## **General Disclaimer**

## One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

## NASA Contractor Report 151862

(NASA-CR-151862) DEVELOPMENT OF PROCESSES N79-19159 AND TECHNIQUES FOR MOLDING THERMALLY STABLE, FIRE-RETARDANT, LOW-SMOKE-EMITTING POLYMERIC MATERIALS Technical Report, 1 Oct. 1977 - Unclas 28 Feb. 1979 (Lockheed-California Co., G3/27 16361

Development of Processes and Techniques for Molding Thermally Stable, Fire-Retardant, Low-Smoke-Emitting Polymeric Materials

B. Silverman and F. Norris

LOCKHEED-CALIFORNIA COMPANY BURBANK, CALIFORNIA

CONTRACT NAS 9-15406 March 1979



F 13



Johnson Space Center Houston, TX 77058

#### TABLE OF CONTENTS

| Section                                               | Page |
|-------------------------------------------------------|------|
| LIST OF FIGURES                                       | v    |
|                                                       |      |
|                                                       | -    |
| SUMMARY                                               | 1    |
| INTRODUCTION                                          | 1    |
| Background                                            | 2    |
| Objectives                                            | 2    |
| Approach                                              | 2    |
| Acknowledgements                                      | 4    |
| DATA ANALYSIS                                         | 4    |
| SELECTION OF POLYMERS                                 | 11   |
| Compression Molding Materials                         | 11   |
| Injection Molding Materials                           | 11   |
| Thermoforming Materials                               | 13   |
| TRADE-OFF DATA                                        | 13   |
| THERMOGRAVIMETRIC ANALYSIS DATA                       | 36   |
| Introduction                                          | 36   |
| Results and Discussion                                | 36   |
| PART FABRICATION                                      | 52   |
| Sidewall Compression Molded Parts                     | 52   |
| Injection-Molded Parts                                | 52   |
| Thermoformed (Vacuum Formed)                          | 52   |
| Compression-Molded 3M Fluorel Polymer                 | 52   |
| PROCESSING PARAMETERS AND ASSOCIATED COST COMPARISONS | 55   |
| Compression Molding                                   | 55   |
| Injection Molding                                     | 55   |
| Thermoforming (Vacuum Forming)                        | 55   |

### TABLE OF CONTENTS (Continued)

| Section                         |                                             |                                  |               | Page |
|---------------------------------|---------------------------------------------|----------------------------------|---------------|------|
| RESULTS                         |                                             |                                  |               | 58   |
| Summary of Results              |                                             |                                  | ،<br>-<br>- ا | 58   |
| CONCLUSIONS                     |                                             |                                  |               | 60   |
| RECOMMENDATIONS                 |                                             |                                  |               | 60   |
| APPENDIX A - COMPRES<br>PHENOLI | SION MOLDING OF LOW-<br>C RESIN LAMINATE OR | SMOKING MODIFI<br>CRUSHED CORE P | ED<br>ARTS    | 61   |
| APPENDIX B - PROCESS            | ING OF INJECTION-MOL                        | DING MATERIALS                   | }             | 68   |
| APPENDIX C - FABRICA<br>FROM SH | TION OF LOW-SMOKING<br>HEET STOCK           | THERMOPLASTIC                    | PARTS         | 73   |

LIST OF FIGURES

| Figur | <u>:e</u> |        |       |         |        |     |         |          |      |       |        |             |       | Page |
|-------|-----------|--------|-------|---------|--------|-----|---------|----------|------|-------|--------|-------------|-------|------|
| 1     |           | Flame  | and   | Smoke   | Data   |     | FN501   | (mater   | ial  | test  | 1247)  |             |       | 18   |
| 2     |           | Flame  | and   | Smoke   | Data   | -   | FN503   | (mater   | ial  | test  | 1248)  | 1           |       | 19   |
| 3     |           | Flame  | and   | Smoke   | Data   | -   | FN505   | (mater   | ial  | test  | 1249)  |             |       | 20   |
| 4     |           | Flame  | and   | Smoke   | Data   | -   | FN507   | (mater   | ial  | test  | 1250)  |             |       | 21   |
| 5     |           | Flame  | and   | Smoke   | Data   | -   | FN510   | (mater   | ial  | test  | 1251)  |             |       | 22   |
| 6     |           | Flame  | and   | Smoke   | Data   | -   | FN501   | (mater   | ial  | test  | 1252)  | · · · · · . |       | 23   |
| 7     |           | Flame  | and   | Smoke   | Data   | -   | FN5C3   | (mater   | ial  | test  | 1253)  | :<br>       |       | 24   |
| 8     |           | Flame  | and   | Smoke   | Data   | -   | FN505   | (mater   | ial  | test  | 1254)  |             |       | 25   |
| 9     |           | Flame  | and   | Smoke   | Data   | -   | FN507   | (mater   | ial  | test  | 1255)  |             |       | 26   |
| 10    |           | Flame  | and   | Smoke   | Data   | -   | FN510   | (mater   | ial  | test  | 1256)  |             |       | 27   |
| 11    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-11A    | (mat | erial | . test | 1273        | )     | 28   |
| 12    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-11B    | (mat | erial | test   | 1274        | )     | 29   |
| 13    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-10 (1  | mate | rial  | test 1 | 1258)       |       | 30   |
| 14    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-11C    | (mat | erial | test   | 1279        | ) • • | 31   |
| 15    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-11D    | (mat | erial | test   | 1280        | )     | 32   |
| 16    |           | Flame  | and   | Smoke   | Data   |     | FN3087  | 7-11E    | (mat | erial | test   | 1277        | )     | 33   |
| 17    |           | Flame  | and   | Smoke   | Data   | -   | FN3087  | 7-11F    | (mat | erial | test   | 1278        | )     | 34   |
| 18    |           | Flame  | and   | Smoke   | Data   | -   | 3M 7-5  | Fluor    | el ( | mater | ial to | est l       | 283)  | 35   |
| 19    |           | Thermo | ogran | n F501  | (Ciba  | a G | Seigy F | liberdu: | x 91 | 7)    |        |             |       | 37   |
| 20    |           | Thermo | ogran | n F503  | (Narn  | icc | 9252)   |          |      |       |        |             |       | 38   |
| 21    |           | Thermo | ogran | n F505  | (Narm  | ncc | 8250)   |          |      |       | •      |             |       | 39   |
| 22    |           | Thermo | ograt | n F507  | (Fibe  | eri | te MXB  | 607L)    |      |       |        |             |       | 40   |
| 23    |           | Thermo | ogran | n F510  | (Fibe  | eri | te MXB  | 6032)    |      |       |        | a sha a s   |       | 41   |
| 24    |           | Thermo | ogran | n FN308 | 377-11 | A   | (Polyi  | mide/g   | lass | )     |        |             |       | 42   |
| 25    |           | Thermo | ogran | n FN308 | 377-11 | B   | (Polyi  | mide/g   | lass | -Ted  | lar)   |             |       | 43   |

v

## LIST OF FIGURES (Continued)

| Figure |                                                      | Page |
|--------|------------------------------------------------------|------|
| 26     | Thermogram PES-KM-1                                  | 44   |
| 27     | Thermogram Lexan EF-6000                             | 45   |
| 28     | Thermogram Rade1 5010N                               | 46   |
| 29     | Thermogram Rohm and Haas 4360Z                       | 47   |
| 30     | TGA Thermograms - Compression Molded Sidewalls       | 48   |
| 31     | TGA Thermograms - Compression Molded Polyimide/Glass | 49   |
| 32     | TGA Thermograms - Thermoplastics                     | 50   |
| 33     | Sidewall Molded Parts                                | 53   |
| 34     | GE 940 Molded Parts                                  | 53   |
| 35     | Monsanto 200-3Z Molded Parts                         | 54   |
| 36     | F-6000 Thermoformed Parts                            | 54   |
| 37     | 3M Fluorel Molded Parts                              | 55   |
|        |                                                      |      |

### LIST OF TABLES

| Table |                                                               | Page         |
|-------|---------------------------------------------------------------|--------------|
| I     | Preliminary Data - Compression Molding Materials              | 5            |
| II    | Preliminary Data - Injection Molding Materials                | 7            |
| III   | Preliminary Data - Thermoforming Materials                    | 1 <b>9</b> - |
| IV    | Tentative Material Goals                                      | 12           |
| V     | Compression Molding Materials (Trade-Off Data<br>- Candidate) | 14           |
| VI    | Injection Molding Materials (Trade-Off Data<br>- Candidate)   | 15           |
| VII   | Thermoforming Materials (Trade-Off Data - Candidates)         | 16           |
| VIII  | Material Code                                                 | 17           |
| IX    | Results of Thermogravimetric Analysis                         | 51           |
| x     | Injection Molding Parameters                                  | 56           |
| XI    | Thermoforming (Vacuum Forming) Parameters                     | 57           |

#### DEVELOPMENT OF PROCESSES AND TECHNIQUES FOR MOLDING THERMALLY STABLE, FIRE-RETARDANT, LOW-SMOKE-EMITTING POLYMERIC MATERIALS

B. Silverman and F. Norris

Lockheed-California Company

#### SUMMARY

During this study, data was gathered on the use of new polymers as material for compression molding, injection molding, and thermoforming. An evaluation was made as to which materials offer the best potential for significantly reducing fire and associated hazards when used for typical aircraft interior parts. Several materials in each molding category were selected for further development and possible utilization in production type parts. Specifically, the study was directed toward developing the processing and molding techniques of advanced, thermally stable, fire-retardant, low-smoke-emitting polymers.

The following determinations were made:

• Compression molding. - Three phenolic-type resin systems are available which woule produce serviceable production parts with excellent fireresistant properties.

Initial examination of fluorel polymer impregnated on fiberglass mat or fabric, determined that it can be compression molded into parts. Improvement in high humidity resistance or methods of preventing water absorption in the cured polymer is needed.

- Injection molding. Two polymers, polyethersulfone and polyphenyl sulfone, offer good potential. However, material costs are approximately four times and seven times, respectively, that of presently available polycarbonate resin materials.
- Thermoforming. The only polymer sheet material with good flame resistant properties is polyethersulfone (PES). The material costs approximately six times more than the ABS material presently in use. Initial sheets of the PES-KM-1 with textured surface, to be supplied by Rohm and Haas, were not available for making evaluation as of December 15, 1978.

#### INTRODUCTION

This is the final report of "Development of Processes and Techniques for Molding Thermally Stable, Fire-Retardant, Low-Smoke-Emitting Polymeric Materials" conducted by the Lockheed-California Company under Contract NAS 9-15406 with the National Aeronautics and Space Administration, Johnson Space Center, Houston, Texas. This report documents all the development activities conducted during the study from October, 1977, through December 1978.

#### Background

This development effort is one of several being sponsored by the NASA-JSC Fireman Program to develop more fire-resistant materials to be considered for use in the construction of aircraft interior parts and subassemblies.

#### Objectives

The purpose of this study was to evaluate newly developed fire-resistant, low-smoke-emitting polymers for use in producing molded aircraft interior parts. This study effort specifically examined the new materials with regard to their behavior under flame impingement, their adaptability to processing into end products, and the endurance of the end products under typical aircraft environment and service abuse.

#### Approach

To meet the objectives of this investigation, the contractor established a program that included seven technical tasks:

Task 1 - Industry Survey and Chemical Characterization. - Task 1 surveyed the state of the art for new polymers which could be considered for either compression molding, injection molding, or thermoforming sheet materials. Data on the polymers under consideration were gathered and analyzed to determine their potential in producing usable aircraft interior plastic parts.

Task 2 - Fire Hazard Evaluation. - From the data analyzed in Task 1, various molding materials were selected for evaluation. Promising materials mutually agreed upon between the contractor and NASA-JSC were obtained for flame resistance, smoke emission, and thermogravimetric analysis (TGA).

Compression-molded specimens were evaluated with and without added decorative Tedlar for possible improvements over presently constructed interior cabin parts. Subsequently, during the last three months of the programs actual production parts and simulated parts were molded and supplied to NASA-Houston for possible use in their fire-test program.

<u>Task 3 - Decorative Laminates.</u> - The NASA-AMES program with Boeing pertaining to the development of new films and decorative laminate constructions or possible replacements for Tedlar-type decorative materials was followed closely. A newly constructed decorative material had not yet been developed during this program. Consequently the present Tedlar construction was used on parts so as to provide a basis for comparison of new materials with known capabilities of standard production materials.

Task 4 - Compression Molded Parts. - Based on initial fire-test results and the overall physical and chemical properties of various new resin and modified resin systems, large compression-molded parts were produced in order to assess the processing cost aspects of the resin systems. After final analysis of the fire-resistant properties, and material and processing costs of all the candidate resin systems was made, three resin systems were selected and four production sidewall panels of each resin were produced and delivered to NASA-JSC. Two of the parts made from each resin system delivered to NASA-JSC were furnished with the decorative Tedlar laminate covering presently used on production parts. Finally 40 Tedlar covered Fiberite MXB6032 molded sidewall parts were produced for NASA.

Task 5 - Injection Molded Parts. - Based on information obtained from chemical companies and initial data analysis on plastic resins identified under Tasks 1 and 2, three newly developed materials were selected for further investigation. One of the resins was in the initial production phase and another in the pilot plant stage. The third material was in the early development stage but offered a potential for improved fire resistance at only a moderate increase in material cost over presently used injection-molding materials. In this task, data were gathered relating to the overall physical and chemical fire-resistant properties. Processing parameters and costs for producing finished parts were also established for two of the candidates based on small production parts of the passenger service modules on production tooling. The third material required a heated die to be produced on an experimental mold. Finally, over 60 injection-molded parts of two materials were produced and supplied to NASA-JSC.

<u>Task 6 - Thermoformed Parts.</u> - Development of new thermoforming sheet materials for replacement of the presently used high-smoke-emitting ABS, Noryl or Abskyn-type materials did not progress as well as expected. In view of restraints on fire-resistant and smoke-emission limits, it was difficult to obtain three materials for evaluation that were economically feasible. Only two true thermoforming-type materials were procured during the study period and neither had sufficient resistance to cleaner and solvent crazing to be a candidate replacement for the ABS-type and Abskyn decorative materials. During the last three months of the program, an initial sample of polyether-sulfone with improved resistance to stress cracking looked promising and several sheets of this material were ordered for evaluation.

Task 7 - Processing Instruction. - Preliminary processing and fabrication instructions covering the various molding materials, which were made into usable parts, were prepared and are presented in the Appendices to this report.

ORIGINAL CALIFY

#### Acknowledgements

The Materials and Producibility Department gratefully acknowledges the assistance provided by the following organizations and personnel in obtaining the information and creating the data used in this study.

- Edward Lopez Lockheed Rye Canyon Test Facility
- Y. Tajima Lockheed Rye Canyon Test Facility
- Gilbert Echt Lockheed Manufacturing Research Facility
- Personnel at NASA-JSC for providing fire-safety data on some of the initial material samples.

#### DATA ANALYSIS

Three different types of molding materials were to be evaluated in this study. The available physical, chemical, and flammability data for all of the materials initially examined are presented in Tables I through III. For each category of molding material, candidate materials were selected based on availability and development potential. Final selection of the materials was made with the approval of the NASA Technical Monitor.

After reviewing the data on compression-molding materials in Table I, four modified phenolics and a polyimide foam resin system were selected for further evaluation.

Data compiled on injection molding materials, Table II, were examined and three new polymer materials, polyphenyl sulfone, aromatic polyester, and a new polycarbonate resin were initially selected for further evaluation. Production part injection molding feasibility was the area to be evaluated. Later in the program a new polyethersulfone was obtained where cost was estimated to be one-half that of the polyphenylsulfone Radel material.

Data on the potential new candidate thermoforming sheet materials are listed in Table III. A review of the data indicated that material developments to replace the high-smoke-emitting thermoplastic materials, such as ABS, and an early version of polycarbonate sheet were limited. It appeared that any new polymers developed to meet the tentative material physical property goals would be extremely expensive in sheet form. In addition to the increased material costs, projected tooling and processing costs appeared appreciably higher than the presently used thermoplastic sheet materials.

### TABLE I. - PRELIMINARY DATA - COMPRESSION MOLDING MATERIALS

|            | Properties                                                                                                 |                                                                                                          | ]                                                                                                                                 |                                                                                                          |
|------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|            |                                                                                                            |                                                                                                          |                                                                                                                                   | The Carl Dilument of                                                                                     |
|            | Chemical Name                                                                                              | Phenolic-Glass 50%                                                                                       | Polyzide (Solar)                                                                                                                  | Low Smoke Polyester-Glass                                                                                |
|            | Trade Name                                                                                                 | MIL-M-14F (GP1-100)                                                                                      | Foamed/Chopped Glass                                                                                                              | LCM 22-2152                                                                                              |
|            | Vendor                                                                                                     | Various                                                                                                  | Solar Turbines Int.                                                                                                               | Various                                                                                                  |
| [a]        | Finished Form                                                                                              | Comp Molded                                                                                              | Comp Molded-Foam                                                                                                                  | Compress Molded                                                                                          |
| leu        | Raw Material Cost, \$/1b                                                                                   | 1.50 Dark                                                                                                | 3.00 - 7                                                                                                                          | 1.50                                                                                                     |
| ů          | Colors Available                                                                                           | Tan to Brown                                                                                             | Yellow-Brown                                                                                                                      | Light to Varied                                                                                          |
| :          | Paint Systems                                                                                              | Available for Colors                                                                                     | Yes                                                                                                                               | Available                                                                                                |
| 1.5        | Adhesive Bonding                                                                                           | Epoxy or Urethane                                                                                        | Yes-Epoxy                                                                                                                         | Ероку                                                                                                    |
|            | Availability                                                                                               | Production Supplies                                                                                      | Limited Pilot Devel                                                                                                               | Production Available                                                                                     |
| Processing | Drying<br>Cure Cycle <sup>o</sup> C<br>Post Cure Cycle <sup>o</sup> C                                      | None<br>149 <sup>°</sup> C (300 <sup>°</sup> F) 1/2 hr<br>177 <sup>°</sup> C (350 <sup>°</sup> F 2 hr    | *Foaming-260°C 1/2 hr<br>288°C (550°F)<br>315°C (600°F)                                                                           | None<br>132 <sup>0</sup> C (270 <sup>0</sup> F) 15 min<br>None                                           |
| <u> </u>   | Aimesting C                                                                                                | None                                                                                                     |                                                                                                                                   | noue                                                                                                     |
| Cel        | Density, kg/m <sup>3</sup> .                                                                               | 1.75                                                                                                     | Δ1.50                                                                                                                             | 1.95                                                                                                     |
| yst        | Water Absorption, % in 24 Hours 23°C                                                                       | 0.15                                                                                                     |                                                                                                                                   | 0.25                                                                                                     |
| Ph.        | Rockwell Hardness                                                                                          | M 115                                                                                                    | R-102                                                                                                                             | M 95                                                                                                     |
|            | Tensile Strength MPa (psi)                                                                                 | 51.8 (7500)                                                                                              | 48.5 (7000)                                                                                                                       | 69 (10,000)                                                                                              |
|            | Tensile Elongation, %                                                                                      | .5                                                                                                       | 1.1                                                                                                                               | .5                                                                                                       |
| ulc        | Flexural Strength, MPa (psi)                                                                               | 113 (16,000)                                                                                             |                                                                                                                                   | 206 (30,000)                                                                                             |
| thai       | Flexural Modulus, MPa (psi)                                                                                | $16500 (2.4 \times 10^6)$                                                                                |                                                                                                                                   | 11045 (1.6 x $10^6$ )                                                                                    |
| Mec        | Compressive Strength, MPa (psi)                                                                            | 186 (27,000)                                                                                             |                                                                                                                                   | 145 (21,000)                                                                                             |
|            | IZOD Impact, Notched, ft 1b/in.                                                                            | 12.0                                                                                                     | 7.3                                                                                                                               | 15.0                                                                                                     |
|            | Hast Deflection Oct1820 PD (264 and)                                                                       | 280°C (500 <sup>+0</sup> T)                                                                              | 20/°C ((00°E)                                                                                                                     | 175°C (3/8°E)                                                                                            |
|            | Newtown Company New Oc                                                                                     | 200 C (300 F)                                                                                            | 10000                                                                                                                             | 130 <sup>0</sup> C (346 <sup>0</sup> F)                                                                  |
| ety        | Maximum Service Use, C                                                                                     | 1/5 C (348 F)                                                                                            | 190 0                                                                                                                             | 130 C (200 F)                                                                                            |
| Saf        | Oxygen Index                                                                                               | 40                                                                                                       | 80                                                                                                                                | 30<br>Ba                                                                                                 |
| . 2        | Flammability Resistance ASTM                                                                               | rasses                                                                                                   | rasses                                                                                                                            | rasses                                                                                                   |
| FI         | Far 853-60 sec Vertical Test -                                                                             | n an                                                                 |                                                                                                                                   |                                                                                                          |
| pue        | Flame-out<br>Glow Time                                                                                     | 0                                                                                                        | 0                                                                                                                                 | 4                                                                                                        |
| l.         | Burn Length                                                                                                | 2 cm                                                                                                     | 1 cm                                                                                                                              | 5 cm                                                                                                     |
| E CUP      | Smoke Ignition D6 min (D_)                                                                                 | 15                                                                                                       | 3                                                                                                                                 | 100                                                                                                      |
| Ę          | TGA                                                                                                        | 400°C                                                                                                    | 400°C                                                                                                                             | 300 <sup>0</sup> C                                                                                       |
|            | Toxic Gas Emissions                                                                                        | Very Low                                                                                                 | Minimel                                                                                                                           | Fair                                                                                                     |
|            | Solvent Resistance                                                                                         | Excellent                                                                                                | Excellent                                                                                                                         | Good                                                                                                     |
|            | Rumidity Stability                                                                                         | Good                                                                                                     | Good                                                                                                                              | Good                                                                                                     |
| <u>5</u>   | Stress Crack Resistance                                                                                    | Good                                                                                                     | Good                                                                                                                              | Good                                                                                                     |
| Ę          | Cleanability                                                                                               |                                                                                                          |                                                                                                                                   | a di ang sa sa                                                                                           |
| Servicat   | Common Maintenance<br>Commercial Cleaners with Ammonia<br>Trichcoroethane<br>Ultra-Violet Light Resistance | Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System | Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System                          | Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System |
| an de      | Abrasion Resistance                                                                                        | Depends on Paint System                                                                                  | Depends on Paint System                                                                                                           | Depends on Paint System                                                                                  |
| Misc       | Cost of Processing                                                                                         | 20% Over Polyester<br>Requires Press for Cure<br>Matched Dies                                            | *Foam Process Limit by<br>Gasses Produced<br>Cost of Foaming May Be<br>Prohibitive<br>Requires Press for Cure<br>and Matched Dies | Cheapest<br>Requires Press for Cure<br>and Matched Dies                                                  |
| Remarks    |                                                                                                            |                                                                                                          | △Offers Possible Weight<br>Saving                                                                                                 |                                                                                                          |

# OF POOR QUALITY

## TABLE I. - PRELIMINARY DATA - COMPRESSION MOLDING MATERIALS (Continued)

|                         | Properties                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General                 | Chemical Name<br>Trade Name<br>Vendor<br>Finished Form<br>Raw Material Cost, \$/1b<br>Colors Available<br>Paint Systems<br>Adhesive Bonding<br>Availability                                                                                                                                                  | Modified Phenolic/Glass<br>#8250 #9250<br>Narmco Prepreg<br>Vac Bag or Comp Mold<br>3.50<br>Dark Brown<br>Available<br>Epoxy<br>Limited Production               | Polyimide/Glass<br>AMS-3845/2<br>Prepreg<br>Vac Bag Autoclave or pres<br>3.50<br>Brown<br>Available<br>Epoxy<br>Limited Production                               | Phenolic-/Glass Fabric<br>Fiberite MXB 6032<br>Various Prepreg<br>Vac Bag or Comp Mold<br>2.25<br>Dark Brown<br>Available<br>Epoxy<br>Production                 |
| Processing              | Drying<br>Cure Cycle <sup>°</sup> C<br>Post Cure Cycle <sup>°</sup> C<br>Annealing <sup>°</sup> C                                                                                                                                                                                                            | None<br>122°C (251°F)                                                                                                                                            | None<br>290°C (554°F) 1.5 hrs<br>None<br>None                                                                                                                    | None<br>149 <sup>°</sup> C (300 <sup>°</sup> F) 3/4 hr<br>177 <sup>°</sup> C (350 <sup>°</sup> F) 2 hrs<br>None                                                  |
| Physical                | Density, kg/m <sup>3</sup><br>Water Absorption, % in 24 hours 23 <sup>°</sup> C<br>Rockwell Hardness                                                                                                                                                                                                         | 1.90                                                                                                                                                             | 1.90                                                                                                                                                             | 1.90                                                                                                                                                             |
| Mechanica I             | Tensile Strength MPa (psi)<br>Tensile Elongation, %<br>Flexural Strength, MPa (psi)<br>Flexural Modulus, MPa (psi)<br>Compressive Strength, MPa (psi)<br>IZOD Impact, Notched, ft 1b/in.                                                                                                                     | 345 (50,000)<br>1.0<br>372 (54,000)<br>20                                                                                                                        | 310 (45,000)<br>1.0<br>372 (54,000)<br>17,240 (2.5 x 10 <sup>6</sup> )<br>20                                                                                     | 310 (45,000)<br>1.0<br>17,240 (2.5 x 10 <sup>6</sup> )<br>207 (30,000)<br>20                                                                                     |
| Thermal and Fire Safety | Heat Deflection, <sup>°</sup> C-1820 kPa (264 psi)<br>Maximum Service Use, <sup>°</sup> C<br>Oxygen Index<br>Flammability Resistance ASTM<br>Far 853-60 sec Vertical Test -<br>Flame-out<br>Glow Time<br>Burn Length<br>Smoke Ignition D <sub>2</sub> -6 min (D <sub>m</sub> )<br>TGA<br>Toxic Gas Emissions | 175°C (348°F)<br>149°C (300°F)<br>Passes<br>0<br>0<br>2 cm<br>8<br>400°C<br>Very Low                                                                             | 260°C (500°F)<br>232°C (450°F)<br>60<br>Passes<br>0<br>0<br>1 cm<br>5<br>450°C<br>Minimal                                                                        | 200°C (391°F)<br>185°C (348°F)<br>40<br>Passes<br>0<br>0<br>2 cm<br>8<br>400°C<br>Very Low                                                                       |
| Servicability           | Solvent Resistance<br>Humidity Stability<br>Stress Crack Resistance<br>Cleanability<br>Common Maintenance<br>Commercial Cleaners with Ammonia<br>Trichcoroethane<br>Ultra-Violet Light Resistance<br>Abrasion Resistance                                                                                     | Good<br>Good<br>Excellent<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System | Good<br>Good<br>Excellent<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System | Good<br>Good<br>Excellent<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System<br>Depends on Paint System |
| s<br>Misc               | Cost of Processing                                                                                                                                                                                                                                                                                           | 25% Over Polyester<br>*Appears to be modified<br>phenolic<br>May be Cured with Vac<br>Pressure and Oven                                                          | 50% Over Polyester<br>Requires Press or Auto-<br>clave for Pressure to<br>Cure (50-100 psi)                                                                      | 25% Over Polyester<br>May be Cured with Vac<br>Pressure and Oven                                                                                                 |
| Remark                  |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                  |                                                                                                                                                                  |                                                                                                                                                                  |

### TABLE II. - PRELIMINARY DATA - INJECTION MOLDING MATERIALS

| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · | <u> </u>                                                           |                       | · · · · · · · · · · · · · · · · · · · | <b></b>                               | r·····                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|-----------------------|---------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Properties                            |                                                                    |                       | 5                                     |                                       |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical Name                         | Polycarbonare                                                      | Polvethersulfone      | Polyphenylsulfone                     | Aromatic Polyester                    | Polyphenylene Sulfide                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trade News                            | Leven 940                                                          | 2008                  | Fadal                                 | E-200 37                              | Puton                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vendor                                | Common Floornia                                                    | TOT (USA)             | Unden Cashida                         | Manager                               | Philling Ress                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vendor                                | General Electric                                                   | ICI (USA)             | Union Carbide                         | Hensanto                              | rallips rece                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finished Form                         | Small Pellets                                                      | Small Pellets         | Small Pellets                         | Small Pellets                         | Small Pellets                                                                                                    |
| 1 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Raw Material Cost, \$/1b              | 2.50                                                               | 8.00                  | *15.00                                | 8.00                                  | 4.00                                                                                                             |
| - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Colors Available                      | Clear Tan Colors                                                   | Transparent Colors    | All Colors                            | One Light Color                       | Darker Colors                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Paint Systems                         | Yes - Urethane                                                     | Possible - Devel      | 2                                     | 2                                     | ?                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    | Revived               |                                       |                                       |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adhesive Bonding - Available          | Yes - Urathane                                                     | ? - Devel Revived     | 1 ?                                   | :                                     | 7                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Availability                          | In Production                                                      | Limited Production    | Limited Production                    | Developmental                         | In Production                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drying Requirements                   | 4 hrs @ 100°c                                                      | 4 hrs - 150°C         | $3 hrs - 150^{\circ}c$                | None                                  | None                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sura Cuala Taiastian Tana Or          | 370 <sup>0</sup> C - B T                                           | +250°C T T            | 375°C T T                             | 350 <sup>0</sup> 0 T T                | 200 <sup>0</sup> C T T -                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mold Temp. <sup>O</sup> C             | 320 C - R.I.                                                       | 170°C H.T.            | 165°C H.T.                            | 100°C H.T.                            | 100°C H.T.                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post fure fucle Of                    | None                                                               | None                  | None                                  | None                                  | None                                                                                                             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | topenting of                          | None                                                               | Beautred for          | Nene                                  | None                                  | None                                                                                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annealing C                           | NORE                                                               | Larger Parts          | None                                  | wone                                  | None                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    |                       |                                       |                                       |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Density, kg/m                         | 1.21                                                               | 1.37                  | 1.29                                  | 1.19                                  | =1.40                                                                                                            |
| N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water Absorption, % in 24 Hours       | 0,15                                                               | 0.43                  |                                       | 0.15                                  | 0.05                                                                                                             |
| a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rockwell Hardness                     | 70M 118R                                                           | M 88                  |                                       |                                       | R 123                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tensile Strength MPa (psi)            | 58.6 (8500)                                                        | 82.7 (12 000)         | 71.7 (10 400)                         | 69 (10 000)                           | 79.1 (10 800)                                                                                                    |
| 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tensile Flongation 7                  | 50                                                                 | 8                     | 60                                    | 66                                    | *1.0 Colors                                                                                                      |
| 1 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Flexural Schength VDe (net)           | 87 7 (12 000)                                                      | 112 (16 000)          | 195 5 (12 (00)                        |                                       | 143 4 (20 000)                                                                                                   |
| a di se di s | Flexural Scrength, Mra (psi)          |                                                                    |                       | 100.0 (12 400)                        | 1000 (0.0                             | 143.4 (20 000)                                                                                                   |
| Lec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flexuari Modulus, MPa (psi)           | 20/0 (3.0 x 10)                                                    | 2415 (3.5 x 10')      | 2280 (3.3 x 10 <sup>-</sup> )         | 1900 (2.9 x 10")                      | 4140 (6 x 10 )                                                                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Compressive Strength, MPa (psi)       | 87.2 (12 500)                                                      | 82.7 (12 000)         |                                       |                                       | 113 (16 000)                                                                                                     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120D Impact, Notched, ft 1b/in        | Δ12                                                                | *1.6                  | 12.0                                  | 3.0                                   | *0,8                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat Deflection, °C -                 | 132°C (270°F)                                                      | 203°C (398°F)         | 204°C (400°F)                         | 172°C (340°F)                         | 138°C (278°F)                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1820 kPa (264 psi)                    |                                                                    |                       |                                       |                                       |                                                                                                                  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum Service Use, <sup>O</sup> C   | 110°C (230°F)                                                      | 175°C (348°F)         | 290°C (554°F)                         | 160°C (318°F)                         | and the second |
| fet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oxygen Index                          | 35                                                                 | 37                    | 39                                    |                                       | 48                                                                                                               |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flammability Resistance -             | (0.30) Passes                                                      | Passes (0.030)        | (0.039) Passes                        | (0.090) Passes                        | (0.030) Passes                                                                                                   |
| - i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASTM F501-77                          |                                                                    |                       |                                       |                                       |                                                                                                                  |
| <u>64</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FAR 853 - 60 sec Vertical Test -      |                                                                    |                       |                                       | 1                                     |                                                                                                                  |
| ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flame Out                             | 5                                                                  | 3                     | n                                     |                                       | 1                                                                                                                |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Glow Time                             | 0                                                                  | Δ0                    | Δn                                    |                                       | 0                                                                                                                |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Burn Length                           | 8 cm                                                               | 3 cm                  | 1.5 cm                                |                                       | 1.5 cm                                                                                                           |
| The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Socke Instates D = 6 sis (D )         | (060) 110                                                          | 20                    | E                                     | 80 100                                | 100                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | smoke ignition b = 6 min (n)          | (000) 110                                                          | 20                    | 10000                                 | 80 - 100                              | 1.0                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IGA C                                 |                                                                    | - 4411 C              | 1 500 0                               |                                       | 43'I C                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toxic Gas Emissions                   | Very Low                                                           | Low                   | Minimal                               | Minimal                               | Low                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solvent Resistance                    | Poor                                                               | Poor                  | Good                                  | Fair                                  | Excellent                                                                                                        |
| f I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Humidity Stability                    | Good                                                               | Good                  | Excellent                             | Good                                  | Good                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stress Crack Resistance               | Good                                                               | Fair                  | Good                                  | · · · · · · · · · · · · · · · · · · · | Fair                                                                                                             |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cleanability                          | and the second                                                     |                       |                                       |                                       |                                                                                                                  |
| P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Common Maintenance                    | Fair                                                               | Good                  | Good                                  | Good                                  | Good                                                                                                             |
| Cen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commented 21 classes - with           | Tat-                                                               | Det -                 | 0004                                  | Good                                  | 0000                                                                                                             |
| L I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ammonia                               | rair                                                               | rair                  | G <b>00</b> 0                         | 1000d                                 | 000g                                                                                                             |
| Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trichloroethane                       | Poor                                                               | Fair                  | Good                                  | Fair                                  | Good                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hitra-Violet Light Pasistenes         | Good                                                               | Good                  | Cood                                  | ,                                     | Good                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Abrasian Desisters                    | Fair                                                               | 2                     | 2                                     | ,                                     | 9                                                                                                                |
| <u>  </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AUSUSIUM ASSAULT                      | • 941                                                              |                       |                                       | <u> </u>                              | •                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cost of Processing                    | Equal to present                                                   | May require heated    | Requires heated                       | May be used                           |                                                                                                                  |
| 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | type polycarbonate                                                 | ales                  | dies and high                         | can present                           |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                                    | and the second second | equipment                             | -dethueue                             |                                                                                                                  |
| ┝──┤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | - Mari bar                                                         |                       |                                       |                                       | Allow buildette                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <ul> <li>may be substituded</li> <li>directly in system</li> </ul> | very low              | but offers other                      |                                       | avery prittle                                                                                                    |
| rk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                                                    |                       | good features with                    |                                       | 17% heavier than                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | As Impact resistance                                               | △Does not drip        | respect to fire                       |                                       | present material                                                                                                 |
| až                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Presty tubtoasd                                                    |                       | SALELY                                |                                       |                                                                                                                  |
| 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a shi fa farsha shi sa shi sh         |                                                                    |                       | △Does not drip                        |                                       |                                                                                                                  |



### TABLE II. - PRELIMINARY DATA - INJECTION MOLDING MATERIALS (Continued)

|        | Properties                                       |                                                                | · · · · · · · · · · · · · · · · · · · |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|--------------------------------------------------|----------------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Charlest Name                                    | Reluend de Treide                                              | Balantiauliding Elwarida              | Polyinida Alloy                    | Paluanul aulfana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Chemical Name                                    | Polyanide-Inide                                                | Folovinoridine Fiddride               | Tolyinite Alloy                    | roivarvi-suitone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Irade Name                                       | Torion 4203                                                    | Kyner                                 | Tribolon XI-1211                   | ASTREL #360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | Vendor                                           | Anoco Unemicals                                                | Pennwalt                              | Fluorocarbon                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7      | Finished Form                                    | Shall Pellets                                                  | Small Pellets                         | Small Pellets                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Raw Material Cost, 5/16                          | 4.00                                                           |                                       | *12,50                             | *\$75.00/15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ð      | Colors Available                                 | Dark Brown                                                     | Black                                 | Dark Brown                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Paint Systems                                    | 7                                                              | No                                    | ? Possible                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Adhesive Bonding - Available                     | Epoxy                                                          | *No                                   | ? Possible                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Availability                                     | Limited Production                                             | Limited Production                    | Limit Small Parts                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Drying Requirements                              | S hrs at 120°C                                                 | None                                  | 2 hrs - 130°C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| gutes  | Cure Cycle Injection Temp. °C -<br>Mold Temp. °C | 360°C I.T<br>260°C M.T.                                        | 300°C - R.T.                          | 370°C L.T<br>180°C M.T.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Loce   | Post Cure Cycle <sup>o</sup> C                   | *96 hrs (130°C to<br>260°C)                                    | None                                  | 12 hrs 20°C te<br>260°C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Annealing °C                                     |                                                                | None                                  |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1      | Density, kg/m <sup>3</sup>                       | 1.40                                                           | *1.80                                 | *1,45                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| T.     | Water Absorption, Z in 24 Hours                  | 0,28                                                           |                                       |                                    | $(-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)^{-1} = (-1)$ |
| 1      | Rockwell Hardness                                |                                                                | 109                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Teneile Strength WPs (nei)                       | 186 (27 000)                                                   | 41.6 (6000)                           | 48.5 (7000)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -      | Tensile Flongation *                             | 12                                                             | 50 + 200                              | 8                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5      | Flevural Strength, MPa (net)                     | 207 (30 000)                                                   |                                       | 72.4 (10.500)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Flexural Modulus, MPa (ngi)                      | 1720 (2.5 + 10 <sup>5</sup> )                                  | $1380 (2.0 \times 10^5)$              | $4147 (6.1 \times 10^5)$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Me     | Compressive Strength, MPa (nei)                  | 275 (40 000)                                                   | 59.4 (8600)                           | 87.2 (12 500)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | IZOD Impact. Notched. ft 1h/in                   | 2.3                                                            | 5                                     | #1.1 to 2.5                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                                  |                                                                |                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Heat Deflection, C<br>1820 kPa (264 psi)         | 274°C (525°F)                                                  | 82°C (180°F)                          | 250°C (4/2°F)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14 - A | Maximum Service Use. °C                          | 250°C                                                          | 70°C                                  | 225°C                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ety    | Oxvgen Index                                     | 41                                                             | 45                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e Saf  | Flammability Resistance -                        | (0.30) Passes                                                  | Passes                                | Passes                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L.     | FAR 853 - 60 sec Vertical Test -                 | the second second second                                       |                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7      | Flame Out                                        | n                                                              | 0                                     | 0                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Glew Time                                        | 0                                                              |                                       | Ín                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Burn Length                                      | 1.2 cm                                                         | 2 cm                                  | 1 cm                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Pe   | Smoke Ignition D = 6 min (D)                     | 10                                                             | • • • •                               | 1                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | TCA OC                                           | 45000                                                          | 150 <sup>0</sup> C                    | 45000                              | 55000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | Toric Gas Emissions                              | Minimal                                                        | High HF                               | Minimel                            | Minimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                  |                                                                |                                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Solvent Resistance                               | Excellent                                                      | Good                                  | Excellent                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.<br> | Humidity Stability                               | G000                                                           | Good                                  | Good                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5      | Stress Gheck Resistance                          | GOOD                                                           | GOOD                                  | GOD                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E E    | Gleanability                                     |                                                                | ••••••••                              |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - de   | Common Maintenance                               | Depends on Paint                                               | Depends on Paint                      | Depends on Paint                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rvic   | Ammonia                                          | Depends on Paint                                               | Depends on Paint                      | Depends on Paint                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S      | Trichloroethane                                  | Depends on Paint                                               | Depends on Paint                      | Depends on Paint                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · ·    | Ultra-Violet Light Resistance                    | Depends on Paint                                               | Depends on Paint                      | Depends on Paint                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | Abrasion Resistance                              | Depends on Paint                                               | Depends on Paint                      | Depends on Paint                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Misc   | Cost of Processing                               | *Processing costs<br>for stress relief<br>would be prohibitive |                                       | High material and processing costs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| arks   |                                                  |                                                                | *Prohibitive weight<br>cost           | *Low impact<br>strength            | *Too costly<br>to be considered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| an i   |                                                  |                                                                | *Is not bondable                      | *Higher density                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|        | Properties                                                                                                                                                                                                                          |                                                                         |                                                                                                                |                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|
|        | Chemical Name                                                                                                                                                                                                                       | Abs - Polysulfone                                                       | Polyphenylsulfone                                                                                              | Arometic Polvester          |
|        | Trade Name                                                                                                                                                                                                                          | XP-779                                                                  | Radel                                                                                                          | E200 - 3Z                   |
|        | Vendor                                                                                                                                                                                                                              | Uniroyal                                                                | Union Carbide                                                                                                  | Mensento                    |
|        | Finished Form                                                                                                                                                                                                                       | Thermo-Sheet                                                            | Thermo-Sheet                                                                                                   | Thermo-Sheet                |
| ra!    | Raw Material Cost, \$/15.                                                                                                                                                                                                           | 5.00                                                                    | *\$30/15                                                                                                       | 5,00                        |
| - De   | Colors Available                                                                                                                                                                                                                    | Some -                                                                  | Yes                                                                                                            | Possible                    |
|        |                                                                                                                                                                                                                                     |                                                                         |                                                                                                                |                             |
|        | Paint Systems                                                                                                                                                                                                                       | Yes                                                                     | ?                                                                                                              | 7                           |
|        | Adhesive Bonding                                                                                                                                                                                                                    | Yes                                                                     | ?                                                                                                              | ?                           |
|        | Availability                                                                                                                                                                                                                        | Limited Production                                                      | Limited                                                                                                        | In Development              |
|        | Drying Required                                                                                                                                                                                                                     | 120°C for 10 hrs                                                        | 150°C 4 hrs                                                                                                    | None                        |
| 1      | Cure Cycle (Forming) <sup>O</sup> C                                                                                                                                                                                                 | 250°C                                                                   | 250°C                                                                                                          | 250°C                       |
| ie j   | Post Cure Cycle <sup>O</sup> C                                                                                                                                                                                                      | None                                                                    | None                                                                                                           | None                        |
| Pr.    | Annealing                                                                                                                                                                                                                           | None                                                                    | None                                                                                                           | None                        |
| 1      | Denetry kg/m <sup>3</sup>                                                                                                                                                                                                           | 1.26                                                                    | 1.29                                                                                                           | 1.20                        |
| - fe   | Water Absorption, I in 24 hours                                                                                                                                                                                                     |                                                                         |                                                                                                                | 0,15                        |
| À      | Rochvell Hardness                                                                                                                                                                                                                   | 119                                                                     |                                                                                                                |                             |
|        |                                                                                                                                                                                                                                     | FE 2 (800)                                                              |                                                                                                                | 60 (10 000)                 |
| -      | Tensile Strength MPa (nsi)                                                                                                                                                                                                          | 55.2 (8000)                                                             | (1.7 (10 400)                                                                                                  | 03 (TO 000)                 |
| C      | Tensile Elongation, 7                                                                                                                                                                                                               | 40%                                                                     | 00%                                                                                                            |                             |
| nan    | Flexural Strength, MPa (psi)                                                                                                                                                                                                        | 86.0 (12 500)                                                           | 85.5 (12 400)                                                                                                  |                             |
| Lec.   | Flexural Modulus, MP2 (ps1)                                                                                                                                                                                                         | 2205 (320 000)                                                          | 2280 (330 000)                                                                                                 |                             |
|        | Compressive Strength, MPA (psi)                                                                                                                                                                                                     |                                                                         | 10.0                                                                                                           |                             |
|        | 1200 Impace, Notenad, re 16/1n                                                                                                                                                                                                      | y                                                                       | 12.0                                                                                                           |                             |
|        | Heat Deflection, C 1820 kPa<br>(264 psi)                                                                                                                                                                                            | 149°C (300°F)                                                           | 204°C (400°F)                                                                                                  | 170°C (338°F)               |
| 2      | Maximum Service Use, <sup>O</sup> G                                                                                                                                                                                                 | 135°C                                                                   | 185°C                                                                                                          | 160°C                       |
| Ę.     | Oxygen Index                                                                                                                                                                                                                        | 30                                                                      | 39                                                                                                             | 35                          |
| S.     | Flammability Resistance ASTM                                                                                                                                                                                                        |                                                                         | la de la composición |                             |
| It     | FAR 853-60 sec Vertical Test -                                                                                                                                                                                                      | (0.060) Passes                                                          | (0.030) Passes                                                                                                 | (0,080) Passes              |
| P      | Flame-Out                                                                                                                                                                                                                           | 5 sec                                                                   | 0                                                                                                              |                             |
|        | Glow Time                                                                                                                                                                                                                           | 0                                                                       | 0                                                                                                              | a transformation and the    |
| 1      | Burn Length                                                                                                                                                                                                                         | 7.5 cm                                                                  | 1 cm -                                                                                                         |                             |
| H      | Smoke Ignition P <sub>s</sub> - 6 min (D <sub>m</sub> )                                                                                                                                                                             | (0.060) 105                                                             | 4                                                                                                              | 30-100                      |
|        | TGA                                                                                                                                                                                                                                 | 400°C                                                                   | 450°C                                                                                                          |                             |
| }      | Toxic Gas Emissions                                                                                                                                                                                                                 |                                                                         | Very Minor Only Co<br>Co 4 SO                                                                                  | Minimal                     |
|        | Solvent Resistance                                                                                                                                                                                                                  | Better Than Stand-                                                      | Fair                                                                                                           | Fair                        |
|        |                                                                                                                                                                                                                                     | ard Polycarb                                                            | Cond                                                                                                           | Pand                        |
| 5      | Humidity Stability                                                                                                                                                                                                                  | Good                                                                    | Better Thun Crandsod                                                                                           | Better Than Polynarhonate   |
| HH     | SCREES GRACK RESISTANCE                                                                                                                                                                                                             |                                                                         | Polycarbonate                                                                                                  | Dector ritan (Office Dougle |
| Ceal   | Cleanability                                                                                                                                                                                                                        | Good                                                                    | Good                                                                                                           | Good                        |
| N N    | Common Maintenance                                                                                                                                                                                                                  | Good                                                                    | Good                                                                                                           | Good                        |
| Se     | Trichloroethane                                                                                                                                                                                                                     | Poor                                                                    | Good                                                                                                           | Fair                        |
|        | Ultra-Violet Light Resistance                                                                                                                                                                                                       | Cood                                                                    | 1                                                                                                              | ?                           |
|        | Abrasion Resistance                                                                                                                                                                                                                 | Fair                                                                    | ?                                                                                                              | ?                           |
| 2<br>B | Cost of Processing                                                                                                                                                                                                                  | Minimal                                                                 | Requires heated dies                                                                                           | May require heated dia      |
| H      |                                                                                                                                                                                                                                     |                                                                         | equipment,                                                                                                     | anne mach dean hacrat       |
|        |                                                                                                                                                                                                                                     | <ul> <li>Does not offer<br/>any advantage</li> </ul>                    | *Cost may be<br>prohibited except                                                                              |                             |
| -      |                                                                                                                                                                                                                                     | over present                                                            | for special areas,                                                                                             |                             |
|        | per la construction de la construct<br>La construction de la construction d | And horares                                                             |                                                                                                                |                             |
|        |                                                                                                                                                                                                                                     | <ul> <li>Material costs<br/>about 50% higher<br/>than F-6000</li> </ul> |                                                                                                                |                             |

## TABLE III. - PRELIMINARY DATA - THERMOFORMING MATERIALS

## TABLE III. - PRELIMINARY DATA - THERMOFORMING MATERIALS (Continued)

|          | Properties                                            |                                                           |                                                     |                                              |
|----------|-------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|
|          | Chemical Name                                         | Acrylic/PVC                                               | Chlorinated PVC                                     | Polycarbonate                                |
|          | Trade Name                                            | DKE 500X                                                  | Boltiron 8000                                       | Lexan EF-6000                                |
|          | Vendor                                                | E. I. Dupont                                              | General Tire                                        | General Electric                             |
|          | Finished Form                                         | Thermoformed                                              | Thermoformed                                        | Thermo-Sheet                                 |
|          | Raw Material Cost, \$/1b.                             | 2,50                                                      | 2,50/15                                             | 3.00                                         |
| Cen      | Colors Available                                      | Yes-Light to Dark                                         | *Some - Thickness<br>limited                        | Opaque Colors and<br>texture                 |
|          | Paint Systems                                         | Yes - Available                                           | Yes                                                 | Yes - Urethane                               |
|          | Adhesive Bonding                                      | ? Yes                                                     | Available - Good                                    | Yes - Urethane                               |
| :        | Availability                                          | Limited Production                                        | Back in Development                                 | Limited Production                           |
|          | Drying Required                                       | None                                                      | None                                                | 120°C for 6 hrs                              |
| lu l     | Cure Cycle (Forming) °C                               | 190°C (374°F)                                             | 190°C (374°F)                                       | 190°C (390°F)                                |
| E.       | Post Cure Cycle C                                     | None                                                      | None                                                | None                                         |
| L.       | Annesling                                             | None                                                      | None                                                | None                                         |
|          |                                                       |                                                           | A1 F7                                               | 1 11                                         |
|          | Density, Kg/m                                         | 1.26                                                      | -1.3/                                               | 0.10                                         |
| hy a     | water Absorption, 2 in 24 hours                       | 106                                                       |                                                     | 10/0                                         |
| <b>P</b> | ROCKWEIL HEIGNESS                                     | 100                                                       | ·                                                   | 1949                                         |
|          | Tensile Strength, MPa (psi)                           | 41.4 (6000)                                               | 37.9 (5500)                                         | 66.2 (9600)                                  |
| 19       | Tensile Elongation, %                                 | 1207                                                      | 407                                                 | 75%                                          |
| Te a     | Flexural Strength, MPa (psi)                          | 69 (10 000)                                               | 69 (10 000)                                         | 92 (13 500)                                  |
| ech      | Flexural Modulus, MPa (psi)                           | 2565 (370 000)                                            | 2280 (330 000)                                      | 2130 (308000)                                |
| <b>X</b> | Compressive Strength, MPa (psi)                       | 58.6 (8500)                                               | e e .                                               | 14.0                                         |
|          | 1200 Impact, Notched, rt 10/1n                        | 0,0                                                       | 0,0                                                 | 14,0                                         |
|          | Heat Deflection, <sup>O</sup> C 1820 kPa<br>(264 psi) | 87.5°C (190°F)                                            | 87,5"C (190°F)                                      | 121°C (252°F)                                |
| 5        | Maximum Service Use, °C                               | 82°C (180°F)                                              | 82°C (180°F)                                        | 110°C (230°F)                                |
| , i      | Oxygen Index                                          | 28                                                        | 45                                                  | 34                                           |
| 9.       | Flammability Resistance ASTM                          |                                                           |                                                     |                                              |
| 114      | FAR 853-60 sec Vertical Test -                        | Passes                                                    | Passes                                              | Passes (030)                                 |
| P .      | Flame-Out                                             |                                                           | 0                                                   | 5 sec                                        |
|          | Glow Time                                             |                                                           | 0                                                   | 0                                            |
| G.       | Burn Length                                           |                                                           | 10 cm                                               | 10 cm                                        |
| F        | Smoke Ignition D = 6 min (D )                         | *(0.063) 200                                              | (0.060) 140                                         | (0.000) 124                                  |
|          | TGA                                                   | (1107.0)                                                  | (1)(7) 7)                                           | Manan                                        |
|          | Toxic Gas Emissions                                   |                                                           | (ACL?)                                              | minor                                        |
|          | Solvent Resistance                                    | Fair                                                      | Fair                                                | Fair .                                       |
|          | Humidity Stability                                    | Good                                                      | Good                                                | Good                                         |
| 1110     | Stress Crack Resistance                               | Good                                                      | Good                                                | Fair (Better Than<br>Standard Polycarbonate) |
|          | Cleanability                                          | Good                                                      | Good                                                | Good                                         |
| Σ.       | Common Maintenance                                    | Good                                                      | Good                                                | Good                                         |
| S.       | Trichloroethane                                       | Fair                                                      | Fair                                                | Poor                                         |
|          | Ultra-Violet Light Resistance                         | 1 marsh 1                                                 | Good 60 hr                                          | Good                                         |
|          | Abrasion Resistance                                   | Good                                                      | Good                                                | Fair                                         |
| Misc     | Cost of Processing                                    | Minimal                                                   | Minimal                                             | Minimel                                      |
|          |                                                       | No New Tooling                                            | No New Tooling                                      | • Still questionable<br>for areas where      |
| aarike   |                                                       | *May be too high<br>but much better<br>than ABS presently | *Density Wt Cost<br>(40%)                           | continuous cleaning<br>required.             |
|          |                                                       | uzed in high wear areas.                                  | *Limited thickness -<br>colors width and<br>texture |                                              |

One elastomeric type resin material, fluorel from the 3M Company was added to the thermoplastic category by the NASA Technical Monitor. This material is in a very early development stage. However, in work done previously by NASA-JSC, excellent fire resistant properties are indicated.

#### SELECTION OF POLYMERS

Selection of polymers to be further evaluated was based on their ability to most closely meet the tentative material specification goals listed in Table IV, with the following added premises regarding development status:

- A material in production which most closely approaches the tentative program specification goals.
- A polymer in pilot plant development which most closely approaches the tentative specification goals although present costs may be prohibitive.
- A polymer in early research development which offers potential to meet the goals with minor economic impact.

Materials selected for further evaluation for each category made with the technical monitor's concurrence were as follows:

#### Compression Molding Materials

- Production Phenolic Resin System Fiberite MXB 6032 (LAC-C-22-1339)
- Ciba Geigy Fiberdux 917
- NARMCO 8250 and 9252
- Fiberite MXB 607L
- Polymide foam/glass (Solar)

#### Injection Molding Materials

- G.E. Lexan #940, polycarbonate
- Monsanto #E200-3Z, aromatic polyester
- Union Carbide Radel 5010N, polyphenyl sulfone

#### TABLE IV. - TENTATIVE MATERIAL GOALS

| Chemical or                                                                         | T                                       | Test Method<br>FED. STD406              |                                         |                                                       |
|-------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------|
| Physical Property                                                                   | Thermoformed                            | Injection                               | Compression                             | Except as Noted                                       |
| Tensile Strength<br>MPa min (psi)                                                   | 41.3 (6000)                             | 41.3 (6000)                             | 55.2 (8000)                             | 1011 Speed C                                          |
| Impact Strength<br>(notched Izod)                                                   | (3.0)                                   | (3.0)                                   | (3.0)                                   | 1071                                                  |
| (ft lb/in of notch)                                                                 | 153                                     | 153                                     | 153                                     |                                                       |
| Flexural Strength<br>MPa min (psi)                                                  | 55.2 (8000)                             | 55.2 (8000)                             | 69.0 (10000)                            | 1031                                                  |
| Elongation %<br>min at break                                                        | 20                                      | 5                                       | 5                                       | 1011 Speed C                                          |
| Mod of Elasticity<br>MPa (psi)                                                      | 2070 (300000)                           | 2070 (300000)                           | 2070 (300000)                           | 1031                                                  |
| Specific Gravity<br>max                                                             | 1.40                                    | 1.30                                    | 1.30                                    | 5011                                                  |
| Heat of Deflect<br>Temp <sup>O</sup> C( <sup>O</sup> F) min<br>@ 1820 kPa (264 psi) | 121°C (250°F)                           | 121°C (250°F)                           | 148.5°C (300°F)                         | ASTM D648                                             |
| Color Fastness<br>Fade-O-Meter                                                      | 50 hr min                               | 50 hr min                               | 50 hr min                               | Fed. Std. 191 5060                                    |
| Stress Cracking<br>Resistance<br>Solvent Test                                       | No visible<br>cracks                    | No visible<br>cracks                    | No visible<br>cracks                    | LAC C-22-1115 D<br>Method 4.1.1.1                     |
| Oxygen Index (LOI)<br>min                                                           | 40                                      | 40                                      | 40                                      | ASTM D-2863                                           |
| Smoke Optical<br>Density (DMS) max<br>(6 minutes)                                   | 75                                      | 75                                      | 75                                      | NBS Smoke Chamber<br>AMINEO COT #4-5800               |
| Thermal Stability<br>(TGA) min <sup>O</sup> C ( <sup>O</sup> F)                     | 205 <sup>°</sup> C (400 <sup>°</sup> F) | 205 <sup>°</sup> C (400 <sup>°</sup> F) | 205 <sup>°</sup> C (400 <sup>°</sup> F) | Thermogravimetric<br>Analysis                         |
| Flammability<br>Screening Test<br>60 sec vertical<br>Test Method                    | 5 sec<br>extingh. max<br>no drip        | 5 sec<br>extingh.<br>max no<br>drip     | 5 sec<br>extingh.<br>max, no<br>drip    | FAA 25.853a<br>Appendix F                             |
| Bondable Lap<br>Shear MPa min (psi)                                                 | 3.55 (500)                              | 3.55 (500)                              | 3.55 (500)                              | 1.27 cm overlap<br>(1200-1400 psi)<br>8.27 - 9.58 MPa |
| 180 <sup>0</sup> Peel N/m                                                           | 1400 (8 ppi)                            | 1400 (8 ppi)                            | 1400 (8 ppi)                            | 5.1 cm/min<br>(2 in/min) jaw sep.                     |

#### Thermoforming Sheet Materials

- G.E. Lexan EF-6000, polycarbonate
- 3M Fluorel Polymer
- Monsanto E200-3Z or Polymide/Glass (Solar)

About the middle of the contract period, and after working with some of the development materials, it was established that certain resin or polymer materials could only be made by the compression molding process. Work was continued on both the Solar polymide/glass foam material and the 3M Fluorel by compression molding with heat and pressure to form the materials. Also, during the last half of the contract it became apparent that the injection molding material from Monsanto, E200-3Z, did not possess the same degree of flame resistance in thinner sections as it initially appeared to have in thicker samples examined at JSC and at Lockheed. Therefore, another injection molding material was obtained for evaluation from ICI, a new version of polyethersulfone, KM-1. ICI stated that the new version of PES had eliminated the earlier objections to its low stress crazing property without any reduction in its flame resistant properties. Also, the estimated material cost of PES was approximately 1/2 that of Radel 5010N injection molding material.

Efforts to obtain additional samples of EF-6000 thermoplastic sheet material from General Electric were unsuccessful during the remainder of the contract period due to production problems at G.E. Instead, G.E. F-6000 was substituted as the only available production status sheet material for fabrication of production parts. Two developmental sheet materials were ordered from Rohm and Hass, a sheet version of PES KM-1 resin and another polycarbonate material.

The PES polymer does not melt and drip as does the F-6000 polycarbonate sheet material, and also, the PES smoke emission is much lower. However, the material cost is 5 times that of the F-6000 polycarbonate sheet material presently used in production. In addition, tooling and processing costs are higher due to the requirement for heated dies and higher-temperature processing cycles.

The samples of polycarbonate from Rohm and Hass was obtained since it was stated that it had lower smoke emission than the presently used polycarbonate, and that it had been modified to obtain better service-cleaner resistance.

#### TRADE-OFF DATA

Data generated for the trade-off analysis covering the materials examined during the development program are shown in Tables V, VI, and VII. Flame and associated hazards data are covered in Figures 1 through 18 indicating the flame resistance characteristics and smoke emission levels of all the candidate materials. The material code for the test results is listed in Table VIII.

#### TABLE V. - COMPRESSION MOLDING MATERIALS (Trade-Off Data - Candidates)

and a second s

|                                                                   |                                     |                            |                       | i                     |                        |                                              |
|-------------------------------------------------------------------|-------------------------------------|----------------------------|-----------------------|-----------------------|------------------------|----------------------------------------------|
| Property                                                          | Basic LAC 22-1339<br>Phenolic/Class | Ciba/Geigy<br>Fiberdux 917 | Narmco<br>9252/Glass  | Narmco<br>8250/Glass  | Fiberite<br>MXB 6072   | Solar<br>Polyimide/Glass                     |
| Density                                                           | X                                   | X                          | х                     | x                     | x                      | Varied                                       |
| Flame Test Flame Ext. and Glow<br>60 Sec Vert<br>Burn Length (CM) | 3 - 11*<br>3.3 - 11.3*              | 0 - 3*<br>6.1 - 10.2*      | 3 - 4*<br>8.4 - 16.7* | 3 - 9*<br>3.8 - 11.9* | 1 - 10*<br>3.6 - 11.4* | 0 - 25.0*<br>3.0 - 8.6*                      |
| Smoke Test                                                        | 2.0                                 | 8.8                        | 3.0                   | 3.0                   | 5,8                    | 0.5                                          |
| Ds(6 Min)<br>(Flaming)                                            | 70.0*                               | 97.0*                      | 60.0*                 | 105.0*                | 58.0*                  | 67.0*                                        |
| TGA                                                               | 390 <sup>0</sup> C                  | 390 <sup>0</sup> С         | 290 <sup>0</sup> C    | 390 <sup>0</sup> С    | 390 <sup>0</sup> C     | 590 <sup>0</sup> C                           |
| Matl Cost                                                         | X                                   | 3X                         | 2.5X                  | 2.5X                  | 2X                     | 5X                                           |
| Processing<br>Costs                                               | X                                   | X                          | X                     | <b>X</b>              | <b>X</b>               | 2X plus<br>Expensive<br>Tooling              |
| Handling<br>Properties                                            | Adequate                            | Adequate                   | Adequate              | Adequate              | Adequate               | Limited<br>as supplied<br>to simple<br>Parts |
| Part Interply<br>Strength                                         | Adequate                            | Adequate                   | Adequate              | Adequate              | Adequate               | Adequate                                     |
| Impact<br>Resistance                                              | Good                                | Good                       | Good                  | Good                  | Good                   | Good                                         |

\*Tested with adhesively bonded decorative Tedlar

| Property                                      | Lexan 940                                 | E200-3Z                            | Radel 5010N                  | ICI, PES KM-1                |
|-----------------------------------------------|-------------------------------------------|------------------------------------|------------------------------|------------------------------|
| Density                                       | 1.21                                      | 1.19                               | 1.29                         | 1.37                         |
| LO1<br>TGA <sup>o</sup> C                     | 35<br>440 <sup>о</sup> с                  | 33 ?                               | 38<br>570 <sup>0</sup> C     | 36<br>570 <sup>0</sup> F     |
| Smoke Ds, (6 Minutes)                         | 110                                       | 90                                 | 3.2                          | 20                           |
| Material Cost                                 | 1.5X                                      | 2X                                 | 6X                           | 3.0X                         |
| Processing Cost                               | X                                         | 1.3X                               | 2X + Heated Die              | 2X +<br>Heated Die           |
| Impact Izod Notch<br>J/mm                     | 5.33J/mm (10 ft 1b/in)                    | 2.1J/mm (3 ft 1b/in)               | 6.4J/mm (12 ft 1b/in)        | 0.86J/mm<br>(1.6 ft 1b/in)   |
| <b>Availa</b> bility                          | Production/Colors                         | Development                        | Limit Pilot Plant            | Limited Production           |
| Elongation %                                  | 90                                        | 60                                 | 60                           | 10                           |
| Heat Deflection<br>°C @ 1820kPa               | 132 <sup>0</sup> C                        | 170°C                              | 204°C                        | 190 <sup>0</sup> C           |
| Cleaner & Solvent<br>Resistance               | Fair                                      | Good                               | Good                         | Good                         |
| Flame Test-60 Sec Vert<br>O Flame Ext. + Glow | 4 sec                                     | 2 sec                              | l sec                        | 1 sec                        |
| Melt, Drip, Burn                              | Melts - Drips, would<br>feed fire - 2 sec | Melts - Drips and<br>Burns - 7 sec | Chars - Does not<br>drip - O | Chars - Does not<br>drip - O |
| 0 Burn Length                                 | 7.5 cm                                    | 6,2 cm                             | 7 cm                         | 8.50 cm                      |

#### TABLE VI. - INJECTION MOLDING MATERIALS (Trade-Off Data - Candidates)

## TABLE VII. - THERMOFORMING MATERIALS (Trade-Off Data - Candidates)

| Property                                              | F-6000             | EF~6000                         | Polyethersulfone<br>KM-1            | *Fluorel (3M)                           |
|-------------------------------------------------------|--------------------|---------------------------------|-------------------------------------|-----------------------------------------|
| Density g/cc                                          | 1.21               | 1.21                            | 1,37                                | ?                                       |
| Flame Test 50 sec Vert.                               | n<br>Na secondaria |                                 |                                     |                                         |
| • Flame Out                                           | 4 sec              | 97.sec                          | l sec (glow)                        | 8 sec (glow)                            |
| • Melt and Drip                                       | l sec              | 1 sec                           | 0                                   | 0                                       |
| • Burn Length                                         | 7.5 cm             | 18.5 cm                         | 8,5 cm                              | 2.7 cm                                  |
| TGA <sup>O</sup> C                                    | 440 <sup>0</sup> C | 440 <sup>°</sup> C              | 550 <sup>0</sup> C                  |                                         |
| LOI                                                   | 33.5               | 33                              | 36                                  | ?                                       |
| Smoke D <sub>s</sub> (6 min)                          | 110                | 120                             | 20                                  | 10                                      |
| <pre>Impact IZOD Notch J/mm (ft lb/in)</pre>          | 5.35 (10)          | 6.42 (12)                       | 0.867 (1.6)                         |                                         |
| Heat Deflection -<br>1820 kPa <sup>o</sup> C          | 132 <sup>0</sup> C | 122 <sup>0</sup> C              | 190 <sup>0</sup> C                  |                                         |
| Cleaner and Solvent Resistance                        | Fair               | Fair                            | Good                                | Good                                    |
| Elongation %                                          | 90                 | 90                              | 20                                  | . ?                                     |
| Material Cost                                         | X                  | 1.33 X                          | <b>3</b> X                          | ?                                       |
| Availability                                          | Production         | Limited Production<br>(on hold) | Limited Production<br>Rohm and Hass | Development                             |
| Processing Costs                                      | X                  | <b>X</b> <sup>1</sup>           | 2X + Heated Dies<br>Required        | *Compression Molded<br>not Thermoformed |
| Surface 180 <sup>0</sup> Peel Bondable<br>N/M (lb/in) | 1750 (10)          | 1750 (10)                       | 1225 (7.0)                          | ?                                       |
|                                                       |                    |                                 | 1                                   |                                         |

\*Must be reinforced with glass fibers and compression molded to limited shapes.

#### TABLE VIII. - MATERIAL CODE

| Test No.           | Lab No.     | Material                 |
|--------------------|-------------|--------------------------|
| Material Test 1247 | FN501       | Ciba Geigy Fiberdux 917  |
| Material Test 1248 | FN503       | NARMCO 9252              |
| Material Test 1249 | FN505       | NARMCO 8250              |
| Material Test 1250 | FN507       | Fiberite MXB607L         |
| Material Test 1251 | FN510       | Fiberite 6032            |
| Material Test 1252 | FN501T      | FN501 + Tedlar Covering  |
| Material Test 1253 | FN503T      | FN503 + Tedlar Covering  |
| Material Test 1254 | FN505T      | FN505 + Tedlar Covering  |
| Material Test 1255 | FN507T      | FN507 + Tedlar Covering  |
| Material Test 1256 | FN510T      | FN510 + Tedlar Covering  |
| Material Test 1273 | FN30877-11A | Polyimide/glass          |
| Material Test 1274 | FN30877-11B | Polyimide/glass + Tedlar |
| Material Test 1258 | FN30877-10  | E200 – 3Z                |
| Material Test 1279 | FN30877-11C | Rohm & Haas 4360Z        |
| Material Test 1280 | FN30877-11D | Rohm & Haas KM-1 (PES)   |
| Material Test 1277 | FN30877-11E | Radel 5010N              |
| Material Test 1278 | FN30877-11F | EF-6000                  |
| Material Test 1283 | FN30877-15A | Fluorel 7-5              |

| PREPA          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y          |               | ATE                |             | L        | OCKH<br>DIVISIO | EED<br>N OF | -CAL         | IFO      | RNIA                                    | COMP    | A N Y    |        | -             | GE       |              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------------|-------------|----------|-----------------|-------------|--------------|----------|-----------------------------------------|---------|----------|--------|---------------|----------|--------------|
| CHECK          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    | Ţ           |          | RYE             | CAT         | ion ri       | ESEA     | RCH LA                                  | FCRATY  | DRY      |        | M             | ODEL     |              |
| APPRO          | VED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               |                    | 1<br>L<br>E |          | FIAN            | CAE)        | LTY/         | ∕ ສ∷ວາ   | E TES                                   | 2 P.EP( | DRT      |        | RI            | LPORT N  | io.          |
| MATE           | RIAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : TE       | מו בצו        | 12                 | 47          |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| MALTE          | P.TAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DE         | SCRIP         | 1011               | EN.         | 50       | C. 6.           | a-(         | seig         | y /      | Floor                                   | lere :  | 917      | F      |               | 9,1      | Yam.         |
| USE/           | USE/APPLICATION: Contract Cont |            |               |                    |             |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| Spec           | 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u>   | TAT MAT       | -11.II.Y           | TES:        | !<br>Tor | ਨੀ ਦੇਵ          | t. T        | boje         |          | -1100                                   |         | E        | )D: 50 | <u>Т</u> : "С |          |              |
| No.            | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | лe         | 'Fi           | 19                 | Time        |          | Time            |             | Time         |          | Length                                  | Out     | 1        |        | Copus         | ents     |              |
|                | se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | с.         | 50            | C.                 | 260         |          | "uC.            | -+-         | sec.         |          | 1                                       |         |          |        |               |          |              |
| 1              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2          | 0             | ,                  | r.          |          | 0               | 1           | Von          | -        | 2.7                                     | 1/25    |          |        |               |          |              |
| 7              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 0             |                    | 0           |          | 0               |             |              |          | 2.5                                     | Ves     |          |        |               |          |              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    | 0           |          | 0               | -           | "            |          | 2,1                                     | Ves     | <u> </u> |        | ·             |          |              |
| AVG            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 6             | 2                  | 0           |          | 0               | 1           | Von          | e        | 2.4                                     | Ves     |          | STES   | - //          | -her     | //           |
| ÷.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    |             | 1        |                 |             |              |          |                                         |         |          |        |               |          | -            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    |             |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| <b></b>        | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '0NE       | TEST.         |                    |             | 'S TY    | FE CH           | Δ           | R            |          |                                         |         | 0:14     | NT:S   |               |          |              |
| Spec           | imer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 110      | · · ·         |                    | +           | 1        | 2               | 6           | 3            |          | •                                       |         | •        |        |               |          | •            |
| <u>nic</u>     | knes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>s</u> - | in.           |                    | 1.0         | 8        | .00             |             | .00          | H        |                                         |         | •        |        |               |          |              |
| Excoo          | sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Are        | ans<br>a - 50 | i.in.              | 12          | -        | 1.1             | 17          | 8.2          | 7        |                                         |         |          |        |               |          |              |
| Gas            | Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sur        | e - pa        | sig                | Pi          | lot      | Pil             | ot          | Pil          | ot       |                                         |         |          |        |               |          |              |
| Irra           | diar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ice        | - vati        | ts/cm <sup>2</sup> | 2           | •5       | 2.              | 5           | 2.           | 5        |                                         |         |          |        |               |          | ÷.           |
|                | 20 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |               |                    |             |          |                 | 1           |              |          |                                         |         |          |        | Ī             | 1        |              |
|                | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | - <u> </u>    |                    |             |          |                 |             |              |          |                                         |         |          |        |               |          |              |
|                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |                    |             |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| đ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    |             |          |                 | ,           |              |          |                                         |         |          |        |               |          |              |
| lsus           | . F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               |                    | -+          |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| й<br>А         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _          |               |                    |             |          |                 |             | <u> </u>     |          |                                         |         |          |        |               | ··· ·    |              |
| lca            | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | ·             |                    |             |          |                 |             |              |          |                                         |         |          |        |               |          |              |
| 8              | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                    |             |          |                 |             | 1            |          | <i></i>                                 | en c    |          | -      | yee           | ]        |              |
| flc            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                    |             |          |                 |             | É            | <u> </u> |                                         |         |          |        |               | <u> </u> |              |
| foad           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |                    |             |          |                 |             |              |          | ··   ·- · · · · · · · · · · · · · · · · |         |          | •••    |               | • •      |              |
| 6              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | -                  |             |          |                 |             |              | 1. Ju    | ME                                      | in      | wa       |        |               |          |              |
| D <sub>S</sub> | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                    |             |          |                 |             |              |          | Smit                                    | terin   | 1        | ·      | <u> </u> -    |          | <sup>-</sup> |
| •              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                    |             | -        |                 |             |              | $\sim$   |                                         |         |          |        | -             | -<br>    |              |
|                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |               |                    |             | ••••     |                 |             | ) <u>-</u> - |          |                                         |         | ·        |        |               |          |              |
| •              | ਼ੋਰ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1             | .0                 | 2.          | 0        | 3.0             | )<br>me -   | ų<br>tein.   | .0       | 5.                                      | 0       | , ŭ      | 0      | 7.            | 0        | 8.6          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               | 1.                 |             |          |                 |             | • • • • • •  |          |                                         |         |          |        |               |          |              |

Figure 1. - Flame and smoke data - FN501 (material test 1247).

| PREI     | PARE        | 0.00                    |                   | TAC        |             |          | DCKH     | EEC         |          | IFO    |          | COMF<br>CORPOR | ANY           |       | P/                 | GE        |             |
|----------|-------------|-------------------------|-------------------|------------|-------------|----------|----------|-------------|----------|--------|----------|----------------|---------------|-------|--------------------|-----------|-------------|
| CHE      | CKEC        |                         |                   |            | Ţ           |          | RYE      | CAT         | ON RI    | ESEA   | RCII LA  | FCRA           | ORY           |       | M                  | 0081      |             |
| APP      | ROVE        | ED                      |                   |            | r<br>L      |          | FLAX     | <b>A</b> 3  | LTY,     | / 5.∹0 | KE TES   | T REF          | ORL           |       |                    | PORT N    | io.         |
|          | -1**1       | 747 0                   | 200 70            | . 12       | 10          |          | _        |             |          |        |          | -              |               |       |                    |           |             |
| NACE NO. |             |                         | 201 - 20<br>Remon | · /6       | F0<br>ÆN    | <u></u>  |          | _           |          | 92     | rz /     | R.             |               | No    | an e               | N h       | car         |
| *10      |             | שים שים.<br>מי שים דרכי |                   |            | -/          |          |          | R           |          | 1      |          | 7              |               | 2     |                    |           |             |
|          | 5/ <b>n</b> |                         | TA                |            | nug         | v av     | <u> </u> |             |          |        | ////     | -              | N. T. I. T. ( |       | <u>с</u><br>Э. : П |           |             |
| Spe      | æ.          | lyn.                    | Aiter             | rlaam      | Jlon        | 101      | nî ≧x    | t. 1        | rip 2    | X7     | aurn     | Flan           | ~             |       | Cours              | ente      |             |
| No       | 2.          | Tire<br>sec.            |                   | lme<br>.c. | Tire<br>Cec | -        | lime     | -           | Time     | _      | Let. 15  | n Ou           | 4             |       |                    |           |             |
|          |             | /                       |                   |            | -           | 1        | _        | -†-         | Alen     |        | - 4      |                | +             |       |                    |           | <del></del> |
|          |             | 60                      | 6                 |            |             |          | <i>L</i> | <b>_</b>  ' |          | -      | 20       | 713            |               |       |                    |           | ·           |
| 2        | -           | 60                      | 6                 | 2          | 5           | 1        | 5        |             | "        |        | 3.7      | Yng            | ·             |       |                    |           |             |
|          | 5           | 60                      | 0                 |            | 3           |          | 3        |             | "        |        | 3.4      | 1%.            | 5             |       |                    |           |             |
| AV       | 16          | 60                      | 0                 |            | 3           |          | 3        | T.          | 1/m      | 2      | 3.3      | X              | s /           | Pars  | M                  | 14        | 11          |
|          |             |                         |                   |            |             |          | -        |             |          |        | _        |                |               |       |                    |           |             |
|          |             |                         |                   |            |             |          |          | ļ           |          |        |          |                |               |       |                    |           |             |
|          |             | S. OK                   | E TEST            |            |             | S 🕾      | PE CI    | A: E        | <u></u>  |        |          |                | ocia:         | ::::s |                    |           |             |
| Sp       | eci         | men I                   | 0.                |            |             | 1 .      | 2        |             | (* )<br> | 3      |          |                |               |       |                    |           |             |
| Th:      | ick         | ness                    | - in.             |            | .0          | 8        | . 00     | 9           | .00      | 8      |          |                |               |       |                    |           |             |
| We:      | igh         | t - g                   | rans              |            | 6.5         | 1.5      | 6.6      | 1.4         | 7.4      | 7.0    |          |                | - •           |       |                    |           |             |
| Exp      | pos         | ed Ar                   | ea - s            | q.in.      | 6.          | 56       | 6.5      | 2           | 6.5      | K      |          |                |               |       |                    |           |             |
| Ga       | s P.        | ressu                   | re - p            | sig        | Pi          | lot      | Pil      | στ          | P11      | ot     |          |                |               |       |                    |           |             |
| Ir       | rad:        | iance                   | - wat             | ts/cm-     | 2           |          | 2.       | 5           | 2.       | 5      |          |                |               |       |                    |           |             |
|          | / •         |                         |                   |            |             |          |          |             |          |        |          | i              |               |       |                    |           |             |
|          | 9           | 0                       |                   |            |             |          |          |             | +        |        |          |                |               |       |                    | <u> </u>  |             |
|          | ¢           | 0                       |                   |            |             | 1        |          |             | ·        |        |          |                | - 1           |       |                    |           |             |
| đ        |             |                         |                   | · [        |             |          |          |             |          |        |          |                |               |       | [                  |           |             |
| ensi     | 70          | •                       |                   | ╎┼┼        |             |          |          |             |          | +      |          |                |               |       |                    |           |             |
| Ч<br>Й   | 6           | •                       |                   | 1          |             |          |          |             | -        | 1      |          |                | 1             |       |                    |           |             |
| Ica      |             |                         |                   |            |             |          |          |             |          |        |          |                |               |       |                    |           |             |
| ë        | <b>ي</b> ې  |                         |                   |            |             |          |          |             | +        |        |          |                |               | ·     |                    |           | <u> </u>    |
| J.c      | +           | 0                       |                   |            |             |          |          |             |          |        |          |                | ļ             |       |                    |           |             |
| ec1      | _           | -                       |                   | ·          |             |          |          |             |          | يتمر ا | , prost  | 16-            |               |       | _ ·                |           |             |
| ୟ        | 3           | ° 📑                     | _                 |            |             |          |          |             | <u>×</u> | +      |          |                |               |       |                    | <b> -</b> |             |
| - 8      | 2           | 0                       |                   |            | -           |          |          |             |          |        |          |                |               |       | ļ                  |           |             |
|          |             |                         | •                 |            | 1           |          |          | • •         |          |        | مر.<br>م | سفرا           | INC           |       |                    |           | :           |
|          | /0          | °                       |                   |            |             |          |          |             |          |        |          |                |               |       |                    |           |             |
|          |             | <u> </u>                | $\angle$          | <u> </u>   |             | 0        | 2 (      | )           | I        | 0      | F        | 0              | 1             |       | <u> </u>           | <u> </u>  | <u>.</u>    |
| •.       |             |                         | -                 |            | ٤,          | <b>.</b> | 5.0      | me -        | · Fin.   |        |          |                | U.            | .0    | 7.                 | .0        | 0.0         |



| PREPAR                                          |              | DATE                 | T                | LOCKHEE<br>A DIVISION D | D CALIFO          | RNIA C         |        | N Y<br>ION                            | PAGE                                   |          |  |  |  |
|-------------------------------------------------|--------------|----------------------|------------------|-------------------------|-------------------|----------------|--------|---------------------------------------|----------------------------------------|----------|--|--|--|
| CHECKE                                          | 0            | Ser                  | T                | RYE CA                  | WON RESEA         | RCH LAP        | CRATOR | Y                                     | MODEL                                  |          |  |  |  |
| APPROV                                          | ED           |                      |                  | FIAMA                   | eilfry/sko        | KE TEST        | REPOR  | 7                                     | REPORT                                 | 0.       |  |  |  |
| MACES                                           | TAL T        | EST ID:              | 249              |                         |                   |                |        |                                       |                                        |          |  |  |  |
| MACES                                           | AL D         | ESCRIPTION           | FN 3             | 05 Na                   | rmio              | 8250           | o R    | mag                                   | Vamer.                                 | H/c      |  |  |  |
| USE/APPLICATION: Side wall Pare / Window Reveal |              |                      |                  |                         |                   |                |        |                                       |                                        |          |  |  |  |
|                                                 |              | TAWAHILI             | Y TEST           |                         |                   |                | ХŒ     | 1710D: 70                             | w.tm                                   |          |  |  |  |
| Spec.                                           | Ign.<br>Time | After class<br>Time  | e ilowid<br>Fice | Tire                    | Drip Est.<br>Time | aurn<br>Ier ab | Flame  |                                       | Corsents                               |          |  |  |  |
|                                                 | Sec.         | 200.                 | 290.             | 24C.                    | 500.              | 1.1.6          | 0.1    |                                       |                                        |          |  |  |  |
| /                                               | 60           | 0                    | 4                | 4                       | None              | 1.5            | Yes    |                                       |                                        |          |  |  |  |
| 2                                               | 60           | 0                    | Z                | 2                       | "                 | 1.5            | 1/2 5  |                                       |                                        |          |  |  |  |
| 3                                               | 60           | 0                    | Z                | 2                       | 44                | 12             | 1/m    |                                       |                                        |          |  |  |  |
| NL                                              | 6.           |                      |                  | -                       | Alex              | 15             | Ľ      | 0                                     |                                        |          |  |  |  |
| 11.64                                           | 00           | , °                  |                  | 5                       | rone              | 1.5            | 1.1    | Passe                                 | s Metho                                | //       |  |  |  |
|                                                 |              |                      |                  |                         |                   | 4 -            |        |                                       |                                        |          |  |  |  |
|                                                 | STOK         | য় লন্দু <b>থ্</b> জ | 175              | ייאיים בעיר             | לגיז              |                |        |                                       |                                        |          |  |  |  |
| Speci                                           | men I        | 0.                   | 1 1              | · 2                     | 3                 | ,              |        |                                       |                                        |          |  |  |  |
| Thick                                           | ness         | - in.                | .07              | .07                     | 1.07              |                |        |                                       |                                        | •        |  |  |  |
| Weigh                                           | it - g       | rams                 | 7.1/6            | 4 6.2/1                 | + 6.2/13          |                |        | ·                                     | •                                      |          |  |  |  |
| Expos                                           | sed Ar       | ea - sq.in.          | 6.50             | 6.56                    | 6.56              |                |        |                                       |                                        |          |  |  |  |
| Gas F                                           | ressu        | re - psig            | Pilot            | Pilot                   | Pilot             |                |        |                                       |                                        |          |  |  |  |
| Irrad                                           | liance       | - watts/cm           | 2.5              | 2.5                     | 2.5               |                |        |                                       |                                        |          |  |  |  |
|                                                 | <b>~</b>     | •                    | - <b>↓∔↓∔</b> -  |                         |                   |                |        |                                       | ļ,                                     |          |  |  |  |
|                                                 | H            |                      |                  | ╺╋╼┊┾╺┊                 |                   |                |        |                                       |                                        |          |  |  |  |
|                                                 | 8            |                      |                  |                         |                   |                |        | : [                                   |                                        |          |  |  |  |
| E E                                             |              |                      | ·                |                         |                   |                |        |                                       |                                        |          |  |  |  |
| ens                                             |              |                      |                  |                         |                   |                |        |                                       |                                        |          |  |  |  |
| 1<br>1                                          | 6            | -                    |                  |                         |                   | _              |        |                                       |                                        |          |  |  |  |
| t1 ct                                           |              | · · · · · · · ·      |                  |                         |                   | -++            |        | ·•• •••                               | •••••••••••••••••••••••••••••••••••••• |          |  |  |  |
| 8                                               |              |                      |                  |                         |                   |                |        |                                       |                                        |          |  |  |  |
| PILI A                                          | ≠⊢           |                      | +                |                         |                   |                |        | · · · · · · · · · · · · · · · · · · · | <u> </u>                               |          |  |  |  |
| pec                                             |              |                      |                  |                         |                   |                |        | MAN 6                                 |                                        |          |  |  |  |
| 5                                               |              |                      | · [ ] []         |                         |                   |                |        |                                       |                                        |          |  |  |  |
| Dg                                              | 2            |                      |                  |                         |                   |                | ~      | VOME                                  | AMING                                  | +• • ••• |  |  |  |
| -                                               |              |                      |                  |                         |                   | X              |        | EXPO                                  | SIRE                                   |          |  |  |  |
| -                                               |              |                      |                  |                         |                   |                |        |                                       |                                        |          |  |  |  |
| •                                               | 0            | 1.0                  | 2.0              | 3.0                     | 4.0               | 5.0            | )      | 6.0                                   | 7.0                                    | 8.0      |  |  |  |
|                                                 |              |                      | ·                |                         |                   |                |        |                                       |                                        |          |  |  |  |

Figure 3. - Flame and smoke data - FN505 (material test 1249).

| CHECKED     I     RYE CANFON RESEARCH LAFORATORY       AFFROVED     I     RYE CANFON RESEARCH LAFORATORY       AFFROVED     I     TIANABILITY/SMOKE TEST REPORT       MATERIAL TEST ND:     ISSO       MATERIAL DESCRIPTION:     SOT Freerick MARS 607 L Re-ong.       USE/APPLICATION:     ISSO       MATERIAL DESCRIPTION:     SOT Freerick MARS 607 L Re-ong.       USE/APPLICATION:     ISSO       MATERIAL DESCRIPTION:     ISSO       MAT                               | Nomex<br>S |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| APPROVED     Image: TRANABILITY/SMOKE TEST REPORT       NATERIAL TEST ID:     1250       MATERIAL DESCRIPTION:     1000 Fiberife MARS 607 L Report       Spec.     1000 Fiberife Mars 607 L Report       No.     Time Time Time Time Length 000 Fiberife Mars 607 L Report       Spec.     1000 Fiberife Time 1000 Fiberife Mars 607 L Report       1     60     2       2     60     0       3     60     0 | Nomex<br>3 |
| NATERIAL TEST 10:     1250       MATERIAL DESCRIPTION:     1507 Fiberife MAXB 607 L Re-mag.       USE/APPLICATION:     160 Content       TTATABILITY SEST     MELNOD: TO IT       Spec. lyn. After Flene Jion Total Ext. Drip Ext. ourn     New Content       No. Time     Time       Sec. Doc. Dic.     Time       1     60     0       2     60     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nomex<br>s |
| MATERIAL DESCRIPTION:     Sof Fiberite MXB 607 L Re-meg.       USE/APPLICATION:     Interview Part Part Part Part Part Part Part Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nomex<br>3 |
| USE/APPLICATION: <u>TANASTLETY SEST</u><br>Spec. Ign. After Flane Jion Total Ext. Drip Ext. ourn<br>No. Time Time Time Time Length Out<br>Sec. 200. 290. 790. Sec. 17.<br>1 60 0 2 2 2 None 1.9 1.5<br>2 60 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3          |
| TATTAFILITY SEST       NETHOD: TO ST       Spec. lyn. Arber Flame Jick Tonal Ext. Drip Ext. surn Time Length Off       No. Time Time Time Time Time Length Off       Sec. Dec. Dec. Sec. In.       1     60     0     2     2     None     1.9       2     60     0     0     0     "     1.5     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S          |
| No. Time Time Time Time Time Time Length $Oor$ Concent<br>sec. Doc. Dec. Sec. Sec. In.<br>1600222 Now $197452600000$ $000$ $000$ $000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 2 60 0 0 0 0 . 1.5 VAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 6 00 0 0 0 " 1.5 Vas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| AVI, 60 0 0 0 None 1.4 Viz lasses Mer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | //         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| SIGKE TEST IPS TYPE CHAINER CLARENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| $\frac{\text{Specimen}}{\text{Thickness - in.}}  OS  OS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Weight - grams 5.9/12 5.0/105.3/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,          |
| Exposed Area - sq.in. 6.56 6.56 6.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Gas Pressure - psig Pilot Pilot Pilot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Irradiance - watts/cm <sup>2</sup> 2.5 2.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| G 6 ALANAING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •••• 1     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| L'ime - Fin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.0        |

Figure 4. - Flame and smoke data - FN507 (material test 1250).



Figure 5. - Flame and smoke data - FN510 (material test 1251).

| PREPAR | C. D. C. D. C.      | DATE                                   |        | LOCKHE       | ED-CALIFO        | RNIA C               |            |                                       | PAGE                   |                                                               |
|--------|---------------------|----------------------------------------|--------|--------------|------------------|----------------------|------------|---------------------------------------|------------------------|---------------------------------------------------------------|
| CHECKE | 0                   |                                        |        | RYE CA       | ITYON RESEA      | RCII IA              | CRATIO     | 37.                                   | MODEL                  |                                                               |
| APPROV | ED                  |                                        |        | FIACA        | IIIIY/S.:C       | KE TES               | P. REPOI   | 212                                   | REPORT N               | 0.                                                            |
| ***    | TAT. D.             |                                        |        |              |                  |                      |            |                                       | 1                      |                                                               |
| MACINE |                     |                                        | 52     | ~ ~ ~        | a.1              | •                    | _          |                                       | <b>a</b> <i>a</i>      | >                                                             |
| ····   | ע ערים<br>וייד זמכי |                                        | 6 may  | AR           | ione 7           | -UL                  | - ,e       | er oux<br>vecin                       | 9/7/2                  | prog                                                          |
| -32/ H |                     | ······································ | Eren . | Hell !       | enel             | NIA                  | deni<br>Vi |                                       | <u>ca</u>              |                                                               |
| Spec.  | 15a.                | arter class                            | JTOM   | onal Ext.    | Drip Ext.        | ourn                 | 100m       |                                       | Pormanta               |                                                               |
| No.    | 1220 B              | lize                                   | R Line | Tine         | Time             | i.en. th             | Out        |                                       | 00111261103            |                                                               |
|        | 30.1                |                                        |        |              | 500.             |                      |            |                                       |                        | *                                                             |
|        | 60                  | 0                                      |        | 2            | None.            | 7./                  | 100        |                                       |                        | •                                                             |
| Z      | 60                  | 0                                      | 4      | 4            | **               | 4.3                  | Per s      |                                       |                        |                                                               |
|        | 60                  | 0                                      | 2      | 2            | *1               | 3.7                  | 13         | -                                     |                        |                                                               |
| AVG    | 60                  | 0                                      | 3      | Ň            | None             | 4.0                  | Vat        | Pass                                  | s MA                   | JI                                                            |
|        |                     |                                        |        |              |                  |                      | [ ' '      |                                       |                        | •                                                             |
|        |                     |                                        |        |              |                  |                      |            |                                       |                        |                                                               |
|        | S. (C.Y.)           |                                        |        | CODE STAT    | 7170             |                      |            | 1255110                               |                        |                                                               |
| Speci  |                     |                                        |        | 2            | 1 3              |                      |            |                                       |                        |                                                               |
| Thick  | mess .              | • in.                                  | .04    |              | 6                |                      |            |                                       |                        | •                                                             |
| Weigh  | t - 21              | ams                                    | 10.0   | 10.01        | .00              |                      |            | •                                     |                        |                                                               |
| Droos  | ed Are              | ea - so.in.                            | 17     |              | 7.7              |                      |            |                                       |                        |                                                               |
| Gas P  | ressu               | e - psig                               | Pilo   | t Filot      | Filot            | •                    |            |                                       |                        |                                                               |
| Irrad  | iance               | - watts/cm <sup>2</sup>                | 2.5    | 2.5          | 2.5              | <b>.</b>             |            |                                       |                        |                                                               |
| 10     | -                   |                                        | 1      | 1 1          |                  | 1                    |            |                                       |                        |                                                               |
|        |                     |                                        |        |              |                  |                      | ••••••     | 4                                     | : خواجداد، مطلب م<br>ا |                                                               |
|        |                     |                                        |        |              |                  |                      |            | · · · · · · · · · · · · · · · · · · · |                        |                                                               |
| 8      | 0                   | + + + +                                |        |              |                  |                      |            |                                       |                        |                                                               |
| វ ប្   |                     |                                        | ••••   |              |                  | Fer                  | m          | (G                                    |                        |                                                               |
| Deni   |                     |                                        |        |              | L                |                      |            |                                       |                        |                                                               |
| 7 6    | 0                   | + + + +                                |        |              |                  |                      |            |                                       | ······                 |                                                               |
| tic    |                     |                                        |        |              |                  |                      |            | · · · · · · · · · · · · · · · · · · · |                        |                                                               |
| 8      |                     |                                        | ·      |              |                  |                      |            |                                       |                        |                                                               |
| ti.    | 0                   | + $+$ $+$ $+$ $+$                      |        |              |                  | -Ne                  | 1. 4       | AMIN                                  | £                      |                                                               |
| ec1    |                     |                                        | •••    |              |                  |                      |            |                                       |                        | •                                                             |
| 8      | -                   |                                        |        |              |                  |                      |            |                                       |                        | • • • • • • • • • • • •                                       |
| a 2    | 0                   |                                        |        |              |                  |                      |            |                                       |                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| H      |                     | • / • • •                              |        |              |                  |                      | ••• •      |                                       | •                      |                                                               |
|        |                     |                                        |        |              |                  |                      |            |                                       |                        |                                                               |
| •      |                     |                                        | - 2 10 |              |                  |                      |            |                                       |                        | <u> </u>                                                      |
| •      | v                   |                                        | 4.0    | S.O<br>L'ime | 4.0 -<br>- 1'in. | 5.                   | V s        | 0.0                                   | 1.0                    | 8.0                                                           |
|        |                     |                                        |        |              |                  | in the second second |            |                                       |                        |                                                               |

Figure 6. - Flame and smoke data - FN501 (material test 1252).



Figure 7. - Flame and smoke data - FN503 (material test 1253).



Figure 8. - Flame and smoke data - FN505 (material test 1254).

## OF POOR QUALITY

| -              |      |              | · >        | DATE               |                              | L (      |                | IEEI           |                | FOF           |       | C O M P    | A N Y               |                  | P*           | GE     |          |
|----------------|------|--------------|------------|--------------------|------------------------------|----------|----------------|----------------|----------------|---------------|-------|------------|---------------------|------------------|--------------|--------|----------|
| CHI            | CXE  | ,            |            |                    | Ţ                            |          | RYE            | CAL            | YON RE         | SFAR          | CT LA | CPAT       | ORY                 |                  | M            | DDEL   |          |
| AP             | ROVI | D            |            |                    | Ť                            |          | TA:            | CAR            |                | S.OF          | Œ CES |            | 030                 |                  | R            | PORT N | o,       |
| <u> </u>       |      |              |            |                    | C                            |          |                |                |                |               |       |            |                     |                  | 1            |        |          |
| 3:A            | UTE? |              | est io     | : /2               | -رسی                         |          |                | _              |                |               | /     |            |                     | -                | 1            |        |          |
| XA.            | UE!  | IAL D        | ESCRIP     |                    | EN                           | 150<br>N | 27             | ć              |                | 77            |       | 15<br>Za 1 | 60 ;<br>; ; ; ; ; ; | 1 <u>2</u><br>40 | - Ag         | ng     | 2        |
| บร             | SE/A | PPLIC        | ATTOI:     |                    | S. denal Port / dinder Regen |          |                |                |                |               |       |            |                     |                  |              |        |          |
|                |      |              | <u> </u>   | FILITY             | . CES                        |          |                |                |                |               |       |            | NELTO               | D: 5             | <u>л, зй</u> |        |          |
| So             | ÷C.  | isu.<br>Tice | Alter<br>P | -138£              | liion<br>No inn              | lion     | గు⊥ ±x<br>⊽కాం | : <b>:.</b>  i | Jrip J<br>Timo | X7            | ourn  | F/an       | *                   |                  | Cocura       | enta   |          |
|                |      | sec.         | 30         | C .                |                              |          | Jec.           | -+-            | 500.           | $\rightarrow$ | 27.   |            | -+                  |                  |              |        |          |
|                | ~    | 60           | 6          | ,                  | 2                            |          | 2              |                | Non            | =             | 4.5   | . 4        |                     |                  |              | ······ |          |
| ā              | 2    | 60           | 0          | •                  | 29                           |          | 29             |                | ••             |               | 4.7   | 1          |                     |                  |              |        |          |
|                | 3    | 60           | 0          | •                  | 0                            |          | 0              |                | **             |               | 1.2   | 1.         |                     |                  |              |        |          |
| 1              | 16   | 60           | 6          |                    | 10                           | 1        | 10             | 1              | Non            | 7             | 45    | 1/1        | +>                  | 2 st             | ·            | 4.4    | Ţ//      |
|                |      |              |            |                    |                              |          |                |                |                | -             | /.3   | r.,        |                     |                  | /            |        | ~ /      |
|                |      |              |            |                    |                              |          |                |                |                |               |       |            |                     |                  |              |        |          |
|                | ļ    |              |            |                    |                              |          |                |                |                |               |       |            |                     |                  |              |        |          |
|                |      | SIOK         | e ceso     |                    |                              | S III    | PE C.          | A'E            | 53             |               |       |            | 00.22               | EIL'S            |              |        |          |
| Sp             | eci  | men I        | 0.         |                    |                              | 1 ·      | 2              |                | 3              |               |       |            |                     |                  |              |        |          |
| Ę,             | ick  | ness         | - in.      |                    | .0                           | 9        | .0             | 1              | .0             | 9             | -     |            |                     |                  |              |        | •        |
| We             | igh  | t - g        | raas       |                    | 87                           | /9.#     | 8.2            | P.6            | 87             | 9/            |       |            | •                   |                  |              |        |          |
| Ð              | rpos | ed Ar        | ea - s     | q.in.              | 6.                           | 57       | 6.             | 7              | 6.5            | 7             |       |            |                     |                  |              |        |          |
| Ga             | ls P | ressu        | re - p     | sig                | Pi                           | lot      | P11            | .ot            | Pil            | ot            |       |            |                     |                  |              |        |          |
| Ir             | rad  | iance        | - vet      | ts/cm <sup>2</sup> | 2                            | •5       | 2.             | 5              | 2.             | 5             |       |            | l.<br>The           |                  |              | . 1    |          |
|                | 20   | »г—          |            | ĪĪ                 | . 1                          |          |                | i              | 1.             |               |       |            | 1                   | 1                | 1            |        | <u> </u> |
|                |      |              |            |                    |                              |          |                |                |                |               |       |            | -                   | ··- ··- ·        | <b>.</b>     |        |          |
|                |      |              |            | ļļ.                | <u> </u>                     |          |                |                |                |               |       |            |                     |                  |              |        |          |
|                | 16   | 0            |            |                    | <u></u>                      | <u> </u> |                | <u> </u>       |                |               | +     |            |                     |                  |              |        |          |
| E.             |      |              |            | h                  |                              |          | •              |                | ••             |               | ·     |            | 1                   |                  | • • • •      |        |          |
| )ent           |      |              |            |                    |                              |          |                |                | _              |               |       |            |                     | <u> </u>         |              |        |          |
| H              | 12   | 0            |            | +                  | ·                            |          |                |                |                |               | -     |            |                     | ļ                |              | ļ      |          |
| lcs            |      |              |            | ┼─╴┼               |                              |          |                |                |                |               |       |            |                     |                  |              |        |          |
| B              |      |              |            |                    |                              |          | :              |                |                |               | 1     |            |                     | <b> </b>         |              |        |          |
| ų              | 8    | 6            |            |                    |                              |          |                |                |                | een           | 110   | 6          |                     |                  |              |        |          |
| cit            |      |              |            | <u> </u>           |                              |          |                |                |                |               |       | <b>.</b>   |                     |                  |              |        |          |
| Spe            |      |              |            |                    | <del>;</del>                 |          |                |                |                | <u> </u>      | -     |            |                     | ┢━┿╼             | <u> </u>     |        |          |
|                | 1    |              |            |                    |                              |          |                |                |                | 5             | 1     |            |                     |                  |              |        |          |
| D <sub>S</sub> | 77   |              | . 7        |                    |                              | -        |                |                | <b>—</b>       |               | M     | N-r        | 2010                | WE               |              |        |          |
| -              |      |              |            |                    |                              |          |                |                | <u> </u>       |               |       |            |                     | ;                |              |        |          |
|                | •    | -            |            | ·····              |                              |          |                |                | · [ ••••       |               |       |            | • • •               | •                |              |        |          |
|                |      | 9            | 1          | .0                 | 2.                           | 0        | 3.             | 0              | 4              | 0             | 5.    | 0          | U                   | 0                | γ.           | 0      | 8.6      |
|                |      |              |            |                    |                              | ·        |                | .me •          | • 1 1n.        |               |       |            |                     |                  |              | :      |          |

Figure 9. - Flame and smoke data - FN507 (material test 1255).

# OF POOR QUALITY

| PREPAR       | Low          |                  | DATE               |                 | L C<br>A I | DCKHE                                  | ED<br>OF 1   | CAL                  | IFO<br>EC & | RNIA (          |         | A N Y  |       |               | GE   |              |
|--------------|--------------|------------------|--------------------|-----------------|------------|----------------------------------------|--------------|----------------------|-------------|-----------------|---------|--------|-------|---------------|------|--------------|
| CHECK        | 10           |                  |                    | ŗ               |            | RYE C                                  | A            | OII RE               | SEA         | RCII LA         | CRACI   | ORY    |       | M             | DDEL |              |
| APPROV       | ED.          |                  |                    |                 |            | FIACC                                  | API          | LTLY/                | ′s.∷o:      | KE TES          | P.EP    | 222    |       |               | PORT | 10.          |
| VATE<br>VATE | TAL I        | EST 10<br>ESCRIP | :/2.<br>:10:::/    |                 | 570<br>ne, | TA                                     |              |                      | Te<br>cy    | MXL             | 260     | 32,    | Raf   |               | No   | ner<br>D     |
| -3E/I        |              |                  | <u> </u>           | mpgn            | ×E.        | me                                     | ·            | 10                   | 20          | 14/-            | r de    | 1000 A |       | NIA           | in   | Pana         |
| Spec.<br>No. | lyn.<br>Tise | alter            | rlane<br>Lie       | Jiow<br>Fine    | ict        | il Lit.<br>Tite                        | <u>ارز</u>   | ∙ip ⊿<br>Time        | XT          | aurn<br>Len tal | Para    | 4      |       | Conuc         | ents |              |
|              | SUC.         |                  | 3C •               | .ec.            |            | ° ಆ <b>પ</b> .                         |              | 240.                 |             | 17.             |         |        |       |               |      |              |
| 1            | 60           |                  | 1                  | 15-             | .          | -5-                                    | 1            | 1 m                  | -           | <del>4</del>    | 12s     | ·      |       |               |      |              |
| 2            | 60           |                  | 2                  | 2               |            | 2                                      |              | "                    |             | <b>#</b> 0      | 1 ~     |        |       |               |      |              |
| 3            | 60           |                  | 1 .                | 18              |            | 8                                      |              | <u>.,</u>            |             | 4.6             | 1"      |        |       |               |      | <del>,</del> |
| AVC          | 60           | 6                | 0                  | 11              |            | // :                                   | 1            | Voru                 | =           | 4.4             | Vrs     |        | le se | 514           | r Ar | ]/           |
|              | S: '03       | E CESC           |                    |                 | S II       | PE CIA                                 |              | 3                    |             |                 | (       | 00.26  | L.L.S |               |      |              |
| Spec:        | imen 1       | :0.              |                    |                 | L ·        | 2                                      | $\downarrow$ | 3                    |             | -               |         |        |       |               |      |              |
| Thiel        | kness        | - in.            |                    | .08             | 8          | .08                                    |              | 18                   |             |                 |         |        |       |               |      |              |
| Weig         | nt - e       | rams             |                    | <b>F</b> .Z     | 20         | 7.99                                   | 4            | ×.2                  |             |                 |         |        |       |               |      |              |
| Gas          | Press        |                  | sir                | 6.J<br>P1       | lot        | 6.36                                   |              | <u>د. ک</u><br>۱۱ ۲۹ |             |                 |         |        |       |               |      |              |
| Irra         | diance       | - wat            | ts/cm <sup>2</sup> | 2               | .5         | 2.5                                    |              | 2.                   | 5           |                 |         | •      |       |               |      |              |
| 10           |              |                  |                    |                 |            |                                        |              | ••••                 |             |                 |         |        |       |               |      |              |
| ٢            | 80           |                  |                    |                 |            |                                        |              |                      | ļ           |                 | <br>    |        |       |               |      |              |
| sıty         |              |                  | ·                  |                 |            |                                        | -            | ••···                |             |                 | <b></b> |        |       |               | •    |              |
| Den          | _  -         |                  |                    | $\neg$          |            |                                        | -            |                      |             |                 |         |        |       |               |      |              |
|              |              |                  |                    |                 |            |                                        |              | ·                    |             |                 |         |        |       |               |      | †            |
|              |              |                  |                    |                 |            |                                        |              |                      |             |                 |         |        |       | $\frac{1}{1}$ |      |              |
| 1            | - 0          |                  |                    | $ \rightarrow $ | $\square$  |                                        |              |                      |             | AMIA            | F       |        |       |               |      |              |
| peci         |              | ·····            |                    |                 |            |                                        | •••          | • · ·                |             |                 |         | A-7-77 |       | · ·           |      |              |
| . 2          | 0            |                  |                    |                 |            | •••••••••••••••••••••••••••••••••••••• |              |                      |             |                 |         |        |       |               |      |              |
| จั           |              |                  | .<br>  .           |                 | :          |                                        | 1            |                      |             |                 |         |        |       | <u> </u>      |      |              |
|              |              | 1                | <u>hii</u>         |                 |            | .  .                                   |              |                      | :           |                 | . ;     | •      |       |               |      |              |
|              | : <b>ठ</b> ा | ]                | 0                  | 2.0             | )          | 3.0                                    |              | 4                    | .0          | 5.              | 0       | U      | .0    | Υ.            | 0    | 8.0          |

Figure 10. - Flame and smoke data - FN510 (material test 1256).



Figure 11. - Flame and smoke data - FN30877-11A (material test 1273).

| ***       | AREI          |                | DATE                                                                                                            |                | ر د<br>۸ د    | CKHEE                  |             | CALIFO                | RNÍA                  | COMPA                           | N Y<br>TION  | PAGE              |                  |
|-----------|---------------|----------------|-----------------------------------------------------------------------------------------------------------------|----------------|---------------|------------------------|-------------|-----------------------|-----------------------|---------------------------------|--------------|-------------------|------------------|
| CHEC      | M.CO          | - Acc          |                                                                                                                 | T<br>ł         |               | RYE CA                 |             | AI RESEA              | LICIT LA              | PCRADO                          | RY           | MODEL             |                  |
| APPR      | OVE           | Þ              |                                                                                                                 | T<br>L.<br>E   |               | TIATA                  | эŋ          | urry/sko              | FE CES                | C REPO                          | 212          | REPORT            | NO.              |
|           | ، د ساله ا    | -AT            | 12:12                                                                                                           | 74             |               |                        |             |                       |                       |                                 |              |                   |                  |
| YAT       | 1973          | TAL DE         | ESCRIPTION:                                                                                                     | EN             | 30            | 87.7-1                 | //          | <u> </u>              | aj fa                 | ~ >                             | FA/30        | 1877-1<br>17-17-1 | IA<br>VIII       |
| USE       | :/A           | PLIC           | ACTON:                                                                                                          | V <i>i 1</i> 2 | ar            | C.HM<br>i MS           | ~/          | 100                   | lar e                 | core                            | 4 mg ( C - 2 | ~~/~/             |                  |
|           |               |                |                                                                                                                 | ्याम् स        |               |                        |             |                       |                       |                                 | :            | с.                |                  |
| 854<br>10 | •             | 1_11+<br>71-11 | al Her radius.<br>Dista                                                                                         | diaun<br>11 an | <u>, 1</u> 11 | ац <u>18</u> 5.<br>Стр | ندر         | . <u>1-</u> 5<br>.1-5 | -arn<br>is-ts-t       | Plant<br>Out                    |              | Contents-         |                  |
|           |               |                |                                                                                                                 | ,              |               | ,                      | _           | •                     | • • •                 |                                 |              |                   |                  |
| 1         | 1             | 60             | . 0                                                                                                             | 30             |               | 30                     | 1           | me                    | 3.4                   | 445                             |              |                   |                  |
| 2         |               | 6.             | 0                                                                                                               | 34             |               | 3∉ .                   |             | ••                    | 3.4                   | 415                             |              |                   |                  |
|           | 3             | 60             | 0                                                                                                               | 12             |               | 12                     |             | **                    | 3.5                   | Pros.                           | FAL          | LS Me             | THED I           |
| All       | 14            | 60             | 6                                                                                                               | 25             |               | 25                     | /           | vac                   | 3.4                   | 415                             | Ligh         | glow ?            | time,            |
|           |               |                |                                                                                                                 |                |               |                        |             |                       |                       | 1 ·                             | tight 6      | n. teri           |                  |
|           |               |                |                                                                                                                 |                |               |                        |             |                       |                       |                                 | 5%. 0        | 1 60 X            | 85 June          |
| Ļ         | 1             |                | 1.6.71.101                                                                                                      |                | <u> </u>      |                        |             | 3                     | ļ                     | · ·                             | No           | . 8               |                  |
|           |               | en "           | <u> </u>                                                                                                        |                | 1             | 2                      | T           | 3                     |                       |                                 | · · ·        |                   |                  |
|           | lek:          | ness           | - in.                                                                                                           | 1.1            | 3             | 13                     | 1           | ./3                   | • • •                 |                                 |              |                   |                  |
| Net       | L <u>c</u> h' | ç - g          | rans                                                                                                            | 198            | 7             | 199-6                  | 4           | 19 /                  |                       |                                 |              |                   |                  |
| Exp       | pos           | ed Ar          | ea - sq.in.                                                                                                     | 6.             | 56            | 6.5                    | 7           | 6.56                  | 1                     |                                 |              |                   |                  |
| Ga.       | s P           | ressu          | re - psig                                                                                                       | 51             | 101           | Tilo:                  | 1           | Pilot                 | 1                     |                                 |              |                   |                  |
| J.r.ı     | 2             | iance          | - Lette err                                                                                                     | 2              | .=            | 1.5                    | Ì           | 2.7                   | 1                     |                                 |              |                   |                  |
|           | /             |                |                                                                                                                 |                | i             | <b>.</b>               | ·           | i                     |                       | · i · · · · · · · · · · · · · · |              |                   |                  |
|           |               |                |                                                                                                                 |                |               |                        |             |                       |                       |                                 |              |                   |                  |
|           |               | 0              |                                                                                                                 | ·              |               |                        | 1           |                       |                       |                                 |              | · · · · ·         |                  |
| ₽         |               |                |                                                                                                                 |                |               |                        |             |                       |                       | ļ                               |              |                   |                  |
| nsi       |               |                |                                                                                                                 |                | ;             |                        |             |                       |                       |                                 |              |                   |                  |
| Å         | 6             | 0              |                                                                                                                 |                |               |                        | -           |                       | 1                     | +                               |              |                   |                  |
| 6         |               |                |                                                                                                                 |                |               |                        | _           |                       | 1                     |                                 |              |                   |                  |
| 8         |               | 1-             |                                                                                                                 |                | /             |                        |             |                       |                       | AMIN                            | 14           |                   |                  |
| 1<br>F    | 4             | 0              |                                                                                                                 |                |               |                        | ·····       |                       |                       |                                 |              |                   |                  |
| c1f       |               |                |                                                                                                                 |                | i             |                        | Ĺ           |                       |                       |                                 |              |                   |                  |
| Sp.       |               |                |                                                                                                                 |                |               |                        |             |                       |                       | -Na                             | NEAM         | 16                |                  |
|           | 3             | 0              | /                                                                                                               |                |               |                        |             |                       |                       |                                 |              |                   |                  |
| A.        |               |                |                                                                                                                 |                | 1             | ;  <u>-</u>            | ;<br>;•···· |                       | 4-                    |                                 |              |                   |                  |
|           |               |                |                                                                                                                 |                |               |                        |             |                       |                       |                                 |              |                   |                  |
|           | •             | Ļ              |                                                                                                                 | =              |               | 20                     |             |                       |                       | 0                               |              | 10                |                  |
| 1.1       |               | ۲.<br>۲        | <b></b>                                                                                                         | ۲۰۱۰           |               | ine                    | : -         | !'in.                 | د ب<br>ا              | ••                              | 0.0          | 1.0               |                  |
| <b>A</b>  |               |                | i de la companya de l | _              |               |                        |             |                       | and the second second |                                 |              |                   | نتابيج ويستخويهم |

Figure 12. - Flame and smoke data - FN30877-11B (material test 1274).


Figure 13. - Flame and smoke data - FN30877-10 (material test 1258).

|      |                       | ione         | 0ATE                                |                                         | L                              | OCKHE                  | ED.CAL  | IFO    | RNIA C    |            | N Y          |          | P.           | GE       |                |
|------|-----------------------|--------------|-------------------------------------|-----------------------------------------|--------------------------------|------------------------|---------|--------|-----------|------------|--------------|----------|--------------|----------|----------------|
| CH   | ECKE                  | 5            |                                     | Ī                                       | RYE CALTON RESEARCH LAPCRATORY |                        |         |        |           |            |              |          |              |          |                |
| Ľ    | PROVI                 | [D           |                                     | L.                                      | FIANABILITY/SMOKE DEST REPORT  |                        |         |        |           |            |              |          |              | LPORT N  | í <b>0</b> .   |
| X    | ATTE?                 | IAL 🗆        | EST 10:/                            | 275                                     | 7                              | -7 .11                 | . 0     |        | 1         |            |              |          | Ì.           | 01       |                |
| 22   | ATE:                  | IAL D        | ESCRIPTIO                           |                                         | 3081<br>145                    | 4360                   | E       | i Cal  | 00141     | بہ و       | 05           | m D      | a, A         |          | ₽ <b>9</b> ⊄.  |
| 1    | SE/A                  | PPLIC        | ACION:                              |                                         | Zur a                          | re for                 | ming    |        | ••••••••  |            |              |          |              |          |                |
| S    | ec.                   | ıu.          | Alter :1.                           |                                         | 04 101                         | ai ixt.                | Urip 2  |        | ourn      |            | 1            |          | <u>), en</u> |          |                |
| Ľ    | io <b>.</b>           | Tise<br>Sec. | Tite .                              | Ti                                      | 77.E                           | Titte                  | Time    |        | Len. th   | a          | [            |          | 00002        |          |                |
| -    |                       | 60           | 0                                   | 6                                       | ,                              | 0                      | Nu      |        |           | 2          | <del> </del> |          |              | <u> </u> |                |
|      | 2                     | 60           | 13                                  | 10                                      |                                | 13                     | .,      | -      | 2.5<br>74 | 75         |              |          |              |          | •              |
|      | 3                     | 60           | 0                                   | 5                                       | -                              |                        |         |        | 30        | 12         |              |          |              |          |                |
| Ā    | VC                    | 60           | 4                                   |                                         |                                | 5                      | Non     | 2      | 3.2       | 4          |              | Za,      | <u> </u>     | 4        | $\overline{D}$ |
|      |                       |              |                                     |                                         |                                |                        |         | 1      |           | Y-S        | <b>[</b>     |          | 3771         |          | · /            |
|      |                       |              |                                     |                                         |                                |                        |         | 1      |           |            |              |          |              |          |                |
| Ļ    |                       | 5.102        |                                     |                                         |                                |                        |         |        |           |            |              | 7.7.10   | _            |          |                |
| S    | peci                  | men II       | <u> </u>                            |                                         | 1 .                            | 2                      |         | ,      |           |            |              |          | -            |          |                |
|      | hick                  | ness         | - in.                               |                                         | 054                            | ,054                   |         |        | •         |            |              |          |              |          | •              |
| W    | Weight - grams        |              |                                     |                                         | 10.2/12 9.85/                  |                        | 6       |        |           |            | •            |          |              |          |                |
| 2    | Exposed Area - sq.in. |              |                                     |                                         | .57.                           | 6.57                   |         |        |           |            |              |          |              |          |                |
| G    | as P                  | ressu        | re - psig                           | -2 1                                    | Pilot                          | 71100                  | P11     | .ot    | •         |            |              |          |              |          |                |
| ┝╝   | 20                    |              | - WELLS/C                           | · · · ·                                 | 2.7                            | 2.5                    | 2.      | 5      |           |            |              |          |              |          |                |
|      | 15                    |              | • • • • • • • • • • • • • • • • • • |                                         |                                | · ···-  ·              |         |        |           |            |              |          |              | • • • •  | i an i         |
|      | 10                    |              |                                     |                                         |                                |                        |         |        |           |            |              |          |              | 1        |                |
|      |                       |              |                                     |                                         |                                | $\left  \cdot \right $ |         |        |           |            |              |          | <u> </u>     |          |                |
| s1t  | 14                    | 0            |                                     |                                         |                                |                        |         |        |           |            |              |          |              |          |                |
| Den  |                       |              |                                     |                                         |                                |                        | •<br>•  |        |           |            |              |          |              |          |                |
| 3    |                       |              |                                     |                                         |                                |                        |         |        |           |            |              |          |              |          | <u> </u>       |
| B.   | 19                    | 0            |                                     |                                         |                                |                        |         |        |           |            |              |          |              |          | <u> </u> [     |
| 위    | Æ                     | 0            |                                     |                                         |                                |                        |         |        |           |            | •            |          | ·            |          |                |
| ecit | -                     |              |                                     | · • • • • • • • • • • • • • • • • • • • | - <b> !</b>                    |                        | ·       |        |           |            |              | <u> </u> | 1            |          |                |
| ĝ    | 6                     |              |                                     |                                         |                                |                        |         |        |           | $\nearrow$ |              | Z        | FZA.         | AINC     | <br>           |
| 8    | 4                     | 0            |                                     |                                         |                                |                        |         |        |           |            |              |          |              |          |                |
|      | 2                     |              |                                     |                                         |                                |                        |         |        |           |            |              | <u> </u> | ion,         | FLAM     | ING            |
|      | •                     |              |                                     |                                         |                                |                        |         |        |           |            |              |          | <u> </u>     | <u> </u> |                |
|      |                       | <u>}</u>     | 1.0                                 | 2                                       | 2.0                            | 3.0                    | 14      | .0     | 5.0       | <b>)</b>   | υ.           | 0        | 7.           | 0        | 8.0            |
| Ĺ    |                       |              |                                     |                                         | ·                              | lime                   | ⇒ ! in. | ).<br> |           |            |              |          |              |          | و ا            |

Figure 14. - Flame and smoke data - FN30877-11C (material test 1279).



Figure 15. - Flame and smoke data - FN30877-11D (material test 1280).

# ORIGINAL PAGE IS OF POOR QUALITY

| C.     | 60 84<br>(c.ee | DATE        |                                          | L.0<br>A                       | OCKHE<br>DIVISION | ED .CAL     | IFOF          | RNIA C | OMPA          | A N Y     |             | -             | AGE      |              |
|--------|----------------|-------------|------------------------------------------|--------------------------------|-------------------|-------------|---------------|--------|---------------|-----------|-------------|---------------|----------|--------------|
| CHECKE | D              |             | Ţ                                        | RYE CANYON RESEARCH LAPCRATORY |                   |             |               |        |               |           |             |               |          |              |
| APPROV | 20             |             | Ē                                        | FIA:MABILITY/SHOKE TEST REPORT |                   |             |               |        |               |           |             |               | EPORT N  | 10.          |
| USE/A  | IAL DI         | EST IC:     | 277<br>: Pol<br>Theym                    | 4 1                            | keny /s           | su 1.for    | e,            | Kadi   | ] 50<br>Azip  | o/d<br>ra | 11.<br>- 02 | 10. in<br>54_ | Ca<br>Ge | <u>,</u><br> |
| 5002   |                | TANA TI     | Y SESS                                   | !<br>                          |                   | 1 in in     |               |        | N.            | E         | )D: 7       | <u>היית</u>   |          |              |
| No.    | Time           | liner itte  | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 1.00                           | al Exu.<br>Time   | Tim         | 4874 <b>-</b> | len oh | I Tam.<br>Cat | 1         |             | Cour          | ents     |              |
| _      | sec.           | 2 °C.       | 1.1.1                                    |                                | 090 <b>.</b>      | sec.        |               | 17.    |               |           |             |               |          |              |
| 1      | 60             | 0           | 3                                        | ł                              | 5                 | Non         | c             | 27     | 405           |           |             |               |          |              |
| 2      | 60             | 0           | 0                                        |                                | 0                 |             | - 1           | 2.6    | 105           | 1         |             |               |          |              |
| 3      | 66             | đ           | 0                                        |                                | 0                 | .,          |               | 2.5    | 10            |           |             |               |          |              |
| fr (   | 60             | 0           |                                          |                                | /                 | None        | ;             | 2.6    | 1/1-8         |           | -se         | 51            | 1.4      | 11           |
|        |                |             |                                          |                                |                   |             |               | •      | r:-           |           |             | - /           |          | 0            |
| -      |                |             | 1                                        |                                |                   |             |               |        | 1             |           |             |               |          |              |
|        |                |             |                                          |                                |                   |             |               |        |               |           |             |               |          |              |
|        | S. 'OY         | E TEST      |                                          | SIX                            | PE CIA            | (7.2.7)<br> |               |        | C             | 0.25      | .T.S        |               |          |              |
| Speci  | men No         | <b>.</b>    |                                          | 1                              | 2                 |             | 3             |        |               |           |             |               |          |              |
| "hick  | ness           | - in.       | .0.                                      | 4                              | 10.54             | -           |               |        |               |           |             |               |          |              |
| Weigh  | it - gi        | ams         | 100                                      | 19.8                           | <i>9.8/9</i> .    | 2           |               |        |               | •         |             |               |          |              |
| Expos  | sed Are        | ea - sq.in  | 6.2                                      | 6                              | 6.50              |             | _             |        |               |           |             |               |          |              |
| uas I  | ressu          | e - psig    | 2 2                                      | TÓC                            | r1100             |             | .ot           |        |               |           |             |               |          |              |
|        |                |             | <u> </u>                                 |                                | 2.7               |             | 2             |        |               |           |             |               | -        |              |
|        |                |             |                                          |                                |                   |             |               |        |               |           |             |               |          | į            |
|        |                |             |                                          |                                |                   |             |               |        |               | <u></u>   |             |               |          | <u>.</u>     |
| 2      | 8              |             |                                          |                                |                   |             | li            | 1      |               | 1         | 1           |               |          |              |
| 3      |                |             |                                          |                                |                   |             | •             |        |               |           |             |               |          |              |
|        |                |             | +                                        |                                |                   |             | +             |        |               |           |             |               | +        |              |
| 5      | 5 🗀            |             |                                          | •••••                          |                   |             |               | 1      |               |           |             |               |          | i            |
|        |                |             | -                                        |                                |                   |             |               |        |               |           |             | 1             |          | ~            |
| 5      |                | +           | ++                                       |                                |                   |             |               |        | <u> </u>      |           |             |               |          |              |
| -<br>- | 4              | · · · ·     |                                          | ••••                           |                   |             |               |        |               | • •       | •••••       |               |          | ļ            |
| ;      | / <u> </u>     | -           |                                          |                                |                   |             | ر زمل         | 1      |               |           | 1           |               |          | -            |
|        |                |             | ++                                       | ;                              |                   |             | 12.19         |        |               |           | <u> </u>    | <u> </u>      |          |              |
|        | 9              |             | •                                        |                                |                   | 1           | •             |        |               |           |             |               | 1        |              |
|        |                |             |                                          | ;                              |                   |             |               | 1      |               | in        | E/D         | en.           |          | • •_••       |
| -      |                | +           | ++                                       |                                |                   |             | <u>  :</u>    |        | 4.1           |           |             | 1             |          | ·<br>• · ·   |
|        |                | All and the | I                                        |                                |                   |             | i             | 4-4    |               |           |             |               | 1        | 1            |
| •      | •              |             |                                          |                                |                   |             | 1             |        | - ' }         |           | · ·         | 1             |          | 1            |

Figure 16. - Flame and smoke data - FN30877-11E (material test 1277).



Figure 17. - Flame and smoke data - FN30877-11F (material test 1278).

# ORIGINAL PAGE IS OF POOR QUALITY

| PRE                       | ARE             | 0 • V<br>Lo  |                                              | 2.              | ATE               |                                | L C<br>A I  | CKH         | EED              | -CAL     |             | RNIA C  |          | A N Y    |             | <b></b>      | GĽ    | •               |
|---------------------------|-----------------|--------------|----------------------------------------------|-----------------|-------------------|--------------------------------|-------------|-------------|------------------|----------|-------------|---------|----------|----------|-------------|--------------|-------|-----------------|
| CHE                       | CKEC            |              |                                              |                 |                   | RYE CALVEL RESEARCH LAFERATORY |             |             |                  |          |             |         |          |          |             | мс           | DEL   |                 |
| APP                       | ROVE            | 0            | <u>.                                    </u> |                 | {                 | FIANABILITY/SHOKE DESD REPORD  |             |             |                  |          |             |         |          |          |             | RE           | PORTN | 0.              |
|                           |                 |              |                                              |                 |                   |                                | ~           |             |                  |          |             |         |          |          |             |              |       |                 |
| I A                       |                 | نىلەن<br>مەت |                                              |                 |                   | 200                            | s<br>       |             | _                |          |             |         |          | <u> </u> | - 10        | 1.           | 2 2 1 |                 |
|                           | <u>- E.</u>     | <u>AL 1</u>  | 1220                                         |                 | ر ۲۰۰۱:<br>مر     | =/4                            | 30<br>AR    | et.         | ر بر مر<br>رومهم | is A     | ں .<br>بر ب | here    | 1 2      | / 1      | -sa         | is i         | <     | ΞŢ              |
| 25                        | Ξ/A             | 55TTC        | :A:-)                                        | .0:             | <u> </u>          | 0010                           | us          |             |                  |          |             |         | <u> </u> | <u></u>  | <u> 159</u> |              | SM    | <u>CC.</u>      |
| So                        | ec .l           | Ĩ-u.         | Tai                                          | Ler.            | rian.             | 115                            |             | ાં તેમ      | E. D             | riz X    |             | aurn    | 1.2      | 1        |             | <u>" - 1</u> |       |                 |
| Ň                         | <b>.</b>        | Tire         |                                              | Ti              | - <b>1</b> 3      | ‼i⊓e                           |             | lize        |                  | Time     |             | Len. th | Q.t      | 4        |             | CONTRE       | ents  |                 |
|                           |                 | sér.         | -                                            | 00              | ç.                | lad.                           |             | 190.        |                  | sec.     |             | 1.1.    |          |          |             |              |       | ~~~~            |
|                           | -               | 60           | 1                                            | C               | ,                 | 6                              | 1           | 4           | 1                | Non      | 2           | 1.2     | 413      |          |             |              |       |                 |
| 2                         | 2               | 60           |                                              | ð               |                   | 10                             | 1           | 10          |                  |          |             | 11      | 1/15     |          |             |              |       |                 |
| 5                         | 3               | 60           |                                              | 0               |                   | E                              |             | £.          |                  | 4        |             | 11      | 10       |          |             |              |       |                 |
| Ī                         | 6               | 60           |                                              | 0               |                   | 4                              | 1           | £.          | +                | 11.00    | _           | 11      | 1/       | 1-2      |             | Ma           | H.    | 7               |
|                           |                 | •••          | 1                                            | •               |                   | 0                              |             | 21          | ľ                | o cre    |             | / . /   | 10.5     | Fas      | ر المستقة   | FAR          | 25.5  | ر.<br>رباد ت    |
|                           |                 |              |                                              |                 |                   |                                |             |             |                  |          |             |         | 1        | Pess     | ics         | CAA          | Sje   | 4. <del>ट</del> |
| L                         |                 |              | L                                            |                 |                   |                                |             | _           |                  |          |             |         |          |          |             | alas tata    |       |                 |
| <b> </b>                  | _               | S. '0        | 29                                           | EST             |                   |                                | <u>S 12</u> | PE JI       | A: 7-3           | _?       |             |         | C        | U.E      | :.l:S       |              |       |                 |
| Sp                        | Specimen No.    |              |                                              |                 |                   | 4-                             |             |             |                  | 3        |             | •       |          |          |             |              |       |                 |
| Th:                       | Thickness - in. |              |                                              |                 | 2000 2000         |                                |             | 27          |                  |          |             |         |          |          |             |              | •     |                 |
| We:                       | igh             | t - {        | graz                                         | is              |                   | 7.9                            | 1.2         | 8.0         | 8.1              |          |             |         |          | •        |             |              |       |                 |
| Ex                        | pos             | ed Al        | rea                                          | - sç            | Lin.              | 6.                             | 12          | 6.1         | 2                | L        |             |         |          |          |             |              |       |                 |
| Ga                        | s P             | ressi        | re                                           | - D:            | sig               | Pi                             | lot         | P11         | 55               | P11      | ot          |         |          |          |             |              |       |                 |
| Ir                        | rad:            | iance        | <u> </u>                                     | watt            | s/cm <sup>-</sup> | 1 2                            | .5          | 2.          | 5                | 2.       | 5           |         | <u> </u> |          |             |              |       |                 |
| 1                         | / 01            | 1-           |                                              |                 |                   |                                |             |             |                  | -        | ļ           |         |          |          |             |              |       |                 |
| 1                         |                 | -            |                                              |                 |                   |                                |             |             |                  |          |             |         |          |          |             |              |       |                 |
|                           | Å               |              |                                              | i               |                   | ;                              |             |             |                  |          |             |         |          | ····¦    | <br>!       | }            |       |                 |
| В                         | 0               |              |                                              | •···•           |                   |                                |             |             |                  |          |             |         |          |          |             |              |       |                 |
| lsi                       |                 | <u> </u>     |                                              | _ <u>`</u>      |                   |                                |             |             | <u>.</u>         | <u> </u> |             |         |          |          |             | · .          |       |                 |
| De                        |                 | 1-           | -+                                           |                 |                   |                                |             |             |                  | ·+- ·    |             |         | •        |          |             | -            |       |                 |
| Gal                       | 0               |              |                                              |                 |                   |                                |             |             |                  | 1        |             |         |          |          |             |              |       |                 |
| E.                        |                 | -            |                                              | . <u>.</u>      |                   |                                |             |             | <u> </u>         |          |             |         |          | :        | <br>        | <u> </u>     |       |                 |
| 0                         |                 |              |                                              | •••••           | [ <b>;</b> . ]    |                                |             |             |                  | •        |             |         |          | ·· ·•    |             |              |       |                 |
| Į.                        | Ŧ               |              |                                              |                 |                   |                                |             | :           |                  |          |             |         |          |          |             |              |       |                 |
| pec                       |                 |              |                                              |                 |                   |                                |             |             |                  | <u> </u> | ļ           |         | FLA      | pu       | 4           |              |       |                 |
| i i                       | ~               | - I          |                                              | 41 - 141 -<br>1 |                   |                                |             |             | ····•;- •        | +        |             |         |          |          |             |              |       |                 |
| $\mathbf{D}_{\mathbf{B}}$ | Z               | 1            |                                              |                 |                   |                                |             |             |                  | ÷        |             |         |          |          |             |              | -     | <b>-</b>        |
| 1                         |                 |              |                                              |                 |                   |                                |             |             |                  | ļ        | L.,         |         | Ian,     | =LAI     | All         | 6            |       |                 |
|                           | •               | - <b>[</b>   | • •                                          |                 |                   |                                |             |             | :<br>            |          | K           |         |          |          |             |              |       |                 |
| 1                         |                 | 9            |                                              | Ī               | .0                | 2.                             | 0           | 3.0         | )                | 4        | .0          | 5.      | 0        | U        | .0          | (.           | 0     | 3.0             |
| Ľ                         |                 |              |                                              |                 | -                 |                                | -           | <u>''</u> i | me -             | · Fin.   |             |         |          |          |             |              |       |                 |

Figure 18. - Flame and smoke data - 3M 7-5 Fluorel (material test 1283).

# THERMOGRAVIMETRIC ANALYSIS DATA

### Introduction

The thermogravimetric analytical (TGA) thermograms were recorded with a DuPont Model 900 Differential Thermal Analyzer and the accessory Model 950 thermogravimetric analyzer operating at a heating rate of  $15^{\circ}$ C/min. and air flow rate of 1 cfh.

## Results and Discussion

Eleven samples consisting of five crushed core sandwich panels, two glass fiber reinforced plastics, and four neat plastics were analyzed. Typical thermograms are presented in Figures 19 through 29. Schematic thermograms of the crushed core panels, glass fiber reinforced plastics and neat plastics are grouped together in Figures 30, 31 and 32, respectively, for ready reference and comparison. The principal temperatures and corresponding weight losses are tabulated in Table IX.

Thermo-oxidative degradation of the eleven samples proceeded in two to five or more stages. The most volatile product, which probably was water, accounted for a weight loss of 0 to w%. GFR sample No. 1273 (FN 30877-11A) underwent thermo-oxidative degradation in one stage, Figure 23. In contrast, the degradation of the crushed core panels was quite complex, due, probably, to the heterogeneous composition.

The data on the compression-molded crushed core phenolic resin systems are covered by the sample designations F501 through F510.

Except for the FN503 sample, the principal thermal decomposition, probably of the resin, started at approximately 390 C and was almost complete at approximately 650°C. The pyrolysis of FN503 started gradually at  $290^{\circ}$ C and the rate increased sharply at  $495^{\circ}$ C.

FN501 began to lose weight at an appreciable rate at 210°C and had lost 7w% after 395°C compared to 2-4w% lost by FN505, FN507 and FN510. The initial weight loss of approximately 2w% may be due to moisture in the panels. The residue varied between a low of 47w% (FN510) and a high of 56w% (FN507).

The most stable samples of the thermoplastics were the 1277 (Radel 5010N) and 1280 (R & H KM-1-(ICI) polymers and the compression-molded polyimide/glass laminate, 1273, is also very stable. These samples were stable to  $570^{\circ}$ C to  $580^{\circ}$ C. The least stable material, 1274 appears to be the Tedlar covering which is adhesively bonded to the polyimide/glass laminate. Degradation started at  $260-270^{\circ}$ C.



Figure 19. - Thermogram F501 (Ciba Geigy Fiberdux 917).



OF POOR QUALITY

Figure 20. - Thermogram F503 (Narmco 9252).



Figure 21. - Thermogram F505 (Narmco 8250).



Figure 22. - Thermogram F507 (Fiberite MXB 607L).

QRIGINAL PAGE IS OF POOR QUALITY

# (INSTRUMENTS



Figure 23. - Thermogram F510 (Fiberite MXT 6032).

**WIND INSTRUMENTS** 



Figure 24. - Thermogram FN308/7-11A (Polyimide/Glass).



Figure 25. - Thermogram FN 30877-11B (Polyimide/Glass-Tedlar).

QRIGINAL PAGE IS OF POOR QUALITY





QRIGINAL PAGE IS OF POOR QUALITY







Figure 28. - Thermogram Radel 5010N.

ORIGINAL PAGE OF POOR QUAL

46



Figure 29. - Thermogram Rohm and Haas 4360Z.

KE TO X 10 TO THE INCH . / K IN HICHES



Figure 30. - TGA Thermograms - Compression molded sidewalls.

KOE 10 X 10 TO THE INCH + / X 10 HACHES

ORIGINAL PAGE



Figure 31. - TGA Thermograms - Compression molded polyimide/glass.

50

#### KE 10 X 10 TO THE INCH . 7 X 10 INCHES

46 0780

OF POOR QUALT



Figure 32, - TGA Thermograms - Thermoplastics

# TABLE IX. - RESULTS OF THERMOGRAVIMETRIC ANALYSIS

| Manandal             | T <sub>O</sub> | T <sub>1</sub> | W          | $\Delta W_1$ | т <sub>2</sub>   | W2               | $\Delta W_2$ | T <sub>3</sub> | W <sub>3</sub> | ∆₩ <sub>3</sub> | T <sub>4</sub> | W4                 | AW4    | T <sub>5</sub> | W <sub>5</sub> or W <sub>f</sub> |
|----------------------|----------------|----------------|------------|--------------|------------------|------------------|--------------|----------------|----------------|-----------------|----------------|--------------------|--------|----------------|----------------------------------|
| Sample and Number    | °c             | °c             | WX         | WX           | <sup>o</sup> c . | WX               | WZ.          | °C             | WX             | w <b>x</b>      | °c             | WZ                 | WX     | ٥¢             | WZ                               |
| FN501                |                |                |            |              |                  |                  |              |                |                |                 |                |                    |        |                |                                  |
| (1247) 110           | 80             | 203            | 2          | 2            | 290              | 7                | - 5          | 370            | 10             | 3               | 630            | 46                 | 36     | 1000           | 49                               |
| 111                  | 50             | 220            | 2          | 2            | 300              | 7                | 5            | 407            | 11             | 4               | 650            | 47                 | 36     | 1000           | 49                               |
| FN503                |                |                |            |              |                  |                  |              |                |                | ·····           |                |                    |        |                |                                  |
| (1248) 112           | 65             | 310            | 2          | 2            | 445              | 11               | 9            | 500            | 16             | 5               | 620            | 48                 | 32     | 1000           | 49                               |
| 113                  | 65             | 268            | 1          | 1            | 450              | 11               | 10           | 490            | 14             | 3               | 610            | 45                 | 31     | 1000           | 46                               |
| 114                  | 66             | 297            | 2          | 2            | 455              | 12               | 10           | 500            | 16             | . 4             | 635            | 54                 | 38     | 1000           | 34                               |
| FN505                |                |                | ;          |              |                  | - <u>1</u> . 191 |              |                |                |                 |                |                    | ······ | :              |                                  |
| (1249) 115           | 66             | 200            | 1          | 1            | 260              | 2                | 1            | 408            | 4              | 2               | 650            | 43                 | 39     | 1000           | 44                               |
| 116                  | 60             | 185            | 1          | 1            | 275              | 2                | 1            | 392            | 3              | . 1             | 660            | 46                 | 43     | 1000           | 47                               |
| 117                  | 45             | 162            | 1          | - <b>1</b>   | 243              | 2                | 1            | 390            | -4             | 2               | 665            | 45                 | 41     | 1000           | 46                               |
| FN507                |                |                |            | <u> </u>     |                  |                  |              |                |                |                 |                |                    |        |                |                                  |
| (1250) 118           | 62             | 184            | 1          | 1            | 250              | 2                | 1            | 384            | 1              | - 0 -           | 630            | 42                 | 40     | 1000           | 43                               |
| 119                  | 55             | 175            | - <b>1</b> | 1            | 245              | 2                | 1            | 385            | 3              | 1               | 640            | 43                 | 40     | 1000           | 44                               |
| 120                  | 68             | 203            | 1          | 1            | 263              | 2                | 1            | 392            | 3              | 1               | 640            | 44                 | 41     | 1000           | 46                               |
| FN510                |                |                |            |              |                  |                  |              |                |                |                 |                |                    |        | ·····          |                                  |
| (1251) 121           | 63             | 270            | 2          | 2            | 380              | 3                | 1            | 540            | 25             | 22              | 655            | 48                 | 23     | 775            | 52                               |
| 122                  | 65             | 276            | 2          | 2            | 386              | 3                | 1            | 535            | 26             | 23              | 664            | 49                 | 23     | 735            | 51                               |
| 123                  | 62             | 262            | 2          | 2            | 390              | 4                | 2            | 533            | 24             | 20              | 655            | 50                 | 26     | 790            | 55                               |
| (1273) 142           | 58             | 582            | 2          | 2            | 670              | 67               | 65           |                | -              |                 |                |                    |        | 1000           | 67                               |
| FN-30872 11A 143     | 50             | 575            | 3          | 3            | 660              | 74               | 71           |                |                |                 |                |                    |        |                | 74                               |
| 159                  | 25             | 585            | 2          | 2            | 650              | 68               | 66           |                |                |                 |                |                    |        | ·.             |                                  |
| (1274) 144           | 62             | 260            | 1          | 1            | 365              | 7                | 6            | 513            | 15             | 8               | 608            | 68                 | 53     |                | 67                               |
| FN-30877-11B 145     | 85             | 268            | 1          | 1            | 365              | 6                | 5            | 522            | 14             | 8               | 590            | 62                 | 48     | 1000           | 62                               |
| 156                  | 65             | 260            | 1          | 1 1          | 350              | 4                | 3            | 515            | 10             | 6               | 635            | 68                 | 58     |                | 68                               |
| (1277) 137           | 132            | 568            | 0.5        | 0.5          | 676              | 41               | 40           | 742            | 66             | 25              | 818            | 98                 | 32     | 1000           | 98                               |
| RADEL 5010 138       | 70             | 590            | 1          | 1            | 675              | 44               | 43.          | 740            | 66             | 23              | 81,5           | 100                | . 34   |                | 100                              |
| 139                  | 150            | 590            | 1          | 1            | 670              | 44               | 43           | 720            | 61             | 18              | 798            | 98                 | 37     |                | . 99                             |
| (1278) 135           | 340            | 486            | 0          | 0            | 583              | 75               | 75           | 620            | - 96           | 21              |                | а<br>1911 г. – Кал |        | 1000           | 97                               |
| LEXAN<br>EF-6000 136 | 235            | 475            | 1          | 1            | 560              | 74               | 73           | 610            | 97             | 23              |                |                    |        |                | 98                               |
| (1279) 140           | 50             | 485            | 0.5        | 0.5          | 525              | 13               | 12           | 625            | 55             | 42              | 705            | 99                 | 44     | 1000           | 99                               |
| R6D 43602 141        | 85             | 495            | 0.5        | 0.5          | 530              | 17               | 16           | 630            | 55             | 39              | 700            | 99                 | 44     |                | 99                               |
| (1280) 133           | 155            | 570            | 1          | 1            | 650              | 57               | 56           | 700            | 100            | 43              |                |                    |        | 1000           | 100                              |
| R6D KM-1 134         | 80             | 545            | 1          | 1            | 620              | 52               | 51           | 685            | 100            | 48              |                |                    |        |                | 100                              |
| —                    | L.             |                | L          |              | <u> </u>         |                  | I            |                | L              | L               | L              |                    |        | L.:            |                                  |

W1 - Cumulative Weight Loss

ΔW, - Incremental Weight Loss

W<sub>f</sub> = Final (Total) Weight Loss at 1,000°C.

•

## PART FABRICATION

## Sidewall Compression Molded Parts

Sidewall compression molded parts were made from the three different resin systems and are shown in Figure 33. All three systems were processed in the same manner on production tooling and equipment. Handling characteristics and cure cycles were equivalent and therefore, processing of each was carried out without difficulty by manufacturing personnel.

# Injection-Molded Parts

Injection-molded segments of a production section of the passenger service modules were made from both G.E. 940 and Monsanto 200-3Z resins and are shown in Figures 34 and 35, respectively. The G.E. 940 material handled without difficulty on the production dies and injection equipment. The present formulation of Monsanto 200-3Z did not process as well as expected. The material appears to be too brittle to mold for this type of part. Simpler parts with thicker sections may mold easier without cracking problems, but this material could not be used for the type of injection-molded thinwall parts used in typical interior aircraft designs. Efforts to mold Radel 5010 were not successful. The material batch was considered bad by Union Carbide. Efforts to mold PES were not attempted by the injection molder by December 15, 1978.

# Thermoformed (Vacuum Formed)

Production parts made from G.E. F-6000 polycarbonate are shown in Figure 36. The polycarbonate material was processed at ambient temperature with production tooling and fairly low temperature heating equipment. The polyethersulfone requires higher heating equipment, longer drying cycles, and requires a heated die to prevent chilling marks when forming to deep contours. Sheet materials were not obtained to work out processing techniques as of December 15, 1978.

## Compression-Molded 3M Fluorel Polymer

Parts made in a simple development die are shown in Figure 37. Parts molded out of four layers of 3M fluorel polymer coated on 120 fiberglass fabric appear to make a much better looking part than those made from random mat fiberglass. One part made from 1 layer of mat glass plus 1 layer of 120 fiberglass made a usable part and offers the potential to reduce the weight of the large production part.



Figure 33. - Sidewall molded (Phenolic/Glass-Typical)





Figure 34. - G.E. 940 molded.



Figure 35. - Monsanto 200-3Z molded.

ORIGINAL PAGE IS OF POOR QUALITY

S





# ORIGINAL PAGE IS OF POOR QUALITY



Figure 37. - 3M fluorel molded parts

# PROCESSING PARAMETERS AND ASSOCIATED COST COMPARISONS

# Compression Molding

Molding of the compounds has indicated that the three selected resin systems Ciba Geigy 917, Narmco 8250 and Fiberite MXB 6032 which were compression-molded into the production sidewall parts are similar. Processing details, as a preliminary processing document for fabrication of these resins into types of compression-molded parts are covered by Appendix A.

# Injection Molding

Table X presents the injection molding parameters covering the two different materials which were made into injection molded type parts. Processing details for each material are described in Appendix B.

# Thermoforming (Vacuum Forming)

Table XI compares the thermoforming aspects of two different thermoplastic sheet materials. Processing details for the two materials are covered in Appendix C.

| Parameter                                        | Lexan 940                               | E200-3Z       | Radel 5010N                             | PES KM-1                                |
|--------------------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|
| Material Cost                                    | \$2.50/1Ъ                               | \$5.00/1b est | \$22/1b                                 | \$ <b>9.</b> 00/1b                      |
| Scrap Rate                                       | 10%                                     | 10%           | 10%                                     | 10%                                     |
| Material Prep                                    | Oven Dry 6 hrs                          | 0             | Oven Dry 3 hrs                          | Oven Dry 6 hrs                          |
| Material Temp<br><sup>O</sup> C( <sup>O</sup> F) | 127 <sup>°</sup> C (260 <sup>°</sup> F) | Room          | 150 <sup>°</sup> C (302 <sup>°</sup> F) | 127 <sup>°</sup> C (260 <sup>°</sup> F) |
| Tooling Cost                                     | Minimal                                 | Minimal       | Expensive                               | Expensive                               |
| Die Requirements                                 | No Change                               | No Change     | Heated & Cooled Die                     | Heated & Cooled Die                     |
| Injection Temp<br>C( <sup>O</sup> F)             | 260 (500)                               | 360 (680)     | 390 (735)                               | 350-390 (660-735)                       |
| Injection Pressure<br>MPa (psi)                  | 103 (15 000)                            | 103 (15 000)  | 124 (18 000)                            | 124 (18 000)                            |
| Injection Cycle                                  | Fast                                    | Fast          | Medium                                  | Medium                                  |
| Protective System                                | Required                                | None          | Maybe                                   | Maybe                                   |
| Adhesive Bonding                                 | Good                                    | Good          | ?                                       | <b>?</b>                                |
| Process Costs<br>Comparison                      | X                                       | X             | 2X                                      | 2X                                      |

# TABLE X. - INJECTION MOLDING PARAMETERS

|                                     |                    | (WOODI FORTING) IMMETER |                         |
|-------------------------------------|--------------------|-------------------------|-------------------------|
| Parameter                           | F-6000             | EF-6000                 | PES KM-1                |
| Material Cost                       | \$3.50/1Ъ          | *\$4.50/1b est          | \$13.00/1b              |
| Scrap Rate                          | 60 %               | 65%                     | 70%                     |
| Material Prep                       | Oven Dry 4 hrs     | Oven Dry 4 hrs          | Oven Dry 6 hrs          |
| Tooling Required                    | Available          | Available               | Req Higher Temp Heating |
| Die Required                        | Available          | Available               | Heated & Cooling Die    |
| Forming Temp <sup>O</sup> C         | 193 <sup>°</sup> C | 193 <sup>0</sup> C      | 230 <sup>°</sup> C      |
| Forming Cycle                       | Fast               | Fast                    | Very Fast               |
| Forming Ratio<br>Limit              | 8:1                | 8:1                     | 6:1                     |
| Material Limit<br>Texture Retention | Good               | Good                    | 2 <b>2</b>              |
| Totals Cost                         | 1                  | 1.4                     | 4.3                     |
| Comparisons                         |                    | *Not Available          |                         |

# TABLE XI. - THERMOFORMING (VACUUM FORMING) PARAMETERS

#### RESULTS

The object of this study was to promote the development of fire-retardant, low-smoke-emitting polymeric molding materials used in the design of cabin interior parts. Efforts were directed toward developing the processes and techniques for molding aircraft interior parts within the latest state-of-theart in a practical and economical manner.

The study program examined the material behavior under flame exposure, the ability of the material to be processed into end products, and the ability of the end products to withstand typical aircraft interior environment and service abuse.

The approach adopted was to review all available data and information covering the potential candidate polymers which could be molded into usable parts in interior cabin designs. Specifically, materials which could be compression molded, injection molded, and thermoformed in a practical and economical manner were examined. Handling characteristics, preliminary service evaluation, possible cost and weight impact, and anticipated development schedule for each new polymer were also considered during the study period.

# Summary of Results

Although much of the data obtained and verified during the study were on initial pilot plant samples of most of the newer polymers, various pertinent observations were verified. The moer important results are summarized below:

- Three modified phenolic resin systems, Ciba Geigy 917, Narmco 8250 and Fiberite MXB 6032, produced good quality fire-retardant, lowsmoke-emitting compression molded parts with minimal cost, and no weight increase when compared to presently used polyester or epoxy resin molded parts.
- Although the polyimide/glass foam compression-molded material is flame resistant and low-smoke-emitting, it does not offer much improvement over the phenolic resins. The resin system is more costly, the processing more costly and tooling more expensive. The type of parts which could be molded from the thick foam material as applied by Solar is also limited.
- The addition of decorative laminate Tedlar inked film, bonded to the compression-molded parts greatly increased the quantity of smoke emitted, and lengthened the flame-out time and burn length when exposed to the flame test and smoke-evaluation test.
- Two pilot plant injection molding resins, polyethersulfone and polyphenylsulfone, exhibited better flame-resistant properties than the production-available Lexan 940. The Monsanto 200-3Z, aromatic polyester resin, does not meet the required flame resistance in thin sections. The resin dripped and continued to burn up to 7 seconds when exposed to the 60° vertical flame test.

- Both the polyethersulfone, PES KM-1, and the polyphenylsulfone, Radel 5010N, resins are much more costly than the Lexan 940. In addition, because of higher injection temperatures, they require high-cost tool-ing and expensive heated dies to produce quality molded parts.
- Development of thermoforming material EF-6000 polycarbonate has not progressed as expected. Initial exposure of material to service conditions indicated that it was more resistant to service cleaning than F-6000 material; however, G.E. production scrap rate is excessively high and no additional material for this program could be obtained. Also, initial exposure of 0.050 sheet of EF-6000 to 60-second flame test indicates that the flame resistance has been degraded in the modification from F-6000 to EF-6000.
- F-6000 polycarbonate is the only production material available in colors which approach the tentative flame resistant and smoke-emitting goals set for this development program. However, F-6000 still lacks adequate cleaner and solvent resistance for parts subjected to service contamination. In addition, the material still sags and drips on exposure to heat and flame which is objectionable.
- The PES, TQ 103, supplied in sheet form made from KM-1, appears to have the necessary fire retardant properties; however, material cost is approximately six (6) times that of the F-6000 sheet material. Since the average scrap loss of sheet material is approximately 60% on each part, the PES material cost could be prohibitive except for special parts.
- The PES sheet material requires heated dies with cooling fixtures to accept the formed parts to prevent chilling marks on the decorative surface. Forming parameter limits of the PES, and the heat-up rates and cooling cycles still need to be developed for different thicknesses of the PES sheet material.
- Parts molded from 3M Fluorel polymer coated, 120 fiberglass fabric produced much better parts then the polymer coated on random mat fiberglass, however combining of mat and fabric layers offers a potential weight reduction.
- Although the Fluorel polymer does not appear to burn or support combustion in flame, on removal of flame, the material appears to glow as punk on fiberglass mat.
- If parts are to be molded from the present Fluorel polymer, then a method must be developed to prevent absorption of moisture by the polymer after molding into parts. In a simple ambient water exposure test, The polymer lost much of its rigidity and part of its adhesion to the random fibers within one week.

# CONCLUSIONS

- Compression-molded parts made from phenolic resins appear to meet all the requirements for improved flame resistance, reduced smoke emission, and minimal degradation up to 500°F.
- Replacement for decorative Tedlar laminate covering for large surface areas still appears to offer potential for improving the flame resistance of cabin interior panels.
- Cost of Radel 5010N polymer for making injection or thermoformed parts appears prohibitive.
- New PES KM-1, polyethersulfone polymer may be the only logical candidate to replace polycarbonates for injection-molded parts in upper areas of cabin interiors.
- Use of higher cost PES for thermoforming parts may be prohibitive due to the 60% scrap rate experienced on most of these molded parts.
- A flame-resistant low-smoking serviceable, moderate-cost thermoforming sheet material to replace ABS parts presently used around seats, doors, and flight stations is still not available.

#### RECOMMENDATIONS

- Further efforts to develop the PES for injection-molded parts should be continued.
- Further development of serviceable, moderate-cost thermoforming material should be continued.
- Further development of the Fluorel molding polymer with either better moisture resistance or with a means of protection should be continued.
- Molding of large sidewall panels from combination of glass mat and fabric with Fluorel resin should be continued.

# APPENDIX A

COMPRESSION MOLDING OF LOW-SMOKING MODIFIED PHENOLIC RESIN LAMINATE OR CRUSHED CORE PARTS

1. SCOPE

1.1 Scope - This Process Specification establishes the requirements and processes for the compression molding of glass fabric reinforced, low smoking resin.

2. APPLICABLE DOCUMENTS

2.1 The following documents, of the cause and effect on date of content or purchase order, form a part of this process specification to the extent specified herein.

Specifications:

Federal

TT-M-261 Methyl Ethyl Ketone

Military

MIL-R-9299 Resin, Phenolic Laminating

MIL-C-9084 Cloth, Glass, Finished For Resin Laminates

MIL-T-81533 (1-1-1 Trichloro Ethane)

MIL-STD-401 Sandwich Constructions and Core Material: General Test Methods

AMS 3711 Core, Honeycomb, Fibrous Aramid Base, Phenolic Coated

AMS 3824 Cloth, Type "E" Glass, Finished For Resin Laminates

Commercial

SAE

Glass Fabric, Preimpregnated with Phenolic for Molding of Parts.

- (a) Ciba-Geigy Corp Fibredux 917
  High Performance FST Adhesive Pre-Preg
- (b) Narmco 8250 Pre-Preg
- (c) Fiberite Corp. MXB 6032 3M Spray Adhesive No. 44

#### 3. **REQUIREMENTS**

3.1 Materials

3.1.1 Nomex Core - Shall be 1/8 in. cell size 3.0 pcf density 0.125 in. thick and should conform to the requirements of AMS 3711.

3.1.2 Glass Cloth Reinforcement - Shall be style 1581 or 7781 conforming to AMS 3824. Finish shall be suitable to meet the requirements of this specification.

3.1.3 Preimpregnated Gloss Cloth - Shall be Ciba Geigy Fibredux 917, Fiberite Corp. MXB 6032 or Narmco 8250

3.1.4 Material Control - The initial storage period shall be in accordance with the material specification or vendor specification as applicable. After the initial storage period, the material shall be tested for flow and gel time prior to production cure.

The maximum allowable out-time during processing shall be five days.

3.1.5 Preparation of Materials

3.1.5.1 Preimpregnated fabrics which are removed from cold storage shall be warmed sufficiently in closed containers or wrapper to avoid moisture condensation on or into the material.

3.1.5.2 Nomex honeycomb shall be oven dried for a minimum of two hours at 225°F immediately prior to fabrication.

3.2 Tool preparation

3.2.1 Compression molding tools shall be thoroughly cleaned of any protective films or molding residue.

3.2.2 Parting agents shall have no detrimental effect on the curing, mechanical properties, surface finish, or subsequent processing of the part. When a part surface must be painted or have decorative film applied by adhesives, the parting agent shall be removed by solvent cleaning.

3.3 Layup procedure

3.3.1 The preimpregnated fabric and honeycomb core shall be cut to the required patterns established for each part to make an optimum lay-up. Fabic patterns shall be cut in such a manner as to ensure that the fabric warp direction is in accordance with Engineering Drawing Requirements. When the warp direction of the glass reinforcement or the ribbon direction of the core is not specified on the engineering drawing, the directions are optional.
3.3.2 Foreign Material - There shall be no trash, dirt, or foreign objects introduced into the part during lay-up.

3.3.3 Local build-up - Wherever possible, local build-ups shall be introduced into the center of the lay-up. When this is not possible, the build-up shall be covered with a minimum of one layer of fabric.

3.3.4 Part build-up

3.3.4.1 When possible make a flat build-up of the glass prepreg and Nomex Core. To hold the build-up together, fasten edges using tape, heat sealing, or staples. Core sliding may be minimized by spraying with contact adhesive, 3M Spray Adhesive No. 44.

3.3.4.2 When the previous procedure is not possible, lay-up the material on a pre-form tool, then partially curing or freezing this build-up sufficiently to hold the assembly together and permit removal from the pre-form tool. There shall be no wrinkles on separation of plies within the trim area of the laid up pattern. This partially cured or frozen part shall then be placed into the compression molding tool.

### 3.4 Part Curing

3.4.1 Detailed standard fabrication procedure - All details as to build-up, pressure cycle, tool temperature, and curetime shall be developed during the first part qualification in accordance with 3.5. These data shall then become a part of the detail standard fabrication procedure.

3.4.2 Cure Cycle - Temperature shall be a minimum of  $300^{\circ}F + 10^{\circ}F$ . Insert build-up into compression tool. Use sufficient pressure (about 350 psi) to compact the honeycomb cure and close the compression tool to stops for the required part thickness. Cure parts for 30 minutes minimum and remove from press. Upon removal from the compression tool, post cure the parts for 1 hour at 350°F. In certain parts, fixtures may be required to reduce warping and distortion during other part cure and cooling cycles.

3.5 Detail Standard Fabrication Procedure

3.5.1 Prior to production of a part, a detail standard fabrication procedure shall be established and proven. This procedure shall cover the following:

- (a) List of raw materials
- (b) Description of patterns of impregnated fabric and honeycomb cure used for lay-up.
- (c) Special lay-up instructions, as required.

- (d) Exact cure cycles
- (e) Any other specific instructions considered necessary to obtain a satisfactory part. When the detail standard fabrication procedure is established, it shall be recorded on a suitable form. These documents shall be used as the standard for all subsequent production of the part.

### 3.6 Workmanship

3.6.1 Laminates shall be free of defects, such as air bubbles, laps, gaps, blisters, holes, starved areas, resin pockets, nonuniformity, and other defects exceeding the limits specified below.

3.6.2 Unformity - The laminate shall be within the tolerance of the engineering drawings and shall be of high quality workmanship.

**3.6.3** Gaps - There shall be no gaps between pieces of fabric in any lamination.

3.6.4 Cracks and checks - Cracks extending through the part are prohibited. Checks forming sharp discontinuities in the resin surface and exceeding 1/4 inch (6.35 mm) in length, or covering an area greater then 20 percent of any square inch (645.2 mm<sup>2</sup>), or 5 percent of the part area are not acceptable.

3.6.5 Pits - Pits exceeding 1/16 inch (1.59 mm) diameter are not acceptable.

3.6.6 Blisters - Blisters exceeding 1/4 inch (6.3 mm) in diameter are not acceptable. The total number of acceptable blisters shall not exceed an average two for each square foot (0.09 m<sup>2</sup>) of surface. No two blisters shall be closer together then 6 inches (152 mm) edge to edge. Parts having less than 1 square foot (0.09 m<sup>2</sup>) of surface area shall be limited to one blister, maximum.

3.6.7 Resin rich areas - Press molded parts - Variations in resin thickness on the glass cloth surface which may show up as discoloration or surface dryness are acceptable provided that the surface is smooth enough not to show through the Tedlar decorative surface or paint to be applied later.

3.6.8 Starved areas - Any area in which the resin content is below the amount required to ensure proper setting of the fibers is not acceptable.

67

3.6.9 Tackiness - The entire laminate surface shall be fully cured and free of tackiness.

3.6.10 Wrinkles - Wrinkles 1/32 inch (0.79 mm) or less in height or depth shall be allowed, provided no more than an accumulative total length of 6 inches (152.4 mm) of such wrinkles occur in an area encompassed in a 6 inch (152.4 mm) diameter circle.

3.6.11 Delaminations - Solid laminate parts shall contain no delaminations. Compacted core parts shall show no visible delamination to the core on the Tedlar side. The reverse side of the part may be delaminated from the core to a limit of four areas not exceeding three square inches each as long as this delamination is not visible from the tedlar side.

**3.6.12** Porosity - Uniform surface porosity is acceptable.

3.7 Rework - Unless otherwise specified, the reworkable defects in the laminated parts are defined as those which fall within the limits spedified below.

3.7.1 Rework limits - Blisters, starved areas, pits, checks, cracks, and non-uniform resin surfaces extending through no more than 10 percent of the laminate thickness or one ply may be reworked providing the defects do not affect more than 20 percent of the surface area.

3.7.2 Rework procedure.

3.7.2.1 Surface preparation - All surfaces to be reworked shall be free of oils, wax, finishes, etc. The surface shall be roughened by light sanding to remove surface gloss, and then cleaned by wiping with clean cloths saturated with TT-M-261, Methyl-Ethyl-Ketone to remove all dust.

3.7.2.2 Rework surface defects with plastic casting resin LCM 22-1029 Type IX.

3.9 Surface Preparation - When the part surface is to be prepared for painting or application of decorative Tedlar, wipe the surface with a clean cloth moistned with 1-1-1 Trichloroethane. (NOTE: Avoid prolonged or repeated breathing of vapor; avoid contact with skin.) Allow to air dry for a minimum of 15 minutes. Scuff sand as necessary to remove surface gloss. Remove dust residue with shop air, vacuum brush or dry cloth wipe. Follow with a wipe with a clean cloth saturated with 1-1-1 Trichloroethane to remove sanding residue. Allow to air-dry for a minimum of 30 minutes before further processing.

3.10 Mechanical Properties

3.10.1 Flatwise tensile - The flatwise tensile strength shall be a minimum of 100 psi (689.5 kPa) when tested in accordance with MIL-STD-401.

Specimen size shall be 2 inches (50.8 mm) square or 2 inches (50.8 mm) in diameter. Five specimens shall be tested and the average reported.

3.10.2 Peel strength - The peel strength shall be a minimum of 8 pounds (44.48 N) tested in accordance with MIL-STD-401. Specimen size shall be 3 inches (76.2 mm) by 12 inches (304.8 mm). Warp direction of cloth and ribbon direction of core shall be at random. Five specimens shall be tested dry and the average reported.

### 4. QUALITY ASSURANCE PROVISIONS

4.1 Qualification of parts, tools and process - Prior to production, each part together with the set of tools and process used to fabricate it shall be qualified as specified in 3.6. Complete or partial requalification may be required periodically or whenever quality of parts is questionable at the option of Quality Assurance.

4.2 Material Control

4.2.1 All raw material used for fabricating parts shall have been qualified and accepted under the applicable material specification.

4.2.2 Raw material shall be stored at temperatures corresponding to shelf life requirements of the applicable material specification. Material in storage shall be tested periodically to determine if there is any deterioration. The initial period before the material is retested shall correspond to the shelf life requirements of the material specification.

4.3 Equipment control - All variable equipment used for storage of material, processing, and inspection shall be controlled by documented periodical checks to ensure that all process requirements such as temperature and pressure limits are consistently met as specified herein.

4.4 Process control - All critical operations in the process, such as lay-ups, cure temperatures, times, and pressures, shall be verified by recording instruments or by inspection; and documentary evidence maintained to demonstrate conformance to all the requirements of this process bulletin.

4.5 Part inspection - Each part shall be inspected for conformance to requriements of 3.2 as well as the Engineering drawing.

5. HANDLING AND TRANSPORTATION

5.1 Parts and materials shall be handled and transported in such a manner as will insure that the required physical characteristics and properties are preserved. All parts in fabrication, shipment, and storage shall be protected adequately to prevent damage. Critical surfaces may require surface protection, packaging in shipping containers, or be stored on individual storage racks to protect them adequately.

# 6. NOTES

6.1 This process bulletin meets the requirements of MIL-F-9400, for preparation of a detailed process specification for the fabrication of plastic laminate parts.

### APPENDIX B

### PROCESSING OF INJECTION-MOLDING MATERIALS

1. SCOPE AND CLASSIFICATION

1.1 Scope - This Process Specification establishes the requirements for the fabrication of low smoke producing injection molding materials.

1.2 Classification - This specification applies to the fabricator of parts from General Electric Lexan 940, Polycarbonate, and ICI Chemical Polyethersulfone, KM-1.

2. APPLICABLE DOCUMENTS

2.1 The following documents, of the issue in effect on date of Contract or purchase order, form a part of this specification to the extent specified herein:

| Federal | JAN-T-171 Toluene            |
|---------|------------------------------|
|         | 0-C-291 Chloroform           |
|         | TT-E-751 Ethyl Acetate       |
|         | TT-I-735 Isopropyl Alcohol   |
|         | TT-M-261 Methyl Ethyl Ketone |
|         | TT-X-916 Xylene              |

3. REQUIREMENTS

3.1 Material

3.1.1 Material shall be shipped and stored in sealed metal or plastic containers.

3.1.2 Containers shall not be opened until the contents can be loaded into the hopper of the injection molding machine.

3.1.3 Material that has absorbed moisture shall be dried in trays in a circulating air oven for not less then three hours at  $150^{\circ}C$  ( $302^{\circ}F$ ) or six hours at  $120^{\circ}C$  ( $248^{\circ}F$ ).

3.1.4 Rework Material - Sprues and scrap parts may be utilized up to 25 percent with new polymer. Material shall be cut up and dried as in 3.1.3.

3.2 Tooling - Mold dies shall be made of hardened steel forgings, chrome plated, incorporating electric heating elements capable of heating the die to 200°C (392°F).

3.3 Mold Releases - Mold releases shall be used as sparingly as possible. They shall have no detrimental effect on the material properties, surface finish or subsequent processing of the part. Silicone mold releases shall not be used.

3.4 Injection Molding Machines

3.4.1 Must be capable of providing a thermally homogeneous melt with no pockets where the melt can be trapped or stagnate. Heating capcity to  $400^{\circ}C$  (752°F).

3.4.2 A reciprocating screw-type machine is recommended. Plunge-type machines are not recommended because of the possibility of local over heating.

3.4.3 Must have a variable control of pressure up to 140  $MN/m^2$  (20,000 psi.).

3.4.4 Must have hopper with heating capacity to  $200^{\circ}C$  (392°F) to preheat material before feeding to injection machine.

3.4.5 Must have accurate temperature controls on feed hopper.

3.4.6 Must have high screw torque.

3.4.7 Must have variable control of all phases of the molding cycle.

3.5 Detail Standard Fabrication Procedure

3.5.1 Prior to production a detail standard fabrication procedure shall be established and proven. This procedure shall cover the following:

- (a) Cylinder temperature
- (b) Plastic temperature
- (c) Mold temperature
- (d) Extrusion time and pressure
- (e) Mold cooling time
- (f) Mold open time

(g) Any other specific instructions considered necessary to obtain a satisfactory part. When the detail procedure is established it shall be reworded on a suitable form. There documents shall be used as the standard for all subsequent production of the part.

3.6 Workmanship

**3.6.1** Parts shall be free of the defects specified below

3.6.1.1 Shrink or Sink Marks - A shallow depression or dimple on the surface of the part due to collapsing of the surface following local internal shrinkage, after the gate seals. May also be an insufficient short shot.

**3.6.1.2** Bubbles and Voids - Enclosed cavity or hole in the bulk of the molding.

3.6.1.3 Weld Lines - A mark on the surface made by the meeting of two flow fronts during the molding operation.

3.6.1.4 Flash - Extra plastic attached to a molding along the parting line which must be removed before the part can be considered finished.

3.6.1.5 Burn Marks - Discolored or charred areas of molding.

3.6.1.6 Splash Marks - A surface pattern of streaks radiating from the area of the gate.

3.6.1.7 Flow Marks - Wavy surface appearance caused by improper flow of the resin into the mold.

3.6.1.8 Poor Surface Finish - Poor or nonreproduction of the tool surface.

3.6.1.9 Distortion of the part in one or more planes.

3.6.1.10 Window - Well defined areas of different appearance approximately the size and shape of unmelted granules.

3.6.1.11 Patches - Surface defects in the same position of each molding usually close to the gate.

3.6.1.12 Crazing - Fine cracks which may extend in a network on or under the surface. Usually occurs in the presence of an organic liquid or vapor with or without the application of mechanical stress.

3.6.1.13 Cracking - Cracking or breaking of the part by injection.

3.6.1.14 Surface Blisters - Small bulges caused by the expansion of the void under the surface.

3.6.1.15 Pressure burn discolored area caused by trapped air in the mold becoming superheated.

3.7 Secondary Bonding - Secondary bonding to the molding may be done with any suitable epoxy or polyurethane adhesive.

3.8 Surface Preparation - When the part surface is to be prepared for painting or application of decorative Tedlar, wipe the surface with a clean cloth moistened with Isopropyl Alcohol.

Note: Avoid prolonged or repeated breathing of vapor, avoid contact with skin.

Allow to air dry for a minimum of 15 minutes. Scuff sand as necessary to remove surface gloss. Remove dust residue with shop air, vacuum brush or dry cloth wipe. Follow with a wipe with a clean cloth saturated with Isopropyl alcohol to remove sanding residue. Allow to air dry for a minimum of 30 minutes before further processing.

**3.9** Residual Strain - Parts shall not have a residual strain greater than A-B when tested in accordance with 4.6.1.

3.10 Annealing - When parts exhibit excessive residual strain they shall be annealed in a circulating air oven at 190°C (375°F) for five hours to release molded in stress.

4. QUALITY ASSURANCE PROVISIONS

4.1 Equipment Control - All variable equipment used for material processing and inspection shall be controlled by documented periodic checks to insure that all process requirements are consistently met as specified herein.

4.2 Process Control - All critical operations in the process, such as barrel material and mold temperatures, times and pressures shall be verified by recording instruments or by inspection; and documentary evidence maintained to demonstrate conformance to all the requirements of the specification.

4.3 Part Inspection - Each part shall be inspected for conformance to the Engineering Drawing and the requirements of 3.6.

4.6 Test Methods

4.6.1 Test Method for estimating residual molded in strain.

4.6.1.1 Immerse part in each of the test reagents for 100 seconds.

4.6.1.2 Wipe dry and examine for cracks. (Molding turning white is disregarded.)

4.6.1.3

Select reagent which first gives visible cracks.

1

Test Reagent

| Xylene                                | D  | Very Highly Strained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|---------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Toluene                               | C  | Highly Strained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Ethyl Acetate                         | B  | Fair Amount of Strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 75% Chloroform                        | A  | Low Strain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Methyl Ethyl Ketone                   | AA | (1) A set of the se |  |  |
| No Cracks With Methyl<br>Ethyl Ketone |    | Strain Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

Good quality moldings should rate A-B. Annealing is usually required for AA or better.

5. HANDLING AND TRANSPORTATION

5.1 Parts and materials shall be handled and transported in such a manner to prevent damage. All parts in fabrication, shipment and storage shall be protected adequately by storage on racks, in boxes or protective bags.

6. NOTES

6.1 This Process Specification meets the requirements of MIL-P-9400 for preparation of a detail process specification for the fabrication of plastic parts.

#### APPENDIX C

### FABRICATION OF LOW-SMOKING THERMOPLASTIC PARTS FROM SHEET STOCK

### 1. SCOPE AND CLASSIFICATION

1.1 Scope - This specification details the requirements and procedures for fabricating parts from polycarbonate and polyethersulfone by thermoforming techniques.

1.2 Classification

Type I Parts - Parts where the surface finish is important such as the interior trim of the flight station or passenger compartment.

Type II Parts - All other parts.

### 2. APPLICABLE DOCUMENTS

2.1 The following documents of the issue in effect on date of contract or purchase order form a part of this specification to the extent specified herein:

Federal

| 0-M-232  | Methanol (methyl alcohol) |
|----------|---------------------------|
| TT-E-751 | Ethyl acetate             |
| TT-I-735 | Isopropyl Alcohol         |

Commercial

General Electric Polycarbonate "Lexan" F-6000 sheet

ICI Chemical Polyethersulfone KM-1 sheet supplied as Rohm and Haas TQ-103

Adhesives, Polyurethane

Bacon Industries

Flexobond 203-A/Flexobond

Activator BA-400 (Fast Cure)

Flexobond 204-A/Flexobond

Activator BA-400 (Medium Cure)

3M Co.

3535 A/B

Seven-K Color Corp.

Dye - Pontachrome

Blue-Black AAG-13

### 3. REQUIREMENTS

3.1 Material - This specification covers the fabrication of General Electric Polycarbonate, "Lexan" F-6000, and ICI Polyethersulfone, KM-1, sheet.

3.1.1 Detail procedure - Details of forming shall be as specified by a forming machine set-up chart. Other details of fabrication shall be as specified by the manufacturing operations sheet. These shall be prepared for each part as specified in 3.4.

3.1.2 Tools - Forming tools shall be a cast plastic, laminated fiberglass, or aluminum. Where a decorative surface texture is desired, or eimensional tolerances must be maintained, electric heating shall be incorporated in aluminum tooling.

3.1.3 Cleaning - Special precautions shall be taken to keep the sheet dust-free during the heating and forming cycles to prevent marring the surface with objectionable dimples. Remove the dust from the sheet by blowing with clean air. If necessary, wipe with a clean rag dampened with isopropyl alcohol.

3.1.4 Drying - Prior to forming sheet material shall be dried as follows:

|         |               | Polyca               | rbonate              | Polyethersulfone |          |        |
|---------|---------------|----------------------|----------------------|------------------|----------|--------|
|         | Thickness     | 120°C <u>+</u> 5°C ( | 250°F <u>+</u> 10°F) | 150°C +10°       | C (300°F | ±15°F) |
| Less th | an 1.5 mm (0. | 60 in.)              |                      | 5 hou            | ırs min  |        |
| 1.5 mm  | (0.60 in.) th | rough 3 mm (0.       | 120 in.)             | 6 hou            | irs min  |        |
| Over 3  | mm (0.120 in. | )                    |                      | 18 hou           | irs min  |        |

Dried sheets shall be loaded into the thermoforming machine before they cool down to room temperature.

If the part bubbles during the forming operation, the drying cycle shall be repeated.

3.1.5 Heating - Heating shall be accomplished by using a circulating air oven, hot platen, or bank of radiant heaters. The heating cycle shall be specified by the forming machine set-up chart.

3.1.6 Forming - Polycarbonate shall be formed between  $171^{\circ}C$  (340°F) and 199°C (390°F). Polyethersulfone shall be formed between 270°C (525°F) and 302°C (575°F). The forming cycle shall not be started until the sheet is formable. Forming cycles must be very fast to minimize cooling of the sheet below forming temperature.

3.1.7 Cooling - The part shall be removed from the forming tool as soon as possible. Cooling may be expendited by blowing clean air over the part. A water spray shall not be used.

3.2 Machining - In general, polycarbonate sheet material shall be machined in the same manner as soft metal. Do not over heat the material during the machining operations. An air blast or water spray may be used to prevent over heating. Organic solvent type coolants shall not be used.

3.3 Bonding

3.3.1 Adhesives - All bonding shall be performed using polyurethane adhesives, as follows:

- (a) General Purpose Flexobond 204-A/Flexobond Activator BA-400 (medium cure)
- (b) Fast Cure Flexobond 203-A/Flexobond Activator BA-400 3M Co. 35 35 A/B

3.3.2 Surface Preparation - Scuff sand the faying surface with abrasive paper, 150 grit maximum, as required to get satisfactory bonding. Wipe the dust off the sanded surfaces with a clean cloth or paper. If necessary, clean with a cloth or paper dampened with TT-I-735 Isopropyl Alcohol.

3.3.3 Adhesive bonding procedure - Mix the adhesive according to the manufacturer's instructions and then apply it to the faying surfaces. Assemble and clamp the surfaces lightly and evenly together. Clamps shall remain on the joined surfaces until the curing cycle has been completed. Approximate cure times for the adhesive are as follows: 4 hours at room temperature, 1 hour at  $150 + 10^{\circ}$ F, or other combinations of temperature and time not exceeding  $150^{\circ}$ F are permissible.

3.4 Detail forming machine set-up chart and manufacturing operations sheet for specific parts.

3.4.1 As part of the qualification procedure, a detail forming machine set-up chart and manufacturing operations sheet shall be established and proven (see 4.1.1) which shall include the following:

- (a) Material type, thickness, and cut-out pattern.
- (b) Type of release, if any, and method of application to the tool.
- (c) Heating cycle including heater or oven settings, and description of any masks used between the heaters and the sheet.
- (d) Forming cycle sequence including vacuum and pressure setting, tool position forming sequence, cooling time, and the description of any cooling jigs if required.
- (e) Special instructions about trimming, cementing, cleaning, or protection.
- (f) Any other instructions considered necessary to make a satisfactory part.

3.4.2 The forming procedures shall be recorded on a forming machine set-up chart. Fabrication procedures shall be recorded on a detail manu-facturing operations sheet. These documents shall be used as the standard for all subsequent production of parts.

### 3.5 Workmanship

3.5.1 Parts shall be free of cracks and crazing. - Pits, blisters or bubbles less than 0.060 inch in diameter are acceptable, provided they do not cover more than 20 percent of any square inch. Pits, blisters or bubbles larger than 0.060 inch but less than 0.20 inch in diameter are acceptable, provided no more than three such defects are located in any 4-inch diamter circle.

3.5.2 Where the parts surface is critical as noted on the Engineering drawing, pits, blisters or bubbles less then 0.060 inch in diameter are acceptable, provided they do not cover more than 10 percent of any square inch. The surface shall be free of pits, blisters, bubbles, discolorations or other surface imperfections exceeding 0.060 inch in diameter.

3.5.3 Bonded joints shall be free of crazing, cracks, and uncured adhesive, and shall be firmly bonded over at least 85 percent of the joint surface within any 2-inch length of the joint. The remaining 15 percent of the joint may have bubbles or dry-spots. On joints in ducts, no voids or dry-spots shall extend more than 1/3 of the width of the joint. Discoloration of adhesive bonded joints is acceptable.

3.5.4 Wrinkles are not allowed.

3.5.5 Foreign materials - There shall be no paper tape, crayon marks, or other miscellaneous materials on the parts.

3.5.6 Trimming - Sharp or frayed edges resulting from drilling, trimming, or routing shall be removed.

#### 4. QUALITY ASSURANCE PROVISIONS

4.1 Prior to acceptance of parts, at least one pilot part shall be fabricated on each set of tools.

4.1.1 Destructive inspection - Inspection of parts having draw ratios of 1 to 1 (width to depth) or less, i.e. 1.5 to 1, 2 to 1 etc., shall not require destructive testing. All new parts having ratios exceeding 1 to 1 shall, during tool try and forming cycle development, have at least one part sectioned for thickness check in the thin areas and tested for stress crazing. If crazing or excessive thinning occurs, the cause, such as faulty tooling or improper processing, shall be determined and corrected. At least one part shall be formed with the necessary changes and the procedure repeated until acceptable parts can be produced. The forming procedure set up chart and shop order shall be up-dated to reflect all information necessary.

4.1.2 Stress cracking resistance.

4.1.2.1 Sample size and configuration - On flat parts, the sample size shall be at least 4 square inches by the supplied thickness. On other than flat parts, the parts shall be tested in the area of maximum curvature or complexity.

4.1.2.2 Test equipment shall be as follows:

(a) Solvent, as follows:

50/50 mixture (pbv) of TT-E-751 Ethyl Acetate and O-M-232 Methanol (Methyl Alcohol).

- (b) Pontachrome Blue-Black Dye 1.0 gram per 200 ml above solvent.
- (c) Cotton gauze.

4.1.2.3 Procedure - Thoroughly wet the cotton gauze with the test mixture specified in 4.1.2.2. Wipe the part slowly with the gauze, allowing the solvent to wet the sample for three minutes. Allow the part to air dry for one minute, and then carefully inspect for cracks or crazing. If the part exhibits any stress cracking, the cause shall be determined and corrected as specified in 4.1.1.

### 4.2 Production parts

4.2.1 Process control - Inspection shall assure conformance to the applicable forming machine set-up chart and manufacturing operations sheet (see 3.1.1).

4.2.2 Part inspection - Inspection shall verify conformance of parts to the requirements of 3.5 as applicable.

## 5. HANDLING AND TRANPORTATION

5.1 Parts and materials shall be handled and tranported in such a manner as will insure that the required physical characteristics and properties are preserved.

5.2 Sheet material - If sheets are stacked horizontally, use paper between sheets to prevent scratching. Place the smaller sheets on top of larger sheets to avoid any unsupported overhang. Sheets may be stored in a vertical position provided precautions are taken to prevent sagging or scratching of the sheet material.

5.3 Formed parts - Rough handling shall be avoided. Parts shall be stored in a manner that will prevent distortion, change of shape, or physical damage.

6. NOTES

6.1 There are no Government specifications covering the requirements of this specification.