a high density fuel, like kerosene (RP-1) or monomethylhydrazine (MMH),
is burned together with oxygen and hydrogen. Only the high density fuel and
oxygen are burned during Mode 1 of the series concept. Oxygen {02) and
hydrogen (H2) are used in the Mode 2 burn of both concepts. In Reference 1,
Beichel and Salkeld compare an 02/MMH/H2 mixed-mode OTV with a reference 03/H2
OTV which utilized the RL10-IIB engine (standard RL10-3 with addition of idle-
mode capability and an extendable nozzle to an area ratio of 205:1). Results
showed that the mixed-mode 0TV was 60% shorter than the reference design at
no penalty in payload weight or 43% shorter with a geosynchronous payload
increase of 21%. The cited improvements were accomplished by the application
of the mixed-mode propulsion principle in a high pressure oxygen-coolzd dual-
fuel engine (Mode 1 area ratio = 130:1, Mode 2 area ratio = 400:1), use of a
1ightweight columbium rolling diaphragm nozzle extension, an 02/H2 mixture
ratio of 7:1, and storage of the oxygen in a toroidal tank of spherical seg-
ments. The work of Beichel and Salkeld was extended to include 02/RP-1/H3.
These ALRC in-house efforts showed that the OTV length could be reduced by
27% and the vehicle dry weight reduced by 19% for essentially no penalty
in payload weight. A1l studies have shown that the requirements for a small
size, high performance OTV drives the mixed-mode propulsion to high chamber
pressures and large nozzle area ratios.

The purpose of this work was to provide the data necessary for the study
of orbit-transfer-vehicles utilizing mixed-mode propulsion. The effort

13
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11, Introduction (cont.)

invo]ved parametric analyses to establish engine data and descriptions and
the identification of technology needs in the propulsion area.

B. OTV ENGINE REQUIREMENTS

The requirements for the mixed-mode OTV engines used in this study are
summarized on Table IV. In addition, the study was conducted assuming
curre?t}y achievable component performance levels and currently available
materials.

C. APPROACH

A summary of the study program effort is shown on Figure 7. This
figure shows the major past study efforts which provided basic data and
inputs to this effort, the study tasks conducted and the outputs obtained.
Much of the basic propellant data, properties and theoretical performance
was available from Contract NAS 3-19727 (Reference 2) to support this study.
The results of work performed for Contract NAS 3-20109 (Reference 3) were
used to establish the plug cluster engine parameters such as, plug isentropic
length, module gap ratio and module nozzle expansion ratios.

The engine concepts described by Figure 8 were analyzed in this study.
Those baseline engine guidelines and parameters that could be identified prior
to the initiation of all detailed analyses are shown on Tables V, VI and
VII. A1l items marked TBD (to he determined) were established during the
study by conducting the tasks which follow.

° Task I - Propellant Properties and Performance

This task generated fundamental data necessary for the performance
of the remaining tasks.

° Task Il - Cooling Evaluation
This task established the best coolant for each of three baseline
engines and determined the maximum attainable chamber pressure on the basis
of coolant pressure drop or propellant property limits.
° Task II1 - Baceline Engine Cycle, YWeight and Envelope Analysis
This task consisted of engine cycle power balance analysis, gngine
delivered performance evaluations, engine and component weight estimation,
and engine envelope analysis for three baseline engine concepts selected
on the basis of the Task I and II results.
° Task IV - Engine Performance, Weight and Envelope Parametrics

Engine delivered performance weight and envelope d *ta were generated
over parametric ranges of thrust, thrust-split and Mode 1 area ratio for each
of the selected engine concepts.

14
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TABLE IV. - MIXED-MODE OTV ENGINE REQUIREMENTS

Propellants:

Oxidizer
Mode 1 Fuel

Mode 2 Fuel

Propellant Iniet Temperature:

Oxygen Boost Pump
RP-1 Boost Pump

Hydrogen Boost Pump

NPSH at Boost Pump Inlet (full thrust):

Oxygen
RP-1

Hydrogen

Service Life Between Overhauls:

Service Free Life:

Oxygen
RP-1

Hydrogen

90.4°K (162.7°R)
298°K (537°R)

21°K (37.8°R)

0.61 m (2 ft)
13.7 m (45 ft)

4.57 m (15 ft)

300 thermal cycles or
10 hours accumulated
run time

60 thermal cycles or
2 hours accumulated
run time

15



3

-

Adeuming weuabouad ALO IpOW-paxLy 40j Apnis auibuj panueapy

SY3IL3IWViVd
3d0TIANI GNY LHIIIM
“IONUWH03Y43d 3NIONI

Al Syl

-

SISATYNY
3d0T3IANI ANV LHII3M
‘371040 3INIIN3 3INIT3SVE

A e s WREARRCR s ERETE T T

*/ danbL4

111 %SVl
¢r

140434 TUNI4

TYAQ¥ddY VYSYN

S3IWIHIS
ON17000 31VOIONVD @
SINVI00) ILVUIONYD @
SINION3 IIYQIONY) @
SINVT13d0Y¥d ILVOIONYD @

AYOM 40 INIWILVLS

A

2 Y

SNOI1YANIWWO0I 34
ONY M3IIAY
IT GNY I %Syl

(L IONIY3II3Y)
SISATYNY ONY VLiva
QIPVS/13IHI138
€S310N1S N

LY

SINIWIYINDIY
AD0T0NHI3L @

S3IOVHIVd Viva
JIY13WVEYd INIONT @

(SNOILIONOD

OINILVIId0 ONV 34013AN3

“ JIINVWIOAYId ©LHIIINM)

SNOI1dI¥IS3Q INIOd
N9IS3G 3INIONI @

NOT1VNIVAI
INIT002
IT ASvL

(€ 32N3Y¥343Y)
AQNLS 4403avyl
31ZZON TYNOILNIANOINN
60102-€ SYN 1JVYINOD

A

Sindino

JINTWHOIYId ONY
S31143d0Y¥d 1NYT1T3d0Yd
I ASvi

(2 39N3FY343Y)
AGNLS 3INI9N3
UNSS3I¥d HSIH QIINVAQY
“12161-£ SYN 1IVHINO

SASVL AGNLS

SINdNI AGNiS

16

Lo



e i o OGN

sauLbugy uL|aseg Apnis -g aanby 4

17

i
! %y us% AGNLS AS QINI4IQ 2
%y L-d4/%0 AGNLS A9 OINI4IQ l ¥3ANYdX3-Tvng
(96d) %H <(3na0W) %y ur% IANYdX3 2
. (2n1d) %M <(3naow) 2y us% 4IONVX3 l
| (371na0W) %0 ¥0 (-qy L-d4/% YOLV4INI9 - Sym ! ¥3LSN1) 914
%y /% NOILSNEWO0D Q39V1sS Z
2y u/1-48/% NOILSNEW0D QI9VLsS L INY113d0¥d Y1
M SINVI002 3LvaIaNy) SINVTT3d0Yd 31949 3000 1d3IN0D INION3

¥



-

~

>
[IUERR—————

18

TABLE V. - BASELINE TRIPROPELLANT ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 02 U, 02

FUEL RP-1 H2 Hy
MIXTURE RATIO (0/F) 3.1 7.0 7.0
CHAMBER PRESSURE TBD TBD
VACUUM THRUST, N (1bf) 88,964 (20,000) TBD
THRUST SPLIT (02/RP-1 THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC. TBD TBD
DRIVE CYCLE STG. COMB.  5TG. COMB. STG. COMB.
NOZZLE TYPE 907% BELL 90% BELL
NOZZLE EXPANSION RATIO 400:1 40C:1
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TABLE VI. - BASELINE DUAL-EXPANDER ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 02 02 02

FUEL RP-1 H2 H2
MIXTURE RA™TO (O/F) 3.1 7.0 7.0
CHAMBER PRESSURE 78D 18D 18D
VACUUM THRUST, N (1bf) 88,964 (20,000) T8D
THRUST SPLIT (02/RP-1 THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC TBD T8D
DRIVE CYCLE TBD 78D TBD
NOZZLE TYPE BELL Expansion- Expansion-

Deflection Deflection

NOZ7LE EXPANSION RATIO 200 T8D

19
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TABLE VII. - BASELINE PLUG CLUSTER ENGINE GUIDELINES

MODE 1 MODE 2

PROPELLANTS: OXIDIZER 0, 0, 0,

FUEL RP-1 Hy H,
MIXTURE RATIO (O/F) 3.1 7.0 7.0
CHAMBER PRESSURE TéD TBD T8D
VACUUM THRUST, N (1bf) 88,964 (2n,000) T8D
THRUST SPLIT (OZ/RP-l THRUST) .5 -

TOTAL THRUST
VACUUM IMPULSE, SEC. TBD TBD
DRIVE CYCLE Gas Gen. Expander Expander
NUMBER OF MODULES 5 5 5
MODULE NOZZLE TYPE 907 BELL 90% BELL 90% BELL
MODULE NOZZLE EXPANSION RATIO T8D TBD TBD
MODULE GAP RATIO (GAP BETWEEN 0 1

MODULES/MODULE EXIT DIA)

CLUSTER EXPANSION RATIO TBD T8D
PLUG ISENTROPIC LENGTH, % T30 TBD

PR
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SECTION III
TASK I - PROPELLANT PROPERTIES AND PERFORMANCE

A. OBJECTIVES AND GUIDELINES

The objectives of this task were to provide propellant and combustion
gas property data, and theoretical performance for the propellants and
propellant combinations considered in this study. To accomplish these
cbjectives, 'iterature surveys and analyses were conducted. Much of the
propellant property data is readily available in the literature and the best
references are cited herein.

The logic diagram ard variables considered in conducting this task are
shown on Figure 9. As noted by the figure, much of the basic propellant
property data was already available from Contract NAS 3-19727 (Ref. 2).

In addition, combustion product and theoretical performance data available
from Contracts NAS 3-19727 and NAS 3-20109 (Ref. 3) were extended to meet the
study requirements.

The thermodynamic and transport property data for the combustion products
were obtained from the One-Dimensional Equilibrium Computer Program with
Transport Properties (TRAN 72), described in Reference 4. This computer
program was obtained from NASA/LeRC and includes ODE and frozen specific
impulse and characteristic velocity data in addition to the extensive com-
bustion gas transport property output.

Main chamber theoretical performance data was alsu generated using
the previously referenced TRAN 72 computer program. The ODE performance
portion of the program is equivalent to the JANNAF one-dimensional equili-
brium program.

B.  PROPELLANT PROPERTY DATA

The physical and thermal property data for oxygen, RP-1, and hydrogen,
were assembled for Contract NAS 3-19727 (Ref. 2). Properties of these
various propellants and their data sources are:

Oxygen - References 5,6,7,8
Hydrogen - Reference 9
° RP-1 - References 10,11

The data is summarized on Table VIII.
In addition to these data, Reference 2 presents data on the proveilant

operational characteristics (i.e., safety, availability, cost handling,

chem;cal stability, material compatibility, thermal stability, and corrosive-
ness).

21
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TABLE VIII. - PROPERTIES OF CANDIDATE PROPELLANTS

Oxygen Hydrogen I RP-1
Formula B 0, Hy WHoho 3
Molecular Weight 31.9988 2.01594 173.5151
e b ZITT
Freezing Point, °K 54,372 13.835 224.8
o ‘)' (-361.818) (-434.767) (-55)
8oiling Point, °K 90.188 20.268 1492.6
{°F) (-297.346) (-423.187) (427)
Critical Temperature. °K Tisa.581 32.976 679
(°F) (-181.433) (-400.313) {763)
Critical Pressure, MN/m 5.043 1.2928 2.344
(psia) (731.4) (187.81) (340)
Critical Density, kg/m 436.1 31.43 --
{1b/£t3) (27.23) (1.962) -
Vapor Pressure 2
at 298.15°K, kN/m - -- 1.8
(at 77°F, psia} .- i - {.26)
Density, liquid B a
at 298.15°K, kg/m’ n40.8° 70.78 800
{at 77°F, 1b/ft3) (r.23) {a.419) (49.94)
Heat Capacity, liquid 2
at 298.15°K, J/g-°K 1.696° 9,690 1.98
(at 77°F, Btu/1b-°F) (.405) (2.316) (.474)
Viscosity, iiquid 2 a
at 298.15°K, mN/m .1058 .oad 1.53
{at 77°F, b /ft-se:) (1.316x10-4) (.887x10+5) {1.04x10-3)
Thermal Conductivity, liq. 2
at 298.15°K, W/m-°K 5158 .0989 137
{at 77°F, Btu/ft-sec-°F) (2.833x10-5) {1.589x10-5) (2.2x10-5)
Heat of Formation, Niquid a a
at 298.12°K, kcal/mo) -3.003 -2.134 .6.2°
(at 77°F, Btu/1b) {-124.0} (-1905) (-796)

a At NB?
b keal/g CH, unit
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111, Task 1 - Propellant Properties and Performance (cont.)

C. T:RUST CHAMBER COMBUSTION GAS PROPERTIES AND THEORETICAL PERFORMANCE
DATA

This subtask consisted of the parametric evaluation of one-dimensional
equilibrium (ODE) specific impulse, gas stagnation temperature, character-
istic exhaust velocity, molecular weight, thermal conductivity, dynamic
viscosity, specific heat, specific heat ratio (y), and Dittus-Boelter factor
for the L02/RP-1/LH2 tri-propellant combination. The parametric mixture
ratio range varied from 3.1:1 (LO2/RP-1 only) to 7.0:1 (LO2/LH2 only).
Chamber pressure values included in the study were 20.4, 34, 68, and 136 atm
(300, 500, 1000 and 2000 psia). ODE specific impulse was also evaluated
over an expansion area ratio range from 1:1 to 3000:1. The TRAN 72 computer
program (Ref. 4) was used to calculate the ODE TCA performance and gas
properties. Propellant molecular formulas and heats of formation used
were presented in Table VIII.

The data were calculated for hydrogen to total fuel flow ratios (fuel
fractions) of 0, 0.2, 0.4, 0.6, 0.8 and 1.0 and the following overall
oxidizer to total fuel mixture ratios:

Fuel Overall
Fraction, Mixture Ratio,
MRf MR0
0.0 3.10 (LOX/RP-1 only)
0.2 3.88
0.4 4.66
0.6 5.44
0.8 6.22
1.0 7.00 (LOX/LH2 only)

The rationale for the selection of the overall mixture ratio points
for each of the fuel fractions is described in the following paragraph.

The theoretical one-dimensional vacuum specific impulse was calculated
for the LOX/LHp/RP-1 tripropellant combination at an area ratio of 400:1 and
a chamber pressure of 68 atm (1000 psia). This is shown for the various
fuel fractions on Figure 10. Both maximum Ig and maximum bulk density
specific impulse occur at a mixture ratio 3.1 for LOX/RP-1 at this high
area ratio. Hence, this mixture ratio was selected for LOX/RP-1 operation.
The contract Statement of Work specified a mixture ratio of 7.0 for the
LOX/LH» Mode 2 operation. This selection is based upon analyses such as

24
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IS vac,

ODE

LOX/LHZ/RP—I
—_— W
hRo = Lox i
"LH2 * Wepo
"
MR, = LK,
W + W
LH, © "RP-1
e = 400:1

Pc = 68 atm (1000 PSIA)

MR,f = 1.0

(Lox/LH? only)

380 § NRf = 0 (Lox/Ri’~-1 only)
370 k-
ln__k [ { { | | ! R e
2.5 3. 4.5 4.4 6,5 7.5 8.5 9.5 10.5 1i1.5
MR

Figure 10. Tri-Propeilant ODE Specific Impulse
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I11, C, Thrust Chamber Combustion Gas Properties and Theoretical Performance
Data (cont.)

Beichel's and Salkeld's (Ref. 1) which conclude that some penalty in 0/hp
engine performance is warranted to obtain a higher propellant bulk density.
Therefore, as higher percentages of H2 are put into the tripropellant system,
it is desirable to move slightly off peak performance. This is represented
by the line passing through the various fuel fraction performance curves.

The equation for this line is a function of the mixture ratios for the
LOX/RP-1 and LOX/LH2 systems as well as the fuel fraction. For the

selected mixture ratios:

MR, = 3.1 (1 - MRg) + 7.0 (MR)

MRo

Overall mixture ratio

W\ ox
wLH2 + Wpp_y

MRf Fuel Fraction

ODE specific impulse is plotted versus area ratio for each fuel frac-
tion calculation point on Figures 11, 12, 13, 14, 15 and 16. The very high
area ratio data was established in an attempt to cover all possible points
that might result for the various engine concepts over a wide thrust split
range.

The TCA combustion gas property data is shown on Table IX. The
symbols used on this table are:

PC = chamber pressure

MR0 = overall mixture ratio

MR = fuel fraction

C* = characteristic exhaust velocity

T0 = combustion temperature (gas stagnation temperature)
M = molecular weight

v
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11, C, Thrust Chamber Combustion Gas Propcrties and Theoretical Performance
Data (cont.)

Kf = thermal conductivity

Yo ratio of specific heats, equilibrium

Yy < ratio of specific heats, frozen

" = dynamic viscosity

Cpe = specific heat at constant pressure, equilibrium
Cpf = specific heat at constant pressure, frozen

Dbf = Dittus-Bolelter factor

D. PREBURNER COMBUSTION GAS PROPERTIES AND PERFORMANCE DATA

This subtask consisted of calculating the combustion gas properties
for fuel-rich and oxidizer-rich L02/RP-1 and LO2/LH2 preburner operation.
These data were developed over a chamber pressure range from 20.4 to 408 atm
(300 to 6000 psia) and mixture ratio ranges corresponding to gas temperatures
between at least 700 tc 1367°K (1260 to 2460°R).

The data presented in this report is a compilation of results obtained
during this program and applicable data for pressures of 136 to 408 atm
(2000 to 6000 psia) developed during a similar task on the Advanced High
Pressure Engine Study, Contract NAS 3-19727 (Ref. .2). The LO2/RP-1 pre-
burner gas property data presented in this reference at pressures of 136,
272 and 408 atm (2000, 4000, 6000 psia) was expanded to the lower chamber
pressures of 20.4, 34, and 68 atm (300, 500, and 1000 psia) used in this
study. No propellant pre-heating was allowed for since Hp was the baseline
TCA coolant for this study. The non-equilibrium performance of the fuel-
rich LOp/RP-} performance was accounted for as described in Ref. 2. Also,
the L02/LH2 preburner gas property data presented in the reference was
verified as accurate for the 20.4 to 68 atm (300 to 1000 psia) pressure
range. Therefore, the LO2/LHp data is valid for all pressures from 20.4
to 408 atm (300 to 6000 psia).

Study preburner gas properties were alsc calculated with the TRAN 72
computer program (Ref. 4). LO2/RP-1 preburner gas properties are tabulated
in Table X. The symbols used on this table were defined in Section III,C.
The stagnation temperature, characteristic exhaust velocity, molecular weight
cnd specific heat racio data shown on this table were adjusted from their ODE
values for the LO2/RP-1 fuel-rich preburner data. The adjusted Ty and C*
data along with molecular weight and specific heat ratio are plotted in
Figure 17. This adjustment accounts for the empirically observed non-
equilibrium performance of fuel-rich hydrocarbon/oxygen mixtures. Efficiency
factors were developed versus equivalence ratio, as described in Ref. 2, and
used to predict Ty and C* values at the stated chamber pressures.

L02/LH2 preburner data were also calculated at chamber pressures of
20.4, 34 and 68 atm (300, 500, and 1000 psia). These data agreed with
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III, D, Preburner Combustion Gas Properties and Performance Data (cont.)

previous data developed for the 136 to 408 atm (2000 to 6000 psia) pressure
range. The LO2/LH2 preburner data is shown on Table XI. It was concluded
that the LO2/LH2 preburner performance curves presented in Ref. 2 were
valid for the parametric pressure range of this study.
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SECTION IV
TASK IT - COOLING EVALUATION

A. OBJECTIVES AND GUIDELINES

The primary objective of this task was to determine the relative capa-
bility of oxygen, RP-1, and hydrogen to cool the thrust chamber and nozzle
of the tripropellant, plug cluster, and dual-expander OTV engine concepts.
Secondary objectives were to: (1) establish cooling methods and associated
power cycles for the dual-expander engine concept, and (2) define the geometry
of the thrust chamber and nozzle for each of the baseline 0TV engine concepts.

Parametric hydraulic, heat transfer and lTow cycle fatigue analyses were
conducted over the following ranges of chamber pressure and thrust split.

Chamber Pressure Thrust
Engine Concept atm (psia) Split

Tripropellant 34 to 136 (500 to 2000) .4 to .8
Plug Cluster 20.4 to 68 (300 to 1000) .5
Dual-Expander 34 to 136 (500 to 2000) .4 to .8

The relative merit of the various coolants considered (Figure 8)
were evaluated on the basis of attainable chamber pressure, as reflected
in the coolant pressure drop. This evaluation was conducted within the
constraints of the study criteria listed in Table XII and consideration of
the potential problems and limitations such as coking of RP-1 and instabilities
in subcritical oxygen heat exchangers.

The Task II guidelines provided by NASA/LeRC are summarized on Table XII
and Figures 18 through 21. Rectangular channel construction was specified in
the high heat flux portion of the chambers using a zirconium-copper alloy.
The channel dimension and wall thickness 1imits are presented on Table XII.
Figures 18 through 21 show the zirconium-copper properties used in this
study.

The cooling methods and asso:iated power cycles evaluated for the tri-
propellant and plug cluster concepts are shown on Figures 22 through 26.
These concepts were defined by the contract statement of work. The dual-
expander concept was defined during the study and is described in the
next section. As shown by the figures, the baseline plug cluster concept
is regeneratively cooled. The tripropellant engine is regeneratively
cooled to a nozzle area ratio corresponding to the point where a radiation
cooled nozzle can be utilized. This transition area ratio was established
during the study.

4



TABLE XII. - COOLANT EVALUATION STUDY CRITERIA

Coolant Inlet Temperature

Hy = 50°K (90°R)
0, - 1M (200°R)
RP-1 - 311°K (560°R)

Coolant Inlet Pressure

Staged Combustion Cycle: 2.25 times chamber press.
Gas Generator Cycle: 1.8 times chamber press.
Expander Cycle: 2.25 times chamber press.

° Service Life: 300 cycles times a safety factor of 4

High heat flux portion of chamber shall be of nontubular construction
with the following dimensional limits:

Minimum Slot Width
Maximum Slot Depth/Width
Minimum Web Thickness
Minimum Wall Thickness

0.762 mm (.03 in.)

0.762 mm (.03 in.)
0.635 mm (.025 in.)

nua uan
-
Ing
o
—l

Material (nontubular portion): Copper alloy (Zirconium Copper) con-
forming to properties given in Figures 18 through 21

Maximum Coolant Velocii

tiquid: To Be Determined
Gas: To Be Determined

Possible Benefit of Carbon Deposition on Hot Gas Wall shall be Neglected
Coking Limit
RP-1 Coolant Side Wall Temperature = 589°K (600°F)
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IV, Task II - Cooling Evaluation (cont.)

B.  DUAL-EXPANDER ENGINE CONCEPT DEFINITION

The dual-expander engine concept analyzed during this study was defined
and is shown schematically on Figures 27 and 28.

The dual-expander engine burns oxygen as the oxidizer and RP-1 and
hydrogen as the fuels in the tripropellant Mode 1. Some of the oxygen and
all of the RP-1 are pumped to high pressure and delivered to a central
thrust chamber injector as liquids. These propellants are combusted and
partially expanded in a conventional bell nozzle extension. The rest of the
oxygen and the hydrogen are combusted in preburners. An oxidizer-rich pre-
burner is used to provide the oxygen turbopump drive gases and a fuel-rich
preburner is used to provide the RP-1 and hydrogen turbopump drive gases.
The turbine exhaust gases are delivered to an annular combustion chamber.
Expansion of the Ongz combustion products occurs in a forced deflection

nozzle extension along with the complete expansion of the 0,/RP-1 center
core combustion gases.

During Mode 2 operation, the center thrust chamber is inactive and
only the 02/Ha combustion gases are expanded in the forced deflection
nozzle. This substantially increases the Mode 2 area ratio.

The statement of work specified a baseline thrust of 88964N (20,000
1b) a thrust split of 0.5 and a Mode 1 nozzle area ratio of 200:1 for the
dual-expander engine. In addition, the cooling evaluation was performed

for a thrust chamber pressure range of 34 to 136 atm (500 to 2,000 psia)
and thrust splits from 0.4 to 0.8.

To establish the dual-expander engine geometries, it was necessary to
define the individual system area ratios and Mode 2 engine area ratio for the
fixed baseline Mode 1 area ratio of 200:1. The foliowing sketch and equations
show the areas, area ratios and interrelationships.
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g .
1
a Ea
| R )
KEL + 1
} t,
: where:
9 e, = Mode 2 Area Katio = Ac/A¢2

ey = Mode 1 LOX/RP-1 Area Ratio = Ap1/At)

€y = Mode 1 LOX/LH2 Area Ratio = Apa/A¢o

€ = Mode 1 Area Ratio (LOX/RP-]/LHZ) = Ag/(Ag1 + A¢2)
Ay = Throat Area LOX/RP-1 Nozzle
At, = Throat Area LOX/LH, Nozzle

Equations (2) and (3) can be approximated by:

Y

% = 0=Fs FS)( f1 % e ()

? 2 (T““‘"“)(PCZ) * e

"o

= (5)
(] - FS)(P ) +1

where:
FS Thrust Split
Pc2 = LOX/LH2 Chamber Pressure
P LOX/RP-1 Chamber Pressure

"

cl

For a fixed Mode 1 engine area ratio, numerous values of e and ¢ can
be chosen to satisfy Equation (5). However, the nozzle exit pressures at
€l and €2 must be equal and this closes the solution providing that the
ratio of the LOX/LHy> and LOX/RP-1 system pressures are known.
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IV, B, Dual-Expander Engine Concept Definition (cont.)

Preliminary heat transfer analysis indicated that it is desirable to
maintain a 0.5 ratio of the LOX/LHp system chamber pressure to LOX/RP-1
system chamber pressure. This is based upon maintaining approximately
equivalent throat heat fluxes in the annular and bell nozzles. This was
used throughout the rest of the coolant evaluation study and more detailed
thermal analyses (Section IV,E,5) verified this assumption.

Based upon the foregoing analysis, nozzle area ratios can be defined
for all modes of operation as a function of thrust split. Typical results
are displayed on Figure 29 for an overall Mode 1 (tripropellant operation)
area ratio of 200:1.

C. THRUST CHAMBER ASSEMBLY (TCA) GEQMETRY DEFINITIONS

Thrust chamber geometry analyses were conducted to define the chamber
Tength and contraction ratio for the tripropellant, plug cluster and dual-
expander engines over the parametric design ranges. The results of these
analyses are summarized on Table XIII. A brief description of the
geometry analysis conducted for each engine concept follows.

1.  Tripropellant Engine

The baseline tripropellant engine concept utilizes a staged

combustion cycle comprised of parallel 0p/Hy (Hprich), 02/H2 (Ozrich),
and 02/RP-1 (RP-1 rich) preburners and a gas/gas injected primary thrust
chamber. In Mode 1, all three preburners operate. The TCA is hydrogen
cooled, and the total preburner flow rates are inlet to the injector.
In Mode 2, the 0p/RP-1 (RP-1 rich) preburner is shutdown. TCA gas condi-
tions were estaglished to provide input conditions for a gas/gas mixing
performance analysis which was used to establish chamber length require-
ments to meet an ERE (energy release efficiency) goal of 98%.

Injector energy release efficiency was evaluated as a function of
chanber length (L'), chamber pressure (Pc), chamber contraction ratio (e¢),
and injector pressure drop using a simplified gas/gas mixing model (Ref. 12).
The analysis was initiated by selecting an initial design point and evaluating
injector ERE as a function of chamber length for a shear coaxial injector.
The shear coaxial injector was selected on the basis of analysis and evalua-
tions conducted for the Advanced High Pressure Engine Study Reference 2).
The chamber length study was conducted for a constant thrust per element (F/E)
of 703N (158 1bf) which results in 127 elements at the baseline 88964N
(20,000 1bf) thrust level. This element size was selected on the basis of
Rerojet Liquid Rocket Company (ALRC) Space Snuttle Auxiliary Propulsion
System (APS) and M-1 Engine design experience.
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Figure 29. Dual-Expander Engine Nozzle Area Ratios
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IV, C, TCA Geometry Definitions (cont.)

Figure 30 shows ERE versus chamber length and notes the initial
analysis design conditions. Three fuel injection pressure drop values were
evaluated because shear coaxial element performance is sensitive to the
relative fuel to oxidizer injection velocity. Figure 30 indicates a maxi-
mum chamber length requirement of 17.8 to 22.9 cm (7-9 inches) to guarantee

the 98% ERE goal. A length of 20.3 cm (8 inches) was selected for the
nominal design point.

After the selection of a design chamber length of 20.3 cm (8
inches), the influences of chamber contraction ratio and chamber pressure
on ERE were determined. Figure 31 presents these results. The top plot
indicates that ERE increases as chamber contraction ratio (ec) decreases.
The bottom plot shows that, for a constant thrust per element, ERE
increases as chamber pressure increases. The selection of the design
chamber contraction ratio was tempered with the knowledge that the Rayleigh
1ine combustion pressure loss increases with decreasing contraction ratio,
as shown on Figure 32. A design contraction ratio value of 2.0:1 was selected
to minimize the combustion pressure loss and chamber weight and to attain
near maximum performance.

TCA throat area requirements were evaluaied for thrust splits from
0.2 to 0.8 and for a chamber pressure range from 34 to 136 atm (500 to
2000 psia). Thrust split does not significantly influence the required chamber
throat area. Using a radius equal to one throat radius, RT, to blend in
the chamber cylindrical and convergent sections and the convergent section to
the throat, the following formula was developed to account for chamber
length variations with chamber pressure:

L' = 3.18 RT + 15,24; for chamber (6)
lenath in cm,

L' = 1.253 Ry + 6.0; for chamber (6a)
length 1n inches.

The equations result in a chamber length requirement of about
20.8 cm (8.2 in.) at a nominal chamber pressure of 68 atm (1000 psia).
Scaling to any chamber pressure results in:

L' = 5.51 /68/Pc + 15.24; for chamber (7)
length in cm and P¢ in atm
L' = 2.17 /{1000)/P. + 6.0; for chamber (7a)

length in inches and P¢ in psia

2. Plug Cluster Engine

The baseline plug cluster engine is composed of five 02/H2 and
five 02/RP-1 modules alternately mounted on a nlug. The thrust per module

59



NOM.
DESIGN
POINT

100 =

\\ APf = 27.2 atm (400 PSIA)

oPg = 13.6 atm (200 PSIA)

90 L. \\\

\\h APf = 6,8 atm (100 PSIA)

ENERGY RELEASE EFFICIENCY (% ERE)

0/F = 4.25

_ / F/E ~ 703N (157 LBF)
AP, = 6.8 atm (100 PSI)
P, =68 atm (1000 PSIA)
€ = 211

80 ——
1 4 4 1 4 4 ) 1 1 N} i I | i i |
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
CHAMBER LENGTH, cm
L | 1 1 { . . |
0 (2) (4) (6) (8) (10) (12)

CHAMBER LENGTH (INCHES)

Figure 30. LO2/RP-1/Hp Tripropeilant Engine Shear Coaxial Element
Performance

L. - i

- <t o N e
I woou



prr o s e

P S |

% ERE

% ERE

NOM.
DESIGN
POINT
100
98 I O/F = 4.25 o
Pc = 68 atm (1000 PSIA)
9% L' = 29.3 cm (8 IN.)
4Py = 6.8 atm (100 PSI) = aP¢
94 |- “/E ~ 703N (157 LBF)
92 1 1 1 1 1 ]
1.6 1.8 2.0 2.2 2.4 2.6 2.8
CHAMBER CONTRACTION RATIO, €
NOM.
DESIGN
POINT
10
or [
€c < 2:1
96 k- L' = 20.3 cm (8 IN.)
APO = APf = 10 x Pe
F/% ~ 703N (157 LBF)
94 |- O/F = 4,25
92 [} 1 1 1 i |
0 (400) (800) (1200) (1600) (2000)
CHAMBER PRESSURE, (PZIA)
- n 1 1 ] 1 1
0 20 40 €0 80 100 140

CHAMBER 'Ri.SSURE (atm)

Figure 31. LO2/RP-1/H2 Tripropellant Engine Shear Coaxial Element

Performance Versus Contraction Ratio and Chamber Pressure




9°¢

uoL3sNQquo) 03 ang doug 3UNSSadd Jaquey) 2€ a4nbiy

.y M<wm< 1YOUHL/Y3¥Y CONI) OIivy Y3¥Y u3dWYH)

i T ¥ i T o_m T m“p Y m.p T vmp
1K10d .M
N91S30 3di ;
88192-8 SWN WSS © va\n ;
EELEL-6 SYN WD, 00 o ot
034 3YNSSI¥d -
2-0
IA
INION3 INY113d0¥dI¥L = 3dl
-4

- : 4 S et A e

(§V]

<t

JYNSSIUd WANId 40 INIId NI WONId

O

o @
—_—

N
i

<
—

NOLJ3CNI Wodd d0¥0 3dNSSIdd

'
-

01 30V

62



IV, C, TCA Geometry Definitions (cont.)

is 8896N (2000 1bf) and thrust split is 0.5. The 02/Hz baseline module is
the ALRC Integrated Thruster Assembly (ITA) engine, as defined by the Uncon-

ventional Nozzle Trade-Off Study (Ref. 3). The ITA, modified to an all regen-

eratively cooled configuration with a 40:1 nozzle expansion ratio, will

deliver 8896N (2000 1bf) thrust at a chamber pressure of 23.1 atm (340 psia).

The following formula scales the 0%/H2 thrust chamber radius for the study
chamber pressure range of 20.4 to 68 atm (300 to 1000 psia):

R = v23.1/P¢ x 2.44; for throat (8)
radius in cm and Pc in atn.
Ry = V{340)/P; x 0.96; for throat (8a)

radius in inches and P¢ in psia.

The nominal ITA chamber length is 16.26 cm (6.4 inches) and
the design contraction ratio is 3.3:1. The foliowing formula was derived
to calculate chamber length for the study operating chamber pressure range:

L' = 6.35 /23.T/P; + 9.91; for chamber (9)
length in cm and P¢ in atm
L' = 2.50 /{340)/Pc + 3.9; for chamber (9a)

length in inches and PC in psia

A vaporization limited performance calculation was conducted to
estimate the chamber length requirement for the 0p/RP-1 module. The cal-
culation indicated a 35.6 to 38.1 cm (14-15 inch) L' would result in attain-
ment of the p ~gram 98% ERE goal at an operating chamber pressure of 20.4
atm (300 psia). This calculation agrees with the baseline 35.6 cm
(14 inch) chamber length selected for the High Density Fuei Combustion and
Cooling Investigation, Contract NAS 3-21030. A contraction ratio of 3.3:1
was also baselined for the 0,/RP-1 module. The following formula scales
the chamber length for the study:

L' = 6.68 /20.4/Pc + 30.48; for chamber (10)
Tength in cm and Pc in atm.
L' = 2.63 /{300)/P: + 12.0; for chamber (10a)

length in inches and P. in psia

3. Dual-Expander Engine

The central chamber for this concept uses liquid/liquid propel-
lant injection. This injection scheme is similar to that employed on the
02/RP-1 module of the plug cluster. Therefore, the chamber length for the
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IV, C, TCA Geometry Definitions (cont.)

02/RP-1 engine of the dual-expander concept is specified with the formula
previously developed for the plug cluster engine (equations 10 and 10a).
The 05/RP-1 chamber contraction ratio was selected to be 3.3:1 which is
also identical to the plug cluster module value.

The gas/gas 02/H> injection for this concept is similar to that
employed on the 03/H2 module of the plug cluster engine. Therefore, the
plug cluster chamber length formula was utilized for the dual-expander
annular combustor (equations 9 and 9a).

A contraction ratio of 3.3:1 was also selected for this combus-
tion chamber.

Further design guidelines were established for the chamber and
nozzle contours. These guidelines were the result of ALRC in-house studies
and are as follows:

a. 02/RP-1 nozzle contour truncated at an area ratio of 8.8:1

x/Rt 0.000 G.324 0.791 1.401 2.685
r/Rt 1.000 1.119 1.513 2.015 2.962

b. Annular inner wall expansion half angle 31 degrees;
outer wall expansion half angle 38.5 degrees.

c. Minimum wall thickness separating combustors of 1.02 cm
(0.4 inches).

d. Outer wall contour (0p/H2) is parabolic. The attach angle
at 02/RP-1 nozzle truncation plane is 38.5 degrees. The
nozzle exit half angle is 11 degrees.

Typical dual-expander combustion chamber and nozzle geometries
are shown in Figures 33 and 34, respectively.

D.  STRUCTURAL ANALYSIS

Structural analyses were undertaken to determine the design constraints
imposed by low cycle thermal fatigue and creep-rupture strength. These
analyses were conducted in conjunction with the coolant heat transfer evalua-
tion to establish the chamber temperature, pressure and coolant channel
geometry limits created by the chamber service life requirements. For this
analysis the service life between overhauls is 300 cycles times a safety
factor of 4 (1200 total cycles) or 10 hours accumulated run time.
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IV, D, Structural Analysis (cont.)

The parametric structural analyses of all three MMOTV engine concepts
were conducted over the study chamber pressure and thrust split ranges at a
baseline thrust level of 88964N (20,000 1b).

The material used for the combustion chamber (ron-tubular portion) is
Zzirconium copper with material properties assumed to conform to those shown
on Figures 18 through 21. The low cycle fatigue data for zirconium copper
~as assumed iu have compressive hold time effects inciuded, so no creep
damage fraction was used in the low-cycle fatigue analyses. The outer
shell of the tripropellant and plug cluster engine chambers is electro-
formed nickel with adequate thickness to remain elastic under the outward
pressure and copper expansion forces. Total strain ranges in the copper
liner could be reduced and fatigue life increased by further optimization
of the shell thickness but this was beyond the scope of these parametric
studies. The central chamber of the dual-expander engine has mill-slotted
copper channels on both sides of an inner nickei structure shell. The
outer annular chamber for the dual-expander engine is also of zirconium
copper construction with an electroformed nickel shell whose thickness was
not optimized.

The low cycle fatigue life is dependent upon the total strain range
induced on the hot gas-side wall of the regen-cooled thrust chamber. The
large number of chamber confiqurations and thermal loadings in the parametric
studies precluded the use of finite element computer analysis at each
design point. A simplified strain prediction method was developed, based
upon a strain concentration factor (K.), thermal expansion coefficient (<),
and the temperature differential between gas and backside temperatures (aT).

€ =KEﬂAT (1)

The value of K. for a biaxiallyconstrained "hot spot" in the plastic
range is 2.0 (Reference 13). Finite element model computer solutions for
selected MMOTV configurations and previous studies (Ref. 2) are plotted on
Figure 35 and verify this factor. Lower gas-side wall temperatures exhibit
Tower Ko values due to reduced plasticity and relief from outward deflec-
tion of the outer chamber shell. Higher gas-side temperatures exhibit higher
Ke values due to less outward deflection of the shell when the copper
softens, and from uneven strain distributions when the copper liner moves
further into the plastic range and pressure-induced strains become
significant.

The design curve of Figure 35 was used to determine K. and Equation (1)
was used to predict total strain ranges for the MMOTV regen-chambers. This
strain range was then compared to copper low cycle fatigue allowables of
Figure 20 to ensure a 1200-cycle life (maximum strain range of 2.15%).
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Iv, D, Strir~tural Analysis (cont.)

Thermal stresses are self-equilibrating and do not significantly affect
strength margins of safety. Mechanical (pressure) loads must be carried
by the channels for the full engine duration, however. The mechanical
stresses were predicted by a three-hinge point method and compared to
yield strength below the creep regime. A fully plastic limit analysis
was used in the creep regime, and the stresses compared to the lower 10-
hour creep rupture strength. The most critical channel location for mechan-
1cal stresses is near the coolant inlet where nearly tull coolcnt pressure
acts on high aspect ratio channels at maximum temperatures. Since low
aspect ratios at that location would require a large number of coolant
channels and the 10-hour strength at 867°K (1100°F) is estimated to be very
low, the gas-side temperatiures were limited to 811°K (1000°F).

The results of the analyses show that the low-cycle fatigue life require-
ment 1imits the maximum temperature differential between the gas-side sur-
face and the surrounding cooler structure. This (AT) value for the
regeneratively-cooled thrust chambers is shown in Figure 36. Maximum AT
is limited by fatigue life for outer jacket surface temperatures below 394°K
1250°F) and by engine duraticn for outside temperatures above 394°K (250°F).

The gas-side temperature is limited to 811°K (1000°F) as a result of
low 10-hour creep-rupture 1ife for copper. Higher temperatures would
require the use of many very narrow coolant channels, which is felt to be
impractical. Enhanced creep damage effects on the low-cycle fatigue life are
also likely.

Coolant channel geometry is limited by copper yield strength at low
temperatures and creep-rupture life at elevated temperatures. The channel
width/thickness (aspect ratio) is limited by yield strength at gas-side
wall temperatures up to 700°K (800°F) and by creep-rupture 10-hour life at
higher temperatures in the creep regime as shown on Figure 37.

E.  THERMAL ANALYSES

Cooling analyses were conducted at a Mode 1 thrust level of 88964N
{20,000 1b). Parametric studies over a chamber pressure range from 6.8
to 136 atm (100 psia to 2000 psia) and over a thrust split range from
0.40 to 0.80 were covered in different portions of the study. The
chamber pressure ranges, and thrust split ranges considered for Mode 1
and Mode 2 operation of each of the engine systems is summarized below:
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Figure 36. Allowable Temperature Differentials for MMOTV Regen Chambers
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IV, E, Thermal Analyses (cont.)

Mode 1 Thrust
Engine Type Mode 1 Pc Ranqge Mode 2 Pc Range Split Range

Tripropellant 34-136 atm 6.8-81.6 atm 4-.8
(500-2000 psia) (100-1200 psia)
Plug Cluster 20.4-68 atm 20.4-68 atm .5

(300-1000 psia) (300-1000 psia)

Dual Expander 34 to 136 atm 17-68 atm .4-.8
(500-2000 psia) (250-1000 psia)

The relative feasibility of the different engine systems was assessed
based on the attainable chamber pressure, as determined by the respective
pressure drop requirements.

Rectangular channel construction was used for all the engine chamber
designs. A gas side wall thickness of .635 mm (0.025 in.), the minimum
allowed by the study criteria (Table XI!), was used wherever possible.
Larger wall thicknesses were dictated in some of the designs because of
structural requirements. The maximum gas-side wall temperatures were
limited to 811°K (1000°F) because of the 10 hour life requirement. The
gas-side wall thickness and wall temperature limitations used in this study
were presented in section IV,D.

A1 designs are based on straddle-mill machining with a constant land
width of 1.02 mm (0.040 in.). Based on channel optimization studies for
hydrogen cooling, the 4:1 channel depth/width limit of Table XII was
used in the throat region. Applying this 4:1 depth/width Timit at the
throat resulted in the selection of the number of coolant channels for most
of the designs. The channel width was not allowed to go below 1.02 mm
(0.040 inches), however, and in some designs this limit was used to set the
number of channels.

1. Methods of Analysis

A two dimensional nozzle expansion performance analysis for a
chamber pressure of 68 atm (1000 psia), 50/50 thrust split, cexit = 400:1
and the previously referenced TRAN 72 computer runs were used to determine
gas-side wall boundary layer properties needed in the analyses of the tri-
propellant engines. Two dimensional nozzle expansion performance and TRAN
72 programs were also used for analyses of the LOX/LH2 and LOX/RP-1 modules
of the plug cluster engine systems. One di-ensional wall boundary layer
properties were used for the plug sidewall analyses, and Cornell data
(Reference 14) were used for the plug base heat load approximation. One
dimensional properties were also employed in the dual-expander engine
systems analyses.
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IV, E, Thermal Analyses (cont.)

Heat transfer from the combustion products to the chamber wall
was calculated by the following non-reactive formulation:

. -0.2 5. 0.6 X
p = 0.026 Cg pg Ug Reg Pre Cpf (Taw - Twg)

in which subscript 7 refers to the film temperature Tf, defined as Tf =
0.5 (Taw + Twg) with of = pg To/T¢ and Ref = of ug D/uf. The coefficient
Cq accounts for flow acceleration effects and is shown in Figure 38 as a
function of area ratio.

The symbols used in this section are defined on Table XIV,

The design data were generated with a regenerative-cooling pro-
gram similar to the HOCOOL program (Ref. 15) constructed for NASA/Lewis
under Contract NAS 3-17813. The option designated WALL = 5 was used with
some added modifications to simulate two-dimensional conduction effects
and the spatial variation of the coolant heat transfer coefficient. This
option, shown schematically on Figure 39 represents the hot wall, the land
and that part of the external wall adjacent to the channel as fins. That

part of the external wall adjacent to the land is assumed to be isothermal.

The modified wall = 5 model establishes three correlation coefiicients
which are applied to the hot wall, the land, and the back wall separately.
The film coefficient for the hot wall is the product of an input factor
(HFAC) and the correlation coefficient evaluated at a temperature which

is the average of the wall temperature at the center of the channel

(TWL 2) and the wall temperature at the corner of the channel (TCORN).

Tne film coefficient for the back wall is evaluated at the back side

wall temperature at the center of the channel (TBS). The film coefficient
which is applied to the land surface is the product of an input factor
(GFAC) times the back wall coefficient plus 1-GFAC times the hot wall
coefficient. The selection of the HFAC and GFAC parameters provides a
means of simulating the actual coolant coefficient variation.

A limited number of two dimensional node network analyses using
SINDA (Ref. 16) were performed at the maximum heat flux location near the
throat. These studies accomniished the following:

a. Provided tie basis for determining the Wall = 5 simulation
parameters for hydrogen cooling.

b. Established the optimum channel geometry for a fixed
coolant flow area with hydrogen cooling.

A channel optimization study was conducted to define the channel
geometry which minimizes the local gas-side wall temperature for a fixed
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TABLE XIV. - THERMAL ANA!' VSIS NOMENCLATURE

English Letters

k
Nu
Pr
Re
T

u

Greek Letters

Local chamber diameter

Gas-cide heat transfer correlation coefficient

Specific heat; C_ is an integrated average between
the coolant bulkPtemperature and the wall temperature

Factor applied to the coolant heat transfer coefficient
evaluated at the centerline wall temperature to obtain :
the average coefficient for the gas-side wall §
Thermal conductivity
Nusselt number
Prandt] -wunber
Reynolds, number

Temperature

Axial velocity

u

P
f

Subscripts

aw

b

Viscosity
density

Gas-side heat flux

Adiabatic wall
Coolant bulk or mixed mean temperature X
Freestream
£

ilm temperature, 0.5 (Taw + ng)
Coolant-cside wall surface

Gas-side wall surface
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IV, E, Thermal Analyses (cont.)

pressure gradient. This study assumed a local throat static pressure of
102 atm (1500 psia), and a bulk temperature of 111°K (200°R). The heat
transfer coefficient for hydrogen is greater at lower wall temperatures,
due primarily to the film sroperty effects in the Hess and Kunz correlation
(Reference 17). The land is therefore a very effective fin and the maximum
wall temperatures occcur at the center of the channel. Figure 40 presents
the results of the “tannel optimizition study. Channel depth is plotted
against channel width with lines of varying iand width superimposed.

Two dimensional SINDA network analyses with a hot wall thickness of .635
mm (0.025 in.) were used, ana the resulting maximum wall temperatures are
displayed on the figure. The figure also indicates that channel width
affects the maximum wall temperature much more than channel depih does.
Minirizing the land width 7or a given channel width reduces the maximum
wall itemperatures primarily occause of the channel depth reduction allowed
for a fixed pressure gradient. Therefore, the ¢otimum channel configuration
has the channel width and land width minimized. The channel depth is the
design variable used to adjust local coolant velocities. Use of a

1.02 mm (0.040 in.) land in the present designs instead of the .762 mm
(0.030 in.) minimum allowed by the study criteria results in approximately
a 11°K (20°R) higher maximum wall temperature.

Simulation parameters HFAC and GFAC used in the Wall = 5 model were
also based on two dimensional SINDA network analyses. The coolant bulk temper-
ature used to generate the parameters was slightly higher, but the same
general techniques were used. The maximum temperatures produced by the com-
puter program used for this analysis matched the SINDA results when the
HFAC parameter was set at 1.0, ana the GFAC parameter was 0.5.

Curvature enhancement of the coolant film coefficient was
included in the tripropellant and plug cluster engine systems analyses.
The dual-expander system analyses did not include the enhancement effects.
The enhancement cof the Tocal neat transfer coefficient due to chamber
curvature was applied in the same manner as described in Reference 18 for
friction coefficients.

The enhancement for the purtliun of the throat region where the
bu:k momentum is being forced against the coolant side wall nearest the
hot gas side is expressed as [Rep (r/R)2]0.05 where Rep is the Reynolds
number based upon the bulk properties, r is the inside radius of the local
passage, and R is the local radius of curvature of the passage. Conversely,
the portion of the throat region where the bulk momentum is forcing the
coolant away from the hot gas side is expressed as the following multiplier
[Rep (r/R)2]-0.05. For the purposes of this anmalysis, only the heat trans-
fer coefficient of the gas side liquid wall was corrected. The other walls
of the passage were exempted Trom curvature effects and treated separately.

77



|l

(og0") 29.0°
(090°) 2st”
(060°) 622"

(Cut) uwd
H1GIM ONYT

bui|o00) uabouaphy

404 je0d4yl e Apn3s uotjeziwirydp ubisag |auueyy

WO ‘HLAIM T3INNVHI

52°0 02°0

S0

! L

GL°0 oLQ
1

1

(*NI) “HLOIM T3NNVHD
(00L"){060°) (080" )(0£0")(090")(050°)(0t0")(0€0") (020" )

*0p dunbly

‘0

L ! T ]

(¥,002) Molll = L
(visd 00S1l) uze zo| = 2

"

t
a.

INIIAVYI IUNSS3Idd A3XI4

!

1 I Y

(d4o) Mo “IYNLVYIAWIL TTVH

30IS SY9 WNWIXWiW = ©

0s0°

090"

0L0°

080°

ge0-

oot-

oLL”

oet”

oelL”

ovL”

“HLd30 I3INNVHD

(*NI)

<402°0

—6¢°0

~0€°0

Jse-0

W3 “HIdIA TINNVHD

78



IV, F, Thermal Analyses (cont.)

2. Chamber Wall Construction

Zirconium-copper was specified as the gas-side wall material for
all the chambers of the engine systems analyzed. The analyses assumed a
Nickel closeout of .254 cm (0.10) inches in all the designs. A single
designscheme was selected for all the chambers based on the imposed channel
design constraints, the hydrogen cooling optimization study and fabrica-
biiity. Straudle-mill machining, which yields a constant land width was
selected as the primary fabrication method. To simplify the analyses no
bifurcation of the coolant channels was assumed in the nozzle regions of
the chamter.

A constant land width of .102 ¢m (.040 in.) was selected based
upon the hydrogen cooling opiimization study conducted, and OMS engine
design practice. While the optimization study indicated a slight advan-
tage in using the minimum allowable land width of .0762 cm (C.030 in.),
the OMS channel designs limit the minimum land thickness to approximate
.102 cm (0.040 inches) to insure adequate bond area on the land for the
Nickel closeout process.

The minimum allowable gas-side wall thickness of .0635 cm
(0.025 in.) was used in the designs whenever possible. However, the large
channel widths encountered in the nozzle regions of some of the chamber
designs dictated wall thicknesses as large as .305 cm (0.120 in.) based
on the structural requirements shown on Figure 37. These thicker gas-
side wall dimensions do not cause excessive pressure drop requirements
because they only occur in the low heat flux regions of the chambers.

Other channel geometry parameters which were determined for each
design were the number of channels and the channel depth axial profile.
With the land width fixed and the channel depth limited to four times the
channel width, the maximum Tocal coolant flow area was set by the number
of channels. Thannel optimization studies with hydrogen cooling indicated
that it was desirable to design at the channel depth/width 1imit of four.
However, this could be accompiished at only one axial position in most
cases. At other locations, it was necessary to satisfy the thermal
design criteria with lower depth/width ratios or to overcool, i.e., not
reach the applicable wall temperature limits. In order to avoid over-
cooling in high flux regions, the number of channels in each design was
set by satisfying the design criteria at the throat with a channel depth/
width ratio as close to four to one as possible.

The minimum channel width was limited to .102 cm (0.040 in.)
in the study for practical fabrication reasons. This resulted in a few
chamber designs whereby the depth to width ratio at the throat fell below
four to one.
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IV, E, Thermal Analyses (cont.)

3. Tripropellant Engine Cooling Evaluation

Tripropellant engine designs combined three different methods of
thrust chamber assembly fabrication. Mill-slotted zirconium copper channel
construction was employed to cool the chambcv from an exit area ratio
of 8:1 to the injector. A tube bundle constructed of A-286 was then used
from the 8:1 area ratio to the applicable radiation cooled nozzle transi-
tion area ratio.

The tripropellant engine cooling schematic is shown on Figure 41.
This scheme was used to evaluate the coolant pressure drop requirements
over the entire range of chamber pressures 34 to 136 atm (500 to 2000
psia), and thrust splits, 0.4 to 0.8. The coolant enters at an area
ratio of 8:1 and flows counter to the gases through the mill-slotted zircon-
ium copper chamber. The total hydrogen flow exits at the injector, is
brought back externally to the tube bundle inlet manifold, and is then
used to cool the two pass A-286 tube bundle nozzle from 8:1 to the radia-
tion cooled nozzle transition point. The tube bundle nozzle was used to
conserve weight. An inlet area ratio of 8:1 was established at a thrust
chamber pressure of 136 atm (2000 psia) and a thrust split of 0.5. The
tube bundle transition area ratio could be varied with thrust split and
chamber pressure. However, iie tube bundle pressure drop was very small
(about 1% of the total) and hence, the affect of the entry area ratio
upon pressure drop is small. Therefore, to simplify the geometric
scaling, the conlant inlet was fixed at an area ratio of 8:1 throughout
the study.

Radiation cooled nozzle transition area ratios are presented in
Figure 42. The attach point area ratios vary as functions of chamber pres-
sure and thrust split. FS-85 columbium with an R512-E silicide coating
was selected as the nozzle material. Based on OMS engine design experience,
a gas-side wall temperature maximum of 1617°K (2450°F) was used for the
analyses.

A single tube bundle design was investigated and then analytical
scaling techniques were used to estimate the pressure drops for the other
chamber pressures and thrust splits. Tube bundle pressure drops are
generally small when compared to the chamber pressure drops. Only the
high thrust split cases at high chamber pressure result in tube bundle
pressure drips greater than .54 atm (8 psia). Table XV presents the
tube bundle pressure drops for the tripropellant engines.

Table XVI and Figures 43 and 44 present the results of the

zirconium-copper chamber analyses. Table XVI presents pertinent design
parameters as a function of the Mode 1 chamber pressure and thrust split
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[
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136 (2000) 40/60 160
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Pressure Drop,

TABLE XV. - TRIPROPELLANT ENGINE TUBE BUNDLE PRESSURE DROPS

atm (psi)

0.21
0.20
0.41

0.35
0.33

(3.1)
(3.0)
(6.0)

(5.1)
(4.8)

1.36 (20.0)

0.48 (7.1)
0.46 (6.7)
13.6 (200)
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IV, E, Thermal Analyses (cont.)

for the nine chambers analyzed. The chamber pressure range covered in this
study was from 34 to 136 atm (500 to 2000 psia) in Mode 1 operation. The
Mode 2 chamber pressure range ran from approximately 6.8 to 81.6 atm 100 to
1200 psia). Mode 1 operation was used to design the chambers. Mode 2

02/H2 operation is less severe thermally becau.- the coolant flow rate remains
a constant and the chamber pressure is reduced. Figures 43 and 44 present
the pressure drop vs chamber pressure results for the zirconium-copper
chambers only and chambers plus A-286 tube bundles, respectively. The effect
of thrust split upon pressure drop is also displayed on these figures. The
highest pressure drops occur at the highest thrust split (80/20). This
occurs primarily because of the lower coolant flow rate which results in
higher hydrogen bulk temperatures and thus, lower heat transfer coeffi-
cients for a given pressure gradient. However, the pressure drops for the
40/60 thrust split cases are greater than for the 5C/50 thrust split cases.
This is caused primarily by the slightly more severe gas environment at the
lower thrust split. Even though tre coolant flow rate is greater, the
maximum heat fluxes and total heat loads are also greater than at the 50/50
thrust split woints. The pressure drop versus thrust split optimization
point zppears to be limited on the high thrust split side by the bulk
temperature rise influence, and on the low thrust split side by the

higher heat fluxes and heat loads encountered.

Cooling of the tripropellant engine over the entire thrust split
and chamber pressure range is practical.

4. Plug Cluster Engine Coolina Evaluation

The plug cluster engine cooling schematic analyzed is displayed
on Figure 45. The hydrogen is first used to coo! the plug, flowing from
the low area ratio regions to the high area ratio regions, and then across
the base of the plug. The hydrogen is then brought back up to the LOX/LHp
module éxits (e = 40) and flows up the nozzle through *he throat region
and chamber to exit at the injector. Sev..al different coolant flow paths
were tested for the oxygen cooling cases of tha {0X/RP-] module. RP-Ii
cooling of the LOX/RP-1 module was also investigated.

During the course of this study, the results from the Unconven-
tional Nozzle Tradeoff Study (Ref. 3) showed that i: is desirable to
have the module exitis touzh to maximize performance. This results in
very high area ratio mod.les. To minimize the weight c¢f the module nozzle
extensions, radiation cooled nozzles are used. The following attackment
area ratios were established:
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IV, E, Thermal Analyses (cont.)

Thrust Radiation Cooled Nozgle
Chamber Pressure, Attachment Arf;X?i;IOMOd T

atm (psia) LOX/RP-1 Module 2 'oadule

20.4 (300) 26 33

34 (500) 36 50

For these cases, the cooling sch.natic is essentially the same
as described except that the hydrogen enters the module cooling jacket

at the above area ratios after cooling the plug base instead of at the
module exit.

Results from the plug cluster engine design thermal analyses
are presented in Table XVII and Figure 46. Table XVII presents pertinent
design parameters as a function of chamber pressure. Thrust split was
fixed at 50,50. The four cases investigated included the Hy cooled
LOX/LH2 moduie, RP-1 cooled LOX/RP-1 module,02 cooled LOX/RP-1 module
and H2 cooled plug. Conclusive results were obtained only for the H2
cooled cases for reasons to be explained later in this section. Figure 46
displays the effect of chamber pressure upon pressure drop for the H2
cooled LOX/LH2 mdolue.

The LOX/LH2 module coolant channel designs all result in prac-
tical pressure drops. Tnese results were obtained by assuming that the
piug surfaces would be cooled initially followed by the module. This
assumption resulted in different coolant inlet temperatures for the module
as a function of chamber pressure.

Detailed coolant channel designs for the plug were not pursued
in this study. Preliminary results indicated that the pressure drops
associated with the plug were extremely low. Computer modeling of the
plug was therefore done only to estimate the heat load associated with

the plug to obtain the bulk temperature rise to be used in the module
analyses.

RP-1 cooling the LOX/RP-1 module proved to be impractical because
of bulk temperature rise limitations. The RP-1 coolant inlet temperature
specified is 311°K (100°F) and a liquid-side wall temperature limit of
589°K (600°F) is required to minimize cracking and coking of the RP-1.
These limits result in a practical bulk temperature rise limit of 250-
278°K (450-500°F). The 02/RP-1 module employs a gas-generator cycle.

In order to meet the 98% combustion efficiency goal this results in
chamber L' values on the order of 33 to 33 cm (13 to 15 inches). These
long chamber lengths result in total heat loads which are 17 to 30%
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1V, E, Thermal Analyses (cont.)

greater than those for the LOX/LHy modules at the same chamber pressure

even though the gas environment is less severe. Bulk temperature rise

values of 498 and 539°K (896 and 971°F) were obtained for the 20.4 and 34 atm
(300 and 500 psia) Pc cases, respectively. RP-1 coolant heat transfer coeffi-
cients were determined from the Hines correlation (Ref. 19).

Cxygen caoling of the LOX/RP-1 module also praved to be imprac-
tical. The oxygen cooling cases are affected by a phase change at low
chamber pressures and by shifts in transport properties near the critical '
temperature and pressure points at the higher chamber pressures. Oxygen
critical temperature and pressure values are 1548°K (278.6°R) and 49.7 atm
(730.4 psia), respectively. With the 1.8 inlet pressure to
chamber pressure ratio specified for gas generator cycles in the study
guidelines, the resulting inlet pressures for chamber pressures of 20.4 and
68 atm (300 and 1000 psia) are 36.7 and 122.4 atm (540 and 1800 psia),
respectively. The specified oxygen inlet temperature is 111°K (200°R).

For the low chamber pressure point, 02 is a compressed liquid at the coolant
channel inlet. As the 02 passes down the coolant channels, the bulk
temperature rises until the saturation temperature is reached and a phase
change from a compressed liquid to a vapor begins. The corresponding shifts
in the oxygen transport properties greatly reduce its cooling effectiveness
until at a point near the critical temperature, the pressure drop require-
ments become excessive. Similarly, at the high chamber pressure point the
02 is supercritical at the coolant channel inlet, being above the critical
pressure value but below the critical temperature value. As the coolant
passes down the coolant channels the bulk temperature rises past the
critical temperature value. This has no adverse effect because only

gradual shifts in transport properties occur at pressures significantly
above critical. As the bulk temperature continues rising and the coolant
static pressure drops, the oxygen cooling effectiveness decreases until

the pressure drop requirements become excessive.

Therefore, it appears that oxygen cooling at the low chamber
pressures is limited because of the shift in transport properties caused
by the phase change from liquid to vapor. At the high chamber pressure,
it is limited by the transport properties changes associated with the
bulk temperature rise and also with the coolant static pressure degradation.
Oxygen appears to be an impractical coolant over the entire chamber pres-
sure range covered at this 88964N (20,000 1b) thrust level. The relatively
low thrustto chamber pressure ratio covered in this study, resulted in low
coolant flow rate per unit heat flux levels which Timited the feasibility
of oxygen cooling. Oxygen cooling was dropped from further study efforts.

Oxygen cooling heat transfer coefficients were calculated based

on the supercritical oxygen heat transfer correlation of Reference 20,
Sub-critical heat transfer coefficients were evaluated using the same
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IV, E, Thermal Analyses (cont.)

correlation. No applicable sub-critical cooling correlations for oxygen
were known to exist.

To continue the mixed mode plug cluster evaluations in the re-
maining study tasks, RP-1 cooling and a module chamber pressure of 20.4
atm (300 psia) was selected. This assumes that impurities can be removed
from the RP-1 to raise the bulk temperature limit above 589°K (600°F).
The RP-1 module cooling analyses then proceeded assuming that the coolant
temperature was not limiting. This was done in order to obtain coolant
AP data at the baseline thrust level and over a range of thrusts for use
in the power balance analyses and engine parametric studies. The results
of this analyses are shown on Figures 47 and 48. Even with this assump-
tion a 8896N/module (2000 1b) thrust module design cooled with RP-1 is
very marginal to meet the life requirements as noted by Figuie 48.

Other potential solutions to the HDF module cooling problem
which might be considered in future efforts if the concept proves to be
attractive for other reasons are:

° Reduction in chamber life goals.

o

Reduction in performance goals to reduce chamber length.

° Consideration of dump or film cooling.

[-]

Hydrogen cooled 02/RP-1 module.

Some of these approaches might be considered in combination
rather than alone.

5. Dual-Expander Engine Cooling Evaluation

The dual-expander engine couoling schematic is presented on
Figure 49. The hydrogen flow is split into two parallel flow paths in
this scheme. To optimize the cooling capability of hydrogen, it is
necessary to keep the coolant bulk temperature low when it passes through
the high heat flux regions. The dual-expander concept results in three
separate surfaces which must be cooled. Each of these surfaces has a high
heat flux (throat) region instead of the single region encountered in a
conventional chamber design. The selection of parallel flow paths per-
mits the coolant flowrate to be split in order to minimize pressure drop.
In this scheme, the smaller percentage of the total coolant flow is used
to cool the outer annular chamber wall. This coolant introduced at the

injector plane, flows through the throat, and 2xits at a manifold located in the -

forced deflection nozzle extension. The coolant flowrate split was chosen
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IV, E, Thermal Analyses (cont.)

to keep the bulk temperature of the coolant at the forced deflection nozzle
exit at approximately 756°K (900°F). The larger percentage of the flow is
brought from the central combustion chamber injector plane to the throat,
through the truncated nozzle, turns and flows up the inside wall of the
annular chamber and exits at the injector. It is the second throat region
which limits the design.

Results from the dual expander engine design analyses are dis-
played in Table XVIII and Figure 50. Table XVIII presents pertinent
design parameters as a function of chamb2r pressure and thrust split.
Figure 50 shows the required pressure drop as a function of thrust split
and chamber pressure.

Four different design points were studied in these analyses.
Thrust splits of 40% and 50% were evaluated at central/annular chamber
pressures of 68/34 atm (1000/500 psia). The 50% thrust split designs
were also investigated at 102/51 and 136/68 atm (1500/750 and 2000/
1000 psia) central/annular chamber pressures. The 80% thrust split
values were also investigated. For the chamber pressure range used in
this studv, regenerative cooling for the 80% thrustsplit designs proved
impracticai because of bulk temperature rise limitations.

The 136/68 atm (2000/1000 psia) design point resulted in imprac-
tical coolant velocities which exceeded sonic velocity. It appears that
there are two sets of constraints which limit the dual-expander engine
design concept. They are bulk temperature limits and coolant Mach number
limits. The gas-side wall temperature must be limited to a maximum value
of 811°K (1000°F) in order to meet the cycle life requirements. This in
turn implies a practical coolant bulk temperature limit of roughly 756~
783°K (900-950°F). When the coolant flow rate to the total heat load ratio
gets too Tow, a bulk temperature problem exists. This is the case for
the 80% thrust split level. Coolant Mach number limitations must be applied
in order to minimize lTocal velocity effects and shock wave phenomena.

An appropriate bulk temperature rise limit 1ine is shown on
Figure 50. Approximate coolant Mach number limitation lines are also
plotted. The coolant Mach No. of 0.5 is the more practical limiting case.
The 1imiting lines roughly outline the acceptable/nonacceptable design
1imits for a 88964N (20,000 1b) thrust engine. At the Tow chamber pressure
point, 34 atm (500 psia), practical designs can be achieved for thrust
splits ranging from 40% to roughly 70%. As chamber pressure is increased
however, the acceptable thrust split range must be reduced. At 68 atm
(1000 psia), thrust splits ranging from 40% to roughly 60% ~ould prove
feasible. The max nmumchamber pressure values for 50% and 40% thrust splits
are roughly 88.4 and 102 atm (1300 and 1500 psia), respectively. Any chamber
pressure design above 102 atm (1500 ps‘a) appears to be unacceptable for the
range of thrust splits studied within the design guidelines assumed at the
baseline thrust level.
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SECTION V

TASK 111 - BASELINE ENGINE CYCLE,
WEIGHT AND ENVELOPE ANALYSIS

A. 0BJECTIVES AND GUIDELINES

The objectives of this task were to determine the engine system pres-
sures, temperatures, and delivered performance for each of the baseline
UTV engine concepts previously described in Tables V, VI and VII. For
each of the baseline concepts described by the schematics shown on
Figures 1 through 6, point design summaries of Mode 1 and 2 operation were
established. These summarizes include the cycle schematic, delivered
specific impulse, engire system weight flows, pressures and temperatures,
pump and turbine speeds, efficiencies and horsepowers, engine system
weight and overall envelope dimensions. Cool:ats and cooling schemes
used in this task are as defined in Task II, Section IV. Each of the
baseline concepts were analyzed to determine the maximum Mode 1 and
Mode 2 chamber pressure attainable within the constraints of the cycle
power limit, thrust chamber thermal fatigue limit, propellant property

Timit or ability of components to operate at both Mode 1 and Mode 2 design
conditions.

Engire cycle power balances were performed at the baseline thrust level
of 88964N (20,000 1b). Engine performance data were evaluated for a combus-
tion efficiency of 98%. Simplified JANNAF performance prediciion techniques
(Ref. 21) were used to determine the other performance losses. The boundary
layer loss charts in the simplified procedures were adjusted to agree with
the latest experimental data obtained at area ratio of 400:1, a thrust level
of 38964N (20,000 1b) and 136 atm (2000 psia) chamber pressure (Ref. 22).
For these test conditions, the experimental data indicates that the old pro-
cedures predicted a boundary layer loss approximately 4 secs too high.

Additional study guidelines are as follows:

° System Pressure Losses (AP/Pupstream)

Injectors:
Liquid - 15% (minimum)
Gas - 8% (minimum)
Valves:
Shutoff - 1%

Liquid Control - 5% (minimum)
Gas Control - 10% (minimum)
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V, A, Objectives and Guidelines (cont.)

° Boost Pump Drive Requirements

Boost pumps are not evaluated in the power balancing.
However, appropriate main pump inlet conditions were cal-
culated and main pumpy horsepower penalties of 3% were
assumed to account for the flow required for hydraulically
driven boost pumps.

Main Pump Suction Specific Speed

s - g7 (RPM)(n’/sec)'/?

(maximum) SI Units
(/8
1/2
p .
s = 20,000 {8 ?i§?§7g (maximum)  English Units

° Maximum Bearing DN Values (Roller and Ball)

LH2 Pump - 2 x 106 (RPM) (mm)
LOX Pump - 1.5 x 10 (RPM) (mm)
RP-1 Pump - 1.8 x 10% (RPM) (mm)

Minimum Bearing Size: 20 mm
Turbine Inlet Temperatures

LH, TPA - 1033°K (1860°R) (Fuel-Rich 02/H2 Drive Gas)

LOX TPA - 922°K (1660°R) (Ox-Rich 02/H2 Ori e Gas)

RP-1 TPA - 1089°K (1960°R) (Fuel-Rich 02/RP—] Drive Gas)
B. ENGINE SYSTEM EVALUATIONS

1.  Tripropellant Engine

Engine power balance analyses were conducted at the baseline
Mode 1 thrust level of 88964N (20,000 1b) and a thrust split of 0.5. The
effect of thrust split was also established. The tripropellant engine
system considered in these evaluations is shown schematically on Figures
51 and 52. Power balances were conducted as a function of thrust chamber
pressure over the entire study range of 34 to 168 atm (500 to 2000 psia)
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V, B, Engine System Evaluations (cont.)

because the Task Il results did not show this concept to be cooling
limited. The results of the Task II, cooling evaluation provided the
necessary coolant jacket pressure drop data for use in this analysis.

Preliminary turbopump analyses were conducted initially to estab-
lish component efficiencies to b2 used in further evaluations. The main
pump speeds were evaluated as a function of pump discharge pressure within
«he bearing C and suction specific speed constraints. The number of pump
stages were selected to maintain a pump specific speed (Ng) greater than
[600 (RPM) (GPM)1/2/(FT)3/4] to get reasonable efficiencies. Pump tip
speeds and impeller diameters were calculated with the aid of Figure 53
and pump efficiency estimates were made from Figures 54 and 55 which are
based upon data in Reference 23. Results of preliminary calculations,
which formed the foundation for further power balancing, are shown on
Table XIX.

Turbine efficiencies were estimated as:

LH2 TPA - 80%
LOX TPA -~ 75%
RP-1 TPA - 75%

Pump discharge pressure requirements are shown as function of
thrust chamber pressure on Figure 56 for a thrust split of 0.5. The figure
shows that the LOX pump discharge pressure requirements are approximately
equal to those of the hydrogen TPA. A1l of the oxygen is pumped to high
pressure to meet the preburner and turbine inlet pressure requirements.
Both the hydrogen and oxygen pump discharge pressures are functions of the
thrust chamber pressure, coolant jacket pressure drop and turbine pressure
ratio requirements. The RP-1 pump discharge pressure is primarily only a
function of the chamber pressure and turbine pressure ratio. A1l of the
RP-1 is combusted in a fuel-rich preburner. Figure 56 also shows that the
cycle is not power balance limited. Therefore, a thrust chamber pressure
of 136 atm (2000 psia) was selected as a baseline for generating the
engine operating specifications.

The tripropellant engine and component Mode 1 operating specifi-
cations, for a thrust chamber pressure of 136 atm (2000 psia), are shown
on Table XX. The pressure budget for this engine which resulted from the
study quidelines and power balance analysis is shown on Table XXI. From
this table, it can be noted that the power balance is governed by the LH2
TPA turbine pressure ratio. The Mode 2 operating conditions for this engine
and components are shown on Table XXII. This preliminary design analysis
indicates that the component operating parameters for both Mode 1 and 2 are
reasonable. The pressure schedule for Mode 2 operation is shown on
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PUMP DISCHARGE PRESSURE, atm
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Figure 66. Tripropellant Engine Pump discharge Pressure Requirements
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V, B, Engine System Evaluation (cont.)

Table XXIII. Thi table shows that the oxygen-rich preburner oxygen injec-
tion pressure drop decreases from a design point 15% of the upstream pres-

sure to 8.4%. This problem could be solved by redistributing pressure d-op
between control valve and the injector. However, this solution would

result in higher Mode 1 pump discharge pressure requirements and heavier
turbomachinery.

Baseline engine weight and envelope data are also shown on
Table XX. The weights were obtained by scaling of historical component
data with thrust, pressure, surface area, dimensions, etc. Detailed com-

ponent weight breakdowns and dimensions are presented in the next section
under Task IV.

Based upon the cycle analyses and a comparison of the Mode 1
and 2 pressure schedules, the following control requirement conclusions
were reached. Preburner controls in the 0p/Hp fuel-rich preburner should
be simple orifices to minimize pressure drop requirements. Control valves
are required in the fuel and oxidizer feed lines for the 0,/H, oxidizer-
rich preburner to properly distribute flow and balance the engine in Mode 2.
Either a control valve or an orifice can be used in the oxidizer line of
the 02/RP-1 fuel-rich preburner. A hot-gas check valve is required between
the RP-1 TPA and main injector to prohibit main chamber combustion pro-
ducts from backing through the turbopump shaft and into the suction line
when the RP-1 pump is inactive (Mode 2). Main propellant shutoff valves
are placed in the lines just downstream of the turbopumps. These control
requirements have been identified on Figures 51 and 52.

The effect of thrust split upon the engine cycle power balance
was also investigated. The results of these analyses are shown on
Figures 57, 58 and 59.

Figure 57 shows the effect of thrust split upon the hydrogen
pump discharge pressure requirements. Hydrogen pump discharge pressure
requirements at thrust splits of 0.4 and 0.5 are almost equal. Fuel pump
horsepower requirements at a thrust split of 0.4 are higher but the fuel
preburner flow rate is also higher. This actually re-ults in a reduced
hydrogen pump turbine “ressure ratio at a thrust split of 0.4. A slightly
higher coolant jacket pressure drop requirement at a thrust split of 0.4
results in the small increase in pump discharge pressure at a fixed chamber
pressure. For example, at a chamber pressure of 136 atm (2000 psia), the
hydrogen pump discharge pressure requirements are 231 and 233 atm (3390
and 3420 psia) at thrust splits of 0.5 and 0.4, respectively. Coolant
Jjacket pressure drops at 136 atm (2000 psia) chamber pressure are 17.3
a?d fo atm (255 and 295 psi) at thrust splits of 0.5 and 0.4, respec-
tively.
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Figure 57. Effect of Thrust Split Upon Hydrogen Pump Discharge Pressure
Requirements
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V, B, Lngine System Evaluation (cont.)

At a thrust split of 0.8, the hydrogen flow is reduced sub-
stantially. The fuel pump turbine pressure ratio is slightly larger for
a given pump discharge pressure because the turbine horsepower to flow
rate ratio increases. The coolant jacket pressure drop requirement for
a fixed thrust chamber pressure is also much greater. For example, at
a thrust chamber pressure of 136 atm (2000 psia), the coolant jacket
pressure drop is 68 atm (1000 psi) at a thrust split of 0.8. These
effects result in increased hydrogen pump discharge pressure require-
ments. However, even at a thrust split of 0.8, the cycle is not power
balance 1imited.

Figure 58 shows the effect of thrust split upon the oxidizer
pump discharge pressure requirements. The effect is almost negligible.
The total oxidizer flow rate and oxidizer-rich preburner total flow rates
are almost constant as a function of thrust split. At a thrust split of
0.8, the oxidizer flow must be pumped to a pressure high enough to meet
the turbine inlet pressure requirements which are fixed by the fuel side
pressure drops.

Because all of the RP-1 is combusted in a fuel-rich preburner
to drive the RP-1 turbopump, the total preburner flow increases almost
directly with the RP-1 flow rate. Therefore, thrust split does not
affect the RP-1 pump discharge pressure requirements. The RP-1 pump
discharge pressure data is shown on Figure 59.

2. Dual-Expander Engine

Initial power balance analyses were conducted at the nominal
Mode 1 thrust level of 88964N (20,000 1b) and a thrust split of 0.5.
The effect of thrust split upon the power balance was also established.
With the discharge pressure requirements and operating chamber pressure
identified, baseline performance, weight, and envelope data were deter-
mined.

Simplified dual-expander engine cycle schematics are shown on
Figures 60 and 61 for Mode 1 and 2 operation, respectively. During Mode
1 operation the preburner hot gas control valves split the preburner gas
flow rates to the turbines. In Mode 2 operation, these preburner hot

gas control valves provide the proper flow rates to the hydrogen and oxygen

pump turbines and bypass the flows previously used to drive the RP-1 pump
turbine and Mode 1 oxygen pump turbine. Hot gas check valves are shown
between the Mode 1 TPA turbines and the main injector to prohibit main
chamber combustion products from backing through the turbopump shaft and
up the pump suction line when these turbopumps are inoperative in Mode 2.
Main shutoff valves are also provided in each pump discharge line.
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V, B, Engine System Evaluation (cont.)

Pump efficiencies used in the power balance analyscs wcre derived
as described for the tripropellant engine in Section V,B,1. Design point
turbine efficiencies were estimated as:

LH2 TPA - 80%
LOX TPAs - 70%
RP-1 TPA - 60%

The coolant jacket pressure drop and coolant outlet temperature
data required in the power balance analysis was established in Task II. This
data showed that the maximum operating chamber pressure of the dual-
expander engine is cooling limited. However, for the parametric power
balance analyses, it was assumed that the limits could be exceeded and the
pressure drop and coolant outlet temperature data at higher thrust
splits and pressures were estimated from the Task II data. It was assumed
that cooling could be accomplished within the bulk temperature, 756°K
(1360°R), 1imit and the coolant Mach number of 0.5 excecded. The values
used in the power balance analyses are:

Central Chamber Annular Chamber Coolant Jacket Coolant Outlet

Thrust Pressure, Pressure, Pressure Drop, Temp.,
Split atm (psia) atin (psia) atm (psia) °K (°R)
0.4 34 (500) 17 (250) .54 (8) 492 (885)
68 (1000) 34 (500) 4.49 (66) 507 (913
102 (1500) 51 (750) 24.5 (360) 519 (935
136 (2000) 68 (1000) 74.8 (1100) 533 (960)
0.5 34 (500) 17 (250) 1.09 {(16) 602 (1083
68 (1000) 34 (500) 9.86 (145) 615 (1107
102 (1500) 51 (750) 45.6 (670) 628 (1131)
136 (2000) 68 (1000) 36  (2000) 642 (1155)
0.8 34 (500 17 §250 6.80 (100; 756 21360
68 (1000 34 (500 19.7 (290 756 (1360
102 (1500) 51 (750) 57.1 (840) 756 (1360)
136 (2000) 68 (1000) 163 (28u) 755 (1360)

Based upon the above coolant data and turbine inlet temperature
requirements, the following preburner mixture ratios were established to
obtain the turbine drive gas properties.
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V, B, Engine System Evaluation (cont.)

Turbine Inlet
Central Chamber Fuel-Rich Ox-Rich Temperatures,

Thrust Pressure, Preburner  Preburner °K (®
Split atm (psia)  _ MR MR uel-Ric 0x-Rich

0.4 34 (500) 0.53
68 (1000) 0.51

102 (1500) 0.50

136 (2000) 0.50
0.42

0.4

0.40

110 1033 (1860) | 922 (1660)

0.5 34 (500)
68 (1000)
102 (1500) .
136 (2000) 0.40

0.8 34 (500) 0.27
68 (1000) : $ |

102 (1500) ‘ ' r

136 (2000)

The power balance analyses results are displayed in Figures
62 through 65.

Figure 62 shows the LOX/RP-1 system pump discharge pressure as
a function of the centrai chamber thrust chamber pressure. Because the
turbines for the pumps are driven in a mode of operation similar to a
gas generator engine cycle, the pump discharge pressures required are only
a function of the chamber pressure. Thrust split has no effect.

The hydrogen pump and oxygen pump discharge pressure reguire-
ments for the LOX/LH2 system are shown on Figure 63 at a thrust split of
0.5. The hydrogen pump discharge pressure is much greater than the oxygen
pump because of the AP incurred in the coclant jacket. Because the pumps
for the LOX/LH2 system are driven in a staged combustion cycte mode of
operation, the discharge pressures are a function of the turbine pressure
ratios. The analyses showed that the oxygen turbopump turbine pressure
ratio was greater than the hydrogen turbopump turbine pressure ratio.
Therefore, the oxygen-rich preburner circuits govern the power balance.
This alsc means that the preburner controls should be placed in the fuel-
rich preburner because additional pressure drop is available. Simple
balancing orifices are shown in these circuits on the schematics.
However, the excess pressure available is enough to accommodate a liquid
oxygen control valve and almost enough for a hydrogen gas control valve.

Figure 63 also shows that the discharge pressure requirements
for the engine are not unreasonable and the cycle is not power balance
limited up to a chamber pressure of 68 atm (1000 psia) at a thrust split
of 0.5.
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PUMP DISCHARGE PRESSURE, (PSIA)
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Figure 62. Pump Discharge Pressure Requirements for Dual-Expander
Engine LOX/RP-1 System
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V, B, Engine System Evaluation (cont.)

The effect of thrust split upon the hydrogen pump and LOX/LH2
system oxygen pump discharge pressure requirements are shown on Figures 64
and 65, respectively. The required discharge pressures increase with
increasing thrust split because the total preburner flow rate used to
drive all four pumping systems decreases as thrust split increases (i.e.,
only the LOX/LH2 system flows are precombusted and used as turbine drive
gases). The cycle is not power balance limited but is very marginal at a
Lhrust split of 0.8 and a LOX/LHp system chamber pressure of 68 atm
(1000 psia). A turbine pressure ratio in excess of 2.5 is required for
the oxygen turbopump which is high for a staced combustion cycle.

Because the engine is cooling limited, the maximum operating
thrust chamber pressures selected for the LOX/RP-1 central chamber and
LOX/LHp annular chamber are 74.8 and 37.4 atm (1100 and 550 psia), respec-
tively at the baseline thrust split of 0.5. The baseline dual-expander
engine and component preliminary operating specifications for these maximum
chamber pressures are shown on Table XXIV. During Mode 2 operation, the
LOX/RP-1 system turbopumps are shutdown. The preburner and LOX/LH2 pump
and turbine operating parameters in Mode 2 are the same as in Mode 1. The
preburner flow rates used to drive the LOX/RP-1 system pumps bypass the
turbines and are delivered to the annular thrust chamber. Only some of
the thrust chamber parameters change in Mode 2 due to the area ratio
amplification and non-operating central chamber as shown on Table XXV.

The pressure schedule for the baseline dual-expander engine
which resulted from the study system pressure loss guidelines and the
cycle power balance analysis is shown on Table XXVI. From this table it
can be noted that the power balance is governed by the LOX TPAs turbine
pressure ratios. Therefore, the preburner flow controls are shown in the
fuel-rich preburner circuits. The AP across these controls is 7.4% of
the upstream pressure.

The pump discharge pressure requirements determined through the
power balance analyses were incorporated in the engine parametric data
model so that weight effects were accounted for with changing discharge
pressures. Baseline engine weight, envelope and performance data are
also shown on Table XXIV for this engine concept.

3. Plug Cluster Engine

Power balance analyses were conducted a:.. weight, envelope, and
performance data were also established at the nominal Mode 1 thrust level
of 88964N (20,000 1b) and a thrust split of 0.5 for the mixed-mode plug
cluster concept.

133



TABLE XXIV. - BASELINE DUAL-EXPANDER ENGINE OPERATING SPECIFICATIONS, MODE 1

Theust Split = 0.5

S.1. UKiTS
COMSINED

Eaging Lox/m-) LN, Lou/ae-1 § Luy
Yacuum Theust, N 4482 w2 88,954
Yacuum Specific lapulse, sec 3.1 4411 403.6
Total Flom Rate, kg/sec 12.19 16.28 2.4
Miature Ratio 33 1.0 4.2
Oxyjen Flow Rate, kg/sec .22 9.00 18.22
RP-1 Flow fate, kg/sec 2.97 .- 2.9
Mydrogen Flow Rate, kg/sec -- 1.28 1.28
Thrust Chasber
Yacysm Thrust, N 842 4“0 88,964
Yacuum Specific Impulse, sec mna 41,1 403.6
Chamber Pressure, atm .8 7.4 -
Mozzle Area Ratio 316.5 u.8 200
Throst Ares, oo’ . 58.90 %.64
Coolent Jacket LH, Flow Rate. ko/sec - - t.28
Coolant Inlet Temperature, °K . - L]
Coolant Exit Temperature. °K .- -- 617
Coolant Jacket aP, atm -~ -- 14.3
Injector Flow Rates, kg/sec .

Orygen 9.22 .- 9.22

RP-1 .97 .- 2.97

02"‘2 Fuel-Rich Gas -- 1.69 1.69

02/"2 Ox-Rich Gas .- 8.59 8.59

0,1% 02"
Predurners Fuel-Rich Ox-Rich
Cramber Pressure, atm 47.2 51.0
Combustion Temp., °X 1033 922
Mixture Ratio 0.4 ne
Ox. Flow Rate, kg/sec 0.48 8.518
fuel Flow Rate, kg/sec 1.2 0.077
T -

Turbines Turbopusp Turbopump Turbopump Turbopusp
Inlet Pressure, atm 42.5 47.2 5.9 §1.0
Inlet Temperature, *X 1033 1033 922 922
Gas Flow Rate, kg/sec 1.02 0.67 6.49 2.10
Gas Properties

Cp. Specific heat at constant pressure, Cal/q°K 2.60 2.60 0.277 0.2717

v. Ratio of specific heats 1.363 1.363 .92 1.312
shaft Horsepower('), mp 80.94 ns.4 169.0 109.5
Efficiency, % 60 80 70 70
Pressure Ratto (Total to Static) 1.033 1.16 .1 1.248

TTT TncTudes 3T Horsepower penalty for boost pump drive flow.

LOX/RP-T  LOKLH,
RP-1 Lox e 2
Main Pump P P Puep
Outlet Flow Rate, kg/sec 2.97 .22 9.00 1.28
Volumetric Flow Rate, mY/sec .00372 00811 .00791 0
NSH, » u.3 8.2 2.5 306
Suction Spect<ic Speed, (RPM)(m3/sec)'/2/(m)¥/* 187 37 7 155
Speed, RPM 96,000 66,080 49,470 100,000
Discharge Pressure, atm 94,55 94,55 63.27 75.85
Head Rise, m» 1188 821 549 10,736
Number of Stages 1 1 1 2
Specific Speed (Ng), (RPM)(n/sec )/ (m)¥/* 2.1 38.7 8.2 2.5
Head Coefficient 0.52 0.46 0.46 0.5%
Impelter Tip Speed, m/sec 150 132 108 309
Impeller Tip Diameter, cm 3.18 3.8 4.17 5.0
Efficiency, % 60 61.8 62 60

Neight and Envelope
Engine Weight « 245.5 k9

-
Engine Length = 229.1 cm bc,‘) ﬂ“
Engine Fxit Dfa. = 148.6 cm w?\‘)}’\)

134 ot ¥



JRERTpR—————— ]

-y

pernr——

SO

A

en g

B

s ey

e

[

PR

&

&j;&
N

@(’ @Q‘ .

[ErCIpRr -

Injine

Yacuum Thrust, 1b

¥acuum Specific tmpulse, sec
Total Flow Rate, 10/sec
Rixture Ratio

Quygen Flow Rate, 1%/3ec
RP-1 Flow Rate, 1b/sec
Nydrogen Flow Rate, 1b/sec

Thrust Chacber
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TABLE

Coolant Jichet Lity Flow Rate, 1b/sec

Coolant latet Tempera .re. °R
Coolant Exit Temperature, R
Coolant Jacket oP, psta
Injector Flow Rates, 1/sec
Oxygen
-1
Dzlﬂ, Fuel-Rich Gas
0/, Ox-Rich Gas

Predurners

Chanber Pressure, pria
Comdustion Tewp., ‘R
Mixture Ratio

Ox. Flow Rate, 1d/sec
Fuel Flow Rate, 1b/3ec

Turdines

Inlet Pressure, prfa
Inlet Temperature, *R
Sas Flow Mate, Id/sec
Gas Properties

Cp, Specific heat at constant pressure

Btu/Ib-°R

vo Ratio of specéfic he.
Shaft ’brsepo«r“)
Efficiency, 3
Pressure Ratio (Tots! to Static}

XXIV (cont.)

T TncTudes 3§ Horsepower penalty for boost pump drive flow.

Aain Pumps

Outlet Flow Rate, 0/sec
Yolumetric Flow Rate, GPY%
P, ft

Section Specific Speed, (RGP}’ 2/(re

Speed, RN

Otscharge Pressure, pste
Nead Rise, ft

Amder of Stages

Specitic Speed (Ny), (RPMY (6 1y (00)

Mead Coeffrcient

Impeller Tip Speed, ft/sec
fapeller Tip Diameter, in.
fficiency, 3

Helght and Envclope
Ingine Weight » 530 1b
Ingine Length » £9.8 in,

Engine Mozzle Exit Dia. = 58.5 In.

e

)JIl

Conbined
Lou/a-1 Lov/LN, LOL/AT-) 8 LN,
10,00 10,000 20,000
ma @t @6
%.88 n.0 €09.58
n 7.0 “
0. 9.0 .16
6.5 e 6.56
ane X ] EX ]
0,000 10,000 20,000
na LN “@Le
10 $50 -~
ne.s AN | 200
4.3 9.13 13.43
. FX Y]
- .- )
- - nie
. - n
20.32 .- n.2
6.56 - §.56
.- .n nn
e 18,95 18.95
0%, 0,/m,
Fuel-Rich Ox=Rich
(3 )] 73
1860 1660
0.4 o
1.08 .
.4 0.1
»-1 ] t A
Turbopusp Turbopurp Turdopump Turdopump
625 17 (% 1
1860 1960 1660 1560
2.25 147 .32 [X3)
2.60 2.80 0. 0.217
1.363 1.36) 1.2 .12
13.83 n. 186.7 108.0
(%) © 0 0
1.033 1.16 1.3 N8
LOn/RP-1 Lwvin, "
-1 Lox 101 2
Pump Loy Py Pump
6.5 20.32 19,84 2.8
9.0 128.3 1284 88,7
HEX 125.3 8.8 1267
20,000 2,000 20,000 8,000
90,000 6,080 49,470 100,000
1290 1390 30 ms
2899 2694 12 38,2
1 1 ! ?
40! 2000 2000 Hn
0.52 0.45 0.46 0.8¢
" [} s 1018
V.28 1.8 V.64 2.32
(% 6.8 [H] s
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TABLE XXV. - BASELINE DUAL-EXPANDER ENGINE OPERATING SPECIFICATIONS, MODE 2

Thrust Split = 0.5

Engine LOX/LH,
Vacuum Thrust, N (1b) 45,496 (10,228)
Vacuum Specific Impulse, sec 451.1 (451.1)
Total Flow Rate, kg/sec (1b/sec) 10.28 (22.67)
Mixture Ratio 7.0 (7.0)
Oxygen Flow Rate, kg/sec (1b/sec) 9.00 (19.84)
RP-1 Flow Rate, kg/sec (1b/sec) - (--)
Hydrogen Flow Rate, kg/sec (1b/sec) 1.28 (2.83)
Thrust Chamber
Vacuum Thrust, N (1b) 45,496 (10,228)
Vacuum Specific Impulse, sec 451.1 (451.1)
Chamber Pressure, atm (psia) 37.4 (550)
Nozzle Area Ratio 300 (300)
Throat Area, cn? (in.z) 58.90 (9.13)
Coolant Jacket LH, Flow Rate, kg/sec (1b/sec) 1.28 (2.83)
Coolant Inlet Temperature, °K (°R) 50 (90)
Coolant Exit Temperature, °K (°R) 481 (865)
Coolant Jacket AP, atm (psia) 8.16 (120)
Injector Flow Rates, kg/sec (1b-sec)
Oxygen -- (--)
RP-1 -- (--)
0,/Hy Fuel-Rich Gas 1.69  (3.72)
02/H2 Ox-Rich Gas 8.59 (18.95)
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V, B, Engine System Evaluation (cont.)

Simplified plug cluster engine cycle schematics are shown on
Figures 66 and 67 for Mode 1 and 2 operation, respectively. The plug
cluster consists of five 0p/Hp modules and five 02/RP-1 modules. The
02/H2 modules are fed by a single turbopump assembly which employs an
expander drive cycle. Hydrogen is first used to cool the plug base closure
before cooling the 02/H2 modules. The heated hydrogen is then used to
drive the 02 and Ho pumps. A small portion of the hydrogen, about 0.2% of
the lotal enyine flow, is used as base bleed and the rest is combusted with
the liquid oxygen. The 02/RP-1 modules are also fed by a single turbopump
assembly which uses a gas generator drive cycle. The fuel-rich turbine
exhaust products can be either dumped down the plug or out a 5:1 turbine
exhaust nozzle. An individual turbine exhaust nozzle results in less hot
gas manifolding because the "plug dump" must be evenly distributed over
a large circumference. The individual turbine exhaust nozzle was assumed
in this analysis. A zero length plug nozzle is used and the module area
ratios are established as a function of overall area ratio for 10 touching
modules. The zero length plug was selected on the basis of results from
the Unconventional Nozzle Tradeoff Study (Ref. 3). The overall plug
cluster area ratio is shown as a function of the module area ratio below.

No. of Module Overall Mode 1
Touching Modules Area Ratio Cluster Area Ratio
10 112 200
200 358
300 537
350 626
400 716

For the high module area ratios, the performance contribution
from adding a truncated isentropic plug is small and the addition
of the plug weight is not warranted. A plug base closure is added to
obtain the base pressure benefits.

As discussed in Section IV, Cooling Evaluation, a chamber pres-
sure of 20.4 atm (300 psia) was selected for this concept because of the
problems associated with cooling the 02/RP-1 module.

The coolant jacket pressure drop and coolant outlet temperature
data required for the power balance analysis are summarized below:
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V, B. Engine System Evaluation (cont.)

Chamber Total Coolant Coolant Outlet
Pressure, Pressure Drop, Temp.,
atm (psia) Module atm (psia) °K (°R)
20.4 (300) 02/H2 0.34 (5.0) 359 (647)
20.4 (300) Oz/RP-l 40.8 (600) 809 (1456)

The hydrogen pressure drop and outlet temperature include the
effect of cooling the plug base.

Based upon a review of RL-10 data, the anelyses conducted for
the Unconventional Nozzle Tradeoff Study (Ref. 3) and the tripropellant
and dual-expander engine analyses performed for this contract, the following
turbomachinery efficiencies were used in the power balance analyses:

L0X/LH2

Efficiency
Oxygen Pump 63%
Hydrogen Pump 60%
Turbine 72%
LOX/RP-1
Oxygen Pump 63%
RP-1 Pump 60%
Turbine 607%

Pump discharge pressure requirements for a module thrust chamber
pressure of 20.4 atm (300 psia) are shown on Tables XXVII and XXVIII for
the gas generator and expander cycies, respectively. These tables also
show the pressure drop data for each of the system components.

Preliminary engine operating specifications for the established
pressure requirements are shown on Table XXIX for Mode 1 operation. During
Mode 2 operation the LOX/RP-1 modules are shutdown and the only major
effect is that the gap between modules goes to one (1) with an attendant
overall plug cluster area ratio amplification from 358:1 to 715:1. The
02/H2 component operating conditions remain about the same as in Mode 1.

Table XX1X also shows that for a single stage RP-1 pump, the
operating speed is 90,000 RPM which is bearing DN limited. This speed is
also significantly higher than the oxygen pump speed. If a single shaft,
single turbine drive is desired for the LOX and RP-1 pumps, as shown on the
cycle schematic, the RP-1 pump speed must be reduced. A possible operating
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TABLE XXVII., -« PLUG CLUSTER 0,/RP-1 GAS GENERATOR CYCLE
PRESSURE SCHEDULE

S.I. UNITS

Module Thrust Chamber Flows

. \-v"‘

Propes uant 3

Pressure, atm Oxygen | RP-T | g

Main Pump Discharge 29., 70.9 i

aP Line 2.7 2.7 4
Shutoff Valve Inlet 27.0 68.2
AP Shutoff Valve 0.3 0.7
Shutoff Valve Qutilet 26.7 57.5
AP Line 2.7 2.7
Coolant Jacket Inlet -- 64.8
AP Coolant Jacket -- 40.8
Main Injector Inlet 24.0 24.0
AP Injector 3.6 3.6
Chamber Pressure 20.4 20.4

Gas Generator Flows

Pressure, atm Uxygen RP-1
Main Pump Discharge 29.7 70.9
AP Line 2.7 2.7
G.G. Valve Inlet 27.0 68.2
AP G.G. Valve 0.3 3.4
G.G. Injector Inlet 26.7 64.8
AP G.G. Injector 4.0 42.1
Turbine Inlet 22.7 22.7
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TABLE XXVII (cont.)

ENGLISH UNITS

Module Thrust Chamber Flows

P ]

Pressure, psia

Mair Pump Discharge
AP Line

Shutoff Valve Inlet
AF Shutoff Valve
Shutoff Valve Qutlet
4P Line

Coolant Jacket Inlet
AP Coolant Jacket
Main Injector Inlet
AP Injector

Chamber Pressure

Gas Generator Flows

Pressure, psia

Main Pump Discharge
AP Line

G.G. Valve Inlet

4P G.G. Valve

G.G. Injector Inlet
& G.G. Injector
Turbine Inlet

Propellant
Oxygen -
437 1043
40 40
397 1003
4 10
393 993
40 40
- 953
- 600
353 353
53 53
300 300
Oxygen RP-1
437 1043
40 40
397 1003
4 50
393 953
59 619
334 334




TABLE XXVIII. - PLUG CLUSTER Op/Hp EXPANDER CYCLE

PRESSURE SCHEDULE

S.I. UNITS
Propellant

Pressure, atm Hydrogen | Oxygen
Main Pump Discharge 30.5 29.7
AP Line 1.4 2.7
Shutoff Valve Inlet 29.1 27.0
AP Shutoff Valve 0.3 0.3
Shutoff Valve Outlet 28.8 26.7
sP Line 1.4 2.7
Cooiant Jacket Inlet 27.4 --
AP Coolant Jacket 0.3 --
Coolant Jacket Outlet 27.1 --
AP Line 2.7 -~
Turbine Inlet 24.4 --
AP Turbine 2.2 --
Main Injector Inlet 22.2 24.0
AP Injector 1.8 3.6
Chamber Pressure 20.4 20.4
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TABLE XXVIII (cont.)

ENGLISH UNITS

PP SR

Propellant
Pressure, psia ydrogen xygen

Main Pump Discharge 448 437
AP Line 20 40
Shutoff Valve Inlet 428 397
AP Shutoff Valve 4 4
Shutoff Valve Outlet 424 393
AP Line 20 40
Coolant Jacket Inlet 404 -
AP Coolant Jacket ) -
Coolant Jacket Outlet 399 -
6P Line 40 -
Turbine Inlet 359 -
4P Turbine 33 -
Main Injector Inlet 326 353
aP Injector 26 53
Chamber Pressure 300 300
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TABLE XXIX. - PLUG CLUSTER ENGINE PRELIMINARY OPERATING SPECIFICATIONS

MODE 1
Thrust Split = 0.5
S.1. UNITS
COMBINED
Engine LOX/RP-1 LOX/LH, LOX/RP-1 & LW,
Vacuum Thrust, N 44,482 44482 88,964
Total Flow Rate, kg/sec 13,14 9.83 22.97
Mixture Ratio 3.1 7.0 4.18
Gaygen Flow Rate, kg/sec 9.9¢ 8.60 18.54
RP-1 Flow Rate, kg/s~c 3.20 -~ 3.20
Hydrogen Flow Rate, kg/sec -~ 1.23 1.23
Modules
Vacuum Thrust, N 8,896 8,896
Chasver Pressure, atm 20.4 20.4 OR ¥
Nozzle Area Ratic 200 200 Op G[Nv
Tnroat Area, cu? 225 2.2 POOAL Py
Throat Diameter, cw 5.20 5.207 R QU G[«} 2
Nozzle Exit Ares, col 1.250 4,258 4[17?
Nozzle Exit Diameter, cm 73.56 73.63
Plug Cluster
Base Thrust, N -- -- 2,002
Number of Modules 5 5 10
Plug Cluster Area Ratio -- -- 358
Total Throat Area, cnz -- -- 212.7
Total Exit Area''), cm? -- -- 76,161
Plug Cluster Dismeter, cm .- -- 31t.4
Gap -~ -- 0
Y IncYudes base.
OZIRP-I Module 02/H2 Module
feed System Feed System
BT T,
RP-1 LOX Lox © 2
Main Punps Pup  _Pump  Pump  Pump
Outlet Flow Rate, kg/sec 3.20 9.54 8.60 1.23
Volumetric Flow Rate, m>/sec 00801 .00874  .00756  .0174
NPSH, m 36.1 1.5 n.e 197
Suction Specific Speed (RPM)(m/sec)'’/ % (m)/4 387 187 387 155
Speed, RPM 90,000 27,600 28.490 61,560
Discharge Pressure, atm 70.9 29.7 29.7 30.5
Head Rise. m 883 258 258 4,270
Number of Stages 1 1 1 2
Specific Speed (Ng). (RPM)(m/sec)V/2;(m)3/4 3.2 40.) 8.5 259
Head Coefficrent 0.483 0,46 0.46 0.52%
Impeiler Tip Speed, m/sec 134 74.1 74.1 200
Impeller Tip [iameter, cm 2.84 5.13 4.95 6.20
Horsepower, mhP 62.82 54.30 47.00 116.7
Efficiency, % 60 63 63 60
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TABLE XXIX

Gas Generator

RP-1 Inlet Temp., °K
Chamber Pressure, atm
Combustion Temp., °X
Mixture Ratio

Ox. Flow Rate, kg/sec
RP-1 Flow Rate, ky/sec
Total flow Rate, kg/sec

Turbines

Inlet Pressure, atm
Inlet Temperature, °K
Gas Flow Rate, kuy/sec
Gas Properties

Cp» Specific Heat at Constant Pressure,
Cal/q9°K

v+ Ratio of Specific Heats
Shaft Horxepouer('). mHP
Efficiency, %
Pressure Ratio (Total To Static)

(cont.)

RP-1
Turbopump
23.4
.089
0.092

0.64

1.132
64.7
60

717 Includes 3% horsepower penalty for boost pump drive flow.

Turbine Exhaust Performance

Turbine £xit Pressure, atm

Turbine Exit Total Temp., “K

Gas Molecular Weight

Ratio of Specrfic Heats

Characteristic Exhaust Velocity, m/sec
Nozzle Area Ratio

Nozzle Pressure Ratio

Thrust Coefficient (Vacuum)

Vacuum Specific Impulse, ser

Vacuum Thrust, N

Engine Weight, Envelope an Performance
fngine Weight = 297 kg
Total Length = 154.4 cm
Total Diameter = 311.4 cm
Del:vered Vacuum Spectific Impulse:
Mode ) = 395.0 sec
Mode 2 = 448.9 sec

LOY/RP-]

fuel-Rich
809
23.4
1089
0.32
0.042
0.130
0.an

LOX

Turbopump
23.4
.089
0.080

0.64

1.132
55.9
60
20

0,/RP-1
Fuel -Rich Gas
1.17
896
26.6
1.132
R33
Sl
0.0164
1.1868
137.5
&

Expander
Cycle

_Turbine

23.4
359
1.23

3.502

1.3%4
168.6
n

1.10



TABLE XXIX (cont.)

ENGLISH UNITS
Combined
Engine LOX/RP-1 LOX/LHZ LOX/RP-) & LNz
Vacuum Thrust, 1b 10,000 10,000 20,000
Total Flow Rate, 1b/sec 28.97 21.67 50.64
Mixture Ratio 3. 7.0 4.18
Oxygen Flow Rate, 1b/sec 21.9 18.96 40.87
RP-1 Flow Rate, 1b/sec 7.06 -~ 7.06
hydruyen Flow Rate, 1b/sec -~ 2.n 2.n
Modules
Vacyum Thrust, 1b 2,000 2,000
Chasber Pressure, psia 300 300
Nozzle Area Ratio 200 200
Throat Area, in.2 3.2% 3.30
Throat Diameter, in. 2.048 2.05
Nozzle Exit Ares, in.? 658.8 660.0 .
Mozzle Exit Diameter, in. 28.9 23.99 ‘)"i’uﬂ‘-}:‘; P
Plug Cluster OF P(X)R ":\f:.
Plug Cluster QL‘“M.I; -
Base Thrust, 1b - -- 450
Number of Modules ) 5 10
Plug Cluster Area Ratio - .- 358
Total Throat Area, in.’ -- -- 32.97
Total Exit Areat'), in.2 - -- 11,805
Plug Cluster Diameter, 1n, -- .- 122.6
Gap -~ -- 1]
TTT TncTudes base.
OZIRP-I Module Ozll'l2 Module
Feed System Feed System
- o 2 LH
RP-1 Lox LOX 2
Main Pumpe Pump Pump Pump Pump
Outlet Flow Rate, 'b/sec 7.06 21.9 18.96 2n
Volumetric Flow Rate, GPM 63.5] 138.5 119.9 276.5
NPSH, ft 1.3 4. 39.0 645
Suction Specific Speed, (RPM)(GPM)'/%/(F1)¥/ 20,000 20,000 20,000 8,000
Speed, RPM 90,000 27,600 28,490 61,560
Discharge Pressure, psia 1,043 437 437 448
Head Rise, ft 2,896 847 847 14,010
Number of Stages 1 1 1 2
Specific Spead (Ng), (RPM){aPM)1/2/(51)¥/4 1.817 2,069 1,987 1,337
Head Coefficient 0.483 0.46 0.46 0.525
Impeller Tip Speed, ft/sec 439 243 243 655
impeller Tip Diameter, in. 1.12 2.02 1.95 2.44
Horsepower 61.96 53.56 46.35 1151
Efficiency, 3 60 63 63 60

149

ke ¥



E SN

150

TABLE XXIX (cont.)

b

LOX/RP-1 |
Gas Generator Fuel-Rich o
RP-1 Inlet Temp., °R 1456
Chamber Pressure, psia 34
Combustion Temp., °R 1960 E
Mixture Ratio 0.32
Ox. Flow Rate, 1b/sec 0.092
RP-1 Flow Rate, 1b/sec 0.287 v
Total Flow Rate, 1b/sec 0.379
Expander
RP-1 LOX Cycle
Turbines Turbop Turbopump Turdine
Inlet Pressure, psia 344 344 359
Iniet Temperature, °R 1960 1960 647 ;
Gas Fiow Rate, 1b/sec 0.203 0.176 2.n
Gas Properties
Cy Specific Heat at Constant Pressure, 0.64 0.64 3.502
8u/15-°R
v, Ratio of Specific Heats 1.132 1.132 1.394
Shatt Horsepower | 63.82 5517 166.3 :
Efficiency, % 60 60 12
Pressure Ratio (Total to Static) 2C 20 1.10
TTT TncTudes 3% horsepower penalty for boost purp drive fiow. :
0p/RP-1 ,
Turbine Exhaust Performance Fuel-Rich Gas '
Turbine Exit Pressure, psia 17.2 ;
Turbine Exit Total Tamp., °R 1613 !
Gas Molecular Neight 26.6 .
Ratio of Specific Heats 1.132 ‘
Characteristic Exhaust Velocity, ft/sec 2734 ,é
Nozzie Area Ratio 5:1 :
Nozzle Pressure Ratio 0.0364
Thrust Coefficient {Vacuum) 1.618 ’g
Vacuum Specific Impulse, sec 137.5 {
vacuum Thrust, 1b 52 i

Engine Weight, Envelope and Performance

Engine Weight = 655 1b
Total Length = 6C.8 n,
Total Diameter = 122.6 in,
Delivered Vacuum Specific Impulse:
Mode 1 = 395.0 sec
Mode 2 = 448.9 sec
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V, B, Engine System Evaluation (cont.)

point is shown on Table XXX. The suction specific speed must be reduced
and the number of pump stages increased from 1 to 2 in order to keep the
RP-1 pump specific speed at a rcusonable value. It is also estimated
that the RP-1 pump performance will decrease from 607 to 57%. Because
of these adverse effects, parallel, separate turbines were assumed for
the gas generator cycle balance of Table XXIX.
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TABLE XXX. - LOX/RP-1 PUMP PARAMETERS FOR SINGLE SHAFT,

SINGLE TURBINE DRIVE

S.I. UNITS
LOX/RP-1 Module
Feed System
RP-1 LOX
Main Pumps Pump Pump
Qutlet Flow Rate. kg/sec 3.20 9.94
Volumetric Flow Rate, m/sec 00401 .00874
NPSH, m 25.3 12.5
Suction Specific Speed, (RPM)(m¥/sec)'/Z/(m)¥% 188 387
Speed, RPM 27,600 27,600
Discharge Pressure, atm 70.9 29.7
Head Rise, m 893 258
Number of Stages 1
Specific Speed (Ns). (RPM)(m3/sec)'/%/(m)%/% 18.0 40.1
Head Coefficient 0.575 0.46
Impelier Tip Speed, m/sec 87.2 741
Impeller Tip Diameter, cm 6.02 5.13
Efficiency, % 57 63
ENGLISH UNITS
Qutlet Flow Rate, 1b/sec 7.06 2.9
Volumetric Flow Rate, GPM 63.51 138.5
NPSH, ft 83.0 411
Suction Specific Speed, (RPM(GPM)'/2/(FT)3/* 8000 20,000
Speed, RPM 27,600 27,600
Discharge Pressure, psia 1043 437
Head Rise, ft 2930 847
Number of Stages 2 1
specific Speed (Ng), (RPM)(6PM)'/2/(FT)3/4 929 2069
Head Coefficient 0.575 0.46
Impeller Tip Speed, ft/sec 286 243
Impeller Tip Diameter, in. 2.37 2.02
Efficiency, % 57 63
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SECTION VI
TASK IV - ENGINE PERFORMANCE, WEIGHT AND ENVELOPE PARAMETRICS

A. OBJECTIVES AND GUIDELINES

The objectives of this task wereto provide parametric engine performance,
weight and envelope data for the tripropellant, dual-expander and plug
cluster engine concepts. The parametric analyses were conducted on each
concept to dctermine the effects of varying design thrust level, thrust
split and Mode 1 area ratio upon the engines dimensions, dry weight and
delivered vacuum specific impulse. The analyses were conducted over the
following ranges:

Thrust Mode 1 Moduie

Engine Level, Thrust Overall Area
Concept KN (K 1b) Split Area Ratio Ratio
Tripropellant 66.7 to 400.3 0.4 to 0.8 200 to 600 -

(15 to 90)
Dual-Expander 66.7 to 400.3 0.4 to 0.8 200 to 600 -

(15 to 90)
Plug-Cluster 66.7 to 400.3 0.4 to 0.8 200 to 716 112 to 400

(15 to 90)

The thrust chamber pressures for each concept were established by
engine cooling evaluations. The maximum operating chamber pressures for
each engine concept are listed below as a function of thrust and thrust
split.

Thrust
Engine Level, Thrust Mode 1 Thrust
Concept KN (K 1b) Split Chamber Pressure atm (psia)
Tripropellant 66.7 to 400.3 (15 to 90) 0.4 136  (2000)
66.7 to 400.3 (15 to 90) 0.5 136 (2000)
66.7 to 400.3 (15 to 90) 0.6 136  (2000)
66.7 (15) 0.8 81.6 (1200)
89 to 400.3 (20 to 90) 0.8 136 (2000)
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VI, A, Objectives and Guidelines {cont.)

LOX/RP-1 LOX/LH2
Thrust Thrust

Thrust Chamber Chamber

Engine Level, Thrust Pressure, Pressure,
Concept KN (K 1b) Split atm (psia) atm (psia)
Dual-Expander 66.7 (15) 0.4 81.6 (1200) 40.8 (600)
0.5 68.0 (1000) 34.0 (500)

0.6 57.8 (850) 28.9 (425)

0.8 12.2 (190) 6.46 (95)

89 (20) 0.4 88.4 (1300) 44.2 (650)

0.5 74.8 (1100) 37.4 (550)

0.6 61.2 (900) 30.6 (450)

0.8 13.6 (200) 6.8 (100)

177.9 (40) 0.4 102.0 (1500) 51.0 (750)

0.5 88.4 (1300) 44.2 (650)

0.6 71.4 (1050) 55.7 (525)

0.8 15.6 (230) 7.8 (115)

266.9 (60) 0.4 112.2 (1650) 56.1 (825)

0.5 95.2 (1400) 47.6 (700)

0.6 78.2 (1150) 39.1 (575)
0.8 17.7 (260) 8.84 (130)

400.3 (90) 0.4 122.4 (1800) 61.2 (900)

0.5 102.0 (1500) 51.0 (750)

0.6 85.0 (1250) 42.5 (625)

0.8 19.0 (280) 9.5 (140)

Plug Cluster 66.7 to 400.3 0.4 to 0.8 20.4 (300) 20.4 (300)

(15 to 90)

The maximum operating pressure for the dual-expander engine at a thrust
split of 0.8 is below the 34 atm (500 psia) minimum value listed in the
contract statement of work. However, these cases, 12.9 to 19.0 atm
(190 to 280 psia), were evaluated to complete the study matrix.

The parametric data was generated for a LOX/RP-1 mixture ratio of 3.1
and a LOX/LH2 mixture ratio of 7.0 per the study guidelines. Because the
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VI, A, Objectives and Guidelines (cont.)
plug cluster onerating pressure is low, the effect of operating the LOX/LH2
modules at a mixture ratio of 6.0 rather than 7.0 was also investigated.

Other OTV engine requirements and guidelines were listed in Section II,
Tables IV through VII.

B.  PARAMETRIC DATA

1. Tripropellant Engine

The baseline operating conditions for this engine are a Mode 1
thrust of 88964N (20,000 1bs), thrust split = 0.5, a nozzle area ratio of
400:1, and LOX/RP-1 and LOX/LHp mixture ratios of 3.1 and 7.0, respectively.
Baseline engine performance, weight and envelope data are presented on
Table XXXI.

Performance, weight and envelope predictions for other study
thrusts, thrust splits and area ratios are presented on Table XXXII., These
data are shown for a Mode 1 operating thrust chamber pressure of 136 atm
(2000 psia). However, as previously noted, at a thrust split of 0.8 and
a thrust level of 66723N (15,000 1bs), the engine is cooling limited to
a chamber pressure of 81.6 atm (1200 psia). This operating point and the
resulting data are shown on Table XXXIII. This data should be used at this
point instead of the 136 atm (2000 psia) data.

Plots of some of the parametric data have been prepared at Pc =
136 atm (2000 psia) to show the data trends. Mode 1 and 2 delivered per-
formance is shown as a function of nozzle area ratio for various thrust
splits at the baseline Mode 1 thrust of 88964N (20,000 1bs) on Figures 68
and 69, respectively. Mode 1 and 2 delivered performance as a function of
thrust for various thrust splits at a baseline area ratio of 400:1 is
shown on Figures 70 and 71, respectively. Performance increases with
increasing thrust level because the kinetics loss is reduced. Mode 1
performance decreases with increasing thrustsplit because the amount of
RP-1 used increases. Mode 2 performance decreases with increasing thrust
split because the Mode 2 thrust and chamber pressure decrease which
increase the kinetics loss.

Engine dry weight is shown as a function of nozzle area ratio
and thrust split on Figure 72 for a baseline Mode 1 thrust of 88264N
(20,000 1bs). Weight decreases with increasing thrust split because the
LOX/RP-1 thrust contribution is greater which results in lighter engine
components. The effect of Mode 1 thrust upon the engine dry weight is
shown on Figure 73 for the baseline thrust split of 0.5.
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VI, B, Parametric Data (cont.)

Engine envelope data is shown on Figures 74 and 75. Figure 74
shows the envelope data as a function of nozzle area ratio for the baseline
Mode 1 thrust of 88964N (20,000 1bs) and thrust split of 0.5. Stowed length
does not vary significantly with nozzle area ratio bcocause the fixed
nozzle length is always greater than the radiation cooled nozzle extension.
Stowed length is calculated assuming that the radiation cooled nozzle
extension can be retracted to the turcat plane. The fixed nozzle length
is based upon heat transfer analyses which established the minimum area
ratio radiation cooled nozzle attachmert points. Figure 75 presents the
envelope data as a function of Mode 1 thrust at the baseline Mode 1 area
ratio and thrust split values of 400:1 and 0.5, respectively.

2. Dual-Expander Engine

The baseline operating conditions for this engine are a Mude 1
thrust of 88964N (20,000 1bs), thrust split = 0.5, a Mode 1 nozzle area
ratio of 200:1 and LOX/RP-i ard LOX/LH2 engine mixture ratios of 3.1
and 7.0, respectively. Baseline engine performance, weight and envelope
data are presented on Table XXXIV.

Performance, weight and envelope predictions for the other study
thrusts, thrust splits and Mode 1 area ratios are presented on Table XXXV.
The data were establisned for chamber pressure values resulting from cooling
limitations previously listed ard are shown on Figure 76.

Flots of some of the parametric data have been prepared to indi-
cate the trends. Figures 77 and 78 show the Mode 1 and 2 delivered per-
formance as functions of nozzle area ratio and thrust split for a baseline
Mode 1 thrust of 83964N (20,000 1bs). The Mode 2 nozzle area ratios that
are obtained for various Mode 1 area ratios are shown on Figure 79. Mode 1
delivered performance decreases with increasing thrust split because a
greater contribution of the thrust is provided by LOX/RP-1 propellants.
Mode 2 performance decreases with increasing thrust split because the
Mode 2 thrust and chamber pressure are reduced significantly and this
results in increased kinetics loss. The effect of Mode 1 thrust level
upon the engine performance is shown on Figures 80 and 81 for the base-
line Mode 1 overall area ratio of 200:1.

The Mode 1 performarc~ 47 the dual-expander engine at a given
overall Mode 1 area ratio is less than that of the tripropellant engine
for two reasons. First, the lower operating chamber pressure results in
increased kivnetics loss. Second, the area ratio through which the LOX/LHp
combustion products is expanded is less than the overall Mode 1 area
ratio. This means that more of the performance contribution is obtained
from the LOX/RP-1 propellants. For the tripropellant engine, all the
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vl, B, Parametric Data (cont.)

products of combustion a::e expanded through the full area ratio. The
Mode 2 performance is 4 little lower than the tripropellant engine because
of higher kinetics losses associated with lower chamber pressure operation.

Engine dry weight is shown on Figure 82 as a function of Mode 1
overall nozzle area ratio and thrust split at the baseline Mode 1 thrust
of 88964N (20,000 1bs). Engine weight increases with increasing thrust
spiit becausc the nuerating chamber pressure decreases. This results in
very heavy nozzles for the high required area ratios (Figure 79). As
discussad previously, the chamber pressures at a thrust split of 0.8 are
below praciical operating pressures for pump-fed engines. The data is
included only to complete the study matrix and to indicate the danger
of extrapolating the study results. For example, a linear extrapola-
tion of the weight data obtained at thrust splits of 0.4, 0.5 and
O%Sowguld resuit in an obviously significant error at a thrust split
of 0.8.

The effect of Mode 1 thrust on the dual-expander engine dry
weight is shown on Figure 83 for the baseline thrust split of 0.5 and
various Mode 1 overall nozzle area ratios.

The dual-expander engine envelope data is showvn on Figures 84
and 85, Fiyure 84 show. the envelope data as a function of the Mode 1
overz.1l area ratio for the baseli.ic Mode 1 thrust and thrust split values
of (/964N (20,00n 1bs) and 0.5, respectively. Figure 85 shzus the envelope
data as a function of the Mode 1 thrust for the baseline thrust split of
0.5 and an overall Mode 1 area ratio of 200:1.

3. Plug Cluster Engine

The baseline operating corditions for this engine are a Mode 1
thrust level of 88964N (20,000 1bs), thrust split = 0.5, and overall
Mode 1 geometric area ratio of 358:1 (module area ratio = 200:1) and
LOX/RP-1 and LOX/LH2 engine mixture ratios of 3.1 and 7.0, respectively.
In addition, based upon the results of Contract NAS3-20109, Unconventional
Nozzle Tradeoff Study (Ref 3), all the modules are assumed to touch
(zero gap) in Mode 1 and a zero length plug and 10 modules are used.
Baseline engine performance, weight and envelope data are prsentad nn
Table XXXVI.

Performance, weight and envelope predictions for the other study
Mode ! thrusts, thrust splits and overall Mode 1 area ratios are presented
on Table XXXVII. A1l of these data were established for a “hrust chamber
pressure of 20.4 atm (300 nsia). This low chamber pressure value \as
selected because of problems associated with cooling the LOX/RP-1 moduies
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VI, B, Parametric Data (cont.)

with either LOX or RP-1. The data has been generated for RP-1 cooled
LOX/RP-1 modules. Cooling with RP-1 assumes that some of the impuritic.
are removed from this propellant to increase the bulk temperature limit
that is normally imposed to avoid cracking, gumming and coking of the RP-1.
It should be noted that the cooling problems would be much less severe

if ather hydrocarbons such as, methane or propane were used n the mixed-
mode plug cluster. Investigation of the propellants were beycnd this
contract scope of work.

Plots of same of these parametric data have also been prepared
to show the trends. Figures 86 and 87 show the Mode 1 and 2 delivered per-
formance as functions of Mode 1 overall area ratio and thrust split for
the baseline Mode 1 thrust of 88964N (20,000 1bs). Overall Mode 1 area
ratio was selected as the abscissa for the plots in accordance with the
statement of work and relates to overall engine size. For a zero length
plug with zero gap, the overall geometric area ratio is not really a
meaningful parameter in the performance calculations. Module area ratio
is more indicative of the system performance potential. Therefore, the
moduie area ratios that are obtained with 10 touching modules are
plotted as a function of overall Mode 1 area ratio on Figure 88. In Mode
2 operation, the LOX/RP-1 modules are inactive and the cluster (or geometric)
area ratio increases and gaps are created between the modules. However,
for the zero length plug, only the module area ratio is again of any real
importance in the performance calculations. In other words, this plug
cluster performance is based upon the module performance corrected for
the module tilt angle and the base pressure contribution. Because only
two modules are operating in Mode 2 at a thrust split cf 0.8, the base
pressure effects are expected to be negligible and Mod: 2 performance for
these cases is based entirely upon the module performance with a tilt
angle correction. This is why the overall Mode 2 area ratio and module
area ratios are shown as equal for these cases in the tabular data.

Mode 1 performance (Figure 86) decreases with increasing thrust split
because the LOX/RP-1 thrust contribution is greater. Mode 2 performance
(Figure 87) also decreases with increasing thrust split because the

base pressure contribuiicn is reduced as ihe gap betwee: modules increases.

The effect of Mode 1 thrust level upon Mode 1 and 2 performance
is shrwn on Figures 89 and 90, respectively. These data are presented
for the baseline overall area ratio of 358 and module area ratio of 200.

The plug cluster engine performance is relatively low because
the 1uw thrust and low operating chamber pressure of the modules results
in larger kinetics losses than nigh thrust, high pressure engines such
as the tripropellant concept.
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VI, B, Parametric Data (cont.)

Engine dry weight is shown on Figure 91 as a function of Mode 1
overall area ratio for various thrust splits at the baseline Mode 1 thrust
level of 88964N (20,000 1bs). Engine weight increases with increasing
thrust split because the LOX/RP-1 thrust chamber modules are heavier tha:
the LOX/LH2 modules and this more than makes up for lighter turbomachinery
weights. The LOX/RP-| module chambers are longer (liquid-liquid injec-
tion) than the LOX/LH2 module chambers (1iquid-gas injection) to meet the
98% combustion efficiency requirement and this results in heavier weights.

The effect of Mode 1 thrust on the plug cluster engine dry
weight is shown on Figure 92 for the baseline thrust split of 0.5 and
various Mode 1 overall area ratios.

The plug cluster engine envelope data is shown on Figure 93 and
94. Figure 93 shows the envelope data as a function of the overall Mode 1
area ratio for the baseline thrust of 88964N (20,000 1bs) and thrust split
of 0.5. The equivalent engine length is defined as the length from the
conventional engine mounting plane to the module exits. The engine length
is defined as the length from the top of the modules to the module exits (see
the sketch on Figure 93). The equivalent length parameter is introduced
because some of the propellant tank can fit inthe plug recess which is not
possible with other engine types like a single bell nozzle. Figure 94 shows
the envelope data as a function of Mode 1 thrust for baseline thrust split,
overall area ratio and module area ratio values of 0.5, 358 and 200, respec-
tively. The plot and the tabular data show that the plug cluster engine
diameter exceeds the 447 cm (176") diameter limitation at the majority of the
overall nozzle area ratins at thrust ievels greater than 177.9 KN (40,000
1bs). A1l the data was calculated to complete the study matrix but it
should be recognized that engines with diameters greater than 447 cm (176")
will not fit within the current shuttle payload bay.

The effect of the module operating chamber pressure and LOX/LH2
module mixture ratio upon the engine performance was also investigated.
This was done to aid in comparing the data generated under this contract
with that established for the Unconventional Nozzle Tradeoff Study (Ref. 3)
and to show the sensitivities. This peripheral study was conducted at
the baseline thrust level of 88964N (20,000 1b).

Tables XXXVIII and XXXIX can be used to compare the plug cluster
engine characteristics for LOX/LH2 module mixture ratios of 6.0 and 7.0
with the modules operating at 20 atm (300 psia) chamber pressure. The
LOX/RP-1 module mixture ratios for all cases is 3.1. Table XXXVIII shows
that a 6 to 7 sec performance gain is achieved in Mode 2 if the LOX/LH2
module mixture ratio is reduced from 7.0 to 6.0.
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VI, B, Parametric Data (cont.)

Tables XL and XLI present the plug cluster characteristics for
module operating chamber pressures of 34 atm (500 psia) and LOX/LH2
module mixture ratios of 6.0 and 7.0, respectively. These tables show
that the plug cluster performance can be increased aporoximately another
2 to 3 secs if the module operating pressure can be increased. As noted
in previous soctions, the LOX/RP-1 and not the LOX/LH2 module limits the
plug cluster operating pressure. The Mode 2 performance generated for
a mixture of 6.0 at 34 atm (500 psia) is comparable to the Ref. 3 data.

A comparison of all data on Tables XXXVIII through XLI indicates
that both iic low operating pressure of the modules and low module thrust
would seem Lo drive the "optimum" operating mixture ratio of the LOX/LH2
modules from 7.0 to §.0.
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SL.TION VII
CONCLUSIONS AND RECOMMENDATIONS

A.  CONCLUSIONS

The conclusions which were derived from the results of this study
are discussed herein. These conclusions cover the results of all study
tasks and are discussed for each engine conccpt investigated.

1. Tripropellant Engine

Hydrogen cooled tripropellant engines are practical to at least
136 atm (2000 psia) for ranges of thrust from 66.7 to 400.3 KN (15K to
90K 1bf) and thrust split from 0.4 to 0.6. At a thrust split of 0.8 and
66.7 KN (15K 7€), the tripropallant engine is cooling limited to about
81.6 atm (12C0 psia). However, at other thrust levels, a cooling limit
was not reached for this thrust split of 0.8.

The tripropellant engine is not power balance 1imited and
reasonable pump discharge pressures were achieved at all thrust splits
investigated. Operation of the tripropellant engine ccmponents at both

the Mode 1 and Mode 2 design conditions was also determined to be practical.

2. Dual-Expander Engine

Hydrogen cooling of t" dual-expander engine with a parallel flow
path for cooling of the inner and outer chambers is recommended. This
engine concept proved to be cooling limited and the maximum chamber pres-
sure is a function of both thrust and thrust split. The following chamber
pressures were established at a baseline thrust of 88964N (20,000 1bf):

Central LOX/RP-1 Annular LOX/LH2

Thrust Chamber Pressure, Chamber Pressure,
Split atm (psia) atm (psia)
0.4 88.4 (1300) 44,2 (650)
0.5 74.8 (1100) 37.4 (550)
0.6 61.2 (900) 30.6 (450)
0.8 13.6 (200) 6.8 (100)

Maximum operating pressures increase with increasing thrust level.

At the upper end of the thrust range, 400.3KN (90K 1b}, the chamber
pressures are:

PRECEDING PAGE BLANK NOT F!
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VII, A, Conclusions (cont.)

Central LOX/RP-1 Annular LOX/iLH2

Thrust Chamber Pressure, Chamber Pressure,
Split atm (psia) atm (psia)}
0.4 122.4 (1800) 61.2 (900)
0.5 102.0 (1500) 51.0 (750)
0.6 85.0 (1250) 42.5 (625)
0.8 19.0 (280) 9.5 (140)

The abeve tables show that a thrust split of 0.8 appears to be
impractical for a pump-fed dual-expander system.

The dual-expander engine is not power balance limited and the
design operating conditions for components in both modes of operation is
practical.

3. Plug Cluster Engine

Cooling of the LOX/LH2 module of the plug cluster engine is
practical ovei the entire chamber pressure range of 20.4 to 68 atm (300
to 1000 psia) investigated. However, oxygen cooling of the LOX/RP-1
module was found to be impractical over the entire chamber pressure range
and RP-1 cooling at 20.4 atm (300 psia) is feasible only if the coolant
bulk temperature limit of 589°K (600°F) can be exceeded. This holds
true over the entire thrust range of 66.7 to 400.3 ¥N (15 to 90K 1bf)
investigated.

Because of the low design module chamber pressures, 20.4 atm
(300 psia), operating the LOX/LH2 module at a mixture ratio 7.0 results
in a significant Mode 2 performance penalty compared to a mixture ratio
of 6.0.

The plug cluster exceeds the shuttle diameter constraint of
447 cm (176 in.) at a thrust level of about 177.9 KN (40K 1bf).

B.  RECOMMENDATIONS

The recommendations for advanced technology and further study efforts
that were identified during the course of this study program are summarized
in the following paragraphs. Items of general nature pertaining to all three
engines and items peculiar to a particular engine concent are identified.
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VII, B, Recomsendations (cont.)

1. General
° Conduct a preliminary design study of the three baseline

engine concepts and their components to provide engine and component lay-
out drawings.

° Conduct an engine study to evaluzie the use of methare and/
or propane a3 fuels for each of the engine cencepts.

° Design, fabricate and test a smell, high speed hydrocarbon
turbopump to add tc tne data base obtained under Contracts NAS 3-17794
and NAS 3-17800 for hydrogen and cxygen turbopumps suitable for the QTV
application.

° Evaluate, design, fabricate, and test bearing and seal
packages for use in long life, small, high speed cryogenic and hydro-
carbon turbopump designs.

° Conduct an experimental study to evaluate the economic feasi-
bility of making "pure” RP-1 to avoid gqumming, cracking and coking prob-
lems in reuseable hydrocarbon engines.

~

¢. Tripropellant Engine

(]

Design, fabricate and test a tripropellant injecter using
fuel-rich LOX/LH2, oxidize *-rich LOX/LH2, and fuel-rich LOX/RP-1 gases
as the propellants.

3. Dual-Expander Engine

(-]

Conduct a cold flcw experimental program to evaluate the
dual-expander aerodynamic performance and nozzle design criteria.

° Conduct a design analysis study on a combined regenerative
and transpiration cooled chamber concept to determine the feasibility of
increasing the operating thrust chamber pressure,

° Conduct a design study of the central chamber to evaluate
the feasibility of manufacturing a dual-wall mill-slotted copper chamber.

4. Plug Cluster Engine

o

Conduct a study to establish the feasibility and system
design impacts associated with hydrogen cooling of the LOX/RP-1 modules.
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VII, B, Recommendations (cont.)

o

Design, fabricate and test long life, low thrust, regenera-
tively cocled thrust chamber modules for both LOX/LH2 and LOX/RP-1
propellants.

Extend the plug cluster cold flow experimental data base
to improve performance prediction techniques.

(]

Conduct a hot-fire demonstration of a plug cluster engine

to evaluate ignition of multiple chambers, hydraulics and interactions of
multiple modules and to verify performance.
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